
1		Supplemental Material					
2							
3	Improved quantif	ication of livestock associated odorous volatile organic					
4	compounds i	compounds in a standard flow-through system using solid-phase					
5	microextraction and gas chromatography - mass spectrometry						
6							
7 8	Xiuyan Yang ¹ , Wenda Zhu ^{1,2} , Jacek A. Koziel ^{1*,3,4} , Lingshuang Cai ¹ , William S. Jenks ⁵ , Yael Laor ⁶ , J. (Hans) var Leeuwen ^{3,1,4} , Steven J. Hoff ¹ ,						
9		Leeuwen ^{3,1,4} , Steven J. Hoff ¹ , ¹ Department of Agricultural & Biosystems Engineering, Iowa State University, USA ² Interdepartmental Toxicology Program, Iowa State University, USA ³ Department of Civil, Construction & Environmental Engineering, Iowa State University, USA ⁴ Department of Food Science and Human Nutrition, Iowa State University, USA					
10	² Interdepartmental Toxicology Program, Iowa State University, USA						
11							
12							
13 14		⁵ Department of Chemistry, Iowa State University, USA					
14 15	⁶ Agricultural Research Organization, Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Ramat-Yishay,						
16	Israel						
••							
17	* Corresponding author: tel.: 515-294-4206, fax: 515-294-4250, koziel@iastate.edu						
18							
19	Table S1. Comparison of extraction efficiency of target VOCs for the CAR/PDMS 85 µm,						
20	PDMS/DVB 65 µm, PDMS 100 µm and Polyacrylate 85 µm SPME fibers. MS detector						
21	response was normalized by gas concentrations. SPME conditions: $T = 25 ^{\circ}C$, sampli						
22	time = 5 min, flow rate = 300 mL/min , dry air.						
23							
	Compound	MS detector response was normalized by gas concentrations (MS detector response (peak area count) / C _{gas} (ppbv)					

Compound	MS detector response was normalized by gas concentrations (MS				
	detector response (peak area count) / Cgas (ppbv)				
	85 µm	65 µm PDMS-	100 µm PDMS	85 µm	
	CAR/PDMS	DVB		Polyacrylate	
Hydrogen sulfide	(4.0±0.3)E+04	(8.4±0.9)E+03	(1.0±0.2)E+04	(1.4±0.4)E+04	
Methyl mercaptan	(3.9±0.6)E+04	(1.3±0.2)E+03	(3.1±0.6)E+02	(1.8±0.8)E+04	
Ethyl mercaptan	(2.0±0.3)E+05	(6.7±2.4)E+03	(7.8±0.5)E+02	(1.8±1.0)E+05	
Dimethyl sulfide	(4.4±0.1)E+05	(1.4±0.2)E+03	(1.4±0.2)E+03	(4.6±1.4)E+05	
Butyl mercaptan	(2.5±0.2)E+05	(8.9±2.5)E+04	(2.8±0.2)E+03	(2.2±0.7)E+05	
Acetic acid	(1.0±0.1)E+06	(2.9±0.5)E+05	(4.9±0.5)E+04	(9.1±1.7)E+05	
Propionic acid	(4.3±0.2)E+05	(2.3±0.5)E+05	(2.1±0.2)E+04	(4.1±0.9)E+05	
Butyric acid	(8.5±0.3)E+05	(6.4±1.2)E+05	(8.2±0.6)E+04	(8.5±1.0)E+05	
Isovaleric acid	(1.7±0.0)E+06	(1.5±0.2)E+06	(2.8±0.2)E+05	(1.6±0.2)E+06	
p-Cresol	(2.0±0.0)E+06	(2.3±0.2)E+06	(8.3±0.8)E+05	(1.7±0.1)E+06	
Ethyl phenol	3.1±0.2)E+05	(3.9±0.4)E+05	(2.9±0.2)E+05	(2.4±0.3)E+05	
Indole	(1.7±0.2)E+05	(2.8±0.1)E+05	(2.1±0.1)E+05	(1.2±0.0)E+05	
Skatole	(9.5±0.7)E+05	(2.0±0.1)E+06	(1.9±0.1)E+06	(4.7±0.5)E+05	

28 29

Fig.S1. Slope (m*) of calibration curves for target VOCs normalized by C_{gas} (Table 4) vs. molecular weight (MW). MM = methyl mercaptan, EM = ethyl mercaptan, DMS = dimethyl sulfide, BM = butyl mercaptan; AA = acetic acid, PA = propanoic acid, BA = butyric acid, IV = isovaleric acid.

34