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Abstract. A noninvasive method for the estimation of internal tempera-
ture in chicken meat immediately following cooking is proposed. The
external temperature from IR images was correlated with measured in-
ternal temperature through a multilayer neural network. To provide in-
puts for the network, time series experiments were conducted to obtain
simultaneous observations of internal and external temperatures imme-
diately after cooking during the cooling process. An IR camera working
at the spectral band of 3.4 to 5.0 mm registered external temperature
distributions without the interference of close-to-oven environment, while
conventional thermocouples registered internal temperatures. For an in-
ternal temperature at a given time, simultaneous and lagged external
temperature observations were used as the input of the neural network.
Based on practical and statistical considerations, a criterion is estab-
lished to reduce the nodes in the neural network input. The combined
method was able to estimate internal temperature for times between 0
and 540 s within a standard error of 61.01°C, and within an error of
61.07°C for short times after cooking (3 min), with two thermograms at
times t and t130 s. The method has great potential for monitoring of
doneness of chicken meat in conveyor belt type cooking and can be
used as a platform for similar studies in other food products. © 2000
Society of Photo-Optical Instrumentation Engineers. [S0091-3286(00)00711-X]

Subject terms: thermal imaging; neural networks; chicken meat; food safety.

Paper 990391 received Oct. 6, 1999; revised manuscript received June 1, 2000;
accepted for publication June 7, 2000.
ses
th
e

ure
re
st

the
ate
time
ea

red
sive
od
ing
k-
y-
IR
t in

ing
l.

atu
e-

de-
nd
ect
em

an
ken
al
ra-
ey
ace

of
in
gis-
nal
h a
the
e-

els
on-

n-
e-

es
1 Introduction

As the demand for ready-to-eat meat products increa
the meat processors face a constant control problem in
cooking lines: To achieve the right cooking point in th
meat products without over- or undercooking. To ens
microbial inactivation, the U.S. Department of Agricultu
~USDA! requires1 that every meat product in the line mu
reach a minimum internal temperature~71°C for chicken
breast!. Overcooking can ensure food safety; however,
products can have a diminished yield due to losses in w
content, taste, and juiciness. To date, there is no real-
assay that can check the internal temperature of all m
products coming out the oven.

Because no contact with the surface is needed, infra
~IR! thermometry can be used for accurate and noninva
inspection of cooking processes without detriment of fo
safety. The development of IR techniques in the cook
lines would aid quality control personnel in industrial coo
ing lines to comply with food safety regulations for read
to-eat meat, while maintaining quality of the products.
imaging techniques have been proposed for noncontac
spection in different applications.2–4 In particular, active
research is conducted for the applications of IR imag
techniques in agriculture. In an early work, Danno et a5

used an IR vidicon camera to evaluate the degree of m
rity in certain fruits and tomato. The changes in the m
3032 Opt. Eng. 39(11) 3032–3038 (November 2000) 0091-3286/2000/
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tabolism of the vegetables generated heat that could be
tected by the imaging device. More recently, Tao a
Wen6,7 used near- and mid-IR imaging to accurately det
defects in apples and to distinguish the defect from st
end/calyx~flowered end! with high accuracy.

To the best of our knowledge, the first attempt to use
IR camera in a cooking process was done by Goede
et al.8 In that work, an IR camera working in the spectr
range 8 to 12mm was used to monitor the surface tempe
ture of food products cooked in a microwave oven. Th
required a compensation in emissivity for accurate surf
temperature measurements. Recently, Ibarra et al.9 used a
IR focal planar array camera with working spectral range
3.4 to 5.0mm for the estimation of internal temperature
just-cooked chicken meat. The external temperature re
tered in the thermograms was correlated with the inter
temperature through a linear time series model. Suc
model was able to predict the internal temperature in
meat with three IR images at times 0, 60 and 150 s imm
diately after cooking. However, the use of linear mod
might reduce the accuracy of the estimation due to the n
linear nature of heat transfer processes.

Here, the work initially developed in Ref. 9 was conti
ued with the application of neural networks for the corr
lation between internal~IT! and external~ET! temperatures
in chicken meat immediately after cooking. Time seri
$15.00 © 2000 Society of Photo-Optical Instrumentation Engineers
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experiments were conducted to obtain simultaneous ob
vations of IT and ET in just-cooked chicken meat, every
s for 570 s during the cooling process. A Levenbe
Marquardt neural network was used for the correlation
tween IT and ET. This hybrid algorithm provides speed a
convergence to the network, which are sometimes a p
lem with conventional backpropagation algorithms. To
timate the optimum input for the network~and ultimately
the number of IR images required for the IT estimatio!
some inferences were established based on the values o
correlation factors derived from the covariance matrix of
values and simultaneous and lagged ET observations.

In Section 2, the experimental setup and the time se
experiments are described. In Section 3, the neural netw
architecture and the optimization method are analyzed
Section 4, the results of the network for times betwee
and 540 s are presented. Two cases are analyzed to v
the proposed heuristic criterion. In Section 5, the perf
mance of the network for short times~up to 3 min! is pre-
sented. This analysis enabled evaluating the potential f
practical application. In Section 6, the conclusions of
work and some observations for a potential application
presented.

2 Experimental Setup

Time series experiments were conducted to provide data
the supervised neural network. In these experiments, sim
taneous measurements of IT and ET were obtained sta
immediately after the cooking process. The temperat
measurements were taken every 30 s for 10 min during
cooling process. In this manner, sequential inputs~external
temperature! and targets~internal temperature! were ob-
tained for the supervised learning.

A total of 60 chicken breast samples with similar sha
~average thickness after cooking of 11 mm! were cooked at
the same oven temperature (177°C) for times between
and 7.6 min in a multipurpose industrial oven~model
MPO-D2012 from Heat and Control, Inc.!. The variation in
cooking times allowed obtaining endpoint temperatu
ranging from under- to overcooking.

A ThermaCAM PM250~Inframetrics, Inc.! IR camera
with spectral band of 3.4 to 5.0mm ~outside the water
vapor sensitive band of 5 to 8mm! was used to registe
external temperature distributions. The camera was loc
1 m above the just-cooked samples and calibrated for b
ground temperature compensation to minimize heat ene
emission from the surroundings. In the recorded IR ima
the external temperature of a fixed region of interest cl
to the thermocouple was measured, maintaining the
and location of the region of interest during all observ
tions. Figure 1~a! shows an IR image of a batch of fou
chicken meat samples recorded in the conditions just
scribed. The color table to the left of the thermogram re
resents the temperature codification. To register inte
temperatures, embedded copper/constantan thermoco
~diameter 2.5 mm, response time 0.4 s! were inserted in the
center of the thickest regions of the meat pieces. The
readings were automatically recorded in a computer st
ing simultaneously with IR image recording. Room tem
perature was also registered with an additional therm
couple. A typical temperature versus time plot is shown
Fig. 1~b!. Both internal and external temperature expe
oaded From: http://opticalengineering.spiedigitallibrary.org/ on 12/14/2012 T
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enced an exponential-decay behavior in time, which is ty
cal in cooling processes.10 Notice that there is a differenc
between initial internal and external temperatures and
both temperatures converged to the room temperature
a long time.

Four chicken breast samples were cooked at the s
cooking time and imaged simultaneously. For each batc
four cooked samples, eight thermocouples were used~two
for each sample!. A total of 15 batches were cooked an
imaged in this manner. Eight internal and eight exter
time series were obtained for each batch, each time se
containing 20 time points equally spaced every 30 s. B
cause the cooking process changed the chemical and p
cal properties of the meat, experiments were conducted11 to
measure the emissivity of cooked chicken meat during
after cooking. It was observed that although the emissiv
varies during the cooking process, it remains fairly const
after cooking. A constant emissivity of 0.63 was measu
for chicken meat after cooking, and this value was used
all experiments.

Fig. 1 Thermograms and temperature time series: (a) IR image of a
batch of four chicken fillets cooked simultaneously (note the table to
the left indicates the false color codification of temperature distribu-
tion), and (b) typical exponential behavior of temperatures in time.
3033Optical Engineering, Vol. 39 No. 11, November 2000
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For convenience, the temperature observations w
converted to the normalized quantities

I ~ t !5
Troom~ t !

IT~ t !
,

~1!

E~ t !5
Troom~ t !

ET~ t !
.

The unitless quantities in Eq.~1! are referred hereafter a
normalized internal and external temperatures, respectiv
The normalized temperatures defined in Eqs.~1! have the
advantage of considering environment temperature va
tions, and to convert the input to numbers less than o
which are more suitable for the neural network algorith
Figure 2 shows the typical normalized temperature beh
ior in time.

3 Neural Network Architecture

3.1 Levenberg-Marquardt Neural Network

A multilayer neural network was used to correlate an e
mated normalized internal temperature at timet, Î (t), in
terms of the simultaneous normalized external tempera
observation,E(t), and some other lagged values,E(t
1nD) still to be determined, where 1<n<19,D530 s.
The input vector of normalized external temperatures is
noted asE(t), with componentsEi(t), (i 51, . . . ,N),
whereN is the number of nodes in the input layer~to be
specified later!. A network with five hidden layers, which
relates the normalized external temperature input,E(t), to

Î (t) is depicted in Fig. 3.
The nodes in the first hidden layer,E1 are calculated in

terms of the input as

Em
1 5sS (

j 51

N

wjm
1 Ej~ t !1bm

1 D , ~2!

Fig. 2 Normalized temperature time series.
3034 Optical Engineering, Vol. 39 No. 11, November 2000
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wherewjm
1 (1< j ,m<N) is the weight factor between inpu

node j and hidden layer nodem, bm
1 is a bias value initial-

ized as 1, ands is the log-sigmoid function defined as

s~x!5
1

11e2x . ~3!

The final layer, the targeted internal temperatureÎ (t), is
expressed in terms of the last hidden layer, for the cas
five layer network as

Î ~ t !5sS (
j 51

N

wj
4Ej

3~ t !1bD , ~4!

with b a final bias value. A detailed description of feedfo
ward networks can be found in Ref. 12.

In the learning process, each time an input is presen
to the network, the weight factors are adjusted to minim
a function of the error,«, with a random guess for initia
weight factors. The error is defined as the difference
tween the output of the network,Î (t), and the actual obser
vation or target,I (t). Explicitly,

«5I ~ t !2 Î ~ t !. ~5!

For the Levenberg-Marquardt algorithm, the function of t
error to be minimized is the mean square error.

The most common way to minimize the mean squ
error is with the gradient descent method.12 In this method,
the weights are adjusted by moving along the negative g
dient in small steps. This step factor is known as learn
rate and denoted here asm. With a proper selection of the
learning rate this method guarantees convergence, b
can take a very large number of iterations. A faster opt
is the Gauss-Newton method.12 Table 1 compares the ad
vantages and disadvantages of the methods mentioned.
method can lead rapidly to the minimum mean square er
but if the guess of initial weight factors is wildly incorrec
the algorithm can diverge. The situation is even worse
cause of the approximated calculation of required deri
tives.

Fig. 3 Five layer feedforward network architecture. The output Î (t)
is the estimated internal temperature at time t. The input E(t) is
composed of simultaneous and lagged observations of external
temperature. The matrix v i contains the weight factors between the
layer Ei and the previous layer.
erms of Use: http://spiedl.org/terms
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The Levenberg-Marquardt algorithm provides a con
nient compromise between the speed of Gauss-New
method and the ensured convergence of gradient des
In the first iteration, the algorithm begins with a gradie
descent with a small learning ratem1 . If the mean square
error is not small, thenm25m1u is chosen in second itera
tion, whereu@m1 . Eventually, the gradient descent alg
rithm should decrease the mean square error. If, after c
parison with targeted internal temperature, the mean sq
error for k’ th iteration is small enough, thenmk115mk /u
is chosen, and the algorithm will be approaching the Gau
Newton method. The details of Levenberg-Marquardt al
rithm can be found in Ref. 13. Sometimes during calcu
tion a small mean square error is reached quickly, and
significant reduction is achieved with further calculatio
Then, it is convenient to define an error goal,^«g

2&, for
early stopping. This is also useful when the algorithm is
converging. In practice, the learning ratem and the error
goal ^«g

2& are specified by trail and error.
Once the network is designed, the normalized exter

temperature vectors must be selected to produce an
mum output, with the fewest number of elements. This
discussed next.

3.2 Network Input Reduction and Optimization

The neural network design will be complete with the spe
fication of the input vectorE(t); that is, to establish the
number of nodes and lags included in the input. Initial
the input can have 20 nodes, which is the number of ti
points in each series. Because each input node represen
IR image, the use of all the 20 external temperature ob
vations in a particular time series to estimate a given in
nal temperature, will require 570 s~with 30 s lag between
each IR image!. Considering that in an actual industri
cooking process the meat products are traveling typicall
a speed of 0.2 to 0.3 m/s, a distance greater than 110 m
be required to register the last IR image~at 570 s!. As a
consequence, a reduction in the number of input node
needed to increase the potential application of this wor

A first reduction in the number of input nodes can
achieved by assuming that only six lags significantly co
tribute to the estimation. Specifically, for an internal te
perature target at timet, I (t), only the simultaneous exter
nal temperature valueE(t) and up to five lagged values
E(t1nD) (1<n<5), are assumed to contribute signi
cantly to the internal temperature. In this case, the ma
mum time required for the internal temperature estimat
is 2 min, which will require a minimum traveling distanc
in the conveyor belt of 36 m.

Further reduction in the number of input nodes can
achieved by considering the contribution of the possi

Table 1 Characteristics of different algorithms for backpropagation
neural networks.

Algorithm Speed Convergence

Gradient Descent d

Gauss-Newton d

Levenberg-Marquardt d d
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t.

-
e

-

l
i-

an
-

t
l

input nodes to the internal temperature. It is reasonabl
think that the internal temperature time series is stron
correlated to the simultaneous external temperature t
series, and that the correlation decreases for lagged va
A way to measure that correlation is to consider the cov
ance between the normalized IT and the ET time se
without lag, with one lag and so on. Explicitly, if for a pa
of normalized internal and external temperature time ser
the set of variables for the covariance analysis is arran
in the matrix

X5F I ~ t ! E~ t ! 2 ¯ 2

I ~ t1D! E~ t1D! E~ t ! ¯ 2

] ] ] ]

I ~ t15D! E~ t15D! E~ t14D! ¯ E~ t !

G ,

~6!

then the elements in the covariance14 matrix are expressed
as

sik5
1

6 (
j 51

6

xi j xk j2
1

30(
j 51

6

xi j (
j 51

6

xk j , ~7!

with i 51, . . . ,4 and 1<k<6. The corresponding correla
tion coefficients are defined14 as

r ik5
sik

sisk
, ~8!

with si
2[sii . The covariance matrix of the data indicates

there exists a linear relationship between the time serie
matrix X, and the associated correlation factors indicate
strength of that relationship. Furthermore, because ther
interest only in the relationship between the internal te
perature and the lagged external temperatures, only
casesi 51, 2<k<6 are considered. Therefore, a high co
relation coefficientr 12 indicates a strong relationship be
tween simultaneous internal and external temperatures
so on. In this manner, the input vectorE(t) can be reduced
by including only the nodes with higher correlation coef
cient. Although this heuristic criterion is not directly relate
to the neural network algorithm, it can be useful for t
simplification of network input. Similar reductions, as pri
cipal components analysis, are often used for t
purpose.12

The covariance matrix elements in Eq.~7! and the cor-
responding correlation factors in Eq.~8! were calculated
from the time series data of all batches. The component
matrix X @see Eq.~6!# were obtained by averaging the no
malized internal and external time series. The results of
computation are presented in Fig. 4. The vertical axis in
figure corresponds to the square value of the correla
coefficient,r 1m

2 (2<m<7), and the horizontal axis corre
sponds to the lag indexm. As expected, the correlation i
high for the simultaneous (m52) internal and externa
temperature time series, and gradually decreases for
lagged external temperature time series. It can be obse
in Fig. 4 that r 12

2 50.999 andr 13
2 50.906 are the highes

correlation factors. This indicates that an input with sim
3035Optical Engineering, Vol. 39 No. 11, November 2000
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taneous and one-lag external temperature may be en
for internal temperature estimation. This situation is labe
hereafter as case@01#. The notation indicates the number
nodes and order of lags in the input. The case@012# is for
an input with simultaneous, one-lag, and two-lag exter
temperature values~see next section!.

In a practical application, the reduction of the input
two components means that for the estimation of the in
nal temperature at certain time~say immediately after cook
ing! it is needed to take an IR image at that time, and
second IR image after 30 s. This fact increases the pote
for a practical implementation.

4 Performance of the Network During Cooling
Time

A total of 120 time series separated in 15 batches w
obtained in the experiments. The data were separated
training and test sets in such a manner that data from
batches and all thermocouples were evenly distribu
among the training and test sets. A total of 60 time se
were used in the training set and the remaining 60 serie
the test set.

To verify the heuristic criteria given in the last sectio
the performances of the network for cases@01# and @012#
are presented next.

4.1 Case [01]

In this caseN52, and for an internal temperature targ
I (t) the corresponding external temperature input is
pressed as

E~ t !5F E~ t !
E~ t1D!G . ~9!

Training data were presented to the multi-lay
Levenberg-Marquardt network with fixed learning ratem
51.0 and performance goal^«g

2&53.13104. A total of
1040 inputs were used for the training. The optimal num

Fig. 4 Results of covariance matrix criterion. The vertical axis cor-
responds to the square of the correlation coefficients of the covari-
ance matrix r 1m

2 . The horizontal axis corresponds to the lag in
terms of D.
3036 Optical Engineering, Vol. 39 No. 11, November 2000
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of layers for internal temperature estimation was found
presenting the training data to the network with two up
ten layers. Then the obtained network was simulated w
the testing data~1040 inputs! and the performance of eac
multilayer network was evaluated and compared. The co
parison was done through a regression analysis betwee
pairs of actual and estimated internal temperatur
(I (t), Î (t)) in the test data set. Therefore, the performan
of the network can be evaluated from the regression par
eters. A good performance corresponds to a slope,S, close
to one, an intersectionI 0 , close to zero, and a highR2. The
standard error and the residuals are also good indicator
simple way to measure the network performance with
proposed regression analysis is by defining the performa
parameter

P5~12R2!1u12Su1uI 0u. ~10!

A perfect match corresponds toP50 and the agreemen
decreases asP increases. Note that for good agreeme
P;uI 0u, so the value of the performance parameter
pends on the range of the normalized internal temperat
This parameter is useful only when comparing differe
performances of the same quantities, as is the case h
The results of these calculations are shown in Fig. 5. T
results indicate that the optimal performance is for a fiv
layer network. Overfitting is a frequent problem with neur
networks. Sometimes using more layers than required p
duces a good matching with the training set, but the agr
ment with the test set is poor. Unfortunately, there is
method to specify the optimal number of layers but test
different cases. Usually, a good agreement can be fo
with five or fewer layers.

With this architecture a very good performance was o
tained with a slope of 0.983, an intercept at 0.92°C, a
R250.988 The standard error of the estimation w
61.01°C with standard residuals between24 and 4°C.
The network finished the estimation after 92 iterations.

Fig. 5 Performance parameter for case [01]. The parameter P mea-
sures the agreement between actual and estimated internal tem-
peratures. Results show that a five-layer network has better perfor-
mance.
erms of Use: http://spiedl.org/terms
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4.2 Case [012]

The analysis described in last subsection was repeated
the input

E~ t !5F E~ t !
E~ t1D!

E~212D!
G , ~11!

extracted from the training set. The input in Eq.~11! indi-
cates that for temperature estimation, three IR images
needed at timest, t130 s, andt160 s. As in the previous
case, a five layer network was optimal for the estimati
The algorithm usedm51.0, with a performance goal o
1.13104. The network was trained for 772 epochs before
reached the goal. The obtained network was simulated w
the test set and again, a regression analysis was use
evaluate the performance of the network. The parame
found in this case wereS50.980, I 051.10°C, andR2

50.986. The standard error of the estimation was61.05°C
with similar standard residuals as for the case@01#. Al-
though the regression parameters indicate a good pe
mance of the network, the parameters obtained in the c
@01# indicate a slightly better performance. The perfo
mance decreased for other cases. For instance, for@0123#
~not illustrated here!, a slope50.980, intercept at 1.70°C
and R250.977 were found. Moreover, the residuals a
standard error were bigger than in the two previous cas

An additional advantage of the use of a small numbe
inputs is the reduction of the IR images required. Acco
ing to the findings presented here, only two thermogra
and 30 s are needed for a good estimation.

5 Performance of the Network Immediately After
Cooking

Although the proposed neural network can estimate the
ternal temperature during the cooling process, more in
esting is the estimation for times shortly after cooking.
total of 120 inputs can be extracted from the 15 time se
for time t50 ~immediately after cooking!. Unfortunately
this number of inputs was not enough for a proper train
and testing of the network. To increase the number of
puts, the first five temperatures in each time series w
taken. In this manner, 260 inputs were used for training
260 for test. Because of the short number of lags availa
only k52 was considered in this case. As in the ca
described in the last section, an architecture of five lay
was used, considering a learning rate of 1 with a perf
mance goal of 1.231024. The goal was reached after 29
epochs and the network was simulated with inputs from
test set. A slope50.966, intercept at 1.89°C, andR2

50.974 were found. Although the performance of the n
work has decreased in this case, the standard error obta
was61.03°C and residuals were basically between22°C
and 2°C.

To improve the performance for endpoint temperatur
a higher number of inputs must be provided. In addition
must be considered that in the transit from the oven ca
to the environment occurred transient heat transfer eff
that must be included.
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The internal temperature estimation immediately af
cooking allow evaluating the endpoint temperature of
meat.

6 Conclusions

A noninvasive method for the estimation of internal tem
perature of just-cooked meat was developed. The met
combines thermovision for external temperature record
of chicken breast fillets immediately after cooking with
Levenberg-Marquardt backpropagation algorithm for t
correlation with internal temperature observations. Simu
neous internal and external temperature time series w
obtained for observations every 30 s for 10 min during
cooling process immediately after cooking. The input ve
tors of the network were composed of simultaneous a
lagged observations of external temperature to target
corresponding internal temperature at a given time.

To optimize the input vectors, a heuristic method bas
on the covariance matrix of the internal temperature ti
series and simultaneous and lagged external time series
proposed. It was found that the optimum input was form
by external temperature observations at timet and t
130 s. The method was verified for two cases.

The network was trained and then simulated with t
data. The performance of the network was very good a
internal temperature was estimated within a standard e
of 61.01°C for times between 0 and 540 s after cookin
for under-, over- and right-cooked chicken meat samp
For initial times~up to 3 min!, the network estimated inter
nal temperature within an error of61.03°C with two IR
images att and t130 s lags. The combined thermovision
neural network method can be used as a calibration pro
dure for non-invasive endpoint temperatures in just coo
chicken meat.

Future research is needed for a real-time applicati
First, the samples used in the experimentation had sim
shape and thickness. This is not the usual case. Sampl
whole chicken breast present a very irregular shape that
certainly affect the relation between internal and exter
temperature. As a consequence, it is needed to include
thickness variation of the sample in the network input. R
search is planned to extract the 3-D shape of a chic
breast with a range technique, and to combine this inform
tion with the thermogram. Another important factor is th
transient effect that may be present in the transit from
oven. A cooling chamber can aid to stabilize the tempe
ture observations for times immediately after cookin
Also, to improve the performance of the network for en
point temperatures, time series must be obtained for sho
times and with reduced lags. The IR camera employ
showed to be suitable for the proposed method. The
that only two IR images were required for internal tempe
ture estimation enables using only one IR camera with s
ably located IR mirrors to register at the required lags. N
that although the proposed method requires 30 s for
internal temperature estimation, the method can achi
real-time estimation in a streamline situation. That is, it
not neccesary to wait for that period to start the estimat
in the next chicken product but, with proper synchroniz
tion, the IR camera can continuously register the therm
grams and the estimation can be done as the products
traveling in a conveyor belt.
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Downl
IR imaging techniques have the potential for high-spe
and noninvasive inspection of cooked food products. T
method proposed here can be used as a platform for sim
studies in other types of food products, and after furt
improvement, can be used as a real-time assay for the
fication of endpoint temperatures in industrial cooki
lines.
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