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CHAPTER 1. INTRODUCTION TO MULTIFERROIC COMPOUNDS

Electricity and magnetism were unified into a common subject by James Clerk Maxwell

in the nineteenth century yielding the electromagnetic theory.[1] Four equations govern the

dynamics of electric charges and magnetic fields, commonly known as Maxwell’s equations.

Maxwell’s equations demonstrate that an accelerated charged particle can produce magnetic

fields and a time varying magnetic field can induce a voltage − thereby linking the two phenom-

ena. However, in solids, electric and magnetic ordering are most often considered separately

and usually with good reason: the electric charges of electrons and ions are responsible for the

charge effects, whereas the electron spin governs magnetic properties.[2, 3]

In some materials ferroelectric and magnetic order coexist and are termed magnetoelectric

multiferroics. The beginning of this field dates to 1959 with a short re-mark by Landau and

Lifshitz in the book “Course of Theoretical Physics”:[4] “Let us point out two more phenomena,

which, in principle, could exist. One is piezomagnetism, which consists of linear coupling

between a magnetic field in a solid and a deformation (analogous to piezoelectricity). The

other is a linear coupling between magnetic and electric fields in a media, which would cause,

for example, a magnetization proportional to an electric field. Both these phenomena could

exist for certain classes of magnetocrystalline symmetry. We will not however discuss these

phenomena in more detail because it seems that till present, presumably, they have not been

observed in any substance.” Before proceeding further, it is useful to define several terms used

by researchers in this field.

1. Definition of multiferroics: According to Schmidt[5] multiferroic materials are those which

combine two or more “ferroic” properties such as electric polarization, magnetization and

strain. The mutual cross-coupling between these properties and the control of them by
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external perturbations are shown in Fig. 1.1.

2. Definition of magnetoelectric multiferroics: Magnetoelectric multiferroic materials are

those in which ferroelectricity (antiferroelectricity) and ferromagnetism (antiferromag-

netism) coexist within the same phase. In these materials, the magnetoelectric effect,

the induction of a magnetization by an electric field, or of polarization by a magnetic field

should in principle exist and can yield entirely new device paradigms, such as the above

mentioned electric field-controlled magnetic data storage. The cross coupling between

ferromagnetism and ferroelectricity and the possibility of a multistage memory device is

illustrated in Fig. 1.2.

After the disclaimer by Landau and Lifshitz, Dzyaloshinskii predicted,[6] and Astrov observed,[7]

this type of coupling, which is now known as the linear magnetoelectric effect. This was fol-

lowed by the discovery of compounds and their classification by Hans Schmidt.[5] However, in

general multiferroicity proved to be difficult to find as these two order parameters are, for the

most part, mutually exclusive.[8]

The renaissance of magnetoelectric multiferroics was initially triggered by the proposal by

Lottermoser et al.[9, 10] that the magnetic phase can be controlled by an applied electric fields

and, later, by the discovery of spiral magnets where ferroelectricity is induced by the spiral

magnetic order. This recent boom in multiferroic research is driven by potential applications

as well as fundamental science. For example, controlling charges by an applied magnetic field

and magnetic moments by an applied electric field opens the possibility of multistage memory

devices with high data density. It also offers some advantages to the present day memory

devices such as FRAMs (ferromagnetic random access memory) and FeRAMs (ferroelectric

random access memory). The primary disadvantage of FRAMs is that the write operation

requires substantial current to generate the field for “writing” and, therefore, this process is

dissipative. Applying an electric field to write the data is relatively easy, fast and does not

involve dissipation effects. On the other hand, for FeRAMs, the primary disadvantage is the

read operation which requires discharging the capacitor during the read and recharging again

to reset the memory back to it’s initial value. Therefore, writing data by applying an electric
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field and reading the data magnetically could (possibly) optimize both processes.[11] From

the theory point of view, studies have shown that the usual atomic-level mechanisms driving

ferromagnetism and ferroelectricity are mutually exclusive because they require empty and par-

tially filled transition metal orbitals, respectively.[8] Therefore, understanding the coexistence

between ferroelectricity and magnetism in the same material presents a theoretical challenge.

1.1 The Classification of Multiferroic Compounds

In a ferromagnetic (antiferromagnetic) material time-reversal symmetry is spontaneously

broken and all magnetic moments point in the same (opposite) direction as illustrated in

Fig. 1.3. Broken time reversal symmetry implies a change of sign of the magnetic moment

under the symmetry operation, M(−t) = −M whereas the polarization remains invariant,

P(−t) = P. Changing the sign of a magnetic moment by time reversal can be understood by

visualizing the magnetic moment as a current carrying loop, with j = dq/dt. Therefore, as

t→−t, j
′

= dq/d(−t) = −j; and hence, under time reversal symmetry operation, M →−M,

as shown in Fig. 1.3. In a ferroelectric material, space inversion symmetry is spontaneously

broken below the ferroelectric transition temperature i.e P(−x) = −P whereas for magnetism

it remain invariant. The effect of space inversion symmetry on a ferroelectric material is shown

in Fig. 1.4.

Depending on the origin of ferroelectricity, Cheong and Mostovoy[2] have classified ferro-

electrics within two categories, ‘proper’ and ‘improper’ as shown in Table 1.1. In ‘proper’

ferroelectrics, ferroelectricity occurs due to electronic pairing between the transition metal ion

(e.g. Ti in BaTiO3) and oxygen. On the other hand, in ‘improper’ ferroelectrics, ferroelec-

tricity arises due to complex lattice distortions or by other types of ordering such as charge

ordering and magnetic ordering.

1.2 The Origin of Multiferroicity

Multiferroic effects can originate for different reasons. For example, lattice distortions can

give rise to a lower symmetry non-centrosymmetric ferroelectric state. Antiferromagnetic order
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Figure 1.1 Phase control in ferroics and multiferroics. The electric field

E, magnetic field H, and stress σ control the electric polariza-

tion P, magnetization M, and strain ǫ, respectively. In a ferroic

material, P, M, or ǫ are spontaneously formed to produce fer-

romagnetism, ferroelectricity, or ferroelasticity, respectively. In

a multiferroic, the coexistence of at least two ferroic forms of

ordering leads to additional interactions. In a magnetoelectric

multiferroic, a magnetic field may control P or an electric field

may control M (green arrows). After Ref. [10].
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Figure 1.2 Magnetoelectric multiferroics combine ferromagnetic (antiferro-

magnetic) and ferroelectric (antiferroelectric) properties in the

same phase. In general, the magnetization of a ferromagnetic

material shows a M-H hysteresis loop and a ferroelectric mate-

rial shows a P-E hysteresis loop. In ideal multiferroics (for mem-

ory device applications), there should be a magnetic hysteresis

loop in an applied electric field (left figure) and a ferroelectric

hysteresis loop in an applied magnetic field. The above figure

also illustrates the possibility of a four stage memory device:

(+M+P), (+−), (−+) and (−−)
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Figure 1.3 1-D schematic of a ferromagnet and an antiferromagnet. In a

ferromagnetic material the net magnetization is non-zero. In

the case of an antiferromagnet, the net magnetization is zero,

however, sublattice magnetization is non-zero. The upper part

of the figure shows effect of the time reversal symmetry (T) on

a current carrying loop.

Centrosymmetric

+ – + – + ––

+ – + – + ––

Non-centrosymmetric

P

BaTiO3

–

+

–

–

+

–

Curie Temperature

Figure 1.4 1-D schematic of a ferroelectric material. In a ferroelectric ma-

terial the net polarization is non-zero below the ferroelectric

Curie temperature. The dotted red line shows the center of

space inversion symmetry in the paraelectric cetrosymmetric

phase. This center of symmetry is spontaneously broken in the

ferroelectric phase. The right figure shows a real example of

a typical ferroelectric material BaTiO3 where space inversion

symmetry is broken by the off-center displacement of Ti4+ ion

that occurs due to the Ti4+-O3− hybridization.

6
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Table 1.1 Classification of ferroelectrics after Ref. [2]

Mechanism of Inversion Sym-

metry Breaking

Materials

Proper Covalent bonding between 3d0

transition metal (Ti) and

Oxygen (O)

BaTiO3

Polarization of 6s2 lone pair of

Bi or Pb

BiMnO3, BiFeO3,

Pb(Fe2/3W1/3)O3

Improper Structural transition ‘Geo-

metric ferroelectrics’

K2SeO4, Cs2CdI4,

Hexagonal RMnO3

Charge ordering: ‘Electronic

ferroelectrics’

LuFe2O4

Magnetic ordering: ‘Magnetic

ferroelectrics’

Orthorhombic RMnO3,

RMn2O5, CoCr2O4

may then arise due to the presence of magnetic ions in the system and thus, the system may

be classified as multiferroic. This is the case for hexagonal mutiferroics such as RMnO3 (R =

Ho−Lu, Sc, Y). On the other-hand, there are some compounds where first antiferromagnetism

sets in and, at some lower temperature, due to a specific magnetic order, spatial inversion

symmetry is broken and ferroelectricity results. This is the case for the orthorhombic multifer-

roics such as RMnO3 compounds with R = Gd, Tb, and Dy. For charge ordered multiferroics

such as LuFe2O4, a specific charge ordering induces ferroelectricity. We will discuss individual

origins in detail below.

Magnetic Ordering as the Origin of Ferroelectricity

Here we outline the origin of ferroelectricity for the orthorhombic RMnO3 multiferroic com-

pounds. In this class of compounds, a particular arrangement of magnetic moments induces

ferroelectricity as first illustrated by Kenzelmann et al.[12] in the compound TbMnO3. The

same mechanism was employed to explain ferroelectricity in several other orthorhombic com-
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pounds including Ni3V2O8,[13] MnWO4[14] and Eu1−xYxMnO3 (x = 0.55)[15]. For TbMnO3

the Mn3+ moments order at T = 41 K in an amplitude modulated sinusoidal structure with

moments in the b direction of the orthorhombic Pbnm structure and a magnetic propagation

vector Q ≈ (0 0.27 0). The magnetic order of the Mn3+ moments changes from an amplitude

modulated sinusoidal structure to a spiral like structure at T = 28 K. The spiral magnetic

structure breaks the space inversion symmetry and induces a polarization as illustrated in

Fig. 1.5.

The origin of magnetically induced polarization can be understood phenomenologically by

the theory developed by Mostovoy[16] or microscopically by spin current model developed

by Katsura et al.[16, 17]. According to Ginzburg-Landau theory, applied by Mostovoy, the

form of the coupling between the electric polarization P and magnetization M depends on

the transformation properties of these two variables upon time reversal and space inversion,

mentioned above. The simultaneous invariance upon time reversal (t→ −t) and space inversion

(x→ −x) suggests that the lowest order coupling must be quadratic in M as well as P. Thus,

a fourth order term in free energy of the form −P 2M2 is expected. However, this term does

not induce ferroelectricity because the energy cost of a polar lattice distortion proportional

to +P 2 will overcompensate the energy gain by −P 2M2.[2] However, a coupling linear in P

and quadratic in M is allowed if there is a spatial variation in M. Therefore, the lowest order

magnetoelectric coupling term has the form [16]

Φem(P,M) = γP · [M(∇ ·M) − (M · ∇)M + ...] (1.1)

where γ is an arbitrary constant. The “electric part” of the thermodynamic potential has the

form Φe(P) = P 2

2χe
where χe is the dielectric susceptibility in the absence of magnetism. The

variation of Φe + Φem with respect to P gives

P = γχe[(M · ∇)M − M(∇ · M)] (1.2)

Now, assuming a helical magnetic structure of the form

M = M1e1 cos(Q · x) +M2e2 sin(Q · x) +M3e3 (1.3)
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and using the above equation for polarization 1.2, the average polarization can be written as

P̄ =
1

V

∫

d3xP = γχeM1M2[e3 × Q] (1.4)

where, the ei, i = 1, 2, 3, form an orthogonal basis. Q is the propagation vector. Equation

1.3 describes a helix with spin rotation axis e3 if M1, M2 6= 0. If also M3 is non-zero, then the

magnetic structure is conical helix. No polarization is induced for a pure sinusoidal structure

as can be understood from Eq. 1.4 since a sinusoidal wave is described by only one component

of the magnetic moment (M1 or M2). In this case, inversion symmetry remains intact as

shown in Fig. 1.5(a).[18] The important thing is to note from Eq. 1.4 is that the polarization

is non-zero for a helix only if the spin rotation axis e3 and Q are not parallel. In this situation

the space inversion symmetry is broken and a finite polarization can be induced as illustrated

in Fig. 1.5(b). Using the aforementioned theory, the induced polarization in the magnetically

ordered state of TbMnO3 can be explained. For example, the Mn3+ moments order sinusoidally

in the temperature range 28 K≤ T ≤ 41 K without any polarization. Below 28 K, the sinusoidal

order is replaced by a helix with Q‖ b. Since the Mn3+ moments rotate in the b-c plane, the

spin rotation axis is e3 ‖ a, and thus, P ‖ c is expected according to Eq. 1.4 and is observed

experimentally.[12] Here we note that the spiral magnetic order with broken inversion symmetry

can be found in metallic systems but no ferroelectric effect will be seen. Observation of induced

polarization requires an insulating material.

As explained above, the polarization is induced by a specific magnetic structure and so, this

type of multiferroic shows unprecedented control of polarization under magnetic field. This

has been observed for the orthorhombic RMnO3 (R = Gd, Tb, and Dy)[19, 20, 21] compounds

where the polarization flops when the magnetic structure flops as illustrated for the case of

Eu1−xYxMnO3 (x=0.55)[15] in Fig. 1.6. Here, the polarization flops from the a axis to c

axis when the magnetic filed is applied along the a axis due the flop of spin spiral from the

a-b plane to the b-c plane. Since the polarization and dielectric constants of a material are

intimately linked, this kind of multiferroic shows a giant magneto-capacitance effect.[20] Since,

magnetism appears at low temperatures, cross coupling between ferroelectricity and magnetism

is only observed at low temperatures and high magnetic fields.
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 (a) 

(b) 

P 

Figure 1.5 (a) For a pure sinusoidal magnetic structure space inversion

symmetry is not broken and, therefore, there is no polarization

that can be induced by magnetic order. (b) Breaking of space

inversion symmetry from spiral magnetic order inducing a net

polarization. The above two figures have been adapted from

lecture note of Maxim Mostovoy.[18]
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Figure 1.6 Control of magnetization by an external magnetic field illus-

trated for the compound Eu1−xYxMnO3 (x = 0.55). After

Ref. [15]. Polarization P is proportional to e3 ×Q, where e3 is

the spin rotation axis and Q is the propagation vector (see text

for details). Polarization flops from the a axis to c axis when

the magnetic filed is applied along the a axis due the flop of

spin spiral from a-b plane to b-c plane.
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Exchange Striction as the Origin of Ferroelectricity

Spiral spin order is not the only means of inducing electric polarization. Polarization can

also be induced by collinear magnetic order as observed for RMn2O5 (R = Gd, Tb, Dy)

compounds[22] and for Ca3Co1.04Mn0.96O6.[23] Due to the simplicity of its magnetic structure,

Ca3Co1.04Mn0.96O6 has been chosen as an example and is illustrated in Fig. 1.7. When Co ions

are replaced by Mn ions in Ca3Co2O6, Mn ions have a strong tendency to avoid the trigonal

prismatic oxygen coordination. Thus, for example, for equal amount of Co and Mn ions, all

the Co ions are located in the trigonal prismatic sites, and all the Mn ions occupy the octahe-

dral sites.[24] At high temperature the distance between Co2+ and Mn4+ ions are equal and,

therefore, the chain has inversion symmetry and the net electric polarization is zero. However,

at low temperature a specific collinear magnetic structure breaks the inversion symmetry via

the exchange striction mechanism. Due to competing exchange interactions between nearest

neighbor and next-nearest neighbor magnetic ions, an up-up-down-down (↑↑↓↓) type magnetic

structure is realized at low temperatures. As a consequence of this type of magnetic struc-

ture, symmetric superexchange interaction shortens the bonds between parallel spins while the

bonds between anti-parallel spins becomes elongated. Thus, inversion symmetry is broken and

a spontaneous polarization is induced along the chain axis, c.

Charge Order as the Origin of Ferroelectricity

LuFe2O4 is a well known example of a charge ordered multiferroic compound.[25, 26] The

temperature variation of the electric polarization is shown in Fig. 1.8. Below 350 K, LuFe2O4

shows a spontaneous polarization that increases below approximately 250 K. It was shown by

Christianson et al.[27] that the Fe moments order ferrimagnetically at around 250 K and there-

fore, the increase of polarization at 250 K suggests significant coupling between ferroelectricity

and the magnetic ordering.

Ferroelectricity in this material occurs due a specific charge order in the triangular lattice

shown in Fig. 1.9. At temperatures above 350 K, an equal number of Fe2+ and Fe3+ ions

coexist randomly at the same site in the triangular lattice and, thus, iron has an average

valence of +2.5. However, at temperatures below 350 K, a charge redistribution takes place
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Figure 1.7 Ising chains with the up-up-down-down spin order and al-

ternating ionic order, in which electric polarization is in-

duced through symmetric exchange striction for the compound

Ca3Co1.04Mn0.96O6. Two possible magnetic configurations

leading to opposite polarizations are shown. The atomic po-

sitions in the undistorted chains are shown with dashed circles.

After Ref. [23].

between the layers so that upper layer has a 2:1 ratio between Fe2+ and Fe3+ and the lower

layer has the opposite, 1:2 ratio.[25] In this manner frustration in the triangular lattice can

be broken and a charge ordered state emerges. Due to this specific charge ordered state, each

plane in the bilayer structure acquires a net charge. For example, in the Fig. 1.9, the upper

layer has a net positive charge and the layer below has a net negative charge and so, these two

layers together (bilayer) form a dipole moment and ferroelectricity emerges.

Lattice Distortions as the Origin of Ferroelectricity: Hexagonal Mutiferroics

RMnO3 (R = rare-earths) compounds with the smaller ionic radius of the heavy rare-earths

(Ho-Lu and Y, Sc) generally crystallize in the hexagonal lattice.[28] The ferroelectricity in

this class of compounds originates from the coordinated movement of atoms at the rare-earth

site and a simultaneous rotation of the MnO5 polyhedra below the ferroelectric transition

temperature of ∼ 800 K.[29] The Mn3+ moments order in the temperature range of 80-120 K[30]

and the rare-earths moments order at temperatures below the magnetic ordering of Mn3+.

The origin of ferroelectricity in the hexagonal RMnO3 compounds has been discussed by

Van Aken et al.[29] for YMnO3 and is shown in Figs. 1.10 and 1.11. At high temperatures,

all ions are constrained within the a-b plane whereas, below the ferroelectric transition tem-
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Figure 1.8 Temperature variation of the electric polarization of LuFe2O4.

The plot is the integration of a pyro-electric current measure-

ment. The current flow from the sample was recorded on heat-

ing after electric field cooling along the c axis. The direction

of the electric polarization depends on the direction of electric

field, which indicates that LuFe2O4 possesses macroscopic elec-

tric polarization. After Ref. [25].

Figure 1.9 Bilayer of the FeO2 triangular lattices in LuFe2O4 with a

schematic view of charge redistribution between the layers and

the interlayer charge ordering that results in a macroscopic elec-

tric polarization indicated by the red arrows. After Ref. [26].
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perature, the mirror plane perpendicular to the c axis is lost. There are two major changes in

the structure during the ferroelectric phase transition. The first one is the buckling of MnO5

polyhedra leading to a shorter c axis. The second change involves the rotation of the MnO5

polyhedra and movement of Y ion such that Mn remains at the center of the polyhedra leav-

ing the Y-OT (OT is the apical oxygen atom) bond length unchanged while the Y-OP (OP is

in plane oxygen atom) bond lengths change: some of the bonds become shorter while others

become elongated. The change of the Y-OP bond lengths, as well as the rotation of the MnO5

polyhedra, is demonstrated in Fig. 1.11. One can easily see that there are two “down” dipoles

per one “up” dipole and therefore, the system becomes ferroelectric (properly called ‘ferrielec-

tric”). Due to this ferrielectric property, although the displacement is large and comparable

to conventional ferroelectrics like BaTiO3 and PbTiO3, the net polarization is small compared

to BaTiO3 and PbTiO3 (in BaTiO3, P = 25µCcm−2 and PbTiO3, P = 75µCcm−2 which is

much greater than P = 5µCcm−2 for YMnO3).[29, 31] For a quantitative comparison of the

magnitude of ferroelectric polarization between different compounds, a determination of the

atomic displacements is necessary.

The main driving force behind the structural phase transition involves electrostatic and

size effects rather than hybridization between different atoms as opposed to conventional fer-

roelectrics and supported by total energy calculations.[29] The Mn ion remains close to the

center of the oxygen cage and moves only by ∼ 0.01 Å along the c axis. Therefore, it is un-

likely that Mn ion re-hybridizes with neighboring oxygen ions. On the other hand the distance

between Y-OP after the off-center displacement is ∼ 2.3 Å, larger than minimum distance

required for the bond to be fully ionic[32] and, therefore, rehybridization between Y and OP

is also unlikely.

1.3 The Electric Field Control of Magnetism and Magnetic Field Control

of Polarization

Regarding the electric field control of magnetism, there are many examples which show that

antiferromagnetic domains can be controlled by external electric fields.[33, 34, 35] However,
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Figure 1.10 Three-dimensional schematic view of YMnO3 in the two enan-

tiomorphous polarized states. Arrows indicate the directions

of the atomic displacements moving from the centrosymmetric

to the ferroelectric structure. After Ref. [29].
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Figure 1.11 Schematic of a MnO5 polyhedron with Y layers above and be-

low. (a, b) The calculated atomic positions of the centrosym-

metric (a) and ferroelectric structures (b) The numbers give

the bond lengths in Å. The arrows indicate atomic displace-

ments with respect to the centrosymmetric structure. After

Ref. [29].

there are only a few examples, where ferromagnetism can be induced by an external electric

field. Back in the 1970’s it was shown that the linear magnetoelectric effect exist for chromic

oxide (i.e. polarization can be induced by applied magnetic fields and magnetization can be

induced by an applied electric fields).[7, 36, 37] However, the induced magnetization was very

small (∼ 0.03 emu/cm3) and thus, not really practical as a multiferroic material. In 2004,

Lottermoser et al.[9] proposed that the ferromagnetism (∼ 500 emu/cm3) can be induced in

antiferromagnetic HoMnO3 under an applied electric field. In particular, they proposed that,

Ho3+ moments are responsible for the ferromagnetic response and it can be reversibly switched

on and off by applying electric fields below T = 76 K.

The polarization can be reversibly switched along a particular crystallographic direction for

RMn2O5 multiferroics with R = Tb [22] in a moderate magnetic field shown in Fig. 1.12. The

polarization reversal in this compound has been modeled assuming that the total polarization,

P, is composed of two independent components, a positive component P1 which depends weakly

on magnetic fields and a negative component P2 which depends strongly on the magnetic field.

The microscopic origin of this two components remains unknown due to the complexity of the
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Figure 1.12 (a) Change of the total electric polarization by applied mag-

netic fields at 3 and 28 K for TbMn2O5. The magnetic-field

dependence of the total electric polarization was obtained by

measuring the magnetoelectric current as a function of mag-

netic field, which was varied linearly with time at a uniform

rate of 100 Oe/s. The magnetoelectric current was measured

after cooling with E poled (polarized with an applied electric

field) along the b axis without magnetic field. The total polar-

ization was obtained by adding the spontaneous polarization

to the field-induced polarization, which was calculated from

the magnetoelectric current. The schematic shows the orien-

tation of the net polarization (Pn=P1+P2) in zero field and

high fields ≥ 2 T. (b) Polarization flipping at 3 K by linearly

varying magnetic field from 0 to 2 T. These results clearly dis-

play highly reproducible polarization switching by magnetic

fields. After Ref. [22].
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magnetic structure in this compound. However, it was suggested by Radaelli and Chapon[38]

that the two polarization components originate from the two magnetic sublattices, Mn and

Tb. The Mn sublattice remain unaffected by the applied magnetic fields while Tb becomes

ferromagnetic under applied magnetic fields. Nevertheless, the microscopic origin still needs

to be clarified by detailed diffraction measurements.

1.4 A Survey of the Hexagonal RMnO3 Compounds

RMnO3 (R = Ho-Lu, Y, and Sc) compounds with smaller R ionic radii generally crystallize

in the hexagonal structure.[28] Under the special condition of argon gas flow in floating zone

growth, however, R = Dy can be synthesized in the hexagonal form as well.[39, 40] In this class

of compounds ferroelectricity originates at very high temperature due to the displacement of

R atoms and buckling of the MnO5 polyhedra, as discussed in detail above. The magnetism

in these compounds arises primarily from the Mn3+ ions, but the rare-earth ions do order at

lower temperature. The magnetic ordering of Mn3+ occurs at temperatures low compared to

the ferroelectric transition (70−100 K) and in this temperature range the material satisfies the

condition for multiferroicity.

RMnO3 Crystallographic Structure and Ferroelectric Properties

The hexagonal structure of the RMnO3 compounds consists of non-connected layers of MnO5

trigonal bipyramids corner-linked by in-plane oxygen ions, with apical oxygen ions forming

close-packed planes separated by a layer of R3+ ions. Schematic views of the crystal struc-

ture are given in Fig. 1.13 and the experimentally determined atomic positions for hexagonal

RMnO3 are shown in Table 1.2.[28, 41]

Group theoretical analysis and high-temperature diffraction[42] have shown that the tran-

sition from the paraelectric P63/mmc phase to the ferroelectric P63cm phase takes place in

two steps. First, the paraelectric P63/mmc phase transforms to the non-ferroelectric P63cm

phase leading to a tripling of the unit cell at T = 1200-1450 K. At a significantly lower tem-

perature, T = 850-1100 K, the ferroelectric transition takes place without a further reduction
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R (2a) 

Mn  
O  

R (4b) 

 

120 º 

c 

b a 

Figure 1.13 The hexagonal unit cell of RMnO3. Note that there are two

Wyckoff sites for the rare-earth ions, 2a and 4b. The MnO5

polyhedra is shown in green where Mn atoms are surrounded

by oxygen atoms. The red line outlines the unit cell.

Table 1.2 Structural parameters for hexagonal compounds with crystallo-

graphic space group P63cm and lattice parameters a ≈ 6.12 Å,

c ≈ 11.4 Å. After Ref. [28, 41].

Atoms Wyckoff site Position x y z

R(1) 2a (0 0 z) 0 0 0.27

R(2) 4b (1
3

2
3 z)

1
3

2
3 0.23

Mn 6c (x 0 z) ≈ 1
3 0 0

O(1) 6c (x 0 z) ≈ 1
3 0 ≈ 1

6

O(2) 6c (x 0 z) ≈ 2
3 0 ≈ 1

3

O(3) 2a (0 0 z) 0 0 ≈ 1
2

O(4) 4b (1
3

2
3 z)

1
3

2
3 ≈0
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in symmetry.[29, 42]

The ferroelectric phase has P63cm symmetry and the ferroelectric polarization is along

the hexagonal c axis with Pc = 5.6µCcm−2.[31] The value of the ferroelectric polarization is

comparable to conventional ferroelectrics and, is two orders of magnitude larger than the mag-

netically driven ferroelectrics.[22] Despite strong magnetoelectric effects, magnetically driven

ferroelectrics are not convenient for practical applications because they have to be poled fre-

quently by applying an electric field to maintain a single ferroelectric domain state. This is

necessary because their polarization is too small and they can be easily broken into multido-

main polarization.[43] Thus, multiferroics with a high TC and a robust large polarization at

room temperature, such as hexagonal multiferroics, are more desirable. The single ferroelectric

domain state can easily be maintained once they are poled.

Magnetic Properties

Despite numerous studies dating from the 1960s the magnetic structure and corresponding

magnetic symmetries of different phases in RMnO3 remain unclear, particularly for the rare-

earth elements.[30, 41, 44, 45, 46, 47, 48] Details of the controversies, and their resolution

by this x-ray resonant magnetic scattering study, will be discussed in Chapter 3. Despite

the controversies, certain features are clear and well established about the magnetic structure

of these materials: First, the magnetic unit cell is same as the crystallographic unit cell.

Second, the Mn3+ moments order in the hexagonal a-b plane non-collinearly at around T ∼ 60-

100 K. Third, the Mn3+ moments undergo one or more reorientations within the a-b plane at

lower temperatures. Finally, the rare-earth moments order along the hexagonal c direction at

temperatures below the magnetic ordering of Mn3+ moments. The magnetic structures of the

Mn3+ moments are well understood due to the detailed studies of Fiebig and co-workers.[45,

46, 47] The representative magnetic phase diagram for RMnO3 series is shown in Fig. 1.14 for

the Mn3+ moments, and the magnetic structure of Mn3+ moments at different temperatures

is shown in Fig. 1.15 for HoMnO3. For the specific case of HoMnO3, the Mn3+ moments

are arranged in a two-dimensional (2D) triangular lattice, with successive layers offset from

each other. The Mn3+ moments order at TN = 76 K with a spin reorientation transition at
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Figure 1.14 Magnetic symmetry of the hexagonal manganites. Sc, Ho, and

Lu show a coexistence of magnetic phases with temperature

intervals being sample specific. Intervals are thus given for a

single sample. Rare-earth spins ordering below 6 K was not

taken into account. After Ref. [87]
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Figure 1.15 The Mn3+ spin configurations for three different phases of

HoMnO3. The open circles indicate the position of Mn ions at

z = 0, filled circles indicate Mn ions at z = c/2, and arrows

indicate the direction of the local magnetic moment.

T SR = 40 K. They reorient again within the plane at THo = 5 K, where THo was the proposed

ordering temperature of Ho3+.[46, 49] It is worth mentioning here that the nomenclature THo

= 5 K is misleading since an induced ordered component of magnetic moment can be found at

40 K (as we will show in this work).

Coupling Between Ferroelectricity and Magnetism

Among hexagonal multiferroic compounds, HoMnO3 shows a large magnetoelectric coupling

at the magnetic phase transitions, particularly for the intermediate magnetic phase transition

(around T = 40 K) and at the normal Ho3+ ordering temperature (around 5 K) shown in
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Fig. 1.16. The coupling between the in-plane magnetization and c axis polarization is not sym-

metry allowed.[50] There have been a few explanations for the increase of ε in the intermediate

phase. Lorenz et al.[51] proposed that the magnetoelectric coupling between polarization along

c axis and magnetization is enabled by the Mn spin canting along the c axis. To the contrary,

Fiebig et al.[52] proposed magnetoelectric coupling based on the formation of spin-rotation do-

main walls. For example, the formation of a Néel domain wall at the reorientation transition

can explain the observed dielectric anomaly since in a Néel domain wall, spins rotate parallel to

axis of the wall and the domain wall configuration is very similar to a spiral magnetic structure

with the rotation of the magnetic moment (e3) perpendicular to the propagation vector, Q.

Therefore, a polarization which depends on the total rotation angle of the spins across the

domain wall can be induced according to Eq. 1.4.

Lottermoser et al.[9] also proposed that ferromagnetism can be induced by applying an

external electric field for HoMnO3 below T = 76 K, implying a robust coupling between fer-

roelectric polarization and magnetization. Specifically, Lottermoser et al. claimed that the

antiferromagnetic or paramagnetic state of Ho3+ can be changed to a ferromagnetic state

while Mn3+ moments remain antiferromagnetic, based on their second harmonic generation

and optical Faraday rotation experiments. They also claimed that ferromagnetism can be re-

versibly switched on and off by the application of electric field. Therefore, HoMnO3 and related

hexagonal multiferroics represent a promising class of magnetoelectric multiferroic compound

for potential technological applications.

1.5 An Overview of the Thesis

Hexagonal RMnO3 compounds are an important class of mutiferroics for several reasons.

First, the ferroelectric polarization of this class is large and comparable to conventional fer-

roelectrics and, therefore, show promise for practical applications. By comparison, for the

magnetically driven ferroelectrics, the ferroelectric polarization is approximately two orders

of magnitude smaller and they have to be poled frequently to maintain a single ferroelectric

domain state. Second, the observed coupling between magnetism and ferroelectricity in zero
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Figure 1.16 (a) Temperature (T ) dependence of the polarization P (solid

circle) and dielectric constant ε (open circle) for HoMnO3 in

zero magnetic field H. Vertical dashed lines indicate magnetic

phase boundaries. (b) T dependence of ε along the c axis in

various H applied along the c axis. (c) T dependence of P

along the c axis in H. After Ref. [43]



25

field is large, offering the possibility for control of electric polarization by external magnetic

fields and magnetism by external electric fields. Indeed, the proposal by Lottermoser et al.[9]

that antiferromagnetism/paramagnetism of Ho3+ in HoMnO3 can be transformed to ferromag-

netism in an applied electric field, implying a large magnetoelectric coupling was an important

stimulus for this work. Since the determination of the magnetic structure and corresponding

symmetry in the RMnO3 compounds is the first and most important step in understanding

any coupling between ferroelectricity and magnetism, we have undertaken a determination of

the magnetic structures of the rare-earth moments in hexagonal RMnO3 compounds.

Despite numerous studies in the past,[30, 41, 44, 45, 46, 47, 48] the magnetic structures of

Ho3+ reported by different groups are contradictory. The controversies present in the literature

are mainly due to the lack of sensitivity of the previously used techniques to rare-earth magnetic

ordering. The conventional route for magnetic structure determination is neutron scattering.

However, neutron scattering in this instance proved to be difficult in the following sense. In

neutron scattering experiments on a multicomponent magnetic system, a magnetic structure

must first be assumed and the ordered moments of the two sublattices are then extracted from

the intensities of a number of reflections. In the case of HoMnO3, the neutron magnetic signal

is dominated by Mn3+ moments since the Mn3+ carries a fully ordered moment compared to

small ordered component of Ho3+ moments and the Ho3+ contribution must be determined

from a careful fitting process together with the Mn3+ contribution. We have employed x-ray

resonant magnetic scattering (XRMS) to circumvent the difficulties observed in the previous

neutron scattering experiments. Since XRMS experiments are performed at the absorption

edge of the element of interest, one can focus on one magnetic contribution at a time. Due

to this elemental specificity a direct determination of the magnetic order of the rare-earth

component is possible. In this sense, an XRMS study of RMnO3 compounds is more reliable

in determining the magnetic structure of R3+ and the magnetic order parameter.

We have determined uniquely the magnetic structure of Ho3+ moments through a detail

analysis of the XRMS data and thereby resolved the above-mentioned controversies. Specifi-

cally, we found that the Ho3+ moments order antiferromagnetically along the c axis below 40 K
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(ITP, the intermediate temperature phase) and the antiferromagnetic structure changes below

4.5 K (LTP, the low temperature magnetic phase). We have also found that the temperature

dependence of the magnetic moments in the temperature range 4.5 K≤ T ≤40 K is unusual,

but can be modeled assuming an exchange interaction between Ho3+ and Mn3+ and a splitting

of the ground state quasi-doublet crystal electric field levels of Ho3+ by this exchange field.

Modeling the temperature dependence for Ho3+ provides the first qualitative understanding

of the nature of Ho3+ ordering in this temperature range. For a better understanding of the

magnetic ordering of rare-earths in the RMnO3 compounds, we have also determined the mag-

netic ordering of other hexagonal multiferroic compounds including DyMnO3 and ErMnO3.

We found the same magnetic structure for Dy3+ and very similar temperature dependence of

magnetic moments as that for Ho3+ in the temperature range 8 K≤ T ≤68 K (ITP). However,

Dy3+ moments order ferrimagnetically below 8 K (LTP) which is different than for Ho3+.

For ErMnO3, we conclude that Er3+ moments order only below 3 K with the same magnetic

structure as that of Dy3+ in the LTP.

After determining the zero-field magnetic structure of these compounds, we focused on

determining the magnetic structure in an applied electric field. We approached this problem

in three ways. First, we measured changes in bulk magnetization by conventional magneti-

zation measurement techniques such as SQUID measurements. Second, we probed element

specific changes in magnetization by XRMS and the related x-ray magnetic circular dichroism

(XMCD) technique. Specifically, we probed changes in antiferromagnetic structure by XRMS

and searched for a ferromagnetic component of Ho3+ by XMCD. We were unable to find any

ferromagnetic component of Ho3+ in an applied electric field in contrast to the proposal by

Lottermoser et al.[9]

The organization of the dissertation is as follows. The following chapter introduces XRMS

and XMCD as tools to study magnetic structure. In this chapter, the procedure for determining

magnetic structure by an XRMS experiment is detailed. Specifically, the role of symmetry in

determining possible magnetic structures and calculation of magnetic structure factors (related

to magnetic intensity) for all of the possible structures is discussed. Chapter 3 is concerned
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with the zero-field magnetic structure of rare-earth moments as well as an understanding of the

magnetic structures in terms of superexchange interactions. Chapter 4 deals with the magnetic

order of rare-earth moments in an applied electric field. The last chapter summarizes the results

of this study, and provides an outlook for future studies. A summary of the main results of the

magnetic structure of HoMnO3 in zero and applied electric field has been published in Phys.

Rev. Lett.[53] The magnetic structure of the Dy3+ moments has been published in Phys. Rev

B. [40]
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CHAPTER 2. OVERVIEW OF X-RAY SCATTERING PROCESSES

Investigations of the structure and dynamics of materials have been an important and es-

sential endeavor in condensed matter physics since the early 20th century. Both neutron and

x-ray scattering techniques have been used extensively to study the crystallographic structure

of materials and provide complementary views of structure. For example, neutron scattering

has traditionally been the standard tool for studies of magnetic structure and the dynamics

of condensed matter systems. X-ray diffraction has largely been applied to detailed crystallo-

graphic structure determination. The principle interaction that makes structure determination

possible for x-rays is the Coulomb interaction between x-rays and the electronic distribution

which gives rise to driven harmonic oscillation of the electrons, and the emission of electric

dipole radiation. This is the classical Thomson scattering process.

At x-ray absorption edges photoelectric absorption occurs and electrons are promoted from

core levels into empty states above the Fermi level. Photons that take part in the photoelectric

absorption are lost for the scattering experiment. However, the incident photons can also give

rise to virtual transitions between core levels and states above the Fermi level that relax

back to the core states with the emission of x-rays with the same energy as the initial beam.

For charge scattering, this is known as anomalous charge scattering which yields additional

terms in the x-ray scattering form factor that can be used to enhance the scattering contrast

between neighboring elements. Anomalous scattering is also sensitive to the anisotropy of

local environment, such as the arrangement of orbitals and orbital order. In addition to charge

scattering, x-rays interact with the magnetic moment of the system. Indeed, the magnetic

scattering of x-rays from electrons in molecules and solids is well documented in theory[54]

and was observed experimentally by de Bergevin and Brunel in 1970’s with a commercial x-ray
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tube.[55] de Bergevin and Brunel also presented a classical picture of the interaction between

x-rays with electrons and magnetic moments[56] illustrated in Fig. 2.1. Unfortunately, from a

practical point of view, the x-ray scattering cross-sections from electron spins are reduced by

approximately six orders of magnitude compared to normal charge scattering and, therefore,

using x-ray magnetic scattering to study magnetism was largely impractical in 1970’s.

The situation changed in 1990’s when Gibbs and coworkers successfully observed magnetic

scattering from Ho metal due to the dramatic increase of photon flux available from synchrotron

radiation.[57] The increased photon flux compensates for the weakness of the magnetic scat-

tering signal. The polarization properties and tunability of the x-ray energy at a synchrotron

source provides additional advantages for magnetic x-ray scattering. As will be discussed in

the next section when x-ray energies are tuned through the absorption edges of an element

of interest there is a resonant enhancement of the scattering signal now known as x-ray res-

onant magnetic scattering.[58] Away from the resonance condition, the magnetic scattering

signal is known as non-resonant x-ray magnetic scattering. All of the above processes have

been reviewed and described in detail in several texts.[59] In the following, we will concentrate

mainly on the descriptions of x-ray resonant magnetic scattering and x-ray magnetic circular

dichroism.

2.1 X-Ray Resonant Magnetic Scattering

In x-ray resonant magnetic scattering, the x-ray energy is tuned through the absorption

edge of the element of interest, an electron is photo-excited from the core levels to the unoccu-

pied states above the Fermi energy, and the de-excitation to the core-level yields an elastically

scattered photon. In an ordered magnetic state, this process is sensitive to the magnetization

density because of exchange splitting in the bands.[60] The process of x-ray resonant magnetic

scattering (XRMS) is shown schematically in Fig. 2.2. The first resonant magnetic scattering

measurement in an antiferromagnetic material, Ho metal, was observed by Gibbs et al. and

illustrated in Fig. 2.3.[61]



30

E

H

E

H

H

H

E

E

interaction re-radiation

-e

-e

-e

 

 

force

-eE

-eE

grad( H)

torque

Hx 

E-dipole

H-quadr.

E-dipole

H-dipole

!

!

!

!

!

"#!

"

"

 

3

456.

Figure 2.1 Illustration of the processes leading to scattering of x-rays by

the charge (top) and the spin moment (bottom three) of the

electron in a classical picture. After Refs. [56, 66]



31

EF 

2p3/2 

2p1/2 

X-ray in (ε) 

2s 

1s 

E 

4f 

4f 

5d 

E
xc

ha
ng

e 
S

pl
itt

in
g

 

X-ray out (ε’ ) 

Figure 2.2 Schematic illustration of the second order perturbation process

leading to XRMS in the case of a lanthanide metal. An elec-

tron being photo-excited from the core level to the empty states

above the Fermi energy EF . The subsequent decay of the elec-

tron to the core level gives rise to an elastically scattered pho-

ton.
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Figure 2.3 Top: The photoelectric absorption measured through a 5µm

Ho film as the x-ray energy is tuned through the Ho LII edge.

Bottom: Integrated intensity of the (0 0 2+τ) reflection of Ho

metal plotted vs incident x-ray energy. After Ref. [58]
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2.1.1 The Cross Section for X-ray Resonant Magnetic Scattering

The calculation of the x-ray scattering cross-section from a quasi-relativistic Hamiltonian

for a electron in a quantized electromagnetic field using second order perturbation theory was

done by Blume[62] and Blume and Gibbs[63], and was later presented in a simplified form by

Hill and McMorrow[64] in the coordinate system convenient for XRMS experiments. We start

with the Hamiltonian for electrons in a quantized electromagnetic field:

H =
∑

j

1

2m
{ ~Pj −

e

c
~A(~rij)}2 +

∑

ij

V (~rij) −
eh̄

2mc

∑

j

~sj · ∇j × ~A(~rj)

− eh̄

2(mc)2

∑

j

~sj · ~E(~rj) × {~pj −
e

c
~A(~rj)} +

∑

~kλ

h̄ω~k
{c†(~kλ)c(~kλ) +

1

2
}

(2.1)

Here, the first term corresponds to the kinetic energy of the electrons in the electromagnetic

field, represented by the vector potential ~A(~r). The second term corresponds to the Coulomb

interaction between electrons, the third term corresponds to the Zeeman energy, −~µ · ~H, of the

electrons with spin ~sj, the fourth term is the spin-orbit coupling in the initial or final states

and the last term is the self energy of the electromagnetic field.

The vector potential ~A(~r) is linear in photon creation and annihilation operator c†(~kλ) and

c(~kλ), and can be expanded in plane wave form as:

~A(~r) =
∑

~qσ

(
2πh̄c2

V ωq
)

1
2 × [~ǫ(~qσ)c(~qσ)ei~q·~r + ~ǫ⋆(~qσ)c†(~qσ)e−i~q·~r] (2.2)

Here V is the quantization volume and ǫ(~qσ) is the unit polarization vector corresponding to

a wave vector ~q and polarization state σ. The index σ(= 1, 2) labels two polarizations for each

wave vector ~q. Since ~A(~r) is linear in photon creation and annihilation operator, c†(~kλ) and

c(~kλ), scattering occurs in second order for terms linear in ~A and in first order for quadratic

terms. For the spin orbit term in Eq. 2.1, ~E can be written in terms of scalar potential φ and

the vector potential ~A as:

~E = −∇φ− 1

c
~̇A (2.3)

After substituting ~A and ~E in Eq. 2.1, the Hamiltonian in Eq. 2.1 can be re-written as the

sum of three terms:[62]

H = H0 +HR +H
′

(2.4)
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Where H0 contains only the degrees of freedom for the electron system, HR is the Hamiltonian

for the quantized electromagnetic field and H
′

corresponds to the interaction between the

electron and the radiation field. Scattering cross sections are calculated by assuming the solid

is in a quantum state |a〉 which is an eigenstate of H0 with energy E0 and there is a single

photon present. We then calculate the probability of a transition induced by the interaction

term H
′

to a state |b〉, with photon ~k′λ
′

. The transition probability (Ω) per unit time can be

calculated using “Fermi’s golden rule” up to second order:

Ω =
2π

h̄
|〈f |H ′ |i〉 +

∑

n

〈f |H ′ |n〉〈n|H ′ |i〉
Ei − Ef

|2 × δ(Ei − Ef )

|i〉 = |a;~kλ〉; |f〉 = |b; ~k′λ
′〉

(2.5)

While the detailed derivation of the scattering cross section is given in Ref. [62], we will outline

here the final results. For coherent elastic scattering, (|a〉 = |b〉), and the amplitude can be

written as a sum over the following terms:[64]

f = f0 + f
′

+ if
′′

+ fspin (2.6)

Here, f0 ∝ Zr0 is the Thompson charge scattering amplitude and fspin is the non-resonant

spin-dependent magnetic scattering amplitude. Far from resonance, f
′

and f
′′

contribute

terms proportional to the orbital and spin angular momentum. At resonance both electric

and magnetic multipole transitions contribute through the terms f
′

and f
′′

. However, the

electric dipole and quadrupole transitions are dominant with respect to magnetic multipole

transitions by a factor of h̄ω/mc2 (∼ 60 for typical x-ray edges) and so the only electric

multipole transitions will be considered here.

For the electric 2L-pole resonance in a magnetic ion, the resonant contribution to the

coherent scattering amplitude can be written as[60]

f e
EL(ω) =

4π

k
fD

L
∑

M=−L

[ǫ̂
′⋆ · Y (e)

LM (k̂
′

)Y
(e)⋆
LM (k̂) · ǫ̂]F e

EL(ω) (2.7)

Where ǫ̂ and ǫ̂
′⋆ are the incident and scattered polarization vectors, and k̂ and k̂

′

are the

incident and scattered wave vectors, respectively. Y
(e)
LM(k̂) are the vector spherical harmonics
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and fD is the Debye-Waller factor. The strength of the resonance is determined by the factor

F e
EL(ω), which is, to 0th order, determined by atomic properties:

F e
EL(ω) =

∑

a,n

PaPa(n)Γx(aMn;EL)

2(En − Ea − h̄ω − iΓ/2)
(2.8)

Here, |n〉 is the excited state of the ion and |a〉 the initial state. Pa is the probability of the

ion existing in the initial state |a〉 and Pa(n) is the probability for a transition from |a〉 to

an excited state |n〉. It is determined by overlap integrals between the two states |a〉 and

|n〉. Γx and Γ are the partial line widths of the excited state due to a pure electric 2L-pole

(EL) radiative decay and due to all processes, both radiative and non-radiative (including,

for example, Auger decay), respectively. These electric multipole (predominantly dipole and

quadrupole) transitions involve the virtual photo-excitation of an electron from a core level to

the unoccupied states above the Fermi energy with a subsequent de-excitation to the core-levels

yielding an elastically scattered photon. These processes become sensitive to the magnetic state

in exchange split bands due to the difference in occupation of minority and majority bands as

illustrated schematically in Fig. 2.2. Due to the resonant denominator in Eq. 2.8, enhancements

occur at the absorption edges of the magnetic elements (e.g. when, En-Ea=h̄ω). The strengths

of these enhancements for XRMS depend mainly on three factors as discussed by Hannon et

al.[60] and shown by XRMS experiments on a series of rare-earth intermetallic compounds

(RNi2Ge2, R= rare-earths) by Kim et al.[65]:

1. The magnitude of the transition matrix element. Dipole transitions between states |a〉

and |n〉 differing in orbital angular momentum quantum number by ∆L = 1 are generally

stronger than quadrupolar transitions with ∆L = 2. A large overlap of the wave functions

|a〉 and |n〉 favors large transition matrix elements. In contrast, transitions from “s” core

levels to “p” or “d” excited states do not show large resonance enhancements due to the

small overlap of the wave functions.

2. The difference in the density of empty states above the Fermi level for minority and

majority spin states. To give an example: in lanthanide metals, the 5d bands are spin

polarized due to the magnetic 4f states. However, the exchange splitting in the 5d is



36

Table 2.1 Magnitude of the resonance enhancement for XRMS for some

elements relevant for magnetism. Only order of magnitude esti-

mates are given with “weak” corresponding to a factor of about

“100”, “medium” to about “102” and “strong” to “>103” com-

pared to the non-resonant magnetic scattering. After Ref. [66]

Elements Edge Transition Energy Range

(keV)

Resonance

Strength

Comment

3d K 1s→4p 5-9 Weak Small overlap

3d LI 2s→3d 0.5-1.2 Weak Small overlap

3d LII , LIII 2p→3d 0.4-1.0 Strong Dipolar, Large overlap,

high spin polarization of

3d

4f K 1s→4p 40-63 Weak Small Overlap

4f LI 2s→5d 6.5-11.0 Weak Small overlap

4f LII , LIII 2p→5d,

2p→4f

6.0-10.0 Medium Dipolar and quadrupo-

lar

4f MI 3s→5p 1.4-2.5 Weak Small overlap

4f MII , MIII 3p→5d,

3p→4f

1.3-2.2 Medium to

strong

Dipolar, quadrupolar

4f MIV , MV 3d→4f 0.9-1.6 Strong Dipolar, large overlap,

high spin polarization of

4f

5f MIV , MII 3d→5f 3.3-3.9 Strong Dipolar, large overlap,

high spin polarization of

5f

much weaker as compared to the 4f states and dipolar transitions 2p→ 5d are sometimes

not much stronger than quadrupolar transitions 2p → 5f .

3. The strength of the spin-orbit coupling in the ground and excited states. It is this cou-

pling that provides electric multipole transitions with sensitivity to the spin magnetism.

Using the above-mentioned factors, we can qualitatively categorize the possible transitions

according to the magnitude of the resonance enhancement, as listed in Table. 2.1.[66] Here we

define the term “resonant enhancement” as the ratio between the intensity of magnetic Bragg

peaks at the maximum of the resonance relative to the intensity for non-resonant magnetic
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iθfθ
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Z
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Z

σε̂

k̂
k ′ˆ

πεπε ′ˆ

σε ′ˆ

2
Z

Figure 2.4 The coordinate system used for the polarization dependence of

the resonant scattering amplitudes described in the text. k̂ and

k̂
′

are the incident and scattered wave vectors and θi and θf is

the incident and outgoing angle with respect to the sample sur-

face . ǫ̂σ (ǫ̂
′

σ) and ǫ̂π (ǫ̂
′

π) are the components of the polarization

perpendicular and parallel to the scattering plane for incident

(scattered) x-rays.

scattering.

2.1.2 Polarization Properties

One of the strengths of resonant magnetic scattering is that the polarization state of the

scattered x-rays can be modified with respect to that of the incident beam. Therefore, by

analyzing the polarization of scattered x-rays, it is possible to discriminate between charge

and magnetic scattering. Furthermore, by analyzing the intensity of scattered x-rays in dif-

ferent polarization channels, the spatial components of the ordered magnetic moment can be
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obtained.[67, 68] Therefore, in the following sections explicit relationship between the ampli-

tude of scattered x-rays and incident x-rays will be shown according to Ref. [64].

2.1.2.1 Electric Dipole Transitions (E1)

For rare-earth L-edges, electric dipole transitions usually dominate the resonant mag-

netic cross section and are the simplest to calculate. An example of such a transition is the

2p3/2 → 5d1/2 transition of Ho, which occurs at the LIII absorption edge. At this transition,

the vector spherical harmonics can be written, for L = 1, M = ±1:

[ǫ̂
′⋆ · Y (e)

1±1(k̂
′

)Y
(e)⋆
1±1 (k̂) · ǫ̂] = (3/16π)[ǫ̂

′ · ǫ̂∓ i(ǫ̂
′ × ǫ̂) · ẑn − (ǫ̂

′ · ẑn)(ǫ̂ · ẑn)] (2.9)

Similarly, for L = 1, M = 0

[ǫ̂
′⋆ · Y (e)

10 (k̂
′

)Y
(e)⋆
10 (k̂) · ǫ̂] = (3/8π)[(ǫ̂

′ · ẑn)(ǫ̂ · ẑn)] (2.10)

where ẑn is a unit vector in the direction of the magnetic moment of the nth ion. Thus,

fXRMS
nE1 = [(ǫ̂

′ · ǫ̂)F (0) − i(ǫ̂
′ · ×ǫ̂) · F (1) + (ǫ̂

′ · ẑn)(ǫ̂ · ẑn)F (2)] (2.11)

where F (i)’s are the terms containing dipole matrix elements which have been evaluated by

Hamrick for several rare-earths.[69] The first term of Eq. 2.11 contributes to the charge Bragg

peak as it does not contain any dependence on the magnetic moment. The other two terms

depend on the magnetic moment. All terms in Eq. 2.11 can be represented in 2×2 matrix form

with polarization states chosen either parallel and perpendicular to the scattering plane and

resolving each of the vectors k̂, k̂
′

and ẑn into their components along the three orthogonal

axes defined with respect to the diffraction plane shown in Fig. 2.4.

The amplitude of scattered x-rays, A
′

σ and A
′

π, can be written in terms of the amplitude

of incoming x-rays, Aσ and Aπ, the components of the magnetic moments along the three
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Figure 2.5 Experimental realization of different polarization channels for

the (a) σ → π and (b) π → σ scattering geometries. After

Ref. [70]

orthogonal directions, and the Bragg angle θ as follows:







A
′

σ

A
′

π






= F (0)




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1 0

0 cos 2θ


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



Aσ

Aπ
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
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− iF (1)
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
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0 z1 cos θ + z3 sin θ

z3 sin θ − z1 cos θ −z2 sin 2θ
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
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
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2 −z2(z1 sin θ − z3 cos θ)

z2(z1 sin θ + z3 cos θ) − cos2 θ(z2
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3)













Aσ

Aπ







(2.12)

The above matrix equation is sum of three sub-matrices: The first one contributes to the

charge Bragg peak. The second and third contribute to the magnetic Bragg peak. A few points

to note for the magnetic contribution:

1. The second term is linear in the components of the magnetic moment and therefore,

mainly responsible for producing peaks at the magnetic wavevector, ~τ . For example, in

an antiferromagnet with wavevector, ~τ , the linear term produces first harmonic satellite

peaks. The third term, which is quadratic in the components of a magnetic moment

produces second harmonic satellites as well as contributes to the charge Bragg peaks.1

For a ferromagnetic material both the second and third term contribute to the positions

of allowed charge reflections.

1for a commensurate antiferromagnet with propagation vector ~τ=0, it can produce intensity at the charge
forbidden reciprocal lattice points.
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2. Synchrotron radiation is linearly polarized in the plane of storage ring. Therefore, all

combinations of polarization channels are accessible by suitably selecting the scattering

plane (see Fig. 2.5 for experimental geometries[70]) and, hence, different components of

the ordered magnetic moment can be probed. For example, scattering in the σ → π
′

channel is sensitive to the component of magnetic moment in the scattering plane (in

the Fig. 2.4, z1 and z3) and π → π
′

channel is sensitive to the components of a magnetic

moment out of the scattering plane (z2 in Fig. 2.4).

3. The scattering amplitude depends on the Bragg angle, and therefore by analyzing the

magnetic peak intensities as a function of scattering angle, a specific magnetic model can

be proved or disproved.

2.1.2.2 Electric Quadrupole Transitions (E2)

The intensity of the scattered x-rays for quadrupole resonances can be calculated in a

similar manner and is detailed by Hill and McMorrow in Ref. [64]. Here, we will write the final

form in terms of components of magnetic moments:







A
′

σ

A
′

π






= F

(0)
E2
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(2.13)

where c = cos θ, c2 = cos 2θ, c2 = cos2 θ etc. Despite the complexity of the above equation, it

can be used to interpret resonant scattering data as will be shown in the following sections.

2.1.3 Determination of Magnetic Structure: Symmetry Analysis

It is worth noting that commensurate magnetic structures, particularly those with more

than one magnetic ion in the unit cell (e.g. Ho(2a) and Ho(4b) in HoMnO3) require symme-

try analysis for a complete solution whereas most of our group’s previous work was focused

on “simple” incommensurate systems. In both the, “simple” as well as “complex” systems,

symmetry analysis simplifies the problem of solving magnetic structures.[71] We will outline

the procedure for determining the magnetic structure for R3+ in the hexagonal RMnO3 and

discuss the role of symmetry.

Determining the magnetic structure means:
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1. Determining the relation between magnetic and chemical unit cell i.e. propagation vector.

2. Determining the magnetic moment direction.

3. Determining the symmetry relationship between different magnetic moments in the unit

cell.

For hexagonal RMnO3, the magnetic propagation vector is known from neutron diffraction

experiments to be ~k = 0, so that the magnetic unit cell is same as the chemical unit cell.

Symmetry analysis limits the possible magnetic structures and dictates the moment direction,

and correlations between magnetic moments for a magnetic structure. To determine the pos-

sible magnetic structures, we will use representation analysis and outline the procedure for

calculating the magnetic moment direction and correlations for a particular representation.

2.1.3.1 Representation Theory and Possible Magnetic Structures

Representational analysis[72, 73, 74, 75, 76, 77, 78] allows the determination of the symmetry-

allowed magnetic structures that can result from a second-order magnetic phase transition given

the crystal structure, and the propagation vector of the magnetic ordering. The calculation

of magnetic structures (magnetic representations), shown in Table 2.8, require several steps

starting from the symmetry operations of the crystallographic space group and the propagation

vector. Briefly, the steps include:

1. Determination of the little group Gk which maintains the propagation vector invariant.

2. Decomposition of the magnetic representation in terms of the representations of Gk. This

tells us the representations of Gk that are compatible with the symmetry operations on

the magnetic moments.

3. Determination of basis vectors for a particular representation. This describes the com-

ponents of the magnetic moments that are compatible with the symmetry operations.
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The procedure for calculating magnetic representations will be outlined here with the real

example of Ho(2a) site in HoMnO3. We will define the relevant group theoretical terms in the

course of calculating magnetic representations.

Determination of Little Group Gk:

The symmetry operations of G0 that are consistent with translational periodicity, defined

by ~k, are those that leave ~k invariant. Only the rotational parts of the symmetry operations

change ~k. Therefore, if the action of the rotational part of a symmetry operation on ~k is

written as

~k
′

= ~kR, (2.14)

the symmetry operations that leave ~k invariant are those that obey the equation

~k
′

= ~k, (2.15)

The group of symmetry operations that obey this relation are called the group of the propaga-

tion vector, or the little group, Gk. In the case of RMnO3, the propagation vector ~k= (0 0 0),

elements in the Gk are the same as G0. For example, for the rotation operator, R=g6 (see

Table 2.2 for the symmetry operations in Gk),

~kg6 =

(

0 0 0

)













1 1̄ 0

1 0 0

0 0 1













=

(

0 0 0

)

= ~k (2.16)

We have listed the elements of the group in the order of Kovalev’s notation in Table 2.2.

Effect of Symmetry Elements on Atomic positions and the Permutation Rep-

resentation, Γperm:

A crystal is invariant under all of the symmetry operations of its space group. However,

equivalent atoms can be interchanged under the different symmetry operations. For example,

operation g6 interchanges atom 1 (X1) and 2 (X2) in the R(2a) site whereas operation g1 keeps
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them invariant. The atomic positions for rare-earths are given in Table 1.2

g6X1 = g6(0 0 z) = (0 0 z + 1/2) = X2

g2X1 = g2(0 0 z) = (0 0 z) = X1

(2.17)

The manner in which all symmetry operations of a group permute the labels of equivalent

atoms can be represented by a large matrix, called the permutation representation, Γperm.

The character of the permutation representation for a symmetry operation, χperm(g), is simply

the number of position labels that are unchanged under its action. In the above example

χperm(g6) = 0 and χperm(g1) = 2. All the χperm(gi) are listed in the Table 2.3.

Effect of Symmetry Elements on Magnetic Moments and the Magnetic Repre-

sentation, Γmag:

A magnetic moment is described by an axial vector which, for convenience, will be rep-

resented in the axis system of the point or space group that we are using. We will always

refer to moment components defined with respect to the crystallographic axes, not Cartesian

projections. If the moment vector of an atom is ~M = (ma;mb;mc), then the action of a

rotational symmetry element is simply

~M
′

= R ~M × det(R) (2.18)

Where the determinant, det(R), is required to describe the current loop symmetry of an axial

vector (which is not reversed by the inversion operation). The axial vector representation,

Γaxial, describes how the components of a moment vector are changed by the different symmetry

operations. The character of a given symmetry element is χaxial. Numerically, it is simply

the trace (the sum of the leading diagonal elements) of the rotation matrix of the symmetry

operation multiplied by the determinant of the rotation matrix. For example, for g1 symmetry

element,

χaxial(g1) = (1 + 1 + 1) × 1 = 3 (2.19)

The χaxial for all other symmetry elements are listed in Table 2.3.
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The Magnetic Representation:

The magnetic representation, Γmag, describes both the result of the symmetry operations

on the atomic positions and on the axial vectors that describe the atomic moments. As these

effects are independent, the magnetic representation is given by their direct product:

Γmag = Γmag × Γaxial (2.20)

The characters of these representations are related according to:

χmag = χmag × χaxial (2.21)

and are also listed in Table 2.3.

Irreducible Representations of the Space Groups:

Irreducible representations are matrices that map onto the algebra of the space group sym-

metry operations. They are of particular significance because they are the smallest unique

blocks out of which all other representations can be made. In other words, any representation

can be written in terms of the different irreducible representations of the group so that the

representation can be decomposed into irreducible representations. The dimensionality of an

irreducible representation is the dimensionality of the matrix representatives of the represen-

tation. The irreducible representations of the space group Gk = P63cm for ~k = 0 can be

obtained from Kovalev’s book [77] and are listed in Table 2.4.

Decomposition of the Magnetic Representation into Irreducible Representa-

tions of Gk:

Γmag describes how the atomic moments change under all the different symmetry operations

of a space group. It is reducible and can be written in terms of the irreducible representations

of the space group. Therefore, Γmag can be decomposed into the irreducible representations

of the space group Gk. In this case, the magnetic representation for an atomic site can be

decomposed into contributions from the irreducible representations of the little group.

Γmag =
∑

ν

nνΓν (2.22)
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where nν is the number of times the irreducible representation Γν appears in the magnetic

representation Γmag. nν is given by:

nν =
1

n(Gk)

∑

g∈Gk

χΓmag(g)χ
⋆
Γν(g) (2.23)

Here χΓmag(g) is the character of the magnetic representation listed in Table 2.3 and χ⋆
Γν(g)

is the complex conjugate of the character of the irreducible representation with index ν for

element g (see Table 2.4). Let’s give here an example for the R(2a) site in RMnO3.

For ν = 1 (the Γ1 representation),

n2 =1/12[(6 × 1) + (0 × 1) + (0 × 1) + (0 × 1) + (0 × 1) + (0 × 1) + (0 × 1) + (−2 × 1) + (0 × 1)

+ (−2 × 1) + (0 × 1) + (−2 × 1) + (−2 × 1) + (0 × 1) + (−2 × 1)] = 0

(2.24)

For ν = 2 (Γ2 representation),

n2 = 1/12[(6 × 1) + (0 × 1) + (0 × 1) + (0 × 1) + (0 × 1) + (0 × 1) + (0 ×−1) + (−2 ×−1)

+ (0 ×−1) + (−2 ×−1) + (0 ×−1) + (−2 ×−1) + (−2 ×−1) + (0 ×−1) + (−2 ×−1)] = 1

(2.25)

Following the procedure described above, the decomposition of Γmag into irreducible represen-

tations of Gk:

Γmag = 0Γ1
1 + 1Γ1

2 + 1Γ1
3 + 0Γ1

4 + 1Γ2
5 + 1Γ2

6 (2.26)

where the superscript represents the order of the irreducible representation and the subscript

is its index or label. xΓ1
1 implies that the Γ1 representation of order 1 contains x number of

basis vectors.

Basis Vectors and Basis Vector Space:

Symmetry adapted linear combinations, also called basis vectors, are obtained by projection

from test functions [e.g. (1 0 0), (0 1 0) and (0 0 1) are three test functions representing

the direction of three crystallographic axes] components that are compatible with one row of

an irreducible representation matrix. Only functions that have the same symmetry as the
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irreducible representations under all of the different symmetry operations of the group give

non-zero results and these are the symmetry adapted linear combinations. Calculation of the

basis vectors is done using the projection operator technique, which involves taking a test

function and projecting from it the part that transforms according to each of the irreducible

representations. We will use the notation ~ψn as the basis vector that transforms according to

the µ dimensional representation Γµ
ν , and Dν is the matrix representative of the irreducible

representation with index ν. The projection process determines the component of the test

function that transforms according to the irreducible representation that is under investiga-

tion. If there is symmetry adapted component, then the projection will give non-zero results

otherwise it will be zero. The projection operator formula is: [74]

~ψλ
αν =

∑

g∈Gk

Dλ
ν

⋆
(g)

∑

i

δi,gi
Rg
~φαdet(Rg) (2.27)

where:

1. ~ψλ
αν is the basis vector projected from the λth row of the νth irreducible representation

using basis vector ~φα.

2. g ∈ Gk means that the sum is over the symmetry elements that are in Gk.

3. Dλ
ν

⋆
(g) is the complex conjugate of the element of the matrix representative that is

being examined: it is the λth row of the matrix representative of the ν irreducible

representation, for symmetry operation g.

4.
∑

i means that the following summation is over all of the atomic positions that are related

by the symmetry elements of the space group.

5. δi,gi
is the Kronecker delta and means that effectively the sum is over the symmetry

elements that move an atom to a position that has the same level.

6. det(Rg) is the determinant of the rotational part of the symmetry element (Rg).

7. ~φα is the test function.
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We will select the following test functions:

~φ1 = (1 0 0)

~φ2 = (0 1 0)

~φ3 = (0 0 1)

(2.28)

From the Tables 2.5, 2.6 and 2.7 and, for the R(2a) site in the Γ3 representation, we obtain

the basis vector ~ψ3 where ~ψ3 = (0 0 6) for atom 1 at position X1 and (0 0 −6) for atom 2 and

position X2. Therefore, for the Γ3 representation, the magnetic moments are aligned along the

hexagonal c direction with antiferromagnetic correlation between them. The same procedure

has to be applied for other representations (Γ2, Γ5 and Γ6) for the R(2a) site and from Γ1

to Γ6 for the R(4b) site. The calculations are tedious but straight-forward. The calculations

can be verified or done with the software package SARAh [74] and we show the final results

in Table 2.8 which describes the correlations between magnetic moments at the same Wyckoff

site. The correlation between magnetic moments at the two independent Wyckoff sites (2a

and 4b) has to be obtained experimentally. Fig. 2.6 show one of the possible realizations of

the magnetic structure for every representation.

2.1.3.2 Determination of the Magnetic Moment Direction

The magnetic moment directions are specified by the magnetic representations. Therefore,

determination of magnetic representation implies determination of magnetic moment direction

as well as the correlation between magnetic moments. For a determination of the magnetic

representation, a detailed calculation of the magnetic structure factor is necessary and will be

presented in the next section.

2.1.3.3 Calculation of Magnetic Structure Factor to Discriminate Between

Different Magnetic Representations

Here we outline the calculation of magnetic structure factors for different representations

for the rare-earth moments, listed in the Table 2.8, for the crystallographic space group P63cm.
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Г5  Г6 

Moments in the a-b plane 

Г1  Г2  Г3  Г4 

Moments in the c direction 

2a 

4b 

120º a b 

Figure 2.6 Possible magnetic representations for the crystallographic space

group P63cm associated with a magnetic unit cell same as the

crystallographic unit cell. Only Ho3+ moments are shown.
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The magnetic structure factor FM for resonant magnetic scattering can be written as:

FM =

4(k=4b)
2(k=2a)

∑

jk=1

fXRMS
jk

e2πi(hxjk
+kyjk

+lzjk
) (2.29)

The summation is over the two Wyckoff sites for the rare-earths, namely R(2a) and R(4b).

fXRMS is the resonant magnetic scattering amplitude which is listed for different polarization

geometries in Eq’s. 2.12, 2.13 for both the dipole and quadrupole resonances. In particular,

fXRMS depends on the polarization geometry as well as the moment direction. The different

magnetic representations that are possible for the crystallographic space group P63cm with a

magnetic unit cell the same as the chemical unit cell are listed in Table 2.8. Since there are

two distinct Wyckoff sites in the unit cell, both sites may not order in the same magnetic rep-

resentation and the moments at the two different sites can be coupled or decoupled depending

on the interaction between different magnetic sublattices. Without detailed knowledge of the

magnetic Hamiltonian we will proceed to calculate FM for the following cases:

(A) Both sites order in the same magnetic representation and are coupled.

(B) Both sites order in the same magnetic representation but are decoupled.

(C) Both sites order in two different magnetic representations and are decoupled.

The main difference between (A) and (B) is that number of possible domains will be different

and hence, when averaged over domains, the diffraction intensities will be different.

Case A

As discussed in Ref. [79], case A is valid for a continuous or “approximately” continuous

phase transition with dominant second order terms in the Hamiltonian. For dipole scattering

in σ → π
′

geometry we can write (see Eq. 2.12):

fXRMS
E1 = −iF (1)

E1 [z3 sin(θ + α) − z1 cos(θ + α)] (2.30)

where (θ + α) is the angle between the outgoing wavevector (k̂
′
) and the â∗ direction and

zi’s are the components of the magnetic moment unit vector along the three cartesian axes.

We select â∗, b̂ and ĉ∗ as the three unit vectors along the three orthogonal cartesian axes. f
(1)
E1
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is the dipole scattering matrix element which is generally proportional to the magnitude of the

magnetic moment (see for example Ref. [80]). We will assume for both R sites

F
(1)
E1 = Cµ, (2.31)

where C is a scaling factor. With the help of Eq. 2.29 and 2.31, |Fm|2 can be written in the

following forms for (h 0 l) reflections with l odd:

Γ1: R(4b) in Γ1

|Fm|2 = 16C2µ2
4b sin2(θ + α) sin2 2πh

3
(2.32)

Γ2: R(2a) and R(4b) in Γ2

|Fm|2 = 0 (2.33)

Γ3: R(2a) and R(4b) in Γ3

|Fm|2 = 4C2 sin2(θ + α)[µ2
2a + 4µ2

4b cos2 2πh

3

+ 4µ2aµ4b cos
2πh

3
cos 2π(z2a − z4b)l]

(2.34)

Γ4:

|Fm|2 = 0 (2.35)

Γ5: R(2a) and R(4b) in Γ5

For the Γ5 magnetic representation and for the given orientations of magnetic moments in

Table 2.8 we can write:

|Fm|2 = 3C2(p− r)2 cos2(θ + α) sin2 2πh

3
(2.36)

However, the Γ5 magnetic representation allows 120◦ orientational domains which yield differ-

ent |Fm|2. Assuming equal population of magnetic domains we can write:

|Fm|2 = 3C2 1

3
[(p − r)2 + (q − s)2 + {(p − r) − (q − s)}2]

cos2(θ + α) sin2 2πh

3

(2.37)
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Again,

µ
(1)
4b = [p q 0] =

√
3

2
pâ∗ + (q − 1

2
p)b̂

µ
(2)
4b = [r s 0] =

√
3

2
râ∗ + (s− 1

2
r)b̂

(2.38)

Also,

µ
(1)
4b − µ

(2)
4b =

√
3

2
(p− r)â∗ + {(q − s) − 1

2
(p − r)}b̂

(µ
(1)
4b − µ

(2)
4b ) · (µ(1)

4b − µ
(2)
4b ) =

1

2
[(p − r)2 + (q − s)2

+ {(p− r) − (q − s)}2]

(2.39)

Therefore, using Eq. 2.39, we can simplify Eq. 2.37 as follows:

|Fm|2 = 2C2 cos2(θ + α) sin2 2πh

3
(µ

(1)
4b − µ

(2)
4b )2 (2.40)

again assuming equal population of domains.

Γ6: R(2a) and R(4b) in Γ6

For the Γ6 magnetic representation and for the orientation of magnetic moments in Table 2.8,

we can write:

|Fm|2 = 3C2 cos2(θ + α)[u2 + (p+ r)2 cos2 2πh

3

+ 2u(p+ r) cos
2πh

3
cos 2π(z2a − z4b)l]

(2.41)

When the magnetic moments at the two sites are coupled, averaging over all possible domains

yields:

|Fm|2 = 2C2 cos2(θ + α)[µ2
2a + (µ

(1)
4b + µ

(2)
4b )2 cos2

2πh

3

+ µ2a · (µ
(1)
4b + µ

(2)
4b ) cos

2πh

3
cos 2π(z2a − z4b)l]

(2.42)

Case B In case B, both sites belong to the same magnetic representation but are decou-

pled i.e. the two sites order independently. For Γ1, Γ2 Γ4 and Γ5 magnetic representations

|Fm|2 is the same as that of case A because |Fm|2 is either zero (Γ2 and Γ4) or contains only

squared terms of magnetic moments(Γ1 and Γ5)

Γ3:

If the moments in the R(2a) site are in the same orientation as in Table 2.8, reversing the



53

moments at the R(4b) site introduces a ‘‘ − ” before the term µ2aµ4b cos 2πh
3 cos 2π(z2a − z4b)l

(interference term) in Eq. 2.34. Therefore, averaging over such domains yields:

|Fm|2 = 4C2 sin2(θ + α)[µ2
2a + 4µ2

4b cos2 2πh

3
] (2.43)

Similarly for Γ6:

|Fm|2 = 2C2 cos2(θ + α)[µ2
2a + (µ

(1)
4b + µ

(2)
4b )2 cos2 2πh

3
] (2.44)

Case C As discussed later in Chapter 3, in the intermediate temperature phase (ITP) of

HoMnO3, we concluded that one of the R site must be in the Γ3 representation. The other site

can be in the same magnetic representation or may be found in one of the other five magnetic

representations. We will calculate |Fm|2 for all of these combinations. As we have measured

(0 0 l) reflections with l odd to distinguish between all possible combinations, we will outline

the calculations for these reflections only. For R(2a) in Γ3, the other site may be in Γ2, Γ4, or

Γ5. Then,

|Fm|2 = 4C2µ2
2a sin2 θ (2.45)

In the above case, the R(4b) site does not contribute to (0 0 l) reflections. On the other hand

if R(4b) is in Γ3 and the R(2a) is in Γ2, Γ4, or Γ5, then:

|Fm|2 = 16C2µ2
4b sin2 θ (2.46)

In this case the R(2a) site does not contribute to (0 0 l) reflections. If R(2a) is in Γ6 and

R(4b) is in Γ3 then for the configuration given in Table 2.8 we can write:

|Fm|2 = C2[3u2 cos2 θ + 16µ2
4b sin2 θ

+ 8
√

3uµ4b cos θ sin θ cos 2π(z2a − z4b)l]

(2.47)

However, a 180◦ rotation of the moments at the R(2a) site, while keeping the R(4b) moments

in the above configuration, introduces a “ − ” sign before the interference term i.e. the term

containing contributions from both sites. Therefore, averaging over such domains and 120◦

orientation domains yield:

|Fm|2 = 2C2(µ2
2a cos2 θ + 8µ2

4b sin2 θ) (2.48)
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In the similar way, |Fm|2 for the opposite combination i.e. R(2a) in Γ3 and R(4b) in Γ6 can

be calculated and yields:

|Fm|2 = 2C2[2µ2
2a sin2 θ + (µ

(1)
4b + µ

(2)
4b )2 cos2 θ] (2.49)

We have assumed equal population of all possible domains to derive the above two equations.

Now, in the LTP for HoMnO3, the R(4b) site was determined to be in the Γ1 representation

(See Chapter 3). We will consider all combinations with R(4b) in Γ1 and R(2a) in an other

representation. For (h 0 l) reflections with l odd.

(a) R(2a) is in any of the following representations Γ2, Γ4, Γ5 then:|Fm|2 is same as Eq. 2.32.

(b) R(2a) is in Γ3:

|Fm|2 = 4C2 sin2(θ + α)(µ2
2a + 4µ2

4b sin2 2πh

3
) (2.50)

(c)R(2a) is in Γ6:

|Fm|2 = C2[2µ2
2a cos2(θ + α) + 16µ2

4b sin2(θ + α) sin2 2πh

3
) (2.51)

Calculation of |Fm|2 for quadrupole resonance We have also measured the angular

dependence for the quadrupole resonance. For the moments in the c direction and for specular

reflections in σ → π
′

geometry we can write (See, Eq. 2.13)

fXRMS
E2 = −i cos 2θ sin θF

(1)
E2 + i(F

(3)
E2 − F

(1)
E2 )z3

3 sin3 θ

− iF
(3)
E2 z

3
3 cos2 θ sin θ

(2.52)

For moments in the c direction, z3
3 = z3 and hence the above equation can be simplified as

follows:

fXRMS
E2 = −iF (1)

E2 z3 sin θ[1 +B − sin2 θ(1 + 2B)] (2.53)

where B =
F

(3)
E2

F
(1)
E2

as sin2 θ = λ2l2

4c2
. The above equation becomes:

fXRMS
E2 = −iF (1)

E2 z3 sin θ[1 +B − λ2l2

4c2
(1 + 2B)] (2.54)
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Again assuming F
(1)
E2 is proportional to the magnetic moment, we can write:

|Fm|2quadrupole = C2|Fm|2dipole[1 +B − λ2l2

4c2
(1 + 2B)]2 (2.55)

where C is an arbitrary positive constant. For moments in the a-b plane and in an arbitrary

direction (as in Γ5 and Γ6), the algebra for |Fm|2quadrupole becomes complex because zn
1 6= z1 (n

integer) and can not be put into a simple form.

2.2 X-Ray Magnetic Circular Dichroism

X-ray magnetic circular dichroism (XMCD) is a measure of the difference between absorp-

tion coefficient (µc=µ
+−µ−), with the helicity of the incident circularly polarized x-rays paral-

lel (µ+) or anti-parallel (µ−) to the local magnetization direction of the absorbing material.[81]

The dichroic signal is proportional to the projection of magnetic moment along the beam di-

rection. Similar to XRMS, XMCD measurements are also performed at the absorption edges

of a element of interest, and therefore, this technique is also element specific. XMCD can be

used to determine element specific magnetization of ferrimagnetic and ferromagnetic materials.

Compared to conventional magnetization techniques such as SQUID measurements where the

signal is proportional to the bulk magnetization, XMCD signal is proportional to the magneti-

zation of a particular element (determined by the element’s absorption edge) within the bulk.

XMCD can also be used to separate orbital 〈Lz〉 and spin 〈Sz〉 contribution of a magnetic

moment through magneto-optical sum rules in some cases.[82, 83] It is primarily the elemental

and orbital specificity that makes XMCD a useful tool for study of magnetic materials.

2.2.1 Basic Theory of XMCD

The theory of XMCD and XRMS is very similar, given that the absorption is determined

by the imaginary part of the forward scattering. To leading order, the magnetization-sensitive

absorption is determined by the coupling:[84, 85]

Hint = −
∑

j

e

mc
~pj · ~A (2.56)
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Given a magnetic ion, the absorption coefficient for an 2L pole electric (e) transition is pro-

portional to

W e
EL =

4π

k

L
∑

M=−L

|ê · Y e
LM (k̂)|2we

LM (k) (2.57)

where k̂ and ê stands for the unit vector in the direction of photon momentum and the unit

polarization, respectively. Similar to XRMS, polarization properties depend on ê ·Y e
LM (k̂) term

in the above equation 2.57.

Since, XMCD is a measure of the difference between absorption coefficient (µc=µ
+ − µ−),

with the helicity of the incident circularly polarized x-rays parallel (µ+) or anti-parallel (µ−)

to the local magnetization direction of the absorbing material, the XMCD signal for dipole

and quadrupole can be written as:

µE1
c = WE1(k, ê

+) −WE1(k, ê
−)

=
6πN

k
[we

11 − we
1−1] cos θ

(2.58)

µE2
c = WE2(k, ê

+) −WE2(k, ê
−)

=
6π N

k
[{we

22 − we
2−2} sin2 θ + {we

21 − we
2−1} cos 2θ] cos θ

(2.59)

where cos θ = k̂ · ẑ, with k̂ and ẑ are the unit vectors in the direction of photon momentum and

local magnetization, respectively. N represents the number of atoms per unit volume and ê+,

ê− are the right and left handed circular polarization vectors, respectively. The contribution of

the local magnetization to the XMCD signal can be understood from the expression for we
LM

given below:

w
(e)
LM = 4π2e2

∑

n

[

L+ 1

L[(2L+ 1)!!]2

]

k2L ×

∣

∣

∣

∣

∣

∣

〈n|
∑

j

rL
j YLM |a〉

∣

∣

∣

∣

∣

∣

2

δ(Ea − En − h̄ω) (2.60)

Considering an excited state with a finite width i.e. δ → 2/πΓ(x2 + 1) where x = (En − Ea −

h̄ω)/(Γ/2) and assuming an exchange splitting ∆ (<< Γ) of the outer levels, described by

x± = x± ∆/Γ, the substitution we
LM = v

(e)
LM2/Γ(x2

+ + 1), yields:
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Sensitive to Ferromagnetism 

Iout(+) 

Iout(-) 

 XMCD ∞     I(+) - I(-) 
 

K 

B 

B 

K 
M 

M 

Circularly polarized 
X-Ray 

Figure 2.7 Schematic illustration of the XMCD measurement. The figure

shows measurement of XMCD by changing the magnetic field

direction. XMCD can also be measured by changing the helicity

of circularly polarized x-rays.

we
LM − we

L−M =
2
Γ

x2 + 1

(

(ve
LM − ve

L−M ) − ∆

Γ

2x

x2 + 1

)

(ve
LM − ve

L−M) (2.61)

The first term in Eq. 2.61 describes dependence of XMCD on the spin polarization of the final

state and the second term on the exchange splitting and is therefore sensitive to magnetism.

The sensitivity to ferromagnetism comes from the term cos θ = k̂ · ẑ term in Eq. 2.58 with k̂

and ẑ are the unit vectors in the direction of photon momentum and local magnetization.

2.2.2 Measurement Procedure

The most common method to obtain XMCD spectra is to measure the absorption by

monitoring the incoming I0 and transmitted (I) fluxes. The absorption in the sample is then

given by:

µ0t = ln

(

I0
I

)

(2.62)

The dichroism measurement is obtained by reversing the helicity or magnetization of the

sample and taking the difference between two measurements (µc = µ+ − µ−). The schematic

of detecting XMCD is shown in Fig. 2.7. The thickness, t, is a proportionality factor in µc and

can be removed by expressing dichroism as a ratio µc/µ0 where µ0 is the normal absorption.

A typical XMCD spectra for a thin layer of metallic Fe is shown in Fig. 2.8.[86]
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Figure 2.8 XMCD spectra demonstrated for a thin layer of metallic iron.

(A) Transmitted intensity of parylene substrate and substrate

with deposited sample. (B) Calculated absorption with back-

ground subtracted. (C) Absorption spectra and edge-jump

model curve along with integrated signal. After Ref. [86]
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Table 2.2 Symmetry elements of the little group G~k
. The notations used

are of the International Tables, where the elements are separated

into rotation and translation components, and the Jones faithful

representations. After Refs. [75, 76]

.

Element Rotation matrix IT notation Kovalev notation Jones symbol

gn R gn = {R | τ } gn = {hn | τ }

g1





1 0 0

0 1 0

0 0 1



 {E| 0 0 0} {h1 | 0 0 0} x, y, z

g6





1 1̄ 0

1 0 0

0 0 1



 {C+
6 | 0 0 .5} {h2 | 0 0 .5} x− y, x, z + 1

2

g2





0 1̄ 0

1 1̄ 0

0 0 1



 {C+
3 | 0 0 0} {h3 | 0 0 0} −y, x− y, z

g4





1̄ 0 0

0 1̄ 0

0 0 1



 {C2| 0 0 .5} {h4 | 0 0 .5} −x,−y, z + 1
2

g3





1̄ 1 0

1̄ 0 0

0 0 1



 {C−
3 | 0 0 0} {h5 | 0 0 0} −x+ y,−x, z

g5





0 1 0

1̄ 1 0

0 0 1



 {C−
6 | 0 0 .5} {h6 | 0 0 .5} y,−x+ y, z + 1

2

g9





1 0 0

1 1̄ 0

0 0 1



 {σv2| 0 0 .5} {h19 | 0 0 .5} x, x− y, z + 1
2

g10





0 1 0

1 0 0

0 0 1



 {σd3| 0 0 1} {h20 | 0 0 1} y, x, z + 1
1

g8





1̄ 1 0

0 1 0

0 0 1



 {σv1| 0 0 .5} {h21 | 0 0 .5} −x+ y, y, z + 1
2

g12





1̄ 0 0

1̄ 1 0

0 0 1



 {σd2| 0 0 1} {h22 | 0 0 1} −x,−x+ y, z + 1
1

g7





0 1̄ 0

1̄ 0 0

0 0 1



 {σv3| 0 0 .5} {h23 | 0 0 .5} −y,−x, z + 1
2

g11





1 1̄ 0

0 1̄ 0

0 0 1



 {σd1| 0 0 1} {h24 | 0 0 1} x− y,−y, z + 1
1
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Table 2.3 Characters of the permutation, axial and magnetic representa-

tions

Character h1 h2 h3 h4 h5 h6 h19 h20 h21 h22 h23 h24

χperm 2 0 2 0 2 0 0 2 0 2 0 2

χaxial 3 2 0 -1 0 2 -1 -1 -1 -1 -1 -1

χmag 6 0 0 0 0 0 0 -2 0 -2 0 -2

det(g) 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
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Table 2.4 Irreducible representations of the space group Gk = P63cm for
~k = 0 in Kovalev’s notation.

KV h1 h2 h3 h4 h5 h6 h19 h20 h21 h22 h23 h24

Γ1 1 1 1 1 1 1 1 1 1 1 1 1

Γ2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

Γ3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

Γ4 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

Γ5 I B1 -B2 -I -B1 B2 A C1 -C2 -A -C1 C2

Γ5 I -B1 -B2 I -B1 -B2 A -C1 -C2 A -C1 -C2

I=

(

1 0

0 1

)

A=

(

0 1

1 0

)

B1=

(

ω 0

0 ω⋆

)

B2=

(

ω⋆ 0

0 ω

)

C1=

(

0 ω

ω⋆ 0

)

C2=

(

0 ω⋆

ω 0

)
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Table 2.5 Projection of basis vectors along (1 0 0) from Γ3 for the R(2a)

site with X1 = (0 0 z) and X2 = (0 0 z+1/2). The last column

is the final result of the projection which shows that for R(2a)

site, and for Γ3, there is no component along the hexagonal a

direction.

Rn R ~φ1 D1⋆

3 det(R)
D1

3
⋆ ×Rn×

det(R) × ~φ1
gnX1

Sum of Basis Vectors

for Each Atom Type

R1





1 0 0

0 1 0

0 0 1









1

0

0



 1 1





1

0

0



 X1
For Atom

TypeX1

R2





1 1̄ 0

1 0 0

0 0 1









1

0

0



 −1 1





−1

−1

0



 X2





0

0

0





R3





0 1̄ 0

1 1̄ 0

0 0 1









1

0

0



 1 1





0

1

0



 X1
For Atom

TypeX2

R4





1̄ 0 0

0 1̄ 0

0 0 1









1

0

0



 −1 1





1

0

0



 X2





0

0

0





R5





1̄ 1 0

1̄ 0 0

0 0 1









1

0

0



 1 1





−1

−1

0



 X1

R6





0 1 0

1̄ 1 0

0 0 1









1

0

0



 −1 1





0

1

0



 X2

R7





1 0 0

1 1̄ 0

0 0 1









1

0

0



 1 −1





−1

−1

0



 X2

R8





0 1 0

1 0 0

0 0 1









1

0

0



 −1 −1





0

1

0



 X1

R9





1̄ 1 0

0 1 0

0 0 1









1

0

0



 1 −1





1

0

0



 X2

R10





1̄ 0 0

1̄ 1 0

0 0 1









1

0

0



 −1 −1





−1

−1

0



 X1

R11





0 1̄ 0

1̄ 0 0

0 0 1









1

0

0



 1 −1





0

1

0



 X2

R12





1 1̄ 0

0 1̄ 0

0 0 1









1

0

0



 −1 −1





1

0

0



 X1
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Table 2.6 Projection of basis vectors along (0 1 0) from Γ3 for the R(2a)

site with X1 = (0 0 z) and X2 = (0 0 z+1/2). The last column

is the final result of the projection which shows that for R(2a)

site, and for Γ3, there is no component along the hexagonal b

direction.

Rn R ~φ2 D1⋆

3 det(R)
D1

3
⋆ ×Rn×

det(R) × ~φ2
gnX1

Sum of Basis Vectors

for Each Atom Type

R1





1 0 0

0 1 0

0 0 1









0

1

0



 1 1





0

1

0



 X1
For Atom

TypeX1

R2





1 1̄ 0

1 0 0

0 0 1









0

1

0



 −1 1





1

0

0



 X2





0

0

0





R3





0 1̄ 0

1 1̄ 0

0 0 1









0

1

0



 1 1





−1

−1

0



 X1
For Atom

TypeX2

R4





1̄ 0 0

0 1̄ 0

0 0 1









0

1

0



 −1 1





0

1

0



 X2





0

0

0





R5





1̄ 1 0

1̄ 0 0

0 0 1









0

1

0



 1 1





1

0

0



 X1

R6





0 1 0

1̄ 1 0

0 0 1









0

1

0



 −1 1





−1

−1

0



 X2

R7





1 0 0

1 1̄ 0

0 0 1









0

1

0


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



0

1

0



 X2

R8




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







0

1

0


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



1

0

0


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R9





1̄ 1 0
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







0

1

0



 1 −1




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0


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R10




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







0

1

0


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



0

1

0



 X1

R11





0 1̄ 0

1̄ 0 0

0 0 1









0

1

0



 1 −1





1

0

0


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R12




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







1

0

0



 −1 −1




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−1

0



 X1
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Table 2.7 Projection of basis vectors along (0 0 1) from Γ3 for the R(2a)

site with X1 = (0 0 z) and X2 = (0 0 z+1/2). The last column is

the final result of the projection which shows that for R(2a) site,

and for Γ3, there is component along the hexagonal c direction

and the moments are aligned in antiparallel direction.

Rn R ~φ3 D1⋆

3 det(R)
D1

3
⋆ ×Rn×

det(R) × ~φ3
gnX1

Sum of Basis Vectors

for Each Atom Type

R1





1 0 0

0 1 0

0 0 1









0

0

1



 1 1





0

0

1



 X1
For Atom

TypeX1

R2





1 1̄ 0

1 0 0

0 0 1









0

0

1



 −1 1





0

0

−1



 X2





0

0

6





R3





0 1̄ 0

1 1̄ 0

0 0 1









0

0

1



 1 1





0

0

1



 X1
For Atom

TypeX2

R4




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0 1̄ 0
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







0
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

 −1 1





0

0
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
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


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0
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



R5




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







0

0

1



 1 1





0

0
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
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
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
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
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
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
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
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0
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
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



0

0
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

 X2
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


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
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
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
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
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 −1 −1




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
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0
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
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



1 1̄ 0
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


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
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1


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Table 2.8 The six possible magnetic representations and the corresponding

basis vectors of the crystallographic space group P63cm associ-

ated with a magnetic unit cell same as the crystallographic unit

cell. The atomic positions for rare-earths are given in brackets.

[z,+,−] depict z2a, +µc
2a, −µc

2a, and z4b, +µc
4b, −µc

4b for the

Wyckoff sites R(2a) and R(4b), respectively. z2a = 0.273 and

z4b = 0.231 for Ho(2a) and Ho(4b), respectively. The symbol [0]

labels no ordered magnetic moment at this site. The directions

of magnetic moments for the Γ5 and Γ6 magnetic representations

are denoted by [ex,ey,ez], where ex and ey are in the basal plane

forming a 120 degree angle between them and the ez vector is

parallel to the 6-fold axis. The condition for a particular reflec-

tion is determined for the present experimental geometry and a

dipole XRMS signal.

R(2a) R(4b) Magnetic Reflection

Magnetic

representation





0

0

z









0

0

z + 1
2











1
3
2
3

z













2
3
1
3

z













1
3
2
3

z + 1
2













2
3
1
3

z + 1
2







(0 0 l)

l odd

(h 0 l)

l odd

moments in c direction

Γ1 ≡ P63cm 0 0 + − − + No Yes

Γ2 ≡ P63c’m’ + + + + + + No No

Γ3 ≡ P63’cm’ + − + + − − Yes Yes

Γ4 ≡ P63’c’m 0 0 + − + − No No

moments in a-b plane

Γ5 (P63’) [u v 0] [u v 0] [p q 0] [r s 0] [r s 0] [p q 0] No No iff p=r and q=s

Γ6 (P63) [u v 0] [u v 0] [p q 0] [r s 0] [r s 0] [p q 0] Yes Yes
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CHAPTER 3. X-RAY RESONANT MAGNETIC SCATTERING OF

RMnO3 COMPOUNDS IN ZERO FIELD

3.1 Magnetic Ordering in HoMnO3 in Zero Field

3.1.1 Introduction

The last few years have seen a flurry of research activity in the field of multiferroic mag-

netoelectrics, compounds which are both magnetic and ferroelectric within the same phase.

The physics behind the coupling between ferroelectricity and magnetism is of fundamental

interest [9] and this phenomenon has been observed in several rare-earth (R) manganites in-

cluding hexagonal RMnO3[9, 51] and orthorhombic RMnO3 and RMn2O5[20, 22]. Hexagonal

HoMnO3 has been recently re-discovered as a multiferroic material. Below T = 875 K[31],

HoMnO3 is ferroelectric with P63cm symmetry and a polarization of PC = 5.6µCcm−2 along

the hexagonal c axis.[31] The variation of PC with temperature is small.[31] The Mn3+ mo-

ments order antiferromagnetically below the Néel temperature, TN ∼ 76 K.[9, 49] Additionally,

it has been proposed that the Ho3+ moments order antiferromagnetically below TSR ∼ 40 K,

coincident with a spin re-orientation of the Mn3+ moments within the a-b plane.[9, 47] Below

4.5 K there is a re-arrangement of the Ho3+ order and second spin re-orientation of the Mn3+

moments.[9, 47] Different types of magnetic ordering for Ho3+ have been proposed and different

transition temperatures have been claimed based on magnetoelectric measurements,[44] optical

second harmonic generation (SHG)[46, 87] and neutron diffraction experiments[41, 47, 48].

To resolve the controversies regarding the nature of magnetic ordering of Ho3+ below 40 K,

we performed x-ray resonant magnetic scattering (XRMS) studies of this compound. XRMS

is element specific allowing a direct determination of the magnetic order of the rare-earth R3+
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component, and is complementary to neutron scattering measurements. More specifically, in

neutron scattering experiments on a multicomponent magnetic system, a magnetic structure

must first be assumed and the ordered moments of the two sublattices are extracted from

intensities of a number of reflections. In the case of HoMnO3, the neutron magnetic signal is

dominated by Mn3+ moments since the Mn3+ carries a fully ordered moment and the Ho3+

contribution must be determined from a careful fitting process together with the Mn3+ contri-

bution. In this sense, an XRMS study of HoMnO3 is more reliable in determining the magnetic

structure of Ho3+ and the magnetic order parameter.

Magnetic structure determination is a pre-requisite to the understanding of any coupling

between ferroelectricity and magnetism. Lorenz et al.[51], for example, pointed out that the

coupling between the in plane magnetization of Mn3+ moments and the c axis polarization

is not allowed by symmetry. In contrast c axis magnetic moments can directly couple to

the polarization. Therefore, it is very important to know the moment direction of Ho3+ and

the magnetic symmetry in the ordered phase in order to understand any coupling between

ferroelectricity and magnetism.

3.1.2 Experimental Details

Single crystals of hexagonal RMnO3 (R = Ho, Er, and Dy) were grown at Ames Laboratory

by floating zone technique with the aid of an optical image furnace (Model FZ-T-4000-H-VI-

VPM-PC from Crystal Systems INC). High pure R2O3 oxides were dried at 950◦C in air for

12 hours before weighing. The starting materials (R2O3 and Mn2O3) were weighted after

pretreatment and mixed in an agate mortar. Then the mixture was fired at 900◦C, 1000◦C,

1100◦C, and 1150◦C, respectively, with intermediate grinding. The well fired powder was then

compressed hydrostatically in a rubber tube into rods with 5 mm diameter and 80 mm length.

The rods were then heated in air at 1250◦C for 24 hours. The crystal growths of HoMnO3 and

ErMnO3 were performed in flowing air. The growth rate was optimized to be 3 mm/h while

the lower and upper shafts of image furnace rotate in opposite direction during the growth.

The growth of DyMnO3 was performed in flowing argon. The growth rate was chosen to be 4
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mm/h. A lower growth rate leads to the crystallization of orthorhombic phase, while a faster

growth leads to poor crystallinity of grown crystals. Growth of DyMnO3 in flowing air always

results in orthorhombic DyMnO3 regardless of the growth rate.

For the XRMS measurements, a single crystal of approximate dimension of 8×4×1 mm3 was

selected with a surface polished perpendicular to the c axis for HoMnO3. The XRMS experi-

ments were performed on the 6ID-B beamline in the MUCAT sector at the Advanced Photon

Source at the Ho LIII resonance (E = 8.071 keV for Ho). The incident radiation was linearly po-

larized perpendicular to the vertical scattering plane (σ-polarized) with a spatial cross-section

of 1 mm (horizontal) × 0.2 mm (vertical). In this configuration, the resonant magnetic scat-

tering rotates the plane of linear polarization into the scattering plane (π
′

-polarization). In

contrast, charge scattering does not change the polarization of the scattered photons (σ-σ
′

scattering). A Pyrolytic graphite PG (0 0 6) analyzer was used as a polarization and energy

analyzer to suppress the charge as well as fluorescence background relative to the magnetic

scattering signal.

For the hexagonal RMnO3 compounds with space group P63cm, and lattice constants

a ≈ 6.12 Å and c ≈ 11.4 Å, reciprocal lattice points (h 0 l) with l even are allowed charge

reflections. Based on our calculations (see Table 2.8), we searched for (0 0 l) and (h 0 l)1

magnetic reflections with l odd to distinguish between the different proposed models for the

magnetic order of Ho3+. Thus, the sample was mounted at the end of the cold-finger of

a displex cryogenic refrigerator with the a⋆-c⋆ reciprocal lattice plane coincident with the

scattering plane. Although these reflections are forbidden for charge reflections they can be

strongly contaminated by multiple charge scattering. However, the intensity of the multiple

scattering is highly sensitive to both the incident beam energy and the azimuth angle ψ.

We were able to minimize multiple scattering contribution at the resonant energy through a

judicious choice of the azimuth angle.[88]

1For off-specular reflections, positive (negative) h in (h 0 l) reflections implies outgoing angle (the angle
between the outgoing x-rays and sample surface) is greater (less) than that of the incident angle (the angle
between incoming x-rays and sample surface).
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3.1.3 Proposed Magnetic Structures

Since the magnetic unit cell is the same as the chemical unit cell[41] we can describe

the different magnetic structures with magnetic representations assuming dominant second

order terms in the Hamiltonian.[73] The different magnetic representations allowed for the

crystallographic space group P63cm are shown Table 2.8 and the resulting magnetic structure

factors (related to the measured intensities) are detailed in the section 2.1.3.3. Prior to this

work, there were three proposed models for the Ho3+ order. We will briefly discuss the different

models and their consequences for our XRMS measurements:

Model 1: Sugie et al.[44] proposed the magnetic representation Γ6 from symmetry con-

sideration of magnetoelectric measurements. The magnetic ordering temperature of Ho3+ is

below 5 K and the Ho3+ moments are non-collinearly aligned in the a-b plane. For this case,

the structure factor analysis in Chapter 2 concludes that we should observe less intensity for

(h 0 l) reflections compared to (h 0 l) with l odd.

Model 2: Muñoz et al.[41] proposed the magnetic representation Γ2 for the Mn3+ order

in the temperature range 76K>T>44.6 K from their neutron powder diffraction study. They

proposed a spin reorientation of Mn3+ at 44.6 K and the representation Γ1 for the Mn3+ order

in the temperature range 44.6 K>T>1.7 K. Furthermore, they proposed the same magnetic

representation Γ1 for the Ho3+ order in the temperature range 24.6 K>T>1.7 K. According to

this model, at low temperature (T ≤ 24.6 K), only Ho3+ moments at the (4b) Wyckoff site are

ordered collinearly along the c direction, and the Ho3+ moments at the (2a) Wyckoff site are

in a paramagnetic state. In this representation, the Ho(4b) moments are antiferromagnetically

correlated in c direction as well as in the a-b plane. If this model for the Ho3+ order is correct,

then we should observe zero intensity for (0 0 l) reflections with l odd and non-zero intensity

for (h 0 l) reflections with l odd and h 6= 3n, n integer (see Table 2.8).

Model 3: Lonkai et al.[9, 46, 47, 87] proposed the magnetic representation Γ4 for the Mn3+

order between TN = 76 K and TSR = 37 K based on neutron powder diffraction and optical sec-

ond harmonic generation (SHG). For 37 K>T>5 K they proposed the magnetic representation

Γ3 for both the Mn3+ and Ho3+ moments. According to their measurements, Mn3+ undergoes
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another spin reorientation below 5 K and Ho3+ re-orders according to the representation Γ1.

Recently, Brown and Chatterji[48] also proposed the magnetic representation Γ4 for Mn3+ or-

der above the spin reorientation at TSR from their neutron diffraction and polarimetric study.

In the temperature range 37K>T>2 K, they proposed the magnetic representation Γ3 for both

the Mn3+ and the Ho3+ order and concluded that the Ho(2a) and the Ho(4b) sites carry un-

equal moments below 37 K and there is no phase transition below 5 K. However, their results

do not show clearly the transition temperature for the Ho3+ order and the developing order

parameter over the full temperature range. If the model proposed by Lonkai et al.[9, 46, 47, 87]

and by Brown and Chatterji[48] is correct, then below TSR = 37 K, we should observe non-zero

magnetic intensity for (0 0 l) reflections with l odd.

As mentioned above, neutron diffraction is not particularly sensitive to the Ho3+ sublattice

as the magnetic signal is dominated by Mn3+ moments. The ordered component of Ho3+

moments is small compared to the Mn3+ moments although the saturated moment of Ho3+

is quite large (∼ 10 µB). Further, SHG is unable to distinguish between different magnetic

sublattices. This motivated an element specific x-ray resonant magnetic scattering (XRMS) to

find the correct magnetic representation for the Ho3+ order.

3.1.4 Experimental Results and Discussion

Observation of magnetic resonant scattering and characterization of the tran-

sition temperatures

Figure 3.1 shows the magnetic susceptibility of a HoMnO3 single crystal, measured using a

quantum design superconducting quantum interference device (SQUID) magnetometer. The

inset to Fig. 3.1 shows kinks in the magnetic susceptibility at 40 and 4.5 K, respectively. Mag-

netic susceptibility measured by Lorenz et al.[51] on a flux grown sample shows kink at 33 and

4.5 K, respectively. Although the shape of the kink is very similar, the transition tempera-

tures are slightly different between flux grown and floating zone grown samples. The samples

grown using floating zone by Vajk et al.[89] show very similar transition temperatures with

the samples used in the present work. The difference observed in transition temperatures may
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Figure 3.1 Magnetic susceptibility M/H of the HoMnO3 single crystal.

The temperature dependence of the susceptibility was measured

on heating the zero-field cooled sample in a field of 100 Oe ap-

plied parallel to the c axes. Inset shows details of the magnetic

susceptibility near the transition temperatures of the Ho3+ or-

der (upper two insets) and the Mn3+ order (lower inset). No

signature in the M/H data could be found at the ordering tem-

perature of Mn3+.
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Figure 3.2 Specific heat of HoMnO3 at zero magnetic field. The λ-type

anomaly at TN is followed by two additional peaks at T SR and

THo, enlarged in the lower right and upper left insets, respec-

tively. After Ref. [90]
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Figure 3.3 Energy scans of the magnetic (0 0 11) reflection and of the

fluorescence signal through the Ho LIII absorption edge. The

energy scan of the (0 0 11) was measured with 100 % beam

transmission (t = 100%). The dashed line indicates the Ho LIII

absorption edge as determined from the inflection point of the

observed fluorescence intensity measured at T = 15 K.
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Figure 3.4 (a) Temperature dependence of the peak intensity of the dipole

resonance for the (0 0 9) reflection with different attenuation of

the incident beam. The open symbols are the measured inte-
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of the peak intensity of the dipole resonance for the (1 0 9) re-
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after binning for clarity.
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76

be due internal stress and/or nonstoichiometric oxygen content mentioned by Vajk et al.[89]

Specific heat data measured by Lorenz et al. [90] on a flux grown sample shown in Fig. 3.2

show phase transitions at 76, 33 and 4.5 K respectively. In the following, we specify the high

temperature phase (HTP) between 40≤ T ≤76 K, intermediate temperature phase (ITP)

between 40≥ T ≥4.5 K and low temperature phase (LTP) below 4.5 K, respectively.

With the sample oriented so that the a⋆-c⋆ reciprocal plane was coincident with the scatter-

ing plane, magnetic intensity was found at the position (0 0 11) which is nominally forbidden

for charge scattering. To confirm the resonant behavior of this feature, we performed energy

scans through the Ho LIII absorption from 6 K to 85 K (which is above the Néel temperature

of the Mn3+ order) and observed two resonance peaks, one below the absorption edge and one

above the absorption edge as shown in Fig. 3.3. We interpret these peaks as quadrupole and

dipole resonances because the quadrupole resonance (E2, from the 2p-to-4f states) generally

appears below the absorption edge whereas the dipole resonance (E1, from the 2p-to-5d states)

appears above the absorption edge.[60] No resonant signal could be found above TSR.

Generally, sample heating by the intense incident x-ray beam is very strong for insulating

materials like HoMnO3, particularly at low temperatures. Therefore, to characterize the beam

heating effect and to determine the transition temperatures of the Ho3+ order, we measured the

peak intensity of dipole resonance for the (0 0 9) reflection with different attenuators as shown

in Fig. 3.4(a). It is clear from Fig. 3.4(a) that significant beam heating (∼ 2 K) is present

even at T = 40 K with transmission t = 100%. The beam heating effect becomes severe at

temperature below 15 K and significant attenuation of the incident beam is necessary to reduce

the beam heating. Since the normalized peak intensity and characteristic temperatures (40 K

and 4.5 K) remain almost same using attenuators with transmissions t of ∼1.8% and ∼ 0.5%,

other temperature dependent measurements were performed using t ∼1.8%.2

Generally, the integrated intensity of the scattering should be measured for this study.

However, in this instance, measurements of the peak intensity suffice since both the peak

position and full width half maximum remain constant over the investigated temperature

2Since the energy scan shown in Fig. 3.3 was measured with t=100%, the actual sample temperature could
be slightly higher
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range. Nevertheless, we did measure θ-scans (rocking curves) at selected temperatures and

determined the integrated intensity for both the dipole and quadrupole resonances by fitting

these θ-scans with a Lorentzian function. The measurement of the dipole resonance intensity

using an attenuator with a transmission of ∼1.8%, as shown in Fig. 3.4(a), clearly indicates

that the integrated intensity and peak intensity differ simply by a scale factor and, therefore,

justifies measuring the peak intensity for temperature dependent studies. Figure 3.4(b) shows

the temperature dependence of the dipole resonance for another characteristic reflection (1 0 9)

showing the same transition temperatures.

The temperature dependence of the quadrupole resonance for both the (0 0 9) and (1 0 9)

reflections is shown in Fig. 3.5 and is similar to that found for the dipole resonant intensity

in Fig. 3.4. Below 40 K, both the dipole and quadrupole intensities increase gradually with

decreasing temperature. The observation of the quadrupole intensity below 40 K clearly proves

that the Ho3+ moments order magnetically just below 40 K because the quadrupole resonance is

directly related to the ordered 4f magnetic moment of Ho3+.[60] Furthermore, the temperature

of the onset of magnetic Ho3+ order agrees well with the kink in magnetization data as shown

in Fig. 3.1 and the Mn3+ spin re-orientation transition as found by Vajk et al.[49] Below 4.5 K

the intensities of specular reflections (0 0 9) and (0 0 5) decrease but the intensities of the

off-specular reflections, (1 0 9) and (1 0 7), increase dramatically. Therefore, the temperature

dependent measurements indicate that the Ho3+ moments order antiferromagnetically below

40 K and signal a change of the magnetic structure below 4.5 K.

Magnetic structure in the intermediate temperature phase (40 K ≥T≥ 4.5 K)

We now turn to the analysis of the magnetic structure in the intermediate temperature range

from 40 K down to 4.5 K (intermediate temperature phase, ITP). In order to determine the

magnetic representation we must look into the details of six magnetic representations that

are possible for the crystallographic space group P63cm that are listed in the Table 2.8. The

moment directions are denoted by +/− for moments aligned along the hexagonal c direction,

and with the basis vectors for moments lying in the a-b plane.

We see from Table 2.8 that the magnetic moments are aligned either along the hexagonal
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c direction (Γ1, Γ2, Γ3, Γ4) or in the a-b plane (Γ5, Γ6). It should be noted that from the

anisotropic magnetic susceptibility[90, 91] data, the moment direction of Ho3+ is not clear. As

a first attempt to determine the moment direction, we measured the off-specular (3 0 9) and

(3 0 9) reflections. Except for the angular factors, the expression for the magnetic structure

factor (|Fm|2) is same for these two reflections (see section 2.1.3.3). It is the angular dependence

in the structure factor that provides strong sensitivity to the moment direction. For the dipole

resonance fXRMS
E1 ∝ kf ·µ,[64, 80] in the σ → π

′

channel, where kf and µ are the wave vector

of the scattered photons and the magnetic moment, respectively. Therefore, for moments

aligned along the c direction the magnetic intensity I ∝ |Fm|2 ∝ sin2 (θ + α) whereas for the

moments in the a-b plane I ∝ |Fm|2 ∝ cos2 (θ + α). Here, α is the angle that the scattering

vector Q(=kf − ki) makes with the crystallographic c direction perpendicular to the surface

of the sample. α is positive (negative) for larger (smaller) angles for the outgoing beam with

respect to the sample surface. The calculated ratio is I(3 0 9)

I(3 0 9)
= 86.3 and 0.32, for moments

along the c direction and in the a-b plane, respectively. The experimentally observed ratio is

76 ± 14. Therefore, the magnetic moments are primarily aligned in the hexagonal c direction.

One should note that both Ho sites may not be in the same magnetic representation.

However, one of the sites must be in the Γ3 representation because only this representation

yields non-zero intensity for (0 0 l) reflections with l odd and carries moments in c direction

(see Table 2.8). Therefore, either both Ho sites are ordered magnetically according to the

representation Γ3 or according to a combination of magnetic representations Γ3 and any of the

other magnetic representations.

We will first discuss the possibility that both Ho sites are in the magnetic representation

Γ3. The intensity for a particular reflection can be written as:

I = SAL|Fm|2 (3.1)

where S is arbitrary scaling factor, A = sin(θ+α)
sin θ cos α is the absorption correction and L = 1

sin 2θ

is the Lorentz factor. |Fm| is the modulus of the magnetic structure factor, calculated for the

different magnetic representations in section 2.1.3.3. For specular (0 0 l) reflections, α = 0 and

Eq. 3.1 becomes,
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Idipole = S tan θ[µ2
2a + 4µ2

4b + 4µ2aµ4b cos{2π(z2a − z4b)l}] (3.2)

Additionally,

sin2 θ

sin 2θ
=

1

2
tan θ =

λ

2

l√
4c2 − λ2l2

(3.3)

So, Eq. (2) can be re-written as:

Idipole =
S′l√

4c2 − λ2l2
[r2 + 4 + 4r cos{2π(z2a − z4b)l}] (3.4)

where S′ is the arbitrary scaling factor, λ is the x-ray wavelength, z2a = 0.273, z4b = 0.231[41]

are the z positions of the Ho3+ ions, and r (= µ2a

µ4b
) is the ratio between the Ho3+ moments

at the (2a) and (4b) Wyckoff sites. We note that there are two free parameters in Eq. 3.4, S′

and r. Similarly, for the quadrupole resonance we can write (see Eq. 2.55)

Iquadrupole = S′′Idipole[1 +B − λ2l2

4c2
(1 + 2B)]2 (3.5)

S′′ is again an arbitrary scaling factor and B (=
F

(3)
E2

F
(1)
E2

) is the ratio of the coefficients in the

quadrupole resonance amplitude.[64] In addition to the parameters S′′ and r, Eq. 3.5 has one

more free parameter B.

The dipolar and quadrupolar angular dependence at 12 K was fit with Eqs. 3.4 & 3.5, and

are shown in Figs. 3.6 & 3.7, respectively. The best fit of the data correspond to r = −2± 0.5

for both the dipole and quadrupole resonance at 12 K, which is consistent with recent neutron

data.[48] We obtained B = − 0.06(5) for the quadrupole resonance, at 12 K. We note here

that the value of the parameter B differs by an order of magnitude from the expected one-

electron calculations and the sign is also different.[69] Gibbs et al.[61] also concluded that one

electron calculations are not sufficient for quantitative comparison with the experimentally fit

parameter values obtained from the resonance enhancements in Ho metal. More sophisticated

calculations of the electronic structures are required for comparison.

Though the fits are not sensitive to small changes in the ratio r, we can conclude that

both the Ho(2a) and Ho(4b) sites carry an ordered magnetic moment (the curve with r=0

corresponds to a moment carried by either Ho(2a) or Ho(4b)) and the moment size at the
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two sites are unequal (e. g. r=−1, corresponds to equal moment size but antiferromagnetic

correlations within the plane).

If one of the Ho3+ sites belongs to Γ3 and the other site is in one of the other representations

(Γ1, Γ2, Γ4, Γ5), then the Ho3+ moments in the other site do not contribute to the intensity

of (0 0 l) reflections according to Table 2.8. Thus,

Idipole =
Sl√

4c2 − λ2l2
(3.6)

which corresponds to Eq. 3.4 with r=0 and can not reproduce the observed intensity for small

angles for dipolar angular dependence. For the quadrupole resonance Eq. 3.5 becomes,

Iquadrupole = Idipole(r = 0)[1 +B − λ2l2

4c2
(1 + 2B)]2 (3.7)

The quadrupolar angular dependence was fit with the above equation with two free parameters,

S and B. The best fit curve, shown in Fig. 3.7 with B = − 0.4, does not reproduce the

observed angular dependence of the intensity. Therefore, the combination of Γ3 with any of

the representations (Γ1, Γ2, Γ4, Γ5) can not explain the observed angular dependence.

On the other hand if one of the Ho3+ sites is in Γ3, and the other is in Γ6, then the calculated

intensity for dipolar resonance is proportional to D tan θ + E cot θ where D and E are two

arbitrary positive constants (we assume an equal population of possible magnetic domains[48]).

While the tan θ term comes from the product of the Lorentz factor (L= 1
sin 2θ ) and the angular

form factor (sin2 θ) for moments along the c direction (as in the magnetic representation Γ3),

the cot θ term comes from the product of L and the angular form factor (cos2 θ) for moments

in the a-b plane (as in the magnetic representation Γ6)[see Eqs. 2.48 & 2.49]. Since the E cot θ

term would add even more intensity for small angles to the r = 0 curve (S tan θ), we can not

reproduce the observed intensity for small angles. For the quadrupole resonance and for such

a combination of magnetic representations, the equation for calculated intensity is much more

complex and contains more than two free parameters. Therefore, we will rely on the angular

dependence of dipole resonance to exclude the combination of Γ3 and Γ6 in the ITP.

In summary, measurements of off-specular reflections confirm that magnetic moments are

primarily along the c direction. The observed angular dependence ensures that the both Ho
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sites are in the same magnetic representation Γ3 in the ITP. At 12 K, the ratio between

the magnetic moments of the Ho(2a) and Ho(4b) Wyckoff site is ∼ −2. The ‘−’ implies that

moments on the Ho(2a) site are antiferromagnetically aligned with the moments on the Ho(4b)

site in the a-b plane. The resulting magnetic structure is shown in Fig. 3.8(b).

Temperature dependence of the magnetic moment in the intermediate temper-

ature phase

Although, the dipole intensity vanishes above 40 K, there is a discontinuity in the dipole

resonance intensity and a small, but observable, discontinuity in the quadrupole intensity near

40 K, as evident from Figs. 3.4 (a) & 3.5 (a). Below 40 K, we see a gradual increase with

decreasing temperatures in the ITP.

The temperature dependence of magnetic moments at both Ho sites can be derived from

the temperature dependence of a pair of reflections, (0 0 9) and (1 0 9). We will first briefly

outline the procedure for obtaining the temperature dependence of magnetic moments. For

the magnetic representation Γ3, we can write:

I(0 0 9)(T )

I(1 0 9)(T )
= Sf [r(T )] (3.8)

where S is a scaling factor and r is the ratio of magnetic moments at the two Ho sites. The

scaling factor, S, can be determined since r is known at 6 K from our angular dependent

measurements. Hence, the temperature dependence of the ratio of magnetic moments [r(T)]

can be determined. Again,

I(0 0 9)(T ) = Kµ2
4bf [r(T )] (3.9)

Therefore,

µ4b(T ) = Cf [r(T ), I(0 0 9)(T )]

µ2a(T ) = r(T )µ4b(T )

(3.10)

where K and C are constants that can not be determined because the absolute value of the

magnetic moment is unknown at any temperature. However, the normalized temperature

dependence [ µ4b(T )
µ4b(6K) ] and [ µ2a(T )

µ4b(6K) ] can be determined since r(T) is known at 6 K.
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Figure 3.6 Observed intensity for the dipole resonance for (0 0 l) reflections

at 12 K and 2 K. The intensities at 2 K have been scaled by a

factor of 1.1 to compare with the intensities at 12 K. Solid and

dashed lines represent fits based on Eq. 3.4 with different r (=
µ2a

µ4b
) values assuming the magnetic representation Γ3.
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Figure 3.7 Observed intensity for quadrupole resonance for the (0 0 l) re-

flections at 12 K and 2 K. The intensities at 2 K have been scaled
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and dashed lines represent fits based on Eq. 3.5 with different

r (= µ2a

µ4b
) values assuming the magnetic representation Γ3. We

also show the fitting results for the combination of magnetic

representations as described in the text.
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Figure 3.8 Magnetic structure of Ho3+ moments at different temperature

range. (a) Above T > 40 K, the Ho3+ moments are in a param-

agnetic state. (b) and (c) Magnetic structure of Ho3+ moments

in the intermediate temperature phase (ITP) and in the low

temperature phase (LTP), respectively.
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The temperature dependence of Ho3+ moments in the ITP shown in Fig. 3.9 is unusual,

but can be explained with reference to other systems such as Nd2BaNiO5 and Nd2CuO4, with

ground state quasidoublet crystal field levels, split by an exchange field.[92, 93, 94] The non-

Kramers Ho3+ ions in HoMnO3 are at positions of trigonal symmetry which typically leads

to singlets with very small zero-field splitting, forming a quasidoublet.[95, 96] Indeed, crystal

field excitations in neutron scattering experiments below 40 K [49, 97] indicate a splitting of

this quasidoublet which likely originates from the exchange interaction between Mn3+ and

Ho3+. Since the observed ordered magnetic moment of Mn3+ remains almost constant below

40 K [47], we can assume the crystal field splitting of the ground state, ∆eff , is constant with

temperature as well. If we assume an effective two level system with a splitting ∆eff , we can

write[92, 94]:

µ(T ) = µ(0) tanh
∆eff

2kT
(3.11)

where µ(T ) and µ(0) are the magnetic moments at the temperature T and 0 K, respectively.

The fitting of the temperature dependence of the magnetic moments shown in Fig. 3.9 yields

∆
(2a)
eff = (1.4±0.2) meV and ∆

(4b)
eff = (1.2±0.2) meV for the Ho (2a) and (4b) sites, respectively,

consistent with the reported low-energy crystal electric field transition of 1.5 meV observed in

inelastic neutron measurements.[49, 97] In the neutron scattering measurements, this excitation

appears at temperatures below the reorientation of the Mn3+ moments and appearance of the

ITP.[98] One possible origin of the exchange field from Mn3+, and the consequent splitting

of quasidoublet ground state by ∼ 1.5 meV, is the anisotropic exchange interaction between

Ho3+ and Mn3+.[99] Since, no magnetic ordering of Ho3+ could be found above the ITP, we

speculate that the exchange interaction becomes finite only below the reorientation of the

Mn3+ moments with the change of magnetic symmetry of Mn3+ from Γ4 to Γ3.

The Magnetic structure of Ho3+ in the low temperature magnetic phase (T≤ 4.5 K)

We now turn to our investigation of the magnetic structure below 4.5 K (low temperature

phase, LTP), which is considerably more complex. Similar to our approach for the interme-

diate temperature phase (ITP), we measured the off-specular reflections (2 0 9) and (2 0 9)
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Figure 3.9 Temperature dependence of the magnetic moments derived

from the quadrupole intensities of (0 0 9) and (1 0 9) reflec-

tions. Solid circles (blue) represent the moment size in the ITP

according to representation Γ3. The solid lines (black) in the

ITP are fits using Eq. 3.11. (a) The open squares (olive) repre-

sent the Ho(4b) moment in the LTP (Γ1). Below 4.5 K the open

circles (blue) in (a) and (b) represent the magnetic moment at

the Ho(2a) and (4b) sites if the low temperature phase would

consist only of Γ3 (same as ITP). The solid squares (blue) in

(b) are the moment size according to angular dependent mea-

surements at selected temperatures.
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at 2 K to determine the moment direction. The calculated ratio I(2 0 9)

I(2 0 9)
= 15.5 and 0.4 for

the moments along the c direction and in the a-b plane, respectively. The experimentally

observed ratio is 22 ± 7. The relatively large error bar in the experimentally observed ratio is

due to the much smaller integrated intensity of the (2 0 9) reflection compared to the (2 0 9)

reflection. Therefore, the magnetic moments are, again, primarily aligned along the hexagonal

c direction allowing only magnetic representations Γ1 and Γ3 (see Table 2.8) in the LTP. From

Fig. 3.4 & 3.5, we notice that, below 4.5 K, the intensity of the (0 0 9) magnetic reflection

rapidly decreases while the intensity of (1 0 9) increases strongly signalling a transition from

Γ3 to Γ1. An interesting consequence of this transition is that Ho(2a) site cannot order mag-

netically according to the representation Γ1. The magnetic structure in this LTP is shown in

Fig. 3.8(c). The finite intensity of the (0 0 9) reflection below 4.5 K is likely due to residual

beam heating effects although we can not exclude a mixed Γ3/Γ1 phase, as discussed in detail

below.

The magnetic representation Γ3 can contributes to both (0 0 l) and (h 0 l) reflections

whereas Γ1 allows intensity only for the (h 0 l) reflections with l odd. Therefore, a non-zero

intensity for (0 0 l) reflections with l odd implies that at least some portion of the sample

remains in Γ3. The angular dependent measurement on a series of (0 0 l) reflections at 2 K

(see Fig. 3.6 & 3.7) yields the same moment ratio (r ∼ −2) as that of ITP at 12 K. With the

same moment ratio as that of ITP, the decreasing intensity of (0 0 9) and (0 0 5) reflections

implies a decreasing ‘ordered moment’3 in Γ3. However, if the magnetic phase consists only of

Γ3, we also expect a decrease in the intensity of the (1 0 9) and (1 0 7) reflections, similar to the

(0 0 9) reflection below 4.5 K (see Eq. 2.34). Instead, we see a rapid increase of intensity. As we

mentioned before, other than Γ3, only Γ1 can yield intensity at the (1 0 9) reflection. Therefore,

the increase of intensity for the (1 0 9) and (1 0 7) reflections can only be explained by the

co-existence of a new low temperature magnetic phase (LTP) in the magnetic representation Γ1

with the remaining ITP in the magnetic representation Γ3. Inspections of the low-temperature

regions of Figs. 3.4(a) & 3.5(a) show that while the intensity of (0 0 9) reflection rapidly

3The term ‘ordered moment’ implies a product of volume fraction and the size of ordered magnetic moment
for a particular representation.
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decreases below 4.5 K, it does not disappear. This opens the possibility of a mixed phase with

both Γ3 and Γ1 representations below 4.5 K. Phase co-existence between different magnetic

phases has been observed in perovskite manganites, RMnO3[100] but only over a temperature

range of ∼ 1 K and was attributed to internal stress due to lattice mismatch between magnetic

phases. A similar mechanism is possible for HoMnO3. However, measurements of the intensity

of the (0 0 9) reflection in this low temperature region, while varying the incident beam

attenuation, reveals the presence of residual beam heating effects, and it is likely that the

saturation of the scattering signals and hence, the phase co-existence arises from this local

beam heating effect.

Temperature dependence of the magnetic moment in the low temperature

phase

The temperature dependence of magnetic moments at both Ho sites can also be derived

from the (0 0 9) and (1 0 9) reflections, or from a single reflection, assuming one of the possible

magnetic representations mentioned above. Through the temperature dependence of magnetic

moments, we will justify that a phase transition from the Γ3 to the Γ1 magnetic representation

is necessary to explain the temperature dependence of both (0 0 9) and (1 0 9) reflections as

well as the angular dependent measurements.

For the time being we assume that, below 4.5 K, the magnetic representation remains Γ3

for moments at both Ho sites. The normalized values of µ4b and µ2a can be obtained from the

intensity of (0 0 9) and (1 0 9) reflections using the same procedure as for the ITP. The results

are illustrated in Fig. 3.9 by the open circles (blue). However, the ratio r between the magnetic

moments on both Ho sites would have to change dramatically from negative to positive values

as indicated by a change of sign for the magnetic moment at the µ4b site in Fig. 3.9(a). The

change of sign of r corresponds to a change in the correlation between two sites in the a-b

plane from antiferromagnetic to ferromagnetic. This is in contradiction to the value of r ∼ −2

obtained from a series of (0 0 l) reflections. Figures 3.6 & 3.7 show the angular dependent

measurements for both dipole and quadrupole resonances. It can be easily seen that the ratio

of magnetic moments, r = −2 at 2 K, is the same as that found at 6 K and 12 K. Hence, the
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presumption that the magnetic phase consists only of Γ3 can not be correct.

In the following, we will analyze the data by assuming a phase co-existence between ITP

with magnetic representation Γ3 and a new LTP with magnetic representation Γ1. Mag-

netic representation Γ1 does not allow an ordered magnetic moment at the Ho(2a) site (see

Table 2.8). The temperature dependence of the magnetic moments in the Γ3 magnetic repre-

sentation below 4.5 K can be obtained from the temperature dependence of (0 0 9) reflection

and, using the constant value of r, (see Eq. 3.10) it is shown by the solid circles (blue) in

Fig. 3.9. The decreasing ordered moment merely reflects the decreasing intensity of the (0 0 9)

reflection and is consistent with the result for the ordered moment determined from the series

of (0 0 l) reflections as shown by the solid (blue) squares.

The open (olive) squares in Fig. 3.9(a) represent the calculated temperature dependence of

the Ho(4b) magnetic moments in the Γ1 magnetic representation extracted from the intensity

of (1 0 9) reflection after subtracting the contribution to this reflection from the moments

ordered in the Γ3 magnetic representation. The intensity of (1 0 9) reflection after subtraction

is directly proportional to µ2
4b (see Eq. 2.32) for the Γ1 magnetic representation and, thus, the

temperature dependence of the magnetic moment can be obtained.

In summary, below 4.5 K the ordered magnetic moment in the ITP (magnetic representation

Γ3) decreases strongly with decreasing temperatures whereas the ordered moment at the Ho(4b)

site increases rapidly in the LTP (magnetic representation Γ1).

3.1.5 Discussion

The different magnetic structures for Ho3+ moments, together with their characteristic

temperatures, are summarized in Fig. 3.8. As we mentioned above, the Ho(4b) moments are

ordered according to Γ1 in the LTP and the Ho(2a) moments can not order according to the

magnetic representation Γ1 (see Table 2.8). An intriguing question is what happens to the

Ho(2a) moments? Are the Ho(2a) moments (a) disordered due to frustration, for example,(b)

suppressed due to the formation of a singlet ground state or (c) decoupled from the Ho(4b)

moments and order according to some different magnetic representation? We can exclude the
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Figure 3.10 Arrangement of Ho3+ moments in the a-b plane for the

low-temperature phase (LTP). The Ho(4b) moments are or-

dered according to the magnetic representation Γ1. Ho(2a)

moments are frustrated in this LTP assuming a finite size

of magnetic moment. The green (Ho(2a)-Ho(4b)) and red

(Ho(4b)-Ho(4b)) lines indicate two different bond lengths.

ordering of Ho(2a) moments in the Γ2, Γ3, Γ5 and Γ6 magnetic representations for the following

reasons. If the Ho(2a) moments are ordered according to Γ3 or Γ6 magnetic representations,

then the temperature dependence of the (0 0 9) and (1 0 9) reflections should be similar i.e.

either both will increase or decrease, as can be easily seen from Eq.’s 2.50 and 2.51. On the

other hand if the Ho(2a) moments are ordered according to Γ2 or Γ5, then there should be a

net ferromagnetic response along the hexagonal c direction or in the a-b plane (see Table 2.8)

which has not been observed.[9, 44, 91] Similar to Γ1, symmetry precludes magnetic order at

the Ho(2a) site according to Γ4 (see Table 2.8). The remaining possibilities are: The Ho(2a)

moments order with another propagation vector or (a) remain disordered down to 2 K or (b)

the moment size decreased to zero due to a singlet ground state. The first possibility can be

safely excluded from the neutron powder diffraction measurements by Muñoz et al.[41], since

only reflections corresponding to a magnetic unit cell which is the same as the chemical unit

were observed. Therefore, the possibilities (a) and (b) are most likely. From the XRMS data,
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separation between (a) and (b) is not possible. The decrease in entropy at 4.5 K, as concluded

from the specific heat data in Fig. 3.2, points to a singlet ground state since a transition

from a quasi-doublet ground state (as in the ITP) to a singlet ground state costs no entropy.

On the other hand, disordered moments at the Ho(2a) site can not be completely excluded

from the specific heat data since the increase of entropy due to disorder at the Ho(2a) site is

overcompensated by the rapid increase of ordered moment at the Ho(4b) site (see Fig. 3.9)

as well as 2:1 ratio of the Ho(4b) and Ho(2a) atoms in the unit cell, resulting in an overall

decrease in entropy. Indeed, a degree of frustration at the positions of the Ho(2a) moments

is possible from Fig. 3.10 considering nearest neighbor interactions between the Ho(2a) and

Ho(4b) moments. The Ho(2a) moments are surrounded by an equal number of up and down

Ho(4b) moments and all the bond lengths (indicated by green lines) are the same. Therefore,

the net interaction at the Ho(2a) position vanishes and thereby, the possibility (b) remains

open. Therefore, to separate between (a) and (b), further measurements such as inelastic

neutron scattering searching for a singlet ground state as well as a detailed measurement of

specific heat down to much lower temperature are necessary.

3.1.6 Conclusions

In conclusion, we have determined unequivocally the magnetic structure of Ho3+ in HoMnO3

to be Γ3 in the intermediate temperature magnetic phase ITP (between 40 K and 4.5 K). The

magnetic Ho3+ moments are aligned along the c axis and, at 12 K, the ratio between the

magnetic moments of the Ho(2a) and Ho(4b) Wyckoff site is ∼ −2. The moments at the

Ho(2a) site are antiferromagnetically aligned to the moments at the Ho(4b) site in the a-b

plane. The moments at the both sites are antiferromagnetically correlated along the c direc-

tion. The determined magnetic structure in the ITP is consistent with the results of Lonkai et

al.[9, 46, 47, 87] as well as Brown and Chatterji,[48] discussed in model 3 in the introduction.

The temperature dependence of magnetic moments in the ITP can be explained by assuming

low lying crystal field levels. We also conclude that there is a change of the magnetic structure

of Ho3+ at 4.5 K. Below 4.5 K, the magnetic phase can be well described by the co-existence of
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the ITP (Γ3) with a decreasing ‘ordered moment’ and a new magnetic phase LTP with mag-

netic representation Γ1 with a rapidly increasing Ho (4b) moment for decreasing temperatures.

The phase co-existence most likely arises from the local beam heating effects. One consequence

of this transition is that the Ho(2a) moments can not order according to the representation

Γ1. Therefore, it is likely that either the Ho(2a) moments are disordered down to the lowest

achievable temperature of 2 K due to the frustration in the hexagonal lattice or the moments

at the Ho(2a) site are suppressed due to the formation of a singlet ground state. The magnetic

structure found in the LTP is consistent with Lonkai et al.[9, 46, 47, 87] but in contradiction

with Brown and Chatterji.[48]

3.1.7 The Magnetic Order of Mn3+

Introduction

The magnetic structures of Mn3+ moments in HoMnO3 in the three different magnetic

phases, the HTP (high temperature phase), ITP (intermediate temperature phase), and LTP

(low temperature phase), have been studied by second harmonic generation as well as neu-

tron diffraction experiments.[47, 48, 87] Specifically, Lonkai et al.[47] reported the magnetic

representations Γ4, Γ3 and Γ1 for the HTP, ITP and LTP, respectively. Despite careful study,

however, there are still some unresolved issues regarding the magnetic structure of the Mn3+

moments. For example, in the ITP, the magnetic representation Γ3 consists of two basis vec-

tors ~ψ4 and ~ψ5 (see Table 3.1). According to representation theory, any linear combination

of the basis vectors associated with an irreducible representation will have the symmetry of

that irreducible representation. Therefore, in the case of Γ3 representation, magnetic moment

~µ should be properly described as:

~µ = C4
~ψ4 + C5

~ψ5 (3.12)

where C4 and C5 are two parameters. In neutron diffraction experiments, one has to properly

refine these two parameters, to obtain the magnetic moment direction for the magnetic rep-

resentation Γ3. However, in the reports of Lonkai et al.[47] and Brown et al.[48] there is no
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mention of the parameter C5 associated with the component of magnetic moment along the c

direction. For neutron scattering, detection of this c component is difficult due to the fact that

Ho3+ moments also carries magnetic moment along the c direction and both c components

will contribute to the same antiferromagnetic Bragg peaks. Nevertheless, the c component

is important for our understanding of the magnetoelectric coupling in HoMnO3 since it can

directly couple to the c axis polarization.[50] Separation of the c component of Mn3+ moments

from the c component of Ho3+ moments is possible in an XRMS experiment because of the

elemental specificity of this technique. Further, the c component and planer components of

the Mn3+ moments can be easily distinguished, as shown below, by a calculation of magnetic

structure factor. For the Γ3 representation, in the σ → π
′

geometry, the structure factor for

(h 0 l) reflections, with l = odd, for dipole resonant scattering can be written as:

Fm = [Cµc{1 + 2 cos 2πhx} sin θ + iDµab sin 2πhx cos θ] (3.13)

where C and D are two constants, and µc and µab are the magnitudes of the magnetic moment

along the c direction and in the a-b plane, respectively. From Eq. 3.13 we see that the

reflections of the type (h 0 l) with h 6= 0 and l = odd will be sensitive to both c and in-plane

(a-b) magnetic moment components, whereas (0 0 l) with l = odd will be sensitive only to

the c component of the magnetic moment. Therefore, the existence of such a c component is

accessible through an XRMS experiment.

The magnetic representation in the LTP is Γ1 for both the magnetic sublattices, Ho3+ and

Mn3+. However, the phase transition from ITP to the LTP occurs in two steps since specific

heat data show[90] a split transition with a temperature difference of ∆T = 0.4 K at 4.5 K.

It is not known at this point, which magnetic sublattice re-orders first and drives the phase

transition for the other magnetic sublattice.

To resolve the above issues we performed an XRMS experiment at the Mn K-edge where the

scattering process involves an intermediate state which arises from either dipole (E1) allowed

(1s – 4p) or quadrupole (E2) allowed (1p – 3d) electronic excitations. In ordered materials

then, XRMS is sensitive to the magnetization density through either the 3d electronic states
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directly (E2) or indirectly through the spin polarization of the 4p states (E1).

Experimental Details

The experimental procedure is very similar to the resonant scattering experiment at the Ho

LIII edge (E = 8.071 keV for Ho) except for the energy and the corresponding analyzer crystal.

For the measurement at the Mn K absorption edge (E = 6.553 keV), a Cu (2 2 0) analyzer

was used as a polarization and energy analyzer to suppress the charge as well as fluorescence

background relative to the magnetic scattering signal.

Table 3.1 Basis vectors (BV) for the space group P63cm with ~k = (0 0 0)

for the Mn3+ moments at the Wyckoff position 6c. The de-

composition of the magnetic representation for the Mn 6c site

is ΓMag = 1Γ1
1 + 2Γ1

2 + 2Γ1
3 + 1Γ1

4 + 3Γ2
5 + 3Γ2

6. Only the mag-

netic representation reported for the magnetic ordering of Mn3+

moments are listed in the table.[74] The directions of magnetic

moments are denoted by [ex,ey,ez], where ex and ey are in the

basal plane forming a 120 degree angle between them and the ez

vector is parallel to the 6-fold axis. The condition for a particular

reflection is determined for the present experimental geometry

and a dipole XRMS signal.

IR BV Atomic Positions Magnetic Reflection

(x, 0, 0) (0, x, 0) (x̄, x̄, 0) (x̄, 0, 0.5) (0, x̄, 0.5) (x, x, 0.5)
(h 0 l)

l odd

(0 0 l)

l odd

Γ1 ψ1 [1 2 0] [2̄ 1̄ 0] [1 1̄ 0] [1 2̄ 0] [2 1 0] [1̄ 1 0] Yes Yes

Γ2 ψ2 [1 0 0] [0 1 0] [1̄ 1̄ 0] [1̄ 0 0] [0 1̄ 0] [1 1 0] No No

ψ3 [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]

Γ3 ψ4 [1 0 0] [0 1 0] [1̄ 1̄ 0] [1 0 0] [0 1 0] [1̄ 1̄ 0] Yes Yes

ψ5 [0 0 1] [0 0 1] [0 0 1] [0 0 1̄] [0 0 1̄] [0 0 1̄]

Γ4 ψ6 [1 2 0] [2̄ 1̄ 0] [1 1̄ 0] [1 2 0] [2̄ 1̄ 0] [1 1̄ 0] No No

Results and Discussions

As we mentioned above, (h 0 l) reflections with h 6= 0 and l = odd will be sensitive to both c

and a-b components. Since the magnetic moment in the a-b plane is the dominant component,

we first measured (h 0 l) reflections with l = odd. We observed two predominant resonance

features above the Mn K-edge shown in Fig. 3.11(b). However, the observed resonance enhance-
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Figure 3.11 (a) Contour map of the intensity as a function of energy and

azimuth angle ψ at the (1 0 9) position and T = 6 K. Arrows

indicate a few of the multiple charge scattering positions. (b)

Single energy scan at the azimuth angle ψ = 34 degree, which

is depicted as a horizontal dashed line in (a). The vertical

dashed line in (b) represents the position of the Mn K-edge as

determined from the inflection point of the observed fluores-

cence signal in (b).
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ments were too large to be magnetic since Mn K-edge magnetic resonance is known to be weak

compared to the rare-earth L edges because of the absence of spin orbit splitting in the ground

state as well as small overlap between 4p and 1s states.4 We first verified that the resonance

features are not contaminated by the multiple charge scattering by varying the azimuth angle

(rotation of the sample around the scattering vector). We observed that the resonance features

at E= 6.557 and 6.561 keV are almost independent of azimuth angle while multiple charge

scattering depends sensitively on the azimuth angle, as expected.[102, 103] Therefore, from the

contour plot, we conclude that the sharp features above the Mn K-edge arise from some sort

of resonance enhancement. Nevertheless, the resonance enhancement is non-magnetic since

the intensity of these features are temperature independent, in the temperature range of mag-

netic ordering, shown in Fig. 3.12. Furthermore, the temperature dependence of the integrated

intensity shows no correlations with the magnetic transition temperatures at T = 40 K and

76 K. The temperature and energy dependence of other reflections such as (1 0 7), (-1 0 9),

(2 0 9), (-2 0 9) and (0 0 5) were also measured. However, only temperature independent

contributions were found. Therefore, we conclude that the magnetic resonance, if present, at

the Mn K-edge is too weak to observe experimentally due to the presence of this dominant

non-magnetic resonant signal.

The non-magnetic signal may be best described in terms of anisotropic tensor scattering

which has been observed at the charge forbidden Bragg positions. For example, resonant scat-

tering at the Fe K-edge of antiferromagnetic hematite, Fe2O3 has been studied and described

by the anomalous tensor scattering (ATS).[104, 105] The basic formalism for the resonant mag-

netic scattering (XRMS) cross-section, presented in Chapter 2 and anisotropic tensor scattering

are quite similar. In deducing the cross-section for XRMS, we have assumed that the symmetry

is broken by a magnetic atom in an isotropic chemical environment. However, if the chemical

environment itself is not isotropic, for example, an atom in an uniaxial environment, terms

other than the resonant magnetic scattering become important at the absorption edges of the

4In the Ho LIII edge we have observed maximum of 800 counts/s for the (1 0 9) reflection at 2 K. Here,
the intensity at the (1 0 9) peak at the Mn K-edge is ∼ 4000 counts/s. In the orthorhombic multiferroic
compound, TbMbO3, Mn K edge resonance has been observed[101] and the resonance enhancement is one order
of magnitude less than the Tb LII edge.
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element of interest. If the atom carries a magnetic moment as well, both terms contribute

to the resonant scattering amplitude. For the simplest case of an atom without a magnetic

moment in an uniaxial environment, with ẑs as an unit vector along that axis for the sth atom

in the unit cell, anomalous tensor scattering amplitude can be written as:[106]

fATS
dipole = [C0s(ǫ̂

′ · ǫ̂) + C2s{(ǫ̂
′ · ẑs)(ǫ̂ · ẑs) −

1

3
ǫ̂
′ · ǫ̂}] (3.14)

where C0s and C2s are constants containing resonant denominator of the form (En − Ea −

h̄ω− iΓ/2). En and Ea are the energies corresponding to the excited state |n〉 and initial state

|a〉, respectively. ǫ̂ and ǫ̂
′

are the polarization vectors for the incident and scattered x-rays,

respectively.

From the above equation, we note the following important features of the ATS scattering:

1. The first and third term containing ǫ̂
′ · ǫ̂ contribute to the resonance enhancement of

normal charge scattering, appears at the allowed Bragg position and can be used for

contrast variation to enhance the scattering contrast between neighboring elements. This

type of resonance enhancement is commonly known as anomalous charge scattering,

mentioned briefly in Chapter 1. These terms do not change the polarization of incident

x-rays and also do not depend on anisotropic environment of the resonant ion.

2. The term, (ǫ̂
′ ·ẑs)(ǫ̂·ẑs), is responsible for observing ATS scattering as well as polarization

properties of the scattered x-rays. A similar term, (ǫ̂
′ · ẑn)(ǫ̂ · ẑn), where ẑn is the unit

vector in the direction of magnetic moment, was also present in the XRMS amplitude

for the dipole scattering. Due to this close similarity, resonant magnetic scattering and

ATS scattering appear in the same polarization channel.

3. ATS scattering appears at forbidden reflections, due to the fact that fATS
dipole depends on

the direction of the scattering vector as well as on the orientation of the dyadic ẑα
s ẑ

β
s .

These two together will not necessarily have the full symmetry of the space group and,

therefore, can excite forbidden reflections.

Though, in the above example, polarization properties as well as appearance of the ATS

scattering in forbidden positions can be understood, for the case of Mn3+ ions in HoMnO3,
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the form of fATS
dipole depends on the local symmetry of the Mn3+ ions and can be evaluated

following the procedure mentioned in Refs. [107, 108, 109, 110]. However, the observation of

multiple resonance features in Fig. 3.11 indicate the presence of higher order terms beside the

dipole and possible interference between them. Calculation of these higher order terms in ATS

scattering as well as verification by experiment (measuring intensity for a number of reciprocal

lattice points as well recording intensity as a function of azimuth angle) require a heroic effort

due the presence of multiple charge scattering and therefore, we have not pursued this line of

experiments further.

Summarizing, the XRMS experiment at the Mn K edge, no magnetic signal could be

detected possibly due the presence of nonmagnetic ATS scattering. Therefore, we could not

address the importance of the c component of Mn3+ in the magnetoelectric coupling.

3.2 Magnetic Ordering in DyMnO3 and ErMnO3 in Zero Field

3.2.1 Introduction

Among all the hexagonal RMnO3 compounds studied so far (rare earths Ho to Lu), only

for HoMnO3 was a spin reorientation of Mn3+ moments around 40 K reported. In the previous

section, we have shown that this spin-reorientation transition is associated with the magnetic

ordering of Ho3+ moments induced by the Mn3+ moments. The question naturally arises is

what is so unique about the rare-earth element Ho in the rare-earth series? Is there any other

hexagonal RMnO3, where a spin reorientation of the Mn3+ moments and associated induced

order of rare-earth moments can be found? Or, are conventional techniques blind to the induced

component of magnetic moment at the rare-earth site, for example, for the magnetic order of

Er3+ moments in ErMnO3? This motivated us to study systematics of RMnO3 compounds

with rare-earth elements Dy and Er. One obvious difference between Ho3+ with Er3+ and

Dy3+ is that while Ho3+ is a non-Kramer’s ion, the later two are Kramer’s ions. Fortunately,

under special conditions the hexagonal phase of DyMnO3 can be stabilized[39, 111] (generally

found in orthorhombic form) and makes this systematic study possible.

Both hexagonal DyMnO3 and ErMnO3 exhibit ferroelectricity at room temperature.[31,



100

111] It was concluded from magnetization measurements that the Dy3+ moments order ferri-

magnetically below 7 K. Nevertheless, the magnetic structure and the corresponding magnetic

symmetry remained unknown.[39] Similar to the situation described for HoMnO3, previous

studies of ErMnO3 have presented inconsistent pictures of the magnetic ordering of Er3+.

For example, employing magnetoelectric measurements, Sugie et al.[44] proposed that Er3+

moments order non-collinearly in the hexagonal a-b plane according to the magnetic represen-

tation Γ6 below 6 K. Fiebig et al.[99], however, using optical second harmonic generation and

Faraday rotation experiments, proposed that the Mn3+ moments order according to the mag-

netic representation Γ4 below 78 K and transform to another magnetic structure with magnetic

representation Γ2 at around 6 K. According to Fiebig et al.[99] Er3+ remains paramagnetic in

the temperature range 78 K down to 6 K and becomes ferrimagnetic below 6 K. Yen et el.[112]

have also observed a steep increase in magnetization at low fields but without the hysteresis

observed by Fiebig et al.[99] and Sugie et al.[44]

Since the naturally occurring isotope of Dy is neutron absorbing, the magnetic structure

determination by neutron diffraction is challenging but possible, and has not, to date, been

done. In addition, discriminating between the two magnetic sublattices, R3+ and Mn3+, as

discussed above for HoMnO3, is very difficult. An x-ray resonant magnetic scattering (XRMS)

study of DyMnO3 and ErMnO3 is complementary to neutron measurements, but more direct

in determining the magnetic structure associated with, and the order parameter of, the R3+

moments.

3.2.2 Experimental Details

Single crystals of DyMnO3 and ErMnO3 were grown using a floating zone method described

previously.[39] For the XRMS measurements, single crystals of approximate dimensions 4 × 3 ×

1 mm3 and 3×2×2 mm3 were selected with a surface perpendicular to the c axis for DyMnO3,

and ErMnO3, respectively. The experimental details for the XRMS experiments are very

similar to that described for HoMnO3. The XRMS experiment was performed on the 6ID-B

beamline at the Advanced Photon Source at the Dy and Er LIII absorption edges (E = 7.790 keV
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and 8.355 keV, respectively). The incident radiation was linearly polarized perpendicular to

the vertical scattering plane (σ-polarized) with a spatial cross-section of 0.6 mm (horizontal)

× 0.2 mm (vertical). In this configuration, resonant magnetic scattering rotates the plane of

linear polarization into the scattering plane (π-polarization). In contrast, charge scattering

does not change the polarization of the scattered photons (σ-σ
′

scattering). In addition to

the σ-π
′

scattering geometry we have also used π-π
′

and π-σ
′

scattering geometries. In both

geometries, a Pyrolytic graphite PG (0 0 6) analyzer was used as a polarization analyzer to

suppress the charge and fluorescence background relative to the magnetic scattering signal. For

the P63cm crystallographic space group, (h 0 l) with l = odd are the allowed charge reflections.

Therefore, for measurements of the antiferromagnetic (0 0 l) and (h 0 l) reflections, with l odd,

the sample was mounted at the end of the cold-finger of a displex cryogenic refrigerator with

the reciprocal b⋆ - c⋆ plane coincident with the scattering plane. Though these reflections

are forbidden for charge reflections they can be strongly contaminated by multiple charge

scattering. However, we were able to minimize multiple scattering contribution at the resonant

energy through a judicious choice of the azimuth angle.

3.2.3 Magnetic Structure of Dy3+ in DyMnO3

Observation of magnetic resonant scattering and characterization of the tran-

sition temperatures

Fig. 3.13 shows the magnetization curves and magnetic susceptibility of a DyMnO3 single

crystal, measured using a Quantum Design SQUID magnetometer. In the inset to Fig. 3.13(c),

we see a kink in magnetic susceptibility at 68 K, suggesting the possibility of a magnetic

order. At approximately 8 K, there is a dramatic change of the magnetic susceptibility, indi-

cating a phase transition from the intermediate temperature phase, ITP (68−8 K) to the low

temperature phase, LTP (below 8 K).

In the ITP, magnetic intensity was found at the (0 0 9) reciprocal lattice point which is

nominally forbidden for charge scattering. To confirm the resonant behavior of this feature,

we performed energy scans (as shown in Fig. 3.14) through the Dy LIII absorption from 3 K to
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75 K, and observed one predominant resonance peak approximately 6 eV above the absorption

edge. This peak arises from dipole resonant scattering involving an intermediate state tran-

sition between the core 2p and the empty 5d states.[60] We also note the presence of a weak

quadrupole resonance (2p-to-4f states) at approximately 5 eV below the absorption edge. In

the energy scans, no resonance intensity was observed above the ITP. Further, from Fig. 3.14,

we see that the dipole resonance intensity increases with decreasing temperatures in the ITP.

However, this signal disappears abruptly below 8 K.

Generally, local sample heating by the intense incident undulator beam is very strong for

insulating materials like DyMnO3, particularly at low temperatures. Therefore, to character-

ize the beam heating effect and to determine the transition temperature for magnetic ordering

of Dy3+, we measured the dipole resonance intensity of the (0 0 9) reflection with different

attenuators as shown in the inset to Fig. 3.15. Since the normalized peak intensity and transi-

tion temperature remained nearly the same using attenuators with transmissions of t∼7% and

t∼1%, temperature dependent measurements were performed with the former. It should be

noted that measurements at the Dy LIII edge was performed with slightly less attenuatation

(t∼7%) compared to the Ho LIII (t∼1.8%) and this difference could be due to the differences

in the surface conditions. For HoMnO3 the surface was polished whereas for DyMnO3 an

as-grown sample surface was used. Fig. 3.15 shows the temperature dependence of the inte-

grated intensity for the (0 0 9) reflection, determined by fitting θ-scans (rocking curves) with

a Lorentzian function. Below 68 K, the dipole intensity increases gradually with decreasing

temperature. The temperature of the onset of the magnetic order of Dy3+ agrees well with the

kink in magnetization data from the same sample as shown in Fig. 3.13. Again from Fig. 3.15,

we see that the magnetic intensity of the (0 0 9) reflection decreases rapidly and goes to zero

below 8 K, signifying the phase transition to the LTP.

Magnetic structure in the intermediate temperature phase

We now turn to the analysis of the magnetic structure in the ITP. In order to determine

the magnetic representation we must look into the details of six magnetic representations

that are possible for the crystallographic space group P63cm, and are listed in the Table 2.8.
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The observation of nonzero intensity for the (0 0 9) reflection clearly excludes the magnetic

representations Γ1, Γ2, Γ4 and Γ5 for the magnetic order of Dy3+ (see Table 2.8) because only

the representations Γ3 and Γ6 yield nonzero intensity for (0 0 l) reflections with l odd. The

Dy3+ moments are aligned in the hexagonal c direction according to representation Γ3 whereas

they are aligned in the a-b plane in representation Γ6.

We measured the off-specular reflections (3 0 9) and (3 0 9) to determine the moment

direction. As discussed before for HoMnO3, the structure factor is the same for both reflections,

but the dipole scattering cross-section is different providing strong sensitivity to the moment

direction. For our scattering geometry, the dipole scattering amplitude f ∝ ~k ′ · ~µ,[64] where

~k ′ and ~µ are the wave vector of the scattered photons and the magnetic moment, respectively.

For moments aligned along the c direction (Γ3), the magnetic intensity I ∝ sin2 (θ ± α); for

moments in the a-b plane (Γ6) I ∝ cos2 (θ ± α), where θ is the Bragg angle and α is the

angle that the scattering vector Q makes with the crystallographic c direction perpendicular

to the surface of the sample. The ‘+’/‘−’ signs are for larger/smaller angles of the outgoing

beam with respect to the sample surface. The calculated ratio I(3 0 9) / I(3 0 9) = 65

and 0.02 are for moments along the c direction and in the a-b plane, respectively. Since the

absorption is different for these two off-specular reflections, proper normalization using the

closest charge reflections was performed to determine the experimental ratio of 80± 20. Thus,

within experimental error, the magnetic moments are primarily aligned in the hexagonal c

direction. We can confirm that the magnetic moments are aligned only along the c direction

by measuring (0 0 7) reflection in both polarization geometries, π-π
′

and π-σ
′

, as shown in

Fig. 3.17. As discussed in Chapter 2, for the π-σ
′

scattering geometry, the intensity for the

antiferromagnetic Bragg peak for E1 resonant scattering is sensitive to the components of

magnetic moment within the scattering plane (z1 and z3) whereas for π-π
′

scattering it is

sensitive only to the component of magnetic moment perpendicular to the scattering plane

(z2). Therefore, the observation of non-zero intensity in the π-σ
′

geometry and zero intensity

in π-π
′

geometry is only possible if the magnetic moments lie along the c direction.5 We

5For quadrupole scattering, the scattering amplitude is complex, and the above observation is only possible
if and only if the in-plane component of magnetic moment is zero.
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conclude that the Dy3+ moments order according to the magnetic representation Γ3 in the

ITP.

Temperature dependence magnetic intensity in the intermediate temperature

phase

Fig. 3.15 shows a gradual increase of the observed intensity as the temperature is decreased in

the ITP. With reference to other systems, such as Nd2BaNiO5 and Nd2CuO4, the temperature

dependence of the integrated intensity in the ITP can be explained with a ground state doublet

crystal field level, split by an exchange field.[92, 93, 94] The Kramer’s Dy3+ ions in DyMnO3 are

at positions of trigonal symmetry and, therefore, must have a doublet ground state.[113, 114]

We recall that in the case of HoMnO3, Ho3+ being a non-Kramer’s ion, the ground state

is different and is a quasi-doublet. At low temperatures only the ground state doublet is

appreciably populated because the energy difference between the ground state and the next

crystal electric field levels, in general, is large.[114] As we did for HoMnO3, taking into account

only the ground state doublet and a splitting, ∆(T ), we can write [92, 94]

I(T ) = I(0)[tanh
∆(T )

2kT
]2 (3.15)

where I (T) and I (0) are the intensities at the temperature T and 0 K, respectively. For an

exchange field produced by the ordering of the Mn3+ sublattice, the doublet splitting, ∆(T ), is

proportional to the ordered magnetic moment of Mn3+.[92] In the case of DyMnO3, however,

the ordering temperature and the temperature dependence of Mn3+ moments have not been

determined. For the nearest hexagonal compound, HoMnO3, the Mn3+ moments order below

76 K and saturate within a few Kelvin.[47] Anticipating similar behavior for the Mn3+ moments

in DyMnO3, we assumed ∆(T ) to be constant in the temperature range of fitting, 10−62 K.

The fitting yields ∆ = (5.8 ± 0.8) meV . Thus, the temperature dependence of integrated

intensity in the ITP can be modeled using a simplified picture of the crystal field splitting and

suggests an induced magnetic order of Dy3+ in this ITP. From the close similarity between

the induced order of rare-earth moments in HoMnO3 and DyMnO3 by the Mn3+, we predict

that the Mn3+ moments in DyMnO3 also order according to Γ3 representation (same as that
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of Mn3+ in HoMnO3) in the ITP.

The magnetic structure in the low temperature phase

We now turn to the investigation of the magnetic structure in the LTP where the magnetic

intensity of the (0 0 9) reflection goes to zero (see Fig. 3.15). Referring again to Table 2.8,

we can readily exclude the magnetic representations Γ3 and Γ6 as these reflections should

yield finite intensity. The intensity of the (1 0 9) reflection also goes to zero, as shown in

Fig. 3.16. This excludes the magnetic representation Γ1 (the structure found for the LTP

phase of HoMnO3) for the LTP as the intensity of this reflection should be finite but large

compared to ITP.[53] Therefore, the remaining possible magnetic representations are Γ2, Γ4

and Γ5. These representations yield intensity at the charge allowed reciprocal lattice points

(l even). Since the magnetic signal is weak compared to the charge scattering, separation of

a magnetic signal from the charge signal is extremely difficult in an XRMS experiment.[70]

However, we note that while Γ4 is antiferromagnetic along the c direction, the representations

Γ2 and Γ5 correspond to ferromagnetic moments along the c direction and in the a-b plane,

respectively. Fig. 3.13(a) and (b) shows the magnetization measurement along and perpen-

dicular to the c direction at 5 K (LTP) and 10 K (ITP). A steep rise to a sharp kink in the

magnetization in the LTP for small fields (≤ 1 kOe) along the c direction indicates a ferro-

magnetic moment along this direction, consistent with the reported results of Ivanov et. al.[39]

Therefore, magnetization measurements together with XRMS measurements suggest that Γ2 is

the magnetic representation in the LTP. According to this representation the Dy3+ moments

at each site are ferromagnetically aligned but the correlation between them can be parallel

(ferromagnetic) or antiparallel (ferrimagnetic). Since the uncompensated magnetic moment

along the c direction, determined from the extrapolation of high field magnetization data to

zero field, is only ∼ 1µB per formula unit, much less than the free magnetic moment (10.6 µB)

of Dy3+, a ferrimagnetic alignment of Dy3+ moments is expected. The magnetic structures

corresponding to the ITP and LTP are shown in Fig. 3.18.
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Figure 3.18 Magnetic structures of Dy3+ moments at different temperature

range. (a) Above T > 68 K, the Dy3+ moments are in a

paramagnetic state. (b) and (c) Magnetic structures of Dy3+

moments in the intermediate temperature phase (ITP) and in

the low temperature phase (LTP), respectively.

 

Figure 3.19 Magnetic susceptibility of ErMnO3 measured with a magnetic

filed along the c axis. After Ref. [91]
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3.2.4 Magnetic Structure of Er3+ in ErMnO3

As discussed above, there are two proposals for the magnetic order of Er3+ moments in

ErMnO3. Sugie et al.[44] proposed the magnetic representation Γ6 (moments in the a-b plane)

whereas Fiebig et al.[99] proposed magnetic representation Γ2 (moments along the c direction)

below approximately 6 K. Magnetization data in Fig. 3.19 shows a kink and an upturn around

80 and 13 K, respectively. Specific heat data shows phase transitions at 3 K and 80 K[112] and

the transition at T = 80 K was identified with the magnetic ordering of the Mn3+ moments.[99,

115] Magnetization data, in addition, shows an irreversibility at 50 K between zero-field cooled

data and field cooled data.[112] A similar irreversibility was observed for HoMnO3 at around

40 K,[112] but the origin of the irreversibility is unknown. However, as we know now that the

Ho3+ moments order below 40 K, irreversibility in magnetization below 50 K for ErMnO3 may

originate from the magnetic ordering of Er3+. To shed light on the low temperature magnetic

structure and to check if the origin of irreversibility is associated with magnetic ordering of

Er3+ moments below 50 K, we have performed an XRMS experiment at the Er LIII edge. The

experimental details are very similar to HoMnO3 and DyMnO3 and have been discussed before.

Magnetic structure in the temperature range 3 K≤ T ≤ 80 K

Similar to the measurements for HoMnO3 and DyMnO3, we measured (h 0 l) and (0 0 l) re-

flections with l = odd to distinguish between different magnetic structures. Specifically, (h 0 l)

reflections with l = odd, are sensitive to the Γ1, Γ3 and Γ6 magnetic representations whereas

(0 0 l) reflections with l = odd, are sensitive to the Γ3 representation (see Table 2.1.3.3). From

figure 3.20, which shows energy scan through the (0 0 9) reflection at several temperatures, it

is clear that the resonance features are absent for this reflection and, also, the observed signal

in the vicinity of the absorption edge is temperature independent. Therefore, intermediate

temperature phase (between 3-80 K) with magnetic representation Γ3, that we have observed

for Dy3+ and Ho3+ in the corresponding temperature ranges (8-68 K for Dy3+ and 4.5-40 K

for Ho3+), does not exist for Er3+. To check the possibility of magnetic ordering according to

the remaining representations, we have measured energy scans through the (1 0 9) reflection
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shown in Fig. 3.21. A very weak resonance feature is present at the absorption edge. However,

the intensity of this feature is temperature independent, pointing to the non-magnetic origin.

Therefore, magnetic ordering according to the Γ1 and Γ6 representations can be excluded. The

remaining possibilities are Γ2, Γ4 and Γ5. As we mentioned for the LTP of DyMnO3 that

these representations yield intensity at the charge allowed reciprocal lattice points (l even)

and extremely difficult to measure in an XRMS experiment.[70] However, we note that while

Γ4 is antiferromagnetic along the c direction, the representations Γ2 and Γ5 correspond to

ferromagnetic moments along the c direction and in the a-b plane, respectively. No ferromag-

netic signal has been observed above 3 K in the magnetization measurement,[112] therefore,

Γ2 and Γ5 representations can be also excluded. The only possible magnetic representation in

this temperature range is Γ4. Since powder neutron diffraction measurements, performed by

Park et al.[115] in the temperature range 10-85 K, have not found any signature of magnetic

ordering of Er3+, it is likely that Er3+ moments are paramagnetic in this temperature range.

Magnetic structure below T ≤ 3 K

Below 3 K, following the same argument presented above, magnetic ordering according to

Γ1, Γ3 and Γ6 representations can be excluded based on our XRMS experiment. The remaining

possible magnetic representations are again Γ2, Γ4 and Γ5. Observation of ferrimagnetic re-

sponse and/or steep increase in magnetization[44, 99, 112] for small fields along the c direction,

similar to that of DyMnO3, supports a ferrimagnetic alignment of the Er3+ moments according

to the magnetic representation Γ2 below 3 K. Therefore, magnetization measurements together

with XRMS measurements suggest that Γ2 is the magnetic representation in the LTP.

3.2.5 Conclusions

In summary, we have determined the magnetic structure of Dy3+ moments in DyMnO3 to

be Γ3 in the intermediate temperature magnetic phase, ITP (between 68 K and 8 K). The Dy3+

moments are aligned and antiferromagnetically correlated along the c direction. The tempera-

ture dependence of the magnetic intensity in the ITP can be explained by assuming a splitting

of the ground state doublet by the exchange field from the ordered Mn3+ moments. In the
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low temperature phase, LTP (below 8 K), XRMS together with magnetization measurements

indicate that Γ2 is the magnetic representation and the Dy3+ moments are ferrimagnetically

aligned in the hexagonal c direction. We note that the magnetic structure in DyMnO3 is the

same as in HoMnO3 in the ITP, however, in the LTP the magnetic order is different: the Ho3+

moments are antiferromagnetically aligned according to Γ1 in contrast to the ferrimagnetic

alignment of the Dy3+ moments in DyMnO3. It is likely that the striking difference is due to

the complex interplay between the magnetism of the two sublattices, Dy3+/Ho3+ and Mn3+.

For ErMnO3, we conclude that no ITP exists and the Er3+ moments order ferrimagnetically

below 3 K according to magnetic representation Γ2.

3.3 Origin of Magnetic Ordering and Different Magnetic Phases in

RMnO3: Superexchange Interaction

The different magnetic phases of rare-earth R3+ as well as Mn3+ moments together with

the characteristic transition temperatures are summarized in Fig. 3.23. The ordering tem-

perature of the Mn3+ moments in HoMnO3 and ErMnO3 are taken from literature.[112] The

ordering temperature of Mn3+ moments in DyMnO3 is not known from scattering experiments.

However, from the specific heat data of a DyMnO3 single crystal shown in Fig. 3.22 two phase

transitions at high temperatures at 67.5 K and 64.5 K,6 respectively, are discernable. We

associate the higher transition temperature (67.5 K) with the magnetic ordering of the Mn3+

moments and the lower one (64.5 K) to the induced ordering of the Dy3+ moments by the

Mn3+ since the observed transition temperature of Mn3+ moments is always higher than the

rare-earths in the other hexagonal multiferroic compounds.

In the high temperature phase (HTP), only the Mn3+ moments are ordered according to

the magnetic representation Γ4.[45, 47, 48] In the intermediate temperature (ITP) and low

temperature (LTP) phases, the rare-earth moments become ordered according to the magnetic

representations shown in Fig. 3.23. In the ITP and LTP, the Mn3+ moments re-orient within

the a-b plane according to the same magnetic representations as that of rare-earths.

6The transition temperatures have been determined from the peak in the specific heat data.
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From the diagram, we can see that the ordering temperature for the Mn3+ moments in-

creases from Dy to Er, and may be understood if we consider the strength of Mn-O-Mn

superexchange interaction across the series. The superexchange interaction depends on the

overlap between the Mn 3d and O 2p orbitals and therefore, should scale with the distance

between the Mn and O ions in the plane. We note that the superexchange interaction also

depends on the bond angle Mn-O-Mn. However, the bond angle is the same across the series

due to the special Wyckoff position (4b) of the in-plane oxygen ions. The in-plane lattice

parameter decreases from Dy to Er, and therefore, the overlap between the Mn(3d) and O(2p)

increases across the series. Hence, the ordering temperature for the Mn3+ moments increases

across the series.

Considering the ITP, the Dy3+ and Ho3+ moments order according to the same magnetic

representation Γ3 whereas no such magnetic structure could be found for the Er3+. For both

the Ho3+ and Dy3+, magnetism in the ITP can be explained assuming an exchange interaction

between R3+ and Mn3+ and a splitting of the R3+ ground state quasi-doublet/doublet by this

exchange field. We note that the crystal electric field splitting for Dy (∼6 meV) is larger than

that of Ho (∼1.3 meV), consistent with the larger ordering temperature for Dy3+ and points to

a stronger exchange interaction between Dy3+ and Mn3+ than between Ho3+ and Mn3+. The

ordering in the ITP is controlled by R-O-Mn interaction. Since the rare-earth 4f levels are well

localized, the interaction between rare-earths and Mn is mediated by 5d ’s of the rare-earths.

Therefore, the interaction strength in a RMnO3 series is determined by the 4f -5d exchange.

In a naive picture, the 4f -5d overlap decreases for the heavy rare-earths due to lanthanide

contraction and, therefore, one might expect that the strength of interaction decreases with

increasing number of 4f electrons. In this picture, the absence of a scattering signal is quite

consistent with the expectation that Er3+ should order at much lower temperature due to the

smallness of exchange interaction between Er3+ and Mn3+.

We also note that the transition temperature to the LTP decreases as we go from Dy to

Er (8 K for Dy, 4.5 K for Ho, 3 K for Er).7 The ordering in the LTP is controlled by R-R

7We have compared ordering temperatures from samples grown by the same floating zone technique. Flux
grown samples show slightly different transition temperatures.
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exchange. In this case, 4f -4f direct exchange is not possible due to the localized nature of 4f

electrons and therefore, R-R interaction must be mediated by 5d ’s as in the ITP. Hence, the

ordering temperature should decrease from Ho3+ to Er3+ for the same reason as mentioned

above for the ITP.

The frustration at the Ho(2a) site for the Γ1 representation (the low temperature phase

of Ho3+), and the stabilization of the LTP according to the magnetic representation Γ2 for

the Dy3+ and Er3+ can be understood by considering the nearest neighbor R-R exchange

interaction. The Ho(2a) site in the Γ1 representation is surrounded by equal number of up

and down Ho(4b) moments and, therefore, the net interaction at the Ho(2a) site vanishes,

keeping Ho(2a) moments frustrated if the size of the moment at the Ho(2a) site is not zero,

i.e. not a singlet ground state. In the LTP with the representation Γ2 for Dy3+ and Er3+,

frustration at the R(2a) site can be overcome as shown in Fig. 3.24(b). Here, the R(2a)

moments are surrounded by six up R(4b) moments. Therefore, a down moment at the R(2a)

site is preferred, considering antiferromagnetic nearest neighbor interactions.
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ordered according to magnetic representation Γ1. Ho(2a) mo-

ments are frustrated assuming non-zero magnetic moment. (b)

The low temperature phase of Dy3+ and Er3+ according to the

magnetic representation Γ2.
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CHAPTER 4. THE MAGNETIC ORDER OF HoMnO3 IN AN

APPLIED ELECTRIC FIELD

4.1 Introduction

Magnetoelectric multiferroic compounds, systems which exhibit both ferroelectric and mag-

netic effects within the same phase, have attracted considerable attention due to the potential

for controlling electric polarization by an applied magnetic field[20] or, conversely, magnetic

order through an applied electric field.[9] Recently, such a mechanism has been proposed for

hexagonal HoMnO3.[9] Despite numerous studies, however, the exact role that the Ho3+ ions

play in the magnetic response, and the details of the magnetic ordering of the Ho3+ sublattices

remain unclear.[41, 42, 44, 46, 48]

In the previous chapter we resolved the controversies of the zero field magnetic structures of

the rare-earth moments through a detailed analysis of the XRMS data. Apart from the complex

magnetic structures of the rare-earths in these compounds, perhaps of strongest interest is

the proposal by Lottermoser et al.[9] that the application of an electric field changes the

antiferromagnetic order of Ho3+ to ferromagnetic order, with the representation Γ2, over the

temperature range from 2 K to 76 K, based on SHG and optical Faraday rotation experiments.

To investigate the nature of the Ho3+ magnetic ordering in an applied electric field, we

have performed magnetization measurements using SQUID magnetometer and studied element

specific changes in magnetization using x-ray resonant magnetic scattering (XRMS) and x-ray

magnetic circular dichroism (XMCD). The XRMS and XMCD experiments were performed

at the Ho LIII absorption edge (E = 8.071 keV). For comparison, XMCD measurements on

powder samples were also performed with another member of the series, DyMnO3, at the Dy

LIII absorption edge (E = 7.790 keV).
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In the XRMS experiment, the scattering process involves an intermediate state which arises

from either dipole (E1) allowed (2p – 5d) or quadrupole (E2) allowed (2p – 4f) electronic

excitations.[58, 60] In ordered rare-earth magnetic materials, the technique is sensitive to

the magnetization density through either the 4f electronic states directly (E2) or indirectly

through the 4f – 5d exchange interaction (E1). Of importance here is that since this technique

is element specific we can probe the magnetic structure associated with the Ho3+ moments

directly. In the closely related XMCD measurements, the signal is defined as the difference in

the absorption of left and right circularly polarized x-rays by a magnetized sample.[81] Since

XMCD measurements are also performed at the absorption edges of elements of interest they

can be viewed as measurements of the net magnetization for a specific elemental constituent of

a magnetic compound, for example, measuring the contribution of Ho3+ to any ferromagnetic

response of the sample.

4.2 Experimental Details

The sample pictures and preparations for the electric field measurements are shown in

Fig. 4.1. For the SQUID magnetization measurements a thinned sample of HoMnO3 with typ-

ical thickness of 130 µm was used. The sample was painted with the silver (Ag) paint on both

sides and mounted on the stick of the SQUID magnetometer using the same silver paint. The

silver paint act as an electrode for these measurement. The XRMS experiment was performed

on the 6ID-B beamline at the Advanced Photon Source at the Ho LIII absorption edge using the

same sample as used for magnetization measurements. For the XRMS experiments two differ-

ent types of electrodes, gold (Au) as well as silver (Ag) were used. The sample was mounted

on the cold-finger of a displex cryogenic refrigerator with the a*-c* reciprocal plane coincident

with the scattering plane. With the incident beam polarized perpendicular to the scattering

plane (σ-polarized), measurements of the magnetic scattering were performed at the E1 and

E2 resonances in the rotated (σ-π
′

) scattering channel.[64] A Pyrolytic graphite PG (0 0 6)

analyzer was used as a polarization analyzer to suppress the charge background (unrotated)

relative to the magnetic scattering signal. The XMCD measurements were performed on the
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4-ID-D beamline at the Advanced Photon Source by modulating the x-ray helicity at 11.3 Hz

with a thin diamond phase retarder and using an lock-in amplifier to detect the related modu-

lation in the absorption coefficient. Spectra were recorded from a 20 µm thin single crystal of

HoMnO3 coated with carbon as electrodes, and on powder samples of HoMnO3 and DyMnO3

spread over several layers of tape and then sandwiched between two layers of conducting alu-

minized mylar (total sandwich thickness of 280 µm). The samples were mounted on the cold

finger of a horizontal field cryomagnet.

Study of Changes in the Bulk Magnetization: SQUID Magnetometery

The magnetization measurements were performed in the following sequence:

1. The sample was first cooled in both zero electric and magnetic fields from room temper-

ature to base temperature, T = 10 K. Then a magnetic field (H) of 500 Oe was applied

along the c direction and the magnetization was measured on heating up to T = 90 K.

2. The sample was cooled again to base temperature in the absence of any applied fields.

Then both electric and magnetic fields of 500 Oe and 400 Volts, respectively, were applied

along the c direction and magnetization was measured on heating up to T = 90 K.

3. The sample was cooled from 90 K to base temperature with both fields applied and

magnetization was measured on cooling.

Figure 4.2 shows the results of the measurements described above. Specifically, magneti-

zation measured with applied voltage is same as that with the zero voltage and the results

are independent of the measurement sequence. From the magnetization measurements, we

conclude that the bulk magnetization remain unchanged in an applied voltage of 400 Volts

(Electric field, E = 3×106 V/m).

One of the difficulties of the SQUID measurements was that voltages higher than 400 Volts

could not be applied in the investigated temperature range, possibly due to the presence of

He gas inside the SQUID magnetometer. Lottermoser et al.[9] reported measurements in an

applied electric field of 1×107 V/m, which, according to their claim is one order of magnitude
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higher than the required electric field to induce ferromagnetism. Therefore, an applied electric

field E of 3×106 V/m should be enough to induce ferromagnetism.

Nevertheless, to obtain the same order of magnitude of the electric field that Lottermoser et

al.[9] applied, and to see if Ho is responsible for the ferromagnetic response, we have performed

element specific XRMS and XMCD measurements. For the XRMS experiments, a displex

cryogenic refrigerator was prepared with the capability of applying high voltage. Since the

sample is directly connected to the cold finger of the displex, measurements can be performed

without any He exchange gas for the XRMS experiment. The sample was maintained under a

vacuum of 2×10−6 mbar to avoid any discharge due to the presence of gaseous elements. The

XMCD experiments were performed inside the horizontal field cryomagnet which is also under

vacuum. Since the beam heating effects described before, particularly in the absence of any

exchange gas, may be a concern in these experiments, we note that the metallic electrode (Ag

or Au) on top of the sample reduces the beam heating by attenuating the incident beam as

well as conducting the heat load across the sample.

Study of Element Specific Changes in Antiferromagnetism: X-ray Resonant

Magnetic Scattering

We first confirmed the zero filed magnetic structure by measuring resonance enhancements

and temperature dependence of the (0 0 9) reflection as a function of temperatures shown in

Fig. 4.3 and Fig. 4.4, respectively. The observation of finite intensity for the (0 0 9) reflection

and the close similarity to the measured temperature dependence for the sample without elec-

trodes confirmed that the sample with electrodes behave very similar to the samples without

any electrodes used for the zero field study. Specifically, in the temperature range 10−39 K,

Ho3+ moments are antiferromagnetic along the c direction according to magnetic representa-

tion Γ3.

After re-confirming the magnetic structure in zero field, we measured the temperature

dependence of both the dipole and quadrupole resonances in an applied electric field. For these

measurements, thinned (130 µm) samples coated with silver as well as gold (as electrodes) were

used. Fields of up to 1× 107 V/m, well above the saturation value reported by Lottermoser et
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Figure 4.1 (a) Sample (black) is glued on top of the wooden stick with silver

paint (white) (acting as a bottom electrode). A portion of the

top of the sample is also covered with silver paint (white) which

acts as a top electrode. The high voltage wire was connected

to this top electrode with the silver paint. Being mounted on

the wooden stick, a wire was connected to the bottom electrode

which acts as a ground. The wire is embedded in the silver

paint and invisible in the picture. (b) Sample coated with the

gold electrode and (c) sample coated with the silver electrode.

Both the samples were mounted on the Cu pin with silver paint.

The Cu pin was connected to the ground and acts as a bottom

electrode (d) Powder sample (black) spread over scotch tapes

without top electrode. (e) The sample is covered with alu-

minized mylar which acts as a top electrode. The sample was

fixed with capton tapes (yellow) with the sample holder and the

sample holder was grounded.
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al.[9], were obtained for an applied voltage of 1500 V. Figure 4.4 shows that there is no difference

between the temperature dependence of the peak intensity in zero and the maximum applied

electric field. Further, the inset to the Fig. 4.4 shows that there are no gross structural changes

in this applied field since the peak position and the full width at half maximum remain same.

We conclude that there is no change of the antiferromagnetic structure of Ho3+ in an applied

electric field in the ITP.

Study of Element Specific Response of Ferromagnetism: X-ray Magnetic Cir-

cular Dichroism

Since the XRMS measurements probe only antiferromagnetic order and are not sensitive

to small ferromagnetic components of the ordered magnetic moment, we have also performed

(XMCD) measurements at the Ho LIII edge on single crystal and powder samples of HoMnO3

and at the Dy LIII edge on powder sample of DyMnO3. The single crystal sample of 20 µm

thickness was too thick for absorption measurements in transmission geometry. However, since

the fluorescence spectra from the sample is proportional to the absorption, we measured the

fluorescence spectra, instead. Figure 4.5 shows the measured fluorescence spectra for both zero

and applied electric fields. In the following measurements, XMCD is defined as:

XMCD = Flipping ratio

=
[I(r.c.p) − I(l.c.p)]

[I(r.c.p) + I(l.c.p)]

(4.1)

where r.c.p and l.c.p stand for the right circularly polarized and left circularly polarized light,

respectively. The flipping ratio was calculated from the raw data in Fig. 4.5(a) according to

the above equation and shown in Fig. 4.5(b). It is clear from Fig. 4.5 that the XMCD is

unaffected by applied electric fields of up to approximately 1.25 × 107 V/m for single crystal

sample.

We have also studied powder samples in transmission geometry for both HoMnO3 and

DyMnO3 and, to confirm that we are able to see ferromagnetic signal by XMCD measurements,

we applied a magnetic field and measured the XMCD signal. Fig. 4.6(a) and 4.7(a) show the

results of these measurements. Though, these materials are not ferromagnetic in both zero
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and applied magnetic fields, a component of magnetic moment along the field direction can be

induced by an external magnetic field. The induced component is very similar in origin to that

of SQUID magnetization measurements except, in XMCD, we are measuring only the rare-

earth element contribution instead of contributions from both R3+ and Mn3+. Comparing the

SQUID magnetization measurements, and the ability to observe signal in XMCD measurements

in the lowest fields of 0.25 Tesla, we conclude that the present XMCD measurements are

sensitive to magnetic moment ≥ 0.1µB per formula unit. Further, the magnetic origin of

the XMCD features was confirmed by the observation that the spectrum flips upon reversal

of the applied magnetic field as shown in Fig. 4.6(a) and 4.7(a) for HoMnO3 and DyMnO3,

respectively. The spectra for positive and negative magnetic fields in Fig. 4.6(a) and 4.7(a)

were combined and shown in Fig. 4.6(b) and 4.7(b). The spectra were recorded following the

same procedure for applied positive and negative electric fields and the combined spectra are

shown in Fig. 4.6(b) and 4.7(b), together with the zero reference signal where no fields were

applied. From Fig. 4.6(b) and 4.7(b), it is clear that the XMCD signal is unaffected by applied

electric fields of up to approximately 1×107 V/m. Many other spectra were collected with all

combinations of (±H, ±E) between 8 and 80 K showing the same result.

4.3 Conclusion

From the extensive single crystal SQUID magnetization, XRMS and XMCD as well as

XMCD on powder samples for two different hexagonal multiferroics, we conclude that there is

no net ferromagnetic alignment of the Ho3+ with the application of an electric field as reported

by Lottermoser et al.[9] We note that techniques used by Lottermoser et al., namely, second

harmonic generation and Faraday rotation, to detect ferromagnetic response of Ho3+ depend

on the applied electric and/or magnetic fields. For example, second harmonic signal can be

induced by an applied electric field[116] or Faraday coefficient can be changed by applied

electric or magnetic fields or a combination of both.[117] Therefore, the signal observed by

these techniques, may be an artifact of external electric field.
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CHAPTER 5. SUMMARY AND OUTLOOK

We have determined the magnetic structure of Ho3+ moments in HoMnO3 by x-ray resonant

magnetic scattering experiments. Specifically, we have determined that the magnetic structure

of Ho3+ in HoMnO3 to be Γ3 in the intermediate temperature magnetic phase ITP (between

40 K and 4.5 K). The magnetic Ho3+ moments are aligned along the c axis and, at 12 K, the

ratio between the magnetic moments of the Ho(2a) and Ho(4b) Wyckoff site is ∼ −2. The

moments at the Ho(2a) site are antiferromagnetically aligned to the moments at the Ho(4b) site

in the a-b plane. The moments at the both sites are antiferromagnetically correlated along the

c direction. The temperature dependence of magnetic moments in the ITP can be explained by

assuming low lying crystal field levels. We also conclude that there is a change of the magnetic

structure of Ho3+ at 4.5 K. Below 4.5 K, the magnetic phase can be well described by the

co-existence of the ITP (Γ3) with a decreasing ‘ordered moment’ and a new magnetic phase

LTP with magnetic representation Γ1 with a rapidly increasing Ho (4b) moment for decreasing

temperatures. One consequence of this transition is that the Ho(2a) moments can not order

according to the representation Γ1. Therefore, it is likely that either the Ho(2a) moments are

disordered down to the lowest achievable temperature of 2 K due to the frustration in the

hexagonal lattice or the moments at the Ho(2a) site are suppressed due to the formation of a

singlet ground state. We failed to observe resonant magnetic scattering from Mn K-edge due

to the presence of non-magnetic anisotropic tensor scattering at the magnetic Bragg peaks.

Therefore, existence of a c component of the Mn3+ moments, predicted by symmetry analysis,

can not be tested.

We have also determined the magnetic structures of Dy3+ and Er3+ moments in DyMnO3

and ErMnO3, respectively. Dy3+ moments order according to the magnetic representation Γ3
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in the intermediate temperature magnetic phase, ITP (between 68 K and 8 K). The Dy3+ mo-

ments are aligned and antiferromagnetically correlated along the c direction. The temperature

dependence of the magnetic intensity in the ITP can also be explained by assuming a splitting

of the ground state doublet by the exchange field from the ordered Mn3+ moments. In the

low temperature phase, LTP (below 8 K), XRMS together with magnetization measurements

indicate that Γ2 is the magnetic representation and the Dy3+ moments are ferrimagnetically

aligned in the hexagonal c direction. We note that the magnetic structure in DyMnO3 is the

same as in HoMnO3 in the ITP, however, in the LTP the magnetic order is different: the Ho3+

moments are antiferromagnetically aligned according to Γ1 in contrast to the ferrimagnetic

alignment of the Dy3+ moments in DyMnO3. It is likely that the striking difference is due to

the complex interplay between the magnetism of the two sublattices, Dy3+/Ho3+ and Mn3+.

For ErMnO3, we conclude that no ITP exists and the Er3+ moments order ferrimagnetically

below 3 K according to magnetic representation Γ2.

For the ITP, the Dy3+ and Ho3+ moments order according to the same magnetic rep-

resentation Γ3 but no such magnetic structure could be found for the Er3+. For both the

Ho3+ and Dy3+, magnetism in the ITP can be explained assuming an exchange interaction

between R3+ and Mn3+ and a crystal electric field splitting of the R3+ ground state quasi-

doublet/doublet. We note that the crystal electric field splitting for Dy (∼6 meV) is larger

than that of Ho (∼1.3 meV), consistent with the larger ordering temperature for Dy3+ and

points to a stronger exchange interaction between Dy3+ and Mn3+ than between Ho3+ and

Mn3+. The ordering in the ITP is controlled by R-O-Mn interaction. Since the rare-earth 4f

levels are well localized, the interaction between rare-earths and Mn is mediated by 5d ’s of the

rare-earths. Therefore, the interaction strength in a RMnO3 series is determined by the 4f -5d

exchange. In a naive picture, the 4f -5d overlap decreases for the heavy rare-earths due to lan-

thanide contraction and, therefore, one might expect that the strength of interaction decreases

with increasing number of 4f electrons. In this picture, the absence of a scattering signal is

quite consistent with the expectation that Er3+ should order at much lower temperature due

to the smallness of exchange interaction between Er3+ and Mn3+.
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Our XRMS experiments on the series of RMnO3 compounds raise some interesting ques-

tions regarding the magnetism in this series that we have to await for future investigations.

XRMS experiments predict that the magnetic moments at the Ho(2a) site for HoMnO3 are

either in a disordered or in a spin singlet ground state below 4.5 K. Further measurements

such as measurements of spin-fluctuation spectrum and crystal electric field levels below 4.5 K

by inelastic neutron scattering will be a direct test for these predictions. For DyMnO3, mod-

eling of the temperature dependence for the magnetic moments of Dy3+ predicts a splitting,

∆ = (5.8 ± 0.8) meV, of the ground state doublet of Dy3+ below 68 K by the exchange in-

teraction between Dy3+ and Mn3+. Inelastic neutron scattering measurements of crystal field

excitation is highly desirable to validate this prediction. We also assumed for DyMnO3 that

the higher transition temperature of the observed split transition at 68 K in the specific heat

data as the magnetic ordering temperature of the Mn3+ moments and the lower one as the

magnetic ordering temperature of the Dy3+ moments. Further measurements are necessary to

validate this assumption. Since we know now the magnetic structure of Dy3+ from XRMS,

a complementary neutron scattering measurement can shed light on the nature of the split

transition.

After determining the magnetic structures of these multiferroics, we focused on determining

the magnetic structure in an applied electric field. From the extensive single crystal SQUID

magnetization, XRMS and XMCD as well as XMCD on powder samples for two different

hexagonal multiferroics, HoMnO3 and DyMn3, we conclude that electric field is not responsible

for the reported[9] ferromagnetic response of Ho moments. Therefore, the “Holy Grail” of

multiferroics – a ferroelectric ferromagnet with the potential for controlling magnetism by

external electric field still needs to be found.
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