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CHAPTER 1. GENERAL INTRODUCTION 
 

 

Natural and organic processed meats have seen a dramatic increase in demand in 

recent years. Because these products are not allowed to contain chemical preservatives, 

traditional curing agents, nitrate and nitrite, are prohibited from natural and organic 

processed meat products. Nitrate and nitrite are unique ingredients used in the production of 

cured meats which produce typical properties such as desirable flavor and a distinctive color, 

as well as prevent the growth of spoilage bacteria and pathogens, most notably Clostridium 

botulinum.  

Although it has many desired benefits, there are many negative perceptions of nitrite-

cured meat products, most notably the formation of carcinogenic nitrosamines. This has 

allowed the natural and organic market to increase, as many consumers believe products 

labeled no nitrate/nitrite-added are safer and healthier. There are two types of products 

available to consumers that are labeled uncured. The first type has no intention of having any 

traditional cured meat characteristics, thus not having any direct or indirect form of nitrite. 

The second type is one which resembles a traditional cured product but where an indirect 

form of nitrite is added.  Because nitrate and/or nitrite are being introduced to uncured 

products, the labeling is misleading and technically inaccurate. 

Alternative processes have been identified to produce natural and organic meats 

labeled uncured, no-nitrate/nitrate-added, that resemble traditional cured products. It has 

been shown that uncured meat and poultry products can be manufactured with ingredients 

high in nitrate, and a nitrate reducing starter culture to produce cured meat products with 

similar sensory and quality characteristics as traditionally cured products. Several issues need 
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to be considered due to the fact that it is impossible to measure the amount of nitrite 

produced in this process. Low concentrations of nitrite bring up the concern for food safety, 

especially the survival and outgrowth of C. botulinum and excess amounts risk the formation 

of nitrosamines.  

Manufacturing procedures must be standardized to prevent product variation, as well 

as maintain the quality and safety of products labeled no-nitrate/nitrite-added. One method to 

achieve this is to determine if pre-conversion of nitrate to nitrite in a brine will reduce 

product variation and assure product safety by allowing the amount of ingoing nitrite to be 

analytically measured and controlled.  

 
 

Thesis Organization 
 
 

This thesis is organized into four chapters. The first chapter is a general introduction of 

uncured, no-nitrate/nitrite-added meat and poultry products. The second chapter is a general 

literature review of the relevant topics pertaining to this research project. The third chapter is 

a manuscript to be submitted to Meat Science titled “Incubation of curing brines for the 

production of ready-to-eat uncured ham”. The fourth chapter is a general summary of this 

research.  
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CHAPTER 2. LITERATURE REVIEW 
 
 
 

History of Meat Curing 
 
 The curing of meat has been performed for centuries and can be traced back to the 

earliest recorded history. Historically, salt was the primary ingredient used for meat 

preservation because it was realized that cuts of meat would not spoil as fast when packed in 

dry salt. Salt prevents microbial growth due to its direct inhibition of bacteria and also 

because it decreases the water activity (Pegg & Shahidi, 2000). After centuries of salting 

meat, certain salts became more desirable because they created a distinct pink color and 

unique flavor. It is widely accepted that impurities of potassium nitrate were responsible for 

the characteristic cured meat pigment and special flavor (Binkerd & Kolari, 1975; Cassens, 

Ito, Lee & Buege, 1978). It is not known when ancient civilizations began curing meat 

intentionally, but history shows that the Romans were intentionally adding saltpeter 

(potassium nitrate) as a curing agent to obtain desirable cured meat characteristics during the 

10th century B.C. (Pierson & Smoot, 1982).  

Nitrate, either as a contaminant of salt or as saltpeter, was the primary ingredient used 

to cure meat for thousands of years before scientists closely examined the curing reaction. 

Interest began at the end of the 19th century after it was determined that pure salt (sodium 

chloride) did not produce a cured meat product. In 1891, Polenske (reported in Binkerd & 

Kolari, 1975; Townsend & Olson, 1987) discovered that the color change was caused by the 

sodium and potassium nitrates present as a contaminant in unpurified salt used in curing. 

Furthermore, the nitrate was converted to nitrite by naturally occurring bacteria. Soon after, 

Lehmann and Kisskalt (reported in Binkerd & Kolari, 1975; Townsend & Olson, 1987) 
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demonstrated that the characteristic cured color resulted from nitrite, and not nitrate as 

previously thought.  Subsequent studies by Haldane in 1901 and Hoagland in 1908 (reported 

in Pegg & Shahidi, 2000) stated that it was essential for nitrite to be further reduced to nitric 

oxide and nitrous acid to produce a red color in cured cooked meats.  

 By 1917 curing mixtures containing nitrite were being marketed in Europe and a U.S. 

patent (Doran, 1917) for nitrite was issued. Several studies observed that products cured with 

nitrate alone produced extremely variable results, and often resulted in high nitrite levels in 

the product (Pegg & Shahidi, 2000). In 1923, the USDA authorized experiments using the 

direct addition of nitrite. One study demonstrated that the flavor and shelf life of meats cured 

solely with nitrite were equal to those cured with nitrate, and that curing with nitrites, rather 

than nitrates, shortened the curing period that was customary at that time. As a result of this 

study, the USDA authorized sodium nitrite as a curing agent in federally inspected 

establishments (Kerr, Marsh, Schroeder & Boyer, 1926). 

Through the next few decades, meat processors gradually shifted from the use of 

sodium nitrate to the use of sodium nitrite with the main goal being a reduction in curing 

time to increase production capacity. As the curing process became better understood, the 

technology allowed processors to use less nitrite and have more control over the curing of 

meat (Sebranek, 1979). In the late 1960’s and into the early 1970’s, it became apparent that 

nitrite could result in the formation of carcinogenic n-nitrosamines in cured meat. This 

prompted a great deal of research and it was determined that a major factor of nitrosamine 

formation was the concentration of residual nitrite. As a result, nitrate was eliminated from 

most curing processes to decrease residual nitrite concentrations (Pegg & Shahidi, 2000).  
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Methods of Curing 

There are several techniques used to achieve a cured product, however, all procedures 

fall into one of two basic methods of meat curing; dry curing and brine curing. Regardless of 

method used, the most important requirement is the even distribution of cure ingredients 

throughout the entire product. Sausage products can be cured with either method and the 

curing ingredients are incorporated during the mixing-comminution steps (Aberle et al., 

2001).  

Dry curing is the oldest method used to distribute the curing ingredients throughout 

the meat. In dry curing, the curing ingredients are rubbed on the surface of the meat. These 

ingredients dissolve in moisture drawn from the muscle tissue and diffuse through the 

specific cut of meat over a long period of time, diffusing at the rate of about 1 inch per week 

(Townsend & Olson, 1987; Aberle et al., 2001; Romans, Jones, Costello, Carlson & Ziegler, 

2001). For large cuts the dry ingredients must be rubbed over the surface multiple times, 

making the process very labor intensive.    

Brine curing entails the immersion of whole cuts of meat into solutions containing 

nitrite. Wet curing uses the same ingredients utilized in dry curing except that the ingredients 

are dissolved in water to form a pickle or brine. If sugar is included in the brine, it is referred 

to as a sweet pickle (Romans et al., 2001; Pegg & Shahidi, 2006). During brine curing, the 

initial outward flow of water and soluble proteins from the muscle tissue is reversed due to 

osmotic pressure. This is because the salt diffuses into the muscle forming a complex with 

the proteins of the meat, causing a higher osmotic pressure than the brine, resulting in an 

inward flow of water and curing ingredients to the muscle (Lawrie & Ledward, 2006). 

Although immersion curing is faster than dry curing, it is still relatively slow. When curing 
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large cuts of meat, it may take long periods of time for diffusion of the curing agents through 

the entire product. Due to the high water activity, microbial growth and spoilage can occur 

during brine curing even though the product is refrigerated and salt is present (Aberle et al., 

2001; Pegg & Shahidi, 2006). Therefore, curing is often achieved by the injection of a brine 

directly into different meat cuts which achieve a more rapid and uniform distribution of 

pickle throughout the tissues (Townsend & Olson, 1987). These methods include artery 

pumping, which injects a pickle solution directly into the vascular system of a ham. With this 

technique, the curing agents travel throughout the tissue utilizing the arteries of the muscle 

for distribution of cure. Another common practice of pumping meat is stitch pumping where 

brine is injected through needles into various locations of the meat (Pegg & Shahidi, 2000). 

More recently, the process of multiple needle injection has become popular. In this process, a 

brine or pickle is prepared and then injected mechanically under pressure through needles. 

These machines inject brine at hundreds of locations throughout the meat ensuring rapid, 

continuous curing of meat with uniform distribution of the cure (Pegg & Shahidi, 2006). 

Mechanical methods can also be used to aid in the distribution of pickle in immersed or 

pumped products. Tumbling or massaging subjects products to agitation by massaging the 

pieces of meat against one another in rotating drums. This agitation helps disrupt tissue 

structure and increases the distribution of cure ingredients (Lawrie & Ledward, 2006). 

During the tumbling or massaging process the salt in the curing solution extracts salt-soluble 

myofibrillar proteins through the disruption of muscle tissue, increasing the water binding of 

proteins. As a result of the extracted proteins, a protein exudate forms which envelops pieces 

of meat and binds meat chunks together during thermal processing. (Aberle et al., 2001).  
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Current U.S. Regulations on Nitrite and Nitrate 

 Either sodium or potassium nitrite/nitrate may be used as a curing agent. However, 

they have the same limits based on weight (with the exception of bacon).  Because potassium 

is a heavier element than sodium, this results in less nitrite in the product when potassium 

salts act as the carrier. Bacon also allows the use of either sodium or potassium nitrite, but 

there are different limits for the two salts. According to FSIS Directive 7620.3, the USDA 

requires a minimum of 120 parts per million for all cured meat products that are not shelf 

stable, unless the specific process is validated to be safe. There is no minimum ingoing nitrite 

level for shelf stable products, however 40 parts per million is recommended for preservation 

purposes. Current regulations on the maximum use of nitrite and nitrate vary depending on 

the method of curing used. All nitrite concentrations are based on the green weight of the 

meat block used in the formulation of the product. Table 2.1 displays the current regulations 

according to the USDA FSIS Processing Calculations Inspectors Handbook (1995). Due to 

the concern of nitrosamine formation, nitrite regulations are more stringent in bacon. Also, 

because of the same concern, nitrate is no longer permitted in any bacon (pumped and/or 

massaged, dry cured, or immersion cured) (USDA, 1995). 

Bacon requires different regulations due to possible nitrosamine formation. The 

method of bacon processing determines the limits for nitrite. All limits are based on the green 

weight of the belly with the rind off. For immersion cured or massaged or pumped bellies 

(rind off), an amount of 120 ppm ingoing nitrite is required (148 ppm potassium nitrite). If 

the skin is not removed from the bellies, the ingoing nitrite level must be reduced because the 

skin is approximately 10% of the belly weight, and the skin retains virtually no curing 
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solution. Therefore nitrite usage must be decreased by 10%. The maximum ingoing nitrite 

levels for sodium nitrite to cure bellies with the rind on are 108 ppm. 

 

 

 

Curing Agent 

Curing Method 

Immersion 
Cured 

Massaged or 
Pumped Comminuted Dry Cured 

Sodium Nitrite 200 200 156 625 

Potassium 
Nitrite 200 200 156 625 

Sodium Nitrate 700 700 1718 2187 

Potassium 
Nitrate 700 700 1718 2187 

Table 1. Maximum ingoing nitrite and nitrate limits (in ppm) for meat and poultry products 
(does not include bacon). This reprint is from USDA FSIS Processing Calculations 
Inspector’s Handbook (FSIS Directive 7620.3). 
 

In some cases, a process may utilize both nitrite and nitrate in combination. In this 

case, the finished product must not result in more than 200 ppm of nitrite, calculated as 

sodium nitrite (USDA, 1995).  

 

Cured Meat Color 

 Much like the characteristic bright red pigment in fresh meat, the characteristic pink 

color of cured meat is important to the consumer because it is a major factor in the criteria 

used to make purchasing decisions. Sebranek, Schroder, Rust and Topel (1977) reported that 

a reduction in the amount of nitrite (156 mg/kg to 0 mg/kg) added to frankfurters resulted in 

a decrease in consumer panel appeal. Myoglobin is the primary protein that is responsible for 
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the color of postmortem muscle tissue.  Myoglobin is a relatively small protein with a 

complex structure. It is a globular heme protein consisting of approximately 153 amino acids, 

dependent on species. The heme group is comprised of four pyrrole groups bound to a central 

iron atom. The two additional bonds required by the iron atom are referred to as the 5th and 

6th ligands. The 5th ligand is always attached to a histidine residue while the sixth ligand 

determines the meat pigment oxidation state (Dryden & Birdsall, 1980). The chemistry of the 

curing reaction is complex due to the extreme reactivity of the nitrite molecule, and is not 

entirely understood. Cured meat color is the result of the oxidation state of the iron atom 

(Fe2+ or Fe3+) and occupant of the sixth ligand of the heme iron complex. When combined 

with nitrite, nitric oxide, and reductants, a number of reactions occur that lead to the cured 

meat pigment, nitrosohemochrome (Fox, 1966).  

In order to form the color in cured meat, nitric oxide must first be produced from 

nitrite (NO2
-). Because nitrite does not act as the direct nitrosylating agent, it must undergo 

several reactions where a variety of intermediates are formed. When nitrite is added to meat, 

it is found in two forms, the anion, NO2
-, and the neutral nitrous acid, HNO2 (Sebranek & 

Fox, 1985). Because the pH of meat, 5.5-5.6, is higher than the pKa of nitrite, 3.36, the 

concentration of HNO2 in cured meat is extremely low. In meat it is believed that the 

principal reactive species is the anhydride of HNO2, dinitrogen trioxide, N2O3. Dinitrogen 

trioxide reacts with reductants found naturally in muscle tissue as well as added reducants, 

such as ascorbate, to form nitric oxide (Pegg & Shahidi, 2000). Other additives or conditions 

also influence the reduction of nitrite to nitric oxide. The addition of salt accelerates the 

reaction due to the formation of nitrosyl chloride (NOCl), which is a more effective 
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nitrosating agent than dinitrogen trioxide formed from nitrous acid (Møller & Skibsted, 

2002).  

   The process of nitric oxide production is dependent upon several factors, including 

pH, temperature, and time.  Acidity plays a big part in nitric oxide production due to the fact 

that a lower pH results in an increased reactivity of nitrous acid into nitric oxide. The 

reactants forming both nitrosating compounds, N2O3 and NOCl, must be in the protanated 

(acid) form, therefore the lower the pH the faster the reaction (Fox, 1987). This has been 

demonstrated by showing that the increase in pH, due to added phosphates, resulted in 

decreased nitric oxide production as shown by higher residual nitrite concentration in 

finished poultry products (Ahn & Maurer, 1989). It has also been reported that at minimum, a 

2 hour period is necessary for 90% of nitrite to be converted to nitric oxide and to bind with 

myoglobin (Lee & Cassens, 1976).  

Once nitric oxide (NO) is formed, the oxidation state of myoglobin changes due to 

the oxidation of the heme iron atom. The myoglobin molecule changes from the myoglobin 

state (Fe2+) to the metmyoglobin state (Fe3+). Upon formation of metmyoglobin, nitric oxide 

then binds to the sixth ligand position of the heme complex.  Finally, the myoglobin protein 

is denatured during the cooking process resulting in the detachment from the heme complex. 

The resulting pigment is the characteristic cured meat pigment, nitrosohemochrome (Killday, 

Tempesta, Bailey & Metral, 1988). 

 

Cured Meat Flavor 

 Nitrite is responsible for the production of the characteristic flavor of cured meat. 

Sensory data has shown a significant difference between uncured and cured pork flavor (Cho 
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& Bratzler, 1970). The role of nitrite in cured meat flavor is extremely complex and not 

entirely understood. The discussion of the volatile and non-volatile compounds that are 

responsible for the cured flavor is still on-going. The addition of salt during curing has a 

large impact on cured meat flavor as well. It has been demonstrated that increasing levels of 

salt results in an increased intensity of cured meat flavor when used in combination with 

nitrite (Froehlich, Gullet & Usborne, 1983). Part of the flavor difference appears to be related 

to the decrease in the rate of lipid oxidation that occurs after the cooking process when nitrite 

is added. However, other antioxidants do not create cured flavor (Gray, MacDonald, Pearson 

& Morton, 1981). Sensory research has suggested that cured flavor can not solely be 

attributed to decrease in oxidation, but is in combination with cured aroma and cured flavor 

(Shahidi, 1998). Because of this, there is no known substitute that can impart the flavor 

associated with sodium nitrite.  

 

Antioxidant Role of Nitrite 

 Nitrite acts as a strong antioxidant in cured meats, therefore preventing lipid 

oxidation. Lipid oxidation is a common change in meat that results in a deterioration of its 

quality by causing discoloration, drip losses, off-odors, and off-flavors (Morrissey, Sheehy, 

Galvin, Kerry & Buckley, 1998). The rate and degree of lipid oxidation is related to the 

degree of unsaturated lipids present and degree of oxygen exposure (Vasavada & Cornforth, 

2005). Salt adds to the problem as it is known as a pro-oxidant.  

Lipid oxidation of an unsaturated fatty acid occurs in three phases. These include 

initiation, propagation, and termination. Initiation occurs when a hydrogen atom (H) is 

eliminated from an unsaturated fatty acid (RH) by bonding with oxygen (O2) or other 
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catalysts. The propagation step results from the formation of a lipid free radical (R•) which 

reacts with oxygen, forming a peroxy radical (ROO•). It is the propagation step that sets off a 

chain reaction. Once a peroxy radical is formed, it eliminates a hydrogen atom from another 

unsaturated fatty acid molecule producing a hydroperoxide (ROOH) and a new lipid free 

radical. This fee radical may also react with oxygen, making this chain reaction self-

sustaining until either oxygen or unoxidized lipids are depleted (Pegg & Shahidi, 2000).  

The reactions that occur to develop the color in cured meat are likely to be important 

to the antioxidant function of nitrite. Nitrites function as an antioxidant by binding to heme 

iron released during the cooking process. Upon binding to the heme iron, the porphyrin ring 

is stabilized and hence prevents the release of Fe2+ (Pegg & Shahidi, 2000). This is important 

because free iron (Fe2+ and Fe3+) can react with lipids to form free radicals that readily react 

with oxygen and act as a catalyst in reactions causing lipid oxidation (Morrissey et al., 1998). 

This was supported by Igene, Yamauchi, Pearson and Gray (1985) as they reported that 

uncured cooked beef samples had a significantly higher non-heme iron level than its raw 

counterpart while nitrite-cured beef samples non-heme iron levels did not change during the 

cooking process.  

 

Antimicrobial Properties of Nitrite 

Meat is an unstable product largely because microorganisms are able to thrive on its 

rich supply of nutrients and its high moisture content. The microorganisms that can grow in 

meat products often result in a decrease in shelf life due to spoilage. Nitrite is a bacteriostatic 

and bacteriocidal agent that inhibits the growth of bacteria that normally cause spoilage of 

fresh meats, as well as microorganisms that can cause food-borne illness (Tompkin, 1995). 
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Because of this, the addition of nitrite extends the shelf life of meat products as well as 

improves food safety. The microbiological safety that is assured from the addition of nitrite 

in cured meats is probably the most important function of the curing process (Romans et al., 

2001).  

Nitrite is a strong inhibitor of anaerobic bacteria and has been shown to contribute to 

the control of others such as Listeria monocytogenes. Nitrite affects different microorganisms 

in different ways and the mechanisms for inhibition differ between these microorganisms 

(Tompkin, 1995). Although nitrite is effective at controlling many microorganisms, the 

single bacterium that is of greatest concern relative to inhibition by nitrite is Clostridium 

botulinum. C. botulinum produces a heat stable spore that survives the typical cooking 

temperatures of thermally processed meats. Nitrite prevents germination and outgrowth of 

these spores and therefore prevents the production of a deadly toxin by vegetative cells. The 

toxins produced by C. botulinum are the most toxic substances known to man. If ingested, the 

toxin causes the disease known as botulism. Botulism is the most lethal of all food-borne 

diseases carrying a 20-50% mortality rate (Jay, 2000).  

It should be mentioned that the antimicrobial activity of nitrite also depends on a 

number of other factors including pH and salt content. Salt is important because it works 

synergistically with nitrite to inhibit bacterial growth. Alone, salt inhibits microorganisms by 

decreasing the water available for their growth. It has been reported that 5% sodium chloride 

will effectively inhibit C. botulinum under optimal growth conditions (Lövenklev, Artin, 

Hagberg, Borch, Holst & Rådstöm, 2004). However this high of a level would result in a 

product that is unpalatable and therefore undesirable to consumers. Thus nitrite is needed in 

addition of salt to eliminate the growth of C. botulinum. The pH of the meat product is also 
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an important factor for controlling not only C. botulinum, but other pathogens and spoilage 

microorganisms as well. This appears to be associated with undissociated nitrous acid 

produced in the reaction to form nitric oxide, which becomes greater at reduced pH. As the 

pH is lowered one unit, the bacteriostatic effect is increased approximately ten fold. 

Therefore, in general, the lower the pH the stronger the antimicrobial effect of nitrite. 

However, as pH decreases, the stability of nitrite is decreased as well. Because of this 

instability, it is vital that salt be included in cured meats for its synergistic effect with nitrite 

(Urbain & Campbell, 1987).  

 

Residual Nitrite 

When nitrite is added to meat, it reacts with or binds to many constituents within the 

meat system, such as protein. Nitrite is extremely reactive, and the heat used in thermal 

processing of cured meat products increases the reactivity. Because of this, the amount of 

nitrite detectable in the finished product is much lower, often accounting for only about 10-

20% of the amount added initially. The nitrite that is analytically detectable in cooked cured 

meat products is known as residual nitrite (Cassens, 1997b). The residual nitrite in cured 

meat decreases over time until levels are not detectable. Depletion initiates immediately upon 

addition to meat and is continuous (Pierson & Smoot, 1982). 

The amount of residual nitrite present in cooked cured meat varies greatly between 

products and is dependent on product type and production procedures used. Since nitrite is 

toxic to humans at high levels and has the ability to produce carcinogenic compounds, it is 

very highly regulated by government agencies. Therefore, it is important to minimize the 

amount of nitrite used to cure meat while still providing enough nitrite to sufficiently insure a 
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safe product (Cassens, 1995). Some residual levels are beneficial for prolonged shelf life of 

the product because residual nitrite plays an important role in the stabilization of cooked 

cured meat products during distribution and storage. The residual nitrite serves as a reservoir 

of nitric oxide for stabilization of the cured color pigment until consumption (Dryden & 

Birdsall, 1980). Perhaps the most important role of residual nitrite is the botulinal control. A 

study performed by Christiansen, Tompkin and Shaparis (1978) observed that C. botulinum 

spores grew readily at both levels (50 and 156 μg/g) of nitrite upon depletion of residual 

nitrite. The authors concluded that the time of C. botulinum spore outgrowth was dependent 

on the level of residual nitrite.  

There are several factors that affect the amount of residual nitrite and the rate of 

nitrite depletion. One variable that does affect this is the use of reducing agents such as 

ascorbate and erythorbate. These reducing agents accelerate the curing reaction which results 

in lower residual nitrite levels in the finished product (Lee & Shimakoa, 1984). A study by 

Brown, Hedrick and Bailey (1974) demonstrated that increasing levels of sodium ascorbate 

(0-568 ppm), resulted in decreased residual nitrite levels. Another important factor affecting 

the amount of nitrite detectable in cooked cured meat products is pH. Sebranek (1979), 

reported that as pH decreases, the reactivity of nitrite increases due to more favorable nitrite-

myoglobin interactions resulting in lower residual nitrite concentrations. This is in agreement 

with Lee, Cassens and Fennema (1976) who demonstrated that a lower pH directly resulted 

in lower concentrations of residual nitrite.  

 

Nitrosamines 



 

 

16

Even though nitrite has many desirable effects, there is some concern about its safety. 

The issue arose in the late 1960’s and into the 1970’s when it became apparent that nitrite-

cured meats, most notably bacon, had the potential to produce nitrosamines. Nitrite is an 

extremely reactive chemical and under appropriate conditions it can act as a nitrosating agent 

to produce nitroso compounds. Many of these nitroso compounds have been found to be 

carcinogenic (Cassens, 1995).Volatile nitrosamines can induce tumors throughout the body if 

present at appropriate concentrations (Ahn, Kim, Jo, Lee & Byun, 2002). Nitrosamines are 

formed from secondary amines in a slightly acidic environment. Nitrite itself is not the cause 

of the nitrosamines, rather it is one of nitrite’s derivatives, nitrous acid (HNO2). As stated 

earlier, nitrous acid’s pKa (3.36) is much lower than the pH of meat (5.5-5.6), making the 

concentration of nitrous acid in cured meat very low. Therefore, when nitrosamines are found 

in cooked cured meats, they are usually in very small quantities. Usually the levels, if 

detectable at all, are in the parts per billion range. However, because of their possible link to 

cancer in humans, a large amount of interest has been focused on the presence of 

nitrosamines in cured meats. There have been more than 300 nitroso compounds tested in 

laboratory animals, and greater than 90% have been shown to cause cancer. However, there 

has been no direct link to human cancer from the consumption of cured meats (Pegg & 

Shahidi, 2000).  

Bacon has been a product that, in the past, was most frequently found to contain 

nitrosamines after cooking. The heat normally used to cook bacon is much higher than most 

cured meat products due to its desired crispness, and this increase in temperature may result 

in the formation of nitrosamines. The problem of nitrosamines in bacon was recognized by 

the USDA and after much research, a special regulation was implemented to decrease the 
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levels of residual nitrite in bacon, thus decreasing the levels of nitrosamines. The new 

regulation stated that ingoing nitrite levels could not exceed 120 ppm and that 550 ppm 

sodium ascorbate or erythorbate must be used in combination with the nitrite (McCutcheon, 

1984).  

A number of variables affect the amount of nitrosamines detected in cured meats such 

as ingoing and residual nitrite levels, method of cooking, smoking, temperature and time, and 

the presence of inhibitors. When the issue arose, the meat industry recognized the problem 

and dealt with it by eliminating the use of nitrate, except for specialty products, lowering the 

levels of nitrite used, and implementing tighter control of manufacturing processes. Also, 

ascorbate and erythorbate levels were used at maximum levels to inhibit formation of 

nitrosamines (Cassens, 1997a). The incorporation of reducing agents such as sodium 

ascorbate and sodium erythorbate reduces the formation of nitrosamines because they 

compete with the amines for nitrous acid. Ascorbate and erthythorbate reduce nitrous acid, 

therefore pushing the reaction away from the formation of nitrosamines (Townsend & Olson, 

1987; Pegg & Shahidi, 2000).  

The problem with nitrosamines died down after much research and discussion. The 

National Academy of Sciences issued two reports (National Academy of Sciences, 1981, 

1982) that summarized all available scientific information at that time. These two reports 

noted the changes made in the previous decade solved the problem of the formation of 

nitrosamines in cured meat. These changes included the virtual elimination of nitrate, 

reduced use of nitrite, and change in the regulation of bacon along with mandatory use of 

ascorbate or erythorbate. However, issues during the last 30 years keep resurfacing regarding 

the safety of nitrite in cured meats. In the 1990’s, several epidemiological studies reported 
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that the consumption of cured meats was linked to childhood leukemia and brain cancer 

(Peters, Preston-Martin, London, Bowman, Buckley & Thomas, 1994; Preston-Martin & 

Lijinsky, 1994; Sarasua & Savitz, 1994). Additionally, the state of California proposed nitrite 

as a developmental and reproductive toxicant under the Safe Drinking Water and Toxic 

Enforcement Act in 1998. However, subsequent research and thorough scientific review has 

largely resolved both issues of nitrite as a carcinogen and as a developmental and or 

reproductive toxicant (Sebranek & Bacus, 2007).  

 

Toxicity 

 In addition to the nitrosamine issue, there are other safety concerns associated with 

the use of nitrites in foods. When not used properly, nitrite in high concentrations is toxic to 

humans (Cammack, Joannou, Xiao-Yuan, Martinez, Maraj & Hughes, 1999). Because of 

this, the USDA regulates the usage levels of nitrate and nitrite and both are considered 

restricted ingredients. Under the regulations enforced by the USDA, concentrations of nitrite 

used to cure meat products is not known to present a hazard to human health (Pierson & 

Smoot, 1982). The ingestion of high doses of nitrate and nitrite can lead to the condition of 

methemoglobinemia. Methemoglobinemia is the result of a high dose of an oxidant in the 

blood. In the case of nitrite, the iron atom of the hemoglobin molecule is oxidized from the 

ferrous Fe2+ to the ferric state Fe3+. When the iron atom of hemoglobin is in the ferric state it 

is unable to bind oxygen, therefore the oxygen carrying capacity of the blood is reduced 

(Kennedy, Smith & McWhinney, 1997). The primary symptom of methemolobinemia is 

cyanosis. Cyanosis is the characteristic blue color of the skin and organs when the amount of 

unoxygenated hemoglobin in the blood is too high. In one case, it was reported that an 
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accidental overdose of nitrite from the consumption of cured meatballs resulted in the patient 

having chocolate-brown colored blood (Khan, Adams, Simmons & Sutton, 2006). Nitrates 

and nitrites can both cause methemoglobinemia but nitrites are more toxic due to their greater 

oxidative potential. If not treated immediately or if ingested nitrite levels are too high, the 

condition becomes fatal. The lethal oral doses of nitrate and nitrite for humans are 

determined to be 80-800 mg nitrate/kg body weight and 22-250 mg nitrite/kg body weight 

(Honikel, 2008). Newborn infants are particularly susceptible to methemoglobinemia 

because the enzymes needed to counteract the effects of nitrite poisoning are not developed 

at this time. This leads to “blue baby syndrome” in which the infants turn blue in color due to 

lack of oxygen to internal organs and, if severe enough, can be fatal (Cammack et al., 1999). 

For this reason, the USDA does not allow nitrates or nitrites in baby, junior, or toddler foods 

(USDA, 1995).  

 

Uncured Meat Products 

Nitrite has been used for centuries to cure meat as it adds variety to the human diet and acts 

as a preservative. Even though it has numerous benefits, its relationship with nitrosamines 

and cancer over the past 40 years has given many consumers a negative perception of nitrite. 

Heath concerns of consumers about the safety of nitrate and nitrite have encouraged the 

production of uncured, no nitrate/nitrite-added meat and poultry products (Sindelar, Cordray, 

Olson, Sebranek & Love,  2007a). Currently, there are two different classifications of 

uncured, no nitrate/nitrite-added meat and poultry products in the marketplace. The first type 

of product is one in which nitrate or nitrite is not included in the product formulation. These 

products typically have undesirable quality characteristics as described earlier. The second 
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type of product is formulated with the intention of replacing nitrite to provide products that 

are similar to typical cured meat products (Sindelar, Cordray, Sebranek, Love & Ahn, 

2007b). In this type of product, a natural curing process is utilized in which naturally 

occurring nitrates are reduced to nitrite in the meat products by specific microorganisms 

(Bacus, 2006).  

 The term uncured is used by the USDA to label both types of products, ones that do 

not contain nitrite and ones that are cured by naturally occurring nitrates and a starter culture. 

USDA defines uncured in the Code of Federal Regulations Title 9, Parts 317.17 and 319.2. 

The regulation states: 

“Any product which is required to be labeled by a common or usual name for 
which there is a standard and to which nitrate or nitrite is permitted or 
required to be added, may be prepared without nitrate or nitrite and labeled 
with such common or usual name or descriptive name when immediately 
preceded with the term ‘‘Uncured’’ in the same size and style of lettering as 
the rest of such standard name: Provided, That the product is found by the 
Administrator to be similar in size, flavor, consistency, and general 
appearance to such product as commonly prepared with nitrate and nitrite or 
both. 
Products which contain no nitrate or nitrite shall bear the statement ‘No 
Nitrate or Nitrite Added.’ 
 
Products described shall also bear the statement ‘Not Preserved—Keep 
Refrigerated Below 40 °F At All Times.’” 

 

In the case of no nitrate/nitrite-added products that simulate the traditionally cured products 

with naturally occurring nitrates, this labeling in technically inaccurate. The reason for the 

designation of uncured is because products such as bacon, frankfurters, ham, bologna, and 

other cured meats have a typical color and flavor widely recognized by consumers. These 

product characteristics are standardized and are associated with being cured with the direct 

addition of nitrite.  Processing procedures are much different for “uncured” products and 
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therefore their label must clarify the differences between the two products. However, the 

term uncured used to describe products cured with indirect addition of nitrate is confusing to 

consumers. Nevertheless, processors are required to label the specific products as uncured 

due to existing USDA regulations. In April of 2006, the USDA verbally announced that new 

label submissions would require changes to the “No Nitrate or Nitrite Added” statement on 

uncured products. This announcement was not followed with documentation, though it was 

stated that new labeling changes will be reflected in the new Food Standards and Labeling 

Policy Book. The change in labeling was in response to the realization that many products 

labeled “uncured” actually contained naturally occurring nitrites that can be present in 

vegetable juices and sea salt. The changes that were made require new labels to contain the 

disclaimer “No Nitrates or Nitrites added except for naturally occurring nitrites found in” one 

of the ingredients present in the ingredient statement. These ingredients include celery juice 

powder, beet juice powder, carrot juice concentrate, sea salt, or any ingredient determined to 

contain nitrates or nitrites by USDA. Furthermore, the statement “No Preservatives” can not 

be used (Bacus, 2006). 

Naturally occurring nitrates are very common in the environment and can be found in 

ingredients such as sea salt and vegetable sources. It is well known that vegetables are a 

source of relatively high nitrate concentrations. The National Academy of Sciences (1981) 

reported that vegetables contain nitrates in concentrations as high as 1500-2800 ppm in 

celery, lettuce, and beets. Vegetable juices and powders are commercially available and are 

being utilized to produce uncured, no nitrate/nitrite-added meat products. An analysis of 

commercially available vegetable juices reported that carrot, celery, beet, and spinach juice 

contained 171 ppm, 2114 ppm, 2273 ppm, and 3227 ppm of nitrate respectively (Sebranek & 



 

 

22

Bacus, 2007). Vegetable powders are also available which can provide nitrate in concentrated 

form. Sindelar et al. (2007b) reported nitrate concentration of 27,462 ppm in commercially 

prepared celery juice powder. Celery powder is highly compatible with cured meats as it has 

relatively low vegetable pigment and flavor that does not cause discolorations or off flavors 

when used at lower levels.  

Once naturally occurring nitrates are introduced into an indirect curing system, 

microorganisms positive for nitrate reductase are needed to enzymatically reduce the nitrate 

to nitrite. Starter cultures are commercially available for the reduction of nitrate in a meat 

curing system. Most of the applications use these cultures for dry sausages where a slow 

release of nitrite is desirable for the long curing process (Sebranek & Bacus, 2007). 

Coagulase negative, catalase-positive staphylococci are commonly applied as meat starter 

cultures (Casaburi, Blaiotta, Mauriello, Pepe & Villani, 2005; Gøtterup, Olsen, Knöchel, 

Tjener, Stahnke & Møller, 2008) and it is well established that most species of staphylococci 

possess enzymes involved in nitrate/nitrite metabolism (Neubauer & Götz, 1996). A study by 

Talon, Walter, Chartier, Barrièr and Montel (1999) measured the nitrate reductase of several 

different strains of staphylococci isolated from dry sausage. The authors found that strains of 

Staphylococcus carnosus had the highest nitrate reductase activity of all staphylococci tested.  

This is in agreement with Gøtterup et al. (2008) where the authors demonstrated that 

sausages inoculated with S. carnosus had a greater red intensity than compared to other 

strains of staphylococcus. It is also believed that staphylococcus strains are important for the 

generation of desirable flavor compounds in fermented sausages (Olesen, Meyer & Stahnke, 

2004). Furthermore, it has been reported that certain strains of S. carnosus exhibit anti-
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listerial activity against Listeria monocytogenes (Papamanoli, Kotzekidou, Tzanetakis & 

Litopoulou-Tzanetaki, 2002). 

The nitrate reductase activity of S. carnosus is caused by a membrane-bound enzyme 

involved in respiratory energy conservation. The enzyme is only found in bacteria where 

nitrate is used as an alternative electron acceptor when oxygen is not available (Neubauer & 

Götz, 1996). After oxygen, the most widely used alternative electron acceptor is nitrate 

(Pantel, Lindgren, Neubauer & Götz, 1998). Neubauer and Götz (1996) showed that during 

the growth of S. carnosus, in the presence of nitrate, nitrite was accumulated in the growth 

medium, and the rate of nitrite accumulation was 8-10 fold higher under anaerobic conditions 

than under aerobic conditions.   In addition, the authors demonstrated that the cells also have 

an enzyme that will further reduce the nitrite to ammonia. However, nitrite is only reduced 

by their inherent enzyme upon depletion of nitrate. It should also be noted that the authors 

reported that nitrite (up to 50 mM) did not inhibit the nitrate reductase activity. This is in 

agreement with Sanz, Vila, Toldrá, Nieto and Flores (1997) in which the authors reported 

that a starter culture of both Lactobacillus sake and S. carnosus was not greatly affected by 

the addition of nitrite as a curing salt.  

The amount of time needed for the reduction of nitrate is dependent on many 

variables such as concentration of the reactants, temperature, pH, and other environmental 

conditions. The temperatures used for these cultures vary with the strain. Casaburi et al. 

(2005) demonstrated that staphylococcus strains were able to reduce nitrate to nitrite at 

temperatures as low as 15 °C but the activity increased as temperature increased, with 

maximum activity at temperatures over 30 °C. It is recommended that commercially 

available strains used for nitrate reduction should be used at temperatures of 38-42 °C. 
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Recent research has shown that time is a critical factor for the conversion of nitrate to nitrite. 

Sindelar, Cordray, Sebranek, Love and Ahn (2007c) concluded that incubation time (at 38 

°C) was more critical than the amount of vegetable juice powder to produce no nitrate/nitrite-

added emulsified cooked sausages that had characteristics similar to a nitrite cured control. 

However, a parallel study of hams showed that the amount of vegetable juice powder added 

was more critical than incubation time for production of this product (Sindelar et al., 2007b). 

It was also reported that a high concentration of vegetable juice powder (0.35%) resulted in a 

more intense undesirable vegetable flavor and aroma than the lower concentration of 

vegetable juice powder (0.20%) in no nitrate/nitrite-added hams. Furthermore, the lower 

concentration of vegetable juice powder resulted in sensory characteristics similar to the 

nitrite cured control (Sindelar et al., 2007b). The authors concluded that the slow temperature 

increase in the large diameter hams provided sufficient time for nitrite production regardless 

of concentration of vegetable juice powder. In the emulsified cooked sausages, the small 

diameter resulted in a quick temperature increase, therefore making incubation time a more 

critical factor.  

 Although the use of vegetable juice powder and a starter culture have been found to 

produce uncured meat products that are acceptable to consumers (Sindelar et al., 2007a, 

2007b, 2007c), there are several concerns associated with the process. The most important 

concern is the safety of these products. It is well documented that nitrite prevents the 

outgrowth of C. botulinum spores that produce the deadly toxin which causes botulism 

(Pierson & Smoot, 1982; Tompkin, 1995). The amount of ingoing and residual nitrite is 

important for the control of this microorganism. It has been reported that often in meat 

products cured with natural sources of nitrate, the amounts of both ingoing and residual 
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nitrite are lower than nitrite cured-products (Sindelar et al., 2007b, 2007c). This raises the 

concern for food safety, especially regarding Clostridium botulinum growth, as well as other 

microorganisms whose growth is inhibited by nitrite. However, data have also shown that it 

is possible to produce uncured meat products with higher than normal residual nitrite levels 

(Sindelar et al., 2007c). High residual nitrite concentrations have been directly related to the 

formation of nitrosamines. Also reducing agents such as ascorbate and erythorbate are not 

used in many uncured meat products, which increases the chance of nitrosamine formation. 

These reductants have been found to reduce the amount of nitrosamines formed, and are 

required in nitrite cured bacon (Pegg & Shahidi, 2000). The conversion of nitrate to nitrite is 

extremely variable when converted in a meat system, therefore, more research is needed to 

find a more controlled environment for nitrate to nitrite conversion.  

 Recently, pre-converted vegetable juice powders have become commercially 

available for the production of uncured meat and poultry products. In these pre-converted 

powders the nitrate is reduced with microorganisms before adding it to the meat block. The 

pre-converted powders can be added directly to comminuted products, or can be mixed in a 

brine and injected or tumbled into different meat cuts. These powders can be purchased 

already containing nitrite at concentrations as high as 10,000 – 15,000 parts per million. As a 

result, no starter culture or incubation step is required for the production of no-nitrate-or-

nitrite-added meat products. There is concern about the use of pre-formed nitrite in vegetable 

juice powders because nitrite alone is a restricted ingredient. Conversely, the use of vegetable 

juice powders containing nitrite is not regulated, as the USDA has no restrictions on the use 

of pre-converted vegetable juice powders. This also adds to the confusion about the labeling 

of these products. It could be argued that the statement of “no nitrates or nitrites added” 
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should not be used when pre-converted vegetable juice powders are used due to the fact that 

nitrite is being added directly. Nevertheless, because the nitrite is derived from naturally 

occurring nitrates, the product is still required to be labeled as uncured with the statement of 

no nitrates or nitrites added. Another issue to consider with pre-converted vegetable juice 

powders is that at the recommended usage rate, they still only result in an ingoing nitrite 

concentration of approximately 20-60 parts per million. This is much lower than the 

concentrations used in nitrite-cured meat products which raises concerns in regards to food 

safety and shelf life. Therefore, it is necessary to establish a standard processing procedure 

that provides more consistency and better control over nitrite levels. One possible method of 

achieving this would be to convert the nitrate found naturally in vegetable juice powders into 

nitrite with the use of a nitrate reducing starter culture in the brine prior to injection. This 

approach could offer better control over the amounts of nitrite injected into the product by 

development of brine incubation processes that would produce a consistent, desired nitrite 

concentration.  For example, nitrite accumulation in the brine is dependent on many 

variables, such as temperature, salt content, time, and pH. If these variables could be held 

constant, the amount of nitrite produced would be consistent between batches. Pre-converting 

a brine before injecting is hypothesized to allow more consistent nitrite concentrations, faster 

product cure, and better control over nitrite levels in the product.   

 

Summary 

Recent consumer interest for healthier perceived foods has prompted consumer 

demands for uncured, no-nitrate-or-nitrite-added meat and poultry products. Curing 

processes that produce uncured meat products utilize natural ingredients high in nitrate such 
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as vegetable products, and a nitrate-reducing starter culture to produce nitrite from nitrate. 

The labeling of these products is technically inaccurate and confusing to consumers because 

many processed meats labeled uncured have the same characteristics of nitrite-cured meats. 

Nitrite concentration produced by natural processes is impossible to determine because of 

high reactivity of the nitrite molecule. This raises concern for the safety of these products 

because nitrite is a highly effective antimicrobial, particularly against the growth of 

Clostridium botulinum, and excess nitrite provides a risk for the formation of nitrosamines. 

Consequently, manufacturing procedures that maintain the quality and safety of products 

labeled no-nitrate/nitrite added must be utilized. Further research is needed to find alternative 

methods to produce meat products cured with naturally occurring nitrates to assure product 

safety and to control the amount of nitrite produced from these processes. Therefore, the first 

objective of this research was to investigate the optimum conditions needed during the 

incubation of curing brines containing vegetable juice powder and a starter culture to produce 

a sufficient amount of nitrite for the production of uncured meat products. The second 

objective was to investigate the effects of these incubated brines on quality characteristics 

and residual nitrite concentrations on uncured, no-nitrate-or-nitrite-added ham.  
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Abstract 
The effect of salt level, vegetable juice powder (VJP) and temperature were investigated in a 

preliminary study to determine optimum conditions needed during the incubation of curing 

brines including VJP and a starter culture containing Staphylococcus carnosus for the 

production of “uncured” no nitrate/nitrite-added meat products. Subsequently, incubated 

curing brines were utilized to produce no-nitrate/nitrite-added ham in which quality 

characteristics and residual nitrite concentrations were measured. Two ham treatments (SC: 

VJP and starter culture containing Staphylococcus carnosus; PC: pre-converted VJP) and a 

nitrite-added control (C) were used for the study. No differences (P>0.05) were found 

between treatments and control for CIE L* or TBARS values. Residual nitrite concentration 

was greater (P<0.05) in the control hams during the first week of storage. Although nitrite in 

the control remained at relatively greater concentration throughout storage, the difference 

was not statistically significant after the first week. At day 42 of storage, the control (C) 

treatment retained significantly (P<0.05) greater a* (redness) values than either the SC or PC 

treatments.  

 
Introduction 

 
The curing of meat has been performed for centuries and can be traced back to the 

earliest recorded history. Historically, salt was the primary ingredient used for meat 
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preservation because it was realized that cuts of meat would not spoil as fast when packed in 

dry salt (Pegg & Shahidi, 2000). After centuries of salting meat, certain salts became more 

desirable because they created a distinct pink color and unique flavor. It is widely accepted 

that impurities of potassium and sodium nitrate were responsible for the characteristic cured 

meat pigment and special flavor (Binkerd & Kolari, 1975; Cassens, Ito, Lee & Buege, 1978). 

Furthermore, it was determined that the sodium and potassium nitrate in these salts were 

converted to nitrite by naturally occurring bacteria (Townsend & Olson, 1987).  

Today, nitrite is added directly to processed meats to offer consumers flavor and 

appearance typical of cured meat.  Nitrite is responsible for development of cured color and 

flavor, for imparting antioxidant activity and extending shelf life, and for suppressing the 

outgrowth of Clostridium botulinum (Pegg & Shahidi, 2006).  

Even though nitrite has many desirable effects, there is some concern about its safety. 

The issue arose in the late 1960’s and into the 1970’s when it became apparent that nitrite-

cured meats had the potential to produce nitrosamines. Nitrite is an extremely reactive 

chemical and under appropriate conditions it can act as a nitrosating agent to produce nitroso 

compounds. Many of these nitroso compounds have been found to be carcinogenic (Cassens, 

1995). Because of nitrite’s relationship with nitrosamines and cancer over the past 40 years, 

many consumers have a negative perception of nitrite. 

Although it has numerous benefits, health concerns of consumers about the safety of 

nitrate and nitrite have encouraged the production of no nitrate/nitrite-added meat and poultry 

products that simulate typical cured meats (Sindelar, Cordray, Olson, Sebranek & Love,  

2007a). Currently, there are two different classifications of no nitrate/nitrite-added meat and 

poultry products in the marketplace. The first type of product is one in which nitrate or nitrite 
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is not included in the product formulation and is truly uncured. The second type of product is 

formulated with the intention of replacing nitrite with natural sources of nitrate to provide 

products that are similar to typical cured meat products (Sindelar, Cordray, Sebranek, Love 

& Ahn, 2007b). The term uncured is used by the United States Department of Agriculture 

(USDA) to label both types of products. USDA defines uncured in the Code of Federal 

Regulations Title 9, Parts 317.17 and 319.2. The regulation states: 

“Any product which is required to be labeled by a common or usual name for 
which there is a standard and to which nitrate or nitrite is permitted or 
required to be added, may be prepared without nitrate or nitrite and labeled 
with such common or usual name or descriptive name when immediately 
preceded with the term ‘‘Uncured’’ in the same size and style of lettering as 
the rest of such standard name: Provided, That the product is found by the 
Administrator to be similar in size, flavor, consistency, and general 
appearance to such product as commonly prepared with nitrate and nitrite or 
both. 
Products which contain no nitrate or nitrite shall bear the statement ‘No 
Nitrate or Nitrite Added.’ 
 
Products described shall also bear the statement ‘Not Preserved—Keep 
Refrigerated Below 40 °F At All Times.’” 

 
Nitrite is a unique ingredient used to cure meat for which there is no substitute. However, 

because nitrite is a preservative, direct addition of nitrite to natural or organic processed 

meats is not permitted. As a result, different processes are needed to produce natural or 

organic processed meats that have similar characteristics of nitrite-cured meat (Sebranek & 

Bacus, 2007). Therefore, a natural curing process is typically utilized in which naturally 

occurring nitrates are reduced to nitrite in the meat products by specific microorganisms 

(Bacus, 2006). It is well known that vegetables contain considerable amounts of nitrate 

(Siciliano, Krulick, Heisler, Schwartz & White, 1975), and when vegetable sources are added 

to processed meats in addition to a nitrate reducing starter culture, a sufficient amount of 
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nitrite may be produced to achieve curing reactions. However, nitrite concentration produced 

by natural processes is impossible to determine because of high reactivity of the nitrite 

molecule. This raises concern for the safety of these products because nitrite is a highly 

effective antimicrobial, and a minimum amount of nitrite is considered to be important to 

antimicrobial effectiveness. On the other hand, excess nitrite might provide a risk for the 

formation of nitrosamines. 

Recently, pre-converted vegetable juice powders have become commercially 

available for the production of uncured meat and poultry products. These powders can be 

purchased already containing nitrite at concentrations as high as 10,000 – 15,000 parts per 

million. This raises questions about the use of pre-formed nitrite in vegetable juice powders 

because nitrite alone is a restricted ingredient. Conversely, the use of vegetable juice powders 

containing nitrite is not regulated, and the USDA has no restrictions on the use of pre-

converted vegetable juice powders. Therefore, it is necessary to establish a standard 

processing procedure that provides more consistency and better control over nitrite levels in 

the natural and organic products. Cured meats such as hams and bacon are typically injected 

with brine containing curing agents. Because the brine is formulated prior to injection, this 

may offer a processing step for improved control of nitrite concentration in these products. 

One method of achieving this in the natural and organic products would be to convert the 

nitrate found naturally in vegetable juice powders into nitrite with the use of a nitrate-

reducing starter culture in the brine prior to injection. This approach could offer better 

control over the amounts of nitrite subsequently injected into the product by development of 

brine incubation processes that would produce a consistent, desired nitrite concentration 

appropriate for a specific product application.  
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The temperatures used for staphylococcus starter cultures vary with the strain. 

Casaburi et al. (2005) demonstrated that staphylococcus strains were able to reduce nitrate to 

nitrite at temperatures as low as 15 °C but the activity increased as temperature increased, 

with maximum activity at temperatures over 30 °C. It is recommended that commercially 

available strains used for nitrate reduction should be used at temperatures of 38-42 °C. 

Casaburi et al. (2005) also demonstrated that staphylococcus strains survived in the presence 

of up to 20% salt and at a pH as low as 5.0.  

Therefore, the objectives of this research were to investigate the optimum conditions 

needed during the incubation of curing brines containing vegetable juice powder and a starter 

culture to produce a sufficient amount of nitrite for the production of uncured (using the 

USDA labeling terminology for these products) meat products. Furthermore, these incubated 

brines were compared with a pre-converted vegetable juice powder and a nitrite-cured 

control to assess quality characteristics and residual nitrite concentrations on uncured, no-

nitrate-or-nitrite-added ham. 

 

Materials and Methods 

Preliminary Study 

Experimental Design 

Vegetable juice powder (VJP) concentration, salt concentration, and temperature 

were used to first investigate effects of conditions in curing brines used for no-nitrate-or-

nitrite-added meat products. Brines containing two levels of VJP and four concentrations of 

salt were held at three temperatures resulting in a 2 x 4 x 3 factorial design with 24 treatment 

combinations. Due to limited starter culture activity in the presence of salt at the low 
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temperature, only treatments of 0% salt were measured only at the low temperature, resulting 

in a total of 18 brine treatments. Brines were measured for concentrations of nitrate, nitrite, 

pH and number of live cells of starter culture over time until observed nitrite concentrations 

started to decrease.  

Brine Manufacture 

Brines were prepared according to the experimental design (Table 1) to represent 

typical injection brines as much as possible within the treatment variables. Dextrose was held 

constant at 8% for all treatments. The two levels of vegetable juice powder (Vegetable Juice 

Powder NA 20, Chr. Hansen Inc., Gainsville, Fla., USA) used were calculated to be 

equivalent to 0.2% and 0.4% of total product weight (meat block + brine solution) when used 

at a 25% injection level. Four treatments of salt were added at concentrations of 0%, 3%, 6%, 

and 9% in the brine solution. Starter culture consisting of  S. carnosus (CS 299 Bactoferm™, 

Chr. Hansen Inc., Gainseville, Fla., USA) was added at 0.1285% of the brine for all 

treatments. Brines were mixed by hand, adding the ingredients to the water while mixing. 

VJP was added first followed by dextrose, salt (if included), and finally starter culture. After 

mixing, brines were immediately placed in holding areas at one of three temperatures. 

Treatments included a high (38 °C), medium (24 °C), and low temperature (6 °C) incubation 

of the brine. High temperatures (38 °C) were achieved by placing brine in a water bath ( 

Model WPC95, Sheldon Manufacturing Inc., Cornelius, OR., USA). Medium temperatures 

(24 °C) were achieved by holding the brine at room temperature and low temperatures (6 °C) 

were achieved by placing the brine in a refrigerated processing area maintained at 6 °C at the 

Iowa State University Meat Laboratory. 

 



 

 

39

pH Determination  

 The pH was recorded during incubation for each brine treatment until observed nitrite 

concentrations started to decrease. To measure pH, approximately 50 ml of brine was 

transferred into a 100 ml beaker. The pH was then measured with a pH/ion meter (Acumet 

950: Fisher Scientific, Fair Lawn, N.J., USA) equipped with an electrode (Accumet Flat 

Surface Epoxy Body Ag/AgCl combination Electrode Model 13-620-289, Fisher Scientific, 

Fair Lawn N.J., USA) calibrated with phosphate buffers at pH 4.0 and pH 7.0. At each time 

interval for each treatment, measurements were made in duplicate. 

Nitrite Analysis  

Nitrite was determined with modifications to the AOAC method ([AOAC] 

Association of Official Analytical Chemists, 1990). Five ml of brine solution was transferred 

to a 500 ml volumetric flask using a pipette. The flask was then filled to volume with 

distilled, de-ionized water (DDW). Approximately 30 ml of sample was then transferred to a 

50 ml volumetric flask. Under a fume hood, 2.5 ml sulfanilamide reagent (0.5g sulfanilamide 

in 150 ml 15% acetic acid) was added. After 5 minutes, 2.5 ml NED reagent (0.2 g N-(1-

naphthyl) ethylenediamine .2HCl in 150 ml 15% acetic acid) was added and filled to volume 

with sample. Color was allowed to develop for 15 minutes. Solution was transferred to a 

spectrophotometer cuvette and absorbance was measured at 540 nm against a blank of 45 ml 

DDW, 2.5 ml sulfanilamide reagent, and 2.5 ml NED reagent. Nitrite was determined by 

comparing sample reading with a standard curve as described in the official method. All 

nitrite assays were done in duplicate.  

Nitrate Analysis 
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Brine samples used for nitrate analysis were transferred to sterile test tubes, frozen, 

and stored at -5 °C. Nitrate determination methods were modifications of Ahn and Maurer 

(1987). After thawing, samples were diluted between 4 and 11 times with DDW depending 

on expected nitrate concentrations. The sample was then heated for 1 hour in an 80 °C water 

bath. After cooling in cold water for 10 min, 2.5 ml of the solution was transferred to a 

disposable test tube. Carrez II (10.6 g potassium ferrocyanide in 100 ml DDW) and Carrez I 

(23.8 g zinc acetate in 50 ml DDW, with 3 ml glacial acetic acid added, then diluted to 100 

ml with DDW) reagents were added (0.1 ml each) to precipitate proteins. The solution was 

diluted with 2.3 ml of DDW and mixed well. After precipitation, the supernatant was 

centrifuged at 10,000 x g for 20 min and the clear upper layer was used for nitrate 

measurement by high performance liquid chromatography (Afilent, Wilmington Del., USA). 

The column used was Agilent Zorbax SAX (analytical 4.6 x 150 mm, 5-micron) (Agilent, 

Wilmington Del., USA) and the elution buffer was 15 mM phosphate buffer, pH 2.35, with 

isocratic elution. The flow rate was 1.0 ml/min and the sample volume was 25 μL. The 

wavelength used was 210 nm. The area of the nitrate peak was used to calculate nitrate 

concentration (ppm) using a nitrate standard curve.  

Microbiological Analysis 

 Brine samples used for bacterial counts were transferred to sterile test tubes, frozen, 

and stored at -20 °C until measurements were taken. After thawing, 1 ml of the sample was 

used to make appropriate serial dilutions. These dilutions were prepared in sterile peptone 

water. The population of viable cells was determined by spread plating onto Tryptic Soy 

Agar (TSA) (Becton, Dickinson, and Company, Franklin Lanes, NJ, USA) and staphylococci 

population was measured using Baird Parker (Becton, Dickinson, and Company, Franklin 
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Lanes, NJ, USA) media with EY Tellurite Enrichment. TSA plates were incubated at 35 °C 

for 24 hours and the Baird Parker media was incubated at 35 °C for 48 hours.  

Ham Study 

Experimental Design and Data Analysis 

Two forms of vegetable juice powder used for the manufacture of ham were 

investigated and a conventional nitrite-cured control was included. The three ham treatments 

were as follows: 

SC: vegetable juice powder as a nitrate source and starter culture containing S. 

carnosus;  

PC: pre-converted vegetable juice powder containing 10,000-15,000 ppm nitrite; 

Control (C):  conventional cure with sodium nitrite added. 

Statistical analysis was performed for all measurements using the Statistical Analysis System 

(version 9.1, SAS Institute Inc., Cary, N.C., U.S.A.) Mixed Model procedure (SAS Inst. 

2003). The experimental design was a main plot that consisted of 2 blocks (replication) and 3 

ham treatments resulting in 6 observations for processing attributes. The model included the 

fixed main effects of treatment and replication. The random effect was the interaction of 

treatment x replication. 

 Within the main factorial design was a split plot for measurements over time. The 

split plot contained 8 sampling periods (day 0, 1, 3, 7, 14, 21, 28, and 42) and combined with 

the main plot resulted in a total of 48 observations for color, nitrite, and lipid oxidation. The 

model included the fixed main effects of treatment, replication, day, and the interaction of 

treatment x day. The random effect was the interaction of treatment x replication.  
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 The significant main effect means for all experiments were separated and least 

significant differences were found using Tukey-Kramer multiple pairwise comparison 

method. Significance was determined at P<0.05.  

Brine Preparation 

 Hams with the three brine treatments (Table 2) were manufactured according to the 

experimental design. The first treatment (SC) consisted of water, vegetable juice powder 

(Vegetable Juice Powder NA 20, Chr. Hansen Inc., Gainsville, Fla., USA), dextrose, salt, and 

starter culture containing Staphylococcus carnosus (CS 299 Bactoferm™, Chr. Hansen Inc., 

Gainseville, Fla., USA). The second treatment (PC) contained water, pre-converted vegetable 

juice powder (Veg Stable™ 504, Florida Food Products, Inc., Eustis, Fl), salt and dextrose. 

The third treatment (C) was a nitrite-cured control containing water, salt, dextrose, sodium 

erythorbate and sodium nitrite. Brines were mixed by hand by adding the dry ingredients to 

the water while mixing. The SC treatment was mixed without salt and incubated in a thermal 

processing unit (Alkar, Lodi, WI., USA) at 38 °C for 12 hours. Salt was then added after 

incubation. These conditions and procedures were selected based on the results of the 

preliminary experiment.  

 
Product Manufacture 

Fresh ham muscles were purchased from a local supplier and kept refrigerated until 

used. Ham muscles were ground (Biro MFG Co., Marblehead, Ohio, USA) using a 6.35 mm 

plate. The ground ham was then separated into three 20 lb batches. Treatments (SC, PC, and 

C) were randomly assigned to each batch. Each treatment was then added to a vacuum mixer 

(Fatosa vacuum mixer, Model AV80, Barcelona, Spain), brine was added at 25% of the meat 
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weight according to treatment, and was mixed for 5 minutes under vacuum. After mixing, 

ham was transferred to a rotary vane vacuum stuffer (Risco SPA, Model 1040C, Thiene, 

Italy) and stuffed into 3.47” diameter fibrous casings. All three treatments were then hung on 

a smokehouse truck and cooked in a single truck thermal processing oven (Maurer AG, 

Reichenau, Germany). The final internal temperature of the product was brought to 70 °C 

using the cooking schedule found in Table 3. After thermal processing, the cooked ham 

treatments were chilled for 18 hours at 0-2 °C. The hams were then sliced (Model SE12D 

Slicer, Bizerba GmbH & Co. KG., Balingen, Germany) to a thickness of 6 mm. The slices 

were placed in barrier bags with four slices per bag (Cryovac B2470, Cryovac Sealed Air 

Corp., Duncan, S.C., USA) and vacuum packaged. The vacuum packaged ham slices were 

then stored on shelves under 7.0 lux of Deluxe Cool White florescent lighting (constant 

lighting for 24 hours per day) at 2-4 °C. Lights were suspended 61 cm above the packages 

during the storage period.   

Color Measurements 

 Color measurements were conducted using a Hunterlab Labscan spectrocolorimeter 

(Hunter Associated Laboratories Inc., Reston, Va., USA). The Hunterlab Labscan was 

standardized using the same packaging material used on the samples, placed over the white 

standard tile. Illuminate D65, 10° standard observer light source with a 1.27 cm viewing area 

were used to analyze the ham samples. Commission International d’Eclairage (CIE) L* 

(lightness), a* (redness), and b* (yellowness) measurements were taken at a random location 

of each of the 4 slices in a randomly selected package and the resulting average was used in 

data analysis. Color was measured immediately after slicing (day 1) and subsequently at day 

3, 7, 14, 21, 28, and 42. 
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pH Determination 

 The pH was measured with a pH meter (HI 99161, Hanna Instruments, Woonsocket, 

RI) equipped with a pH probe (FC202D, Hanna Instruments, Woonsocket, RI) calibrated 

with standard buffers at pH 4.0 and pH 7.0. Measurements of pH were performed on the raw 

meat sample, each brine treatment, each treatment after the brine was added, and on the 

cooked ham after chilling. The pH was determined by inserting the probe directly into either 

the brine solution or in the meat itself. For each treatment, measurements were made in 

duplicate 

TBARS Analysis 

 Lipid oxidation was measured by the modified 2-thiobarbituric acid reactive 

substances (TBARS) test as described for cured meats (Zipser and Watts, 1962). TBARS 

values were reported as mg of malonaldehyde equivalents/kg of meat sample. Measurements 

were conducted at day 1 after packaging and subsequently at day 3, 7, 14, 21, 28, and 42. For 

each treatment, measurements were made in duplicate. 

Residual Nitrite Analysis 

 Residual nitrite was determined by the AOAC method (AOAC, 1990). Residual 

nitrite was measured before thermal processing (Day 0) and subsequently at Day 1, 3, 7, 14, 

21, 28, and 42. All residual nitrite measurements were done in duplicate.  

 
Results and Discussion 

 
Preliminary Brine Study 
 
 Varying levels of salt, vegetable juice powder, and incubation temperature were used 

in the preliminary investigation to determine favorable conditions for the production of nitrite 
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by a nitrate reducing starter culture. To determine the optimum conditions for nitrite 

production in curing brines, nitrite and nitrate concentrations, pH, and starter culture 

populations were measured over time. However, because the preliminary work was not 

replicated, statistical analysis of this portion of the study was not conducted. 

pH Determination 

 The pH in all of the brines appeared to change over time (Tables 4 and 5). Initial pH 

of the curing brines ranged from 5.16 for the treatment of 38 °C, 9% salt, and 0.4% VJP to 

6.01 for the treatment of 38 °C, 0% salt, and 0.2% VJP. Initial pH was lower, in general, in 

treatments with the higher level of VJP. The average initial pH for the treatments containing 

0.2% VJP was 5.60 while the average initial pH for the treatments containing 0.4% was 5.38. 

This could be due to the VJP which had a pH of 5.2. Another factor affecting initial pH was 

salt. As salt concentration increased in the brine, the measured pH of brines appeared to 

decrease. Over time pH decreased in all treatments, most notably for the treatments at the 

high and medium temperatures suggesting that the culture produced enough acid to affect 

brine pH. The pH of the curing brines at the low temperature decreased but only slightly. 

This suggests that the starter culture was not very active at the low temperature, as indicated 

by the limited amount of nitrite produced, and therefore generated very little acid. Excluding 

the low temperature treatments, the ending pH of the brines ranged from 4.33 to 4.86 with a 

mean of 4.51. A major factor in determining the reactivity of nitrite in a curing system is the 

pH. Sebranek (1979) stated that a pH decrease as little as 0.2 pH units could result in 

doubling the rate of curing reactions. Therefore, as the curing brines become more acidic, the 

nitrite that is produced is likely to become more reactive. 

Nitrite Analysis 
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Nitrite concentrations changed over time for all treatments and between treatments 

(Figures 1 and 2). The variation was not only in peak nitrite concentration, but also in the 

time it took to achieve the peak concentration. Nitrite generated from low temperature (6 °C) 

treatments was virtually none regardless of VJP level (data not shown) and never exceeded 4 

ppm at most. Generally, the medium temperature (24 °C) treatments seemed to result in a 

higher nitrite concentration than the high temperature (38 °C) treatments. However, the high 

temperature treatments reached their peak nitrite level on an average of approximately 40 

hours sooner than the medium temperature, most likely because of the increased activity of 

the starter culture at the higher temperature. The higher concentration of nitrite at the 

medium temperature may be attributed to the increased reactivity of nitrite at the highest 

temperature. As temperature increases, nitrite becomes more reactive which results in the 

nitrite molecule being further reduced to nitric oxide. Therefore, the medium temperature 

treatments may have had less nitrite depletion than the high temperature, resulting in a higher 

ultimate nitrite concentration accumulated in the brine. Nitrite concentrations also appear to 

be affected by salt levels in the brine. As the concentration of salt increased from 0% to 9%, 

the peak nitrite concentration decreased. This might be due to the effect of chloride on nitrite 

reactivity. Sebranek and Fox (1985) demonstrated increased nitrite reactivity as chloride 

concentrations increased. This could also be attributed to the antimicrobial properties of salt. 

Salt increases the osmotic pressure in the brine (Lawrie and Ledward, 2006) resulting in a 

lower starter culture activity. This prevents the starter culture from converting nitrate to 

nitrite.  The level of VJP also had an effect on nitrite concentrations. At 0% salt, the 

treatments with 0.4% VJP resulted in considerably more nitrite than the treatments with 0.2% 

VJP. This was expected because the higher concentrations of VJP would increase the amount 
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of nitrate available and therefore would allow more nitrite generation in the brine. However, 

in the treatments containing 3 %, 6 %, and 9% salt, the higher level of VJP resulted in lower 

nitrite concentrations than the lower level of VJP. This was unexpected and suggests that 

further research is needed to determine the affect of the interaction between salt and VJP on 

nitrite production during brine incubation.  

Nitrate Analysis  

 Nitrate concentrations were measured initially (0 hrs), at peak nitrite concentration, 

and again after nitrite levels started to decrease (Tables 4 and 5).  Nitrate concentrations 

decreased as nitrite concentrations increased for all treatments indicating that the starter 

culture converted nitrate into nitrite. As would be expected, the treatments resulting in the 

highest nitrite concentrations had the lowest detectable nitrate concentrations. VJP also 

affected the amount of nitrate present in the brine as expected. Treatments containing 0.2% 

VJP had initial nitrate concentrations from 168.0 to 186.8 ppm with an average of 179.2 

ppm. Treatments containing 0.4% VJP had initial nitrate concentrations from 234.2 to 374.4 

ppm with an average of 339.6 ppm. This explains the increased amount of nitrite generated 

with the higher VJP concentrations as the higher quantity of nitrate would allow for 

additional nitrite production.  

Microbiological Analysis 

Plate counts of viable cells and staphylococci were conducted immediately after 

brines were mixed (0 hrs), at peak nitrite concentration, and again after observed nitrite levels 

started to decrease (Tables 4 and 5). Starter culture populations did not increase regardless of 

treatment, and often declined to undetectable levels. Generally, the population decreased as 

pH decreased. It appears that the acid produced by the starter culture is directly correlated to 
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the decrease in starter culture population. Therefore, the pH should be closely regulated 

during the incubation of curing brines for uncured, no-nitrate-or-nitrite-added meat products. 

A buffer added to the brine may help the starter culture survive longer during the incubation 

step and consequently increase the amount of nitrite generated by the nitrate reductase 

enzyme of the starter culture. Another possible way to increase the amount of nitrite 

produced would be to exclude dextrose during the incubation step. The starter culture does 

not grow during brine incubation, therefore a food source may not be necessary. The 

omission of dextrose would decrease the osmotic pressure and may allow for a higher 

enzyme activity. Because the cells of S. carnosus do not grow, the nitrate reductase enzyme 

is all that is of any concern, therefore the ingoing level of starter culture is extremely 

important to the amount of nitrite produced.  

As a result of the preliminary experiment, the conditions of 0.4 % VJP, 38 °C, 0 % 

salt and an incubation time of 12 hours were chosen to investigate brine incubation prior to 

injection into hams to assess curing effectiveness. This appeared to be the best combination 

of incubation time and temperature for practical applications. 

Ham Study 

Various processing attributes were measured during the production of hams. These 

include the pH of the brine, raw ham muscles, ham after mixing, and of the finished product 

as well as the temperature of the brine, raw ham muscles and ham after mixing. Product yield 

was also recorded (Table 6). The pH of ham brines was measured immediately before 

addition to the ham muscles. SC, PC, and C brines were all significantly different (P<0.05) 

with pH values of 4.24, 9.22, and 8.02, respectively. The acidic pH of the SC brine is more 

than likely attributed to the lactic acid probably produced by the starter culture used for 
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nitrate reduction (Gøtterup, Olsen, Knöchel, Tjener, Stahnke & Møller, 2008). Temperature 

of the brines was also measured immediately before addition to the raw ham. The 

temperatures were 36.6, 3.7, and 3.8 °C for the SC, PC, and C, respectively. The SC brine 

was significantly (P<0.05) higher than the PC and C brines due to the incubation step at 38 

°C, whereas the PC and C brines were not different. Raw ground ham muscles were 

measured for pH and temperature prior to the addition of brine. The pH of the raw ham 

ranged from 5.98 to 6.07 while temperatures ranged from 1.5 to 1.7 °C and no significant 

(P>0.05) differences were found. Temperature and pH of meat was also measured after 

mixing of the ham, just prior to stuffing. The pH of the SC, PC, and C treatments was 5.83, 

5.95, and 5.90 respectively with no differences between the treatments. The temperatures 

after mixing for the SC, PC, and C treatments were 8.9, 8.2, and 6.8 °C, respectively. There 

were no differences between the SC and PC treatments, but the C treatment was lower 

(P<0.05) than both the SC and PC treatments. Final pH and product yield of the hams were 

measured 24 hours after thermal processing. There were no significant differences (P>0.05) 

in pH or in yield for the three ham treatments. These results indicate that the differences in 

brine pH and temperature had no effect on the final pH or product yield of the ham 

treatments.  

Residual Nitrite 

The residual nitrite measurements are presented in Table 7. The results showed a significant 

(P<0.05) difference in the amount of measured nitrite at day 0. Calculated concentrations of 

ingoing nitrite were 39, 60, and 200 ppm for the SC, PC, and C treatments respectively. As 

expected, residual nitrite concentrations decreased throughout the 42 day storage period for 

all treatments. Before thermal processing (Day 0), residual nitrite concentration was 21.2, 
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40.8, and 112.4 ppm for the SC, PC, and C treatments respectively. The control (C) treatment 

had significantly more residual nitrite than the SC or PC treatments whereas the SC and PC 

treatments were not different. On Days 1, 3 and 7, the control was significantly greater than 

the SC treatment. After day 14, no significant differences were found between treatments. 

Although not always significant, it is interesting to note that the residual nitrite 

concentrations were numerically greater for the nitrite-added control across the entire 42 day 

storage period. Because nitrite forms a variety of reaction products in cured meat, this could 

have implications for the growth of both pathogens and spoilage bacteria  

Color Measurements 

 The Hunterlab was used to objectively measure the CIE L* (lightness), a* (redness), 

and b* (yellowness) characteristics for each ham treatment. There were no significant 

(P>0.05) interactions or significant differences for the main effects of treatment or day for L* 

values (Table 8). There was a significant (P<0.05) interaction for treatment and day for a* 

values (Table 9). As expected, a* values generally decreased over time regardless of 

treatment which suggests that the redness of ham slices declined for all treatments. This is in 

agreement with Sindelar et al. (2007) who found uncured, no-nitrate-or-nitrite-added ham 

slices to be redder at 7 and 14 days than at 28 and 56 days of storage.  At day 42, the control 

(C) treatment resulted in significantly (P<0.05) higher a* values than either the SC or PC 

treatments. This indicates that the control (C) treatment had a more intense cured color at the 

end of the 42 day storage period than other treatments. The higher a* values is more than 

likely due to the higher concentration of ingoing nitrite in the control treatment, which is 

responsible for the stability of the cured color. There was also a significant interaction for 

treatment and day for b* values (Table 10). At day 3, 7, 14, and 21, there were no significant 
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(P>0.05) differences in b* values across treatments. However, on day 1, 28, and 42 the 

control (C) treatment had lower b* values than the SC treatment indicating that the SC 

treatment was more yellow than the control. There were no differences between the PC and 

SC treatments on any day.  

TBARS 

TBARS values ranged from 0.1039 to 0.1410 and no significant interactions or significant 

(P>0.05) differences for the main effects of treatment or day for were found (Table 11). This 

was not unexpected because sodium nitrite has been shown to be an effective antioxidant 

with as little as 40-50 ppm ingoing nitrite (Pegg and Shahidi, 2000). Therefore the calculated 

levels of ingoing sodium nitrite of 39, 60, and 200 ppm  for the SC, PC, and C treatments 

respectively would be enough to prevent or reduce lipid oxidation. Another factor that could 

limit lipid oxidation in the SC treatment is the presence of catalase. Catalase degrades 

hydrogen peroxide and is an important antioxidant enzyme. A study by Talon, Walter, 

Chartier, Barrièr and Montel (1999) measured several strains of staphylococci for the 

production of catalase to establish its role in lipid oxidation during sausage manufacturing.  

In the study, sausages inoculated with S. carnosus had the lowest amount of volatiles from 

lipid oxidation than all other strains of staphylococci, which was attributed to the high 

amount of catalase present in the cells. Interestingly, strains of S. carnosus also generated 

significantly more catalase in the presence of nitrate. Therefore, catalase could have a major 

impact on TBARS values in the SC treatment.  

Conclusions 

The results of this study show that incubating curing brines containing vegetable juice 

powder (VJP) and starter culture (S. carnosus) prior to injection resulted in hams that were 
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comparable to a sodium nitrite added control for cured color and suppression of lipid 

oxidation. The differences observed in residual nitrite appeared to have little impact on lipid 

oxidation. Color values and residual nitrite for the SC and PC treatments throughout the 42 

day storage period confirmed that curing reactions occurred in all treatments. The calculated  

maximum levels of ingoing sodium nitrite of 39 and 60 ppm  for the SC and PC treatments 

respectively would result in considerably less nitrite than the USDA FSIS maximum 

allowable limit of 200 ppm. The USDA FSIS requires a minimum of 120 ppm nitrite in cured 

meat products labeled “Keep Refrigerated” (USDA, 1995), therefore the low ingoing levels 

of nitrite in the “no-nitrate-or-nitrite added” products in this study could be a cause for 

concern regarding food safety, especially the growth of C. botulinum.   

Further research is needed to determine if the use of a buffer and the omission of 

dextrose to decrease the pH change during the incubation of a curing brine for uncured meat 

and poultry products is effective for producing higher levels of nitrite in the brine. Also, 

further research is needed regarding the effects of this technology on microbiological shelf 

life of these products.  
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Table 2. Brine formulations for the production of ham 
 

Treatmenta 

Ingredient SC PC C 
Water 78.87 % 79.00 % 80.70 % 
Salt 11.00 % 11.00 % 9.80% 
Dextrose 8.00 % 8.00 % 8.00 % 
VJP 2.00 %b 2.00 %c -------- 
Starter Cultured 0.1285% -------- -------- 
Sodium Erythrobate -------- -------- 0.22 % 
Curing Salte -------- -------- 1.28% 
Total 100.00 % 100% 100.00 % 
a Treatments: 
 SC = Vegetable juice powder and a starter culture (Staphylococcus carnosus) 
 PC = Pre-converted vegetable juice powder 
 C = nitrite-cured control 
b Vegetable Juice Powder NA 20, Chr. Hansen Inc., Gainsville, Fla., USA 

c Veg Stable™ 504, Florida Food Products, Inc., Eustis, Fl 

d CS 299 Bactoferm™, Chr. Hansen Inc., Gainseville, Fla., USA 

e 6.25% Sodium Nitrite 
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Table 3. Cooking Schedule for Ham 
Step Type Step Time Dry Bulb 

(°C) 
Wet Bulb 

(°C) 
RH 
(%) 

IT* 
(°C) 

Cook 00:40 74 0 0 ------- 

Cook 00:30 77 0 0 ------- 

Smoke Cook 00:45 79 0 0 ------- 

Smoke Cook 01:00 79 72 71 ------- 

Cook ------- 82 71 62 60 

Steam Cook ------- 85 85 100 70 

Cold Shower 00:10 10 0 0 ------- 

*IT = Internal Temperature 
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Table 6. Least squares means for processing attributes of no nitrite-added (SC and PC) and 
nitrite-added control (C) ham.  
 
           
  pH  Temperature (°C)   

Treatmenta  Brineb 
Raw 
Hamc 

Post 
Mixingd  Brineb 

Raw 
Hamc 

Post 
Mixingd 

Final 
pHe Yieldf 

SC 
 

4.24h 6.05h 5.83h  36.6h 1.7h 8.9h 5.97h 91.5%h 

PC 
 

9.22i 5.98h 5.95h  3.7i 1.6h 8.2h 6.01h 91.6%h 

C 
 

8.02j 6.07h 5.90h  3.8i 1.5h 6.8i 6.12h 91.3%h 

SEMg  .0394 .0501 .0558  .2191 .0924 .0214 .0562 .0901 
 
a Treatments: 
 SC = Vegetable juice powder and a starter culture (Staphylococcus carnosus) 
 PC = Pre-converted vegetable juice powder 
 C = nitrite-cured control 
 

b Brine = used for 25% gain of ham muscles 

c Ground raw pork ham muscles were randomly selected for pH and temperature 
measurements  

d Post Mixing = measurements for pH and temperature were taken immediately after ham   
came out of mixer  

e Final pH = pH taken after chilling for 18 hours at 0-2 °C 

f Yield = weight of cooked product/weight of raw product after chilling for 18 hours at 0-2 °C 

g Standard error of means. 
h-j Means within same column with different superscripts are different (P<0.05) 
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Table 7: Least square means of residual nitrite concentrations (ppm) of no-nitrite-added (SC 
and PC) and nitrite-added control (C) hams.* 
 Day 
TRTa 0 1 3 7 14 21 28 42 

SC 21.2b 15.4b 15.5b 14.5b 12.0b 9.0b 6.0b 2.0b 

PC 40.8b 28.3bc 30.2bc 30.0bc 25.2b 20.6b 15.7b 7.3b 

C 112.4c 52.4c 54.1c 54.2c 46.8b 38.0b 33.7b 26.1b 

* Pooled Standard Error of Means = 7.0514 
a Treatments: 
 SC = Vegetable juice powder and a starter culture (Staphylococcus carnosus) 
 PC = Pre-converted  vegetable juice powder 
 C = nitrite-cured control 
b-c Means within same column with different superscripts are different (P<0.05) 
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Table 8: Least square means for L* values of no-nitrite-added (SC and PC) and nitrite-added 
control (C) ham.* 
 

 Day 
TRTa 1 3 7 14 21 28 42 

SC 61.85 60.49 61.05 61.06 60.45 61.27 61.26 

PC 60.01 59.84 60.13 60.76 58.17 59.10 60.43 

C 60.47 60.56 61.07 60.41 59.72 59.61 59.44 

* Pooled Standard Error of Means = 1.4046 
 

a Treatments: 
 SC = Vegetable juice powder and a starter culture (Staphylococcus carnosus) 
 PC = Pre-converted  vegetable juice powder 
 C = nitrite-cured control 
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Table 9: Least square means for the a* values of no-nitrite-added (SC and PC) and nitrite-
added control (C) hams.* 
 
 Day 
TRTa 1 3 7 14 21 28 42 

SC 6.77b 8.61b 8.41b 8.09b 8.10b 7.49b 6.64b 

PC 7.90bc 8.35b 8.21b 8.08b 8.26b 8.12b 7.56b 

C 8.62c 8.81b 8.83b 8.93b 9.10b 8.41b 9.23c 

* Pooled Standard Error of Means = 0.1823 
a Treatments: 
 SC = Vegetable juice powder and a starter culture (Staphylococcus carnosus) 
 PC = Pre-converted  vegetable juice powder 
 C = nitrite-cured control 
b-c Means within same column with different superscripts are different (P<0.05) 
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Table 10: Least square means for the b* values of no-nitrite-added (SC and PC) and nitrite-
added control (C) hams.* 
 
 Day 
TRTa 1 3 7 14 21 28 42 

SC 7.71c 6.37b 6.03b 6.55b 6.72b 6.95c 7.57c 

PC 6.57bc 6.15b 6.17b 6.14b 6.14b 6.11bc 6.24bc 

C 6.28b 5.91b 5.97b 5.49b 5.66b 5.46b 5.82b 

* Pooled Standard Error of Means = 0.1501 
a Treatments: 
 SC = Vegetable juice powder and a starter culture (Staphylococcus carnosus) 
 PC = Pre-converted  vegetable juice powder 
 C = nitrite-cured control 
b-c Means within same column with different superscripts are different (P<0.05) 
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Table 11: Least square means for the TBARS values of no-nitrite-added (SC and PC) and 
nitrite-added control (C) hams.* 
 
 Day 
TRTa 1 3 7 14 21 28 42 

SC 0.1158 0.1102 0.111 0.108 0.1238 0.1289 0.1219 

PC 0.1285 0.1371 0.1143 0.1125 0.108 0.1131 0.109 

C 0.1176 0.1197 0.1094 0.1115 0.1039 0.119 0.141 

* Pooled Standard Error of Means = 0.008 
a Treatments: 
 SC = Vegetable juice powder and a starter culture (Staphylococcus carnosus) 
 PC = Pre-converted  vegetable juice powder 
 C = nitrite-cured control 
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CHAPTER 4. GENERAL CONLUSIONS 

 

The biggest concern with incubating brines to convert nitrate to nitrite prior to 

injection is the low levels of nitrite that were produced. For this study, the maximum amount 

of nitrite generated in an incubated brine was 247.2 ppm, occurring after 48 hours of 

incubation. At this concentration, the ingoing amount of nitrite at a 25% gain would be 61.8 

ppm nitrite. This is significantly lower than the USDA FSIS maximum allowable limit of 200 

ppm. Since USDA FSIS requires a minimum of 120 ppm nitrite in cured meat products 

labeled “Keep Refrigerated”, the low ingoing levels from this process found in this study 

could result in microbiological concerns, especially regarding C. botulinum.  It has been 

shown that the amount of vegetable juice powder affects the amount of nitrite produced. The 

higher the amount of vegetable juice powder, the more nitrite is able to be generated. 

However, high levels of vegetable juice powder can cause off odors and off flavors in the 

finished product.  

One way to possibly increase the amount of nitrite in an incubated brine would be the 

addition of a buffer. Brine’s pH had a large impact on nitrite generation by affecting the 

population of the starter culture. If pH was held constant, it may allow for more of the nitrate 

in the system to be converted to nitrite. Also, if pH did not decrease to the point where the 

cells of S. carnosus became depleted, it may allow for additional conversion during the 

cooking process when the internal temperature of the product increases to provide adequate 

time/temperature conditions for nitrite production.  

Another possible way to increase the amount of nitrite produced would be to exclude 

dextrose during the incubation step. It appears that the starter culture does not grow during 
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brine incubation, therefore a food source may not be necessary. The omission of dextrose 

would decrease the osmotic pressure and may allow for a higher enzyme activity. Because 

the cells of S. carnosus do not grow, the nitrate reductase enzyme is all that is of any 

concern, therefore the ingoing level of starter culture may be extremely important to the 

amount of nitrite produced.  

The process of incubating curing brines with vegetable juice powder and a nitrate 

reducing starter culture containing Staphylococcus carnosus for the production of uncured 

ready-to-eat ham resulted in a product that was inferior in a* values and ingoing nitrite levels 

to a nitrite-cured control. However, it was similar to a product produced with a pre-converted 

vegetable juice powder. It is also important to note that after 7 days of storage, residual nitrite 

between the three treatments was not found to be statistically different, although the control 

had higher levels throughout the 42 day storage period. Also, all three treatments had similar 

TBARS values indicating that all methods of producing a cured product were effective in 

controlling lipid oxidation. Catalase production may provide an additional antioxidant effect 

to the treatment that used S. carnosus as nitrate reducing starter culture. This could be 

important due to the low concentrations of residual nitrite throughout the storage period. 

Further research is needed to determine if the use of a buffer and the omission of 

dextrose during the incubation of a curing brine for uncured meat and poultry products is 

effective at producing higher levels of nitrite. Also, further research is needed regarding the 

effects of this technology on microbiological control and shelf life of these products.  
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