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Abstract. A noninvasive method for the estimation of internal tempera-
ture in chicken meat immediately following cooking is proposed. The
external temperature from IR images was correlated with measured in-
ternal temperature through a multilayer neural network. To provide in-
puts for the network, time series experiments were conducted to obtain
simultaneous observations of internal and external temperatures imme-
diately after cooking during the cooling process. An IR camera working
at the spectral band of 3.4 to 5.0 um registered external temperature
distributions without the interference of close-to-oven environment, while
conventional thermocouples registered internal temperatures. For an in-
ternal temperature at a given time, simultaneous and lagged external
temperature observations were used as the input of the neural network.
Based on practical and statistical considerations, a criterion is estab-
lished to reduce the nodes in the neural network input. The combined
method was able to estimate internal temperature for times between 0
and 540 s within a standard error of £1.01°C, and within an error of
+1.07°C for short times after cooking (3 min), with two thermograms at
times t and t+30s. The method has great potential for monitoring of
doneness of chicken meat in conveyor belt type cooking and can be

Ames, lowa 50011-3080 used as a platform for similar studies in other food products. © 2000
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1 Introduction tabolism of the vegetables generated heat that could be de-

As the demand for ready-to-eat meat products increases{/‘\EIC";TG‘?7 by the imaging device. More recently, Tao and
the meat processors face a constant control problem in the?/erT" used near- and mid-IR imaging to accurately detect

cooking lines: To achieve the right cooking point in the defects in apples and to_disti_nguish the defect from stem
meat products without over- or undercooking. To ensure end/calyx(flowered endwith high accuracy.
microbial inactivation, the U.S. Department of Agriculture 10 the best of our knowledge, the first attempt to use an
(USDA) requires that every meat product in the line must IR camera in a cooking process was done by Goedeken
reach a minimum internal temperatuigl°C for chicken et al® In that work, an IR cameralworklng in the spectral
breast. Overcooking can ensure food safety; however, the "ange 8 to 12um was used to monitor the surface tempera-
products can have a diminished yield due to losses in waterturé of food products cooked in a microwave oven. They
content, taste, and juiciness. To date, there is no real-timeféquired a compensation in emissivity for accurate surface
assay that can check the internal temperature of all meatlemperature measurements. Recently, Ibarra ®tiatd a
products coming out the oven. IR focal planar array camera with working spectral range of
Because no contact with the surface is needed, infrared3.4 to 5.0um for the estimation of internal temperature in
(IR) thermometry can be used for accurate and noninvasivejust-cooked chicken meat. The external temperature regis-
inspection of cooking processes without detriment of food tered in the thermograms was correlated with the internal
safety. The development of IR techniques in the cooking temperature through a linear time series model. Such a
lines would aid quality control personnel in industrial cook- model was able to predict the internal temperature in the
ing lines to comply with food safety regulations for ready- meat with three IR images at times 0, 60 and 150 s imme-
to-eat meat, while maintaining quality of the products. IR diately after cooking. However, the use of linear models
imaging techniques have been proposed for noncontact in-might reduce the accuracy of the estimation due to the non-
spection in different applicatiorfs? In particular, active linear nature of heat transfer processes.
research is conducted for the applications of IR imaging  Here, the work initially developed in Ref. 9 was contin-
techniques in agriculture. In an early work, Danno et al. ued with the application of neural networks for the corre-
used an IR vidicon camera to evaluate the degree of matu-lation between internglT) and externalET) temperatures
rity in certain fruits and tomato. The changes in the me- in chicken meat immediately after cooking. Time series
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experiments were conducted to obtain simultaneous obser-
vations of IT and ET in just-cooked chicken meat, every 30
s for 570 s during the cooling process. A Levenberg-
Marquardt neural network was used for the correlation be-
tween IT and ET. This hybrid algorithm provides speed and
convergence to the network, which are sometimes a prob-
lem with conventional backpropagation algorithms. To es-
timate the optimum input for the netwofland ultimately

the number of IR images required for the IT estimation
some inferences were established based on the values of the
correlation factors derived from the covariance matrix of IT
values and simultaneous and lagged ET observations.

In Section 2, the experimental setup and the time series
experiments are described. In Section 3, the neural network
architecture and the optimization method are analyzed. In
Section 4, the results of the network for times between 0
and 540 s are presented. Two cases are analyzed to verify = ..'<'1°"_’;,.c'
the proposed heuristic criterion. In Section 5, the perfor- =
mance of the network for short timé¢sp to 3 min is pre- (a)
sented. This analysis enabled evaluating the potential fora &
practical application. In Section 6, the conclusions of the

work and some observations for a potential application are °
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2 Experimental Setup

Time series experiments were conducted to provide data for
the supervised neural network. In these experiments, simul-
taneous measurements of IT and ET were obtained starting
immediately after the cooking process. The temperature L LA
measurements were taken every 30 s for 10 min during the *
cooling process. In this manner, sequential ingatgernal
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temperature and targets(internal temperatujewere ob- S
tained for the supervised learning.

A total of 60 chicken breast samples with similar shape 20, T o o o s o
(average thickness after cooking of 11 prwere cooked at Time (sec)
the same oven temperature (177°C) for times between 5.8 (b)

and 7.6 min in a multipurpose industrial ovemodel ) ) ) )
MPO-D2012 from Heat and Control, IncThe variation in Fig. 1 Thermograms and temperature time series: (a) IR image of a

i ti I d obtaini dpoint t t batch of four chicken fillets cooked simultaneously (note the table to
Cooking umes allowed obtaining endpoint €MPeratures y,q |ef; indicates the false color codification of temperature distribu-

ranging from under- to overcooking. tion), and (b) typical exponential behavior of temperatures in time.

A ThermaCAM PM250(Inframetrics, Inc. IR camera
with spectral band of 3.4 to 5.&m (outside the water
vapor sensitive band of 5 to @m) was used to register enced an exponential-decay behavior in time, which is typi-
external temperature distributions. The camera was locatedcal in cooling processed.Notice that there is a difference
1 m above the just-cooked samples and calibrated for back-between initial internal and external temperatures and that
ground temperature compensation to minimize heat energyboth temperatures converged to the room temperature after
emission from the surroundings. In the recorded IR image, a long time.
the external temperature of a fixed region of interest close  Four chicken breast samples were cooked at the same
to the thermocouple was measured, maintaining the sizecooking time and imaged simultaneously. For each batch of
and location of the region of interest during all observa- four cooked samples, eight thermocouples were \(sed
tions. Figure 1a) shows an IR image of a batch of four for each sample A total of 15 batches were cooked and
chicken meat samples recorded in the conditions just de-imaged in this manner. Eight internal and eight external
scribed. The color table to the left of the thermogram rep- time series were obtained for each batch, each time series
resents the temperature codification. To register internal containing 20 time points equally spaced every 30 s. Be-
temperatures, embedded copper/constantan thermocouplesause the cooking process changed the chemical and physi-
(diameter 2.5 mm, response time O)4xre inserted in the  cal properties of the meat, experiments were conddtted
center of the thickest regions of the meat pieces. The IT measure the emissivity of cooked chicken meat during and
readings were automatically recorded in a computer start- after cooking. It was observed that although the emissivity
ing simultaneously with IR image recording. Room tem- varies during the cooking process, it remains fairly constant
perature was also registered with an additional thermo- after cooking. A constant emissivity of 0.63 was measured
couple. A typical temperature versus time plot is shown in for chicken meat after cooking, and this value was used for
Fig. 1(b). Both internal and external temperature experi- all experiments.
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Fig. 2 Normalized temperature time series.

wherewjlm (1=<j,m=N) is the weight factor between input

] ] nodej and hidden layer noden, brln is a bias value initial-
For convenience, the temperature observations werejzed as 1. andr is the log-sigmoid function defined as
converted to the normalized quantities

(1) = Troon(t) o(X)= T % ©)
IT(t) ’
@ The final layer, the targeted internal temperatlf®, is
~ Troonl( 1) expressed in terms of the last hidden layer, for the case of
E()= ET(t) five layer network as

N
The unitless quantities in Eql) are referred hereafter as

n _ 4=3
normalized internal and external temperatures, respectively.I (1= U( le WiEj()+b
The normalized temperatures defined in Ed3.have the
advantage of considering environment temperature varia-yith  a final bias value. A detailed description of feedfor-
tions, and to convert the input to numbers less than one,,, o 4 networks can be found in Ref. 12.
which are more suitable for the neural network algorithm. In the learning process, each time an input is presented
Figure 2 shows the typical normalized temperature behav-, the network, the weight factors are adjusted to minimize
or in time. a function of the errorg, with a random guess for initial

weight factors. The error is defined as the difference be-

3 Neural Network Architecture tween the output of the network(t), and the actual obser-
vation or target] (t). Explicitly,

: 4

3.1 Levenberg-Marquardt Neural Network
A multilayer neural network was used to correlate an esti- s=|(t)—f(t). (5)

mated normalized internal temperature at timd (t), in ] )

terms of the simultaneous normalized external temperatureFor the Levenberg-Marquardt algorithm, the function of the

observation,E(t), and some other lagged valueg(t error to be minimized is the mean square error.

+nA) still to be determined, where<In<19A=30s. The most common way to m|n|m|é§ the mean square

The input vector of normalized external temperatures is de- error I with the grf_;ld|ent descent. methodn this meth_od,

noted asE(t), with componentsE;(t), (i=1,...N) ‘l;jhe vtvqghts zlalre tadjus_tﬁ]q bytmofv'”? aIan the negaltlve gra-
. ' . . S ient in small steps. This step factor is known as learnin

whereN is the number of nodes in the input lay@o be P b 9

o A . ) rate and denoted here @s With a proper selection of the
specified later A network with five hidden layers, which  oaming rate this method guarantees convergence, but it

relates the normalized external temperature infi(t), to can take a very large number of iterations. A faster option

[(t) is depicted in Fig. 3. is the Gauss-Newton methd@iTable 1 compares the ad-
The nodes in the first hidden Iayeﬁ,1 are calculated in vantages and disadvantages of the methods mentioned. This

terms of the input as method can lead rapidly to the minimum mean square error,

but if the guess of initial weight factors is wildly incorrect,

N the algorithm can diverge. The situation is even worse be-
Erlnza 21 lemEj(t)er# , () tci\allg:e of the approximated calculation of required deriva-
i= .
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Table 1 Characteristics of different algorithms for backpropagation
neural networks.

Algorithm Speed Convergence
Gradient Descent [
Gauss-Newton [

Levenberg-Marquardt [ [

The Levenberg-Marquardt algorithm provides a conve-
nient compromise between the speed of Gauss-Newton

method and the ensured convergence of gradient descent.

In the first iteration, the algorithm begins with a gradient
descent with a small learning raje, . If the mean square
error is not small, them,= w46 is chosen in second itera-
tion, where#> ;. Eventually, the gradient descent algo-

input nodes to the internal temperature. It is reasonable to
think that the internal temperature time series is strongly
correlated to the simultaneous external temperature time
series, and that the correlation decreases for lagged values.
A way to measure that correlation is to consider the covari-
ance between the normalized IT and the ET time series
without lag, with one lag and so on. Explicitly, if for a pair

of normalized internal and external temperature time series,
the set of variables for the covariance analysis is arranged
in the matrix

E(t)

(1)
I(t+A)

E(t)
E(t+A)
X= :

I(t+5A) E(t+5A) E(t+4A) E(t)

rithm should decrease the mean square error. If, after com- _ _ _
parison with targeted internal temperature, the mean squarghen the elements in the covariaftenatrix are expressed

error fork’th iteration is small enough, thep, ;1= /6
is chosen, and the algorithm will be approaching the Gauss-
Newton method. The details of Levenberg-Marquardt algo-
rithm can be found in Ref. 13. Sometimes during calcula-
tion a small mean square error is reached quickly, and no
significant reduction is achieved with further calculation.
Then, it is convenient to define an error go(a&,é), for
early stopping. This is also useful when the algorithm is not
converging. In practice, the learning rateand the error
goal (e3) are specified by trail and error.

Once the network is designed, the normalized external

temperature vectors must be selected to produce an opti-

mum output, with the fewest number of elements. This is
discussed next.

3.2 Network Input Reduction and Optimization

The neural network design will be complete with the speci-
fication of the input vectoE(t); that is, to establish the

number of nodes and lags included in the input. Initially,
the input can have 20 nodes, which is the number of time

points in each series. Because each input node represents v

IR image, the use of all the 20 external temperature obser-
vations in a particular time series to estimate a given inter-
nal temperature, will require 570(with 30 s lag between
each IR image Considering that in an actual industrial
cooking process the meat products are traveling typically at
a speed of 0.2 to 0.3 m/s, a distance greater than 110 m will
be required to register the last IR imaga 570 3. As a
consequence, a reduction in the number of input nodes is
needed to increase the potential application of this work.

A first reduction in the number of input nodes can be
achieved by assuming that only six lags significantly con-
tribute to the estimation. Specifically, for an internal tem-
perature target at timg 1(t), only the simultaneous exter-
nal temperature valug(t) and up to five lagged values,
E(t+nA) (1=n<5b), are assumed to contribute signifi-
cantly to the internal temperature. In this case, the maxi-
mum time required for the internal temperature estimation
is 2 min, which will require a minimum traveling distance
in the conveyor belt of 36 m.

Further reduction in the number of input nodes can be
achieved by considering the contribution of the possible

as

1.8 18 6
521 XijXkj— %]Zl Xijjzl Xicj s

Sik= (7)
withi=1,...,4 and kk=<6. The corresponding correla-
tion coefficients are definétias

Sik
rik—ﬁ, (8)

with sizzs” . The covariance matrix of the data indicates if
there exists a linear relationship between the time series in
matrix X, and the associated correlation factors indicate the
strength of that relationship. Furthermore, because there is
interest only in the relationship between the internal tem-
perature and the lagged external temperatures, only the
cased =1, 2<k<6 are considered. Therefore, a high cor-
relation coefficientr,, indicates a strong relationship be-
een simultaneous internal and external temperatures and
so on. In this manner, the input vect(t) can be reduced

by including only the nodes with higher correlation coeffi-
cient. Although this heuristic criterion is not directly related
to the neural network algorithm, it can be useful for the
simplification of network input. Similar reductions, as prin-
cipal components analysis, are often used for this
purpose-?

The covariance matrix elements in Eg) and the cor-
responding correlation factors in E(B) were calculated
from the time series data of all batches. The components in
matrix X [see Eq(6)] were obtained by averaging the nor-
malized internal and external time series. The results of this
computation are presented in Fig. 4. The vertical axis in the
figure corresponds to the square value of the correlation
coefficient,r2  (2<m=7), and the horizontal axis corre-
sponds to the lag indem. As expected, the correlation is
high for the simultaneousn{=2) internal and external
temperature time series, and gradually decreases for the
lagged external temperature time series. It can be observed
in Fig. 4 thatr2,=0.999 andr?,=0.906 are the highest
correlation factors. This indicates that an input with simul-
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terms of A.

taneous and one-lag external temperature may be enoug
for internal temperature estimation. This situation is labeled
hereafter as cag€1]. The notation indicates the number of
nodes and order of lags in the input. The cf3®2] is for
an input with simultaneous, one-lag, and two-lag external
temperature valueee next section

In a practical application, the reduction of the input to
two components means that for the estimation of the inter-
nal temperature at certain tinigay immediately after cook-
ing) it is needed to take an IR image at that time, and a

6.15 T T T T T

6.1

Performance Factor, P (x 10‘2)
@ o o g
~ o o o © =
o < o © o =] o
T T T T T T T

o
~
T

5.65
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6 10
Number of Layers

Fig. 5 Performance parameter for case [01]. The parameter P mea-
sures the agreement between actual and estimated internal tem-
peratures. Results show that a five-layer network has better perfor-
mance.

tE)f layers for internal temperature estimation was found by

presenting the training data to the network with two up to
ten layers. Then the obtained network was simulated with
the testing dat&1040 input$ and the performance of each
multilayer network was evaluated and compared. The com-
parison was done through a regression analysis between the
pairs of actual and estimated internal temperatures,

(1(t),1(t)) in the test data set. Therefore, the performance
of the network can be evaluated from the regression param-

second IR image after 30 s. This fact increases the potentialéters. A good performance corresponds to a sl8pelose

for a practical implementation.

4 Performance of the Network During Cooling
Time
A total of 120 time series separated in 15 batches were

obtained in the experiments. The data were separated into

training and test sets in such a manner that data from all
batches and all thermocouples were evenly distributed
among the training and test sets. A total of 60 time series

were used in the training set and the remaining 60 series in

the test set.

To verify the heuristic criteria given in the last section,
the performances of the network for ca$é4] and[012]
are presented next.

4.1 Case [01]

In this caseN=2, and for an internal temperature target
I(t) the corresponding external temperature input is ex-
pressed as

E(t)
E(t+A)

E(t)= : 9
Training data were presented to the multi-layer
Levenberg-Marquardt network with fixed learning rate
=1.0 and performance godb§>=3.1>< 10*. A total of
1040 inputs were used for the training. The optimal number

3036 Optical Engineering, Vol. 39 No. 11, November 2000

to one, an intersectiol, close to zero, and a higR?. The
standard error and the residuals are also good indicators. A
simple way to measure the network performance with the
proposed regression analysis is by defining the performance
parameter
P=(1-R2)+|1—9+]l,|. (20

A perfect match corresponds ®=0 and the agreement
decreases aP increases. Note that for good agreements
P~|lo|, so the value of the performance parameter de-
pends on the range of the normalized internal temperature.
This parameter is useful only when comparing different
performances of the same quantities, as is the case here.
The results of these calculations are shown in Fig. 5. The
results indicate that the optimal performance is for a five-
layer network. Overfitting is a frequent problem with neural
networks. Sometimes using more layers than required pro-
duces a good matching with the training set, but the agree-
ment with the test set is poor. Unfortunately, there is no
method to specify the optimal number of layers but testing
different cases. Usually, a good agreement can be found
with five or fewer layers.

With this architecture a very good performance was ob-
tained with a slope of 0.983, an intercept at 0.92°C, and
R2=0.988 The standard error of the estimation was
+1.01°C with standard residuals betweert and 4°C.

The network finished the estimation after 92 iterations.
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4.2 Case [012] The internal temperature estimation immediately after
The analysis described in last subsection was repeated fo2°King allow evaluating the endpoint temperature of the
; meat.
the input
E(t) 6 Conclusions

E(t)=| E(t+A) 11 A noninvasive method for the estimation of internal tem-
(V= ' (1) perature of just-cooked meat was developed. The method
E(2+24) combines thermovision for external temperature recording

o . _ o of chicken breast fillets immediately after cooking with a

extracted from the training set. The input in Eg1) indi- Levenberg-Marquardt backpropagation algorithm for the

cates that for temperature estimation, three IR images arecorrelation with internal temperature observations. Simulta-
needed at times, t+30s, and+60s. As in the previous  neous internal and external temperature time series were
case, a five layer network was optimal for the estimation. obtained for observations every 30 s for 10 min during the
The algorithm usedu=1.0, with a performance goal of cooling process immediately after cooking. The input vec-
1.1x 10*. The network was trained for 772 epochs before it tors of the network were composed of simultaneous and
reached the goal. The obtained network was simulated withlagged observations of external temperature to target the
the test set and again, a regression analysis was used tgorresponding internal temperature at a given time.
evaluate the performance of the network. The parameters To optimize the input vectors, a heuristic method based

found in this case wer&=0.980, 1,=1.10°C, andR? on the covariance matrix of the internal temperature time
—=0.986. The standard error of the estimation wak05°C series and simultaneous and lagged external time series was
with similar standard residuals as for the c46a]. Al- proposed. It was found that the optimum input was formed

though the regression parameters indicate a good perfory €xternal temperature observations at timeand t
mance of the network, the parameters obtained in the caset 30s. The method was verified for two cases.

[01] indicate a slightly better performance. The perfor- The network was trained and then simulated with test
mance decreased for other cases. For instancd 03| data. The performance of the network was very good and
(not illustrated here a slope=0.980, intercept at 1.70°C, internal temperature was estimated within a standard error

and R?=0.977 were found. Moreover, the residuals and Of +1.01°C for times between 0 and 540 s after cooking,

standard error were bigger than in the two previous cases. for under-, over- and right-cooked chicken meat samples.
An additional advantage of the use of a small number of For initial imes(up to 3 min), the network estimated inter-
inputs is the reduction of the IR images required. Accord- nal temperature within an error of 1.03°C with two IR
ing to the findings presented here, only two thermograms images at andt+30s lags. The combined thermovision-
and 30 s are needed for a good estimation. neural network method can be used as a calibration proce-
dure for non-invasive endpoint temperatures in just cooked
chicken meat.
5 Performance of the Network Immediately After Future research is needed for a real-time application.
Cooking First, the samples used in the experimentation had similar
Although the proposed neural network can estimate the in- shape an_d thickness. This is not the_usual case. Samples as
ternal temperature during the cooling process, more inter- Whole chicken breast present a very irregular shape that can
esting is the estimation for times shortly after cooking. A Certainly affect the relation between interal and external
total of 120 inputs can be extracted from the 15 time series [EMperature. As a consequence, it is needed to include the
for time t=0 (immediately after cooking Unfortunately th|ckne§s variation of the sample in the network input. Re-
this number of inputs was not enough for a proper training search IS planned to extract the 3-D shape of'a_chlcken
and testing of the network. To increase the number of in- Préast with arange technique, and to combine this informa-
puts, the first five temperatures in each time series werellon V.V'th the thermogram. Another Important fac_tor is the
taken. In this manner, 260 inputs were used for training and transient effect that may be present in the transit from the

260 for test. Because of the short number of lags available, ©V&M- A C°°"f?9 chambe_r can .a'd to §tabll|ze the tempera-
only k=2 was considered in this case. As in the cases ture observations for times immediately after cooking.

described in the last section, an architecture of five layers Also, to improve the performance of the network for end-
was used, considering a Iea{rning rate of 1 with a per)f/or- point temperatures, time series must be obtained for shorter

mance goal of 1.2 10" 4. The goal was reached after 297 times and with reduced lags. The IR camera employed

h dth awork ulated with inouts f th showed to be suitable for the proposed method. The fact
epochs and the network was simuiated with INpUts Trom the 4t oniy two IR images were required for internal tempera-

test set. A slope0.966, intercept at 1.89°C, ani’ ture estimation enables using only one IR camera with suit-
=0.974 were found. Although the performance of the net- aply Jocated IR mirrors to register at the required lags. Note
work has decreased in this case, the standard error obtaineghat although the proposed method requires 30 s for the
was +1.03°C and residuals were basically betweea®°C internal temperature estimation, the method can achieve
and 2°C. real-time estimation in a streamline situation. That is, it is

To improve the performance for endpoint temperatures, not neccesary to wait for that period to start the estimation
a higher number of inputs must be provided. In addition, it in the next chicken product but, with proper synchroniza-
must be considered that in the transit from the oven cavity tion, the IR camera can continuously register the thermo-
to the environment occurred transient heat transfer effectsgrams and the estimation can be done as the products are
that must be included. traveling in a conveyor belt.
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IR imaging techniques have the potential for high-speed
and noninvasive inspection of cooked food products. The

method proposed here can be used as a platform for similar

studies in other types of food products, and after further

improvement, can be used as a real-time assay for the veri-

fication of endpoint temperatures in industrial cooking
lines.
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