
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 Nortfi Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9321159

Transaction processing in real-time database systems

Haque, Waqar ul, Ph.D.

Iowa State University, 1993

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

Transaction processing in real-time database systems

by

Waqar ul Haque

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Computer Science
Major: Computer Science

In Char ajor Work

For the Major Department

For the Graduate College

Members of the Committee:

Iowa State University
Ames, Iowa

1993

Copyright © Waqar ul Haque, 1993. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS vii

CHAPTER 1. INTRODUCTION 1

Real-Time Systems 1

Real-Time Database Systems 3

Priority Inversion Problem 6

Nested Transactions 8

Problem Statement 10

Contribution of Research 11

Outline of Thesis 12

CHAPTER 2. RELATED WORK 14

Scheduling in Conventional Databases 14

Scheduling in Real-Time Systems 18

Real-Time Database Scheduling 20

Priority Inheritance 25

Nested Transactions 27

Summary 29

CHAPTER 3. THE REAL-TIME TRANSACTION PROCESS

ING (RTP) MODEL 30

iii

Priority Assignment Schemes 30

First-Come-First-Served (FCFS) 30

Earliest Deadline First (EDF) 31

Minimum Slack Time First (MSTF) 31

Shortest Job First (SJF) 32

Concurrency Control Protocols 32

Blocking (BLOCK) 33

High Priority Preemption (HIPRTY) 33

Conditional Priority Preemption (CPR) 35

The RTP Model 39

Source Module 41

Transaction Manager 42

Concurrency Control Manager 43

Resource Manager 44

Logical Structure of the RTP Model 45

Summary 49

CHAPTER 4. SIMULATION MODELING 50

Assumptions 51

Simulation Model 52

Simulation Results 57

Effect of Partitioning Data, Buffer Management and Preemption ... 58

Effect of Update Probability 60

Effect of Locking Mode 62

Effect of Slack Time 63

iv

Effect of Multiprocessing 65

Summary 68

CHAPTER 5. REAL-TIME NESTED TRANSACTIONS 88

Nested Transactions 88

Real-Time Nested Transactions 89

Definitions, Notations and Concepts 93

Dynamic Status Vector (DSV) 96

Locking and Priority Inheritance Protocols 98

Basic Priority Inheritance Protocol with Exclusive Locks 98

Basic Priority Inheritance with Read-Write Locks 101

Priority ceiling protocol with read-write locks 103

Properties of Proposed Protocols 106

Summary 109

CHAPTER 6. CONCLUSIONS Ill

Summary and Discussion of Results Ill

Centralized Environment 112

Distributed Environment 115

Directions for Future Research 117

REFERENCES 119

V

LIST OF TABLES

Table 3.1: Parameters for Example 3.1 34

Table 3.2: Parameters for Example 3.2 38

Table 4.1: System Resource Parameters 53

Table 4.2: Transaction Parameters 54

vi

LIST OF FIGURES

Figure 3.1: Concurrency Control using HIPRTY 36

Figure 3.2: Concurrency Control using CPR 38

Figure 3.3; Module Interaction 41

Figure 3.4: Logical Sequence of Transaction's Lifetime 46

Figure 3.5: Structure of the Transaction 48

Figure 5.1: An Example of the Priority Inversion Problem 90

Figure 5.2: Structure of a Task with Nested Transactions 94

vii

ACKNOWLEDGEMENTS

This thesis is not only a result of endless hours spent on research, but owes a lot

to a number of people who directly or indirectly became a part of the whole process.

First of all, I would like to thank Dr. Johnny Wong for his patience, excellent

guidance and support in academic as well as non-academic matters. We spent hours

discussing various aspects of this research and his ideas were always a motivation

that kept me sailing along. Dr. Wong's multiple passes through this dissertation and

helpful suggestions has resulted in a high quality manuscript. In many other cases,

his friendly advice during times of frustration kept me emotionally together over all

these years.

I express my gratitude to other members of my POS committee, Dr. Arthur

Oldehoeft, Dr. Les Miller, Dr. Glenn Luecke and Dr. Jim Davis for their helpful

suggestions whenever I needed those. Working with Dr. Luecke on a variety of

challenging projects resulted in enhanced research skills, the proof of which is many

publications with him in international reputed journals. I would also like to thank

Howard Jespersen in our Research Computing Group who passed the idea of using

shell scripts to automate some simulation experiments; his suggestion certainly saved

many hours of labor during thousands of simulation runs that were required.

I would also like to express my gratitude to my family, particularly my son

Mohsin and my daughter Uneza who spent countless evenings and weekends without

me. My long-term commitment to this degree also kept them away from the rest

of the loving family in Pakistan. My special thanks to my wife, Tauqir, whose love,

understanding and endurance has been a continuing boost. She never seemed tired

taking care of responsibilities which I should have shared. And last but not least,

I owe so much to my caring parents: to my mother who stayed behind alone at an

age when she needed me there most, and to my father who inspired me to reach this

level of education, but never lived to watch it happen.

1

CHAPTER 1. INTRODUCTION

Real-Time Systems

The most significant difference between real-time systems and other computer

systems is the importance of correct timing behavior. Real-time systems have a

dual notion of correctness; that is, the correctness of the system depends not only

on the logical result of computation, but also on the time at which the results are

produced. This implies that, unlike many systems where there is a separation between

correctness and performance, in real-time systems correctness and performance are

very tightly interrelated. Real-time systems span many application areas. In addition

to automated factories, applications can be found in avionics, process control, robot

and vision systems, as well as military systems such as command and control. The

flexibility in meeting timing constraints depends on the type of application. For

instance, a real-time system that controls a nuclear power plant, or one that controls

a missile, cannot afford to miss timing constraints. On the other hand, in the case of

a periodic task monitoring an aircraft, depending on the aircraft's trajectory, missing

the processing of one or two radar readings may not cause any problems.

Based on the flexibility of timing constraints, the real-time systems are generally

classified as hard and soft real-time systems. Hard real-time systems have timing con

straints which should be guaranteed to be met to avoid catastrophic circumstances.

2

For example, a moving robot may collide with other objects if it does not stop on

time or if it changes its direction too late. Therefore, guaranteeing that all timing re

quirements are met is one of the most important issues in the design of hard real-time

systems. Flight control systems, process control systems, and automated manufactur

ing plants are a few examples of such systems. Most of the hard real-time computer

systems are special-purpose and complex and require a high degree of fault tolerance.

Also, these systems have substantial amounts of knowledge concerning the charac

teristics of the application and the environment built into the system. A majority of

today's hard real-time systems assume that much of this knowledge is available a pri

ori and, hence are based on static design with preallocated resources thereby making

the systems very expensive and inflexible [48]. In soft real-time systems, tasks are

performed by the system as fast as possible, but they are not constrained to finish

by specific times; late results are still valuable, although the value may be reduced

after a critical time. Banking and airline reservations are two traditional examples

of interactive database systems with such real-time performance requirements.

Task scheduling in real-time systems can be static or dynamic. A static approach

calculates schedules for tasks off-line and it requires the complete prior knowledge of

tasks' characteristics. A dynamic approach determines schedules for tasks on the fly

and allows tasks to be dynamically invoked. Although static approaches have low

run-time cost, they are inflexible and cannot adapt to a changing environment or

to an environment whose behavior is not completely predictable. When new tasks

are added to a static system, the schedule for the entire system must be recalculated

which can be an expensive operation. In contrast, dynamic approaches involve higher

run-time costs, but their design is focused on making them flexible enough to adapt

3

to changes in the environment. The scheduling issues in a real-time environment are

significantly different from conventional scheduling theory and those considered in

areas of operation research. The goal is not only to minimize response time, but to

have dynamic, on-line, adaptive scheduling algorithms which ensure that deadlines

of individual tasks are met.

Many practical instances of scheduling algorithms, including the problem of de

termining a nonpreemptive optimal schedule, have been found to be NP-complete

[19]. A majority of scheduling algorithms reported in the literature perform static

scheduling and hence have limited applicability since all task requirements, particu

larly for the dynamically arriving aperiodic tasks, are not known a priori. For dy

namic systems with more than one processor, an optimal scheduling algorithm does

not exist [30]. These negative results point out the need for heuristic approaches to

solve scheduling problems in such systems. An important metric to determine the

effectiveness of heuristics-based algorithms is the measure of percent of tardy tasks.

Tardy tasks are defined as those tasks which have missed their deadlines. In order

to minimize the number of tardy tasks, efficient real-time scheduling algorithms are

required.

Real-Time Database Systems

A database is a collection of information consisting of physical data on some

storage media and a conceptual structure. The operations on the database are per

formed by transactions which is a collection of instructions requiring reading or up

dating database values. A database management system, which acts as an interface

between the user and the data, is used to manage the data efficiently and to pro

4

vide a logical view of the database. An important advantage of a database is to allow

sharing of data thereby reducing redundancy by not requiring to have multiple copies

of the same information. However, with such sharing of data, it becomes important

to enforce data integrity to avoid accidental or malicious changes to the values in a

database. This is usually enforced by using some form of access control to maintain

data consistency. The following example shows that in the absence of concurrency

control, a concurrent execution of a set of transactions can transform a consistent

database state into an inconsistent state [17].

Example 1.1 Consider the two transactions T-^ and described below:

Ti : a: <— a; + 1,

y ^ y + 1,

T2 : 2/ <- 2 * 2/,

a; 2 * a:.

Suppose that the integrity constraint on x and y is that x — y. Consider the following

sequence of execution:

: a; <— a: + 1

?2 : y y

Ti: 2/ <- 2/ + 1

T2 : a: <— 2 * a:

It is obvious that after executing Ti and T2 concurrently as described above, the

values of x and y will not be the same. Thus the state will be inconsistent.

Serializability is a widely accepted criterion for ensuring database consistency.

Serializability requires that the combined action of a group of transactions accessing

5

the database is equivalent to some serial schedule, that is, the same as if all the

transactions would have executed serially in some order. Two-phase locking is a well-

known mechanism for ensuring serializability and thereby maintaining concurrency. It

requires obtaining a lock before accessing a database entity, 0. When a transaction

requests a read-lock on O, this lock will only be granted if no other transaction already

holds a write-lock on O. Similarly, when requests a write-lock on 0, this lock will

only be granted if no other transaction holds a read-lock or a write-lock on 0. If a

read-lock or write-lock on some entity cannot be obtained because the entity is already

locked, the requesting transaction, has to wait until the lock is released. Two-

phase locking guarantees serializability by preventing a transaction from obtaining

a lock on any entity after releasing a lock on any other entity. Therefore, each

transaction has two phases; a growing phase during which locks can only be obtained,

followed by a shrinking phase during which locks can only be released. The point

at which the transaction releases its first lock delimits the two phases. This point

is called the locked point of the transaction. In some cases, all obtained locks are

held until the transaction is ready to commit. At this point, all locks are released

by a single atomic action. This form of two-phase locking is called strict two-phase

locking because each transaction maintains locks until termination. In the rest of this

dissertation, the term two-phase locking will refer to the strict two-phase locking.

A real-time database is a database system where transactions also have explicit

timing constraints expressed in the form of a deadline. A deadline indicates that the

transaction must be completed before a certain time. In such a system, transaction

processing must satisfy not only the database consistency constraints but also the

timing constraints. This requires a preferential treatment to transactions with higher

6

priority values. The goal, therefore, should be to provide the best possible service to

higher-priority transactions while minimizing the negative impact on lower-priority

transactions. Such priority scheduling can be used as a way of minimizing the number

of missed deadlines in a soft real-time transaction processing environment. Real-time

database systems can be found in program trading in the stock market, radar track

ing systems, battle management systems, and computer integrated manufacturing

systems.

Conventional real-time systems do take into account individual transaction's

timing constraints but ignore data consistency problems. On the other hand, con

ventional database systems focuses on query processing and database consistency,

but not on meeting any time-constraints associated with transactions. When the

concept of real-time is extended to database systems, it adds another dimension to

the scheduling problem [47]. Like traditional databases, it is important to ensure data

consistency in real-time databases. However, for timeliness of results, in contrast to

traditional databases where the primary goal is to minimize the response time of user

transactions and maximize throughput, the main objective in real-time databases is

to ensure that transactions meet their deadlines and to minimize the percentage of

transactions that miss deadlines in the system.

Priority Inversion Problem

For real-time priority-driven preemptive scheduling, each transaction is assigned

a priority according to its deadline. The execution of concurrent transactions is

scheduled based on their assigned priority. Ideally, a high priority transaction should

never be blocked by any lower priority transaction. In particular a high priority

7

transaction may preempt a lower priority transaction to receive service. Under two-

phase locking, on the other hand, a transaction must obtain a lock before accessing

a data object and release the lock when it terminates (commits or aborts). A lock-

requesting transaction will be placed in a wait queue if its lock mode is found to be

incompatible with that of the lock-holding transaction(s). The queued transaction

can proceed only when it is granted the lock. When the priority driven-preemptive

scheduling approach and the two-phase locking protocol are simply integrated to

gether in a real-time database system, a problem known as priority inversion may

arise.

Priority inversion is said to occur when a high priority transaction must wait

for the execution of lower priority transactions [24, 40]. This situation can usually

occur when more than one transaction attempt to access shared data. The following

example illustrates the priority inversion problem.

Example 1.2 Suppose that ; &nd be three transactions in descending

order of priority. Let Tj and Tg access the same data object O. Suppose that at

time transaction Tg locks O. During the execution of T3 , the higher priority

transaction Tj arrives, preempts Tg and later tries to access 0. Now T-^ will be

blocked since O is already locked and T3 will resume its execution. Note that the

duration of this blocking can be unpredictable. This is because transaction T3 can be

preempted by the intermediate priority transaction T2 that does not need to access

0. The blocking of T3 , and hence of Ti , will continue until T2 and any other

pending transactions of intermediate priority are completed.

In order to maintain consistency, the access must be serialized. If the higher

priority transaction gains access first then the proper priority order is maintained;

8

however, if the lower priority transaction gains access first and then the higher prior

ity transaction requests access to the shared data, this higher priority transaction is

blocked until the lower priority transaction completes its access to the shared data.

Even worse, the duration of such a blocking can also become unbounded and pro

longed durations of blocking may lead to the missing of deadlines even at a low level

of resource utilization. In summary, blocking with priority inversion implies that

higher priority transactions are waiting while lower priority transactions are in exe

cution. This defeats the purpose behind priority assignment. A common approach

to bound such arbitrary delays is to execute the transaction that holds the lock at a

higher priority. A survey of some existing schemes that use this approach is given in

the next chapter.

Nested Transactions

The difference between transactions and nested transactions is that nested trans

actions have more internal structure. A transaction is just a group of primitive ac

tions (e.g., reads and writes of simple data objects) that are performed as a unit

(atomically). Nested transactions have hierarchical grouping structure: each nested

transaction consists of either primitive actions or some nested transactions. Tra

ditional atomic transactions provide automatic synchronization of accesses to and

updates of data. Nested transactions, an extension of traditional atomic transac

tions, permit safe concurrency within as well as among transactions and also enable

transactions to fail partially in a graceful and controlled manner. Thus, nested trans

actions have at least two advantages over traditional single-level transactions. First,

nested transactions have mechanisms that provide appropriate synchronization be

9

tween concurrently running parts of the same transaction. This implies that more

work can be processed concurrently without the danger of inconsistencies arising

through improper concurrent access to data. Because of this correct synchronization

provided within a transaction, a number of previously existing transactions can be

combined into a new transaction without consistency problems. Second, subtransac

tions of a nested transaction fail independently of each other and independently of

the containing transaction. This allows possibilities such as attempting a piece of a

computation at one node and redoing that piece if the node fails. In the single-level

transaction system, if any piece fails, the whole transaction fails [32].

Synchronization in nested transactions can be achieved by using locking or times-

tamp based protocols. Each scheme has drawbacks and advantages relative to the

other. Locking requires that there be an instant in time at which a transaction holds

all the locks it ever needs. In contrast, timestamp synchronization does not require

that all of transaction's resources be held at once. These facts suggest that in some

circumstances timestamp synchronization might provide more concurrency. How

ever, locking permits transactions to serialize only as necessary and schedule itself

dynamically. Timestamp ordering, on the other hand, determines the relative order

of transactions in advance. This may suggest that timestamp schemes require addi

tional waiting (to know that no more transactions with timestamps in a certain range

will arrive at a given node) or will abort more transactions (a transactions with an

early timestamp may be aborted at a given node because a transaction with a later

timestamp has already committed).

Problem Statement

Scheduling transactions in a real-time database requires an integrated approach

in which the 'schedule' does not only guarantee execution before the deadline, but

also maintains data consistency (because the transactions may execute concurrently

and will access a database in some unpredictable pattern). It is, therefore, necessary

to study the problem of scheduling real-time transactions under a common frame

work which considers both concurrency control issues and the real-time constraints.

Such a framework should then lead to the development of a real-time concurrency

control protocol that maximizes both concurrency and resource utilization subject

to three constraints at the same time; data consistency, transaction correctness and

transaction deadlines.

It is clear from the literature search that there is a need for efficient scheduling

algorithms which integrate the real-time and concurrency control issues for real-time

transaction processing. However, there are few known algorithms which address the

issue of dynamically scheduling real-time transactions in a uniprocessor environment.

In fact, there are no known algorithms when the problem is extended to a distributed

environment. Our goal is to develop and analyze scheduling algorithms for real-time

transactions in centralized and distributed environments. This goal can be achieved

by addressing the scheduling issues in stages: first, it is necessary to develop efficient

algorithms for a single node (centralized environment) and evaluate performance of

the proposed algorithms using simulation techniques. The performance can be further

improved by fine tuning parameters that control the underlying system configuration.

Based on the results, the algorithms then need to be developed for a distributed

environment where the scheduling issues are significantly different from those in a

11

centralized environment.

Contribution of Research

We have defined a real-time transaction processing model for a centralized sys

tem. An interaction between the various components of the model has also been

identified. A set of protocols have been proposed that use a unified approach to

maximize concurrency together with meeting real-time constraints at the same time.

In order to test the behavior of the model under the proposed protocols, we have

developed a real-time transaction processing testbed using discrete event simulation

techniques. Preemption, which is not available in the original language, has been im

plemented and incorporated in the simulation study. We have shown that diff^erent

protocols work better under different load scenarios and that the overall performance

can be significantly enhanced by modifying the underlying system configuration. No

such study, except our recent paper [20], has addressed these issues in the past. We

have also studied the effect of altering various system and transaction parameters on

the overall performance of real-time transaction processing.

For the distributed environment, we have introduced a new concept, namely real

time nested transactions, and have proposed protocols with properties that make

them very suitable for distributed transaction processing. The proposed protocols

have been shown to be free from deadlocks and have tightly bounded waiting period,

both of these properties being essential to real-time requirements of a transaction pro

cessing system. We have also introduced the concept of priority propagation which,

in addition to resolving the priority inversion problem, addresses the issues related

to transaction aborts in a nested environment. We have proposed implementation of

12

this concept by a dynamic status vector that contains enough information to restore

priorities. A formal update protocol has been defined for this vector.

Outline of Thesis

A number of important works and developments addressing issues in the area of

real-time systems and databases have been studied. We present a review of this liter

ature search in Chapter 2. The review is divided into five significant parts: scheduling

in conventional databases, scheduling in real-time databases, the integrated approach,

priority inheritance and nested transactions.

We present our model of the real-time transaction processing system in Chapter

3. The various components of the model and their interaction with each other is

described. The logical sequence of stages that a transaction may go through during

its lifetime together with a pseudo-code is also presented. The priority assignment

schemes and the concurrency control protocols are also described in this chapter.

Chapter 4 contains a detailed description of our discrete simulation based testbed

that is used to analyze the behavior of various proposed protocols. The simulation

parameters, assumptions and simulation results are discussed. The results studying

the effect of underlying system configuration (partitioned data, buffer management,

multiprocessor environment) and the effect of slack and lock modes are also provided.

In Chapter 5, we present protocols for implementation in a distributed environ

ment. An extension of nested transactions, which are highly suited for distributed

processing, is described in the real-time system environment. Several other new con

cepts and protocols are provided together with a formal proof of correctness of their

properties.

13

A summary of our research together with the conclusions and directions for future

research is provided in Chapter 6. Because of the encouraging results obtained, this

research can be extended to explore a variety of other related issues.

14

CHAPTER 2. RELATED WORK

Extensive work has been done in the area of scheduling in conventional database

systems (without timing constraints). Similarly, the scheduling problem in real-time

systems have been addressed and various algorithms proposed (without addressing

the data consistency issues). However, research in the area of real-time transac

tion processing (which requires a unified approach) is still in its infancy and a few

algorithms recently proposed have limited applications because of the restrictive un

derlying assumptions. As discussed in the previous chapter, real-time systems require

dynamic, on-line, adaptive scheduling algorithms which ensure that deadlines of in

dividual tasks are met. Therefore, static scheduling algorithms are not discussed in

the following sections.

Scheduling in Conventional Databases

A transaction is an execution of a program that accesses a shared database. In

order to achieve a better response time, concurrent execution of transactions is desir

able. When two or more transactions execute concurrently, their database operations

execute in an interleaved iashion. That is, operations from one program may execute

in between two operations from another program. This interleaving can cause pro

grams to behave incorrectly, or interfere, thereby leading to an inconsistent database.

15

This interference is entirely due to interleaving. That is, it can occur even if each

program is coded correctly and no component of the system fails.

A simple way to avoid interference problems is not to allow transactions to be

interleaved at all. An execution in which no two transactions are interleaved is called

serial. More precisely, an execution is serialiî, for every pair of transactions, all of the

operations of one transaction execute before any of the operations of the other. From

a user's perspective, in a serial execution it looks as though transactions are processed

atomically. Serial executions are correct because each transaction individually is

correct (by assumption), and transactions that execute serially cannot interfere with

each other. However, by not allowing concurrent execution we use the resources

poorly and the entire process can become very inefficient. It is, therefore, necessary

to broaden the class of allowable executions to include executions that have the same

effect on the database as serial ones. Such executions are called serializable. More

precisely, an execution is serializable if it produces the same output and has the same

effect on the database as some serial execution of the same transactions. Since serial

executions are correct, and since each serializable execution has the same effect as a

serial execution, serializable executions are correct too [8].

Concurrency control in database systems is the activity of coordinating the ac

tions of transactions that operate in parallel, access shared data, and therefore po

tentially interfere with each other. A concurrency control protocol is necessary to

determine the permissible interleavings of transaction steps and to resolve conflicts.

Concurrency control protocols induce a serialization order among conflicting trans

actions. A database system scheduler must coordinate concurrent read and write

requests in such a way that the resulting sequence of read and write steps is a correct

16

schedule that preserves database consistency. As discussed earlier, serializability is a

widely accepted notion for such correctness.

The serializability theory accepts concurrent executions (schedules) that are

equivalent to some serial schedule. There are three attractive properties of serial

izable schedules, namely, data consistency, transaction correctness and modularity of

concurrency control protocols. Under the assumption that transactions are individu

ally consistent and correct, a serializable concurrent execution of transactions lead to

correct results and leaves the database consistent. In addition, serializable schedules

can be enforced by modular concurrency control protocols [48], that is, protocols

can be used to schedule a transaction without reference to the semantics of other

transactions. For example, the two phase lock protocol [17] is a modular concurrency

control protocol. The modularity of concurrency control protocols is important for

large scale transaction facilities where transactions are frequently modified. Con

sistency, correctness and modularity are attractive properties which account for the

popularity of serializable concurrency control in most conventional database systems.

Most concurrency control algorithms fall into one of three basic classes: locking

algorithms, timestamp algorithms, and optimistic algorithms.

Locking protocols restrict access to a database object by requiring a lock to be

obtained before any read/write can take place. Transactions obtain read locks on

objects that they read, and these locks are later upgraded to write locks for the

objects that are updated. If a lock request is denied, the requesting transaction

is blocked until the lock is released. Read locks can be shared, while write locks

are exclusive. Most commercial database systems use the two-phase locking protocol

[17] for concurrency control. In classical two-phase locking (2PL) no two transactions

17

hold conflicting locks at the same time and no transaction obtains a lock after it has

released one. The two-phase locking protocol is preferred over other methods for

concurrency control due to its simplicity, ease of implementation and integration

with a variety of recovery mechanisms.

In the conventional timestamp ordering, each transaction, T^, is assigned a unique

timestamp TS{T^) which is the starting time of that transaction. All the conflicting

operations are required to occur in the timestamp order [6]. The basic timestamp

ordering works as follows. For each entity 0, two values are recorded TSr{0) and

TSuj{0). These values represent the largest timestamp of any read and write opera

tions processed on O, respectively. When a read operation R{{0) by a transaction

is received, the timestamp of is compared with the value TSw(O). If it is smaller,

the operation is rejected. Otherwise, the operation is accepted. Similarly, when a

write operation Wi{0) is received, the timestamp value is compared with the value

max{TSr{0),TSw{0)). If it is smaller, the operation is rejected. Otherwise, it is

accepted. To increase the degree of concurrency, multiple versions of item values have

been used as a variation of timestamp ordering [7, 33]. A general concurrency control

algorithm is described in [18] and it is argued that two-phase locking and timestamp

ordering are special cases of this more general algorithm.

In classical optimistic concurrency control [26], transactions are allowed to exe

cute unhindered until they reach their commit point, at which time they are validated.

A transaction is restarted at its commit point if it fails its validation test. This test

checks that there is no conflict of the validating transaction with transactions that

committed since it began execution. The advantage of optimistic concurrency control

is that it can increase concurrency and throughput by eliminating bottlenecks and

18

needless serialization. The potential disadvantage of the optimistic method is more

work to redo, because conflicts are not discovered until a transaction has finished

processing and attempts to commit.

Scheduling in Real-Time Systems

A brief survey of the static and dynamic scheduling algorithms proposed for hard

real-time systems is provided in [14]. The survey shows that, for both centralized and

distributed systems, the static scheduling approaches are inflexible and cannot be effi

ciently applied to the dynamic scheduling problem. Most of the algorithms which are

optimal for static scheduling are not optimal for dynamic scheduling. In particular,

for multiprocessor systems, there can be no optimal algorithm for scheduling pre-

emptable tasks if the arrival times of tasks are not known a priori [30]. Furthermore,

because run-time cost is an important factor for dynamic scheduling, most sophisti

cated static algorithms are not appropriate for dynamic scheduling. Because of these

reasons, heuristic algorithms become important to dynamic scheduling problems.

A heuristic function and a backtracking scheme for scheduling nonpreemptable

tasks with resource constraints is presented in [54]. A set of simple and integrated

heuristic functions using multiple resources is provided in [53]. It is found that none

of the simple heuristics work well. However, using an integrated heuristic together

with a limited number of backtracking, the success ratio of their search algorithm

for scheduling tasks is shown to be as high as 99.5% of that of an exhaustive search

algorithm.

Stankovic and Ramamritham have proposed several dynamic algorithms for

scheduling tasks in a real-time distributed system [35, 36, 37]. Their work is fo

19

cused on obtaining best schedules for a number of nonpreemptable tasks that may

arrive at different intervals. Since the algorithms consider tasks as the scheduling

entity without considerations for the data access patterns, data consistency problems

have not been addressed. Their goal is to generate schedules which maximize the

number of tasks that can be guaranteed to complete before their deadlines. A local

scheduler determines whether or not a newly arrived task can be scheduled locally.

If a task cannot be guaranteed locally, the global scheduler is invoked. A bidding

algorithm and a focused addressing algorithm is proposed for global scheduling. In

bidding, the task is sent to a remote node which is selected based on the bids received

for the task. In focused addressing, the task is sent to a remote node that is esti

mated to have a high surplus processing time. Scheduling decision made in focused

addressing is based on inaccurate state information, but it entails low communica

tion delay. The communication delay involved in bidding is high, but the selection is

based on relatively accurate state information of nodes. A combined algorithm that

uses both schemes has also been proposed. Simulation results of this algorithm are

reported in [36, 46]. A major restriction in their work is that all research is focused

on non-preemptive scheduling and is applicable to hard real-time systems only. Non-

preemptive scheduling is not appropriate in a database setting since long transactions

and I/O cause unnecessary blocking to other transactions thus preventing them from

meeting their deadlines. However, it is indicated in [14] that their approach is being

extended to preemptable tasks.

An algorithm to consider precedence constraints in dynamic scheduling is pro

posed in [13]. However, tasks are considered to be arriving in groups with each group

having the same deadline. For a group that must be distributed, their approach at

20

tempts to partition tasks in the group into subgroups and distribute the subgroups

in the network to be scheduled in parallel. Tasks in a group are scheduled to run

either completely or not at all. The algorithm that combines focused addressing and

bidding is used to determine how to distribute the subgroups in the network.

Real-Time Database Scheduling

In 1989, Buchmann [9] formally presented the idea of integrating real-time

scheduling and concurrency control for time-critical database scheduling. The in

compatibility of assumptions in real-time scheduling and database scheduling has

been identified and a framework is proposed to combine the two approaches. The

framework consists of two major components: the task model and the scheduling

behavior model. The task model describes timing information about transactions

and defines resource requirements. The scheduling behavior model addresses met

rics, correctness criteria, static vs dynamic scheduling, conflict-management policy

and overload-management policy. Some existing algorithms for time-critical schedul

ing and concurrency control are then mapped on to the proposed framework thereby

identifying the shortcomings of the two approaches. The existing combined algo

rithms for time-critical database scheduling are also discussed. No new algorithm or

performance comparison of existing algorithms is given.

Huang [23] also emphasizes on the necessity for an integrated approach and

identifies several shortcomings in the current work. A centralized testbed is used for

evaluating a set of integrated protocols that support real-time transactions. Using a

two-phase locking protocol for concurrency control, several algorithms for handling

CPU scheduling, data conflict resolution, deadlock resolution, transaction wakeup.

21

and transaction restart are developed and evaluated. Criticalness and deadline are

treated as two independent characteristics of real-time transactions, but combined

into a value function, v{t), for a transaction. The idea behind value function is to

determine the importance of the completion of a transaction which has missed its

'deadline'. In case of hard deadlines, there may be no value in completing a transac

tion that has missed its deadline and such a transaction should be aborted. However,

for soft deadlines the value of completing a transaction may reduce because of the

penalties for missing deadline. The performance results illustrate the importance

of CPU scheduling and the use of deadline and criticalness information in conflict

resolution protocols. It is also shown that overheads such as locking and message

communication are non-negligible and can not be ignored in real-time transaction

analysis. The results are claimed to be the first experimental results for real-time

transactions on a testbed system.

Locking protocols have also been used in real-time applications despite the fact

that the blocking behavior of these protocols can greatly degrade the performance

of real-time database systems. Sha et. al. [41] proposes a locking-based protocol

that avoids the blocking of high priority transactions for at most the duration of a

single embedded transaction. An optimistic priority-based locking mechanism that

dynamically adjusts the serialization order of active transactions in order to reduce

blocking has been proposed by Lin [27]. Agrawal et. al. [5] proposes a new variant

of the locking approach for real-time databases with firm deadlines. Their approach

is to exploit any available slack in a transaction to improve the overall performance

of the system by decreasing the number of transactions that miss their deadlines. A

new relationship between locks called ordered sharing is used to eliminate blocking.

22

Ordered sharing has the desirable property of eliminating blocking of read and write

operations at the expense of a possible delay at transaction commitment. The pro

posed protocol works well for medium loads, but does not exhibit any advantage at

very high load. Further, the protocol does suffer from the possibility of cascading

aborts unless versions of the objects are maintained. The authors claim that this

does not result in a large overhead because such versions are maintained anyway for

recovery purposes.

Comparative studies of locking and optimistic algorithms for a conventional

database system [4,10] have generally shown that locking provides significantly better

performance than optimistic concurrency control. However, in some recent perfor

mance studies [21, 22] it is shown that some variants of the optimistic protocol [26]

outperform two-phase locking in real-time databases. The authors point out that

transaction blocking in the two-phase locking protocol results in unpredictable de

lays causing transactions to miss their deadlines. In contrast, transactions in the

proposed optimistic protocols neither block nor suffer from wasted restarts. The sim

ulation results presented in [22] indicate that under conditions of low data contention,

delaying the validation of lower priority transactions result in improved performance.

However, the priority wait mechanism result in significant performance degradation

at high contention levels because of generating a high number of data conflicts. A

simple wait control mechanism consisting of a 50 percent rule is proposed to address

this problem. According to this rule, if half or more of the transactions conflicting

with a transaction are of higher priority, the transaction is made to wait; otherwise, it

is allowed to commit. Huang [23] also developed locking variants of the concurrency

control protocol and compared its performance with the class of two-phase locking

23

protocols for real-time databases. Some simulation results are provided in [21, 22].

Abbott and Garcia-Molina have proposed several algorithms for scheduling real

time transactions. Their model is based on dynamic scheduling in a uniprocessor

environment and is perhaps the most complete model presented in the literature so

far. In their earlier work [1, 2], the database is assumed to be memory-resident. This

condition is relaxed in [3] and a disk-resident database is modeled. However, a new

concept of main-memory buffer pool has been introduced. The buffer pool is assumed

to be large enough to hold all the modified pages and the changes are written back

to the disk only when the transaction commits. This alleviates any clean-up or roll

back that may otherwise be required in case the transaction aborts.

Both shared and exclusive locks on data objects are considered in [3] as opposed

to using only exclusive locks in the earlier work. This requires protocols to resolve

conflicts among two or more transactions. Concurrency control is achieved by en

suring serializability and is enforced via locking protocols that allow for shared and

exclusive locks on the data objects. The data object assumes the same priority as

that of the transaction holding the lock on it. When several transactions hold the

lock, the priority of data object is the highest of all priorities of the lock holders.

Simulation results are provided for the various schemes proposed to resolve conflicts

and to avoid priority inversion.

In [1], two components of the scheduling algorithms have been proposed: assign

ing priorities to the incoming transactions and a concurrency control mechanism for

conflict resolution. In [2], another component is added to screen out the transactions

which are not eligible at the time scheduler is invoked. However, this component

is dropped in [3] and all transactions are considered eligible with priority of tardy

24

transaction increasing with time, that is, all transactions must be executed eventually.

Because of the disk-resident data, it is also suggested that the scheduling of I/O re

quests should consider transaction priorities (as opposed to the disk-scheduler policies

which are based on minimization of disk-head seek time). Based on the schemes for

assigning priorities, managing concurrency, and I/O scheduling, 24 different combina

tions have been studied in the simulation representing a high-load scenario. Although

some policies are better than others under different load scenarios, it is concluded

that there is no significant difference between the various scheduling options.

Son et. al. [16, 27, 44, 45] have also addressed the issues of scheduling and con

sistency for hard real-time database systems. The authors argue that, unlike other

current work, the integration of the two issues should not be based on existing con

currency control methods because these methods synchronize concurrent data access

by the combination of two measures: blocking and roll back of transactions, both

of which are barriers for time-critical scheduling. A priority-based concurrency con

trol method which employs a priority-dependent locking protocol has been presented

for a uniprocessor environment [27]. This method has a flavor of both locking and

optimistic approach. By dynamically adjusting the serialization order, it is ensured

that high priority transactions are never blocked by an uncommitted lower priority

transaction while low priority transactions may not have to be aborted even in face

of conflict with high priority transactions. It is claimed that the proposed protocol

incurs less blocking and aborts as compared to the conventional two phase locking.

No performance results are provided.

25

Priority Inheritance

Priority inversion is said to occur when a high priority transaction must wait for

the execution of lower priority transactions [24, 40]. As illustrated by Example 1.2 in

Chapter 1, this waiting period can become very large and ultimately result in missed

deadlines.

A common approach to bound such arbitrary delays is to use priority inheritance

protocols [24, 39, 40, 41]. The basic idea of priority inheritance is that when a

transaction T blocks higher priority transactions, the transaction T is executed at

the highest priority of all transactions blocked by T. When the blocking is over (say,

by releasing locks), T returns to its original priority level. A real-time concurrency

control protocol which addresses the issue of priority inversion in a distributed real

time database is described in [39]. A more detailed study of two priority inheritance

protocols for real-time synchronization is provided in [40]. The transactions are

assumed to consist of critical sections with preemption not allowed when a transaction

is executing within its critical section. The critical sections can be properly nested.

A basic protocol is proposed and it is shown that this protocol bounds the blocking

period to at most the duration of one critical section for each lower priority job

involved in the blocking. However, the basic protocol has two problems: it does not

prevent deadlocks and that blocking duration for a job, though bounded, can still be

substantial because a chain of blocking can be formed. To overcome these problems,

a priority ceiling protocol^ another type of a priority inheritance protocol, is proposed.

In this protocol, each object is assigned a priority ceiling which is the priority of the

highest priority job that will access this object. Transactions are then allowed access

to the object only if their priority is higher than the priority ceiling of all the locked

26

objects. In case of blocking, the priority is inherited just as in the basic protocol. It

is shown that this protocol does not suffer from the problems of the basic protocol,

that is, the priority ceiling protocol prevents deadlocks and reduces the blocking

to at most one critical section. However, note that assigning a priority ceiling to

each object requires a static analysis of the data access patterns of all transactions.

In other words, this scheme requires prior knowledge about the data objects to be

accessed by each transaction.

In [41], the simple priority ceiling protocol is extended to a read/write prior

ity ceiling protocol. This protocol integrates the two-phase locking protocol with

priority-driven real-time scheduling and allows for both read and write locks. The

objects are now assigned three types of priority ceilings: write-priority ceiling which

is the priority of the highest priority task that may write the object, absolute priority

ceiling which is the priority of the highest priority task that may read or write the

object, and r/w priority ceiling which is a dynamically assigned priority depending

upon the locking mode of the transaction. Under the r/w priority ceiling protocol, a

transaction cannot acquire a lock unless its priority is higher than all the r/w priority

ceilings of the data object locked by other transactions. The protocol is shown to be

free of deadlocks and bounds the blocking period to at most the duration of a single

embedded transaction of a lower priority task.

A variation of the simple priority inheritance protocol, namely conditional prior

ity inheritance is provided in [24]. The basic idea behind this scheme is the following.

When priority inversion is detected, if the low priority transaction is near completion,

it inherits the priority of high priority transaction, thus avoiding an abort with its

waste of resources; otherwise, the low priority transaction is aborted, thereby avoid

27

ing the long blocking time for the high priority transaction, and also resulting in

reduced waste of resources used thus far by the low priority transaction. Simulation

results show that this scheme works better than the simple priority inheritance or

the low priority abort protocols.

Some problems resulting from priority inversion in real-time communication are

addressed in [50] and solutions developed for a distributed real-time operating system

are presented.

Nested Transactions

Nested transactions are an extension of traditional atomic transactions and have

a hierarchical grouping structure. They permit safe concurrency within as well as

among transactions and also enable transactions to fail partially in a graceful and

controlled manner. These two properties make nested transactions very suitable for

distributed environment.

A lock-based concurrency control and recovery mechanism for nested transac

tions is provided in [31]. This is the first design of nested transactions that uses

locking for synchronization. Algorithms are presented for locking, state restoration,

distributed transaction management and distributed deadlock detection. Each trans

action is required to acquire a lock on the object that it intends to access. This

ensures that the object becomes inaccessible to other conflicting transactions while

the transaction holding the lock is accessing it. Read locks are allowed to be shared

whereas write locks can only be acquired in an exclusive mode. Locks are allowed to

be shared (in any mode) with the ancestors. A parent transaction inherits the locks

of a committing child transaction. This ensures that the effects of the child trans-

28

action are not seen by other transactions until the root transaction commits. When

a transaction holds a write lock, state restoration information is created and later

used to restore the objects in case of transaction aborts. Like lock inheritance, when

a transaction commits, each of its associated states is also offered to the committing

transaction's parent which may accept the new state if it does not already have one

for each of the accessed objects. If the parent already has an associated state for the

object, then it takes precedence because it is earlier than the child's state. The dead

lock detection algorithm is based on tracing wait-for graphs for cycles. Transactions

are assumed to have permanently assigned priorities and when a cycle is found, the

lowest priority member of the cycle is aborted to break the deadlock.

The first comprehensive design of a nested transaction system based on times-

tamp ordering and multiple object versions is presented in [38]. It is the combination

of pseudo-times and dependent commit records that implement nested transactions.

The design uses pseudo-times (which are essentially timestamps) for synchronization.

These timestamps readily resolve (avoid) deadlocks though it may eventually result

in many needless transaction aborts. The notion of multiple versions of objects is

also introduced. The basic scheme proposed permits transaction starvation because

a transaction request that performs updates can be aborted every time it is run. If

a transaction reads any objects written later by another transaction with an earlier

pseudo-time (i.e., the read and write are attempted in an order opposite to that of

the pseudo-times for the transactions), the transaction with the earlier pseudo-time

will abort because it cannot acquire needed objects at its particular pseudo-time.

To solve this problem, preallocations of resources in the form of token reservations

(a deadlock prevention technique) is proposed. Note that token reservations require

29

a certain amount of predictability, and can reduce concurrency. This model is fur

ther augmented by [49] to provide for resilient distributed computing. Like many

timestamp based schemes, this scheme also relies heavily on stable storage.

Summary

In this chapter, we have provided a review of the related work in scheduling,

priority inheritance and nested transactions. It has been shown that the schedul

ing issues in conventional databases and traditional real-time systems are treated

differently and have been studied separately. For real-time database systems, an in

tegrated approach is required which should address both database consistency and

timing constraints at the same time. A need for such integration and an outline of

a common framework has been emphasized in recent research. Several algorithms

with severe limitations have been proposed in the past and further research is being

actively pursued. In Chapter 3, we present our proposed, model that uses a unified

approach for scheduling real-time transactions.

A survey of work in the area of priority inversion problem and nested transactions

is also presented. The priority inversion problem is now well understood, but there

are not many solutions available. The idea of nested transactions have been around

for quite some time, but there has been no research done in the real-time transaction

processing environment. We have addressed this issue in Chapter 5.

30

CHAPTER 3. THE REAL-TIME TRANSACTION PROCESSING

(RTP) MODEL

Our real-time transaction processing model is a priority-driven preemptive schedul

ing model. In this chapter, we first define the various priority assignment schemes

that are selected, followed by the concurrency control protocols and then describe

the model in detail.

Priority Assignment Schemes

Each transaction that enters the system is assigned a priority to identify its im

portance in scheduling considerations. A transaction executes at its assigned priority

as long as it stays in the system. The priority of a transaction is used for resolv

ing data conflicts and for implementing the concurrency control schemes. When a

transaction waits, this priority is used to maintain the priority queue. The priorities

can be assigned in a number of ways, but we selected the following four traditional

schemes for our study [2, 3].

First-Come-First-Served (FCFS)

This is the simplest priority assignment scheme in which the priorities are as

signed according to the arrival time of the transactions. The highest priority is

31

assigned to the transaction that arrived first. The main disadvantage of this priority

assignment scheme is that it does not take advantage of deadline information. FCFS

will discriminate against a newly arrived transaction with an urgent deadline in favor

of an older transaction which may either have a much later deadline or has already

missed its deadline. This is not very desirable for real-time systems, but we study

FCFS for comparison with other schemes.

Earliest Deadline First (EDF)

In EDF, a transaction whose deadline is the closest is always assigned the highest

priority and the one with the farthest deadline is assigned the lowest priority. This

priority assignment scheme is known to result in a better performance in real-time

systems under low and moderate load levels. However, a disadvantage of EDF is that

it can assign the highest priority to a task that is about to miss its deadline. When

this is done, the system allocates resources to a transaction which cannot meet its

deadline in favor of a transaction which could meet its deadline. Thus EDF may not

be desirable for heavily loaded systems. An overload management policy as described

in [2] can be used to solve this problem. This policy screens out transactions that

have missed or are about to miss their deadlines.

Minimum Slack Time First (MSTF)

The slack time of a transaction is the cushion that can be absorbed by unpre

dictable delays (waiting in queues, etc) without missing the deadlines. More formally,

if tarr is the arrival time, E is the estimated execution time and d is the deadline,

then the slack time at the time of arrival of a transaction is S = d — {tarr + E). If the

32

transaction has already received some service, say R, then S = d — {tcurr + E — R),

where tcurr is the current time. A negative slack time impUes that the transaction

has either already missed its deadline or when it has been estimated that it cannot

meet its deadline. In MSTF, the transaction which has the least positive slack is

assigned the highest priority because such a transaction will have a high probability

of missing its deadline.

Note that the slack time of a transaction changes as the time passes. In other

words, the priority of a transaction increases as the slack decreases. Therefore, with

MSTF, the static evaluation of priorities may not be very accurate. It may there

fore be necessary to recalculate slack and reevaluate the priority from time to time.

However, this réévaluation can incur significant overhead if done too frequently.

Shortest Job First (SJF)

In SJF, the shortest job is assigned the highest priority because it will have a

high probability of meeting its deadline. This scheme has not been used in real-time

scheduling in the past, but in CPU scheduling it has been shown to be optimal in

that it gives the minimal average waiting time for a given set of jobs [34]. We study

this scheme for comparison purposes.

Concurrency Control Protocols

Since we allow concurrent execution of transactions we need a concurrency con

trol mechanism to order the updates to the database in such a way that the resulting

schedule is serializable. Shared locks permit multiple concurrent readers. Three

concurrency control protocols (blocking, high-priority preemption and conditional

33

preemption) have been selected for this study. In the following, let Tr be a trans

action requesting a lock on a data object O, that is already locked by a transaction

The examples in this section are due to [2] and illustrate the requirement for

real-time concurrency control protocols. In these examples, it is assumed that the

estimates are exact and the time required to make scheduling decisions or roll back

transactions is ignored.

Blocking (BLOCK)

In blocking, Tr always blocks and waits for the lock to be released by T^. This is

the standard method for most database management systems which do not execute

real-time transactions. The approach is simple but contrary to real-time requirements

and also results in priority inversion. All conflicts are handled identically and the

concurrency control mechanism makes no effective use of transaction priorities. It has

been implemented for use as a baseline scheme for comparison with other algorithms.

High Priority Preemption (HIPRTY)

In high-priority preemption, if 7^'s priority, P{Tr) is higher than the priority of

Tf^, P{Tf^), then is preempted. That is, conflicts are always resolved in favor of

the higher priority transaction. The only exception is in the case when priorities are

assigned using minimum slack because a preempted transaction can assume a much

higher priority immediately after preemption because of the lost service time and a

reduced slack. We have avoided this problem by considering the priority after a trans

a c t i o n a b o r t s , P { T ^) . N o t e t h a t f o r F C F S , E D F a n d S J F s c h e m e s , P { T f ^) — P { T ^) ,

so it does not matter if we use this modified scheme or do not consider the priority

34

after abort. This conflict resolution policy can be written as follows:

if for any

and f (7^) > f (Tg)

then preempt and roll back each

else Tr blocks.

endif

Example 3.1 Consider the set of transactions given in Table 3.1. In this table, tarr

is the arrival time of the transaction, E is the estimated execution time, d is the

deadline. The variable(s) updated by the transaction are also listed.

Table 3.1: Parameters for Example 3.1

Transaction tarr E d Updates

A 0 2.6 5 X

B 1 2.0 4 X

C 2 2.4 8 Y

Note that transaction A and B both update item X. Therefore, these transac

tions must be serialized. The schedule produced by using ED F to assign priority and

HIPRTY to resolve conflicts is given in Figure 3.1a. In this schedule, A runs in the

first time unit during which it acquires a lock on item X. Transaction B preempts

A at time 1 (because of an earlier deadline) and requests a lock on item X. Thus

a conflict is created which is resolved by rolling back A thereby freeing the lock on

X. Transaction B continues processing and completes before its deadline. After B

35

completes at time 3, A is restarted. Transactions B and C meet their deadlines but

A is tardy.

However, if the MSTF scheme was used to assign priorities then, after preemp

tion, A could have immediately assumed a higher priority because of the reduced

slack (Figure 3.1b). Upon arrival, slack of A, 5^ = 2.4, and slack of B, = 2.0.

At any time tcurri if U is the amount of service already received by a transaction,

the slack can be calculated as 5 = <i — {tcurr E — U). Now when a conflict occurs at

time 1.5, B has a slack of 1.0 but A, if it were aborted, has a slack of 0.9. So, A is not

aborted but assigned to the processor while B waits for A to finish. Transaction B

is unblocked when A finishes at time 3.1. Transactions A and C meet their deadlines

but B is tardy.

Conditional Priority Preemption (CPR)

The concurrency control using HIPRTY results in better performance, but can

be too conservative at times. This is because, depending upon the allowable slack,

a newly arrived high priority transaction may be able to wait while the lower pri

ority transaction completes. In conditional priority preemption, if T^'s priority is

higher than the priority of Tj^, then it is first evaluated whether or not the requesting

transaction can wait without missing its deadline. If yes, Tj^ is allowed to complete;

otherwise, is preempted. This modification yields the following algorithm:

if P(Tr.) > P{T}^) and P{Tr) > P{T^)

then

if Tr can wait

then Tr blocks

36

lock X; conflict; A aborted

/
A B A C

5.6

(a) HIPRTY with EDF

lock X; conflict; B waits

/
A B A B C

0 1 1.5 3.1 4.6 7

(b) HIPRTY with MSTF

Figure 3.1; Concurrency Control using HIPRTY

37

else preempt and roll back

endif

else

Tr blocks

endif

We only implement CPR if the conflict is one-to-one, that is, there are no multiple

readers involved in the conflict. If there are multiple readers involved then to deter

mine a maximal subset of readers all of which can finish within the slack of the Tr

is an NP-complete problem [3]. Further, we use CPR if Tr conflicts with exactly one

transaction. In other words, if the locks required by Tr are held by multiple other

transactions, then Tr always blocks.

The following example illustrates the idea of this policy (CPR). In this example

also, it is assumed that EDF is used to assign the priorities, estimates are exact and

scheduling decisions and rollbacks are done instantly.

Example 3.2 Consider the set of transactions given in Table 3.2. The resulting

schedule is given in Figure 3.2. A conflict occurs when B requests a lock on X at

time 1.5. The slack time for B is calculated as 5^ = 4 — (1.5 -|- 2.0 — 0.5) = 1.0. This

equals exactly the remaining run time for A. Therefore, B waits for A to finish and

release its locks. A finishes at time 2.5 and B, with 1.5 time units left to compute,

regains the processor and completes at time 4. All transactions meet their deadlines.

Note that the above example is a simple case illustrating the idea of the protocol.

In case of chained blocking or incorrect estimates, the protocol may behave differently.

As described in the next chapter, we have considered issues related to this problem

38

Table 3.2: Parameters for Example 3.2

Transaction ^arr E d Updates

A 0 2 5 X

B 1 2 4 X

C 2 3 8 Y

lock X; conflict; B waits

/
A B A B C

0 1 1.5 2.5 4 7

Figure 3.2: Concurrency Control using CPR

39

during the implementation.

The RTF Model

There are a number of considerations and choices in selecting an underlying

configuration for a real-time transaction model. These include number of processors,

location of database, distribution of data and size of main memory. Our real-time

transaction processing (RTP) model consists of one or more processors, a disk-resident

database and a main memory buffer pool. The first part of this study is based on a

uniprocessor environment, but we also study the effects of having multiple processors

in this centralized environment. A centralized system is one in which the processors

are located at a single point in the system and the inter-processor communication

cost is negligible compared to the processor execution cost. A multiprocessor system

with shared memory is an example of such system. In contrast, a distributed system

is one in which the processors are distributed at different points in the system and

the inter-processor communication cost is not negligible compared to the processor

execution cost. A local area computer network is an example of such system. In

distributed systems, interprocessor communication cost is an important factor which

must be explicitly taken into account in scheduling. For our study of the effect of

multiple processors, we implemented a centralized system with a shared memory

organization.

The database can be assumed to reside in the main memory or on secondary

storage. By assuming the entire database to be memory-resident as in [3], the study

is simplified because of the elimination of the necessity for modeling of disks or I/O

scheduling. However, for our study, we assume a disk-resident database because it

40

represents a more realistic view of the data. Furthermore, the database may either

reside on a single disk or may be partitioned on two or more disks where each disk

has its own service queue. The performance is studied in both of these cases. The

unit of database granularity is considered to be a page and the transactions access a

sequence of pages to read/write data objects. The pages may be locked in a shared

or an exclusive mode. We assume that the buffer pool is large enough so that a

modified page need not be written to the disk until after the transaction commits.

Thus, aborting a transaction involves no disk writes.

The transactions are characterized by timing constraints, computation require

ments, and data requirements. The timing constraints can either be modeled by a

value function, v{t), or by simply considering a single deadline. Currently, we assume

that all transactions maintain a priority which is not a function of a transaction being

tardy and, therefore, the 'value' of a transaction to the system is not considered as a

parameter. The computation requirements of a task are characterized by an estimated

execution time, after the task becomes ready for execution. The data requirements

are not known in advance and, therefore, it becomes necessary to have some dynamic

concurrency control mechanism to resolve conflicts based on the task's data access

pattern during the runtime.

The RTP model consists of four basic components: the source module, transac

tion manager, concurrency control manager, and the resource manager. Figure 3.3

shows the block diagram illustrating the interaction between various components of

the model. Each of these components is explained in more detail in the following

sections. All queues are maintained as priority queues.

41

Source Transaction Manager CC Manager

Resource Manager

CPU(s)

T. . . Ï

Buffer Pool Disks

Figure 3.3: Module Interaction

Source Module

The source module, responsible for modeling the external workload, generates

external tasks with certain known characteristics and sends these tasks to the Trans

action Manager. The transactions are assumed to arrive to the transaction manager

with a ready time (usually the same as the arrival time), an estimated execution time

and a deadline. The deadline is actually computed on the basis of slack time, as

deadline = ready.time + execution Jime + slackJtime

The slack time determines the tightness or looseness of deadline because smaller the

slack time, closer is the deadline. The data access pattern of the transaction may not

42

be known in advance.

Transaction Manager

The transaction manager is responsible for accepting transactions from the source

module and modeling their execution. Based on the arrival time, execution time

and deadline information, the transaction manager assigns a priority to each arriv

ing transaction according to a previously selected protocol (FCFS, EDF, MSTF, or

SJF). After arrival in the system, the transaction waits for all resources to become

available. It first requests the locks on pages that may be accessed (read or updated)

when the transaction executes.

An I/O request by a transaction begins with a concurrency control request to

get access permission. Once the request is granted, a read request for the page is

sent to the resource manager. The buffer control agent of the resource manager then

determines whether or not the page is in the main memory. If it is, no I/O is required;

otherwise, a disk I/O to read the page is scheduled. This might also require flushing

of a dirty page. Once the requested pages are available in the buffer pool, CPU is

requested for processing. After processing, another I/O request may be made for

writing the modified pages to the disk.

The transaction manager also controls the load of the system by limiting the

number of concurrently active transactions. If a new transaction is received by the

transaction manager when there are already maximum allowed transactions present

in the system, the new transaction is queued in a system queue until one of the active

transactions completes execution. When a transaction completes, one of the waiting

transactions in this system waiting queue is activated.

43

Concurrency Control Manager

The scheduler component of the concurrency control (CC) manager uses the

transaction's priority in conjunction with the concurrency control protocol to deter

mine whether the transaction can be immediately scheduled or needs to wait. The

CC manager also determines whether an active transaction needs to be preempted

in favor of the newly arrived transaction; in the latter case, the preempted transac

tion releases the resources, rolls back and joins the waiting transactions. Note that

this preemptive-restart scheme is not a 'total loss' because the transaction being pre

empted has already transferred the requested page into the buffer thereby reducing

the I/O service time for the transaction initiating the preemption.

The scheduler is invoked whenever a transaction commits or a new transaction

arrives; the concurrency control mechanism is invoked whenever a conflict arises

(Figure 3.3). Our primary goal is to minimize the number of transactions that miss

their deadlines. For transactions which do miss the deadlines, the goal is to minimize

the mean tardy time. We assume that once a transaction enters the system, it will

complete its execution even after it becomes tardy, that is, no transaction is aborted

because of missing its deadline. This implies that we assume soft deadlines in contrast

to hard deadlines where there is no value completing a transaction that has missed

its deadline and such transactions should be aborted.

The data consistency is maintained by ensuring that the execution schedule

is serializable. Serializability has been chosen as the way to achieve consistency

because we assume very little a priori knowledge about the transactions. In our

model, serializability is enforced by using the two-phase locking protocol. During

its lifetime, a transaction accesses pages for read and (possible) write after some

44

computation. In order to access a page, the transaction acquires a lock on the page;

the lock is released when either the transaction is preempted or when it commits.

The read locks can be shared but the write locks can only be obtained in an exclusive

mode. If the requested page exists in the buffer, it is locked and accessed from there;

otherwise, an I/O request is initiated to transfer the page to the buffer.

Resource Manager

The resource manager controls the physical resources such as the CPU, disks

and buffer pool. It provides service to both the transaction manager and the concur

rency control manager. The entire database can reside on a single disk or it may be

partitioned on multiple disks. In the latter case, the disks may either be serviced by

a single queue (similar to the tellers and customer queue in a bank) or each disk may

have its own queue. For partitioned data, it is more suitable to have a service queue

for each of the disks. We have studied the performance of the system using both a

single disk and multiple disks (partitioned data). In the case of multiple disks, we

assumed that each disk has its own service queue.

The buffer pool consists of a set of page frames. A dirty flag is associated with

each page frame. This flag is used to determine which pages need to be flushed in

case a new page has to be brought in. When a request to access a page is received

from the transaction manager, the buffer manager checks whether the requested page

is in the buffer pool. If it is present, no disk I/O is required. If the page is not found,

the buffer manager searches for a non-dirty page using a least recently used (LRU)

policy. If such a clean page is available, a disk I/O is scheduled to read the requested

page into the buffer frame occupied by the replacement victim. If no clean page is

45

found, a disk write is scheduled to write back the least-recently-used dirty page in

addition to the read that is scheduled for the requested page.

Logical Structure of the RTP Model

Figure 3.4 shows a logical sequence of stages that a transaction may go through

after entering the system. All queues indicated on this diagram are priority queues.

An arriving transaction may have to wait in a system queue if the number of active

transactions has already reached a predefined maximum. After a transaction enters

the system, it is considered active and can take one of the two paths: if the trans

action is unable to acquire all resources (locks), it is transferred to lock queue for

later consideration when some locks are released; if all the resources are available

or if the transaction is able to preempt another transaction (on the basis of a con

currency control protocol), the transaction manager interacts with the concurrency

control manager and the resource manager to bring in the pages requested by the

transaction and preempt another transaction, if necessary {read phase). The pre

empted transactions release the resources (locks), roll back and return to the lock

queue. Since none of the pages have been modified yet, there is no need to undo any

work. After the I/O is scheduled and the pages are brought into the buffer pool, the

transaction moves to the CPU queue. There may be one or more CPUs servicing

this queue and depending on the transaction's priority, it gets the service when the

CPU(s) become available {processing phase). After completion of processing, another

I/O request is made for writing back the updated pages to the disk {write phase).

The updated pages are written back to the disk but not flushed out of the buffer

pool which results in an improved performance using the buffer management. This

46

BUFFER
MQMT SCHEDULER

ARRIVALS

LOCK QUEUE

DISK(S)

PREEMPTED COMMIT

CPU(S)

INVOKE
SCHEDULER

Figure 3.4: Logical Sequence of Transaction's Lifetime

47

improved performance comes from the fact that when another transaction wants to

access the same page, it will find the updated page in the buffer and does not have to

initiate an I/O request. Also note that we do not allow preemption in the processing

or the write phase because of a possible waste of resources since the transaction has al

ready received much service time. Further, this also implies that once the pages have

been processed and modified, a transaction will not be preempted thereby eliminating

the necessity of undoing a transaction's actions if it were allowed to be preempted

at this stage. Upon completion, the transaction commits and exits the system. At

the same time, the scheduler is invoked so that any waiting transactions may be

scheduled.

Figure 3.5 illustrates the model using a pseudo code for the high priority pre

emption (HIPRTY) concurrency control scheme. A newly arrived transaction, Tnewi

is assigned a priority after which it is determined whether Tnew's execution will

conflict with other transactions. If there are no conflicts, the transaction requests

resources and begins execution by initiating an I/O request for pages that are not

already in the buffer. Once all the required pages are brought into the buffer, process

ing is initiated followed by another I/O request for writing updated pages to the disk.

The transaction then exits the system. In case of conflicts, however, it is examined

whether the priority, Pneiui of this newly arrived transaction, Tnew is higher than

the priority of all conflicting transactions. If Pnew is the highest priority, then it

is determined whether the conflicting transactions can be preempted or not. Recall

that a transaction past its read phase is not eligible for preemption regardless of its

priority. If both of these conditions are satisfied, then all conflicting transactions are

preempted and Tnew begins execution. Otherwise, Tnew waits in the lock queue

48

Pnew = assign.priority{&inYai time, execution time, deadline)
'start': if no conflict exists

request resources;
begiri-execution;

else
for all conflicting transactions,

check if Pnew > Pi Vz, AND
Tj can be preempted;

endfor;
if Pnew is the highest priority and

preemption is possible,
preempt all conflicting transactions;
begiri-execution;

else
wait in the queue with priority Pnew until

invoked by the scheduler;
goto 'start';

endif;
endif;

begin-Bxecution
check if the needed pages are in buffer;
read missing pages using LRU policy for

buifer management;
do processing;
write modified pages to the disk;

end hegin.execution;

Figure 3.5: Structure of the Transaction

49

with priority Pnew until invoked by the scheduler. When a transaction is invoked by

the scheduler, it once again checks for conflicts and proceeds as described above.

Summary

We have proposed a priority-driven preemptive scheduling model to be used as

a testbed for evaluating the performance in a real-time transaction processing sys

tem. The transactions arriving in the system can be assigned priorities using various

schemes and the consistency can be maintained by a variety of concurrency control

protocols. We have identified four priority assignment schemes (FCFS, EDF, MSTF

and SJF) and three concurrency control protocols (BLOCK, HIPRTY and CPR) for

study. A description of various components of the model and their interaction has

also been provided. The logical structure of the transaction processing system out

lines the stages that a transaction may go through after entering the system. The

read, processing and write phases of the transaction have also been identified. The

actions taken for the transaction are further explained using pseudo code for the

HIPRTY concurrency control scheme. In Chapter 4, we provide the implementation

details of our RTP model and the results obtained from this testbed.

50

CHAPTER 4. SIMULATION MODELING

In order to evaluate the performance of the proposed protocols under a variety of

load scenarios and system parameters, it is necessary to develop a real-time transac

tion processing testbed. SIMSCRIPT ILS, a general purpose discrete event simulation

language, is used to develop a comprehensive simulation model so that the proposed

protocols can be tested and analyzed for performance comparison. SIMSCRIPT has

been selected because of its ease of use, reliability, portability and flexibility that

allows a great control over the processes and events. The language also supports

graphics interface to monitor the progress of the simulation. When required, user-

written C and Fortran routines can also be linked to the simulation program. The

SIMSCRIPT language is well-suited for modeling centralized systems, but may not

be ideal for modeling a distributed environment.

The results provide a performance comparison among the algorithms under dif

ferent system loads and configuration. This chapter outlines the underlying assump

tions, describes the simulation model and presents the observations made during the

simulation experiments.

51

Assumptions

The following assumptions are inherent in the study of our proposed RTP model.

• We assume that the estimates of execution time, E, are exact and scheduling

decisions and rollbacks are done instantly.

• We require that a transaction locks all pages before it starts any computation.

This assumption enforces an all or nothing scheme thereby avoiding any dead

locks. If a deadlock detection module is used, this assumption can be relaxed.

This module should be invoked periodically and a 'resource preemption' policy

used to break the deadlock cycles. Under this scheme, resources will be pre

empted from some transactions until the deadlock cycle is broken. The most

important consideration is the overhead which should be kept at an absolute

minimum to justify an efficient real-time transaction processing system.

• In our model, once a transaction has locked all pages and completed the read

stage, it is no longer considered to be a candidate for preemption. This assump

tion has two main advantages. First, since a transaction spends a significant

amount of time in the read phase, it is not feasible to preempt it after it has

acquired all pages needed for further processing. Second, it ensures that a

modified page is always written back to the disk thereby eliminating the need

for housecleaning. Note that the possibility of a 'dangling' modified page left

behind by a preempted transaction does not exist.

• For the multiprocessor study, we assume that a transaction can execute on any

processor and that the cost of executing a transaction is independent of the

52

processor used.

Simulation Model

As a first phase of the development of simulation model, a simple real-time

transaction processing system is developed and tested for various algorithms. The

CPU(s) and the system queue are modeled as resources whereas the transactions,

source module and disks are modeled as processes. Note that disks are a resource,

but they have been modeled as a process because we require a separate service queue

for each disk. Further, it allows greater control over the I/O scheduling. When a

transaction requests I/O, we initiate subtransactions, one for each disk and each of

these subtransactions wait in a separate service queue. However, a transaction may

need a very few pages from one disk, but may require many pages from the other

disk(s). This results in different I/O completion times on each disk and requires

synchronization of the subtransactions. This synchronization is achieved by requiring

the transaction to proceed (to the processing stage in case of read, and to the commit

stage in case of write) only after all requested I/O is complete.

Since preemption is not available as a part of the SIMSCRIPT language, we

implemented it using other data structures. The preempted processes (transactions)

release the resources (locks) and return to a ready queue for a later restart. Note

that we do not abort a preempted transaction, but use a roll back scheme to restart

it later. Further, as discussed in the previous chapter, it is not necessary to undo the

effects of a preempted transaction. The possibility of starvation can be eliminated

by periodically increasing the priority of tardy transactions.

Serializability is enforced via a two-phase locking protocol which allows read-

53

locks in a shared mode and write-locks in an exclusive mode. Conflicts are resolved

using one of the concurrency control schemes described earlier. All queues in the

system are priority queues.

We have implemented a disk-resident database partitioned on one or two disks

with the resource parameters as given in Table 4.1. When one disk is used, the entire

database is assumed to reside on that disk. Each disk has its own queue of service

requests.

Table 4.1; System Resource Parameters

Parameter Base Value

Database Size 400 pages

Buffer Size 200 pages

Number of Disks One or more

Disk access time per page 25 ms

Number of CPUs One or more

We assume a large buffer pool relative to the database size in order to allow all

pages of active transactions to fit in main memory. The buffer pool is modeled as a

set of pages each of which can contain a single database object. Each buffer page is

modeled individually, that is, we maintain a list of free pages and keep track of pages

which are in the buffer whether or not they are currently locked by a transaction.

Since we do not allow preemption after the read phase has been completed, any

modified pages are guaranteed to be written back to the disk before the locks are

released. Therefore, we do not need to explicitly keep track of the pages which are

in the buffer and have been modified.

54

Transaction characteristics are defined by the parameters listed in Table 4.2.

Transactions arrive according to a Poisson distribution and are scheduled dynam

ically. They are ready to execute when they enter the system, that is, the ready

time equals the arrival time, tarr- The execution time, E, depends on the number

of pages that the transaction will access/update during its lifetime. The number of

pages accessed is chosen from a normal distribution based on a predefined mean:

Pages-accessed = NORM AL.F{mean, std-dev, seed)

Table 4.2: Transaction Parameters

Parameter Base Value

Mean Arrival Rate 4 - 8 jobs/sec^

Mean # of pages accessed per job 8 pages

CPU Service time per page 15 ms

Probability page is updated 0.5^

Slack Factor 2-8 times estimated
execution time^

Max # of active jobs 25 jobs

® A higher job arrival rate is studied for the
multiprocessor environment.

range of 0 to 1.0 is also studied.
Fixed slack in the range of 0 to 8 is also studied.

A mean of 8 pages is selected for this study. For the first part of this study, it is

assumed that an accessed page may be updated with a probability of 0.5. To imple

ment this, a random number is generated between 0 and 1 and the page is marked

as a possible update candidate if the random number is less than the update proba

55

bility. The actual database items (pages) are selected randomly from the database.

The execution time, is then calculated as

E = * (P + /) + V ^ ^ g e s ^ p d a t e d * ̂

where P is CPU service time per page and I is the I/O time per page.

The slack time, tgldcj^i is evaluated as a uniform distribution between the bounds

of the slack factor as specified in Table 4.2, that is,

islack ~ UNIFORM.Firninslk * E,max.slk * E,seed2)

The deadline, d, is the sum of arrival time, execution time and the slack time

for a transaction and is calculated as

d - tarr + E ^ ̂ slack

The tardy time, of a transaction is the time that a transaction spends

for completion after its deadline has passed. If tcomp is the completion time of a

transaction, then its tardy time is defined as:

hardy = ̂ comp - d

Pages can be locked in a shared or an exclusive mode. The modified pages are

written back to the disk only after the transaction has committed. By limiting the

total number of transactions that can be active at any given instance of time and

by assuming a large enough buffer pool, we ensure that a write does not become

necessary until after the transaction commits.

When the buffer is full, one or more pages may have to be swapped out to

bring in the pages requested by an active transaction. We selected the LRU page

56

replacement policy because it falls in the class of stack algorithms and is generally

found to be very efficient [34]. A buffer manager uses the LRU policy to select the

victim page to be replaced in the buffer pool. This is obviously the page that is

not currently locked by any active transaction. By restricting the maximum number

of active transactions and assuming a large buffer ensures that such a 'victim' page

always exists.

During the simulation we recorded a number of parameters. In order to present

the results, we have selected three important performance metrics for the real-time

environment: % missed deadline, mean tardy time, and average response time. The

primary goal in any real-time system is to meet the deadlines as much as possible.

In a soft real-time environment, we can allow transactions to miss their deadlines.

However, we want to keep this number to an absolute minimum and a measure of this

parameter (% missed deadlines) essentially determines the effectiveness of a protocol.

For the transactions that miss their deadline, our goal is to minimize tardy time.

Therefore, measuring the mean tardy time in a system where deadlines are missed

is also important. In real-time database systems, the average response time is less

important than the other two metrics just defined. However, the average response

time of the system should not become large for the system to be realistic. The other

parameters that are recorded include system throughput, number of preemptions,

average and maximum queue lengths, and CPU utilization.

A series of simulation experiments reflect the performance of various algorithms

under different system load and configuration scenarios. The algorithms represent

various combinations of the policies used for priority assignment and concurrency

control. The four priority assignment schemes (FCFS, EDF, MSTF and SJF) and

57

three concurrency control protocols (blocking, high-priority preemption and condi

tional preemption) as described earlier have been implemented. We have studied the

effect of tuning the underlying system when locks are held in exclusive mode only.

The model is then extended to allow shared locks and all other studies are done

using an enhanced system configuration and the shared locking mode. To illustrate

the performance improvement obtained by allowing shared locks, we also compare

the performance of the two locking modes.

Simulation Results

In this section we present results obtained from our experiments performed. Each

run is continued until at least 700 transactions are executed. SIMSCRIPT allows

using up to 20 different random number seeds. For each algorithm tested, numerous

performance statistics have been collected and averaged over runs for different random

number seeds. As mentioned earlier, the two most important metrics which measure

the performance in a real-time transaction processing system are the percentage of the

transactions that miss their deadlines and the average tardy time of all committed

transactions. Other experiments are performed for the percentage of transactions

processed, average response time and the system throughput. The system load is

varied from 1 to 8 transactions arriving per second. It is expected that a real-time

transaction processing system should not only perform well under a lightly loaded

situation but also for periods when the system is heavily loaded. Further, when

the system is lightly loaded, most transactions meet their deadlines for the chosen

parameters. Therefore, we only present results for the load ranging from 4 to 8

transactions per second with an interval of 0.5.

58

For the priority assignment and concurrency control protocols described earlier,

we have studied the effect of partitioning the data on multiple disks, effect of buffer

management, effect of allowing preemption, effect of update probability, effect of

locking modes, effect of slack factor and effect of multiprocessing.

Effect of Partitioning Data, Buffer Management and Preemption

In Figures 4.1 to 4.20, we use a 3-character notation to represent the underlying

features of our simulation model. The first character indicates whether or not buffer

management is used, the second character indicates whether or not preemption^ is

allowed, and the third character indicates the number of disks used. With this no

tation, NNl represents the most basic system configuration with data residing on

a single disk, no buffer management and no provision for preemption. NN2 repre

sents data partitioned on two disks; YN2 represents the case when an LRU buffer

management policy is incorporated and YY2 represents the case when preemption

is also allowed. The remaining results (Figures 4.21 to 4.24) are for the enhanced

(YY2) configuration. In the results shown, a significant performance improvement is

observed when data is partitioned on two disks because of the smaller queues and a

reduced waiting time. Similarly, buffer management and introduction of preemption

further reduces the number of tardy transactions and the mean tardy time. For this

part of the study, all locks are assumed to be held in an exclusive mode.

Figures 4.1 to 4.4 shows the percent of transaction missing deadlines under dif

ferent system configurations and priority assignment schemes described above. Note

that even for a high load scenario (8 jobs/second) the number of tardy transactions

^For this part of the study, we only allow high priority preemption.

59

is reduced to less than half for most cases when data is partitioned on two disks,

buffer management is used and preemption is allowed (the YY2 configuration). For

medium loads (4-6 jobs/second), the number of transactions that miss the deadlines

is reduced to zero from a range of 60-99 percent for the NNl configuration. The best

performance is shown by the SJF and the MSTF priority assignment schemes. EDF

and FCFS both result in a higher number of tardy transactions under a high load

scenario.

Figures 4.5 to 4.20 show similar results for ratio of the number of transactions

processed to the total number of transactions arriving in the system, mean tardy

time and average response time. The percentage of transactions that are processed

decrease with an increasing load for the NNl and NN2 configurations (Figures 4.5-

4.8). However, for YN2 and YY2 both, this ratio is very high and fairly steady over

the entire range of loads. This implies that buffer management greatly assists in

improving the throughput of the system. The mean tardy time (Figures 4.9 to 4.11)

and the mean response time (Figures 4.13 to 4.16) are improved by over a factor

of 16 for the EDF and FCFS schemes between the NNl and YY2 configurations at

the arrival rate of 8 jobs/sec. By simply partitioning the data on two disks (NN2),

the results show a four-fold improvement as compared with the NNl configuration.

This improvement comes from the fact that now the transactions not only spend

less time waiting in the queues, but also that the disks can be accessed concurrently.

However, as expected, preemption does not affect performance when the transactions

are assigned priorities using the FCFS scheme because with this scheme no later

transaction can have a higher priority than an earlier transaction, thereby eliminating

any possibility of preemption.

60

Figures 4.21 to 4.24 compare various priority assignment schemes for the YY2

configuration. Figure 4.21 shows the percentage of transactions missing the deadlines

under various load conditions. Since EDF gives the highest priority to transactions

that have the least remaining time to complete, it performs the best under low and

moderate load levels. However, the performance of EDF steeply degrades in an over

loaded system. This is because, under higher loads, transactions gain high priority

only when they are close to their deadlines. Gaining high priority at this late stage

may not leave sufficient time for a transaction to complete before its deadline. There

fore, as illustrated by Figure 4.21, a fundamental weakness of EDF under heavy loads

is that this policy tends to assign high priorities to transactions which will miss their

deadlines anyway. Further, the high-priority conflict resolution can produce a lot of

restarts which effectively increase the arrival rate of new transactions into the sys

tem, thus increasing the load and making EDF undesirable at high load. This can be

improved when other concurrency control protocols are used. The MSTF and SJF

priority assignment schemes exhibit a superior performance for overloaded systems.

With the same concurrency control mechanism, MSTF produces fewer restarts than

EDF because of an additional test (checking for priority after abort) that can prevent

transactions from being restarted. This results in MSTF performing better at higher

load levels.

Effect of Update Probability

As shown in the previous section, the use of buffers, preemption and data parti

tioning significantly improves the performance of a real-time transaction processing

system. In this section, we show how the data contention resulting from high update

61

probability can affect the performance of the system. For this and remainder part

of the study, we use our improved system configuration (YY2) in which the data is

partitioned on two disks, buffer management is used and preemption is allowed. We

have studied this effect for the four priority assignment schemes (EDF, SJF, FCFS,

and MSTF) and the three concurrency control protocols (BLOCK, HIPRTY, and

CPR) as described earlier.

The transactions access a certain number of pages (mean 8) during their lifetime

and may or may not update one or more of these pages. In case the pages are updated,

it is necessary that these pages are written back to the nonvolatile storage (disks)

before the transaction can commit. Depending on the number of pages updated, this

can result in a moderate to a very high disk contention and can effectively delay

the transactions eventually resulting in missed deadlines. In [20] we assume that an

accessed page may be updated with a probability of 0.5. Keeping other variables fixed,

we have now studied the effect when the update probability is varied from 0 to 1.0

with a step of 0.1. The effect of this variation is studied on two important performance

metrics: the percentage of transactions missing the deadline and the mean tardy time.

An update probability of 0 represents read-only transactions because it implies that

none of the pages accessed is updated. On the other hand, the update probability of

1 represents the other extreme where every page accessed is assumed to be updated

resulting in a high disk contention during the write phase.

Figures 4.25 to 4.44 show that, under any of the priority assignment schemes

and any concurrency control method, the performance of a real-time transaction pro

cessing system is significantly affected by the transaction's I/O requirements. It is

observed that transactions with high update probabilities can result in poor per

62

formance even at very low loads compared to the transactions that do not update

the data. For example, for EDF with blocking (Figures 4.25 to 4.28), 65% of the

transactions miss their deadlines at an arrival rate of 6 jobs/sec whereas such perfor

mance is not observed even at an arrival rate of 8 jobs/sec in case of the read-only

transactions. In fact, for an arrival rate of 6 jobs/sec, the transactions that miss the

deadline increase from under 5% to almost 60% when the update probability changes

from 0.5 to 1 (Figure 4.27). Similarly, at an arrival rate of 8 jobs/sec, the mean tardy

time increases from under 2 seconds to about 16 seconds when the update probability

changes from 0.5 to 1 (Figure 4.28).

A similar behavior is observed for all other combinations of priority assignment

schemes and the concurrency control policies. Since the general trend is the same,

we present results for high-priority preemption (HIPRTY) only. For this concurrency

control protocol, Figures 4.29-4.32 illustrate the performance for EDF, Figures 4.33-

4.36 for SJF, Figures 4.37-4.40 for FCFS, and Figures 4.41-4.44 for MSTF, priority

assignment schemes. In all these cases, the overall trend is the same for a fixed

update probability. However, the performance gets worse sooner, that is, at lower

loads, as the update probability becomes higher. The results for BLOCK and CPR

concurrency control protocols also exhibit the same trend and are, therefore, not

presented here.

Effect of Locking Mode

When locks are shared, the waiting time of transactions decrease significantly

and less preemptions are required. These factors, in turn, result in an improved per

formance compared to the case when the locks are always held in an exclusive mode.

63

Note that with exclusive locks only, conflict always involve a pair of transactions.

With shared locks, the lock may actually be held by a set of concurrently reading

transactions, each with a different deadline. In our study, we allow preemption only

if the conflict is one-to-one. To implement this, we maintain a conflict set associ

ated with each transaction, T. This set contains a list of all transactions that T is

conflicting with.

Figures 4.45 to 4.48 illustrate the effect of allowing shared locks under the EDF

priority assignment scheme using high priority preemption (HIPRTY) and conditional

preemption protocols (CPR). The results are obtained for the system configuration

described earlier except that the update probability is once again fixed at 0.5 (YY2).

At a job arrival rate of 8 jobs/sec the number of preemptions drop from 78 to 30.

This results in number of transactions missing the deadlines to improve by about

16% with the shared read-locks. The mean tardy time of the transactions and the

average response time also improve by 9% and 11% respectively. Note that all this

improvement is a result of allowing readers to share locks. The results for other

priority assignment schemes are similar and, therefore, not presented here.

Effect of Slack Time

It is not feasible to consider a transaction's deadline to be equal to the arrival

time plus the execution time since the transaction may spend time waiting in queues

because of unavailability of resources. To account for such unpredictable delays,

it is important to allow some slack for completion of a transaction. In this study,

we evaluate the effects of varying the slack factor on the performance of various

combinations of priority assignment schemes and concurrency control protocols under

64

different load scenarios. Recall that we define slack time as a function of the total

execution time of a transaction calculated from a uniform distribution as

Slack-time = UNIFORM.F{min.slack * E,max.slack * E)

where E is the estimated execution time of the transaction. In this simulation ex

periment, however, we use the same value for the minimum and maximum slack so

that the slack factor becomes a ratio of the slack time to the execution time, that is

SlackFact^ =

The slack factor is varied from 0 to 8. A slack factor of 0 (or close to 0) represents

the case of very tight deadlines. All other parameters are kept constant, preemption

is allowed, buffer management is in place and the data is assumed to be partitioned

on two disks. To represent light, medium and heavy load scenarios we select arrival

rates of 4.0, 6.0 and 8.0 jobs per second. The percentage of transactions missing the

deadlines is used as the performance metric for this study.'

Figures 4.49 to 4.52 show the percent of transactions that missed the deadlines

for the three load scenarios for the four priority assignment schemes (EDF, SJF, FCFS

and MSTF) and when simple blocking is used as a concurrency control mechanism.

In all the cases, a very high percentage of transactions miss their deadlines when the

deadlines are tight (smaller slack). In fact, for a job arrival rate of 8.0 jobs per second

(a high load scenario), none of the transactions could meet its deadline when EDF,

FCFS or MSTF is used for priority assignment. For low and medium load levels,

all the transactions meet their deadlines when the slack factor is high (4 for EDF

and 7 for the other schemes). However, for higher loads, even at a slack factor of 8,

a significant number (22-33%) of transactions still miss their deadlines. A general

65

observation from all these figures is that a higher slack factor does result in reduced

miss rate.

Figures 4.53 to 4.60 show similar results for the HIPRTY and CPR concurrency

control protocols. Note that the general trend for these protocols is the same as for

EDF discussed above. Any difference in the percentage of tardy transactions is not

because of the slack factor but is a result of a different concurrency control protocol.

HIPRTY and CPR concurrency control protocols seem to perform better than the

simple BLOCK where no preemptions are allowed.

EflFect of Multiprocessing

The basic characteristic of a multiprocessing system is the existence of several

processors which can operate independently. The efficient utilization of such a sys

tem can be very effective in decreasing the response times of many programs. This

is particularly important for real-time systems where the results are needed more

quickly than they can be provided by a single processor. Transaction scheduling on

multiprocessors is difficult if an optimal schedule is desired under timing and resource

constraints. In our study, we illustrate that performance can be enhanced to a cer

tain extent by providing more resources. In this section, we present our observations

based on our previous model extended to allow multiple processors keeping all other

parameters constant.

We have modeled a multiprocessor system by allowing multiple instances of the

resource, CPU, in our simulation model. We assume that all processors are identical

and any transaction can execute on any processor. Further, the cost of executing

a transaction on one processor is the same as the cost of executing it on any other

66

processor. No transaction requests more than one processor. When a transaction T

completes its read phase and requests a processor, the first available processor will

service this request. If a processor is not available, T joins the queue of transactions

waiting for the processor. All processors service a single queue which is maintained

by priority of the transactions. Keeping other transaction and system parameters

fixed and assuming the data to be residing on one disk, we increase the number of

processors from 1 to 10. The experiment has been conducted for a number of load

scenarios (varying job arrival rate from 4.0 to 24.0 jobs/second). The slack factor

is fixed at 2, that is, each transaction had a slack time equal to twice its estimated

execution time. Recall that in our previous experiments, this was the lower bound

on the slack factor. We have chosen percent of transactions that miss the deadline

as a performance metric for representing results from this study. The effect on the

mean tardy time of transactions and the average transaction time is similar. The

results presented here illustrate interesting observations and are representative of all

experiments.

Figures 4.61-4.72 present results from some combinations of the priority assign

ment and concurrency control schemes under different load scenarios. It is generally

observed that a significant performance improvement results when the number of

processors is increased from 1 to 2, but the improvement gradually becomes less and

less significant thereafter. In fact, as illustrated by Figures 4.61-4.64, for concur

rency control schemes that do not allow preemption (such as BLOCK), there is no

improvement at all when the number of processors is increased. The reason for this

is that the disk is already the bottleneck even with one processor. Therefore, the first

improvement can only come from removing this bottleneck device. Figures 4.65-4.68

67

show that when high priority preemption (HIPRTY) is used for resolving conflicts,

performance improves significantly at first but the curve soon becomes flat indicating

no further performance gain no matter how many additional processors are provided.

A similar behavior is observed when conditional priority preemption (CPR) is used

for concurrency control. This behavior is not surprising because the other resources

in the system presumably become the bottleneck device limiting the system perfor

mance. At this point, too much improvement of one resource can be wasteful until

the bottleneck device is improved [29]. Also note that for FCFS, no difference is

observed (Figures 4.62 and 4.66) because under this scheme all transactions have the

same priority and are serviced from a FIFO queue.

It was suspected that the disk, which is another resource in the system, could

be a potential bottleneck device. This is confirmed when we perform the simulation

experiment with exactly the same parameters except that now the data is partitioned

on two disks. We observe that under this configuration, increasing the number of pro

cessors resulted in a better performance over a wider range. Note that now even the

BLOCK concurrency control scheme benefits from an increased number of processors

(Figures 4.61-4.64) because the data is partitioned over two disks and perhaps the

processor is the bottleneck device to start with. The new bottleneck device (disk)

once again takes over, but this time at a later point, after which no further improve

ment could be seen. At this point, adding more disks to the system could further

improve the performance as long as another resource does not become a bottleneck

device.

Figures 4.69-4.72 show results when the CPR scheme is used and the transactions

arrive at a rate of 12.0 jobs/second. At this higher arrival rate, we observe that

68

increasing the number of processors gradually result in performance gain but the

curve becomes flat after the maximum improvement is obtained from adding more

processors. The trend is the same for one or multiple disks with very little difference

when more disks are added. For the FCFS scheme and at this arrival rate, no

performance gain is obtained by adding more resources (Figure 4.70).

For a very high job arrival rate (24.0 jobs/second), increasing the number of

processors do not improve the performance of the system at all even when the data

is partitioned on two disks. This is because even when the data is partitioned, the

disk(s) continue to be the bottleneck device. In such circumstances, increasing the

number of processors only reduces the processor utilization without resulting in any

performance gain. The curves for this arrival rate are straight horizontal lines and

are not selected for inclusion in the figures presented in this chapter.

Summary

In this chapter, we have described our simulation model and the underlying

assumptions. The model has been implemented using discrete-event simulation tech

niques to provide a testbed for studying various proposed algorithms for priority

assignment and concurrency control. A set of system and transaction parameters

selected on the basis of literature review is also presented. We have studied the effect

of varying these parameters on the overall performance of the transaction processing

system.

The results obtained from the simulation experiments illustrate the effect of par

titioning data, buffer management, preemption, update probability, locking mode,

slack time and multiprocessing. It is observed that significant performance gain can

69

be achieved by simple partitioning of data on multiple disks and/or using buffer

management. Performance is further enhanced by using preemptive scheduling algo

rithms and by allowing shared locks. Since I/O accounts for a significant portion of

the transaction's execution time, the overall performance is better for read-only trans

actions as compared to those which require many updates. Furthermore, as expected,

tighter slack times result in more tardy transactions. By running the simulation over

a range of values for the slack factor, an acceptable slack time can be determined

for the entire set of transactions. The experiments using multiple processors illus

trate the impact of bottleneck devices in a system. It has been observed that too

much correction at one resource cannot indefinitely improve the overall performance

because another resource can then become the bottleneck device.

In the next chapter, we focus our attention on a distributed environment. We

define a model that uses the notion of nested transaction in the real-time database

environment. The proposed model is shown to exhibit properties that make it very

desirable for distributed real-time transaction processing.

70

Effect of System Configuration

M
i
s
s
e
d
D
e
a
d
1
i
n
e

<t> 0 0 0 0 <i>

NN2
YN2
YY2 X

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

Effect of System Configuration

NNl ^
NN2 H—
YN2 -S-
YY2 X -

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.1: Earliest Deadline First. Figure 4.2: Shortest Job First.

Effect of System Configuration Effect of System Configuration

%
M
i
s
s
e
d
D
6
a
d
1
i
n
e

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

NNl -O-

YN2 -B-
YY2 X •

ii 83 -g
4 4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second
4 4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second

Figure 4.3: First-Come-First Served. Figure 4.4: Minimum Slack First.

71

Effect of System Configuration
ifinw ifi III iBi

%
T
r
a
n
8

P
r
o
c
e
s
s
e
d

NNI ^
NN2

Effect of System Configuration
loom # * ijjL m m m

%
T
r
a
n
s
P
r
o
c
e
s
s
e
d

NNi -e-

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

40 1 1 1 1 1 L
4 4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second

Figure 4.5: Earliest Deadline First. Figure 4.6: Shortest Job First,

Effect of System Configuration

%
T
r
a
n
s
P
r
o
c
e
s
s
e
d

Effect of System Configuration
100 M ip a g g-

40 1
4 4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second

%
T
r
a
n
s
P
r
o
c
e
s
s
e
d

NNi -e-

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.7: First-Come-First-Served. Figure 4.8: Minimum Slack First.

72

Effect of System Configuration

NNI ^

5 5.5 6 6.5 7
JOBS per second

Figure 4.9; Earliest Deadline First.

Effect of System Configuration

NNI -0-

YY2 X -

OB É Én ' i
4 4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second

Figure 4.11: First-Come-First-Served.

Effect of System Configuration

NN2 H—
YN2 -e-
YY2 X -

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.10: Shortest Job First.

Effect of System Configuration

70

NN2 H—
YN2 -e-
YY2 X -

60

50

40

30

20

10

0
4 4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second

Figure 4.12: Minimum Slack First.

73

Effect of System Configuration

YY2 X

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.13: Earliest Deadline First.

Effect of System Configuration

YY2 X -

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Effect of System Configuration

NNl ^ -
NN2 H—
YN2 -e- -
YY2 X •

10<>-

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.14; Shortest Job First.

Effect of System Configuration

NNl ^ -
NN2 4—
YN2 -a- -
YY2 X -

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.15: First-Come-First-Served. Figure 4.16: Minimum Slack First.

74

System Load vs Throughput

NNl 7.5

•a- -

6.5

5.5

4.5

3.5

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.17: Earliest Deadline First.

System Load vs Throughput

NNl 7.5

6.5

5.5

4.5

3.5

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.18: Shortest Job First.

System Load vs Throughput
8

NNl 7.5

-B- -7

6.5

6

5.5

5

4.5

4

3.5

3
4 4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second

Figure 4.19: First-Come-First-Served.

System Load vs Throughput

NNl 7.5

6.5

5.5

4.5

4 4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.20: Minimum Slack First.

75

Effect of System Configuration

1—r

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

EDF -e-
SJF

FCFS
MSTF X - 4>

%
T
r
a
n
8

P
r
o
c
e
s
s
e
d

100

99.5

99

98.5

98

97.5

Effect of System Configuration
1 1 1 1 1

EDF -0-

-

FCF&vB-"

-

MSTïVSj^ -

1 1 I t ' l l
4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second
4 4.5 5 5.5 6 6.5 7 7.5 8

JOBS per second

Figure 4.21: Deadlines Missed. Figure 4.22: Tardy Transactions.

M
e
a
n
T
a
r
d
y

1
m
e

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Effect of System Configuration

1 1 1 1 1 1 1
EDF -0- _
SJF -t—

- FCFS -a- -
MSTF X -

-

[

1 1 1 1 1 1 1

Effect of System Configuration
T T

A
V
g

R
e
s
P

1
m
e

1 I r

EDF -0-
SJF 4-

FCFS -B-
MSTF X

4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

4.5 5 5.5 6 6.5 7 7.5 8
JOBS per second

Figure 4.23: Transactions Processed. Figure 4.24: Response Time.

76

Effect of Update Probability Effect of Update Probability

M
i
s
s
e
d
D
e
a
d
1
i
n
e

80 -

60 -

1 1 1 1 1 i i .

/ 0.8 #-
- / 0.6/B— -

/ O.f X- - r
/ Qj6 A •

-

/ ŒO i

/ j
- V / /A -

1—
4 4.5 5 5.5 6 6.5 7 7.5 8

Arrival Rate (jobs/sec)

14 -

12 -

10 -

8 -

6 -

4 -

2 -

01
4 4.5 5 5.5 6 6.5 7 7.5 8

Arrival Rate (jobs/sec)

Figure 4.25: EDF(BLOCK). Figure 4.26: EDF(BLOCK).

Effect of Update Probability

%
M
i
s
s
e
d

D
e
a
d
1
i
n
e

A A A

Effect of Update Probability
T

M
e
a
n

T
a
r
d
y

1
m
e

8.0 ̂

6.0 -e-
5.0 X

0.2 0.4 0.6 0.8 1
Update Probability

0 0.2 0.4 0.6 0.8 1
Update Probability

Figure 4.27: EDF(BLOCK). Figure 4.28: EDF(BLOCK).

77

Effect of Update Probability

1.0 "0—

0.2/A

4 4.5 5 5.5 6 6.5 7 7.5 8
Arrival Rate (jobs/sec)

Figure 4.29: EDF(HIPRTY).

Effect of Update Probability
100 I I I r

8.0 ^

0.2 0.4 0.6 0.8 1
Update Probability

Effect of Update Probability
16

1.0 "O—
0.8 H—
0.6 -S-

14

12
0.2 A •

10

8

6

4

2

0
4 4.5 5 5.5 6 6.5 1 7.5 8

Arrival Rate (jobs/sec)

Figure 4.30: EDF(HIPRTY).

16
Effect of Update Probability

16 1 1 1 1

8.0 -e-
14 - 7.0 H— -

6.0 -e-
12 - 5.0 X - -

4.0 A •
10 - -

8 - -

6 - 9

4 - /
2<

01

•O 0 j^O

0 0.2 0.4 0.6 0.8 1
Update Probability

Figure 4.31: EDF(HIPRTY). Figure 4.32: EDF(HIPRTY).

78

100

80

60

Effect of Update Probability
—1 1 1 1 1 1 1—

1.0 ̂
0.8 -j—
0.6 -B-
0.4 X -
0.2 A •
0.0 *

4 4.5 5 5.5 6 6.5 7 7.5 8
Arrival Rate (jobs/sec)

Figure 4.33: SJF(HIPRTY).

100

80

60

Effect of Update Probability

1
8.0 -e-
7.0 -f—
6.0 -s-
5.0 X •
4.0 A •

0.2 0.4 0.6 0.8 1
Update Probability

16
Effect of Update Probability

16 1 1 1 1 1 1 1

1.0 -0—
14 0.8 -t— -

0.6 •&—
12 0.4 X -J'^

0.2 A •
10 0.0 •* •• -

8 -

6

4

2

ol dra »• • " 1 1 1
4 4.5 5 5.5 6 6.5 7 7.5 8

Arrival Rate (jobs/sec)

Figure 4.34: SJF(HIPRTY).

Effect of Update Probability

8.0 -0—
7.0 -t— -
6.0 -e-
5.0 X • -
4.0 A •

1
oA A A A- a a S A A

0 0.2 0.4 0.6 0.8
Update Probability

Figure 4.35: SJF(HIPRTY). Figure 4.36: SJF(HIPRTY).

79

Effect of Update Probability Effect of Update Probability

M
e
a
n
T
a
r
d
y

1
m
e

1.0 "O—

0.0/*

4 4.5 5 5.5 6 6.5 7 7.5 8
Arrival Rate (jobs/sec)

4 4.5 5 5.5 6 6.5 7 7.5 8
Arrival Rate (jobs/sec)

Figure 4.37: FCFS(HIPRTY). Figure 4.38: FCFS(HIPRTY).

Effect of Update Probability

0 0.2 0.4 0.6 0.8
Update Probability

Effect of Update Probability
16 1 r

0.2 0.4 0.6 0.8
Update Probability

Figure 4.39: FCFS(HIPRTY). Figure 4.40: FCFS(HIPRTY).

80

100
Effect of Update Probability

1 I I r

1.0 ^
0.8
0.6 -B—
0.4 X -
0.2 A
0.0 •*

M
6
a
n
T
a
r
d
y

1
m
e

(
s
e
c
s

16

14

12

10

8

6

4

Effect of Update Probability

1 1 1 1 1 I I '

1.0 ^ '
0.8 4- -
0.6 -B-"

- 0.4 X •• -
0.2 A ••

- 0.0 _

•
• t

-

*

-

F 1 t 1 1

4 4.5 5 5.5 6 6.5 7 7.5 8
Arrival Rate (jobs/sec)

4 4.5 5 5.5 6 6.5 7 7.5 8
Arrival Rate (jobs/sec)

Figure 4.41: MSTF(HIPRTY). Figure 4.42: MSTF(HIPRTY).

Effect of Update Probability Effect of Update Probability

Update Probability Update Probability

Figure 4.43: MSTF(HIPRTY). Figure 4.44: MSTF(HIPRTY).

81

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

Effect of Locking Mode
1 I I I r

Exclusive -0—
Shared

60

50

40

30

20

10 h

Oé—$—$—(t> <!)"
4 4.5 5 5.5 6 6.5 7 7.5 8

Arrival Rate (jobs/sec)

M
i
s
s
e
d
D
e
a
d
1
i
n
e

Effect of Locking Mode

1 I I r

Exclusive
Shared

60

50

40 h

30

20

10

0^—$—$—d) ^
4 4.5 5 5.5 6 6.5 7 7.5 8

Arrival Rate (jobs/sec)

Figure 4.45: EDF(HIPRTY). Figure 4.46: EDF(CPR).

A
V
g

T
r
a
n
s

1
m
e

0

Effect of Locking Mode

"I I I I I I

Exclusive -O—
Shared

4 4.5 5 5.5 6 6.5 7 7.5 8
Arrival Rate (jobs/sec)

A
v
g

T
r
a
n
s

1
m
e

Effect of Locking Mode
1 r

Exclusive
Shared

4 4.5 5 5.5 6 6.5 7 7.5 8
Arrival Rate (jobs/sec)

Figure 4.47: EDF(HIPRTY). Figure 4.48: EDF(CPR).

82

M
i
s
s
e
d
D
e
a
d
1
i
n
e

Effect of Slack Time
1—I—I—I—I—r

Arr Rate=4.0
Arr Rate=6.0 H—

Rate=8.0 -S—

Effect of Slack Time
1 I I I I r

%
M
i
s
s
6
d
D
e
a
d
1
i
n
e

Arr Rate=:4.0 -0—

0 1 2 3 4 5 6 7 8
Slack Factor

0 1 2 3 4 5 6 7 8
Slack Factor

Figure 4.49: EDF with BLOCK. Figure 4.50: SJF with BLOCK.

Effect of Slack Time Effect of Slack Time

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

%

M
i
s
s
e
d
D
e
a
d
1
i
n
e

0 1 2 3 4 5 6 7 8
Slack Factor

0 1 2 3 4 5 6 7 8
Slack Factor

Figure 4.51: FCFS with BLOCK. Figure 4.52: MSTF with BLOCK.

83

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

Effect of Slack Time

Arr Rate=4.0 -O—
Arr Rate=6.0 H—

^rr Rate=8.0 "B—

Effect of Slack Time

<t)—$—$—è
0 1 2 3 4 5 6 7 8

Slack Factor

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

0 1 2 3 4 5 6 7 8
Slack Factor

Figure 4.53: EDF with HIPRTY. Figure 4.54: SJF with HIPRTY.

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

Effect of Slack Time

Arr Rate=4.0 -O—
Arr Rate=6.0 H—
Arr Rate=8.0 -B—

Effect of Slack Time

M
i
s
s
e
d
D
e
a
d
1
i
n
e

0 1 2 3 4 5 6 7 8
Slack Factor

0 1 2 3 4 5 6 7 8
Slack Factor

Figure 4.55: FCFS with HIPRTY. Figure 4.56: MSTF with HIPRTY.

84

Effect of Slack Time

Arr Rate=4.0
Arr Rate=6.0 H—

. Arr Rate=8.0 -B—

Effect of Slack Time

T < t > < t) — ^

M
i
8
S
e
d
D
e
a
d
1
i
n
e

2 3 4 5 6
Slack Factor

0 1 2 3 4 5 6 7 8
Slack Factor

Figure 4.57: EDF with CPR. Figure 4.58: SJF with CPR.

Effect of Slack Time

Arr Rate=4.0
Arr Rate=6.0 H—
Arr Rate=8.0 -B—

Effect of Slack Time

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

0 1 2 3 4 5 6
Slack Factor

0 1 2 3 4 5 6 7 8
Slack Factor

Figure 4.59: FCFS with CPR. Figure 4.60: MSTF with CPR.

85

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

EFFECT OF MULTIPROCESSING
100 —

EFFECT OF MULTIPROCESSING

80

60

40

20

_L

One Disk -0—
Two Disks H—

4 1 h

_L
1 2 3 4 5 6 7

Number of Processors

M
i
s
s
e
d
D
e
a
d
1
i
n
e

100

80

60

40

20

_ 0 0 0 0

n i r 1 1 1—
One Disk

Two Disks

H 1 1 h

I I I J L

0 1 2 3 4 5 6 7 8
Number of Processors

Figure 4.61: EDF (BLOCK) - 8 jobs/s Figure 4.62: SJF (BLOCK) - 8 jobs/s

%
M
i
s
s
e
d

D
e
a
d
1
i
n
e

EFFECT OF MULTIPROCESSING
1 0 0 — < î) < î > < î > 0 < î > < t > 0 < ^

80

60

40

20

J L

One Disk -O—
Two Disks

H 1 1 h

_L _L
0 1 2 3 4 5 6 7 8

Number of Processors

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

EFFECT OF MULTIPROCESSING
100

80 -

60 -

40 -

20 -

T 1 1 r
One Disk -0—

Two Disks

_L _L _L _L _L _L

o-o 0 0 0 0 0 <>

1

0 1 2 3 4 5 6 7
Number of Processors

Figure 4.63: FCFS (BLOCK) - 8 jobs/s Figure 4.64: MSTF (BLOCK) - 8 jobs/s

86

EFFECT OF MULTIPROCESSING
—I 1 1 1

One Disk
Two Disks H—

EFFECT OF MULTIPROCESSING

0 0 <>

1 2 3 4 5 6 7
Number of Processors

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

100

80 -

60 -

40 -

20

T 1 I I r

One Disk -0—
Two Disks H—

0 0 0 0 <>

0 1 2 3 4 5 6 7
Number of Processors

Figure 4.65; EDF (HIPRTY) - 8 jobs/s Figure 4.66; SJF (HIPRTY) - 8 jobs/s

EFFECT OF MULTIPROCESSING
1 0 0 — o o o o o o o o

EFFECT OF MULTIPROCESSING

80 -

60

40 -

20 -

_L _L

One Disk
Two Disks

_L
0 1 2 3 4 5 6 7 8

Number of Processors

%
M
i
s
s
e
d
D
e
a
d
1
i
n
e

100

80 -

60 -

40

20 -

_L

"1 1 1 1 1 r

One Disk
Two Disks H—

_L _L _L

0 0 <>

\—I—I—I—h
L J _L

0 1 2 3 4 5 6 7 8
Number of Processors

Figure 4.67; FCFS (HIPRTY) - 8 jobs/s Figure 4.68: MSTF (HIPRTY) - 8 jobs/s

87

EFFECT OF MULTIPROCESSING EFFECT OF MULTIPROCESSING
100

80

60

40

20

\
1 1 1 i 1

One Disk -0—

•
\ . •

1

1

Y Y "
1

1

^ ' n 1 1

1 1 1 1 1

M
i
s
s
e
d
D
e
a
d
1
i
n
e

100

80

60

40

20

1 1 1 1 1 1

One Disk -0—

- o

Two Disks H—

A ̂ -

1

' "r t t •"

1 1 i 1 1

0 1 2 3 4 5 6 7 8
Number of Processors

1 2 3 4 5 6 7
Number of Processors

Figure 4.69: EDF (CPR) - 12 jobs/s Figure 4.70: SJF (CPR) - 12 jobs/s

EFFECT OF MULTIPROCESSING EFFECT OF MULTIPROCESSING

One Disk -0—

- ^ A %
M
i
s
s
e
d
D
e
a
d
1
i
n
e

100

80

60

40

20

1 1 1 1 1 1

One Disk -0—

-

Two Disks H—

-

0"" 0 ^>

-

^ 1

1 1 f 1 1

0 1 2 3 4 5 6 7 8
Number of Processors

1 2 3 4 5 6 7
Number of Processors

Figure 4.71: FCFS (CPR) - 12 jobs/s Figure 4.72: MSTF (CPR) - 12 jobs/s

88

CHAPTER 5. REAL-TIME NESTED TRANSACTIONS

Nested Transactions

Nested transactions are extension of traditional single-level transactions and ex

hibit properties which make them feasible for many distributed applications. In

a nested transaction system, any transaction can invoke child transactions nested

within it. The transactions are not only synchronized at the top level, but the trans

action's descendants are also synchronized among themselves. This allows concurrent

access to shared data within a transaction while satisfying the consistency constraints

of the database. Thus, nested transactions inherently permit safe concurrency. An

other advantage of nested transactions over single-level transactions comes from fail

ure transparency because subtransactions of a nested transaction fail independently

of each other and independently of the top-level (parent) transaction. Such graceful

and controlled failures allow possibilities of partial redoing; for example, redo only the

part of computation that failed while executing on a certain machine. In a single-level

transaction system, if any part fails, the whole transaction fails. Because of these

properties, nested transactions can be very suitable for distributed applications.

The serializability of nested transactions is ensured via read-write locking pro

tocols that ensure nested synchronization. An advantage of nested synchronization

is that the execution of two concurrent transactions from the same parent transac

89

tion is correct even when they access same data item. Rules for synchronization and

recovery in such an environment are presented by Moss in [31].

The concept of nested transactions is not new but an important contribution

of Moss' work is the introduction of lock inheritance protocols which ensure serial-

izability within and among all nested transactions. In [31], Moss first provides rules

for exclusive and read-write locks in a single-level transactions system and then ex

tends the rules for nested transactions. Similarly, recovery rules are provided for both

single-level and nested transactions.

Nested transactions can be implemented in a centralized or distributed system,

but their efficient synchronization and graceful recovery properties make them suit

able for the distributed computing environment. Remote procedure calls and dis

tributed databases are examples of the potential applications in such an environment.

It has also been shown that management of nested transactions in a distributed envi

ronment can be accomplished by simple bookkeeping, by extending two-phase commit

protocol, and by detecting and aborting orphan transactions [31].

Real-Time Nested Transactions

In this chapter, we examine the concept of nested transactions in the context of

real-time database. In such an environment, the transactions have timing constraints

associated with them and it is important to maximize the number of transactions that

meet their deadlines. We attempt to extend our single-level real-time transaction

model to nested transactions environment using concepts of priority assignment and

inheritance. Assigning a priority according to a certain protocol is essential to deter

mine the importance of the task. However, as discussed for single-level transactions in

90

earlier chapters, priority driven schemes have a potential problem of creating priority

inversion which is the phenomenon where a higher priority transaction is blocked by

lower priority transactions. In many cases, the duration of blocking is unpredictable

and may be indefinite. Two variants of priority inheritance protocols that avoid pri

ority inversion in a uniprocessor environment and also impose an upper bound on

the blocking time for a higher priority transaction are provided in [39, 40, 41].

The following example illustrates that, in addition to lock inheritance protocol

of traditional nested transactions, it is important that the parent transactions also

inherit the priority so that a waiting transaction is not delayed indefinitely.

(^2' ^2) C^O' ^o)
r—

(^21' ^2) (T22 P2)

access A access B

J access B

Figure 5.1: An Example of the Priority Inversion Problem

Example 5.1. Let 7Q , TJ , and T2 be three transactions in descending

order of priority Pq , Pi , and respectively (Figure 5.1). Assume that the child

transactions execute at their parent's priority and no priority inheritance protocol is

used; that is, the priority of a transaction does not change during the course of its

execution. Let Tgi 2̂2 the child transactions of T2 with accessing A

91

and T22 accessing B. Consider that while T^i and T22 are executing, TQ arrives and

wants to access B. Since B has been locked by T22 , Tq will have to wait in spite

of the fact that TQ 'S priority is higher than that of Tgg • While TQ is waiting, the

following scenarios can take place:

Scenario 1. T22 completes; T2 inherits lock on B.

Tg still cannot access B.

T21 completes; T2 inherits lock on A.

T2 commits and releases locks.

TQ starts execution and can access B.

Scenario 2. T^ arrives, does not need to access B, and preempts T22 •

Ti executes and completes.

T22 resumes execution.

Finally, T22 completes.

T21 completes and then Tg commits.

TQ starts execution and can access B.

Scenario 3. T22 completes; T2 inherits lock on B.

TQ still cannot access B.

T21 accesses A and is executing.

arrives, does not need to access A, and preempts T21 •

Ti does not need 5, executes and completes.

T21 resumes execution.

Finally, T21 completes and Tg inherits locks.

Tg commits and releases locks.

92

TQ starts execution and can access B.

In each of the above scenarios, the higher priority transaction TQ directly or

indirectly waits for the lower priority transactions to complete. In scenario 1, TQ first

waits for T22 to complete because there is a direct conflict arising from the data

contention for the same data object, B. However, even after T22 completes, the lock

inheritance protocol does not allow the lock on B to be released; instead, the lock is

passed on to the parent transaction T2 . Therefore, TQ has to wait until the other

child transaction also completes so that T2 can commit and release the locks. Note

that TQ is not allowed to preempt T22 because of the data conflict.

Despite an indirect wait for TQ , scenario 1 appears to have the least blocking

duration of the three scenarios described above. In scenarios 2 and 3 the wait for

TQ can be unbounded because there can be other intermediate priority transactions

(like T^) which can keep preempting the lower priority transaction T2 and thereby

indirectly blocking TQ . In scenario 2 above, a solution to avoid repeated preemptions

is to allow T22 to execute at a higher priority if it is blocking a higher priority

transaction. In this case, T22 should be executing at priority PQ so that no other

intermediate priority transaction is allowed to preempt it. However, with this simple

solution, even though T22 will complete sooner, the lock is inherited by the parent,

T2 , and will not be released until the other child transactions of T2 also complete

(in this case, Tg]^). Thus, despite raising the priority of T22 for reducing the waiting

time, TQ may now be indirectly blocked for an unbounded period of time because of

T21 as described in scenario 3. In other words, this requires that not only T22 (which

is directly involved in the conflict) should inherit the priority of waiting transaction

but all nested transactions which can directly or indirectly block the higher priority

93

transaction should inherit the priority. In the above example, this requires all the

three low priority transactions, T2 , T2\ and T22 be executing at priority PQ when

TQ is directly blocked by T22 •

As illustrated by this example, a simple priority inheritance protocol is not

enough in a nested environment. In fact, the propagation of inherited priority seems

to become unavoidable. To solve the unbounded waiting problem for high priority

transactions, we propose new protocols for nested transactions.

Definitions, Notations and Concepts

In this section, we define a few terms and concepts that will be used in subsequent

discussion of the formal proof of properties of the proposed protocols.

Figure 5.2 shows the structure of our real-time nested transaction system. We

assume that our system is composed of several active tasks each one of which can

have a sequence of embedded top-level transactions and non-database operations.

Each top-level transaction can have child transactions nested within it as described

earlier. For notation purposes, we use a scheme similar to that proposed in [32]. A

task j is denoted by r,- and all its subtransactions are denoted by Tj , where n J Ct ^ • CLy^

depends on the depth of nesting. Thus, a full transaction identity, tid, consists of

a sequence of subtransaction's tid's concatenated together. The first subtransaction

tid would represent the top-level task, followed by the subtransaction tid of the next

level, and so on down the tree to the subtransaction being identified. Therefore, a

tid identifies all the ancestors of its transaction by explicitly enumerating them along

the path from the root to the transaction. As illustrated by Figure 5.2, tid's are

variable in length. We expect that transaction nesting will not be very deep. In the

94

following sections, we denote transactions by when it is not important to know

the identification of the ancestors. The priority of a transaction Tj is denoted by Pj.

We denote Pfj as the priority of a higher priority transactions as opposed to P^,

priority of a lower priority transaction.

task re time

3121 3122

Figure 5.2; Structure of a Task with Nested Transactions

When two transactions attempt to access shared data, the access must be seri

alized in order to maintain consistency. If the lower priority transaction gains access

first and then the higher priority transaction request access to the shared data, this

higher priority transaction must wait until the object is no longer accessed by the

95

lower priority transaction. More formally, a high priority transaction is said to be

blocked if it is waiting for other lower priority transactions to complete. The lower

priority transactions in this case are said to be the blocking transactions.

As suggested in Example 5.1, under certain blocking conditions, a transaction's

priority may change during its execution. For example, when a lower priority trans

action of task Tj holds a lock and directly blocks higher priority transactions,

the transaction should execute at the highest priority of all transactions blocked

by r^. In this case, we say that the transaction temporarily assumes a higher

priority because of priority inheritance. The priority of a transaction may also tem

porarily be raised by indirect blocking of other transactions. For example, in the

above case, though is directly blocking other higher priority transactions by hold

ing a required lock, even after it completes, the locks are not released but inherited by

its parent. Therefore, we require that all other subtransactions ^ within the

nested transaction also execute at the priority inherited by the transaction which

is directly blocking higher priority transactions. To accomplish this, the transaction

that inherits a higher priority propagates this information to its ancestors so that

all other transactions ^ also execute at this elevated priority. Such higher

priority assumed by indirect blocking is said to be the result of priority propagation.

When the blocking nested transaction completes, the execution of the task continues

at the original priority assigned at the time of initiation of the transaction.

Each data object 0 in the database has two fixed and one dynamic priority ceiling

associated with it. The write priority ceiling (WPC) of a data object is defined as the

priority of the highest priority task that may write this object. The absolute priority

ceiling (APC) of a data object is defined as the priority of the highest priority task

96

that may either read or write this data object. When a data object O is write-locked,

the dynamic priority ceiling (DPC) of O is defined to be equal to APC of O. When

a data object O is read-locked, the DPC of 0 is defined to be equal to the WPC of

0.

The above priority adjustment rule is similar to that proposed by [41] and is

based on the following observation: when a task write-locks a data object 0, O

should not be read or written by any other task, and when a task read-locks a data

object 0, O should not be written by another task. The first condition is ensured

by setting the DPC of O to its APC because then no other task can either read or

write 0 until the lock on 0 is released. The second condition is ensured by setting

the DPC of 0 to its WPC because then no other task can write 0 until the lock

on 0 is released. Note that this allows read transactions with priorities higher than

WPC of O to share the read-lock on 0. This, at first, may appear too restrictive

because we do not allow read transactions with priorities lower than or equal to WPC

of 0 to share the read-lock on 0, but such a restriction comes with an important

advantage. By not allowing lower priority transactions to share the read-locks, we

reduce the waiting time for a blocked higher priority write transaction. Otherwise,

this transaction would wait for multiple readers resulting in the task to be blocked

by multiple lower priority embedded transactions.

Dynamic Status Vector (DSV)

A transaction T can be executing at its original priority or a higher priority

attained as a result of priority inheritance or priority propagation. At times, when a

transaction aborts, it may be necessary to reevaluate the priority of the transaction

97

T. To accomplish this, it is necessary to maintain a list of priorities that a transaction

may have assumed from time to time. We, therefore, require a dynamic status vector

(DSV) associated with each transaction T. This vector represents the set of other

higher priority transactions that are blocked by T. The elements of this set consist

of 2-tuples < tid, > ordered by the priority value This value represents

the priority that a transaction might have assumed (through priority inheritance or

priority propagation) from time to time.

The DSV of a transaction T is updated whenever more transactions are blocked

or when a blocked or a blocking transaction aborts according to the following update

rules:

Rule Ul. When a transaction tid is blocked, an ordered pair < tid,P^j^^ > is added

to the DSV associated with the blocking transaction T. The priority of T is

then set to the highest priority of all the blocked transactions, that is,

Rule U2. When a blocked transaction aborts, if its priority is the highest of all

the blocked transactions, the blocking transaction starts executing at the next

highest priority level in the DSV. No priority change is required if the priority of

the aborting blocked transaction is lower than the currently inherited priority

of the blocking transaction. In either case, however, the DSV is updated by

removing the corresponding tuple < tid, > of the aborted transaction.

Rule U3. When the blocking transaction aborts, the information is propagated to

all ancestors so that they may update their corresponding DSV and readjust

the priority.

98

Locking and Priority Inheritance Protocols

As described earlier, locking, timestamps and optimistic methods have generally

been used to achieve serializability which is an accepted criteria for correctness of

concurrently executing transactions. To ensure serializability in our real-time nested

transactions, we select to use locking because of its well-known properties, simplicity

and ease of implementation. Locking protocols restrict access to a database object

by requiring a lock to be obtained before any read/write can take place. The two-

phase locking protocol adds another restriction to this rule: no transaction obtains

a lock after it has released one. In the first phase of this protocol, a transaction

can only acquire (does not release) locks, and in the second phase the transaction

only releases (does not acquire) locks. This protocol ensures that the order in which

any two transactions access the same object is the same as the order in which those

transactions access any other objects. The underlying assumption is that if two

schedules result in the same order of access at each object then the schedules are

equivalent. Given this equivalence relation on schedules, it is possible to prove that

if the two-phase locking protocol is used then any such schedule is equivalent to a

serial schedule [17]. That is, two-phase locking ensures serializability. Therefore, all

protocols described in this section assume that locking is done using the two-phase

locking protocol.

Basic Priority Inheritance Protocol with Exclusive Locks

We first provide a set of rules assuming that transactions follow a basic priority

inheritance protocol and can lock objects in an exclusive mode. It is also assumed that

all transactions are assigned a priority according to some priority assignment protocol

99

(for example, earliest-cleadline-first) and a transaction executes at this priority until

it blocks other transactions. When blocking higher priority transactions, the priority

of the executing transaction may only change through inheritance and propagation

as described in the following rules.

Rule Al. A transaction may access an object only if it can lock the object in an

exclusive mode.

Rule A2. A transaction may lock an object if and only if all other transactions

holding the lock on the object are ancestors of the requesting transaction.

Rule A3. A transaction executes at its assigned priority unless it is blocking higher

priority transactions. When a transaction T blocks higher priority transactions,

T inherits and executes at , the highest priority of transactions blocked by

T.

Rule A4. When a transaction inherits a higher priority, it immediately propagates

that information to its parent transaction. Upon receiving this information,

the parent transaction upgrades its priority and starts executing at the higher

priority. The parent also propagates this information to all its ancestors and

descendants so that ultimately the top-level transaction and all its descendant

transactions are executing at the inherited priority.

Rule A5a. When a child transaction commits, its parent transaction (if any) inherits

the locks held by the committing transaction.

Rule A5b. When the transaction aborts, its locks are discarded (after undoing

the transactions effects) and any priority inheritance that might have occurred

100

by propagation of priority information needs to be re-evaluated based on the

update rules provided in the section describing the Dynamic Status Vector.

Rule A6. A transaction TQ can preempt another transaction only if TQ is not

blocked and its priority is higher than the inherited or assigned priority at which

T]^ is executing.

Rule A1 states that locking an object is necessary before accessing it in order

to ensure data consistency. Rule A2 ensures that the ancestors of a transaction do

not interfere with their children's ability to hold locks. Rule A3 expresses the need

for priority inheritance when a lower priority transaction is blocking a higher priority

transaction.

Rules A4 and A5 describe the protocols for lock and priority inheritance. Note

that we require the priority inheritance to take effect immediately whereas the locks

are inherited by parent transactions only after the child transaction has committed.

As illustrated earlier, this is essential to bound the delay of a blocked higher priority

transaction. When a transaction aborts, the priorities of its ancestors and other

subtransactions may have to be changed. A transaction T can be executing at a

priority higher than its initial priority under two circumstances: T is directly blocking

a higher priority transaction and, therefore, inherited the priority, or a higher priority

is propagated to it through its parent. If the aborting transaction had been executing

at a higher priority through propagation from its parent then the priorities need not be

readjusted. This is because the transaction which is directly blocking higher priority

transactions and caused priority propagation is still executing and requires all other

transactions to continue to execute at the same priority. This is implemented using

the DSV maintained by each transaction as described earlier. This vector is assumed

101

to contain all priorities that a transaction may have inherited while blocking other

higher priority transactions. We require that the operations of priority inheritance,

priority adjustment and resumption of original priority must be indivisible. Rule A6

outlines the preemption protocol.

For all of our protocols, we assume none < read < write ordering for locks. This

implies that a write lock is the most exclusive of all the locks. Using this ordering,

rule A5 describes that parent's new lock mode is set as follows when a child commits:

parent's new lock mode = ma.!:(parent's current mode,child's mode)

Further, a transaction's mode also obeys the rule that the lock mode never

decreases. Thus, whenever a transaction requests and is granted a lock, it holds the

lock in the maximum of the requested mode and the mode in which it previously

held the lock:

new lock mode = maa;(requested mode,old mode)

Basic Priority Inheritance with Read-Write Locks

Exclusive locks are too restrictive and are orthogonal with timing constraints

imposed by real-time transactions. In order to enhance concurrency which eventually

reduces the delays and the number of transactions that miss deadlines, it is highly

desirable to allow both shared and exclusive locks. Shared locks, however, demand

protocols that can ensure data consistency. The following rules allow for using read

and write locks.

Rule Blr. A transaction may read an object only if it can lock the object in either

read or write mode.

102

Rule Blw. A transaction may write an object only if it can lock the object in write

mode.

Rule B2r. A transaction can lock an object in read mode if and only if all other

transactions holding the lock on the object in write mode are ancestors of the

requesting transaction.

Rule B2w. A transaction can lock an object in write mode if and only if all other

transactions holding the lock on the object in any mode are ancestors of the

requesting transaction.

Rule B3. Same as rule A3.

Rule B4. Same as rule A4.

Rule B5a. When a transaction commits, its parents (if any) holds the locks held by

the committing transaction. If the parent already holds the lock, it will choose

the more exclusive mode of the two lock modes.

Rule B5b. Same as rule A5b.

Rule B6. Same as rule A6.

Rules Blr and Blw states that locking an object in the appropriate mode is

necessary before accessing it in order to ensure data consistency. Rules B2r and B2w

allow sharing of read locks with other transactions and also ensure that the parents

of a transaction do not interfere with their children's ability to hold locks. Rule B5a

describe the protocols for lock inheritance. Note that we require the parent to inherit

the lock in the more exclusive mode if it is already holding the lock. All other rules

and their description is similar to that discussed in the previous section.

103

Priority ceiling protocol with read-write locks

The basic priority inheritance protocols have two inherent problems: first, they

do not prevent deadlocks and second, a blocking chain can be formed resulting in a

substantially large duration of blocking. To overcome these problems, we first define

a new protocol and then prove that this protocol does not suffer from the inherent

disadvantages of the basic priority inheritance protocols. Further, we also include

state restoration capability under this protocol and provide rules for maintaining

enough state information necessary to restore an old state in case of an abort.

Rule Clr. Same as rule Blr.

Rule Clw. Same as rule Blw.

Rule C2. Let So be the set of all objects that are currently locked by transactions

other than those of r. Let O* be the data object with the highest dynamic

priority ceiling of all data objects in So- When task r's transaction attempts

to read-lock (write-lock) a data object 0, the lock will be granted only if both

of the following conditions hold true:

i) task r's priority is higher than the dynamic priority ceiUng of 0*, and

ii) all other transactions holding the lock on object 0 in write (any) mode are

ancestors of the requesting transaction.

If either of the above conditions do not hold, the lock will be denied.

Rule C2b. When a transaction starts to hold a write lock on an object, the restora

tion information sufficient to restore the object's current state is created and

becomes the associated state for that object and transaction. This is done only

104

if there is not already an associated state for the same object and transaction.

Note that an associated state might already exist if one of the transaction's

children, modified the object and committed.

Rule C3. Same as rule A3.

Rule C4. Same as rule A4.

Rule C5a. When a child transaction commits, the following actions are taken:

(i) its parent transaction (if any) inherits the locks held by the committing

transaction, and

(ii) each of its associated states is offered to the committing transaction's par

ent. The parent accepts each state (making it the parent's own associated

state for the same object) if and only if the parent does not already have

an associated state for the same object.

Rule C5b. When the transaction aborts, the following actions are taken:

(i) its locks are discarded (after undoing the transactions effects) and any

priority inheritance that might have occurred by propagation of priority

information needs to be re-evaluated based on the update rules provided

in the section describing the Dynamic Status Vector.

(ii) each of its associated states is used to restore the objects directly or in

directly modified by the transaction. Those associated states can then be

discarded.

Rule C6. Same as rule A6.

105

Rule C2 ensures that no deadlock or chained blocking is possible. Condition (i)

is a requirement related to all transactions other than those of r whereas condition

(ii) is related to all the ancestors of requesting transaction. Note that the transaction

T of r may or may not need any data items from the set So- Similarly, 0 may or may

not be accessed by transactions other than those of r. Therefore, 0 may or may not

belong to So- If O belongs to So, then condition (ii) does not hold true and the lock

will be denied even if condition (i) holds. If 0 does not belong to So, then it cannot

be locked by any other transaction than those of r's; in this case, if condition (ii)

holds, then the lock is granted if task r's priority is higher than the dynamic priority

ceiling of O*, that is, if condition (i) also holds.

Rule C2b requires that sufficient information about a data object be saved to re

store the state in case of transaction aborts, communications failures or node crashes.

The real state of an object is recorded in permanent memory. Transactions work on

a volatile memory copy, which is backed up to permanent storage copy at the appro

priate time. In case a transaction aborts, the state can be restored from the volatile

memory copy. In case of node crashes, the permanent memory copy can be used to

restore the state. Rule C5a(ii) ensures that if the parent does not have an associated

state for one of the objects, then the associated state will not be lost, and the object

will be correctly restored in case of a later abort. However, if the parent already has

an associated state for the object, then the one the parent has should take prece

dence, because the parent's associated state is earlier than that of the child's. All

other rules and their description is similar to that discussed in the previous section.

An important advantage of Rule C2 is that there will not be any read-write

conflicts on the object 0 and we need not check if O has been locked. In other

106

words, under this protocol, we need not explicitly check for the possibility of read-

write conflicts. For instance, when an object 0 is write-locked by a transaction T,

DPC[0) is equal to the priority of the highest priority transaction that can access

0. Hence, the protocol will block a high priority transaction that may want to write

or read O. On the other hand, suppose that the object O is read-locked by T. Then

DPC{0) is equal to the priority of the highest priority transaction that may write

0. Hence, a transaction that attempts to write 0 will have a priority no higher than

DPC{0) and will be blocked. Only the transactions that read 0 and have priority

higher than DPC{0) will be allowed to read-lock 0. This is not a problem because

read-locks are compatible.

Properties of Proposed Protocols

In this section, we formally prove that our proposed protocols are free from

deadlock and enforce tightly bounded waiting period for higher priority transactions.

Similar proofs for a uniprocessor environment are provided in [41]. Freedom from

deadlock guarantees progress and together with the bounded waiting period pro

vides a solution to the priority inversion problem. Theorem 5.2 applies to the global

structure of a real-time transaction processing system where each embedded nested

transaction is considered to be a unit. We assume that each unit by itself is free from

deadlocks.

Lemma 5.1 Under the priority ceiling protocol, each transaction will execute at a

higher priority level than the level that the preempted transaction can inherit.

107

Proof. Let 5Q = {Oi,..., On} be the set of objects locked by a task r. Then,

highest priority that the task r or its transaction T can ever inherit is

max{DPG[Oi),...,DPC{On)} (i)

By Rule C2 of the priority ceiling protocol, the requesting task t j ^ will have its

transactions execute only if

(»)

Case (i). (9*.G 5Q. In this case, P{T) — P{0*).

Case (ii). 0* ^ 5Q. In this case, P{T) < P{0*).

So, in either case,

(iii)

From (ii) and (iii), if any transaction executes, it will execute at a priority

greater than P{T), the priority that the preempted transaction T can inherit.

Theorem 5.2 There is no deadlock among the tasks under the priority ceiling pro

tocol using read/write locks.

Proof. Suppose a deadlock can occur. Let , r2,..., T% be the tasks involved

in the deadlock. Let P = max[P{Ti), P{t2), ..., P{Tn)]- Since priority inheritance

and propagation is transitive, eventually

P(ri) = P(r2) = ... = P{Tn) = P

which implies that all transactions will eventually be executing at the same

priority. However, this contradicts lemma 5.1 and hence the theorem follows.

108

Lemma 5.3 Under the priority ceiling protocol, until task r either completes its

execution or suspends itself, task r can be blocked for at most a single embedded nested

transaction of a lower priority task tj^, even ifr^ has several embedded transactions.

Proof. Let a task r be blocked by a lower priority task By theorem

5.2 there will be no deadlock. This implies that at some time T£ will exit its

current transaction and start executing at its original priority. At this time t-^,

will be preempted by r. Since now T£ is not in a transaction, it cannot inherit a

higher priority until it executes another transaction. But cannot execute another

transaction (or resume execution at all) until r completes or suspends itself. The

lemma follows.

Theorem 5.4 Under the priority ceiling protocol, until task r either completes its

execution or suspends itself, task r can be blocked by at most a single embedded nested

transaction of one lower priority task, even if there are multiple lower priority tasks.

Proof. Suppose r is blocked by n lower priority transactions, where n > 1. By

lemma 5.3, each one of these transactions must belong to a different lower priority

task. Let {rj^,..., be the set of all these lower priority tasks ordered by priority,

that is, P(t^) > f Now, for all blocking r, each rj must be in its transaction

(because otherwise it could be preempted). Thus, r is blocked by Tn implies that

Pi^n) — f (T) (by inheritance). Let P be the highest priority that Tn can inherit.

Since Tji can block r,

f X T) < f

By lemma 5.1,

109

P{ t ^ _ i) > P (n)

From (i) and (ii),

f K _ i) > f (T)

and this contradicts with our initial assumption. Thus, r cannot be blocked by more

than one embedded nested transaction of one lower priority task, even if there are

multiple lower priority tasks.

Summary

In this chapter, we have introduced the concept of real-time nested transactions.

In doing so, we have introduced a framework for real-time database environment

based on two independent approaches: nested transactions and priority inheritance.

These two approaches are very important to ensure that transactions meet the strin

gent temporal requirements while maintaining data consistency in a distributed envi

ronment. Since nested transactions are particularly suitable for distributed process

ing, our proposed protocols can be efficiently implemented in a distributed real-time

transaction processing environment. A set of protocols for locking, priority inheri

tance and state restoration is also defined together with a formal proof of the facts

that the proposed protocols are free from deadlocks and have tightly bounded wait

ing period for higher priority transactions. Due to the concurrent execution of sub-

transactions, the overall performance of the protocol will be enhanced significantly.

Furthermore, abortion of a subtransaction will not result in cascading aborts, but

will allow restoration to a previously correct state.

110

Previous studies in this area [40, 41] have not addressed the issues related to

aborting transactions. We have introduced a new concept, namely priority propa

gation, which is particularly effective when the transactions abort in a nested en

vironment. The information regarding the aborted nested transactions need to be

propagated for priority readjustment of all other nested transactions that may be

directly or indirectly affected. We have proposed implementation of this readjust

ment by requiring each transaction to maintain a dynamic status vector because the

aborted transactions may require réévaluation of the priorities of the other nested

transactions. This vector contains enough information to determine the priority that

a transaction may assume when another transaction aborts. A formal update pro

tocol has been defined for the dynamic status vector. Since, we do not anticipate

frequent abortion of transactions, the overhead of re-evaluating priorities using this

vector will be minimal. The ultimate goal of priority propagation and priority inher

itance is to solve the priority inversion problem. Using our protocol, we have shown

that a high priority transaction can be delayed by at most a single embedded nested

transaction of one lower priority task. This bound on the waiting time provides a

solution to the problem of unbounded waiting inherent in simple priority inheritance

protocols.

The next chapter summarizes our research, provides a discussion of results ob

tained and gives directions for future research. Based on the encouraging results

obtained, we have identified several areas which should be explored by extending the

ideas emanating from this research.

I l l

CHAPTER 6. CONCLUSIONS

Summary and Discussion of Results

Real-time systems span many application areas. In addition to automated facto

ries, applications can be found in avionics, process control, robot and vision systems,

as well as military systems such as command and control. A relatively little knowl

edge related to issues in real-time transaction processing has resulted in inflexible

and expensive design of such systems. Many computing systems now use real-time

databases and allow soft deadlines, that is, missing some deadlines will not result in

catastrophic circumstances. Some applications that typically allow such soft dead

lines can be found in banking, airline reservation and aircraft tracking. Scheduling

transactions for real-time databases has received much attention in the very recent

years but there are still a number of issues that have not been addressed. A major

ity of scheduling algorithms reported in the literature perform static scheduling and

hence have limited applicability because of a priori information requirement.

In real-time database systems, the goal is not only to minimize response time, but

to have dynamic, on-line, adaptive scheduling algorithms which ensure that deadlines

are met while maintaining consistency of the database. Thus, scheduling algorithms

for real-time database require an integrated approach in which the 'schedule' does

not only guarantee execution before the deadline, but also maintains data consis

112

tency. Serializability is a widely accepted criterion for ensuring database consistency.

Serializability requires that the combined action of a group of transactions accessing

the database is equivalent to some serial schedule, that is, the same as if all the

transactions would have executed serially in some order.

Our research is clearly divided into two parts. First, we have developed a real

time transaction processing model and used heuristics based protocols to study the

performance in a centralized environment. Several experiments have been conducted

to study the behavior of the proposed protocols and transaction parameters in a real

time transaction processing environment. Some system parameters are modified to

study the effect of the underlying system configuration on performance. The testbed

developed can be used to perform numerous other studies for this environment. Sec

ond, we propose new concepts for real-time transaction processing in a distributed

environment. We have developed protocols and provide formal proof that the proto

cols do exhibit the properties that make them very suitable for distributed processing.

Centralized Environment

We have studied the problem of scheduling real-time transactions under a com

mon framework which considers both concurrency control issues and the real-time

constraints. By using efficient scheduling algorithms, the performance of a real-time

transaction processing system can be significantly enhanced. The performance can

be further improved by fine tuning parameters that control the underlying system

configuration. In order to prove these assertions, we defined a real-time transaction

processing model for a centralized system. Various components of the model interact

with each other to achieve the goal of maximizing concurrency control and meeting

113

real-time constraints at the same time. In order to test the behavior of the model

under the proposed protocols, we have developed a real-time transaction process

ing testbed using discrete event simulation techniques. Preemption, which is not

available in the original language is implemented using other data structures. Differ

ent protocols have been found to work better under different load scenarios and the

overall performance is significantly enhanced by modifying the underlying system

configuration. We also study the effect of altering various system and transaction

parameters on the overall performance of real-time transaction processing.

The results from our simulation model indicate that a significant performance

improvement can be achieved by simple modifications to the underlying system con

figuration for real-time transaction processing. For instance, there is a four-fold im

provement in the mean tardy time and the average response time just by partitioning

the data on two disks. Similarly, by using a simple buffer management scheme and

by allowing preemption based conflict resolution policies, the performance is signifi

cantly enhanced. For instance, the mean tardy time and the mean response time are

improved by a factor of 16 for the EDF and FCFS schemes between the NNl and

YY2 configurations at an arrival rate of 8 jobs/sec. Further improvement is obtained

by allowing shared read-locks.

The choice of locking mode can also significantly improve the performance be

cause when locks are shared the waiting time of transactions decrease and less preemp

tions are required. In one experiment we observed that the number of preemptions

drop from 78 to 30 when shared locks were used as opposed to using exclusive locks

only. This results in number of transactions missing deadlines to improve by about

16%. The mean tardy time and the average response time also improve by 9% and

114

11% respectively.

We have also studied the effect of I/O requirements of a transaction on the

performance of a real-time transaction processing system. Since the transactions

spend a significant amount of time doing the I/O, it has been observed that a system

with read-only transactions performs better compared to the one where transactions

update the database frequently. Frequent updates result in a higher I/O contention

which eventually degrades performance. The effect of priority assignment schemes

depends on both the system load and the conflict resolution policy used.

The experiments on the slack time have shown that regardless of the priority

assignment scheme and the concurrency control protocol used, a very high percentage

of transactions miss their deadlines when the deadlines are tight (smaller slack). In

fact, for a job arrival rate of 8.0 jobs per second (a high load scenario), none of the

transactions could meet its deadline when EDF, FCFS or MSTF is used for priority

assignment. For low and medium load levels, all the transactions meet their deadlines

when the slack factor is high. However, for higher loads, even at a slack factor of

8, a significant number (22-33%) of transactions still miss their deadlines. A general

observation from all these figures is that a higher slack factor does result in reduced

miss rate.

Our experiments with multiprocessing environment does confirm that providing

unlimited instances of a resource does not always result in a continuous performance

enhancement. The reason for this is that other limited resources tend to become the

bottleneck for the system. After a certain level of improvement, any further gain in

performance can only be achieved by first removing the bottleneck.

115

Distributed Environment

Priority inversion is said to occur when a high priority transaction must wait

for the execution of lower priority transactions. Even worse, the duration of such a

blocking can also become unbounded and prolonged durations of blocking may lead

to the missing of deadlines even at a low level of resource utilization. A common

approach to bound such arbitrary delays is to execute the transaction that holds the

lock at a higher priority. However, simple priority inheritance schemes have inherent

disadvantages.

Nested transactions, an extension of traditional atomic transactions, permit safe

concurrency within as well as among transactions and also enable transactions to fail

partially in a graceful and controlled manner. Thus, nested transactions have at least

two advantages over traditional single-level transactions. First, nested transactions

provide appropriate synchronization between concurrently running parts of the same

transaction. This implies that more work can be processed concurrently without the

danger of inconsistencies arising through improper concurrent access to data. Second,

subtransactions of a nested transaction fail independently of each other and indepen

dently of the containing transaction. This allows possibilities such as attempting

a part of a computation at one node and redoing that part at another node if the

first node fails. In the single-level transaction system, if any part fails, the whole

transaction fails [32].

For the distributed environment, we have examined the concept of nested trans

actions in the context of real-time database. In doing so, we have merged two indepen

dent approaches together - nested transactions and priority inheritance. These two

approaches are very important to ensure that transactions meet the stringent tempo

116

ral requirements while maintaining data consistency in a distributed environment. As

a result, a new concept, namely real-time nested transactions, has been introduced.

A set of protocols for locking, priority inheritance and state restoration is also de

fined together with a formal proof of the facts that the proposed protocols are free

from deadlocks and have tightly bounded waiting period for higher priority transac

tions. Since nested transactions are particularly suitable for distributed environment,

our proposed protocols can be efficiently implemented in distributed real-time trans

action processing. Due to the concurrent execution of subtransactions, the overall

performance of the protocol will be enhanced significantly. Furthermore, abortion of

a subtransaction will not result in cascading aborts, but will allow restoration to a

previously correct state.

Previous studies in this area [40, 41] have not addressed the issues related to

aborting transactions. We have included the state restoration mechanism in our algo

rithm. Furthermore, we have introduced a new concept, namely priority propagation,

which is particularly effective when the transactions abort in a nested environment.

The information regarding the aborted nested transactions need to be propagated for

priority readjustment of all other nested transactions that may be directly or indi

rectly affected. We have proposed implementation of this readjustment by requiring

each transaction to maintain a dynamic status vector because the aborted transac

tions may require réévaluation of the priorities of the other transactions. This vector

contains enough information to determine the priority that a transaction may assume

when another transaction aborts. A formal update protocol has been defined for the

dynamic status vector. Since, we do not anticipate frequent abortion of transactions,

the overhead of re-evaluating priorities using this vector will be minimal. The ul

117

timate goal of priority propagation and priority inheritance is to solve the priority

inversion problem. Using our protocol, we have shown that a high priority transac

tion can be delayed by at most a single embedded nested transaction of one lower

priority task. This bound on the waiting time provides a solution to the problem of

unbounded waiting inherent in simple priority inheritance protocols.

Directions for Future Research

In databases, there are two aspects to the scheduling of transactions: concurrency

control for serializing the execution of transactions and CPU and I/O scheduling for

the execution of read and write operations. We have focused our research on the

transaction scheduling aspects for concurrency control in real-time databases. It may

be interesting to study the other aspect, that is, the physical resource scheduling in

such an environment. This may lead to the development of efficient load balancing

algorithms that may further enhance the performance. In such an environment,

the transactions may arrive at any node and access data from a central database.

Depending upon the load at the local node, an arriving transaction may be scheduled

at a remote node. A guarantee protocol in the local scheduler can be used to determine

whether the transaction can be scheduled locally. If not, a global scheduler will be

invoked to find the most feasible node where the transaction should be transferred.

This selection can be made by a bidding or focused addressing scheme similar to

that used by [46, 54]. Furthermore, we have seen tremendous improvement with

data partitioning and also anticipate that data replication may also lead to efficient

algorithms.

The simulation study does not show any overhead that may result by using the

118

proposed protocols. However, from a theoretical perspective, it may be advisable

to do a complete complexity analysis of the proposed protocols which is beyond

the scope of this thesis. Similarly, the effectiveness of our protocols for real-time

nested transactions can be quantitatively measured by simulation study similar to

that described in earlier chapters. Further, to avoid priority inversion, protocols that

use techniques such as priority inheritance should be tested with our RTP model. In

this scheme, the priority of the executing transaction is raised to the priority of the

waiting transaction so that it finishes sooner and allow the waiting transaction to

resume execution.

We use exceution time estimates in priority assignment and concurrency control

protocols and assume that estimates are exact. Inaccurate runtime estimates in

scheduling decisions can lead to performance degradation. In order to determine

the robustness to inaccuracies in the estimate, it may be interesting to study the

sensitivity of the proposed protocols to such errors.

Finally, among other issues related to distributed real-time transaction process

ing [10, 13, 42], this research can be extended to incorporate areas such as precedence

constraints, placement constraints for fault-tolerance, modeling time constraints (as

signing value functions), and studying finer granularity of database (instead of page).

119

REFERENCES

[1] R. Abbott and H. Garcia-Molina, "Scheduling Real-time Transactions,"

SIGMOD Record, ACM, vol. 17, no. 1, Mar. 1988, 71-81.

[2] R. Abbott and H. Garcia-Molina, "Scheduling Real-time Transactions:

A Performance Evaluation," Proc. Hth Intl. Conf. on Very Large Data

Bases, Los Angeles, CA, Aug. 1988, 1-12.

[3] R. Abbott and H. Garcia-Molina, "Scheduling Real-time Transactions

with Disk Resident Data," Proc. 15th Intl. Conf. on Very Large Data

Bases, Amsterdam, The Netherlands, Aug. 1989, 385-396.

[4] R. Agrawal, M. Carey and M. Livny, "Concurrency Control Performance

Modelling: Alternatives and Implications," ACM Trans, on Database

Systems, Dec. 1987.

[5] D. Agrawal, A. El Abbadi and R. JefFers, "Using Delayed Commitment

in Locking Protocols for Real-Time Databases," ACM SIGMOD, Jun.

1992, 104-113.

120

[6] P. Bernstein and N. Goodman, "Timestamp-Based Algorithms for Con

currency Control in Distributed Database Systems," Proc. 6th Intl. Conf.

on Very Large Data Bases, Oct. 1980.

[7] P. Bernstein and N. Goodman, "Multiversion Concurrency Control -

Theory and Algorithms," ACM Trans, on Database Systems, vol. 8, no.

4, Dec. 1983, 465-483.

[8] P. A. Bernstein, V. Hadzilacos and N. Goodman, "Concurrency Con

trol and Recovery in Database Systems," Addison-Wesley, Reading Mas

sachusetts, 1987.

[9] A. P. Buchmann, D. R. McCarthy, M. Hsu, and U. Dayal, "Time-Critical

Database Scheduling: A Framework for Integrating Real-Time Schedul

ing and Concurrency Control," IEEE Conf. on Data Engineering, Feb

1989, 470-480.

[10] M. J. Carey and M. Livny, "Distributed Concurrency Control Perfor

mance: A Study of Algorithms, Distribution and Replication," Proc.

14th Intl. Conf. on Very Large Data Bases, Los Angeles, CA, Aug. 1988,

13-25.

[11] M. J. Carey, R. Jauhari and M. Livny, "Priority in DBMS Resource

Scheduling," Proc. 15th Intl. Conf. on Very Large Data Bases, Aug.

1989, 397-410.

121

[12] T. L. Cas avant and J. G. Kuhl, "A Taxonomy of Scheduling in General-

Purpose Distributed Computing Systems," IEEE Trans. Software Eng.,

vol. 14, no. 2, Feb. 1988, 141-154.

[13] S. C. Cheng, J. A. Stankovic, and K. Ramamritham, "Dynamic Schedul

ing of Groups of Tasks with Precedence Constraints in Distributed Hard

Real-Time Systems," Proc. of 7th IEEE Real-Time Systems Symposium,

New Orleans, LA, 1986, 166-174.

[14] S. C. Cheng, J. A. Stankovic, and K. Ramamritham, "Scheduling Algo

rithms for Hard Real-Time Systems - A Brief Survey," Hard Real-Time

Systems - Tutorial, IEEE Computer Society Press, 1988, 150-173.

[15] H. Chetto and M. Chetto, "Some Results of the Earliest Deadline

Scheduling Algorithm," IEEE Trans, on Software Engineering, vol. 15,

no. 4, Oct 1989, 1261-1269.

[16] R. P. Cook, S. H. Son, H. Y. Oh, and J. Lee, "New Paradigms for

Real-Time Database Systems," Eighth IEEE Workshop on Real-Time

Operating Systems and Software, Atlanta, GA, May 1991, 103-108.

[17] K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Traiger, "The Notions

of Consistency and Predicate Locks in a Database System," Communi

cations of the ACM, vol. 19, no. 11, Nov 1976, 624-633.

[18] A. A. Farrag and M. T. Ozsu, "Towards a General Concurrency Control

Algorithm for Database Systems," IEEE Trans, on Software Engineer

ing, vol. SE-13, no. 10, Oct 1987, 1073-1079.

122

[19] R. L. Graham et ai, "Optimization and Approximation in Deterministic

Sequencing and Scheduling: A Survey," Annals of Discrete Mathematics,

5, 1979, 287-326.

[20] W. Haque and J. Wong, "Performance Enhancement in Real-Time

Transaction Processing," vol. 11, no. 22, The International Journal of

Microcomputer Applications, 1992, 62-74.

[21] J. R. Haritsa, M. J. Carey, and M. Livny, "On Being Optimistic about

Real-Time Constraints," Proc. of 9th ACM Symposium on Principles of

Database Systems, Nashville, TN, 1990, 331-343.

[22] J. R. Haritsa, M. J. Carey, and M. Livny, "Dynamic Real-Time Opti

mistic Concurrency Control," Proc. of 11th Real-Time Systems Sympo

sium, Lake Buena Vista, FL, 1990, 94-103.

[23] J. Huang, J. A. Stankovic, D. Towsley, and K. Ramamritham, "Experi

mental Evaluation of Real-Time Transaction Processing," Proc. of 10th

Real-Time Systems Symposium, Santa Monica, CA, 1989, 144-153.

[24] J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley, "On Using

Priority Inheritance in Real-Time Databases," Proc. of 12th Real-Time

Systems Symposium, San Antonio, TX, 1991, 210-221.

[25] W. Kim and J. Srivastava, "Enhancing Real-Time DBMS Performance

with Multiversion Data and Priority Based Disk Scheduling," Proc. of

12th Real-Time Systems Symposium, San Antonio, TX, 1991, 222-231.

123

[26] H. T. Kung and J! T. Robinson, "On Optimistic Methods for Concur

rency Control," ACM Trans, on Database Systems, vol. 6, no. 2, June

1981, 213-226.

[27] Y. Lin and S. H. Son, "Concurrency Control in Real-Time Databases by

Dynamic Adjustment of Serialization Order," Proc. of 11th Real-Time

Systems Symposium, Dec. 1990, 104-112.

[28] C. L. Liu and J. Layland, "Scheduling Algorithms for Multiprogramming

in a Hard Real-Time Environment," J. ACM, vol. 20, no. 1, Jan. 1973,

174-189.

[29] M. Maekawa, A. E. Oldehoeft and R.R. Oldehoeft, "Operating Systems -

Advanced Concepts," Benjamin/Cummings Publishing Company, 1987.

[30] A. K. Mok and M. L. Dertouzos, "Multiprocessor Scheduling in a Hard

Real-Time Environment," Proc. Seventh Texas Conference on Comput

ing Systems, Nov. 1978.

[31] J. E. B. Moss, "Nested Transactions and Reliable Distributed Comput

ing," Proc. of 2nd Symposium on Reliability in Distributed Software and

Database Systems, July 1982, 33-39.

[32] J. E. B. Moss, "Nested Transactions - An Approach to Reliable Dis

tributed Computing," The MIT Press, Cambridge, Massachusetts, 1985.

[33] C. H. Papadimitriou and P. C. Kanellakis, "On Concurrency Control

by Multiple Versions," ACM Trans, on Database Systems, vol. 9, no, 1,

Mar. 1984, 89-99.

124

[34] J. L. Peterson and A. Silberschatz, "Operating System Concepts,"

Addison-Wesley Publishing Company, 1985.

[35] K. Ramamritham and J. A. Stankovic, "Dynamic Task Scheduling in

Hard Real-Time Distributed Systems," IEEE Software, vol. 1, no. 3,

July 1984, 65-74.

[36] K. Ramamritham, J. A. Stankovic, and W. Zhao, "Distributed Schedul

ing of Tasks with Deadlines and Resource Requirements," IEEE Trans.

Computers, vol. 38, no. 8, Aug. 1989, 1110-1123.

[37] K. Ramamritham, J. A. Stankovic, and P. F. S hi ah, "Efficient Schedul

ing Algorithms for Real-Time Multiprocessor Systems," IEEE Trans.

Parallel and Distributed Systems, vol. 1, no. 2, Apr. 1990, 184-194.

[38] D. Reed, "Implementing Atomic Actions on Decentralized Data," ACM

Trans, on Computer Systems, vol. 1, no. 1, Feb. 1983, 3-23.

[39] L. Sha, R. Rajkumar and J. P. Lehoczky, "Concurrency Control for

Distributed Real-Time Databases," SIGMOD Record, ACM, vol. 17, no.

1, Mar. 1988, 82-98.

[40] L. Sha, R. Rajkumar and J. P. Lehoczky, "Priority Inheritance Protocols:

An Approach to Real-Time Synchronization," IEEE Trans. Computers,

vol. 39, no. 9, Sep. 1990, 1175-1185.

[41] L. Sha, R. Rajkumar, S. H. Son and C.H. Chang, "A Real-Time Locking

Protocol," IEEE Trans. Computers, vol. 40, no. 7, Jul. 1991, 793-800.

125

[42] K. G. Shin and Y. Chang, "Load Sharing in Distributed Real-Time

Systems with State-Change Broadcasts," IEEE Trans. Computers, vol.

38, no. 8, Aug. 1989, 1124-1142.

[43] M. Singhal, "Issues and Approaches to Design of Real-Time Database

Systems," SIGMOD Record, ACM, vol. 17, no. 1, Mar. 1988, 19-33.

[44] S. H. Son and R. P. Cook, "Scheduling and Consistency in Real-Time

Database Systems," Sixth IEEE Workshop on Real-Time Operating Sys

tems and Software, Pittsburgh, PA, May 1989, 42-45.

[45] S. H. Son and J. Lee, "Scheduling Real-Time Transactions in Distributed

Database Systems," Seventh IEEE Workshop on Real-Time Operating

Systems and Software, Charlotsville, VA, May 1990, 39-43.

[46] J. A. Stankovic, K. Ramamritham, and S. Cheng, "Evaluation of a Flex

ible Task Scheduling Algorithm for Distributed Hard Real-Time Sys

tems," IEEE Trans. Computers, vol. C-34, no. 12, Dec. 1985, 1130-1143.

[47] J. A. Stankovic and W. Zhao, "On Real-Time Transactions," SIGMOD

Record, ACM, vol. 17, no. 1, Mar. 1988, 4-18.

[48] J. A. Stankovic, "Real-Time Computing Systems: The Next Gener

ation," Hard Real-Time Systems - Tutorial, IEEE Computer Society

Press, 1988, 14-36.

[49] L. Svobodova, "Resilient Distributed Computing," IEEE Trans, on Soft

ware Engineering, vol. SE-10, no. 3, May 1984, 257-268.

126

[50] H. Tokuda, C. W. Mercer, Y. Ishikawa and T. E. Marchok, "Priority In

versions in Real-Time Communication," Proc. of lOth IEEE Real-Time

Systems Symposium, Santa Monica, CA, Dec. 1989, 348-359.

[51] I. L. Traiger, et al, "Transactions and Consistency in Distributed

Database Systems," ACM Trans, on Database Systems, vol. 7, no. 3,

Sep. 1982.

[52] J. Xu and D. L. Parnas, "Scheduling Processes with Release Times,

Deadlines, Precedence, and Exclusion Relations," IEEE Trans. Software

Eng., vol. 16, no. 3, Mar. 1990, 360-369.

[53] W. Zhao and K. Ramamritham, "Simple and Integrated Heuristic Al

gorithms for Scheduling Tasks with Time and Resource Constraints," J.

Systems and Software, vol. 7, 1987, 195-205.

[54] W. Zhao, K. Ramamritham, and J. A. Stankovic, "Scheduling Tasks

with Resource Requirements in Hard Real-Time Systems," IEEE Trans.

Software Eng., vol. SE-13, no. 5, May 1987, 564-577.

