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ABSTRACT 

The main focus of this dissertation is on the use of polyanhydride nanoparticles as 

antimicrobial delivery vehicles to treat the diseases melioidosis caused by the bacterium 

Burkholderia pseudomallei and primary amoebic meningoencephalitis (PAM) caused by 

the free-living amoeba Naegleria fowleri.   

Melioidosis represents a bacterial disease characterized by antimicrobial 

resistance, recrudesce, and high mortality.  B. pseudomallei is classified as a category B 

bioterrorism agent as this agent has been studied as a potential bioweapon by various 

nations.  This dissertation shows that these polyanhydride nanoparticles are effective at 

delivering the antibiotics meropenem, ceftazidime, and chloramphenicol against B. 

pseudomallei in in vitro broth assays and tissue culture cell models of intracellular 

pathogenesis.      

PAM is a rare disease yet results in a fatal infection with close to 100% mortality 

with aggressive antimicrobial therapy.  Antimicrobials recommended for the treatment of 

primary amoebic meningoencephalitis were loaded into nanoparticles and screened 

against N. fowleri in in vitro growth assays.  When rifampicin and azithromycin were 

loaded into these nanoparticles, an improvement in anti-parasitic efficacy was noted.   

In summary, these results bolster the effectiveness of polyanhydride nanoparticles as 

effective drug delivery vehicles across prokaryotic and eukaryotic pathogens.   

Additional research discussed is the anti-parasitic activity of the anti-rheumatoid 

drug auranofin on N. fowleri.  In vitro assays found that auranofin has an IC50 of 0.788 

µg/mL with the HB-1 strain of N. fowleri.  When these amoeba were treated with 3.0 

µg/mL auranofin, staining of the nucleus with the cell membrane impermeable dye 



xi 

propidium iodide suggests that auranofin exerts amoebicidal activity.  This data suggests 

that auranofin has potential as a therapy for primary amoebic meningoencephalitis.         

Lastly, the impact that the catecholamine hormones norepinephrine and 

epinephrine have on the replication and antimicrobial susceptibility of Bacillus anthracis 

and Yersinia pestis.  Bacillus anthracis is the causative agent behind the disease anthrax 

and Y. pestis is the cause of the many manifestation of plague.  Norepinephrine was 

found to accelerate the replication of B. anthracis and render the bacteria less susceptible 

to the antibiotic rifampicin.  While, norepinephrine and epinephrine had the inverse effect 

with Y. pestis and resulted in a decreased replication rate.       
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CHAPTER 1: INTRODUCTION 

Infections caused by a variety of pathogenic organisms, whether they be caused 

by bacteria or protozoa, represent ongoing and evolving challenges in treating animal and 

human disease.  Antimicrobial resistance within bacteria is a leading concern and 

represents one of the biggest threats to human wellbeing (1, 2).  While rare, encephalitic 

infections caused by free-living amoeba are associated with high mortality and may 

become more common with global warming (3, 4).  This dissertation describes the 

utilization of polyanhydride nanoparticles as a means to improve therapies against the 

bacterium Burkholderia pseudomallei which exhibit substantial antimicrobial resistance 

and Naegleria fowleri, a free-living fresh water, amoeba associated with high mortality. 

Burkholderia pseudomallei 

Burkholderia pseudomallei is a gram-negative saprophytic, soil bacterium known 

to cause the disease melioidosis in humans.  This bacterium has a worldwide distribution, 

with B. pseudomallei being known to occur in Asia, Australia, Africa, Middle East, South 

America, and Central America (5, 6).  The absence of B. pseudomallei in North America 

and Europe is suspected to be due to acidic  soil conditions in these regions; there are 

some regions in the North American continent that are suitable for B. pseudomallei 

including Florida and other Southern States (7).  The majority of documented cases of 

melioidosis occurs in South East Asia and Northern Australia.  It is thought that 

incidences of melioidosis are underreported as melioidosis can present with a multitude 

of clinical manifestations and isolates can be difficult to positively identify using 

conventional identifications methods; it is estimated that as many as 165,000 cases of 

melioidosis occur annually with 89,000 deaths (7).  Of positively identified melioidosis 



2 

cases mortality can range from 10% to 40% depending on antibiotics prescribed and 

supportive care given; individuals with diabetes, alcoholism, renal, and lung disease are 

known to be more susceptible to melioidosis (8).  As B. pseudomallei is highly infectious 

via aerosol exposure and has high mortality, it is considered as a biowarfare/bioterrorism 

agent.  It was explored as a bioweapon by the United States and Soviet Union (9, 10).  

Infection can also occur through contact with mucosal membranes and through broken 

skin. 

 Under the current treatment guidelines for melioidosis, the CDC recommends a 

two-part treatment regimen consisting of an intensive intravenous two week treatment 

phase of ceftazidime or meropenem followed by several months of oral antibiotics 

consisting of trimethoprim-sulfamethoxazole or amoxicillin with clavulanic acid (11).  

The WHO recommends the inclusion of doxycycline during the intensive phase of 

treatment (12).  Resistance to antibiotics from the following classes, aminoglycosides, 

macrolides, chloramphenicol, fluoroquinolones, tetracyclines, and trimethoprim is 

associated with efflux pump activity (13).  Resistance to ceftazidime and meropenem can 

occur following mutations to the penA gene and alterations in efflux activity; resistance to 

these antimicrobials can occur during the course of conventional treatment which can 

lead to recurrence and chronic infections (13-15).  Antibiotic resistance is often attributed 

to mobile elements, such as plasmids, but documented resistance in B. pseudomallei is 

restricted to the bacteria’s chromosomal DNA (16).   Resistance to ceftazidime and 

meropenem is rare with less than 0.2% of isolates being resistant to ceftazidime and no 

reported incidences of meropenem resistance in primary clinical isolates. The incidence 

of clinical isolates attributed to trimethoprim-sulfamethoxazole resistance range from 
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2.5% to 16% depending on the geographical region.  Resistance to doxycycline in 

primary clinical isolates is rare with an occurrence of less than 2 percent.  The incidence 

of chloramphenicol resistance clinical isolates is 7 percent (17).  In light of these 

restrictions in treating melioidosis there is an urgent need for improved therapeutics.  

Currently, there isn’t a licensed vaccine against melioidosis. 

 Current advances in therapeutics to treat melioidosis are aimed at screening B. 

pseudomallei against a wider spectrum of available antibiotics, testing newly developed 

compounds, development of vaccines, and the use of nanoparticles.  A promising newly 

developed monobactum antimicrobial is BAL30072, which has shown in vitro activity 

that is superior to ceftazidime and meropenem (18).  The anti-rheumatic drug auranofin, 

while having a high MIC concentration is very effective at reducing the frequency of 

persister cells which is significant as theses cell populations are associated with 

recurrence of infection.  The compounds MMV688271 and MMV688179 were also 

shown to be effective at reducing persister cell populations (19).  Vaccines that have been 

evaluated include live attenuated versions including the non-virulent related Burkholderia 

thailandensis E555 and the attenuated B. pseudomallei strain Bp82, which both induced 

improved survival in the acute mouse model of melioidosis (20, 21).  Vaccines derived 

from outer membrane vesicles (OMVs) from B. pseudomallei 1026b were shown to 

provide a significant increase in survival in the murine model of melioidosis; however, 

this vaccine didn’t provide complete clearance of bacteria from the spleen and lungs (22).  

BALB/c mice vaccinated with polymer acetylated dextran microparticles encapsulating 

B. pseudomallei whole cell lysate and toll-like receptor (TLR) 7/8 agonist resulted in an 

extended time to death but failed to provide complete protection (23).  Silver 
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nanoparticles have been screened in vitro against several B. pseudomallei strains with 

reported MICs of 32 to 48 µg/mL (24).  As a comparison reported values of MIC for 

ceftazidime and meropenem in conventional broth assays are 32 and 4 

µg/mL,respectively: these numbers representing the average values across 50 strains of B. 

pseudomallei.  Here we report an MIC of 2.0 µg/mL meropenem for B. pseudomallei 

K96243, which is then reduced to 0.5 µg/mL when meropenem is loaded in 

polyanhydride nanoparticles. 

 One aspect of B. pseudomallei infection is that the facultative intracellular niche 

wherein these bacteria reside affords them a degree of protection from antibiotics, and 

also from elements of the immune system.  Previous work has shown that polyanhydride 

nanoparticles succeed in the ability to reduce the intracellular burden of infected tissue 

culture cells with the facultative intracellular pathogens Brucella melitensis and 

Mycobacterium species to a degree vastly superior to conventional methods used to 

delivery antibiotics.   Nanoparticle delivery of a cocktail of tuberculocidal antibiotics to 

THP-1 macrophages infected with Mycobacterium marinum was able to achieve a 6-log 

reduction in the intracellular burden, while the antibiotics used in the absence of 

nanoparticle encapsulation achieved a mere 1.7 log reduction in intracellular bacteria 

(25).   With the encapsulation of the antibiotic rifampicin in polyanhydride nanoparticles 

a complete eradication of intracellular Brucella melitensis was achieved with infected 

RAW 264.7 macrophages, which wasn’t achieved with the conventional use of rifampicin 

(26).  Nanoparticles represent a new means of extending the usefulness of currently 

approved antibiotics through facilitating improved delivery of these antimicrobials to the 
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target pathogen and potentially reducing the development of antibiotic resistance, which 

is reported in this dissertation. 

 In addition to B. pseudomallei, other Burkholderia species that are known to 

cause disease are Burkholderia mallei and species belonging to the Burkholderia cepacia 

complex (27).  B. mallei represents another Burkholderia species that is associated with 

both high infectivity and high mortality like B. pseudomallei; B. mallei is found within 

the Burkholderia pseudomallei complex of Burkholderia species and has similarities to B. 

pseudomallei in terms of pathogenesis.  The disease caused by B. mallei is referred to 

Glanders and is an infliction of both humans and solipeds.  Unlike B. pseudomallei, B. 

mallei is regarded as an obligate pathogen and is not saprophytic in nature (28).  Like B. 

pseudomallei, B. mallei is classified as a category B bioterrorism agent and has been used 

and pursued as a biowarfare agent in the past (10).  During the First World War allied 

pack animals were infected with B. mallei to disrupt the flow of wartime goods (29).  

Treatments for melioidosis are generally considered suitable to treat Glanders, and B. 

mallei is susceptible to a larger swath of antibiotics because it lacks a multidrug efflux 

pump found in B. pseudomallei (13).  With both B. pseudomallei and B. mallei having 

potential for use as biowarfare and bioterrorism agents and their associated high mortality 

and invasive treatment regimens it stands that new therapeutic options are needed and 

chapter two of this dissertation addresses this concern through using polyanhydride 

nanoparticles as vehicles for the delivery of currently approved antibiotics used to treat 

these diseases.  

 Species belonging to the Burkholderia cepacia complex are opportunistic 

pathogens known to cause disease in immunocompromised individuals and those 
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suffering from cystic fibrosis.  These species include Burkholderia cepacia, Burkholderia 

cenocepacia, and Burkholderia multivorans to name a few (30).  Infections caused by 

these organisms are very recalcitrant to treatment as they possess high degrees of 

multidrug resistance (13).  The scope of chapter two of this dissertation is focused on 

bacteria belonging to the Burkholderia pseudomallei complex, but there exists a need for 

better therapeutics to treat disease caused by bacteria of this complex as there is a high 

associated mortality within susceptible populations.      

Naegleria fowleri 

 Free-living pathogenic amoeba represent rare but usually fatal infections in 

humans requiring extensive supportive care and intensive antimicrobial therapies.  

Naegleria fowleri is perhaps the best known of these amoeba as it is often referred to as 

the “brain eating” amoeba and cases are often reported by the media.  Acanthamoeba 

species and Balamuthia mandrillaris are also free-living amoeba that cause significant 

morbidity and mortality (31).  Disease caused by N. fowleri is referred to as primary 

amoebic meningoencephalitis (PAM) and is associated with mortality approaching 100%.  

In the United States as of 2013, of the 142 known incidences of PAM, 139 of these 

resulted in fatal infection (32).  Treatment usually involves the intrathecal administration 

of the antifungal drug amphotericin B along with oral or intravenous administration of 

the antifungal fluconazole, and the antibiotics azithromycin and rifampicin (33).  An 

experimental drug recently approved for treating PAM is miltefosine, which has its origin 

as a drug to treat breast cancer (34).  Supportive care is needed to address the 

inflammation and intracranial pressure that develops during the course of infection and 
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has included dexamethasone and therapeutic hypothermia (35).  Given the dire outcome 

of these infections there is a profound need for better therapeutics. 

N. fowleri has a world-wide distribution and is commonly found in fresh water 

sources including ponds, lakes, ditches, and improperly chlorinated swimming pools and 

potable water (36, 37).  The first characterized instance of PAM was in 1965 and was 

described by Fowler and Carter (38).  Even with N. fowleri being ubiquitous in the 

environment, cases are rare with the United States reporting less than 5 cases a year, 

while Pakistan reports in excess of 10 cases a year.  In the United States most instances of 

PAM are in teenagers and children that became infected while playing in bodies of 

freshwater  In contrast, most cases of PAM in Pakistan are in adults; this is likely due to 

different cultural practices in Pakistan where ritual ablution of the nasal passages is a 

common practice (36, 39). Infection is the result of getting water contaminated with these 

amoebae deep into the nose were the amoeba gain access to the olfactory neural 

epithelium.  From the olfactory neural epithelium, the amoeba can then transit through 

the cribriform plate via the olfactory nerves to the olfactory bulb and then brain (40).  

Symptoms of PAM include fever, headache, emesis, progressing to seizure, and coma.  

From onset of symptoms to death, the course of infection is typically three to seven days 

(41).   

 While there have been advances in treating PAM with the recent inclusion of 

miltefosine and the use of therapeutic hypothermia, these new measures do not ensure 

survival of the patient.  Survival does not mean a return to normal life as permanent brain 

damage can occur (34).  Along with prescribing the correct treatment, which may not be 

initiated upon admittance to a hospital as the symptoms of PAM resemble that of 
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bacterial meningoencephalitis, starting antimicrobial therapy in a prompt fashion is 

critical for treating this disease.  Chapter 3 addresses the potential to use polyanhydride 

nanoparticles to improve therapeutic delivery of currently prescribed antimicrobials as a 

means to improve their efficacy.  Chapter 4 details the in vitro amoebicidal activity of the 

anti-rheumatoid drug auranofin on N. fowleri. 

Polyanhydride Nanoparticles 

 Polyanhydride nanoparticles have demonstrated marked improvements in drug 

delivery in both in vitro and in vivo systems, to include such arenas as vaccine, antibiotic, 

and antiparasitic delivery (26, 42, 43).  The co-polymer nanoparticles utilized in chapters 

2 and 3 are composed of the monomers 1,6-bis(p-carboxyphenoxy)hexane (CPH), 1,8-

bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), or sebacic acid (SA).  These 

nanoparticles are capable of entrapping a diverse payload within their polymer matrix, to 

include proteins used in vaccine preparations to small molecule drugs such as antibiotics.  

Degradation occurs through hydrolysis of the anhydride bounds linking the monomers, 

with the resultant degradation products being biocompatible and non-toxic dicarboxylic 

acids (44).  To illustrate the point that polyanhydride devices are safe delivery vehicles, 

the FDA has approved the use of implantable wafers composed of 1,3-bis(p-

carboxyphenoxy)propane (CPP) and sebacic acid (SA) in the treatment of malignant 

glioma (45).  Release of cargo entrapped with the polymer matrix is dependent on the 

polymer glass transition state (Tg), and drug hydrophobicity.  Diffusion rates within the 

nanoparticle are decreased below the polymer Tg, when the polymer is in a glassy state, 

and increased when above the Tg, when the polymer is in a rubbery state.  Hydrophobic 

drugs favor release driven through surface erosion, were as, hydrophilic drug release is 
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dependent on solute transportation (46).  Depending upon polymer chemistry and cargo 

the release kinetics of polyanhydride nanoparticles can range from burst release profiles 

to sustained release.  Previous research with these polyanhydride nanoparticles has shown 

improvements in antimicrobial delivery to Mycobacterium species, Brucella species, and 

pathogenic filarial nematodes (25, 26, 42).  An aspect of these nanoparticles that is 

exploited in this research is the propensity of phagocytic cells to internalize these 

nanoparticles; this enables us to target antimicrobials into phagocytes infected with 

intracellular bacteria.                

Advances in understanding host pathogen interactions: Effect of catecholamines on 

bacterial replication and antimicrobial susceptibility 

Taking a step back from therapeutic discovery, the relevancy of treating these 

bacteria in the context that occurs in vivo is difficult to do in vitro as these approaches fail 

to take into account the low nutrient conditions found within a biological host and the 

effect that non-nutrients encountered in vivo may have on bacterial replication and 

susceptibility towards antibiotics.  Most media developed for antimicrobial testing is 

highly enriched and supports the robust replication of bacteria, while this may be ideal 

for general cultivation, these nutrient rich conditions are not found/available in a host, 

and inhibitory concentrations of antimicrobials found using highly enriched media may 

not represent what would occur in vivo.   

One key nutrient for bacterial growth would be iron, which is very limited in vivo; 

in serum, most iron is bound to host transferrin or sequestered in heme.  Pathogenic 

bacteria have evolved means to circumvent host iron sequestration by means of 

producing siderophores which have a high affinity for iron and are able to liberate the 
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iron bound to transferrin (47).  It has been shown that host derived catecholamines, such 

as norepinephrine, are able to aid bacteria in acquiring iron from host transferrin (48).  

The addition of norepinephrine in Serum-SAPI medium, which was developed to mimic 

the physiological conditions present in blood, facilitates the robust replication of several 

pathogen bacteria as it improved iron acquisition by these bacteria (49, 50).  Serum-SAPI 

medium was designed so that most iron contained within the medium is bound to 

transferrin as it would occur in vivo.  The addition of norepinephrine was shown to 

facilitate better acquisition of this transferrin bound iron and supported the robust 

replication of these bacteria; in the absence of norepinephrine these same bacteria showed 

limited replication.  With staphylococcal species, it was shown that not only could 

norepinephrine aid in iron acquisition from transferrin, but that norepinephrine also 

altered the susceptibility of these bacteria to the antibiotic rifampicin (51).  The presence 

of norepinephrine and dopamine promoted replication of these bacteria at rifampicin 

concentrations that inhibited the complete replication of bacteria in the absence of these 

catecholamines, and norepinephrine reduced the bactericidal activity of rifampicin.  Of 

particular interest is that adrenergic receptor antagonist, such as the alpha-adrenergic 

receptor antagonist phentolamine, have been shown to block the effects of norepinephrine 

on these bacteria in Serum-SAPI medium (52).  This would suggest that norepinephrine 

is signally through a cell surface receptor that is orthologous to adrenergic receptors 

found in eukaryotes.  In Mycoplasma hyopneumoniae it was shown that norepinephrine 

exposure led to changes in the expression of 84 genes (53).   

Given the proven altered susceptibility to antibiotics and alterations in replication, 

chapter 5 examines how catecholamines affect the replication and antimicrobial 
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susceptibility of Bacillus anthracis and Bacillus cereus.  Inhalation anthrax has a high 

degree of mortality and has a history of use and development as a biowarfare and 

bioterrorism agent (10).  The impact that circulating norepinephrine may have on the 

pathogenesis and susceptibility to antibiotics of B. anthracis represents new findings in 

the field of microbial endocrinology and provide meaningful data for the treatment of 

Anthrax.  Nothing is known how Yersinia pestis will respond to catecholamines, and like 

B. anthracis represents a highly virulent bacterium with the potential to cause epidemics 

and use as a biowarfare or bioterrorism agent.  Data obtained from Yersinia enterocolitica 

would suggest that norepinephrine should stimulate the replication of Y. pestis, if Y. pestis 

has a similar response to norepinephrine as Y. enterocolitica has (49).  What was found is 

that Y. pestis has an inverse response to norepinephrine and that norepinephrine inhibits 

the replication of this bacteria.   
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Abstract 

 Therapies to treat melioidosis are in a constant state of evolution as the bacterium 

responsible, Burkholderia pseudomallei, is recalcitrant to many antibiotics and as a 

category B bioterrorism agent effective therapies are desired in the event of the use of this 

organism as a bioweapon.  Depending on antibiotics prescribed and supportive care, 

mortality from melioidosis is as high as 40%; this represents an unacceptable burden 

given that this bacterium has been explored as a biowarfare agent and is endemic in many 

parts of the world.  No licensed vaccines to prevent melioidosis currently exist, so 

antimicrobial therapy is the cornerstone of treatment.  Resistance to aminoglycosides, 

macrolides, chloramphenicol, fluoroquinolones, tetracyclines, and trimethoprim 

antibiotics is well documented.  Polyanhydride nanoparticles present a means to improve 

antimicrobial delivery, thereby improving the efficacy of currently prescribes antibiotics; 

these nanoparticles were loaded with antibiotics used to treat melioidosis and tested 

against B. pseudomallei in in vitro broth assays and against macrophages infected with B. 
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pseudomallei.  The loading of meropenem, ceftazidime, and chloramphenicol into 

polyanhydride nanoparticles resulted in improved bacteriostatic and bactericidal activity 

in in vitro assays.  Meropenem loaded nanoparticles were able to clear infected 

macrophages of B. pseudomallei.  These improvements in antimicrobial efficacy through 

nanoparticle delivery represent a means to evolve melioidosis therapy without the need to 

identify new antimicrobial drugs.         

Introduction 

The genus Burkholderia is comprised of greater than 70 species; many of which 

exist as environmental saprophytes (1).  Of these many species, several are regarded as 

potential pathogens.  Within the Burkholderia pseudomallei complex, there are the 

known pathogens Burkholderia pseudomallei and Burkholderia mallei.  Of these, B. 

mallei is considered an obligate pathogen causing the disease Glanders, while B. 

pseudomallei is saprophytic in nature with the ability to cause varying disease states in 

humans and animals termed melioidosis; both these diseases are associated with high 

mortality (2).  In northern Thailand, B. pseudomallei is responsible for 20% of 

community acquired sepsis (3).   

Both B. pseudomallei and B. mallei are classified as category B bioterrorism 

agents (4).  These Burkholderia species were both used and developed as biological 

warfare agents by numerous countries.  During the First World War B. mallei was used 

by German sympathizers to infect allied pack animals in an attempt to disrupt the flow of 

wartime goods.  During World War II, the Japanese biological weapons program was 

believed to have infected prisoners with various biological agents, including B. mallei, in 

efforts to study and develop these agents as weapons.  Both the Soviet Union and the 
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United States considered B. pseudomallei for use as a biological weapon (5-7).  The 

potential use of these agents in a bioterrorism or biowarfare act is not unfounded, and the 

development of improved therapeutics would save lives in a mass casualty situation.             

Melioidosis can result from exposure to these bacteria through inhalation, contact 

with mucosal membranes, and introduction into broken skin (8).  Exposure to B. 

pseudomallei following inhalation can result in symptoms developing within days or in 

some cases decades.  Respiratory infection is characterized by fever, headache, sweats, 

and pleuritic chest pain.  The disease can progress rapidly with dissemination of the 

bacteria resulting in sepsis that is usually fatal without treatment (4).        

The current guidelines for the treatment of melioidosis recommended by the CDC 

consist of two weeks of intravenously administered ceftazidime or meropenem, followed 

by 3 to 6 months of oral trimethoprim-sulfamethoxazole or amoxicillin with clavulanic 

acid (9).  The WHO adds to the initial intravenous treatment phase by recommending the 

addition of doxycycline or trimethoprim-sulfamethoxazol (10).  Chloramphenicol is 

useful in the treatment of melioidosis with neurological involvement, as this drug attains 

high concentrations in the CNS (11). 

Much of the mortality associated with melioidosis can be attributed to the 

bacterium’s innate antimicrobial resistance which has hindered effective treatment.  

Depending on the antimicrobials prescribed and supportive care, mortality can range 

from 10 to 40%; this represents a significant milestone to overcome (8).  It is estimated 

that melioidosis is severally underreported and that there could be as many as 165,000 

cases per year with 89,000 deaths (12).  Reduced influx of antimicrobials into the bacteria 

cell and highly efficient efflux mechanisms to remove antimicrobials from the 
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intracellular environment are responsible for much of this resistance (13). It should be 

noted that Glanders is easier to treat, as B. mallei is more sensitive to antimicrobials than 

B. pseudomallei; this is thought to be due to the absence of a multidrug efflux pump that 

is found in B. pseudomallei, but is lacking in B. mallei (14).  Efflux pump activity is 

responsible for resistance to aminoglycosides, macrolides, chloramphenicol, 

fluoroquinolones, tetracyclines, and trimethoprim (15).  While rare, mutations in the 

penA gene, which encodes a Class A β-lactamase, can result in resistance to ceftazidime 

and clavulanate; these resistant isolates are still susceptible to carbapenems (15).   

With the invasive and lengthy duration of treatment needed to treat melioidosis, 

high associated mortality, community risk in endemic areas, and potential for use as a 

bioweapon, there is an urgent need for improved therapeutic options (7, 16).  These 

include tigecycline, which is a derived from the antibiotic tetracycline, which has shown 

both in vitro activity against B. pseudomallei and protection in the acute murine model of 

melioidosis when administered along with ceftazidime (17).  A new monocyclic β-lactam 

antibiotic BAL30072 has shown in vitro efficacy that surpasses that of many of the 

prescribed antibiotics (18).  However, it was found that 40% of tested B. pseudomallei 

isolates are resistant to the new 5th generation cephalosporin ceftobiprole (19).  Through 

the use of a polyanhydride nanoparticle antimicrobial delivery system we can take 

existing antibiotics and improve upon their antimicrobial activity and extend their 

usefulness in combating melioidosis and Glanders.   

Polyanhydride nanoparticles represent a polymeric drug delivery system with 

surface erosion and drug hydrophobicity largely dictating release parameters.  Surface 

erosion is more important for the release of hydrophobic drugs and leads to more 
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sustained release profiles. Were as, hydrophilic drugs diffuse out of the nanoparticles via 

concentration gradient dependent solute transportation, which results in a more rapid 

release profile (20).  These nanoparticles are comprised of the monomers of 1,6-bis(p-

carboxyphenoxy)hexane (CPH), 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), 

or sebacic acid (SA), and degrade into biocompatible and nontoxic dicarboxylic acids 

(21).  These nanoparticles are readily internalized by phagocytic cells which enables the 

targeting of antimicrobials into the intracellular environment favored by intracellular 

pathogens, such as Burkholderia species.  Previous work has already shown that these 

nanoparticles improve the antimicrobial efficacy of doxycycline and rifampicin against 

the facultative intracellular bacterial pathogen Brucella melitensis (22)                                

Herein, we demonstrate that the encapsulation of meropenem, ceftazidime, and 

chloramphenicol into polyanhydride nanoparticles composed of CPTEG, CPH, or SA 

polymers leads to improved in vitro efficacy when compared to these antibiotics used 

conventionally, as seen in improvements in bacteriostatic and bactericidal activity.  With 

the encapsulation of meropenem into nanoparticles, we have shown a 5-fold reduction in 

IC50 value against Burkholderia pseudomallei.  The encapsulation of ceftazidime resulted 

in a 2-fold reduction in IC50 value.  Aside from lowering the inhibitory concentration, 

these nanoparticles also resulted in greater bactericidal activity than that of 

conventionally applied antibiotics.  We have visualized these nanoparticles in giant multi-

nucleated cells derived from RAW 264.7 macrophages, which is significant as 

Burkholderia species induce these cell formations and demonstrates that we can target 

nanomedicines to these infected cells.  We also see that these same nanoparticles show 

increased efficacy against B. mallei.  With these improvements over conventionally 
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formulated antibiotics, we expect that the use of these nanoparticle will lead to improved 

patient outcomes in the case of melioidosis.                          

Materials and Methods 

Cell culture 

Burkholderia psuedomallei strain K96243, NR-4073, Burkholderia mallei strain 

China, NR-4071, and Burkholderia thailandensis strain E264, NR-10275 were obtained 

through BEI Resources, NIAID, NIH.  Cultivation was on trypticase soy agar 

supplemented with 1% bovine hemoglobin or Columbia agar supplemented with 1% 

bovine hemoglobin at 37°C and 5% CO2; B. pseudomallei and B. mallei grow equally 

well on both of these media.  Murine macrophage RAW 264.7 and human monocyte 

THP-1 cells were obtained from ATCC, Manassas VA.  Mammalian tissue culture cells 

were maintained in 75 cm2 tissue culture flasks with either DMEM supplemented with 

10% FBS for RAW 264.7 cells or RPMI supplemented with 10% FBS for THP-1 cells 

and cultivated at 37°C and 5% CO2.   

Antibiotics and nanoparticle preparation 

Antibiotics were suspended in PBS and filtered through a sterile 0.2 µm syringe 

filter and stored at -80°C; with the exception of rifampicin which was suspended in 

DMSO.  Nanoparticle CPTEG and CPH monomers were synthesized in house as 

previously described, and SA monomers were purchased from Sigma (23, 24).  

Nanoparticle synthesis was as previously described (25).  Nanoparticle suspensions were 

made in PBS at 10 mg/mL concentration with sonication for 15 to 30 seconds at 14 

amplitude (Misonix S-4000, Newton, CT).  Once suspended the suspensions were stored 

at -80°C until used in an experiment.  Actual loading of antibiotics into nanoparticles was 
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determined by suspending 9-11 mg of nanoparticles in PBS.  Over the course of a week 

supernatants containing the released antibiotics were routinely removed; at the end of the 

week 40 mM sodium hydroxide was added to the nanoparticle suspension to rapidly 

degrade the remaining nanoparticle mass releasing any remaining antibiotic.  Antibiotics 

released from meropenem and ceftazidime loaded nanoparticles were quantified by RP-

HPLC-UV (1200 series, Agilent Technologies, Santa Clara, CA).  UV spectrophotometry 

was used to quantify the release of rifampicin and doxycycline using absorbance at 333 

and 350 nm, respectively (SpectraMax M3, Molecular Devices, San Jose, CA).  

Antibiotic loading was then determined from the sum of antibiotics released in the PBS 

supernatants and sodium hydroxide samples.    

Broth culture inhibition assays 

   Nanoparticle inhibition assays followed CLSI guidelines for antimicrobial 

susceptibility testing.  Briefly, an 0.5 OD600 suspension of bacteria was made in PBS 

from a colony scraped off an overnight grown culture.  This suspension was then diluted 

1:100 in Mueller Hinton both II and 50 µL was pipetted into the wells of a 96 well tissue 

culture plate.  Nanoparticle and soluble antimicrobials were prepared at 2x concentration 

in Mueller Hinton broth II and 50 µL of these were added to the bacteria already in the 

tissue culture plates; an untreated control was included.  The antibiotics ceftazidime, 

meropenem, chloramphenicol, doxycycline, and rifampicin were screened either 

individually or in cocktails.  Following 20 hours of growth at 37°C at 5% CO2 the 

antimicrobial concentration that inhibited 50% of the metabolic activity of the bacteria 

(IC50) was determined through the addition of the viability reagent resazurin.  After a 30-

minute incubation for B. pseudomallei or 60-minute incubation for B. mallei with 
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resazurin the reduction of resazurin to resorufin was quantified with a Fluostar Omega 

plate reader (BMG LABTECH, Cary, NC) using 544 excitation and 590 emission filters.  

Using the fluorescent data, IC50 values were calculated using nonlinear regression 

analysis in Graphpad Prism software.  In separate experiments, in place of resazurin 

reduction, the endpoint analysis was done through CFU enumeration following serial 

dilution and plating onto agar plates with overnight cultivation at 37°C and 5% CO2, 

which enabled us to determine bactericidal action.  Bactericidal activity is qualified if the 

resultant CFU/mL count was less than the starting CFU/mL concentration at the start of 

the experiment.  Statistical comparison of CFU numbers between nanoparticle and 

soluble treated broth cultures was done using a One-way ANOVA with Bonferroni’s 

comparison of means test using GraphPad Prism.    

Broth culture antibiotic resistance assays 

Generation of resistance to meropenem was accomplished by exposing B. 

pseudomallei to 2 µg/mL meropenem in either soluble form or nanoparticle delivered 

meropenem in broth assays in 100 µL volume of Mueller Hinton broth II for 20 hours.  

Following 20 hours of exposure to meropenem, the entire contents of the broth cultures 

were plated onto agar plates supplemented with 16 µg/mL meropenem and the agar plates 

were held at 37°C and 5% CO2 for 3 days.  The presence of growth on these meropenem 

supplemented agar plates indicated the development of resistance to meropenem; each 

culture was treated as a separate event and were scored either positive or negative for a 

resistant phenotype.  Two micrograms per mL meropenem was chosen as the meropenem 

concentration to drive selection for resistance as this concentration represents the MIC for 

B. pseudomallei and is also pharmacologically relevant.  Growth on 16 µg/mL 
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meropenem is the demarcation threshold for classifying meropenem resistance.  It needs 

to be noted that all meropenem resistant isolates were promptly destroyed. 

Nanoparticle interaction with tissue culture cells            

Tissue culture interaction studies with nanoparticles utilized the murine 

macrophage cell line RAW 246.7 and were conducted by seeding the tissue culture cells 

at a cell density of 1.0 x 106 cells/mL in either a 100 µL volume in 96 well tissue culture 

plates or a 500 µL volume in 24 well tissue culture plates.  The 24 well tissue culture 

plates were used for fixed cell microscopy and the cells were seeded onto glass coverslips 

that had been placed into the wells.  After allowing sufficient time for the cells to attach, 

nanoparticles were added and then the cells were centrifuged at 250 rcf for 10 minutes at 

4°C to pellet the nanoparticles onto the cell layer.  Following centrifugation, the cells 

were placed at 37°C and 5% CO2 for various lengths of time to assess macrophage 

internalization of the nanoparticles, intracellular localization of the nanoparticles, and cell 

viability and health.  Cell viability was measured through the addition of the viability 

reagent resazurin.  General cellular markers of stress and cellular function used during 

live cell imaging were annexin V and Mitotracker red (ThermoFisher Scientific, 

Waltham, MA) using an IX71 DSU microscope (Olympus, Center Valley, PA) with 

Metamorph Advanced acquisition software.  Antibodies and stains used for fixed cell 

imaging were the anti-LAMP antibody 1D4B (August, J.T. (DSHB Hybridoma Product 

1D4B) and stains used were wheat germ agglutin 488 and DAPI (Invitrogen) imaged on 

an inverted fluorescence microscope (Olympus BX71, Olympus, Center Valley, PA) 

using Olympus Fluoview acquisition software.  To assess the intracellular localization of 

our nanoparticles in giant multi-nuclear cells, cells were first infected with B. 
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thailandensis at a multiplicity of infection (MOI) of 10:1 before the addition of 

nanoparticles that had been loaded with the red fluorescent molecule rhodamine.  B. 

thailandensis is found within the Burkholderia pseudomallei complex and causes the 

formation of giant multi-nucleated cells through a similar type 6 secretion system 

mechanism as B. pseudomallei and allows experiments to be carried out in a BSL2 

setting (26). Post-acquisition processing was performed with imageJ (https://fiji.sc/)            

Nanoparticle targeted drug delivery to infected macrophages 

Intracellular viability (ICV) experiments were conducted using the human 

monocyte cell line THP-1.  In 96 well tissue culture plates the macrophages were seeded 

at a cell density of 200,000 cells per well for THP-1 cells in 100µL of tissue culture 

media.  The THP-1 monocytes were activated through the addition of 50 nM phorbol 12-

myristate 13-acetate (PMA) for 24 hours, followed by removal of the PMA for an 

additional 24 hours prior to infection.  Bacteria were added at a series of MOIs 

encompassing MOIs of 0.1:1, 2:1, and 15:1 bacterium to macrophages in a 10 µL volume 

of PBS.  Immediately following the addition of the bacteria, the tissue culture plates were 

centrifuged at 250 rcf at 4°C for 10 minutes to pellet the bacteria among the 

macrophages.  Once removed from the centrifuge the tissue culture plates were placed in 

an incubator set at 37°C and 5% CO2.  After one hour the cells were washed with PBS to 

remove extracellular bacteria and media containing 400 µg/mL kanamycin was added to 

the tissue culture plates to eliminate any remaining extracellular bacteria.  An hour 

following the addition of the kanamycin the infected macrophages were treated with 

either nanoparticles loaded with antimicrobials, nanoparticles devoid of cargo, soluble 

antimicrobials, or left untreated.  Fifty micrograms per mL kanamycin was maintained 

https://fiji.sc/
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throughout the experiment to inhibit extracellular growth of the bacteria.  A subset of 

macrophages at this time were lysed with 0.1% deoxycholate in serum free DMEM to 

enumerate the bacterial burden at this time.  At various time points post-treatment the 

bacterial burden in the macrophages was assessed through CFU enumeration.  To 

accomplish this the media was removed from the macrophages and the cells were washed 

with PBS, then the PBS was removed, and the macrophages were lysed by the addition of 

0.1% deoxycholate in serum free DMEM.  The lysate was serially diluted and plated onto 

agar plates.  Following overnight incubation at 37°C and 5% CO2 the colonies were 

counted.  Statistical comparison between nanoparticle and soluble treated macrophages 

was done using a One-way ANOVA with Bonferroni’s comparison of means test using 

GraphPad Prism.   

Results 

Individual drug screening utilizing the viability reagent resazurin showed that the 

antibiotics meropenem, ceftazidime, and chloramphenicol benefited the most from 

nanoparticle encapsulation when tested against B. pseudomallei, while rifampicin was 

hindered by nanoparticle encapsulation (Fig. 1).  Improvement in the efficacy provided 

by nanoparticle encapsulation compared to the use of soluble antibiotics was chemistry 

and loading percentage dependent, with the 10:90 CPTEG:SA formulae yielding the 

greatest benefit.  The greatest improvement over soluble meropenem came from 10:90 

CPTEG:SA nanoparticles with a 0.8% drug loading (Fig. 2A).  This nanoparticle batch 

resulted in an IC50 value of 0.1073 µg/mL meropenem, whereas the corresponding IC50 

for soluble meropenem in this experiment was 0.646 µg/mL; nanoparticle treatment 

resulted in a 5-fold decrease in antibiotic concentration needed to achieve an IC50.   
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FIG 2-1.  Fold change in IC50 values of nanoparticle treatments compared to conventional 

soluble treatments with Burkholderia pseudomallei.  IC50 values determined through the 

reduction of the viability reagent resazurin following conventional antimicrobial 

susceptibility broth assay experimental design.  Fold changes are represented in an 

additive fashion; i.e. a 1-fold change would be a 2x change by multiplication.  Positive 

values indicate an improvement in antimicrobial activity and a negative value indicates a 

decrease in antimicrobial activity with nanoparticle delivery.  Antibiotics: 

chloramphenicol (CAM), meropenem (MEM), ceftazidime (CAZ), doxycycline (DOX), 

and rifampicin (RIF).  The number following the antibiotic is a reference to the 

nanoparticle formulation and batch number. 

      

With ceftazidime a 2-fold decrease in IC50 was achieved with 10:90 CPTEG:SA 

nanoparticles with 8.7% drug loading which resulted in an IC50 of 1.05 µg/mL 

ceftazidime (Fig. 2B).  Soluble ceftazidime in this experiment has an IC50 of 3.157 

µg/mL.  When the ceftazidime loading in these 10:90 CPTEG:SA nanoparticles was 

reduced to 4.7% the resulting IC50 was 1.276 µg/mL.  The inclusion of chloramphenicol 

into 10:90 CPTEG:SA nanoparticles led to an IC50 of 2.721 µg/mL and 1.804 µg/mL 

with nanoparticles loaded at 5.4% and 10% chloramphenicol.  In contrast, soluble 

antibiotic resulted in an IC50 4.858 µg/mL chloramphenicol; nanoparticles deliver 
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resulted in a 0.8 and a 1.7-fold improvement in IC50 depending on nanoparticle 

formulation.  The meropenem, ceftazidime, and chloramphenicol nanoparticles had burst 

release profiles with near 100% of the cargo released within the first 2 hours, while the 

poorer performing rifampicin nanoparticles had a more sustained release profile with 

approximately 50% coming out within the first 2 hours with the majority of the remaining 

cargo coming out over a 24-hour period. 

Using doxycycline, there appears to be no benefit from nanoparticle 

encapsulation.  When encapsulated in 10:90 CPTEG:SA nanoparticles at 3.3% and 8.1% 

loading percentage their IC50 values are grouped around soluble doxycycline.  The 3.3% 

loading gave an IC50 0.5395 µg/mL doxycycline and the 8.1% gave an IC50 of 0.5798 

µg/mL, which is similar to the soluble IC50 of 0.5669 µg/mL (Fig. 2C).  When 20:80 

CPTEG:CPH co-polymer nanoparticles were employed with doxycycline a similar story 

unfolded.  Loading percentages of 4.6% and 8.3% gave IC50 values of 0.5362 µg/mL and 

0.4409 µg/mL, with soluble for these experiments giving an IC50 of 0.6034 µg/mL.  A 

final approach with doxycycline was the incorporation of surfactants to alter release 

profiles.  Surfactants employed were Span 80 (0.01% loading), AOT (11% loading), and 

LDAO (8% loading) with 10MAG (16% loading), with respective doxycycline loading 

percentages of doxycycline 2.3%, 1.4%, and 3.3%.  The inclusion of Span 80 resulted in 

an IC50 of 0.7222 µg/mL doxycycline, AOT resulted in an IC50 0.9522 µg/mL 

doxycycline, and the LDAO with 10MAG had an IC50 of 2.317 µg/mL doxycycline.  The 

soluble doxycycline for these experiments had an IC50 of 0.8809 µg/mL.  The 

incorporation of the LDAO with 10MAG surfactants resulted in a more pronounced 
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delayed release with 64% of cargo released within 24 hours, while the other formulations 

showed near complete release within 24 hours.   

 

FIG 2-2. Nonlinear regression of in vitro antibiotic dose titration of Burkholderia 

pseudomallei viability to nanoparticle treatments compared to conventional soluble drug 

therapy.  Viability of treated bacteria was determined through the reduction of resazurin.  

● conventional soluble drug.  ▲ nanoparticle treatment.  (A) Meropenem (MEM).  (B) 

Ceftazidime (CAZ).  (C) Doxycycline (DOX).  (D) Rifampicin (RIF).  (E) 

Chloramphenicol (CAM).  Nanoparticle formulation is 10:90 CPTEG:SA with 0.8% 

MEM (A), 8.7% CAZ (B), 3.3% DOX (C), 4.3% RIF (D), 10.0% CAM (E) percent 

loading.              

 

The encapsulation of rifampicin in 10:90 CPTEG:SA nanoparticles resulted in 

poorer in vitro efficacy than soluble antibiotic in these broth assays (Fig. 2D).  Soluble 

rifampicin resulted in an IC50 of 8.186 µg/mL, whereas nanoparticles loaded at 4.3% and 

8.1% rifampicin showed no inhibition out to the maximum tested concentration of 64 
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µg/mL rifampicin.  In the case of both of these nanoparticle batches release profiles 

showed a moderate delayed release profile with 42% and 50% of cargo released within 2 

hours and a total of 85% and 86% released by 24 hours.  Additional rifampicin 

formulations were not tested, as screening of these other chemistries in Burkholderia 

cepacia showed similar results as was seen with the 10:90 CPTEG:SA with B. 

pseudomallei. 

When B. pseudomallei CFU enumeration of treated broth cultures was used to 

assess the bactericidal properties of these nanoparticles, again we see that nanoparticle 

delivery of meropenem is superior to soluble.  With 10:90 CPTEG:SA nanoparticles 

loaded at 0.8% meropenem we see bactericidal activity down to 0.5 µg/mL meropenem, 

which provided the near equivalent level of bactericidal activity as 2.0 µg/mL soluble 

meropenem.  When a higher loading percent of meropenem was used, 4.4%, bactericidal 

activity was noted down to 1.0 µg/mL meropenem (Fig. 3A).  Meropenem was also 

screened in 20:80 CPH:SA nanoparticles and a slight yet significant improvement in 

bactericidal activity was noted (Fig. 3B).  Soluble antibiotic produced a modest reduction 

in bacterial numbers with 2.0 µg/mL meropenem, both nanoparticles with loading 

percentages of 1.7% and 6.2% resulted in a 3 and 4 log reduction in bacterial CFUs 

compared to soluble at 2.0 µg/mL meropenem.  No data is currently available on the 

bactericidal activity of the other nanoparticle formulations.   
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FIG 2-3.  CFU determination of bactericidal activity of in vitro nanoparticle treatments 

using (A) 10:90 CPTEG:SA and (B) 20:80 CPH:SA nanoparticles loaded with 

meropenem against Burkholderia pseudomallei.  Conventional soluble meropenem 

therapy is shown to highlight the increased efficacy of nanoparticle treatment.  Black 

horizontal bar represents the staring CFU concentration at the beginning of the treatment; 

bars below indicate bactericidal activity.  Percentage numbers in the x-axis labels indicate 

percent loading of meropenem into the nanoparticles.  (A) Values represent the means ± 

the SEM of three experiments performed in triplicate.  (B) Values represent the means ± 

the SEM of an experiment performed in triplicate.  Statistical analysis by one-way 

ANOVA with a Bonferroni’s comparison of means (*p ≤ 0.05).  *indicates significance 

between nanoparticle treatment and equivalent soluble treatments.               

 

This is the first use of polyanhydride nanoparticles with a 10:90 ratio of 

CPTEG:SA; little is known how this particular chemistry will interact with phagocytic 

cells or the bacteria themselves.  When B. pseudomallei was treated with unloaded 10:90 

CPTEG:SA nanoparticles no inhibition of viability was witnessed with nanoparticle 

concentrations up to 1.250 mg/mL (Fig. 4A).  To see if encapsulation of antibiotics is 

even needed or if the nanoparticle and antibiotic can be applied separately, B. 

pseudomallei was treated with unloaded 10:90 CPTEG:SA particles in the presence of 

soluble ceftazidime and the viability was compared to cultures treated with soluble 

ceftazidime alone or ceftazidime loaded into 10:90 CPTEG:SA nanoparticles (Fig. 4B).  
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The IC50 of the nanoparticles mixed with soluble drug was 3.313 µg/mL ceftazidime, 

which is similar to the IC50 of soluble ceftazidime of 3.079 µg/mL.  In contrast, the IC50 

of ceftazidime loaded in 10:90 CPTEG:SA nanoparticles was 1.228 µg/mL. 

 

FIG 2-4.  Evaluation of 10:90 CPTEG:SA nanoparticles devoid of cargo on the viability 

of Burkholderia pseudomallei.  Viability of treated bacteria was determined through the 

reduction of resazurin.  (A) Dose titration of 10:90 CPTEG:SA nanoparticles in a broth 

assay; x-axis shows nanoparticle concentration.  (B) Dose titration of 10:90 CPTEG:SA 

nanoparticles combined with soluble ceftazidime (●) compared to soluble ceftazidime 

(▲) and 10:90 CPTEG:SA nanoparticles loaded with ceftazidime (▼); x-axis shows 

ceftazidime concentration.                

 

To see the effect that 10:90 CPTEG:SA nanoparticles have on phagocytic cells, 

the murine cell line RAW 246.7 was treated with varying concentrations of nanoparticles 

and the impact on viability was measured through the reduction of resazurin (Fig. 5A).  

There was no loss in viability when cells were treated with 125 µg/mL nanoparticle 

concentration or less over a 24-hour period.  At 250 µg/mL nanoparticle concentration a 

31% loss in viability was noted, and at 500 µg/mL nanoparticle concentration a 75% loss 

in cell viability was noted.  Live cell imaging was done on nanoparticle treated RAW 

246.7 cells utilizing the cellular fluorescent probe annexin V conjugated to alexafluor 488 

along with mitotracker red (Fig. 5B-5D).   
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FIG 2-5.  Viability of RAW 246.7 macrophages treated with 10:90 CPTEG:SA 

polyanhydride nanoparticles.  Macrophages were treated with a dose titration of 

nanoparticles for 24 hours.  (A) Viability of macrophages as determined through the 

reduction of the viability indicator resazurin.  (B, C, and D) Confocal fluorescence 

microscope images of control and nanoparticle treated macrophages with annexin V and 

MitoTracker.  (B) Control macrophages not treated with nanoparticles.  (C) Macrophages 

treated with 62.5 µg/mL 10:90 CPTEG:SA nanoparticles.  (D) Macrophages treated with 

125 µg/mL 10:90 CPTEG:SA nanoparticles.  Representative images.        
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Annexin V binds to phosphatidylserine that has flipped to the outer leaflet of the plasma 

membrane and is an apoptotic signal.  MitoTracker red binding to mitochondria is 

dependent on membrane potential.  Qualitative imaging indicates that at nanoparticle 

concentrations that had no impact on cell viability, increased annexin V staining was 

observed; this was at 125 and 62.5 µg/mL 10:90 CPTEG:SA nanoparticle concentrations.  

There was no apparent difference in MitoTracker staining.   

Screening of the lead nanoparticle formulations identified with B. pseudomallei 

against the related Burkholderia mallei yielded similar results (Fig. 6).  10:90 CPTEG:SA 

nanoparticles loaded with 8.7% ceftazidime resulted in a 1.1-fold increase in efficacy 

producing an IC50 of 0.6934 µg/mL ceftazidime, when soluble drug gave an IC50 of 1.48 

µg/mL ceftazidime.  When the loading of ceftazidime was reduced to 4.7% a 1.4-fold 

increase in efficacy over soluble ceftazidime was noted.  When chloramphenicol was 

loaded into these 10:90 CPTEG:SA nanoparticles loaded at 5.4% chloramphenicol 

yielded a 0.92-fold increase in efficacy over soluble, while particles loaded at 10% 

chloramphenicol gave a 2.7-fold increase in efficacy over soluble chloramphenicol.  

Soluble chloramphenicol gave an IC50 of 5.374 µg/mL, and the particles loaded at 5.4% 

and 10.0% gave IC50 values of 2.804 µg/mL and 1.451 µg/mL chloramphenicol.  In the 

case of meropenem, 10:90 CPTEG:SA nanoparticles loaded at 0.8% gave an IC50 of 

0.02036 µg/mL meropenem, which was a 4.4-fold increase in efficacy over soluble IC50 

of 0.1094 µg/mL meropenem.  Meropenem at a higher loading percentage of 4.4% gave 

an IC50 0.04644 µg/mL, which is a 1.4-fold increase in efficacy over soluble meropenem.  
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FIG 2-6.  Fold change in IC50 values of nanoparticle treatments compared to conventional 

soluble treatments with Burkholderia mallei.  IC50 values determined through the 

reduction of the viability reagent resazurin following conventional antimicrobial 

susceptibility broth assay experimental design.  Fold changes are represented in an 

additive fashion; i.e. a 1-fold change would be a 2x change by multiplication.  Positive 

values indicate an improvement in antimicrobial activity and a negative value indicates a 

decrease in antimicrobial activity with nanoparticle delivery.  Antibiotics: 

chloramphenicol (CAM), meropenem (MEM), and ceftazidime (CAZ).  The number 

following the antibiotic is a reference to the nanoparticle formulation and batch number.           

 

CFU data showed that in the case of both ceftazidime and chloramphenicol that 

when these two drugs were loaded into 10:90 CPTEG:SA nanoparticles that an increase 

in bactericidal activity was found when screened against B. mallei (Fig. 7).  In the case of 

ceftazidime, we show a MIC of 8.0 µg/mL ceftazidime, while with nanoparticle treatment 

we show an MIC of 2.0 µg/mL ceftazidime (Fig. 7A).  While both soluble ceftazidime 

and nanoparticle delivered ceftazidime show similar levels of bactericidal activity at 8.0 

µg/mL with approximately a 2-log reduction in bacteria.  At 4.0 µg/mL ceftazidime 

nanoparticle delivered ceftazidime continues to show bactericidal activity with again an 
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approximate 2-log reduction in bacteria, which was not seen with soluble ceftazidime at 

this concentration.  A significant reduction in bacterial numbers between soluble and 

nanoparticle treatments is seen down to 1.0 µg/mL, with an approximate 2-log reduction 

in CFUs with nanoparticle treatment.  When chloramphenicol was loaded into these 

10:90 CPTEG:SA nanoparticles we did not detect an MIC with soluble treatment at the 

dose range chosen (8.0 µg/mL to 1.0 µg/mL), however we do show an MIC of 4.0 µg/mL 

chloramphenicol with nanoparticle treatment (Fig 7B).  Bactericidal activity also was not 

noted with soluble ceftazidime, but we did see an approximate 1-log reduction in bacteria 

with nanoparticle treatment at 8.0 µg/mL ceftazidime. 

 

FIG 2-7.  CFU determination of bactericidal activity of in vitro nanoparticle treatments 

using 10:90 CPTEG:SA nanoparticles against Burkholderia mallei.  (A) Ceftazidime 

loaded nanoparticles; 10:90 CPTEG:SA nanoparticles loaded at 4.7% ceftazidime by 

mass.  (B) Chloramphenicol loaded nanoparticles; 10:90 CPTEG:SA nanoparticles loaded 

at 10% chloramphenicol by mass.  Black horizontal bars represent the staring CFU 

concentration at the beginning of the treatment; bars below indicate bactericidal activity.  

Values represent the means ± the SEM of an experiment performed in triplicate.  

Statistical analysis by one-way ANOVA with a Bonferroni’s comparison of means (*p ≤ 

0.05).  *indicates significance between nanoparticle treatment and equivalent soluble 

treatments.               
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The development of resistance by B. pseudomallei to meropenem was 

investigated to see if the use of nanoparticle delivered meropenem would reduce the 

incidence of resistance (Fig. 8).  When these bacteria were exposed to 2.0 µg/mL 

meropenem in either soluble form or through nanoparticle delivery there were twice as 

many resistant events found with soluble treatment vs the nanoparticle treatment.  With 

soluble treatment 68% of treated bacteria cultures developed resistance to meropenem.  

When meropenem was delivered by 10:90 CPTEG:SA nanoparticles a substantial 

decrease in the number of resistant events was noted, with 32% of cultures developing 

resistance to meropenem.           

               

FIG 2-8.  Comparison of meropenem resistance of Burkholderia pseudomallei between 

soluble treatment and nanoparticle treatment.  In broth culture B. pseudomallei was 

treated with 2 μg/mL meropenem in either soluble form or nanoparticle form (10:90 

CPTEG:SA) loaded at 4.4% meropenem for 20 hours.  Following broth treatment, the 

contents were plated onto agar plates with 16 μg/mL meropenem and cultivated for 3 

days; growth indicated the generation of resistant isolates.  Data is shown as percent 

positive cultures for meropenem resistance.  28 culture replicates per broth culture 

treatments.  

 

Effectively targeting of antimicrobials against intracellular Burkholderia is 

requisite for the successful treatment of disease.  A hallmark of B. pseudomallei infection 

is the formation of  multinucleated giant cells (MNGC).  A microscopic experiment using 
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the surrogate bacterium B. thailandensis was used to generate MNGCs in the murine 

macrophage cell line RAW 246.7 to see if these nanoparticles would be present within 

MNGCs (Fig. 9).   

 

Figure 2-9.  Laser scanning confocal image of 10:90 CPTEG:SA nanoparticles within a 

multinucleated giant cell (MNGC).  Murine macrophages were infected with 

Burkholderia thailandensis to generate the formation of these giant multi-nucleated cells.  

The cell membrane is stained with Wheat Germ Agglutinin 488 (Green) shown in all 

panels.  (A) Rhodamine (Red) loaded nanoparticles (white arrows).  (B) 

Immunofluorescent (magenta) staining of Lysosome Associated Membrane Protein 

(LAMP-1) (white arrows).  (C) DAPI staining showing numerous nuclei (white arrows) 

in the MNGC.  Important note: these nanoparticles absorbed the DAPI stain (yellow 

arrows).  (D) Composite image of panels A, B, and C.  Scale bar represents 20 µM.                  

 

Nanoparticles were loaded with the red fluorescent dye rhodamine to visualize 

them within the MNGCs.  Imaging by laser scanning confocal microscopy showed that 

these 10:90 CPTEG:SA nanoparticles did indeed reside within MNGCs, and that they co-
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localized with the intracellular marker lysosome associated protein 1 (LAMP).  DAPI 

staining showed numerous nuclei within these cells, indicating the presence of MNGCs 

induced by the surrogate bacterium B. thailandensis.  The cell membrane surrounding 

these numerous nuclei was stained with wheat germ agglutin 488.  It does appear that 

these 10:90 CPTEG:SA nanoparticles absorb DAPI stain as this stain does co-localize 

with the rhodamine loaded nanoparticles. The bacteria were not stained with a selective 

marker, but the bacteria within these MNGCs did lightly stain with DAPI and are present 

in the cytosol.        

When activated human monocyte THP-1 cells were infected with B. pseudomallei 

across a series of MOIs and then treated with either nanoparticle delivered meropenem or 

soluble meropenem we see a profound increase in bactericidal activity with 10:90 

CPTEG:SA nanoparticle delivered meropenem (Fig. 10).  At 9 hours post-treatment there 

is a decline in the number of intracellular bacteria with soluble treatment, however, with 

nanoparticle treatment the bactericidal activity is far more pronounced and led to a 

significant reduction in bacteria compared to soluble meropenem.  This same significant 

reduction in bacteria was seen across all MOI’s tested.  When taking the experiment out 

to 24 hours post-treatment, we see a further reduction in bacteria counts with nanoparticle 

treatment, with no viable bacteria recovered at the lower two MOIs tested.  In contrast, 

with soluble delivered meropenem there is no meaningful reduction in viable bacteria 

from the earlier 9-hour time point.  The treatment of these infected macrophages with 

10:90 CPTEG:SA devoid of meropenem resulted in no appreciable reduction in viable 

intracellular bacterial burden, however, at the highest MOI tested there was a significant 

increase in the viable bacterial burden.         
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FIG 2-10.  Intracellular viability of Burkholderia pseudomallei within activated human 

THP-1 macrophages following antimicrobial treatment.  Treatment with either 

meropenem delivered via 10:90 CPTEG:SA nanoparticles or conventional soluble 

meropenem.  Graphs show the results across a multiplicity of infection titration (MOI) of 

0.1:1, 2:1, and 15:1 ratios of bacteria to macrophage.  Values represent the means ± the 

SEM of an experiment performed in triplicate.  Statistical analysis by one-way ANOVA 

with a Bonferroni’s comparison of means (*p ≤ 0.05).  *indicates significance between 

nanoparticle treatment and equivalent soluble treatments. 
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When testing the antimicrobial efficacy of combined antimicrobials against B. 

pseudomallei there is improved efficacy with nanoparticle delivery.  When meropenem 

was combined with doxycycline, an IC50 value of 0.1073 µg/mL meropenem/0.0536 

µg/mL doxycycline was observed when the 10:90 CPTEG:SA 0.8% loaded meropenem 

nanoparticles were combined with 20:80 CPTEG:SA 2.3% loaded doxycycline 

nanoparticles (Fig. 11A).  This IC50 value represents a 7.9-fold reduction in IC50 value 

over the soluble combination which had an IC50 of 0.9513 µg/mL meropenem/0.4756 

µg/mL doxycycline.  For this experiment the ratio of meropenem to doxycycline was 2:1; 

this ratio was chosen based off the individual IC50 values of the soluble drugs obtained in 

previous experiments where doxycycline’s IC50 value had a concentration roughly half 

that of meropenem.  In a separate experiment where meropenem in 20:80 CPH:SA 

nanoparticles were combined with doxycycline in 20:80 CPTEG:CPH nanoparticles, no 

significant difference was seen in its IC50 value vs the soluble combination of meropenem 

and doxycycline (Fig 11B).   

 
Figure 2-11.  Nonlinear regression of in vitro dose titration response of Burkholderia 

pseudomallei to dual meropenem and doxycycline nanoparticle therapies compared to 

conventional soluble dual drug therapies.  Viability of treated bacteria was determined 

through the reduction of resazurin.  ● conventional soluble drug.  ▲ nanoparticle therapy.  

(A) Meropenem loaded into 10:90 CPTEG:SA and doxycycline loaded into 20:80 

CPTEG:CPH.  (B) Meropenem loaded into 20:80 CPH:SA and doxycycline loaded into 

20:80 CPTEG:CPH.            
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It should be noted that when meropenem was combined with doxycycline in these 

experiments, there was no benefit in the resulting IC50 values when compared to 

meropenem used alone; this was seen with both soluble and nanoparticle treatments (Fig. 

12).  Soluble meropenem resulted in an IC50 of 0.646 µg/ml, while the combination of 

meropenem with doxycycline resulted in a combined IC50 of 0.9513 µg/ml meropenem 

and 0.4756 µg/ml doxycycline (Fig. 12A).  In the event of nanoparticle delivered 

combination of meropenem and doxycycline; meropenem alone resulted in an IC50 of 

0.1073 µg/ml and the combination resulted in a combined IC50 of 0.1073 µg/mL 

meropenem and 0.0536 µg/mL doxycycline (Fig. 12B).     

 
FIG 2-12.  Nonlinear regression of in vitro dose titration response of Burkholderia 

pseudomallei comparing single meropenem treatment with the combination meropenem 

and doxycycline treatment with both soluble and nanoparticle formulations.  Viability of 

treated bacteria was determined through the reduction of resazurin.  ● single meropenem 

treatment.  ▼ combination meropenem with doxycycline treatment (2:1 ratio). (A) 

Soluble treatment.  (B) 10:90 CPTEG:SA nanoparticles loaded with meropenem 

combined with 20:80 CPTEG:CPH nanoparticles loaded with doxycycline; dose response 

curves are overlapping.  X-axis represents the concentration of meropenem.   

 

When ceftazidime was combined with doxycycline in nanoparticles, results 

favored nanoparticle incorporation (Fig. 13).  When 10:90 CPTEG:SA 4.7% loaded 

ceftazidime nanoparticles were combined with 20:80 CPTEG:CPH 4.6% loaded 

doxycycline nanoparticles, a 1.3-fold reduction in IC50 value was achieved, with the 

nanoparticle combination giving an IC50 of 1.254 µg/mL ceftazidime/0.209 µg/mL 
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doxycycline and the soluble combination giving an IC50 value of 2.884 µg/mL 

ceftazidime/0.481 µg/mL doxycycline (Fig. 13A).  The ratio of ceftazidime to 

doxycycline used was 6:1, which was based off the IC50 values of the individual soluble 

antibiotics.  Again, the inclusion of doxycycline in these experiments leads to no additive 

or synergistic properties regardless of delivery method (Figs. 13B & 13C).   

 
FIG 2-13.  Nonlinear regression of in vitro dose titration response of Burkholderia. 

pseudomallei to dual ceftazidime and doxycycline nanoparticle therapies compared to 

conventional soluble dual drug therapies. Viability of treated bacteria was determined 

through the reduction of resazurin.  (A) Ceftazidime loaded into 10:90 CPTEG:SA and 

doxycycline loaded into 20:80 CPTEG:CPH (6:1 ratio); ● conventional soluble drug, ▲ 

nanoparticle therapy.  (B) Comparison of single soluble ceftazidime treatment with that 

of dual ceftazidime and doxycycline treatment (6:1 ratio); ● single ceftazidime treatment, 

▼ combination ceftazidime with doxycycline treatment (6:1 ratio).  (C) Comparison of 

single nanoparticle ceftazidime treatment with that of dual ceftazidime and doxycycline 

nanoparticle treatment (6:1 ratio); ● single ceftazidime treatment, ▼ combination 

ceftazidime with doxycycline treatment (6:1 ratio).            

   

Discussion 

The benefit to loading currently approved antibiotics for the treatment of 

melioidosis and Glanders into 10:90 CPTEG:SA polyanhydride nanoparticles is shown 

by a decrease in the IC50 concentration of the antibiotics, by decreasing the concentration 

of antibiotic needed for bactericidal activity, and an improvement of the targeting of these 

antibiotics to intracellular bacteria.  Reductions in IC50 and bactericidal activity seems 

dependent on the antibiotic and the nanoparticle chemistry chosen.  Of the antibiotics 

screened we have two, meropenem and ceftazidime, that target penicillin binding proteins 

and inhibit cell-wall synthesis.  In the case of both these antibiotics, a significant 
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improvement in antimicrobial activity was observed through the reduction in IC50 value 

with encapsulation into 10:90 CPTEG:SA nanoparticles; to a lesser degree we saw 

improvement with 20:80 CPH:SA nanoparticles and no improvement with 20:80 

CPTEG:CPH nanoparticles.  The B. pseudomallei strain chosen in these experiments 

(K96243) is susceptible to both of these antibiotics; resistance to ceftazidime typically 

involves alteration of the penicillin binding protein gene penA and resistance to 

meropenem has been implicated through efflux pump dysregulation (15, 27).  It is 

currently unknown as to why the 10:90 CPTEG:SA formulation is superior at improving 

the efficacy of these two drugs over the other nanoparticle chemistries used.  Delivery of 

these two drugs into the periplasmic space would be crucial to their antimicrobial activity 

and it may be that the 10:90 CPTEG:SA formulation has unique interactions with the 

outer membrane of the bacteria and is better able at delivering antibiotics across this 

membrane into the periplasmic space; this will require further testing as it is currently 

speculation derived from observation.  As these nanoparticles were observed to have no 

deleterious effect on B. pseudomallei when used in the absence of antimicrobial load any 

interactions of these nanoparticles with these bacteria cannot have profound impacts on 

their physiology.  It could be possible that when these nanoparticles interact with the 

outer membrane of these bacteria, they are able to occlude efflux pumps thus enabling 

higher intracellular concentrations of these antibiotics to occur; as no benefit in 

antimicrobial activity was observed when these bacteria were treated with soluble 

meropenem in the presence of unloaded nanoparticles this hypothesis seems unlikely.  As 

nanoparticles with burst release kinetics showed improved efficacy, it could simply be 
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that the high antibiotic concentration in the microenvironment around the nanoparticle 

and bacteria overwhelmed the bacteria.           

The other antibiotic whose antimicrobial activity was enhanced through 

nanoparticle incorporation was chloramphenicol.  The mechanism of action of 

chloramphenicol requires access to the cytosol where it binds to the 50s subunit thereby 

inhibiting protein synthesis.  In the event of chloramphenicol, the only nanoparticle 

chemistry tried was the 10:90 CPTEG:SA formulation that worked so well with 

meropenem and ceftazidime, so it is unknown if the other nanoparticles chemistries 

would follow the trend shown with meropenem.  Oddly enough with the antibiotic 

doxycycline, which inhibits protein synthesis through binding to the 30s ribosome, 

antimicrobial activity was not enhanced through nanoparticle incorporation; this was 

tested using several nanoparticle formulations and polyanhydride chemistries. 

The last antibiotic tested, which is not currently recommended for the treatment of 

melioidosis or Glanders, rifampicin performed considerably worse in its antimicrobial 

activity when loaded into these nanoparticles.  This antibiotic was chosen as it represents 

an antibiotic that has a cytosolic target that differs from those already screened; 

rifampicin inhibits the activity of RNA polymerase, thereby impeding transcription of 

DNA to RNA.  The decrease in activity seen with the loading of rifampicin into these 

nanoparticles could be due in part to the slower release kinetics with rifampicin vs the 

faster release profiles with meropenem, ceftazidime, and chloramphenicol.  When 

doxycycline was loaded into a nanoparticle formulation that resulted in a slower release 

profile, we saw a similar decline in activity, which indicates that in order for these 

nanoparticle formulations to successfully outperform soluble antibiotics there needs to be 
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a rapid release of loaded antibiotics.  Even though a rapid release of the antibiotic was 

necessary to outperform soluble drugs, there is a unique interaction that is occurring 

between these antimicrobially loaded nanoparticles and the bacteria.  Treating B. 

pseudomallei with 10:90 CPTEG:SA nanoparticles that are devoid of antimicrobials 

showed no positive or negative alteration on the viability of the bacteria; adding soluble 

antibiotic to cultures treated with unloaded 10:90 CPTEG:SA nanoparticles yielded 

viability inhibition similar to that of cultures treated with soluble antibiotics alone.  

Future studies will be needed to examine the mechanism behind these nanoparticles; 

possibilities are that the rapid release of antibiotics within the local environment of these 

bacteria result in very high focal concentrations of antibiotics that overcome normal 

permeability and efflux activity of the bacteria, or there is a unique interaction with the 

outer membrane of the bacteria that facilitates a more direct release of the antibiotic into 

the periplasmic space.  The explanation on why there is improved efficacy with loading 

chloramphenicol into these nanoparticles and not doxycycline is vexing as they have 

similar intracellular targets and the release kinetics can be tailored to have similar 

profiles.       

Screening of the three lead candidates, meropenem, ceftazidime, and 

chloramphenicol, against B. mallei in the 10:90 CPTEG:SA formulation yielded similar 

results to that of B. pseudomallei and indicates that these nanoparticle therapies would 

function in the treatment of diseases caused by both these organisms.  The incidence of B. 

pseudomallei developing resistance to antimicrobial therapy during the course of 

treatment is concerning given that so few antibiotics are available to effectively treat this 

disease, and meropenem is typically used as an antibiotic of last resort; here we showed 



48 

that the incidence of meropenem resistance developed during exposure to these 

nanoparticles is approximately half of that when these bacteria were exposed to soluble 

meropenem.   

In infections caused by both B. pseudomallei and B. mallei in the intracellular 

niche presents a barrier for the effective delivery of antimicrobials; in the activated 

human macrophage cell line THP-1, we demonstrate that 10:90 CPTEG:SA nanoparticles 

loaded with meropenem show vastly improved intracellular drug delivery and 

bactericidal activity compared to the conventional use of meropenem.  Soluble 

meropenem was used at 16 µg/mL, which is 8x the broth MIC. While there was a 

complete inhibition of replication, there was limited bactericidal activity with 

approximately a log reduction in intracellular bacterial burden.  When meropenem was 

loaded into 10:90 CPTEG:SA nanoparticles, a complete clearance of intracellular 

bacteria was observed when the macrophages were infected with low or moderate 

amounts of B. pseudomallei; at a higher MOI there was a 4-log reduction in intracellular 

bacteria.  In the murine macrophage cell line RAW 267.4, these 10:90 CPTEG:SA 

nanoparticles are found within MNGCs, which are a hallmark of B. pseudomallei 

infection, showing that these nanomedicines can target into the intracellular niches 

established by this bacterium.  Interactions of these 10:90 CPTEG:SA nanoparticles led 

to an interesting observation; concentrations of nanoparticles that led to no alteration in 

viability did cause an apparent increase in annexin V staining, which suggests that these 

nanoparticles cause the flipping of phosphatidylserine to the outer membrane, which is a 

marker of apoptosis.  Future studies will be needed to further describe this cellular 

interaction.     
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As the WHO recommends the inclusion of doxycycline during the initial 

intravenous phase of melioidosis treatment, this antibiotic was tested in combination with 

meropenem.  Doxycycline was tested with our 10:90 CPTEG:SA nanoparticle 

formulation and with the 20:80 CPH:SA nanoparticle formulation which showed no 

improvement in IC50 concentrations vs soluble meropenem.  It should be noted that none 

of our doxycycline nanoparticle formulations using 20:80 CPTEG:CPH nanoparticles led 

to a significant improvement in IC50 value.  While loading these antibiotics into 10:90 

CPTEG:SA nanoparticles resulted in a 7.9-fold increase in antimicrobial efficacy 

compared to the combined use of these two antimicrobials in soluble form, there was no 

synergistic or additive qualities of combining these two antibiotics whether they were 

delivered via nanoparticle or in soluble form.  In the case of these two antimicrobials 

used together in conventional soluble form the combined IC50 was 0.9513 µg/mL 

meropenem and 0.4756 µg/mL doxycycline; the individual IC50 concentrations for these 

two drugs used alone is 0.6460 µg/mL meropenem and 0.5365 µg/mL doxycycline.  It 

appears that, at least when these two antibiotics are used at a 1:2 ratio of meropenem to 

doxycycline, that there is perhaps a degree of antagonism between the two and that the 

inclusion of doxycycline offers no benefit and could in fact be contraindicated.  Other 

ratios of meropenem to doxycycline have not currently been tested but may provide 

different results.  When meropenem was loaded into 10:90 CPTEG:SA nanoparticles the 

combined IC50 was 0.1073 µg/mL meropenem and 0.0536 µg/mL doxycycline, while the 

individual IC50 values were oddly enough 0.1073 µg/mL meropenem and 0.4730 µg/mL 

doxycycline.  In the use of these nanoparticles the inclusion of doxycycline added no 

synergistic, additive or antagonistic effects; this is likely due to the fact that when used at 
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a 1:2 ratio of meropenem to doxycycline that the concentration of doxycycline falls 

below a biologically relevant concentration.   

The combination of ceftazidime with doxycycline also favored nanoparticle 

encapsulation into our 10:90 CPTEG:SA formulation, but again we saw no benefit to the 

inclusion of doxycycline.  The soluble combination resulted in a combined IC50 of 2.884 

µg/mL ceftazidime and 0.481 µg/mL doxycycline, which is relatively similar to the 

individual IC50 values of 3.079 µg/mL ceftazidime and 0.5698 µg/mL doxycycline.  A 

1:6 ratio of ceftazidime to doxycycline yielded no synergistic, additive, or antagonistic 

effects.  In the case of the combined delivery via nanoparticle we see a 1.3-fold increase 

in efficacy when ceftazidime was delivered in 10:90 CPTEG:SA nanoparticles and 

doxycycline was delivered in 20:80 CPTEG:CPH nanoparticles.  The combined IC50 was 

1.254 µg/mL ceftazidime and 0.209 µg/mL doxycycline, which were somewhat similar to 

the individual IC50 values of 1.228 µg/mL ceftazidime and 0.209 µg/mL doxycycline.  

Different ratios of ceftazidime to doxycyline might yield different results. 

While providing in vivo data would further illuminate the benefit that these 

nanoparticles would have in combating infections caused by Burkholderia species, the in 

vitro data presented thus far provides a compelling argument in favor of their potential 

benefit in treating these diseases.  Future work will include animal models of melioidosis 

and glanders, along with a more complete workup on toxicology and absorption, 

distribution, metabolism, and excretion (ADME).  Previous work utilizing 20:80 

CPTEG:CPH nanoparticles in the in vivo treatment of brucellosis in mice showed 

decreased bacterial burden compared to those mice treated with antibiotics through 
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conventional means, so it would be expected that we could see similar results with 

Burkholderia species (22).        
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Abstract 

 The pathogenic free-living amoeba Naegleria fowleri is the cause of the fatal 

disease primary amoebic meningoencephalitis.  While this amoeba is ubiquitous in the 

environment being found in warm freshwater bodies, primary amoebic 

meningoencephalitis is a rare disease.  While rare this disease results in mortality 

exceeding 95 percent with aggressive antimicrobial therapy.  Surviving this infection can 

leave the patient with permanent disabling brain damage.  Given the apparent need to 

improve therapeutic outcome, we utilized polyanhydride nanoparticles to improve 

antimicrobial delivery to this amoeba in vitro.  Laser scanning microscopy showed that 

these nanoparticles are readily internalized by these amoeba and come to reside in 

endosomal compartments.  By loading currently approved antimicrobials for the 

treatment of primary amoebic meningoencephalitis that target intracellular processes we 

demonstrate that both the antimicrobials rifampicin and azithromycin show improved 

anti-parasitic activity when loaded into these nanoparticles.  An improvement in anti-

parasitic activity was not seen with the nanoparticle delivery of amphotericin B, which 
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targets ergosterol on the cell surface of the amoeba.  These nanoparticles present a tool to 

facilitate the improved delivery and antimicrobial efficacy of drugs that target 

intracellular processes of N. fowleri.            

Introduction 

 The pathogenic free-living amoeba Naegleria fowleri is the cause of the fatal 

disease primary amoebic meningoencephalitis (PAM).  PAM was first characterized in 

1965 in Australia by Fowler and Carter, PAM has now been documented throughout the 

world, with N. fowleri being routinely isolated from environmental sources (1, 2).  Most 

cases of PAM are closely associated with exposure to water, in which the organisms gain 

access to the olfactory neural epithelium through contaminated water being introduced 

into the nasal cavity (3).  These amoebae are then capable of penetrating the olfactory 

neural epithelium and subsequently gaining access to the olfactory nerve, which acts as a 

conduit for the migration of the amoeba through the cribriform plate to the olfactory bulb.  

From the olfactory bulb the amoeba are then able to access the brain, where in 

combination with the tissue disruption caused by the trogocytic activities and lytic 

enzymes of the amoeba and the inflammatory actions brought on by the influx of 

neutrophils and other immune cells, hemorrhaging and intracranial pressure ultimately 

leads to death of the individual 4 to 7 days following the appearance of symptoms (4-6).  

Symptoms initially present as fever, headache, and emesis and then progresses to seizure, 

and coma (5). Incidence of PAM is rare with on average fewer than 5 documented cases 

occurring in the U.S. (3).  The Centers for Disease Control and Prevention (CDC) 

recommends a multidrug treatment when PAM is diagnosed and includes the intrathecal 

administration of amphotericin B, and the oral or intravenous (IV) administration of 
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azithromycin, fluconazole, rifampicin, and miltefosine (7).  Even with this aggressive 

treatment, survival of PAM is still rare, with a historic mortality greater than 95% 

indicating the need for new therapeutics to treat this aggressive disease.   

 Identifying new therapies to treat PAM has constantly been evolving since the 

discovery of this disease.  Much of the initial work was in accessing what currently 

available antimicrobials, whether they be antibiotics or antifungals, could inhibit the 

replication of this amoeba or improve survival in animal models of PAM (8, 9).  Current 

drug discovery tends to revolve more around screening non-antimicrobials against this 

amoeba or utilizing new delivery platforms like nanoparticles to more effectively target 

the amoeba.  The anti-rheumatoid arthritis drug auranofin has been found to have 

antimicrobial activity against numerous protozoa to include N. fowleri (10).  Other 

interesting finds have been the neuroleptic drugs chlorpromazine and trifluoperazine are 

effective in inhibiting the replication of pathogenic Acanthamoeba polyphaga and N. 

fowleri in vitro (11).  The use of nanoparticles is a more recent evolution in treatment of 

protozoan disease.  Silver nanoparticles have been reported to improve the efficacy of 

anti-amoebic drugs against both N. fowleri and Acanthamoeba castellani when 

conventional antimicrobials were conjugated to them (12, 13).  The use of gold 

nanoparticles has also shown promising anti-parasitic action against N. fowleri (14)   

 We examine the potential of nanoparticles composed of 1,6-bis(p-

carboxyphenoxy)hexane (CPH), 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), 

and sebacic acid (SA) to be effective drug delivery vehicles against N. fowleri through the 

loading of conventionally used antimicrobials into these nanoparticles and testing them in 

in vitro assays.  These nanoparticles degrade through surface erosion via hydrolysis of the 
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anhydride bounds linking the monomers, with the release of non-toxic and biocompatible 

dicarboxylic acids (15).  Drug release from these nanoparticles is dependent upon surface 

erosion when the entrapped drug is hydrophobic; this can provide a more sustained 

release profile.  Solute transport through the hydrated portion of the nanoparticle is 

import in the release of hydrophilic drugs and will provide a more rapid release profile 

(16).  With the encapsulation of the hydrophobic antibiotic rifampicin in these 

polyanhydride nanoparticles, we have been able to take a drug with poor in vitro efficacy 

against N. fowleri and significantly improve upon its ability to inhibit the replication of 

this amoeba.  Along with rifampicin we have seen an improvement in efficacy with the 

nanoparticle encapsulation of azithromycin.  The encapsulation of amphotericin B did not 

yield improvement.  In the case of rifampicin, we saw differences in efficacy depending 

on co-polymer ratios and nanoparticles polymer chemistries employed.  This 

demonstrates the potential for polyanhydride nanoparticles as a means to improve upon 

the therapeutic potential of already prescribed antimicrobials in the treatment of PAM.     

Materials & Methods 

Antimicrobials and nanoparticle preparation 

Antimicrobial agents were prepared in suitable solvents and maintained at ideal 

temperatures for each antimicrobial.  Nanoparticle CPTEG and CPH monomers were 

synthesized in house as previously described, and SA monomers were purchased from 

Sigma (17, 18).   Nanoparticles were fabricated by flash nanoprecipitation as previously 

described (19).  Prior to an experiment, nanoparticle stock suspensions were made to 10 

mg/mL nanoparticle concentration in PBS and were sonicated on ice at 14 amps to 

suspend the nanoparticles (Misonix S-4000, Newton, CT).      
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Cell culture 

The virulent Naegleria fowleri HB-1 strain (ATCC 30174) was obtained from the 

American Type Culture Collection and were maintained under axenic conditions in 

Nelson’s media (ATCC medium 710) supplemented with 10% FBS at 37°C and 5% CO2 

in 75 cm2 tissue culture flasks in 12 mL of media.   

Microscopy and nanoparticle interactions with amoeba 

Amoeba grown in T75 flasks were suspended and centrifuged at 500 rcf for 5 

minutes.  The supernatant was removed and replaced with Nelson’s media with 5% FBS; 

the cultures were then adjusted to a cell density of 5.0 x 105.  Five hundred microliters of 

these cell suspensions were added to 24 well plates containing coverslips.  The amoeba 

were allowed to grow overnight on the coverslips in an incubator set at 37°C and 5% 

CO2, and prior to nanoparticle treatment cultures were washed and replaced with fresh 

media.   Amoeba in the 24 well plates were treated with 50 µg of rhodamine loaded 

nanoparticles in 500 µL of media.  Contact of nanoparticle to amoeba were synchronized 

by centrifuging treated cultures at 4°C for 10 minutes at 250 rcf.  Cultures were 

immediately placed in 37°C incubator; internalization was assessed beginning at 2 hours 

with 24-hour intervals as indicated.    

Imaging of nanoparticles within amoeba was performed on fixed cells using laser 

scanning microscopy.  Prior to fixation amoeba were treated for 30 minutes with 10 µM 

Cell Tracker Green (ThermoFisher Scientific, Waltham, MA).  The amoeba were then 

fixed with 4% PFA for 20 minutes, followed by 2 washes with PBS and the coverslips 

were mounted onto slides with Prolong Gold Antifade Mountant with DAPI 

(ThermoFisher Scientific, Waltham, MA).  Internalized nanoparticles were visualized and 
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quantified using inverted fluorescence microscope (Olympus BX71, Olympus, Center 

Valley, PA) on fixed samples.  For each experiment a minimum of 200 amoeba were 

scored for the presence or absence of nanoparticles.  Post-acquisition processing was 

performed with imageJ (https://fiji.sc/) 

LysoSensor (ThermoFisher Scientific, Waltham, MA) was utilized following the 

specifications found with the product manual.  In brief, 100,000 N. fowleri trophozoites 

were added to 96 well tissue culture plates in a volume of 50 µL.  Ten micrograms of 

20:80 CPH:SA nanoparticles loaded with rhodamine were added to the cultures with 

amoeba in a volume of 50 µL and were allowed to interact with the amoeba; as a control 

amoeba without nanoparticle treatment was included.  Anticipating that the nanoparticles 

would increase the lysosomal pH an additional treatment group included nanoparticles 

with the addition of 10 mM ammonium chloride.  LysoSensor Green DND-189 was used 

at 1 µM and imaged with an IX71 DSU microscope (Olympus, Center Valley, PA) with 

Metamorph Advanced acquisition software..  Prior to addition of the LysoSensor stain the 

wells were washed to remove excess uninternalized nanoparticle.         

Nanoparticle efficacy assays 

Viability was determined through Trypan Blue exclusion hemocytometer cell 

counts and the Alamar Blue (ThermoFisher Scientific, Waltham, MA) viability assay.  

Amoeba cultures were suspended and centrifuged at 500 rcf for 5 minutes; the 

supernatant was removed and replaced with Nelson’s medium supplemented with 5% 

FBS.  The amoeba cell density was determined by hemocytometer and was adjusted to 

5.0 x 105/mL, and 50 μl was pipetted into sterile 96 well tissue culture plates (TPP, 

Switzerland), separate plates were set up for each post-treatment time point of 24 hours, 

https://fiji.sc/
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72 hours, and 120 hours.  Border wells of the plates were filled with sterile H2O to buffer 

against evaporation of the treatment wells. The plates were placed in an incubator at 37°C 

and 5% CO2 overnight. 

 The following day the plates were treated with soluble or nanoparticle treatments 

by the addition of 50 μl of medium containing the appropriate drug concentration for the 

treatment wells to achieve a dose range from 25 μg/mL (30.4 μM) to 1.56 μg/mL (1.9 

μM) rifampicin as either conventional soluble drug or nanoparticles loaded with 

rifampicin.  For azithromycin, the dose range was 30 µg/mL (40.1 µM), 20 µg/mL (26.7 

µM), and 10µg/mL (13.4 µM).  Fifty microliters of medium was also added to the 

untreated wells at this time to match the volume in the treatment groups.  Approximate 

cell density of N. fowleri at time of treatment is 5.0 x 105 amoeba per mL. Each treatment 

group was performed in triplicate. At the appointed post-treatment time points 10 µL of 

Alamar Blue was added to each well; two hours later the plates were read by a 

fluorimeter (Fluostar Omega, BMG LABTECH, Cary, NC) at 544/590 and the wells 

were scraped to suspend the amoeba and mixed at a 1:1 ratio with Trypan blue for 

hemocytometer counts.  An inverted light microscope was used to count the amoeba on 

the hemocytometer. 

Pathogenesis of N. fowleri has previously been demonstrated in vitro using Vero 

cells to model cellular interaction with the amoeba (20).  Vero cell monolayers were 

established in 96 well plates by seeding each well with 100 µL of Vero cell suspension at 

a cell density of 5.0 x 105 Vero cells per mL in DMEM with 10% FBS.  The cells were 

allowed to replicate overnight in a 37ºC incubator at 5% CO2.  The following day the 

medium was removed and the Vero cells were stained with 5 µM Cell Tracker green 
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(ThermoFisher Scientific, Waltham, MA) in serum free DMEM for 30 minutes to allow 

for subsequent fluorescent microscopy of the disrupted monolayers by N. fowleri.  

Following staining the cells were washed with PBS to remove excess stain.  Fifty 

microliters of a 2.0 x 106 amoeba per mL suspension in DMEM with 10% FBS was 

added to each treatment well.  An hour after the addition of the amoeba the wells were 

treated with either soluble drug or nanoparticle encapsulated drug through the addition of 

50 µL DMEM with 10% FBS containing an appropriate drug concentration to give 25 

µg/mL rifampicin.  Fifty microliters of media was also added to the untreated wells at this 

time to match the volume in the treatment groups.  Confocal images were taken at 

identical XY coordinates every 24 hours for 72 hours using an IX71 DSU microscope 

(Olympus, Center Valley, PA) with Metamorph Advanced acquisition software.  Images 

shown are representative of each treatment group. Post-acquisition processing was 

performed with ImageJ (https://fiji.sc/). 

Results 

Internalization of the nanoparticles by Naegleria was assessed at 2, 24, and 48 

hours (Fig. 1A).  The nanoparticles composed of the 20:80 CPH:SA chemistry was 

rapidly internalized, with 89% of surveyed amoeba having internalized nanoparticles 

after two hours of incubation; over the remaining time course this level of nanoparticles 

association was maintained with 90% and 85% of amoeba associated with nanoparticles 

at 24 and 48 hours.  In the case of 20:80 CPTEG:CPH, approximately 50% of amoeba 

were associated with nanoparticles within two hours of exposure; by 24 and 48 hours, 

this number increased to 84% and 87%.  Images taken appear to show the internalized 

nanoparticles localized within endosomal compartments due to the area of negative 

https://fiji.sc/
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staining surrounding the nanoparticles within the stained cytoplasm (Fig 1B).  50:50 

CPTEG:CPH NPs were poorly internalized at all time points, with internalization of 37%, 

62%, and 54% at 2 hours, 24 hours, and 48 hours post-treatment. 

 

FIG 3-1. Association of polyanhydride nanoparticles with Naegleria fowleri.  (A) 

Percentage of amoeba associated with polyanhydride nanoparticles.  Values represent the 

means ± the SEM of two experiments with 200 amoeba scored per treatment group.  (B)  

Laser scanning confocal image of 2% rhodamine-loaded 20:80 CPH:SA nanoparticles 

(red) internalized by N. fowleri at 48 hours post-treatment.  Amoeba was stained with the 

cytosolic stain Cell Tracker Green and nucleus with DAPI (blue).  

    

   While amoeba treated with 20:80 CPTEG:CPH or 20:80 CPH:SA nanoparticles 

void of antimicrobials had similar numbers of amoeba with internalized nanoparticles 

following 24 hours of exposure; 20:80 CPTEG:CPH had no significant effect on 

replication or metabolic changes, while a decrease in amoeba counts and substantial 

reduction in metabolic activity was seen with 20:80 CPH:SA nanoparticles (Fig. 2).   

 



63 

 

FIG 3-2.  Polyanhydride nanoparticle effects on the replication & viability of Naegleria 

fowleri.  (A) Effect of 20:80 CPTEG:CPH nanoparticles on the replication of N. fowleri 

over a 120-hour period.  (B) Viability of N. fowleri following 120 hours of treatment with 

20:80 CPTEG:CPH nanoparticles; as determined by resazurin reduction.  (C) Effect of 

20:80 CPH:SA nanoparticles on the replication of N. fowleri following 72 hours of 

treatment.  (D) Viability of N. fowleri following 72 hours of treatment with 20:80 

CPH:SA nanoparticles; as determined by resazurin reduction.  Values represent the means 

± a 95% confidence interval.         

 

With 20:80 CPTEG:CPH no adverse effects on the amoeba was observed when 

treated with 250 µg/mL nanoparticles void of antimicrobials over a 5-day period (Fig. 2A 

& 2B).  Conversely, with 20:80 CPH:SA a reduction in amoeba and metabolic activity 

was observed when treated with 62.5 µg/mL nanoparticles that were void of 

antimicrobials (Fig. 2C & 2D).  Using the pH sensitive probe LysoSensor, a decrease in 

fluorescence was seen in vacuoles of amoeba treated with 20:80 CPH:SA nanoparticles 

compared to controls.  This decrease in fluorescence intensity indicates that lysosomal pH 
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is higher in these nanoparticle treated amoeba (Fig. 3).  The inclusion of 10 mM 

ammonium chloride resulted in a reduction in the fluorescent intensity in both the 

nanoparticle treated and control amoeba as expected (data not shown).  As these images 

were taken with live amoeba, precise colocalization of nanoparticles with the 

LysoTracker stain is not possible due to movement of the amoeba between image 

acquisition; the reduction in fluorescence appears in vacuoles absent of nanoparticles.  

Morphological changes were also noted when the amoeba were treated with 20:80 

CPH:SA nanoparticles, with these amoeba appearing to display more pseudopodia. 

FIG 3-3.  LysoSensor staining of nanoparticle treated Naegleria fowleri.  (A) Brightfield 

image of untreated amoeba.  (B) LysoSensor (green) stain of untreated amoeba.  (C) 

Brightfield image of amoeba treated with 100 µg/mL 20:80 CPH:SA nanoparticles for 2 

hours.  (D) LysoSensor (green) stain of 20:80 CPH:SA treated amoeba.  Representative 

images.  400x magnification. 
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 When rifampicin was loaded in the nanoparticles, differences in replication and 

metabolic inhibition was seen between nanoparticle chemistries.  Rifampicin is an 

antibiotic typically used to treated bacterial infections, and in bacteria it’s mechanism of 

action is in the inhibition of RNA polymerase; it has a historical use in the treatment of 

PAM and is recommended by the CDC (21).  When rifampicin was encapsulated in 20:80 

CPTEG:CPH nanoparticles a significant inhibition of replication was seen compared to 

that of soluble rifampicin (Fig. 4)  A significant reduction in proliferation of the amoeba 

was seen when 12.5 µg/mL rifampicin was delivered via nanoparticles; in contrast 

soluble rifampicin at 25 µg/mL had a negligible effect on the replication of the amoeba 

(Fig 4A).  The use of nanoparticles to deliver rifampicin at 25 µg/mL had significant 

amoebastatic activity within 24 hours of treatment.  25 µg/mL rifampicin delivered by 

nanoparticle was able to inhibit the replication of the amoeba by 53% within the first 24 

hours; in contrast an equivalent dose of soluble rifampicin inhibited the replication of the 

amoeba by only 18% (Fig. 4B).  When the concentration of rifampicin was decreased to 

12.5 µg/mL replication was inhibited by 24% for nanoparticle delivery and 7% for 

soluble delivery within the first 24 hours, which was not significantly different.  

Following 120 hours of treatment both 25.0 and 12.5 µg/mL rifampicin delivered by 

nanoparticle significantly inhibited the replication of the amoeba compared to soluble 

rifampicin.  Twenty-five µg/mL rifampicin delivered by nanoparticle now had reduced 

the replication of the amoeba by 79% and 12.5 µg/mL rifampicin delivered by 

nanoparticle replication inhibition had increased to 55%.  Equivalent concentrations of 

soluble rifampicin at 120 hours of treatment had reduced inhibition compared to 

inhibition observed at 24 hours treatment; inhibition with 25 µg/mL rifampicin was now 
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at 12%, which was at 18% inhibition earlier at 24 hours post-treatment.  Inhibition with 

12.5 µg/mL rifampicin was now at 3% inhibition which was half the level of inhibition 

seen at earlier timepoints.  Viability of these amoeba as determined by resazurin 

reduction indicated that nanoparticle treated amoeba was further reduced compared to 

soluble rifampicin controls and correlates well to the reduction in amoeba counts (Figure 

4C). 

 
FIG 3-4.  Replication and viability inhibition of Naegleria fowleri by 20:80 CPTEG:CPH 

rifampicin loaded nanoparticles.  (A) Growth curve of rifampicin treated amoeba.  Values 

represent the means ± the SEM of three experiments performed in triplicate.  * indicates 

significant differences in growth inhibition between nanoparticle and soluble treatment 

(One-way ANOVA with Bonferroni’s multiple comparison test); p ≤ 0.05.  (B). Percent 

replication inhibition of rifampicin treated amoeba.  Values represent the means ± a 95% 

confidence interval.  (C). Viability of rifampicin treated amoeba; determined through the 

reduction of resazurin.  Values represent the means ± a 95% confidence interval.       

Following 24 hours of treatment the viability of amoeba treated with 25 µg/mL 

rifampicin by nanoparticle delivery were reduced to that of 82% of controls, were as the 
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other treatments were comparable to controls.  By 120 hours of treatment, both 25 and 

12.5 µg/mL rifampicin delivered by nanoparticles had reduced viability of 44% and 62%.  

At the same time point, amoeba treated with soluble rifampicin at 25 and 12.5µg/mL had 

viabilities of 95% and 102%.  

Altering the loading percentage of rifampicin in 20:80 CPTEG:CPH nanoparticles 

yielded no significant differences in replication inhibition of Naegleria (Fig. 5).  It should 

be noted that in this experiment the starting number of amoeba per well was 5,000, not 

the 50,000 amoeba per well that was used in previous experiments.     

 

FIG 3-5.  Effect of altering the rifampicin loading percentage in 20:80 CPTEG:CPH 

nanoparticles on the replication of Naegleria fowleri following 72 hours of treatment with 

12.5 µg/mL rifampicin.  Percentages shown on the x-axis indicate loading percentage of 

rifampicin in the nanoparticles.  Values represent the means ± the SEM of an experiment 

performed in triplicate.  Statistical analysis by one-way ANOVA with Tukey’s multiple 

comparison (*p ≤ 0.05). 
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Difference in CPTEG:CPH co-polymer ratios did have an effect on replication 

inhibition when treated with rifampicin loaded nanoparticles (Fig. 6); ratios of 10:90, 

20:80, and 30:70 yielded similar reductions in metabolic activity of approximately a 75% 

reduction in metabolic activity.  When a ratio of 50:50 CPTEG:CPH co-polymers was 

used a reduction of metabolic activity of 50% was observed. 

 

FIG 3-6.  Effect of altering co-polymer ratios of CPTEG and CPH on the efficacy of 

reducing the viability of nanoparticle treated Naegleria fowleri.  Nanoparticles were 

loaded with rifampicin and endpoint analysis was via resazurin reduction following a 

treatment of 120 hours with 25 µg/mL rifampicin.  Ratios shown on the x-axis indicate 

co-polymer ratios tested.  Values represent the means ± the SEM of an experiment 

performed in triplicate. Statistical analysis by one-way ANOVA with Tukey’s multiple 

comparison (*p ≤ 0.05). 

 

When 20:80 CPH:SA co-polymer nanoparticles loaded with rifampicin were used 

a significant reduction in replication of the amoeba was seen (Fig. 7).  Nanoparticles used 

at a rifampicin concentration of 6.25 µg/mL yielded an MIC100 following 72 hours of 

treatment, with a very abrupt decrease in replication after 24 hours of growth (Fig. 7A).  

Nanoparticle treatment resulted in a 60% inhibition of replication following 24 hours of 

treatment, while soluble resulted in a mere 3% inhibition of replication over the sane 
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treatment period.  Resazurin reduction was also decreased over that of soluble treated 

amoeba, indicating a reduction in viability which corresponds with the decreased cell 

counts (Fig. 7B).   

 

FIG 3-7.  Replication and viability inhibition of Naegleria fowleri by 20:80 CPH:SA 

rifampicin loaded nanoparticles.  (A) Growth curve of rifampicin treated amoeba.  Values 

represent the means ± the SEM of two experiments performed in triplicate. Statistical 

analysis by one-way ANOVA with Bonferroni’s multiple comparison (*p ≤ 0.05).  (B) 

Viability of rifampicin treated amoeba; determined through the reduction of resazurin.  

Values represent the means ± a 95% confidence interval. 
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Within 24 hours of treatment, viability was reduced by approximately 50% with 

nanoparticle treatment, but by only 5% with soluble treatment.  By the last time point of 

120 hours the viability of the nanoparticle treated amoeba dropped to 85% that of 

untreated amoeba, whereas soluble viability was only reduced by 17%.  When the 

concentration of rifampicin loaded into the nanoparticles was dropped to 1.56 µg/mL no 

significant inhibition of replication was seen.  While no alteration in replication was 

noted, there was significant differences in viability as measured by the reduction of 

resazurin.  Within 24 hours of treatment with 1.56 µg/mL rifampicin via nanoparticle the 

viability of the amoeba was reduced by 20%, and by 120 hours post-treatment the 

viability was reduced by 40% compared to untreated controls.  In contrast, soluble treated 

amoeba had an initial reduction in viability of 6% measured 24 hours post-treatment and 

by 120 hours the viability was reduced by 16% when compared to untreated controls. 

Additional drugs were encapsulated into nanoparticles.  Azithromycin, which is a 

macrolide antibiotic used to treat bacterial diseases and inhibits ribosomal synthesis of 

proteins.  Amphotericin B, which is an antifungal drug that targets the sterol ergosterol in 

the cell membrane forming pores.  Both these antimicrobials have a history in the 

treatment of PAM (22).      

When azithromycin was encapsulated into 20:80 CPTEG:CPH nanoparticles an 

increase in in vitro efficacy was seen when treating the amoeba at 30 and 20 µg/mL 

azithromycin as determined by resazurin reduction (Fig. 8).  At 10 µg/mL no significant 

difference was seen between nanoparticle and soluble treatments. The difference between 

nanoparticle and soluble was more pronounce following 96 hours of treatment vs 72 

hours of treatment.  Following 72 hours of treatment nanoparticle treatment at 30 µg/mL 
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showed relative viability of the amoeba at 51% that of untreated, while soluble treated 

amoeba were at 83% relative viability.  By 96 hours post-treatment the relative viability 

of the nanoparticle treated amoeba was reduced to 25% and  49% for soluble 

azithromycin treated amoeba.  When treated with 20 µg/mL azithromycin for 72 hours 

both nanoparticle and soluble treated amoeba had similar relative viabilities of 64% and 

72%.  At 96 hours post-treatment the viability of the nanoparticle treated amoeba was 

further reduced to 36% relative viability, while the soluble treated amoeba reduced to 

49% relative viability.   

 

FIG 3-8.  Viability of Naegleria folweri treated with azithromycin loaded 20:80 

CPTEG:CPH polyanhydride nanoparticles.  Viability of treated amoeba determined 

through the reduction of resazurin.  Values represent the means ± the SEM of an 

experiment performed in triplicate. Statistical analysis by one-way ANOVA with 

Bonferroni’s multiple comparison (*p ≤ 0.05). 

        

Lastly, amphotericin B when encapsulated into 20:80 CPH:SA nanoparticles 

showed a decrease in efficacy when compared to soluble drug (Fig. 9).  When treated 

with 0.250 µg/mL amphotericin B encapsulated in these nanoparticles, while still 
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effective and having pronounced amoebicidal activity, there was a delay in activity when 

compared to soluble (Fig. 9A).   

 

Figure 3-9.  Growth and viability inhibition by 20:80 CPH:SA amphotericin B loaded 

nanoparticles on Naegleria fowleri.  (A) Growth curve of rifampicin treated amoeba.  

Values represent the means ± the SEM of an experiment performed in triplicate.  

Statistical analysis by one-way ANOVA with Bonferroni’s multiple comparison (*p ≤ 

0.05).  (B) Viability of rifampicin treated amoeba; determined through the reduction of 

resazurin.  Values represent the means ± a 95% confidence interval. 

 

By 24 hours the soluble drug had significant amoebastatic activity, with decreases 

in amoeba counts occurring over the next set of timepoints indicating amoebicidal 

activity.  With nanoparticle delivered drug, significant growth inhibition was not noted 

until 72 hours and -cidal activity was evident by 120 hours.  Metabolic inhibition as 
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indicated by the reduced reduction of resazurin mirrored the amoeba counts with the 

nanoparticle delivered amphotericin B trailing the soluble drug in efficacy; with the 

greatest difference seen at 24 hours post-treatment with nanoparticle treated showing a 

50% reduction in metabolic activity and soluble treated showing an 85% reduction in 

metabolic activity (Fig. 9B).  By 72 hours the difference between treatments had shrunk 

to nanoparticle giving a 92% reduction in metabolic activity and soluble giving a 99% 

reduction in metabolic activity; by the last time point at 120 hours the treatments gave a 

98% and 99% reduction in metabolic activity respectively.         

When combining therapies of co-administering 12.5 µg/mL rifampicin and 0.063 

µg/mL amphotericin B in an all nano-encapsulated, all soluble, or soluble amphotericin B 

with nano-encapsulated rifampicin treatment differences in optimal performance were 

seen at varying timepoints between the three treatment (Fig. 10).  Initially at 48 hours 

post-treatment both the all soluble and mixed nanoparticle/soluble treatments yielded 

similar metabolic inhibitions of 65% and 69% reductions in metabolic activity.  At this 

time the all encapsulated yielded a mere 28% reduction in metabolic activity.  Over the 

following timepoints at 72 and 96 hours the metabolic activity of the mixed 

nanoparticle/soluble group remained constant at 67% and 65% reduction in metabolic 

activity; showing a continued and static repression of metabolic activity throughout the 

experiment.  In the case of the all soluble treatment the metabolic activity of the amoeba 

increased over the next intervening timepoints.  At 72 hours post-treatment the metabolic 

activity showed a 47% reduction and by 96 hours a 14% reduction in metabolic activity.  

For the all encapsulated treatment there was a continuing decline in metabolic activity 

over the course of the experiment.  By 72 hours the metabolic activity was reduced to 
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45% of that of untreated controls and by 96 hours the metabolic activity was further 

reduced to 62%.     

 

FIG 3-10.  Viability of Naegleria folweri treated with the combination of amphotericin B 

(0.0625 µg/mL) and rifampicin (12.5 µg/mL) in either conventional soluble form, 

encapsulated in 20:80 CPTEG:CPH nanoparticles, or with amphotericin in soluble form 

and rifampicin encapsulated into 20:80 CPTEG:CPH nanoparticles.  Viability of amoeba 

determined through the reduction of resazurin.  Values represent the means ± the SEM of 

an experiment performed in triplicate.  Statistical analysis by one-way ANOVA with 

Tukey’s multiple comparison (*p ≤ 0.05). 

   

To further investigate if the treatment of these amoeba with nanoparticles could 

reduce the cytopathic effects (CPE) of the amoeba on tissue culture cells, the amoeba was 

cultured with Vero cells in the presence of soluble rifampicin or nanoparticle delivered 

rifampicin (Fig. 11).  The dissolution of the Vero cell monolayer was an indication of 

amoeba derived CPE.  Within 24 hours of co-incubation of the amoeba with the Vero 
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cells there was visual indications of CPE with gaps appearing within the Vero cell 

monolayer regardless on treatment.  By 48 hours the Vero cell monolayer is completely 

absent in the soluble rifampicin treated group, which mirrors that of the amoeba left 

untreated.  At this time the Vero cell monolayer is still somewhat intact with the 

nanoparticle delivered rifampicin treatment, with even many Vero cells remaining 

following 72 hours of co-incubation; it should be noted that the appearance on the Vero 

cells at these later timepoints does indicate a degree of CPE is occurring.   

          

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3-11.  Inhibition of cytopathic effects of Naegleria fowleri on Vero cells by 

polyanhydride nanoparticles.  Co-culture groups were treated with 25 µg/mL rifampicin, 

25 µg/mL rifampicin loaded in 20:80 CPH:SA nanoparticles with rhodamine or left 

untreated.  Vero cells stained with Cell Tracker Green.  Nanoparticles are shown in red.  

Images were taken at identical XY coordinates for each treatment and are representative 

of all images taken.   



76 

Discussion 

While disease caused by N. fowleri may be rare the outcome is usually fatal 

indicating that new avenues of treatment are needed (23).  Here we show that the 

encapsulation of select antimicrobials commonly used to treat PAM are improved in their 

amoebastatic activity, which we attribute to the readily phagocytized nature of these 

nanoparticles.  Both the 20:80 CPH:SA and 20:80 CPTEG:CPH nanoparticle chemistries 

were rapidly associated with the amoeba and remain associated with the amoeba over the 

course of 48 hours.  Scanning laser confocal microscopy shows that the internalized 

nanoparticles come to reside in intracellular vacuoles suggesting that the nanoparticles 

are being internalized by phagocytic processes.  It seems that the internalization of the 

20:80 CPH:SA chemistry has an innate effect on the endosomal process which in itself is 

amoebastatic.  Currently, the only understanding of this phenomenon resides in the 

LysoSensor staining and microscopy which showed alteration in the number and acidity 

of the endosomal vacuoles of the 20:80 CPH:SA treated amoeba along with 

morphological changes in the cell shape.  This aspect of the 20:80 CPH:SA chemistry has 

made it difficult to determine which has a greater impact on these nanoparticles’ efficacy, 

the encapsulated cargo or the innate amoebastatic properties of the particles.  Having a 

particle that in itself is detrimental to the amoeba is beneficial and warrants further 

studies into nanoparticle polymer chemistry and interactions with cellular processes.  In 

contrast the 20:80 CPTEG:CPH nanoparticles were inert when tested up 500 µg/mL; with 

no alteration in metabolic activity or replication of the amoeba.   

In the case of both 20:80 CPTEG:CPH and 20:80 CPH:SA chemistries the 

encapsulation of rifampicin led to a substantial increase in efficacy.  Rifampicin is 
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currently recommended by the CDC for the treatment of PAM even though in vitro data 

shows poor activity against this pathogen (11).  What we have demonstrated with 

rifampicin is that we can take this antimicrobial with poor in vitro efficacy and now make 

it substantially better.  In the assays, rifampicin loaded into the 20:80 CPTEG:CPH 

nanoparticles showed 6 times greater inhibition of replication.  When loaded in the 20:80 

CPH:SA nanoparticles not only was their an increase and rapid onset of inhibition of 

replication, there was also amoebicidal activity as indicated by the reduction in amoeba 

counts as the experiment progressed.  In the case of the later we need to assume that some 

of the anti-amoeba activity is attributed to the nanoparticle chemistry itself.  It should be 

noted that a similar co-polymer implantable product, the Gliadel wafer, is FDA approved 

for the treatment of brain tumors, and the toxicity of these nanoparticles has been studied 

in mice; this would suggest that the anti-amoeba properties of this chemistry would not 

carry over and harm the patient (15, 24).                    

Release kinetics associated with rifampicin loaded into either 20:80 CPH:SA or 

20:80 CPTEG:CPH have shown a delayed release profile (25).  What is perhaps notable 

about this is that with soluble treatment with rifampicin there appears to be a recover that 

is occurring with the amoeba following 72 hours of treatment; which is likely due to the 

breakdown of the rifampicin in the media.  However, with nanoparticle delivered 

rifampicin we see continued and escalating amoebastatic and even amoebicidal activity 

out beyond 72 hours; these amoebae do not show the recovery that is occurring with the 

soluble rifampicin treated amoeba.  This difference in longitudinal inhibition could be 

related to the delayed release profile of rifampicin when encapsulated in these 

nanoparticles.  This finding suggests that fewer administrations of rifampicin could be 
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needed to treat susceptible diseases when these nanoparticles are employed, while 

exceeding the antimicrobial efficacy of conventionally delivered rifampicin.   

The similar inhibition of replication seen between nanoparticles loaded with 

different percentage of rifampicin was unexpected as higher loading percentages give 

more rapid release profiles, and yet there was no significant difference in growth 

inhibition between nanoparticles loaded with 10% rifampicin vs 5% rifampicin.  

Differences in co-polymer ratios of the CPTEG and CPH monomers did yield striking 

differences in inhibition of these amoeba, which is likely due to differences in 

internalization.  Earlier work showed that the 50:50 CPTEG:CPH nanoparticles were 

poorly internalized when compared to 20:80 CPTEG:CPH; the difference in inhibition 

seen between these two co-polymer ratios, with the 50:50 ratio achieving half the 

inhibition of the 20:80 ratio nanoparticles is likely due to the poorer internalization of 

these particles.  This also underscores the importance that phagocytosis of these 

nanoparticles plays in their improved efficacy over soluble drug.   

An interesting aside is that rifampicin targets prokaryotic RNA polymerases; 

hence its use in treating bacterial infections.  N. fowleri is a eukaryotic organism, so its 

RNA polymerase should be minimally affected by rifampicin, which appears evident with 

the soluble treatment of these amoeba with rifampicin.  Why is it that the inclusion of 

rifampicin in nanoparticles now makes it a viable weapon against N. fowleri; it is possible 

that rifampicin is acting upon the mitochondrial RNA polymerase within these amoebae 

which would resemble that of a prokaryotic organism and not the nuclear RNA 

polymerase.  This hypothesis would need experimental data to support it, but it has been 

shown that rifampicin can adversely affect the mitochondrial RNA polymerase of 
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eukaryotic cells (26).  If this is the case, these nanoparticles may be good vessels for the 

delivery of drugs specifically targeting the mitochondria of cells.              

In the case of azithromycin, improvements in antimicrobial efficacy were not as 

great as that of rifampicin, but we did see an improvement over soluble which was most 

pronounced at higher azithromycin concentrations.  This data relies solely on metabolic 

inhibition obtained through the reduction of resazurin; the work with rifampicin clearly 

showed correlation between reduced amoeba counts and resazurin reduction.  The 

sensitivity of resazurin reduction over amoeba counts appears true, as significant changes 

in resazurin reduction were noted were there was no significant alteration in amoeba 

counts.  This implies that resazurin is likely a better tool to assess the antimicrobial 

activities of drugs against N. fowleri and reduces the need for time consuming 

hemocytometer counts of amoeba.  With that said, the encapsulation of azithromycin in 

the 20:80 CPTEG:CPH nanoparticles does improve its inhibitory effects on N. fowleri. 

Amphotericin B is likely considered the most important drug in the treatment of 

PAM, due to the low concentration needed to kill the amoeba in vitro.  Unlike rifampicin 

and azithromycin which saw benefit in encapsulation, the encapsulation of amphotericin 

B did not improve its efficacy over soluble.  The opposite was seen it that the 

antimicrobial properties of amphotericin B when loaded into the nanoparticles was worse 

than that of soluble drug.  Both the amoeba counts and resazurin reduction supported that 

the encapsulation of amphotericin B led to a decrease in efficacy.  This leads us back to 

the central hypothesis that the encapsulation of anti-amoebic drugs into polyanhydride 

nanoparticles would increase their efficacy owing to a more direct targeting through 

phagocytosis.  The results shown with rifampicin, azithromycin, and amphotericin B 
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support this hypothesis.  This is easily observed with the rifampicin and azithromycin 

data as there is an increase in antimicrobial efficacy with their encapsulation.  Both 

rifampicin and azithromycin have intracellular targets being RNA polymerase and 

ribosomes; an intracellular delivery via nanoparticle should and did improve efficacy of 

these drugs.  Amphotericin B is different in that it targets ergosterol on the surface of the 

cell membrane, where it forms pores leading to membrane permeability and ion leakage.  

As amphotericin B does not need to gain access to the cytosol of the cell to function, 

therefore, there is no benefit to its encapsulation, and encapsulation could be detrimental 

to its use in sequestering the drug due to the release kinetics involved with nanoparticle 

encapsulation. 

As PAM is not treated with a single drug, but a combination of drugs we tested 

amphotericin B together with rifampicin in a mixture of dose preparations: all soluble, all 

encapsulated, and encapsulated rifampicin with soluble amphotericin B.  Here we saw 

that dose preparation and time led to very different results.  While initially both the all 

soluble treatment and encapsulated rifampicin with soluble amphotericin B performed 

equally well, with subpar performance by the all encapsulated treatment.  By the final 

time point the all encapsulated had improved in efficacy to match that of the encapsulated 

rifampicin with soluble amphotericin B, with a pronounced recover of the amoeba in the 

all soluble treated group by this later time point.  In this experiment the mixture of 

encapsulated rifampicin with soluble amphotericin B yielded the best results in that the 

inhibition of the amoeba remained constant throughout the experimental time course, 

with both rapid and long-lasting inhibition.  In contrast, the all soluble treatment started 

strong matching the encapsulated rifampicin with soluble amphotericin B, yet by 72 
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hours of treatment metabolic recovery of these amoeba was noted.  By the final time 

point at 120 hours the recovery was now pronounced; in relation to untreated controls 

what began as a 65% reduction in viability was now only a 14% reduction in viability, 

indicating a substantial recovery of these amoeba. The inverse relationship between the 

all soluble and all encapsulated treatments is likely due to the low concentration of 

amphotericin B used and the poor stability of amphotericin B in culture media (27). 

As N. fowleri infection is a very destructive process we attempted to see if 

nanoparticle treatment could protect Vero cells from the cytopathic onslaught of these 

amoeba.  These amoebae can clear a monolayer of Vero cells within 48 hours through 

their lytic enzymes and trogocytic activities.  With how rapidly PAM progresses rapid 

acting antimicrobial therapies are desired for the best patient outcome.  For this we used 

the 20:80 CPH:SA chemistry loaded with rifampicin as this combination proved the most 

efficacious in single drug experiments with broth culture amoeba.  The Vero cells were 

stained with Cell Tracker green to enable time-lapse imaging of the Vero cells to assess 

the integrity of the cell monolayer.  While complete inhibition of cytopathic effects on the 

Vero cells was not achieved, and substantial CPE was observed in all treatments by the 

end of the experiment; the nanoparticle treated Vero cells had more remaining cells at 48 

hours post-treatment.   

While demonstrating these nanoparticles in an in vivo model of PAM using mice 

would settle many potential questions to include route of administration as these 

nanoparticles would need to reach the CNS and if indeed, they can improve patient 

outcome, this will need to be a addressed in a future study.  The most likely route of 

administration used would be intrathecal as this route is already used in the treatment of 
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this disease to administer amphotericin B; this route would overcome any challenges in 

getting the nanoparticles across the blood brain barrier through intravenous 

administration.  In these in vitro tests these nanoparticles have shown improved efficacy 

over soluble dosed drug in the event the drug has an intracellular target.  If the drug 

targets the exterior cell membrane soluble dosing appears better than utilizing these 

nanoparticles.  It is presented here that the phagocytosis of these nanoparticles by N. 

fowleri enables the drug to be more effectively delivered where it needs to work.  By 

utilizing the drug delivery capabilities of these nanoparticles against PAM it is possible 

that improvements in patient outcomes could occur.   

The use of nanoparticle delivered therapeutics could be beneficial in the treatment 

of other amoebic diseases.  Acanthamoeba species cause diseases ranging from painful 

eye infections that can result in blindness to fatal encephalitis (28).  Like PAM, diseases 

caused by Acanthamoeba are rare, but can be just as fatal.  Treatment options for 

granulomatous encephalitis (GAE) caused by Acanthamoeba are just as lacking as they 

are for PAM.  Initial work with our polyanhydride nanoparticles loaded with rifampicin 

shows similar degrees of enhancement seen with N. fowleri in two clinical isolates of 

Acanthamoeba (Fig. 12).   

  Future work substantiated with in vivo models could implicate nanoparticle delivered 

therapeutics in the treatment of amoebic diseases beyond N. fowleri and Acanthamoeba, 

but also to Entamoeba histolytica which causes amoebic dysentery with up to 50 million 

cases a year with 100,000 deaths (29).  
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FIG 3-12.  Growth inhibition of Acanthamoeba (CDC V062) by rifampicin loaded 

CPTEG:CPH polyanhydride nanoparticles.   Amoeba were treated for 72 hours with 

various co-polymer ratios of CPTEG:CPH nanoparticles at 25 µg/mL rifampicin 

concentration.  Values represent the means ± the SEM. Statistical analysis by one-way 

ANOVA with Tukey’s multiple comparison (*p ≤ 0.05). 
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Abstract 

We report that the gold containing anti-rheumatoid drug auranofin is amoebicidal 

against human pathogenic Naegleria fowleri.  Treatment of N. fowleri cultures at 

biologically relevant concentrations of 0.75 µg/mL to 3.0 µg/mL auranofin reduced 

amoeba counts, metabolic activity and increased cell permeability.  These results suggest 

that the addition of auranofin may benefit the treatment of N. fowleri infected patients 

afflicted by the rapidly fatal disease primary amoebic meningoencephalitis. 
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Introduction 

The fatal disease primary amebic meningoencephalitis (PAM) is caused by the 

free-living amoeba Naegleria fowleri, colloquially referred to as the “brain eating 

amoeba”(1).  Even though instances of PAM are rare, with typically fewer than 5 cases 

documented in the United States every year, this organism is ubiquitous in the 

environment and PAM has been documented in 16 countries (2, 3).  Most cases of PAM 

in the U.S. are associated with recreational activities at lakes and involve children and 

young adults; PAM has also been acquired through nasal irrigation with contaminated tap 

water in the U.S. and also Pakistan were ritual ablution of the nose is common (3-5).  

While PAM has remained a rare disease, mortality with treatment is still near 100% 

demonstrating a need to improve therapeutic interventions.  The rarity of PAM is likely 

due to the amoeba having to be introduced into the nasal cavity and then gain access to 

the olfactory neural epithelium before dissemination to the brain (6).  Initial symptoms of 

PAM can resemble bacterial meningitis and can include fever, bifrontal headache, and 

emesis, with progression to seizures, comma, and death (7).  The current recommended 

treatment for PAM issued by the Centers for Disease Control and Prevention (CDC) is 

based upon the few successful treatment outcomes and involves the simultaneous co-

administration of amphotericin B, azithromycin, fluconazole, rifampicin, and miltefosine 

(8).  Amphotericin B is recommended to be administered intrathecally by direct injection 

into the cerebral spinal fluid due to its poor ability to cross the blood brain barrier (BBB); 

oral or IV routes of administration are recommended for the other drugs used to treat 

PAM.  Despite these extreme methods, surviving PAM is rare, with mortality greater than 

95%, demonstrating a dire need for improved therapeutics.  Auranofin is an FDA 
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approved drug for the treatment of rheumatoid arthritis and it has recently been shown to 

have anti-parasitic actions against Giardia lamblia, Toxoplasma gondii, Trypanosoma 

ssp, Leishmania spp, Entamoeba histolytica and others in both in vitro and in vivo assays 

(9, 10).  With the limited success of the existing PAM therapy, we examined the 

antimicrobial activity of auranofin against pathogenic N. fowleri isolates.  The 

mechanism of anti-parasitic action of auranofin is mediated through direct inhibition of 

the critical cellular enzyme thioredoxin reductase (TrxR) resulting in disruption of 

cellular redox state of the parasite.  For instance, in Schistosoma mansani it was found 

that gold from auranofin binds to and inhibits thioredoxin-glutathione reductase (11).  It 

was observed that auranofin inhibits TrxR through binding of a selenocysteine amino 

acid residue present in some TrxR proteins (12).  It is of note that not all parasites that are 

sensitive to auranofin express TrxR with selenocysteine, suggesting either direct activity 

against TrxR is sufficient for antiparasitic activity or there are additional antiparasitic 

targets for auranofin.  In Entamoeba histolytica the gold from auranofin was found not to 

bind to its TrxR (13).  There is still some ambiguity when it comes to auranofins 

mechanism of action.  The TrxR in the non-pathogenic, related amoeba Naegleria 

gruberi does contain a selenocysteine residue (14).  It is possible that the mechanism of 

action of auranofin in N. fowleri is in the inhibition of TrxR.  We observed that the gold 

containing drug auranofin is amoebicidal against N. fowleri at the biologically relevant 

concentration of 3.0 µg/mL. 

Materials and Methods 

Antimicrobial activity of auranofin was tested against clinical isolates of human 

pathogenic N. fowleri strains HB-1 (ATCC 30174) and LEE (ATCC 30894) received 
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from American Type Culture Collection (Manassas, VA). Cultures were maintained 

under axenic conditions in Nelson’s media (ATCC medium 710) supplemented with 10% 

FBS at 37 °C and 5% CO2 in 75 cm2 tissue culture flasks in 12 mL of media.  Amoeba in 

late logarithmic growth phase were harvested from 3-day old cultures and suspended in 

Nelson’s media with 5% FBS at a cell density of 1.0 x 106 amoeba/mL; 5% FBS was 

used in the experiments as 10% serum concentrations interfered with fluorescence 

intensity measurements performed for the resazurin assay.  A suspension of 50,000 

amoeba was aliquoted in a volume of 50 µL into wells of a 96 well tissue culture plates; 

50,000 amoeba per well was empirically chosen as it provided consistent resazurin 

reduction results with sufficient densities of amoeba culture for live/dead microscopic 

imaging.  Auranofin was prepared at 2x strengths of 6, 3, and 1.5 µg/mL in culture media 

and 50 µL were added to each well with the amoeba to give auranofin concentrations of 3 

µg/mL (4.4 µM), 1.5 µg/mL (2.2 µM), and 0.75 µg/mL (1.1 µM).  Control experiments 

were conducted revealing that DMSO as a drug delivery vehicle did not change amoeba 

viability at all time points used in further experiments.  The final concentration of 0.06% 

DMSO at 3 µg/mL auranofin was not inhibitory to the amoeba; inhibition was not 

detected at DMSO concentrations twice that at 0.12%.  At 24 and 72 hours at 37ºC and 

5% CO2 the viability of the amoeba was assessed using the metabolic indicator resazurin 

(15) (Sigma, St. Louis, MO), direct observation hemocytometer counts, and Live/Dead™ 

BacLight™ staining (ThermoFisher Scientific, Waltham, MA).  Resazurin assay was 

completed by adding 10 µL of 0.30 mg/mL solution to the treatment wells and incubating 

for 2 hours at 37°C at 5% CO2.  Using 540 nm excitation and 590 emission filter set of 

FLUOstar Omega plate reader (BMG Labtech, Offenburg, Germany), reduction of 
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resazurin was recorded for each well and the values of the treatment groups were 

converted to percentage resazurin reduction relative to untreated controls.  A non-linear 

regression of the resazurin fluorescence data was used to calculate IC50 values (GraphPad 

Prism 7.03).  IC50 is defined as the concentration of auranofin that resulted in a 50% 

reduction in metabolic activity at 3 days post-treatment relative to untreated controls.  

The extended dose ranges for IC50 testing for each strain as tested were 3.0 µg/mL, 1.5 

µg/mL, 0.75 µg/mL, and 0.375 µg/mL auranofin for the HB-1 strain and 3.0 µg/mL, 2.25 

µg/mL, 1.5 µg/mL, and 0.75 µg/mL auranofin for the LEE strain.  Aliquots from treated 

wells were placed into a hemocytometer chamber for direct counting of amoeba 

trophozoites.  A one-way ANOVA with Dunnett’s multiple comparison was performed 

on the counts to determine significance.  Following 72 hours of treatment the auranofin 

containing media was removed and replaced with fresh media to measure the recovery of 

the HB-1 strain following 3.0 and 6.0 µg/mL auranofin treatment.  The reduction of 

resazurin was measured at 72 and 120 hours post-recovery.  Live/Dead™ BacLight™ 

staining was performed according to manufacturer’s instructions by incubating the 

amoeba in Nelson’s media for 20 minutes supplemented with 5 µM SYTO 9 and 30 µM 

propidium iodide.  Amoeba were subsequently imaged using an IX71 DSU microscope 

(Olympus, Center Valley, PA) with Metamorph Advanced acquisition software.  

Preparation of final images was performed with Fiji (https://fiji.sc/).    

Results and Discussion 

Treatment of human pathogenic N. fowleri with auranofin resulted in a 

significant, dose dependent reduction in metabolic activity and viability of amoeba in 

vitro.  The HB-1 strain was significantly more sensitive to auranofin than the Lee strain 

https://fiji.sc/
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(Fig. 1 and S1).  Growth of HB-1 cultures treated with 1.5 µg/mL and 3.0 µg/mL of 

auranofin was lower than untreated controls at 24 hours.  Amoeba counts were lowered 

further at 72 hours to 45% and 82% for 1.5 µg/mL and 3.0 µg/mL in auranofin treated 

cultures.  The decrease in amoeba counts coincides with decreased metabolic activity 

measured by resazurin reduction (Fig. 1B).  The 0.75 µg/mL auranofin treated cultures 

were only reduced at 72 hours.  This is interesting as it suggests that maintained low 

concentrations of auranofin are likely to be beneficial in treatment even as biological 

concentration decreases due to drug metabolism and excretion.  Metabolic activity of 

auranofin treated HB-1 cultures at 24 hours was 28.4% and 8.7% with 1.5 and 3.0 

µg/mL, respectively. It is notable that the metabolic activity of the 0.75 µg/mL auranofin 

culture reduced to 71.4% of untreated with a viable count equal to untreated.  We 

interpret this result that the metabolic assay is sensitive to rapid changes in cell health due 

to the antimicrobial activity of the drug.  By 72 hours, metabolic activity decreased 

further to 50.4%, 9.8%, and 0.4% with 0.75, 1.5, and 3.0 µg/mL of auranofin, 

respectively,  providing an IC50 of 0.788 µg/mL.  Qualitative assessment of membrane 

integrity is demonstrated by increased penetration of the membrane impermeable dye 

propidium iodide with auranofin treated Naegleria.  These results corroborate the 

increase in membrane permeability with decreased metabolic activity and reduced direct 

amoeba counts, suggesting that auranofin exerts amoebicidal activity (Figs. 1C & 1D).  In 

contrast, the LEE strain was unaffected by lower auranofin concentrations (S1).  The IC50 

for the Lee strain was calculated to be 2.18 µg/mL auranofin, which is 2.8x greater than 

that of the HB-1 strain.  Phenotypic differences in relative sensitivity to antimicrobials 

have been observed among Naegleria strains (16, 17).  Recovery of the HB-1 strain 
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following treatment with 3.0 µg/mL auranofin for 72 hours was gradual obtaining a 

metabolic rate of 6% of that of untreated controls after 5 days of recovery in auranofin 

free media; when treated with 6.0 µg/mL auranofin for 72 hours no increase in metabolic 

activity was noted, which suggest 100% killing of the amoeba (S2).  

 
 

FIG 4-1.  Effect of auranofin on growth and viability of N. fowleri HB-1.  (A) Growth 

curves of N. fowleri following treatment with auranofin.  Values represent the means ± 

the SEM of three experiments performed in triplicate.  Statistical analysis by one-way 

ANOVA with Dunnett’s multiple comparison (*p < 0.01).  (B) Metabolic activity of 

auranofin treated N. fowleri relative to untreated controls.  Metabolic activity was 

determined through the reduction of resazurin.  Values represent the means ± a 95% 

confidence interval of three experiments performed in triplicate.  (C) Representative 

live/dead images of N. fowleri treated with 3.0 µg/mL auranofin at 72 hours post-

treatment, and (D) controls.  Green Syto 9 staining of both live and dead cells.  Red 

propidium iodide staining of dead cells (yellow arrows).  Scale bar in D represents 40 

µm.           

 

We present data demonstrating that auranofin exerts an MIC of 1.5 µg/mL (2.2 

µM) and IC50 of 0.788 µg/mL (1.16 µM) with the HB-1 strain and an MIC of 3.0 µg/mL 

(4.4 µM) and IC50 of 2.18 µg/mL (3.2 µM) with the Lee strain of N. fowleri.  Staining of 
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these auranofin treated amoeba with membrane impermeable dye propidium iodide 

suggests that a proportion of the treated amoeba have been killed.  Auranofin can cross 

the BBB with gold concentrations within the brain reaching 4.79 µM in mice through oral 

delivery of auranofin at 2 mg/kg once daily for seven days; it is unknown to what 

concentration auranofin would be found in the brains of humans (18).  The dosing used in 

preceding experiment with mice represents an approximate 20 times greater 

concentration of auranofin than what is currently used in the treatment of rheumatoid 

arthritis in humans.  In a recent phase I clinical trial aimed at evaluating auranofin as an 

antiparasitic agent (Clinicaltrials.gov NCT02089048) it was found that blood plasma 

levels of gold reached 0.52 µM and 1.58 µM at 1 and 7 days at 6 mg/day auranofin 

treatment; this trial did not look at CNS gold concentrations (12).  In the case of PAM 

greater concentrations of auranofin may accumulate within the CNS as the BBB becomes 

compromised during meningitis along with there being reduced CSF outflow and 

decreased efflux pump activity (19).  It is plausible that auranofin may obtain biologically 

relevant concentrations in the CNS to treat patients with PAM, however, a high loading 

dose or intrathecal delivery may be required to rapidly achieve therapeutic levels.  

Utilizing an animal model of PAM would provide more impactful results, than the in 

vitro results presented here.  Little is known about the toxicity of auranofin in humans 

when administered at higher concentrations than what is currently used in the treatment 

of rheumatoid arthritis of 6 to 9 mg per day.  Auranofin has been shown to upregulate 

expression of hemeoxygenase 1 (HOX-1) in astrocytes, which may prove beneficial in 

the treatment of PAM by reducing neuroinflammation and reactive oxygen species (ROS) 

dependent cell death induced by N. fowleri (20, 21).  Based on these results, the 
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therapeutic regimen currently recommended for PAM may benefit from the addition of 

auranofin.  While requiring further testing, auranofin may be useful in the treatment of 

infections caused by other free-living amoebae.  Given the differences in susceptibility to 

auranofin between HB-1 and LEE isolates, clinical outcomes through the sole use of 

auranofin would be dependent on strain susceptibility and the concentration of auranofin 

to be present in human CNS following intrathecal administration.  With these 

considerations, auranofin has the potential to be used as an adjunct therapy alongside 

conventional therapies.  While disease caused by free-living amoeba are rare, they are 

frequently fatal and difficult to treat.  The inclusion of new therapeutics in the treatment 

of these diseases could save lives.      
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Supporting Information

 

FIG 4-S1.  Effect of auranofin on growth and viability of N. fowleri Lee.  (A) Growth 

curves of N. fowleri following treatment with auranofin.  Values represent the means ± 

the SEM of three experiments performed in triplicate. Statistical analysis by one-way 

ANOVA with Dunnett’s multiple comparison (*p < 0.01).  (B) Metabolic activity of 

auranofin treated N. fowleri relative to untreated controls.  Metabolic activity was 

determined through the reduction of resazurin.  Values represent the means ± a 95% 

confidence interval of three experiments performed in triplicate.  (C) Representative 

live/dead images of N. fowleri treated with 3.0 µg/mL auranofin at 72 hours post-

treatment, and (D) controls.  Green Syto 9 staining of both live and dead cells.  Red 

propidium iodide staining of dead cells (yellow arrows).  Scale bar in D represents 40 

µm.   
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FIG 4-S2.  Recovery of auranofin treated N. fowleri HB-1 in auranofin free 

media.  Recovery of amoeba was assessed by measuring metabolic activity of amoeba 

post-treatment with either 3.0 µg/mL or 6.0 µg/mL auranofin.  Post-treatment recovery 

was performed by incubating cells in auranofin free media for 120 hours.  No metabolic 

recovery was detected in cells recovered from 6.0 µg/mL treatment.  Values represent the 

means ± a 95% confidence interval.  
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Abstract 

 Recent advances in microbiology has shown that numerous pathogenic bacteria 

respond to the catecholamine hormones norepinephrine, and epinephrine.  These 

responses can be alterations in replication rate, increased iron acquisition, resistance to 

antibiotics, and induction of virulence factors.  This is the first examination of how these 

catecholamines affect the virulent bacteria, Bacillus anthracis and Yersinia pestis.  The 

pathogenesis of both of these bacteria can result in fatal pulmonary infections, yet these 

two bacteria have differing responses to catecholamines.  In vitro replication in the 

presence of catecholamines, along with susceptibility to antibiotics was examined.  

Norepinephrine accelerates the replication of B. anthracis, while with Y. pestis these 

catecholamines inhibited replication.  The response of Y. pestis to catecholamines is 

divergent to that of the related bacteria Yersinia enterocolitica and Yersinia 

pseudotuberculosis.  The β-adrenergic receptor antagonist propranolol was shown to 

restore normal growth phenotype in Y. pestis when norepinephrine was administered, 

suggesting the possibility of a receptor through which norepinephrine is signally through.  

With B. anthracis, norepinephrine was found to cause an increased resistance to the 
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antibiotic rifampicin, which could be attenuated through the administration of 

propranolol.  These findings reveal the possibility for complex chemical interactions 

between host and these bacteria, with relevance in pathogenesis and treatment.                 

Introduction 

The catecholamine hormones norepinephrine, epinephrine, and dopamine have 

previously been shown to accelerate the replication of pathogenic bacteria, induce greater 

resistance to antibiotics, and modulate virulence factors; some select examples include 

increasing the rate of replication and iron acquisition from transferrin in Bordetella 

bronchiseptica, Pseudomonas aeruginosa, and Listeria monocytogenes by norepinephrine 

(1-4).  In Vibrio parahaemolyticus norepinephrine modulates its type III secretion system 

(5).  The uptake of enterotoxigenic Escherichia coli into jejunal Peyer’s patches is 

increased by norepinephrine (6).  Pre-treatment of Salmonella typhimurium with 

norepinephrine was shown to increase replication in experimentally infected pigs (7).  

Epinephrine was shown to increase growth rate and resistance to oxidative stress in 

Burkholderia psuedomallei but had no effect on cell invasion (8).  In Yersinia 

enterocolitica it was shown that dopamine and norepinephrine increase growth rate and 

increase iron acquisition from transferrin while epinephrine doesn’t impact the replication 

of Y. enterocolitica and additionally acted as an antagonist towards the effects of 

dopamine and norepinephrine (9).  While there has already been a vast exploration of this 

host derived hormone response on bacterial pathogens, the current species studied do not 

include many of the most fearsome bacterial pathogens out there.  This chapter addresses 

how these menaces of humankind, Yersinia pestis and Bacillus anthracis, respond to 

these catecholamines.  In addition, the closely related Yersinia pseudotuberculosis and 
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Yersinia enterocolitica will be compared to Y. pestis.  Bacillus cereus is included as a 

comparison to B. anthracis.                

The bacterium Bacillus anthracis is perhaps best known for its designation as a 

biowarfare agent.  The spores produced by this bacterium when inhaled will cause the 

fatal disease pneumonic Anthrax (10).  During the course of infection this bacterium will 

be exposed to host derived stress hormones.  It should be noted that illness has been 

shown to increase norepinephrine expression (11, 12).  Currently nothing is known how 

B. anthracis responds to these stress hormones, and how this interaction may affect 

pathogenesis and treatment.  Here we show that vegetative B. anthracis bacilli exhibit an 

increased replication rate when exposed to the stress hormone norepinephrine, and that 

norepinephrine exposure leads to an increase in resistance to the antibiotic rifampicin.  

Through the addition of the β-adrenergic receptor antagonist propranolol, we could 

attenuate the rifampicin resistance brought on by norepinephrine, which possibly 

suggests that norepinephrine may be exerting its effect on B. anthracis through a receptor.  

A similar norepinephrine induced resistance to rifampicin was observed in the related 

species Bacillus cereus.  Norepinephrine had no effect on the susceptibility to 

doxycycline or ciprofloxacin; doxycycline and ciprofloxacin being FDA approved first 

line drugs in the treatment of anthrax (13).  However, when B. anthracis was treated with 

these antibiotics for 8 hours at concentrations sufficient to kill 99% of the bacteria, the 

addition of norepinephrine after the antimicrobial onslaught resulted in greater recovery 

of these antimicrobially damaged bacteria.  Iron is an essential nutrient for bacterial 

growth and pathogenesis; within mammalian hosts free iron is very limited (14).  The 

media used in these experiments mimics physiological conditions in that free iron is 
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restricted by the presence of transferrin.  Norepinephrine has been shown to increase iron 

uptake in bacteria from the iron bound serum protein transferrin (15).  Bacillus anthracis 

can meet its iron requirements in vivo through the production of siderophores which are 

able to scavenge iron that is bound to host proteins (16).  When making this media iron 

replete the presence of norepinephrine is still required for resistance to rifampicin; 

indicating that iron scavenging by norepinephrine is not responsible for the resistant 

phenotype.  The production of the toxins edema factor and lethal factor are essential for 

virulence, through a cell-based toxin assay norepinephrine was shown to have no effect 

on toxin production in B. anthracis, neither does norepinephrine influence spore 

germination. 

Yersinia pestis is best known for its many plagues that have had devastating 

impacts on past civilizations; a large percent of Europe’s population was killed by Y. 

pestis in the 14th century during the Black Death pandemic (17).  Due to the organism’s 

deadly nature and high infectivity it is considered a tier one select agent, as it would 

make a very efficient bio warfare agent (10).   

Yersinia pestis is known to cause three distinct forms of disease.  The bubonic 

form is causes through the bite from an infected arthropod or exposure to the organism 

through a break in the skin.  In this form the organism travels from the site of infection to 

the regional draining lymph node via infected macrophages and dendritic cells.  After 

replicating and overburdening the draining lymph node, spread to other lymph nodes is 

facilitated again by travel within infected phagocytic cell (18).  Without treatment the 

disease usually progresses to a life-threatening septicemic form with hematogenous 

spread to other organs.  Spread of the organism to the lungs will result in the pneumonic 
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form of the disease.  The role of catecholamines in the pathogenesis of Y. pestis is 

unknown.  Here we show that Y. pestis has a very different response to catecholamine 

when compared to other pathogenic bacteria and to the closely related Y. enterocolitica 

and Y. pseudotuberculosis.  These data merely represent growth responses in relation to 

exposure to norepinephrine, epinephrine, and serotonin. What was seen was that these 

hormones greatly inhibit the replication of Y. pestis; this is opposite to what was seen in 

the other Yersinia species.        

Materials & Methods 

Cell culture 

Bacillus anthracis, Anthrax Strain Collection (ASC) 386 (Ames), NR-36110, was 

obtained through BEI, and Bacillus anthracis Sterne strain (34F2) was obtained through 

the Colorado Serum company; with general cultivation on BHI agar at 37°C and 5% CO2.  

Bacillus cereus was obtained from the lab of F. Chris Minion and maintained on BHI 

agar at 37°C and 5% CO2.  Yersinia pestis, strain CO92, NR-641, and Yersinia 

pseudotuberculosis, strain IP2775, NR-4375, were obtained through BEI with cultivation 

on TSA supplemented with 1% bovine hemoglobin at 3737°C and 5% CO2.  Yersinia 

enterocolitica was obtained from Robert Perry and maintained on TSA supplemented 

with 1% bovine hemoglobin at 37°C and 5% CO2.  Murine macrophages (RAW 246.7) 

were maintained in DMEM with 10% FBS at 37°C and 5% CO2. 

Generation of B. anthracis spores 

Bacillus anthracis spores of the Sterne strain were prepared by cultivating the 

vegetative bacteria in modified G media for 72 hours at 30°C with shaking at 125 rpm.  
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The spores were harvested and subjugated to a 30-minute treatment at 60°C to kill any 

remaining vegetative cells followed by centrifugation and wash steps with sterile 

deionized water.  The spores were stored at -80°C until needed for experiments.  

Modified G media was composed of 0.2% yeast extract, 0.17 mM CaCl2, 2.87 mM 

K2HPO4, 0.81 mM MgSO4, 0.24 mM MnSO4, 17 µM ZnCl2, 20 µM CuSO4, 1.8 µM 

FeCl3, and 15.5 mM (NH4)2SO4 with the pH adjusted to 7.2.   

Growth assays            

Bacterial growth assays were performed in Serum-SAPI media (6.25 mM 

NH4NO3, 1.84 mM KH2PO4, 3.35 mM KCL, 1.01 mM MgSO4, 2.77 mM glucose, pH 

7.5, supplemented with 30% (v/v) adult bovine serum, and 25 mM HEPES) at 37°C and 

5% CO2.  Initial bacterial concentrations of these cultures were ≤ 100 CFUs/mL.  The 

bacteria were grown in the presence or absence of varying concentrations of the 

catecholamines norepinephrine, epinephrine, serotonin and/or the beta-adrenergic 

receptor antagonist propranolol for 20 hours for Bacillus species or 48 hours for Yersinia 

species, with replication quantification by CFU enumeration.  

Antimicrobial susceptibility assays 

Antimicrobial susceptibility testing of Bacillus species.  Antibiotics with or 

without norepinephrine were prepared at a 2x concentration in Serum-SAPI media, and 

50 µL were pipetted into the wells of a 96 well tissue culture plate.  A bacteria 

suspension from a colony scrape was suspended in PBS and adjusted to an OD600 

measurement of 0.5.  Then a 1:100 dilution of the bacterial suspension was made in 



105 

Serum-SAPI media with 50 µL of this being added to each treatment well of a 96 plate.  

Norepinephrine was used at 100 µM, propranolol was used at 500 µM, and ferrous 

sulfate was used at 20 µM.  After 20 hours at 37°C and 5% CO2 CFU enumeration was 

done to assess antimicrobial susceptibility.  It should be noted that antimicrobial 

susceptibility testing was only performed with Bacillus species as they facilitated robust 

growth in Serum-SAPI media in the absence of catecholamines.  If bacterial cultures 

were pre-exposed to norepinephrine prior to antimicrobial challenge this was done in 

twenty-four hour 7 mL Serum-SAPI cultures at 37°C and 5% CO2 which were then 

centrifuged at 1000 rcf for 10 minutes at room temperature to pellet the bacteria three 

times with PBS washes.     

To test whether catecholates stimulate bacterial replication following 

antimicrobial damage,  bacterial cultures in Serum-SAPI media were exposed to 1.0 

µg/mL rifampicin 2.0 µg/mL ampicillin, or 1.6 µg/mL ciprofloxacin for 8 hours at 37°C 

and 5% CO2, which was sufficient to kill 99% of the bacteria.  These cultures were 

centrifuged at 1000 rcf at room temperature for 10 minutes to pellet the surviving bacteria 

three times with the supernatant removed and replaced with fresh media to remove most 

residual antibiotics.  These antimicrobially damaged bacteria were then allowed to 

recovery in Serum-SAPI media in the presence or absence of 100 µM norepinephrine for 

20 hours at 37°C and 5% CO2, with CFU enumeration to determine growth recovery.  For 

ampicillin and ciprofloxacin antimicrobially damaged cells were also allowed to recover 

in the presence of 20 µM ferrous sulfate.  B. anthracis was the only species to be tested 

for recovery following antimicrobial insult.  

Toxin production by B. anthracis 
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 To test the impact norepinephrine has on toxin production in B. anthracis, 

Cultures of B. anthracis Sterne were grown for 24 hours in Serum-SAPI media in the 

presence or absence of 100 µM norepinephrine.  These cultures were then centrifuged to 

pellet the bacteria at 1000 rcf at room temperature for 10 minutes.  The supernatant was 

collected and passed through a sterile 0.2 µm syringe filter to ensure sterility of the 

supernatants.  The supernatants were than processed through Centriprep centrifugal filter 

devices (10,000 MWCO) per the manufactures recommendations to remove excess 

catecholamines and to concentrate the toxins expressed into the supernatant.  Murine 

macrophages (RAW 246.7) were utilized at a cell density of 1.0 x 106 cells/mL in a 100 

µL volume in 96 well tissue culture plates.  These cells are susceptible to the toxin 

produced by B. anthracis and will show a decrease in cell viability when exposed to the 

toxin.  A titration of the processed bacterial supernatant was applied to the macrophages 

and the viability of the macrophages was assessed through the addition of MTT.          

Results 

 Most bacterial species screened responded positively to the presence of 

norepinephrine, regarding increased replication rate; the only exception being Yersinia 

pestis.  With B. anthracis (Sterne strain) we saw a 10-fold increase in replication in the 

presence of 100 µM norepinephrine (Fig. 1A).  In the case of B. anthracis (ASC 386) we 

again saw a 10-fold increase in replication with 100 µM norepinephrine (Fig. 1B).   
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FIG 5-1.  Enhanced replication of Bacillus anthracis in response to norepinephrine.  

Twenty-hour in vitro growth of B. anthracis in Serum-SAPI media in the presence or 

absence of 100 µM norepinephrine.  (A) Bacillus anthracis (Sterne).  (B) Bacillus 

anthracis (Ames).  Values represent the means ± the SEM of two experiments performed 

in triplicate. Statistical analysis by Student’s t-test  (*p ≤ 0.05). 

            

Unexpectedly, the notorious pathogen Y. pestis showed an opposite response to 

norepinephrine than B. anthracis or even to its closely related bacteria Y. enterocolitica 

and Y. pseudotuberculosis (Fig. 2).  When Y. pestis (CO92) was treated with 

norepinephrine at concentrations ranging from 50 µM to 200 µM for 48 hours there were 

no recoverable colonies; the control provided 7.9 x 104 CFUs/mL (Fig. 2A).  In 

comparison, Y. enterocolitica provided similar numbers of CFUs/mL in its control (1.2 x 

104 CFUs/mL), yet with norepinephrine treatment at 50, 100, and 200 µM replication was 

substantially stimulated with recovered CFUs of 1.5 x 108 CFUs/mL, 1.2 x 108 

CFUs/mL, and 1.4 x 108 CFUs/mL respectively (Fig. 2B).  To add further oddities to the 

Yersinia genus, Y. pseudotuberculosis grew very well in Serum-SAPI media without the 

addition of norepinephrine and was able to achieve a cell density of 1.2 x 108 CFUs/mL 
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(Fig. 2C).  The supplementation of norepinephrine at 50, 100, and 200 µM led to no 

growth enhancement under these conditions with densities of 2.8 x 108, 2.0 x 108, and 1.0 

x 108 CFUs/mL respectively.   

 

FIG 5-2.  Alteration of growth of Yersinia species in response to norepinephrine (NE), 

epinephrine (EP) and serotonin (SE).  Forty-eight-hour in vitro growth of Yersinia species 

in Serum-SAPI media in the presence or absence of norepinephrine, epinephrine, or 

serotonin.  A). Yersinia pestis (CO92).  B). Yersinia enterocolitica.  C). Yersinia 

pseudotuberculosis (IP2775).  Values represent the means ± the SEM of an experiment 

performed in triplicate.  Statistical analysis by one-way ANOVA with Tukey’s multiple 

comparison (*p ≤ 0.05). 

       

While norepinephrine was the only hormone tested against Bacillus species, in the 

case of Yersinia, epinephrine and serotonin were also screened.  With epinephrine tested 

at 50, 100, and 200 µM, we again see an absence of recoverable colonies with Y. pestis 

(Fig. 2A).  In the event of Y. enterocolitica we see a similar result as that of 

norepinephrine, with the only difference being that 50 µM epinephrine had less of an 

impact on replication resulting in 9.2 x 104 CFUs/mL (Fig. 2B).  At 100 and 200 µM 

epinephrine we see approximately 3 logs greater replication compared to control cultures 

resulting in 1.7 x 107 CFUs/mL and 2.7 x 107 CFUs/mL; the control yielded 1.2 x 104 

CFUs/mL.  With Y. pseudotuberculosis we again see no enhancement of replication with 

either 50, 100, or 200 µM epinephrine under these test conditions (Fig. 2C).  When 
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screening serotonin, we again see with Y. pestis an inhibition of replication (Fig. 2A).  

While 50 µM serotonin yielded no significant effect on the replication of Y. pestis, we do 

see a stark reduction in CFU counts with 100 µM serotonin, and an absence of recovered 

colonies with 200 µM serotonin.  When Y. enterocolitica was exposed to serotonin at 50, 

100, and 200 µM there was no significant inhibition or stimulation of replication (Fig. 

2B).  Lastly, exposing Y. pseudotuberculosis to serotonin at 50, 100, and 200 µM led to 

no significant differences in replication at 100 and 200 µM serotonin; there was a slight 

inhibition of replication seen at 50 µM serotonin (Fig. 2C).     

 Experiments carried out with a racemic mix of norepinephrine enantiomers 

showed decreased replication inhibition with Y. pestis when tested compared to that of the 

more biologically relevant L-norepinephrine enantiomer (Fig. 3).  Here we see a 

pronounced dose response with norepinephrine exposure with treatment at 50, 100, and 

200 µM yielding 4.0 x 104 CFUs/mL, 2.0 x 104 CFUs/mL, and 4.1 x 102 CFUs/mL: with 

the control yielding 2.2 x 105 CFUs/mL (Fi.g 3A).  In a separate experiment is was shown 

that the beta androgenic receptor antagonist propranolol could attenuate the effects of 

norepinephrine and restore normal growth phenotype (Fig. 3B).  The control yielded 5.8 

x 105 CFUs/mL, while treatment with the racemic mix of norepinephrine at 100 µM 

reduced the replication of Y. pestis to 3.8 x 104 CFUs/mL.  With the inclusion of 

propranolol at 500 µM in conjunction with 100 µM norepinephrine the number of 

recovered bacteria were 4.2 x 106 CFUs/mL.  The presence of 500 µM propranolol alone 

yielded 3.2 x 106 CFUs/mL.  
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FIG 5-3.  Alteration of growth of Yersinia pestis (CO92) in response to a racemic mix of 

norepinephrine and the beta-adrenergic receptor antagonist propranolol.  Forty-eight-hour 

in vitro growth of Y. pestis in Serum-SAPI media in the presence or absence of 

norepinephrine and propranolol (PL).  (A) Dose titration of a racemic mix of 

norepinephrine.  Values represent the means ± the SEM of three experiments performed 

in triplicate. Statistical analysis by one-way ANOVA with Bonferroni’s multiple 

comparison (*p ≤ 0.05).  (B) Antagonistic effects of propranolol on norepinephrine.  

Values represent the means ± the SEM of an experiment performed in triplicate. 

Statistical analysis by one-way ANOVA with Tukey’s multiple comparison (*p ≤ 0.05). 

       

   When investigating the reported phenomenon that norepinephrine exposure can 

increase resistance to the antibiotic rifampicin in Staphylococcal species, we saw a 

similar trend when we tested this with Bacillus species (19).  In both B. anthracis Ames 

and Sterne strain we observed unfettered replication with the inclusion of 100 µM 

norepinephrine at rifampicin concentrations that inhibited all replication in the absence of 

norepinephrine (Fig. 4).  In the case of the Ames strain an MIC of 0.15 µg/mL rifampicin 

was found; the inclusion of 100 µM norepinephrine shifted the MIC to 0.25 µg/mL 

rifampicin (Fig. 4A).   
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FIG 5-4.  Norepinephrine induced resistance to rifampicin among Bacillus species.  

Twenty-hour in vitro growth of Bacillus species in Serum-SAPI media in the presence or 

absence of 100 µM norepinephrine (NE) with the antibiotic rifampicin.  (A) Bacillus 

anthracis (Ames).  Values represent the means ± the SEM of an experiment performed in 

triplicate.  (B) Bacillus anthracis (Sterne).  Values represent the means ± the SEM of 

three experiments performed in triplicate.  (C) Bacillus cereus.  Values represent the 

means ± the SEM of an experiment performed in triplicate.  Statistical analysis by one-

way ANOVA with Bonferroni’s multiple comparison (*p ≤ 0.05). 

 

Significantly more bacteria were recovered from the norepinephrine treated 

cultures out to 0.50 µg/mL rifampicin.  With Sterne strain replication consistent with 

untreated controls was sustained out to 0.20 µg/mL rifampicin when norepinephrine was 
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included; in the absence of norepinephrine the MIC was found to be 0.10 µg/mL (Fig. 

4B).  Concentration of rifampicin above 0.2 µg/mL rifampicin were not screened with the 

Sterne strain of B. anthracis.  With B. cereus we saw results similar to that of B. anthracis 

(Fig. 4C).  The MIC for B. cereus here was 0.10 µg/mL and with the inclusion of 100 µM 

NE we see replication reminiscent of the untreated controls out to 0.15 µg/mL rifampicin; 

like with the Sterne strain of B. anthracis a broader dose range of rifampicin was not 

tested.  Interestingly, when we screened the antibiotics doxycycline, ampicillin, and 

ciprofloxacin against B. anthracis with the inclusion of 100 µM norepinephrine we did 

not see this same resistance phenotype that we saw with rifampicin (data not shown).  It 

should be noted that in the experiments involving Bacillus species a racemic mix of 

norepinephrine was used in all experiments instead of using just the L-norepinephrine 

enantiomer, which would be more biologically relevant.                  

 When the beta-adrenergic receptor antagonist propranolol was used a 5x the 

concentration of norepinephrine when the bacteria were challenged with rifampicin, we 

saw a significant reduction in the resistant phenotype elicited by norepinephrine (Fig. 5).  

It should be noted that treating these bacteria with propranolol in tandem with rifampicin 

also led to a significant reduction in bacteria compared to those treated with just 

rifampicin; this was most pronounced with the Sterne strain of B. anthracis.  With the 

Ames strain of B. anthracis, the inclusion of propranolol with norepinephrine and 

rifampicin led to 3.4 x 105 bacteria recovered; when challenged with norepinephrine and 

rifampicin together 1.6 x 107 bacteria were recovered (Fig. 5A).  The treatment with 

rifampicin alone yielded 5.7 x 102 recovered bacteria, and the inclusion of propranolol 

with rifampicin resulted in 1.0 x 102 recovered bacteria.  Similar results were seen with 
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the Sterne strain of B. anthracis and with B. cereus (Figs. 5B and 5C).  Of potential future 

interest in the treatment of anthrax, the alpha-adrenergic receptor antagonist 

phenoxybenzamine greatly inhibited the growth of B. anthracis Sterne strain, which was 

not seen with propranolol (Fig. 5D).   

 

FIG 5-5.  Adrenergic receptor antagonist impact on growth and norepinephrine induced 

resistance to rifampicin among Bacillus species.  (A-C). Twenty-hour in vitro growth of 

Bacillus species in Serum-SAPI media in the presence or absence of 100 µM 

norepinephrine (NE) and 500 µM propranolol (PL) with the antibiotic rifampicin.  (A) 

Bacillus anthracis (Ames).  (B) Bacillus anthracis (Sterne).  (C) Bacillus cereus.  Values 

represent the means ± the SEM of an experiment performed in triplicate.  Statistical 

analysis by one-way ANOVA with Tukey’s multiple comparison (*p ≤ 0.05).  (D) Growth 

curve of B. anthracis (Sterne) in Serum-SAPI media in the presence or absence of 500 

µM propranolol or 500 µM phenoxybenzamine.           
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 It does seem that the concurrent exposure of norepinephrine with rifampicin is 

required for elicitation of this resistant phenotype (Fig. 6).  Simply pre-exposing B. 

anthracis to norepinephrine and then removing most residual norepinephrine prior to 

rifampicin treatment did not elicit a resistant phenotype.     

 
FIG 5-6.  Continuous exposure to norepinephrine is required for resistance phenotype 

towards rifampicin.  Bacillus anthracis Sterne was grown in the presence or absence of 

100 µM norepinephrine (NE) in Serum-SAPI media for 24 hours prior to antimicrobial 

challenge with rifampicin; excess norepinephrine was removed prior to antimicrobial 

challenge.  During rifampicin challenge a control included the addition of 100 µM 

norepinephrine.  Values represent the means ± the SEM of an experiment performed in 

triplicate.  Statistical analysis by one-way ANOVA with Tukey’s multiple comparison (*p 

≤ 0.05). 
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Iron is an important growth factor for bacteria, and it has been shown that 

norepinephrine can increase iron uptake in iron limiting environments were iron is 

sequestered by transferrin (15).  To explore this as a mechanism for the perceived 

rifampicin resistance the inclusion of ferrous sulfate at 20 µM was included in the assay.  

In both the Ames and Sterne strain of B. anthracis the inclusion of surplus iron did yield a 

slight increase in CFUs over that of rifampicin treated alone, yet it was not in line with 

the degree of resistance induced by the presence of norepinephrine (Fig. 7).  In the case 

of the Ames strain when challenged with 0.10 µg/mL rifampicin we see the inclusion of 

excess iron improving the replication of B. anthracis to a similar degree as 100 µM 

norepinephrine with excess iron yielding 7.17 x 106 CFUs/mL and 100 µM 

norepinephrine yielding 7.4 x 106 CFUs/mL; in the absence of excess iron or 

norepinephrine we see 5.3 x 105 recovered CFUs/mL (Fig. 7A).  When the concentration 

of rifampicin was increased to 0.20 µg/mL we see a stark difference between the number 

of recovered bacteria between the inclusion of excess iron and norepinephrine.  Here, the 

inclusion of excess iron resulted in 3.2 x 103 CFUs/mL while the addition of 100 µM 

norepinephrine yielded 2.1 x 106 CFUs/mL; bacteria treated with rifampicin in the 

absence of either excess iron or norepinephrine resulted in 1.9 x 102 CFUs/mL.  With the 

Stene strain we see similar results as that of the Ames strain of B. anthracis were at 0.10 

µg/mL rifampicin there is no significant difference in recovered CFUs between the 

inclusion of excess iron or 100 µM norepinephrine.  However, when the concentration of 

rifampicin was increased to 0.20 µg/mL there is a several log reduction in the number of 

recovered CFUs when excess iron was utilized compared to the inclusion of 100 µM 
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norepinephrine.       

  

FIG 5-7.  Impact of excess iron on the susceptibility of Bacillus anthracis to rifampicin 

with the comparison to the resistant phenotype derived from exposure to norepinephrine.  

Bacillus anthracis was grown in the presence or absence of 100 µM norepinephrine (NE) 

or 20 µM ferrous sulfate (FeSO4) in Serum-SAPI media   (A) Bacillus anthracis (Ames).  

(B) Bacillus anthracis (Sterne).  Values represent the means ± the SEM of an experiment 

performed in triplicate.  Statistical analysis by one-way ANOVA with Tukey’s multiple 

comparison (*p ≤ 0.05). 

 

 While norepinephrine did not elicit a resistant phenotype towards ciprofloxacin or 

ampicillin; exposing bacteria that were antimicrobially damaged by these two antibiotics 

to norepinephrine greatly increased the growth recovery.  B. anthracis Sterne strain was 

exposed to 1.6 µg/mL ciprofloxacin, 2.0 µg/mL ampicillin, and 1.0 µg/mL rifampicin for 

8 hours to effectively render 99% of the exposed bacteria non-viable by plate count.  

Following removal of residual antibiotics through multiple centrifugation steps, 100 µM 

norepinephrine was added (Fig. 8).  What we found is that the presence of norepinephrine 

increased the replication rate of bacteria antimicrobially damaged by rifampicin by 63-

fold, by ciprofloxacin by 12-fold, and by ampicillin by 20-fold.  In the experiments 
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involving ciprofloxacin and ampicillin additional treatments included the inclusion of 

excess iron through the addition of 20 µM ferrous sulfate.  In these groups treated with 

excess iron their recovery rate matched that of the groups treated with 100 µM 

norepinephrine. 

 

FIG 5-8.  Impact of norepinephrine (NE) and iron (FeSO4) on the ability of Bacillus 

anthracis Sterne to recovery from exposure to bactericidal concentrations of the 

antibiotic’s ciprofloxacin (1.6 µg/mL), ampicillin (2.0 µg/mL), or rifampicin (1.0 µg/mL) 

for 8 hours.  Excess antibiotics was removed prior to addition of norepinephrine or iron, 

and the bacteria were allowed to recover in Serum-SAPI media for 20 hours. A). 

Ciprofloxacin.  B). Ampicillin.  C). Rifampicin.  A & B, values represent the means ± the 

SEM of an experiment performed in triplicate.  Statistical analysis by one-way ANOVA 

with Tukey’s multiple comparison (*p ≤ 0.05).  C, Values represent the means ± the SEM 

of an experiment performed in triplicate.  Statistical analysis by Student’s t-test (*p ≤ 

0.05). 

                          

 The spore state in B. anthracis is important in its lifecycle.  Norepinephrine alone 

was found to have no positive or negative impact on spore germination with the Sterne 

strain, and norepinephrine did not antagonize or enhance the known spore germinate 

alanine (20) (Fig. 9A).  However, an interesting find was that germinated spores of the 

Sterne strain are more resistant to rifampicin than cultures maintained in a vegetative 

state (Fig. 9B).  The endpoint of this assay was measured through the viability reagent 

resazurin, instead of CFU enumeration as the previous data has been shown. 
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FIG 5-9.  Impact of norepinephrine (NE) on the spore state of Bacillus anthracis (Sterne).  

(A). Germination of B. anthracis spores in Serum-SAPI media in the presence or absence 

of 100 µM norepinephrine; alanine was included as a positive control as it is known to 

accelerate germination.  (B). Impact of the spore state of B. anthracis and 100 µM 

norepinephrine on the susceptibility to rifampicin in Serum-SAPI media; vegetative 

passaged cells (Veg), and spores (Sp).  Note: 98% of spores germinate within 60 minutes 

of being in Serum-SAPI media.  Values represent the means ± the SEM of an experiment 

performed in triplicate.  Statistical analysis by one-way ANOVA with Tukey’s multiple 

comparison (*p ≤ 0.05). 

   

 The expression of toxins by B. anthracis is a critical part of its pathogenesis, and 

as norepinephrine has been shown to induce a positive growth phenotype it was deemed 

worthwhile to see if norepinephrine exposure would modulate toxin expression using the 

Sterne strain.  Supernatants derived from broth cultures grown in the presence or absence 

of 100 µM norepinephrine and then purified and concentrated via Centriprep centrifugal 

filters were added to cultures of murine macrophages (RAW 246.7) and the presence of 

anthrax toxin was assayed via the decrease in viability of the macrophages using MTT 

(Fig. 10).  The results indicate that norepinephrine at 100 µM resulted in a small but 

significant decrease in cytotoxicity, which would indicate reduced toxin expression.  
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FIG 5-10.  Impact of norepinephrine (NE) on the expression of toxins by Bacillus 

anthracis (Sterne).  Vegetative cultures of B. anthracis were grown in the presence or 

absence of norepinephrine (100 µM) and the culture supernatant was purified and 

concentrated (Centriprep centrifugal filter device).  A titration of the concentrate was 

applied to murine macrophages (RAW 246.7) and the loss of viability measured through 

the viability reagent MTT was indicative of the toxin production by the bacteria.  Values 

represent the means ± the SEM of an experiment performed in triplicate.  Statistical 

analysis by one-way ANOVA with Bonferroni’s multiple comparison (*p ≤ 0.05). 

                                                

Discussion 

 Given the previous research involving microbial endocrinology, it is not 

surprising that norepinephrine was able to stimulate the replication of B. anthracis; what 

is a striking observation discovered is that norepinephrine and epinephrine do not 

stimulate the replication of Y. pestis.  The list of bacteria that respond positively to the 
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presence of catecholamines is extensive.  The fact that the related Yersinia species 

enterocolitica responds favorable to the presence of norepinephrine is well established in 

previous literature and again here, added a bit of a surprise in that Y. pestis appears to take 

the opposite approach to catecholamines and it’s replication is in fact reduced by the 

presence of norepinephrine and epinephrine .  In terms of evolutionary relatedness Y. 

pestis is more closely related to Y. pseudotuberculosis, which in these experiments was 

unfettered by the presence of norepinephrine or epinephrine, which like Y. enterocolitica, 

presented a much different phenotype to Y. pestis.  The evolution of Y. pestis from Y. 

pseudotuberculosis involved the acquisition of plasmids conveying important virulence 

factors as well as gene loss; it is possible that through these processes of evolution Y. 

pestis emerged with an atypical response to catecholamines (21).  Future studies will be 

needed to ascertain the genetic reason for this inversion of function and whether it was 

crucial in the emergence of Y. pestis from an enteric pathogen to one which causes 

systemic disease with a flea intermediate in its life cycle.  The oddity in its response to 

norepinephrine is that in response to stress and illness norepinephrine would be expressed 

at higher levels in its host and in the case of pneumonic plague the lungs are enervated 

with norepinephrine expressing nerves; in the course of infection Y. pestis would 

undoubtedly be exposed to norepinephrine, so the observed growth inhibition is puzzling.  

In another respiratory tract pathogen, Mycoplasma hyopneumoniae, a profound reduction 

in replication brought on by exposure to norepinephrine was also observed; so, this 

observation is not unique to Y. pestis (22).     

 An additional oddity with Y. pestis is in how it responds to the hormone serotonin.  

Serotonin is often thought of as a neurotransmitter, but much of the serotonin produced in 
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the body is produced by enterochromaffin cells of the intestine and is found circulating in 

the blood stream (23).  While the enteric Yersinia pathogens enterocolitica and 

pseudotuberculosis are unaffected or minimally affected by the presence of serotonin, in 

the case of Y. pestis there is a profound decrease in replication when exposed to serotonin.  

This response to serotonin is puzzling in that Y. pestis would be exposed to high levels of 

serotonin in vivo as platelet cells store serotonin and release it at sites of inflammation 

(24).  Given the lethal nature of Y. pestis these inverted responses to catecholamines and 

serotonin must not be detrimental towards its pathogenicity.  What may be observed here 

is a shift to a viable but non-culturable state: this would require further experimentation 

to determine.  

 An interesting observation with Y. pestis is that the inhibition of replication 

brought on through the exposure of norepinephrine can be ameliorated through the 

addition of the adrenergic receptor antagonist propranolol.  In mammalian systems 

propranolol acts upon beta-adrenergic receptors were as norepinephrine signals 

preferentially through alpha-adrenergic receptors with signally through beta-adrenergic 

receptors happing at high norepinephrine concentrations; so, the association we are 

seeing here is unexpected (25).  As of the writing of this dissertation a beta-adrenergic 

receptor antagonist has not been experimented with Y. pestis; the reason propranolol was 

chosen is that previous work with Bacillus species, which will be discussed later, found 

that propranolol attenuated the effects of norepinephrine.  This finding could suggest that 

both norepinephrine and propranolol are acting through a receptor with some similarity to 

that found in mammalian systems.  This would be an exciting discovery, and would 

require definitive mechanistic data to support, which is not presented here.    
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 It should be noted that in these experiments Y. enterocolitica showed a positive 

growth response to the presence of epinephrine.  This result is not consistent with 

previous results that showed an increase in replication in response to norepinephrine and 

dopamine, but not to epinephrine (9).  Here we showed an increase in replication with 

both norepinephrine and epinephrine; dopamine was not tested.  The published data 

included 14 strains of Y. enterocolitica that all responded similarly to epinephrine 

exposure.  The different response seen here with the strain of enterocolitica used may 

warrant further study.                                     

 Research has previously shown that norepinephrine exposure can result in 

resistance to the antibiotic rifampicin in Staphylococcus species (19).  The idea that 

norepinephrine or other catecholamines could elicit antimicrobial resistance is daunting 

given that antimicrobial resistance is already a priority issue and that norepinephrine is 

often administered to patients in septic shock (26).  In the case of B. anthracis and B. 

cereus we do see an increase in the MIC to rifampicin when these bacteria are exposed to 

norepinephrine.  It should be noted that even with this observed MIC shift the serum 

concentration of rifampicin achieved through normal therapeutic dosing should still be 

effective in treating diseases caused by these organisms; to add to this rifampicin isn’t 

typically used to treat these diseases either.  Cmax for rifampicin is approximately 8 to 12 

µg/mL with a decrease over 12 hours to 2 µg/mL, which represents several fold higher 

concentrations than what we have shown to inhibit the replication of B. anthracis when 

norepinephrine is present (27).  No resistant phenotype was found when B. anthracis was 

exposed to ciprofloxacin or doxycycline which would be drugs typically used to treat 

anthrax.  The data here only shows a phenotypic shift in rifampicin resistance and 
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currently the mechanism for this norepinephrine induced resistance is not known.  As was 

seen with Y. pestis, the addition of the beta-adrenergic receptor antagonist propranolol 

was able to attenuate the resistant phenotype to a small degree.  This could suggest that 

norepinephrine is acting through a cell surface receptor to initiate this resistant 

phenotype, which is likely an unattended consequence of changes in gene expression 

brought on by exposure to norepinephrine.  A continuous exposure to norepinephrine is 

required to drive this resistant phenotype in B. anthracis.  It was observed that exposing 

these Bacillus species to propranolol did result in them being slightly more susceptible to 

rifampicin; this interaction could be further explored as a potential adjunct therapy.  An 

interesting finding was that the alpha-adrenergic receptor antagonist phenoxybenzamine 

was shown to greatly inhibit the replication of B. anthracis and in itself may present a 

novel mechanism in developing a therapy against anthrax.  To see if phenoxybenzamine 

universally inhibited the growth of bacteria, the gram-negative pathogen Burkholderia 

pseudomallei, was exposed to phenoxybenzamine and no inhibition was seen (data not 

shown). 

  Previous research has shown that norepinephrine will facilitate improved iron 

uptake from transferrin by bacteria.  While the data presented does show that simply 

adding excess iron to the media does result in a slight increase in tolerance to rifampicin 

with B. anthracis, the excess iron could not match level of resistance generated through 

the addition of norepinephrine.  This suggests that improved iron acquisition in iron 

limited environments does not fully explain this resistant phenotype.  While excess iron 

did not drive the same level of resistance to rifampicin as norepinephrine did in these 

antimicrobial assays, we did see that in the case of ciprofloxacin and ampicillin, that 
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excess iron resulted in similar levels of growth recover as norepinephrine following 

exposing B. anthracis to bactericidal concentrations of these two antibiotics.  Mechanistic 

data would add light to why this discrepancy between resistant phenotype and recovery 

exists. 

 While the spore state of B. anthracis is essential in its life cycle and infective 

nature, the presence of norepinephrine was found to have no impact on germination.  An 

interesting result from these experiments is that bacillus derived from freshly germinated 

spores appear more resistant to the antibiotic rifampicin.  It would be interesting to see if 

these newly vegetative cells are also resistant to other classes of antibiotics and for how 

long this phenotype persists as it could have implications in treatment.   

 While norepinephrine did increase the replication rate of B. anthracis, the 

presence of norepinephrine did not induce greater expression of toxins.  This would 

suggest that norepinephrine does not influence the expression of the atxA gene in B. 

anthracis which regulates many virulence associated genes (28).    

 While the data presented here is based solely on phenotypic observations, there is 

compelling evidence that catecholamines produce a profound and varied response across 

these bacterial species.  Across these two virulent bacteria, Bacillus anthracis and 

Yersinia pestis, we see a divergent response to the presence of norepinephrine.  The 

common thread among bacteria seems to be a positive replication phenotype in the 

presence of norepinephrine and that is what we see with B. anthracis, but with Y. pestis 

there is a strong retardation of replication following exposure to norepinephrine, along 

with epinephrine and serotonin.  These results are based upon CFU enumeration and it 

remains in the realm of possibilities that what was observed with Y. pestis was a shift to a 



125 

viable but non-culturable state brought on by exposure to these catecholamines as under 

many of the experimental conditions no colonies were recovered; a viable but non-

culturable state has been described for Y. pestis (29).  The Yersinia genus appears to be an 

ideal candidate for future studies examining the interplay between bacteria and 

catecholamines given the divergent responses to catecholamines within the genus.                
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CHAPTER 6:  CONCLUSIONS 

The bacteria and amoeba discussed in this research represent microbes that can 

have a profound negative impact on the health and wellbeing of those unfortunate enough 

to be infected by them, with death being a likely outcome.  In the case of both 

Burkholderia species discussed and the “brain eating amoeba” Naegleria fowleri there 

exists a dire need for improved therapeutics to combat the diseases caused by them (1-3).  

In addition to the mortality associated with Burkholderia species, B. pseudomallei and B. 

mallei have potential for use as biowarfare or bioterrorism agents which would result in a 

mass casualty situation which could stretch local medical resources (4).  There currently 

does not exist a therapy that is effective in treating primary amoebic meningoencephalitis 

caused by N. fowleri.  In light of these obstacles this research demonstrates that 

polyanhydride nanoparticles are effective delivery vehicles for antimicrobials that are 

used to treat these diseases; in most instances the utilization of the nanoparticles as 

delivery vehicles increases the therapeutic efficacy of these drugs.   

 In addition to the utilization of nanoparticles as drug delivery vehicles this 

research also indicated that the antirheumatic drug auranofin is capable of killing N. 

fowleri.  Lastly, that catecholamine hormones accelerate the replication and antimicrobial 

sensitivity of Bacillus anthracis, and that these catecholamines differentially alter the 

replication of different Yersinia species. 

 Chapter 2 details the research surrounding the use of polyanhydride nanoparticles 

as a means to delivery antibiotics targeting the potential biowarfare/bioterrorism agents 

B. pseudomallei and B. mallei.  From this research it is evident that there are many 

confounding factors on whether an improvement in antimicrobial efficacy was achieved 
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through nanoparticle delivery; at this time many of these factors are not known.  

Nanoparticle co-polymer chemistry selection was vital in improving efficacy.  While 

previous research with these polyanhydride nanoparticles has shown 20:80 CPTEG:CPH 

co-polymer chemistry to be effective in improving the antimicrobial efficacy against 

Mycobacterium species and Brucella melitensis, this co-polymer chemistry was 

ineffective in increasing the antimicrobial efficacy with B. pseudomallei (5, 6).  In the 

event of B. pseudomallei the co-polymer chemistry that resulted in significant 

improvements in antimicrobial efficacy was 10:90 CPTEG:SA.  With 10:90 CPTEG:SA 

nanoparticles a 5-fold increase in antimicrobial efficacy was seen with meropenem 

loading.  The loading of ceftazidime and chloramphenicol into 10:90 CPTEG:SA 

nanoparticles resulted in a 2-fold increase in antimicrobial efficacy.  Similar results were 

seen when targeting these antibiotics against B. mallei.  Improvements in bacterial killing 

of B. pseudomallei and reduction of intracellular bacterial loads in THP-1 macrophages 

was improved with loading meropenem into 10:90 CPTEG:SA nanoparticles. 

 While the antibiotics meropenem, ceftazidime, and chloramphenicol showed 

improved efficacy when loaded into 10:90 CPTEG:SA nanoparticles, the same can’t be 

said for the antibiotics doxycycline and rifampicin.  In the event of rifampicin, a decrease 

in antimicrobial efficacy was seen with loading into 10:90 CPTEG:SA nanoparticles and 

doxycycline showed no improvement.  The reason for these differences cannot be fully 

explained at this time.  It is postulated that the reason that rifampicin performed so poorly 

is that the loading of rifampicin into these nanoparticles resulted in a release profile that 

was slower that what was seen with meropenem, ceftazidime, and chloramphenicol.  The 

reason behind the failure to improve upon the efficacy of doxycycline through loading 
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into these nanoparticles is unknown at the moment as doxycycline has similar release 

profiles as that of meropenem, ceftazidime, and chloramphenicol.  Both chloramphenicol 

and doxycycline target ribosomes so these differences in efficacy are likely not related to 

the antibiotics target.  Future work will hopefully elucidate why these differences in 

efficacy are seen between antimicrobials and nanoparticle co-polymer chemistries.  

Studies utilizing the murine model of melioidosis are planned and will address the in vivo 

therapeutic nature of these polyanhydride nanoparticles.    

 A continuation of utilizing nanoparticle as antimicrobial delivery vehicles, 

Chapter 3 details the use of these nanoparticles to target antimicrobials against the 

pathogenic free-living amoeba N. fowleri.  Given the lethal nature of primary amoebic 

meningoencephalitis any improvements in therapeutics could save lives; and previous 

research has shown that phagocytic cells internalize these polyanhydride nanoparticles 

very effectively and the hypothesis is that these amoeba, as phagocytic cells, would 

readily internalize these drug loaded nanoparticles (7).  This research found that both 

20:80 CPTEG:CPH and 20:80 CPH:SA nanoparticles are effective antimicrobial delivery 

vehicles, with nanoparticles being visualized in endosomal compartments.  One striking 

difference between these two co-polymer chemistry is that 20:80 CPTEG:CPH 

nanoparticles appear inert in their native form, while 20:80 CPH:SA nanoparticles had 

anti-amoebic properties when devoid of any antimicrobial cargo.  The anti-amoebic 

properties of the 20:80 CPH:SA nanoparticles appear to be due to a dysregulation of 

endosomal trafficking; the exact mechanism for this is unknown.   

With the loading of rifampicin into 20:80 CPTEG:CPH nanoparticles an MIC50 of 

12.5 µg/mL rifampicin was found, yet soluble rifampicin at 25 µg/mL yielded a mere 
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10% inhibition of replication.  When rifampicin was loaded into 20:80 CPH:SA 

nanoparticles an MIC100 of 6.25 µg/mL rifampicin was found.  Improvements in 

antimicrobial efficacy was also seen when the antibiotic azithromycin was loaded into 

20:80 CPTEG:SA nanoparticles.  Both rifampicin and azithromycin target intracellular 

processes, with rifampicin targeting RNA polymerase and azithromycin targeting 

ribosomes.  When amphotericin B was loaded into 20:80 CPH:SA nanoparticles there 

was a reduction in the amoebicidal activity of this drug.  This is likely due to the fact that 

amphotericin B targets ergosterol on the surface of the amoeba so an intercellular 

delivery is unneeded, and that when administered as a conventional soluble drug 100% of 

the drug is available to interact with its target, were as with nanoparticle delivery some of 

the drug would be sequestered within the nanoparticle for a given time depending on 

release kinetics.   

In Chapter 4, research involving N. fowleri is continued, this time showing that 

the FDA approved anti-rheumatoid drug auranofin has amoebicidal properties.  Previous 

research has shown that auranofin has anti-parasitic properties against the protozoan 

pathogens toxoplasma gondii, and Entamoeba histolytica (8, 9).  Given the previously 

described anti-parasitic activity and the need for better therapeutics to treat primary 

amoebic meningoencephalitis it was deemed probably that auranofin would be effective 

in treating N. fowleri.  Two pathogenic clinical isolates of N. fowleri were screened 

against auranofin, and differences in susceptibility were noted.  The HB-1 strain, which 

was isolated from a patient from Orlando Florida in 1968 who succumbed from the 

infection, has an MIC of 1.5 µg/mL and an IC50 of 0.788 µg/mL auranofin.  The Lee 

strain, which was isolated from a patient from Richmond Virginia in 1968 who 
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succumbed from the infection, has an MIC of 3.0 µg/mL and an IC50 of 2.18 µg/mL 

auranofin.  Many of these auranofin treated amoeba stained with the cell membrane 

impermeable dye propidium iodide which suggests that auranofin had killed these cells. 

These results are in line with those found with other protozoa, and a recent phase I 

clinical trial aimed at assessing the pharmacokinetics of auranofin as an anti-parasitic 

drug shows strong support for auranofin as a labeled anti-parasitic drug (10).  Given the 

results presented here along with high level of interest in auranofin as an anti-parasitic 

drug, the use of auranofin as an adjunct therapy for primary amoebic 

meningoencephalitis seems plausible.  Having in vivo data to support this statement 

would be ideal; future studies assessing auranofin in the mouse model of primary 

amoebic meningoencephalitis are planned. 

Chapter 5 examines how elements of host neurophysiology affect bacterial 

replication and antimicrobial susceptibility.  Previous research has shown that 

catecholamine hormones, such as norepinephrine, epinephrine, and dopamine, affect 

elements of bacterial replication, antimicrobial susceptibility, and virulence factors (11-

14).  This research represents the first time this phenomenon has been examined with the 

highly virulent bacteria Bacillus anthracis and Yersinia pestis.  B. anthracis being the 

causative agent of anthrax and Y. pestis causing bubonic plague.   

In the event of B. anthracis, a 10-fold increase in replication rate was noted when 

these bacteria were exposed to norepinephrine.  The presence of norepinephrine also led 

to a decreased susceptibility to the antibiotic rifampicin, and bacteria that were damaged 

by the antibiotics ciprofloxacin, ampicillin, and rifampicin recovered at a far greater rate 

when exposed to norepinephrine post-exposure to these antibiotics.  The mechanism 
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through which norepinephrine facilitated these growth phenotypes is unknown, but it 

seems that the accelerated recovery could be due to the increased iron uptake afforded by 

norepinephrine, but this doesn’t seem to be the case with the increased resistance to 

rifampicin.  A comprehensive antibiotic panel should be undertaken to see if 

norepinephrine elicits resistant phenotypes towards additional antibiotics.  With Y. pestis, 

the inverse was seen with a pronounced reduction in replication when exposed to 

norepinephrine or epinephrine.  Exposure to the hormone serotonin also resulted in a 

reduction in replication with Y. pestis.  Interestingly, with the closely related pathogen 

Yersinia enterocolitica an increased replication rate was seen when exposed to 

norepinephrine or epinephrine.  Y. pestis and Y. enterocolitica cause different pathologies, 

which could be the reason for the differences seen.  Future work aimed at discerning the 

molecular basis for these differences could enlighten us on the role that these 

catecholamines may play in pathogenesis.  

This dissertation presents data that supports the use of polyanhydride 

nanoparticles as effective antimicrobial delivery vehicles targeting both pathogenic 

bacteria and amoeba.  The use of these nanoparticles could extend the usefulness of 

currently available antibiotics in our age of antimicrobial resistance.  For the most 

efficacious use of these nanoparticles there is a degree of tailoring of the co-polymer 

chemistries needed.  In addition, the anti-rheumatic drug auranofin was found to be an 

effective amoebicidal drug against the “brain eating amoeba” N. fowleri.  Lastly, new 

insights into microbial endocrinology is included in the response of B. anthracis and Y. 

pestis to various catecholamine hormones. 

 



134 

References 

1. Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM, Moyes 

CL, Rolim DB, Bertherat E, Day NPJ, Peacock SJ, Hay SI. 2016. Predicted global 

distribution of Burkholderia pseudomallei and burden of melioidosis. Nature 

Microbiology 1. 

2. Estes DM, Dow SW, Schweizer HP, Torres AG. 2010. Present and future 

therapeutic strategies for melioidosis and glanders. Expert Rev Anti Infect Ther 

8:325-38. 

3. Capewell LG, Harris AM, Yoder JS, Cope JR, Eddy BA, Roy SL, Visvesvara GS, 

Fox LM, Beach MJ. 2015. Diagnosis, Clinical Course, and Treatment of Primary 

Amoebic Meningoencephalitis in the United States, 1937-2013. J Pediatric Infect 

Dis Soc 4:e68-75. 

4. Withers MR. 2014. USAMRIID'S medical management of biological casualties 

handbook (8th ed.). Fort Detrick, MD: US Army Medical Research Institute of 

Infectious Diseases. 

5. Binnebose AM. 2018. Development of a novel anti-infectivity platform for the 

treatment of neglected tropical and infectious diseases. Graduate Theses and 

Dissertations doi:https://doi.org/10.31274/etd-180810-5948. 

6. Lueth P, Haughney SL, Binnebose AM, Mullis AS, Peroutka-Bigus N, 

Narasimhan B, Bellaire BH. 2019. Nanotherapeutic provides dose sparing and 

improved antimicrobial activity against Brucella melitensis infections. J Control 

Release 294:288-297. 

7. Ulery BD, Phanse Y, Sinha A, Wannemuehler MJ, Narasimhan B, Bellaire BH. 

2009. Polymer chemistry influences monocytic uptake of polyanhydride 

nanospheres. Pharm Res 26:683-90. 

8. Andrade RM, Chaparro JD, Capparelli E, Reed SL. 2014. Auranofin is highly 

efficacious against Toxoplasma gondii in vitro and in an in vivo experimental 

model of acute toxoplasmosis. PLoS Negl Trop Dis 8:e2973. 

9. Debnath A, Parsonage D, Andrade RM, He C, Cobo ER, Hirata K, Chen S, 

Garcia-Rivera G, Orozco E, Martinez MB, Gunatilleke SS, Barrios AM, Arkin 

MR, Poole LB, McKerrow JH, Reed SL. 2012. A high-throughput drug screen for 

Entamoeba histolytica identifies a new lead and target. Nat Med 18:956-60. 

10. Capparelli EV, Bricker-Ford R, Rogers MJ, McKerrow JH, Reed SL. 2017. Phase 

I Clinical Trial Results of Auranofin, a Novel Antiparasitic Agent. Antimicrob 

Agents Chemother 61. 

https://doi.org/10.31274/etd-180810-5948


135 

11. Freestone PP, Haigh RD, Lyte M. 2007. Specificity of catecholamine-induced 

growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia 

enterocolitica. FEMS Microbiol Lett 269:221-8. 

12. Halang P, Toulouse C, Geissel B, Michel B, Flauger B, Muller M, Voegele RT, 

Stefanski V, Steuber J. 2015. Response of Vibrio cholerae to the Catecholamine 

Hormones Epinephrine and Norepinephrine. J Bacteriol 197:3769-78. 

13. Nakano M, Takahashi A, Sakai Y, Nakaya Y. 2007. Modulation of pathogenicity 

with norepinephrine related to the type III secretion system of Vibrio 

parahaemolyticus. J Infect Dis 195:1353-60. 

14. Freestone PP, Haigh RD, Lyte M. 2008. Catecholamine inotrope resuscitation of 

antibiotic-damaged staphylococci and its blockade by specific receptor 

antagonists. J Infect Dis 197:1044-52. 

 

 


