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. . . all models are approximations. Essentially all models are wrong,
but some are useful. However, the approximate nature of the model

must always be borne in mind. [Box and Draper 1987, p. 424]
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Table 4.3, on V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.5 Hierarchical regression PDi ∼ N(aV[i] + bV[i]
√

Di + cV[i] IDi, σ2) . . . . 58

Table 4.6 Regression estimates for PD = aV + bV
√

Ds + cV
√

Dm + dV IDm . . . 59

Table 4.7 Regression estimates for PD = aV + b
√

Ds + cV
√

Dm + d IDm . . . . . 60

Table 4.8 Least-squares estimates for the regressions of âV and ĉV , from Table 4.7,
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Mdn(dV)—on target speed V. . . . . . . . . . . . . . . . . . . . . . . . 83

Table 5.3 Hierarchical regression

MTi ∼ N(aV[i] + bV[i]
√

Dsi + cV[i]
√

Dmi + dV[i] IDmi, σ2) . . . . . . . . . 84



x

List of figures

Figure 2.1 Two-dimensional task with a bivariate target. The red disc indicates

the cursor; the green rectangle represents a target with width W, and

height H. D is the cursor–target distance, and θ is the target angle. . 9

Figure 2.2 Three-dimensional trivariate target. The red disc indicates the cursor;

the green rectangular cuboid represents a target with width W, height

H, and depth /D. D is the cursor–target distance, α is the z–x azimuth

angle, and θ is the altitude angle. . . . . . . . . . . . . . . . . . . . . . 11

Figure 3.1 Experimental setup of the pilot study. . . . . . . . . . . . . . . . . . . . 20

Figure 3.2 Experimental setup with an array two spheres . . . . . . . . . . . . . . 21

Figure 3.3 Possible row positions—left, center and right—with respect to the user

in the two-sphere block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.4 Decision tree for feature-set 4, suggesting that participants based their

decisions only on sphere size, with a preference for the right sphere.

Leaves represent prediction outcomes (sph1 is the left sphere, and

sph2 is the right sphere), while the other nodes represent tested at-

tributes (r1 or r2). The numbers in parenthesis within the leaves rep-

resent the total number of instances that fall into that leaf, over the

number of incorrectly predicted instances among these instances. . . . 26

Figure 3.5 ∆dot vs. time. Each line corresponds to a trial, colored according to the

selected sphere. The plot has been trimmed to the 5th percentile of the

selection times (2.35 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.6 Generated decision tree for feature-set {∆dot, ∆D}. The numbers in

parenthesis within the leaves represent the total number of instances

that fall into that leaf, over the number of incorrectly predicted instances

among these instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.1 Measurements relevant to the target-selection tasks considered in this

chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.2 Two-dimensional moving-target model . . . . . . . . . . . . . . . . . . 42

Figure 4.3 Screenshot of a moving-target question with φ = 45◦ . . . . . . . . . . 44



xi

Figure 4.4 Static-target task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.5 Moving-target task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.6 Main-effect coefficient plot for the fitted ordered probit model on static-

target PD ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.7 Two-way interaction coefficient plot for the fitted ordered probit model

on static-target PD ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.8 Regression for PD = a + b ID . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.9 Regression for PD = aθ + b ID . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.10 Main-effect coefficient plot for the fitted ordered probit model on

moving-target PD ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.11 Two-way interaction coefficient plot for the fitted ordered probit model

on moving-target PD ratings . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.12 Regression for PD = aV + bV
√

D + cV ID . . . . . . . . . . . . . . . . . 56

Figure 4.13 Regression for PD = aV + b
√

Ds + cV
√

Dm + d IDm . . . . . . . . . . . 61

Figure 5.1 Three-dimensional moving-target model . . . . . . . . . . . . . . . . . 68

Figure 5.2 Identical model parameters V, Dm, and Ds for three different γ rota-

tions of V around D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.3 Experimental setup with six spheres. Left, the sphere starting positions,

middle the spheres approximately at their controlled positions, right

the spheres after the goal sphere gets highlighted. The green sphere

represents sph0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.4 Distributions of the pre- and post-experiment assessment scores of

the ssq by scale. Lower and upper lines of the boxes represent the

first and third quantiles, their distance called the inter-quantile range

(IQR), thick box lines represent the median values, upper and lower

whiskers represent values that are within 1.5 IQR of the box hinges.

Points represent values that are greater than the third quantile plus

1.5 IQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.5 Distribution of participant success rates (left), and successful trial

completion times (right) per experimental block . . . . . . . . . . . . . 76

Figure 5.6 Distributions of movement times for the successful trials per experi-

mental factor in the 1-sphere block . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.7 Movement times per γ angle for the successful trials in the 1-sphere

block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.8 Front and right views of the distribution of wand positions at the frame

where the sphere was highlighted in the 1-sphere trials . . . . . . . . . 80



xii

Figure 5.9 Movement times for each of the distances between the target sphere

and the wand at the highlight frame ||Pw − P||, for the successful trials

in the 1-sphere block. The top bars show the distribution of ||Pw − P||
binned every 0.025 m. The orange lines represent the distance between

the target sphere and Pw,0 ± 0.05 m. . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.10 Residuals (MT − M̂T) vs. fitted values (M̂T) for the MT ∼ N(aV +

bV
√

Ds + cV
√

Dm + dV IDm, σ2) regression. The dotted lines repre-

sent ±σ̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.11 Front and right views of the distribution of wand positions at the frame

where the goal sphere was highlighted in the 3-sphere trials . . . . . . 85

Figure 5.12 Three-sphere accuracy comparison for the T̂Score, and dScore predictors

for trial percentages 0.1 T, 0.2 T, · · · , 0.9 T, T, using different N, and

decay parameters. The dotted lines represent the accuracy given by

chance, i.e. 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.13 Front and right views of the distribution of wand positions at the frame

where the goal sphere was highlighted in the 6-sphere trials . . . . . . 88

Figure 5.14 Three-sphere accuracy comparison for the T̂Score, and dScore predictors

for trial percentages 0.1 T, 0.2 T, · · · , 0.9 T, T, using different N, and

decay parameters. The dotted lines represent the accuracy given by

chance, i.e. 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



xiii

Acknowledgments

I wish to express my gratitude to my advisers, James Oliver, Frédéric Mérienne, and Samir Gar-

baya, for their trust and guidance throughout this joint PhD program. I am especially thankful

to Dr. Oliver who met with me well-nigh every week during these years, and was always

supportive and enthusiastic about my research, writing, and personal accomplishments.

I am also grateful to my international committee for having shared their expertise in their

domains throughout my doctoral studies. In particular, I want to thank Michael Dorneich who

mentored me in academic life in general, and Jonathan Kelly who also actively collaborated

with me and mentored me in research. I also want to thank Vincent Hugel and Samir Otmane

for reviewing this dissertation.

A venture like this one would not have been possible without all my family, friends,

colleagues, and personnel in France, the USA, and Colombia. Thanks to you, these five years

have been an incredibly enriching experience. I am afraid that no proper acknowledgment

can be given in such a short space.

I must also acknowledge the profound role that my parents have played in this achievement,

by preparing me, perhaps unknowingly, for this accomplishment. I also want to thank my

sister, Laura, future real doctor, for her love, and her active and tacit encouragement.

Last, but never least, I am obliged to my wife, Catherine, who blissfully followed me in

this endeavor, and gave me the most significant result of these years—Gaël and Inés.



xiv

Abstract

Selection of moving targets is a common task in human–computer interaction (hci), and more

specifically in virtual reality (vr). In spite of the increased number of applications involving

moving–target selection, hci and vr studies have largely focused on static-target selection.

Compared to its static-target counterpart, however, moving-target selection poses special

challenges, including the need to continuously and simultaneously track the target and plan

to reach for it, which may be difficult depending on the user’s reactiveness and the target’s

movement. Action prediction has proven to be the most comprehensive enhancement to

address moving-target selection challenges. Current predictive techniques, however, heavily

rely on continuous tracking of user actions, without considering the possibility that target-

reaching actions may have a dominant pre-programmed component—this theory is known as

the pre-programmed control theory.

Thus, based on the pre-programmed control theory, this research explores the possibility of

predicting moving-target selection prior to action execution. Specifically, three levels of action

prediction are investigated: action performance, prospective action difficulty, and intention.

The proposed performance models predict the movement time (MT) required to reach for a

moving target in 2-d and 3-d space, and are useful to compare users and interfaces objectively.

The prospective difficulty (PD) models predict the subjective effort required to reach for a

moving target, without actually executing the action, and can therefore be measured when

performance can not. Finally, the intention models predict the target that the user plans to

select, and can therefore be used to facilitate the selection of the intended target.

Intention prediction models are developed using decision trees and scoring functions,

and evaluated in two vr studies: the first investigates undirected selection (i.e., tasks in

which the users are free to select an object among multiple others), and the second directed

selection (i.e., the more common experimental task in which users are instructed to select

a specific object). PD models for 1-d, and 2-d moving-target selection tasks are developed

based on Fitts’ Law, and evaluated in an online experiment. Finally, MT models with the

same structural form of the aforementioned PD models are evaluated in a 3-d moving-target

selection experiment deployed in vr. Aside from intention predictions on directed selection,

all of the explored models yield relatively high accuracies—up to ∼ 78% predicting intended

targets in undirected tasks, R̂2 = .97 predicting PD, and R̂2 = .93 predicting MT.
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Chapter 1

Introduction

1.1 Moving-target selection

Selection of moving targets is a common task in human–computer interaction (hci) and more

specifically in virtual reality (vr). Targets may move independently from user input, as in

interactive, or “clickable,” video [Ilich 2009; Hasan et al. 2011; Silva et al. 2012], and air traffic

control displays [Mould and Gutwin 2004; Hasan et al. 2011]. Targets may also move relative

to the user, a case in point being navigation in vr [Mould and Gutwin 2004] and augmented

reality (ar) [You et al. 2012]. In some applications, including video games [Mould and Gutwin

2004; Pavlovych and Gutwin 2012] and interactive 3-d simulations [Mould and Gutwin 2004;

Hasan et al. 2011], both kinds of movements are present.

In spite of the increased number of applications involving moving-target selection, hci and

vr studies have largely focused on static-target selection. In the taxonomy for vr manipulation

tasks presented by Poupyrev et al. [1997], selection parameters such as target size and distance

are given some level of detail, including measurement variables, whereas target movement

is classified under “other parameters,” without any further description. In the more recent

taxonomies of 3-d interaction techniques by Bowman et al. [2004], and 3-d selection techniques

by Argelaguet and Andujar [2013], target motion is not included as a parameter for target

selection. This example is, perhaps, reflective of the numerous hci studies on static-target

selection based on Fitts’ Law [Fitts 1954], whose inputs are target size and distance only.

1.1.1 Moving-target selection challenges

Moving-target selection poses special challenges compared to its static-target counterpart.

Unlike static-target selection, which can be executed without ongoing visual control under

certain conditions [Hoffmann and Chan 2012], the nature of moving-target selection requires

the user to continuously and simultaneously track targets and plan to reach for them [Hasan

et al. 2011], which may be difficult considering the inherent speed and precision limitations of

the human sensory-motor system [Shadmehr et al. 2010]. In some applications targets may

move along unpredictable paths [Ilich 2009; Hasan et al. 2011; Pavlovych and Gutwin 2012;
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You et al. 2012; Ortega 2013], with changing speeds [Pavlovych and Gutwin 2012; You et al.

2012], making the task more challenging. Additionally, certain combinations of target and

viewport motions may cause targets to fall out of the user’s field of view, become occluded, or

change in visible size, this problem is illustrated in interactive sport-videos in which players

can be selected while moving [Ilich 2009]. Even in cases in which target visibility, size, and

velocity are constant, there is a critical speed beyond which selecting the target becomes

impossible [Hoffmann 1991].

Finally, common hci challenges are exacerbated in vr moving-target selection. End-to-end

latency (the delay between user input and system output), for example, is often revealed

to users when tracking a moving target [Reddy 1994]. More importantly, the presence of

latency sharply affects moving-target reaching accuracy and, to a lesser degree, moving-target

tracking [Pavlovych and Gutwin 2012]. Similarly, vr induced symptoms such as sensory

conflict, simulator sickness, confusion, and frustration [Cobb et al. 1999] are likely worsened

in moving-target selection.

1.1.2 Moving-target selection enhancements

Ilich [2009] identifies two major categories for moving-target selection enhancement: pointer

enhancement, and target enhancement. Ilich also suggests the general “task simplification”

category, but the strategies classified in this category are not described since they can also be

considered as pointer and target enhancements.

According to Ilich, pointer enhancement is possible through an increase in the speed or

area of the pointer, as well as an added affinity to certain targets. The sole increase in pointer

size extends the time window for selection when targets are to be intercepted [Tresilian 2005],

and may reduce the effective target distance on target-chase tasks [Ilich 2009], but it may also

affect target visibility and acquisition accuracy, especially when targets are small—this issue is

known in touch screens as the “fat finger” problem [Holz and Baudisch 2010]. The increase in

pointer speed in the form of velocity control has been shown to increase the selection accuracy

in tasks with a single moving-target [Jagacinski et al. 1980], but such control techniques,

also available in static-target selection, are known to suffer from a decrease in positioning

precision as the reaching distance increases [Bowman et al. 2004, p. 162]. The last type of

pointer enhancement, pointer–target affinity techniques, has been shown to be successful in

increasing selection accuracy in tasks with multiple targets by linking the pointer to targets

whose angular distances [de Haan et al. 2005] and euclidean distances [Ortega 2013] to the

pointer decrease more rapidly, these techniques are described in depth in Section 2.3.1.

Concerning target enhancement, Ilich describes three possible techniques: target expansion,

target repositioning, and target speed decrease. Target expansion strategies, such as the

Comet [Gunn et al. 2009; Hasan et al. 2011], and AttachedShock [You et al. 2012, 2014], enhance

pointing by extending the selectable target area to include a movement trail left behind
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each target, but suffer from clutter and overlap when the number of selectable targets is

increased. Target repositioning techniques, such as target Ghost [Hasan et al. 2011], which

creates static proxies for each target upon activation, exhibit the same trade-off between

enhanced performance but increased clutter and overlap. The last target enhancement, speed

decrease, has been successfully implemented in techniques that completely stop targets [Ilich

2009; Al Hajri et al. 2011], thus reducing the task to static selection. In spite of their benefits,

these target enhancements may be undesirable in certain applications, especially those that

strive for realism.

Apart from pointer–target affinity techniques, the enhancements proposed by Ilich provide

only partial solutions to the challenges in moving-target selection, while aggravating other

existing challenges, or introducing new ones. The reason pointer–target affinity stands out is

that it provides a way to anticipate the intended target and enhance the pointer only with

respect to that target. Such a principle is not restricted to pointer enhancement, prediction

of targets and motion endpoints has been suggested to address clutter and overlap in target

enhancement techniques for both static [McGuffin and Balakrishnan 2005; Lank et al. 2007;

Wonner et al. 2011] and moving-target [Hasan et al. 2011] selection tasks.

1.1.3 Control strategies in moving-target selection

The pointer–target affinity techniques described above are based on the principle that the

user is constantly following their intended target. According to Tresilian [2005], however, the

motion required to reach a moving-target has a pre-programmed control component that may

be dominant over on-line control, especially when the motion must be executed rapidly. In

other words, such a motion is minimally influenced by external sensory information once the

motor commands are issued.

Thus, based on the pre-programmed control theory, this research explores the possi-
bility of predicting moving-target selection prior to action execution. More specifically,

three levels of action prediction are investigated: action performance, prospective action
difficulty, and intention. These levels of prediction are subsequently described with respect

to existing action models, including the seven stages of action [Norman 1986, 2002], and the

aforementioned pre-programmed control theory.

Among these predictions, performance is assessed during action execution, the lowest

cognitive stage of action. It refers to quantitative measures of task execution, which can be

used to evaluate users, interfaces, and interaction techniques objectively. In particular, in

accordance with the main hci body of static-target selection studies, the focus is on predicting

the movement time (MT) required to reach the target. For static-target selection, MT has

been shown to be positively and linearly related to the index of difficulty, ID = log2(2D/W),

where D and W are the target’s size and distance, this relation is known as Fitts’ law [Fitts

1954]. Unfortunately, as shown in Chapter 2, the existing formulae for MT in moving target
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selection are limited to 1-d (i.e., target velocity directly toward or away from the cursor) and

lack a simple expression of difficulty similar to the aforementioned ID. One of the aims of

this research is to extend the MT–ID paradigm to 2-d, and 3-d moving-target selection.

Prospective difficulty (PD), refers to subjective assessments of difficulty evaluated prior to

action execution, which typically occurs during the higher level stage of action specification.

Since prospective judgments do not require action execution, they may be measured even

when performance can not, due to factors such as task feasibility, low occurrence, or even

practicality. Unfortunately, direct assessment of PD requires either task interruption, or the

usage of sensors such as eeg [Kourtis et al. 2012], which may be invasive and are generally

not available in all vr setups. Nonetheless, since PD is assessed during action preparation, its

value is probably related to the task parameters that also affect performance. In particular,

it has been shown that PD, and ID are related for 1-d static-target selection tasks [Slifkin

and Grilli 2006; Grilli 2011], but so far this relation has not been explored in moving-target

selection. Given the usefulness of PD, this research also aims to extend the PD–ID paradigm

to moving-target selection.

Finally, intention, a general action that a user plans to execute to achieve a goal, precedes

action specification and is therefore at the highest cognitive level among these three measure-

ments. In this work, the scope of such intentions is limited to the target the user plans to

select.1 Similar to PD, direct assessment of intention requires task interruptions, or inference

via proxy measures that relate user actions to targets (user-target states), such as gaze. Based

on the principle of pre-programmed action, however, it is hypothesized that users form their

intentions by minimizing their prospective effort.

Minimizing prospective effort to form intentions can be observed in undirected selection

tasks, i.e., tasks in which users are free to choose an object among multiple others, as opposed

to the more (experimentally) common directed tasks, in which users are instructed to select a

specific target. In static-target selection, given the correlation between PD and ID, minimizing

prospective effort is hypothetically equivalent to minimizing ID.

Therefore, in terms of intention, this research aims to a) test the hypothesis that users form

their intentions by minimizing their prospective effort, and b) evaluate the predictive accuracy

of different user-target states as proxies for intention.

1This scope contrasts with some of the previous work in which intention refers to the usage given to a target
following selection [Mandryk and Lough 2011; Song et al. 2013; Ruiz and Lank 2014].
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1.2 Research Layout

The remainder of this dissertation is structured as follows,

1. Chapter 2 presents the relevant literature related to static-target and moving-target

selection, prospective difficulty, and the usage of user-target states as prediction inputs.

2. Chapter 3 presents the results of the first user study. This study evaluates the hypothesis

that users form their intentions by minimizing their prospective effort as described by

ID, in undirected moving-target selection tasks in vr. Since ID is a task-specific feature,

limited in usefulness to undirected tasks, it was complemented with generalizable

user-target features that can also be used in directed tasks.

3. Chapter 4 develops PD models for 2-d static-target and moving-target selection. These

models are validated with the results of an online user study.

4. Chapter 5 extends the PD models developed in Chapter 4 to 3-d, and evaluates their

usefulness as predictors of MT, and intention.

5. Chapter 6 presents the contributions, future work and conclusions of the dissertation.
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Chapter 2

Literature review

2.1 Selection performance

Target-selection performance in hci is usually studied using information-theoretic models,

including Fitts’ Law [Fitts 1954] and, to a lesser degree, the Hick-Hyman Law [Hick 1952;

Hyman 1953]. Card, English, and Burr [1978] were the first to use Fitts’ Law in hci to compare

the movement times (MT) of different input devices, and Card, Moran, and Newell [1983]

presented both laws as part of the operating principles of the Model Human Processor.

2.1.1 The Hick-Hyman Law

The Hick-Hyman Law relates the reaction time (RT) required to make a choice to the number

(n) and probability (p) of each of the possible choices such that,

RT = a + b
n

∑
i

pi log2

(
1
pi

+ 1
)

(2.1)

where a and b are empirically determined coefficients. If all choices have equal probability

(p = 1/n), Equation (2.1) is reduced to

RT = a + b log2 (n + 1) (2.2)

Notice that the RT describes only the time to make the choice, and not the MT required to

execute the selection.

2.1.2 Fitts’ Law

Fitts’ Law relates the mean movement time (MT) required to reach a target to the target’s

index of difficulty (ID), such that

MT = a + b ID, (2.3)



7

where a and b are empirically determined coefficients. ID gives an objective measure of

the difficulty involved in pointing at a target as a function of the ratio between the target’s

distance (D),1 and its size (W). The two most common ID formulations are Fitts’ original

formulation [1954]

IDF = log2

(
2D
W

)
, (2.4)

and the so-called Shannon formulation, suggested by MacKenzie [1989],

IDSh = log2

(
D
W

+ 1
)

(2.5)

Fitts’ Law has been extensively used in hci, psychology, and related fields to model

human performance (for compendia see MacKenzie [1992], and Guiard and Beaudouin-Lafon

[2004]), but there is an ongoing debate concerning the correctness and usefulness of these

two ID formulations [Drewes 2010; Hoffmann 2013; MacKenzie 2013]. Regardless of these

issues, as noted by Drewes [2010], the use of both formulae should lead to similar results

and, as noted in a personal communication with Hoffmann [2014], the differences may be

of statistical but not practical significance. In any case, it is important to consider that both

models represent an approximation of a more complex reality [Drewes 2010]. Citing a popular

phrase of the late statistician George Box, “essentially all models are wrong, but some are

useful” [Box and Draper 1987, p. 424].

2.1.2.1 Two-part formulations of Fitts’ Law and gain

Welford et al. [1969] suggested that pointing could be separated in two control processes:

a motor, or distance-covering process, and a visual, or homing-in process. To account for these

two processes, Welford and colleagues proposed the following variation of Fitts’ Law:

MT = a + b log2(D)− c log2(W). (2.6)

Inspired by Kopper et al. [2010], Shoemaker et al. [2012] reformulate Welford’s model

by introducing the ratio k = c/b, which encapsulates the relative impact of the two-parts of

Welford’s formula, yielding a model similar in form to Equation (2.3), such that

MT = a + b log2

(
D

Wk

)
. (2.7)

In their analyses, Shoemaker et al. [2012] found that two-part formulations described MT
better than one-part models when pointing at targets with different levels of control–display

gain (G, the ratio of the cursor speed to the input speed). Additionally, based on different

1Traditionally researchers refer to this quantity as amplitude (A), referring to the movement amplitude required
to reach for the target, in this work, the term distance (D) is preferred, particularly because in moving-target
selection D, but not A, is known beforehand.
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regression estimates, they also observed that k increased linearly with G. Shoemaker and

colleagues also noted that c “increases quite consistently with gain,” while b “stays relatively

constant,” but, contrary to the k–G relation, no comment on the possible form of the b–G
and c–G relations, or on the evident increase of a with G, was given.

Even though the understanding of the k–G relation may be important to characterize the

relative impact of each part of Welford’s model per G level, and gauge how far is the interaction

from being modeled by Fitts’ original formulation (which is essentially Equation (2.7) with

k = 1), understanding the a–G, b–G, and c–G relations allow comparing MT between G levels,

as well as generalizing the results to other experimental conditions. Regression analyses for

a–G, b–G, and c–G could generalize such contributions for arbitrary levels of G.

Alternative two-part formulation. Hoffmann and Chan [2012] reformulate Welford’s two-

part model (Equation (2.6)) to separate the effect of movement amplitude from that of ID,

as

MT = a′ + b′ log2(D) + c ID, (2.8)

where a′ = a− c, and b′ = b− c.

However, Hoffmann and Chan [2012] mention that the problem with Equations (2.6), and

(2.8), is that taking logarithms of either D or W is invalid as these quantities are not unitless.

Shoemaker et al. [2012] mention that Welford was aware of this problem and formulated

normalizing constants D0 and W0, but these are not explicit. To avoid this problem, and based

on the near-linear relation between log2(D) and
√

D for wide ranges of D values, Hoffmann

and Chan [2012] reformulate Equation (2.8), by replacing the log2(D) term, by
√

D, such that

MT = a′′ + b′′
√

D + c ID,

where the approximate values of a′′, and b′′ are given by the regression estimates of log2(D)

on
√

D for the range of D in the experiment, such that

a′′ ≈ a′ + b′ β1

b′′ ≈ b′ β2

log2(D) ∼ N(β1 + β2
√

D, σ2). (2.9)

These approximations allow prediction of the change in coefficients for regressions of the

two-part Welford model [Hoffmann and Chan 2012]. The square-root of the distance had

been previously shown to be linearly related to MT on purely ballistic movements [Gan and

Hoffmann 1988], therefore, under this model, the distance covering phase is assumed to be

mostly ballistic, whereas the homing-in phase is assumed to follow to Fitts’ ID [Hoffmann

and Chan 2012].
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2.1.2.2 Fitts’ Law formulations for 2-d static-target pointing tasks

Fitts’ Law is inherently 1-d, but in practice it is used on 2-d tasks, effectively ignoring the

effects of both target angle (θ), and target shape on movement time. A 2-d target selection

with a bivariate target (i.e., with different width W, and height H) is shown in Figure 2.1.

HW

D

θ

Figure 2.1. Two-dimensional task with a bivariate target. The red disc indicates the cursor;
the green rectangle represents a target with width W, and height H. D is the
cursor–target distance, and θ is the target angle.

Nonetheless, several works have studied the effect of θ on MT, including the early work

of Card et al. [1978] and Jagacinski and Monk [1985], the later work of Boritz et al. [1991],

MacKenzie and Buxton [1992], and Whisenand and Emurian [1995; 1996; 1999], as well as the

more recent work of Appert et al. [2008], Grossman and Balakrishnan [2004; 2005], Hancock

and Booth [2004], Murata and Iwase [2001], Phillips and Triggs [2001], and Zhang et al. [2012].

Overall, it appears that MT is longer for diagonal targets, than for horizontal and vertical

ones (the most notable exceptions are the results of Murata and Iwase [2001], Whisenand and

Emurian [1999], and Zhang et al. [2012], who found that vertical targets were slower than

diagonal targets).

To the author’s knowledge, the only modification of Fitts’ ID that exclusively models the

effect of θ, is that of Murata and Iwase [2001], which they derive empirically,

ID3 = log2

(
D
W

+ 1
)
+ c sin θ, (2.10)

where c is an empirically determined constant. A desirable characteristic of this model, is that

it separates the effect of θ from the log2 term.

In addition to θ, researchers have also studied targets of multiple dimensions and shapes.

In these studies, the first category of extensions to Fitts’ ID, which includes the IDmin model by

MacKenzie and Buxton [1992] and Hoffmann and Sheikh [1994], and the one-weight euclidean

model by Accot and Zhai [2003], accounts for bivariate targets, but not explicitly for θ. A

similar yet more general category, which includes the models by Sheikh and Hoffmann [1994],

Murata [1999], and Grossman and Balakrishnan [2005], allows modeling for arbitrary target

shapes through the use of probabilistic models, but not explicitly for θ. A third category,
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which includes the IDW ′ model by MacKenzie and Buxton [1992], and the IDθ model by Zhang

et al. [2012] accounts for both bivariate targets and θ, but cannot account for θ when targets

are univariate (e.g., circles). Finally, the most relevant category for the current research allows

modeling for θ and multiple target dimensions separately; two models in this category are

presented below.

The model by Appert et al. [2008] introduces an overall angle effect as a cosine that is

added within the log term of the ID,

IDθ = log2

(
D
W

+
D
H

+ 0.6 cos(θ)
D

min(W, H)
+ 1
)

, (2.11)

where H is the target’s height.

The weighted-euclidean ID formulation suggested by Grossman and Balakrishnan [2004] is

an extension to the one-weight euclidean model of Accot and Zhai [2003] that allows modeling

the angle effect separately for each of the target’s dimensions (formulated and tested in 3-d,

but reduced here to 2-d),

IDWtEucθ = log2



√

fW(θ)

(
D
W

)2

+ fH(θ)

(
D
H

)2

+ 1


 , (2.12)

where fW(θ) and fH(θ) are empirically determined weights per angle.

Equations (2.10)–(2.12) represent the contributions of θ in three distinct ways. Since the

formulae are derived empirically, or by analogy, this raises the question of the true form of the

contribution of θ, which is probably why Grossman and Balakrishnan [2004] simply suggest

to derive f (θ) empirically.

In terms of ease of use, Equations (2.10) and (2.11) are the simplest to solve, as a ubiquitous

linear least-squares method may suffice, whereas Equation (2.12) requires a more specialized

method, such as non-linear least-squares. In the case of the latter model, the fit in terms of R2

may be artificially higher than the former due to the additional 2× #(θ) terms represented

in fW(θ), and fH(θ). More importantly, the usage of R2 may be inadequate to evaluate the

goodness-of-fit of non-linear models [Spiess and Neumeyer 2010]. These last two points are

important in the status quo of the Fitts literature, where model fit is customarily assessed

using R2.

Aside from the arbitrary shape models [Sheikh and Hoffmann 1994; Murata 1999; Gross-

man and Balakrishnan 2005], an important limitation of the aforementioned models is that

they do not account for different target orientations.

2.1.2.3 Fitts’ Law formulations for 3-d static-target pointing tasks

To the authors knowledge, the only work to formulate ID models specific for 3-d is that

of Grossman and Balakrishnan [2004]. These models, which are simple extensions to the 2-d
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models from the previous section, fail to account for all of the spatial parameters of a 3-d task,

shown in Figure 2.2.

x

y

z

D

α

θ

W

/D
H

Figure 2.2. Three-dimensional trivariate target. The red disc indicates the cursor; the green
rectangular cuboid represents a target with width W, height H, and depth /D. D is
the cursor–target distance, α is the z–x azimuth angle, and θ is the altitude angle.

For instance, the weighted-euclidean ID formulation was presented in Equation (2.12) as a

2-d formula, but in fact it was studied with trivariate targets placed in a horizontal 2-d plane.

Its complete form is

IDWtEucα = log2



√

fW(α)

(
D
W

)2

+ fH(α)

(
D
H

)2

+ f /D(α)

(
D
/D

)2

+ 1


 , (2.13)

where /D is the target’s depth, and α is the z–x azimuth angle. Notice that this formulation

does not account for the full angular position (α, θ) of the target, nor does it account for

different target orientations.

2.1.2.4 Fitts’ Law formulations for 1-d moving-target pointing tasks

In comparison to static target selection, the research on Fitts’ Law for 1-d and 2-d moving-

target selection is very scarce. After the early studies of Jagacinski et al. [1980] on the

applicability of Fitts’ Law for moving-targets in 1-d, only two studies have evaluated and

extended Fitts’ ID in moving-target selection tasks [Hoffmann 1991; Al Hajri et al. 2011].

Jagacinski et al. [1980] found that Fitts ID was a poor predictor of MT for moving targets

with position control. Instead, they suggested an alternative formulation with analogous

characteristics to two-part formulations, such as predicting longer MT for larger D and

smaller W, but also taking in account the interaction between W and speed (V). Their

proposed formulation is



12

MT = a + b D + c (V + 1)
(

1
W
− 1
)

, (2.14)

where the V + 1 term represents the W ×V interaction, minimized for the widest target in

their experimental design (W = 0.92◦) by subtracting 1 from 1/W (since 1/0.92 ≈ 1). In

Jagacinski’s data, this model yielded a good fit in terms of R2 = 0.96.

As discussed by Jagacinski and colleagues, the “−1” term can be considered as a fourth

parameter, e.g., q, thus a possible reformulation of Equation (2.14) is

MT = a + b D + c (V + 1)
1

W
− d (V + 1), (2.15)

where d = c q. With this fourth parameter, the formulation becomes more general, and

extensible to other experimental designs. Compared to the other formulations presented in

this work, this one stands out for not including any logarithmic, or square-root terms.

In the Jagacinski study, trials were considered successful only after the cursor remained

within the target for at least 350 ms. This capture time duration (Tc) was probably appropriate

for Jagacinski’s input device (a joystick), but may be different for other input methods, such as

a mouse click, which takes about 200 ms for the average user according to the Keystroke-Level

Model (klm) [Card et al. 1980], or pointing on a touch screen, which theoretically entails a 0 ms

capture time. To take the Tc in consideration, Jagacinski et al. [1980] propose an alternative

model,

MT = a + b log2

(
2D
W

)
+ c log2

(
V

W/Tc
+ 1
)

. (2.16)

Notice that this model simply reduces to Fitts’ Law when V = 0, or Tc = 0 (e.g., in a

touch screen). Unfortunately, the fit of this model on their data was low in terms of R2 = 0.71,

compared to the de facto standard in the Fitts literature, where R2 > 0.81 [MacKenzie 1992,

p. 101]. A third model was also proposed by Jagacinski and colleagues, but it contained the

MT term on both sides of the equation and it did not, reportedly, result in a better fit in terms

of R2; therefore, it will not be taken in consideration.

Using a first-order control system, Hoffmann [1991] formally derived an ID for moving-

target selection closer in form to Fitts original ID,

IDH = log2

(
D± V

K
W
2 − V

K

)
, (2.17)

where K, described as the person’s gain, is determined empirically, and the ± on the numerator

is determined by the direction of V relative to the starting position: “+” for approaching

targets, and “−” for distancing targets.2 Similarly to Welford et al. [1969], Hoffmann also

suggested a two-part formulation for his own model,

2Distancing targets are those moving away from the cursor.
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MT = a + b log2

(
D± V

K

)
+ c log2

(
W
2
− V

K

)
. (2.18)

Reusing the experimental data from Jagacinski et al. [1980], Hoffmann [1991] validated

these two models empirically, yielding fits with R2 values of 0.84 for Equation (2.17), and

0.94 for Equation (2.18). Interestingly, neither model, although theoretically sound, was able to

surpass Jagacinski’s empirical model (Equation (2.14)). The R2 fit of the models in Equations

(2.14) and (2.18) are practically equivalent, but the latter includes an additional term (K) that

also contributes to the coefficient of multiple determination.

Aside from the goodness-of-fit issues, Hoffmann’s moving-target models require special

considerations regarding the calculation and interpretation of the K term that are not explicitly

addressed in the literature. According to Hoffmann [1991], the coefficient K serves to determine

the critical speed (Vcrit) beyond which target capture is not possible,

Vcrit =
WK

2
.

Hoffmann [1991] calculated K in two distinct ways: using regression, and observing the

(V, W) condition in which capture occurred less than ρ = 50% of the time. The regression

approach requires a specialized technique such as non-linear least-squares (which involves the

additional issues explained at the end of Section 2.1.2.2) and yields values of K whose domain

is dependent on the experimental design.3 The alternative approach results in values of K that

are dependent on the percentage of successful captures (ρ) per (D, W, V) condition, thus, its

precision depends on the span and resolution on the conditions in the experimental design, as

well as the device-specific time of capture. Using either method, once K is calculated, the set

of experimental conditions (D, W, V) that can be mathematically modeled by Equations (2.17)

and (2.18) is restricted to

{
(D, W, V)

∣∣∣∣
V

W/2
< K

}
, (2.19)

for approaching targets, and

{
(D, W, V)

∣∣∣∣
V

W/2
< K ⇐⇒ V

D
< K

}
, (2.20)

for distancing targets.

2.1.2.5 Fitts’ Law formulations for 2-d moving-target pointing tasks

Al Hajri et al. [2011] also derived the IDH formulation (Equation (2.17)) by applying the

human processor model [Card et al. 1980] to describe moving-target selection. Subsequently,

they suggested three extensions for IDH by combining it with the IDW ′ and IDmin formulations

3For approaching targets, K > max(V)
min(W/2) ; for distancing targets,

(
max(V)

min(W/2,D)
< K

)
⊕
(

min(V)
max(W/2,D)

> K
)

. Other-

wise, Equations (2.17) and (2.18) are not defined for all (D, W, V) conditions.
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by MacKenzie and Buxton [1992], and the IDWtEucθ model (Equation (2.12)) by Grossman and

Balakrishnan [2004], respectively. As discussed in Section 2.1.2.2, IDWtEucθ is the most relevant

among these three models, therefore only the extension IDHWtEucθ is considered,

IDHWtEucθ = log2




√√√√ fW(θ)

(
D± Vx

K
W
2 − Vx

K

)2

+ fH(θ)

(
D± Vy

K
H
2 −

Vy
K

)2

+ 1


 , (2.21)

where Vx and Vy are the magnitudes of the x and y components of the velocity, respectively.

Even though Equation (2.21) can model pointing at bivariate targets moving in 2-d, the

studies of Al Hajri et al. [2011] only included conditions in which targets were moving directly

towards or directly away from the cursor, even if the initial target angle θ ∈ [0, 360)◦.

2.2 Subjective difficulty

In addition to describing MT, ID has also been shown to be correlated to subjective diffi-

culty [Delignières and Famose 1992; Slifkin and Grilli 2006; Grilli 2011; Chan and Hoffmann

2013]. There are two major types of subjective difficulty measurements in the literature:

1. Prospective, or estimated difficulty refers to ratings of subjective difficulty assessed without

executing a task, e.g., in the works of Delignières [1990], Slifkin and Grilli [2006], and

Grilli [2011]

2. Perceived difficulty refers to ratings of subjective difficulty assessed after executing a task,

e.g., in the works of Delignières and Famose [1992], Shoemaker et al. [2012], and Chan

and Hoffmann [2013].

There is some evidence that both measurements are correlated with each other [Delignières

1990; Grilli 2011], and with MT [Chan and Hoffmann 2013; Delignières 1993; Grilli 2011].

2.2.1 The importance of the rating method

The works of Delignières, described in his dissertation [1993], show that the best type of fit

relating subjective difficulty to ID is heavily influenced by the rating method. In his studies,

the best fit between ID and subjective difficulty was linear when the latter was measured

using a 15-point scale; when using a ratio-rating technique, the best fit was exponential.

2.2.2 Subjective difficulty in moving-target selection

To the author’s knowledge, there is no study directly relating subjective difficulty and ID for

moving-target selection. The closest work, is that of Famose et al. [1991], in which perceived

difficulty ratings in a 15-point scale were shown to be negatively and linearly related to the

scores in a dart throwing task on a moving-target.
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2.3 Prediction of intention

Predicting intended targets has been proposed as a solution to clutter and overlap in static-

target selection techniques. Current static-target prediction techniques are based on the

trajectory and velocity profiles of the pointer [Lank et al. 2007; Noy 2001; Wonner et al.

2011; McGuffin and Balakrishnan 2005]. The peak accuracy rates for prediction using these

techniques require a wide window of user input—at least 80% of the pointing movement—

but some of them are intended to predict endpoints [Lank et al. 2007; Wonner et al. 2011],

rather than intended targets [Noy 2001; McGuffin and Balakrishnan 2005]. These techniques,

however, are not adapted for moving-target prediction, in particular due to the apparent

dependency of the users’ velocity profiles on the targets’ movement [Carnahan and McFadyen

1996], and the fact that the peak hand velocity is attained upon target selection [Tresilian

2005].

2.3.1 Scoring functions

In the context of moving-target selection, the studies from de Haan et al. [2005] and Ortega

[2013] demonstrated the feasibility of predicting intended targets in complex vr scenes using

scoring functions. Overall, the stages of their algorithms can be described as follows,

1. Target filtering: A subset of the targets is chosen based on a given criterion.

2. Target scoring: Scores for targets that meet the criterion are incremented, and scores of

targets that do not are decremented.

3. Target highlighting: The target with the highest score gets highlighted.

4. Target selection: The user completes the selection on the highlighted target by executing

a button action, or continues moving the cursor until the intended target is highlighted.

In IntenSelect, the de Haan model [2005], the filtering criterion is given by an infinite cone

with aperture βcone, apex located at the wand position, and orientation corresponding to wand

vector W. At each frame t, the wand–target angular distance αi is calculated for each of

the I targets. Targets whose αi < βcone, i.e., those inside the cone, get their scores increased,

whereas the rest get their scores decreased. The score for each target i is calculated following

angScorei(t) = angScorei(t− 1) · decay +




(1− α′i/βcone) · growth if αi ≤ βcone

0 if αi > βcone

α′i = arctan

(
Di,perp

Dk
i,proj

)
, (2.22)
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where Di,perp, and Di,proj, correspond to the perpendicular and projected distances between

the wand vector W, and target i. Notice that α′i = αi when k = 1; in the de Haan experiments,

however, k was heuristically selected as 4/5, since k = 1 led to distant targets being easier

to reach than nearby ones. Further note that when decay = 0, and growth = 1, no score

accumulation occurs, resulting in the flashlight, or conical selection technique [Bowman

et al. 2004, 153–154]; de Haan et al. [2005] describe balancing these parameters to obtain “a

comfortable response,” but do not report the actual values.

In Hook, the Ortega model [2013], the filtering criterion is given by the wand–target distance

Di. At each frame t, the wand–target distance Di is calculated for each of the I targets. Targets

are then ordered ascendingly by D, their order given by ji = 0, · · · , I − 1. The score for each

target i is calculated following

dScorei(t) = dScorei(t− 1) +




(N − ji)∆t if ji < N

−(decay · N)∆t if ji ≥ N

dScorei(t) ≥ 0, (2.23)

where N is an arbitrary number of closest targets, and decay is the rate with which scores

decrease when a target ji ≥ N. In Ortega’s studies with I = 100 targets, dScorei(t) was used

with N = 20, and decay = 0.5.

A disadvantage of de Haan’s scoring function (2.22), compared to Ortega’s scoring function,

Equation (2.23), is that the former does not account for variable frame-rates. Scores are

increased or decreased uniformly between frames regardless of the time difference ∆t between

the frames. This is a major drawback, given that variable framerates are common in vr

applications

These functions are easy to implement and their performance is enhanced as the user

follows each target with the pointer; however, as it happens with some of the tasks in the

present work, users may not always follow the intended target with their pointer. Additionally,

there is no data on the predictive accuracy (i.e., the percentage of correctly predicted targets)

of such functions, or how such accuracy is affected by the target distance—it is possible that

users may have made their decision before starting their pointer movement, so the prediction

could be done in advance.

2.3.2 Gaze

Knowing where a person is looking is considered an indicator of what is at the “top of the

stack” of a cognitive process [Just and Carpenter 1976]. With respect to object manipulation,

research has shown that gaze leads hand motions [Johansson et al. 2001]. Gaze is composed

of head orientation and eye orientation relative to the head [Wilson et al. 2000].
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In the context of target selection, eye gaze has proven to be beneficial in assisting users

during static-target selection tasks, concurrently with more traditional input devices, such

as mice [Zhai et al. 1999; Blanch and Ortega 2009]. Eye-trackers, however, are expensive and

may be technically challenging to integrate in cave-like immersive vr systems [Murray et al.

2007], like the ones considered in the current work. Furthermore, this integration may be

cumbersome due to the complex calibration procedures required or the cabling limitations of

certain eye trackers [Murray et al. 2007]. Some modern solutions address these problems and

allow eye-tracking in vr, but their adoption is still limited and costly. Head tracking, on the

other hand, is readily available in most cave-like systems and has been successfully integrated

in large-display [Nancel et al. 2013], video-conference [Stiefelhagen 2002], mobile [Spindler

et al. 2012], surface [Francone and Nigay 2011], and floor-projected [Pierard et al. 2012]

interactive systems.

In a series of studies based on video recordings, Stiefelhagen and colleagues demonstrated

the potential of using head orientation to detect gaze and pointing. In a meeting scenario,

Stiefelhagen and Zhu [2002] showed that, on average, head orientation represents 68.9% of

the overall gaze direction, and could predict the observed person, among 3 people, with

88.7% accuracy. In a subsequent set of four meeting scenarios, once again with one observer

and 3 possible observed people, the usage of head pose yielded an average accuracy of 72.9%,

which increased to 75.6% when combined with audio information that indicated who was

speaking at each point in time Stiefelhagen [2002]. Finally, Nickel and Stiefelhagen [2003]

found that head orientation was predictive of pointing direction, with a mean error angle

of 22◦, as well as intended target among eight targets, with 75% average accuracy.



18

Chapter 3

Intention in undirected 3-d moving-target selection

Based on the premise that users form their intentions by minimizing their prospective effort,

as described by ID, Chapter 1 introduced the hypothesis that intention can be predicted using

ID in undirected selection tasks.

Unfortunately, as shown in Chapter 2, the existing ID measures formulated specifically for

moving-target selection are not compatible with this PD–ID framework. The Hoffmann [1991]

moving-target model, presented in Equation (2.17), and its 2-d extension by Al Hajri et al.

[2011], presented in Equation (2.21), require the percentage of actual captures, which is

unknown in prospective action, otherwise resulting in potentially harder and unreliable

calculations.

On the other hand, a review of Jagacinski’s studies [1980] reveals that even if Fitts’

ID yielded poor correlations with MT for moving targets, the results were marginally better

among conditions with equal target speeds. Additionally, low speed conditions resulted in

slightly larger MT–ID correlations than high speed conditions. Mindful of these limitations,

this Chapter evaluates the hypothesis that ID may be predictive of user intention in moving-

target selection tasks that have a single, relatively low V. Analogous to the way Jagacinksi’s

model [1980], Equation 2.14, uses D and W separately to predict MT, the predictive accuracy

of ID is compared to that of its separate D and W components.

The potential usefulness of ID and W, however, relies on the assumption that the user is

free to choose their intended target, in other words, it is limited to undirected tasks. Therefore,

these task-specific measures are complemented with generalizable features that can also be

used in directed tasks. Specifically, given their success at predicting user intention in directed

tasks as reported in the related-work chapter, the proposed generalizable features consist of

user–target states.

The contents of this chapter are based on papers published by the author and some of the

committee members. Specifically, the ID, D, and W analysis appeared on Casallas et al. [2013],

and the generalizable feature extensions appeared on Casallas et al. [2014].
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3.1 Hypotheses

The following hypotheses motivated the current study,

3.1.1 Task-specific features for intention prediction in undirected moving-target selec-
tion

H1. ID can accurately predicting intention in undirected moving-target selection tasks.

3.1.2 Generalizable features for intention prediction in undirected moving-target se-
lection

H2. Relative user–target features can accurately predict intention in undirected moving-target

selection tasks.

H3. Combining task-specific, and generalizable features yields better predictive accuracy

than using either separately.

3.2 Pilot study

Prior to the execution of the main experiment, a pilot study was conducted as a class project

for the Machine Learning course (cs 573) at Iowa State University during the Spring of

2012, with classmates Ashwin S. Natarajan, and Keji Hu. The goal of the pilot study was to

determine the best learning algorithm between Naïve Bayes [Mitchell 1997, 177–180], Neural

Networks [Bishop 2006, 225–290], and c4.5 decision trees [Quinlan 1993], as well as the optimal

time to measure the D, and W features to predict the intended target.

Ten unpaid students participated in the experiment, which was deployed in metal, a

3-surface cave-like ve. The experimental setup is depicted in Figure 3.1.

The results favored the usage of the c4.5 algorithm, which was second to Neural Networks

in terms of accuracy but, contrary to the latter, produced easy-to-understand rules. Addi-

tionally, the results supported the usage of the D, and W features measured at the beginning

of each trial over features measured at one-third, and half of the total trial time. Due to

restrictions of the Iowa State University Institutional Review Board (irb) for in-class projects,

the full extent of the results is not published.

3.3 Methods

3.3.1 Participants

Twenty-six unpaid participants, from the city of Chalon-sur-Saône, France aged 23 to 47,

participated in the study. There were eighteen males and eight females; only two participants
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Figure 3.1. Experimental setup of the pilot study.

were left-handed.

3.3.2 Apparatus

The experiment was developed in vr jugglua [Pavlik and Vance 2012], a Lua wrapper

for vr juggler and openscenegraph (osg). The application was deployed in the move, a

4-surface cave-like virtual environment with three walls and a floor. The 3× 3× 2.67 m

environment was projected using passive Infitec stereo [Jorke et al. 2008] at 1160× 1050 pixels

per face. Four infrared art cameras tracked the pose (position, P, and orientation, Q) of the

participant’s head and wand, using reflective markers mounted on Infitec stereo glasses and

an art flystick2, respectively. This allowed the participant to have an adequate 3-d perception

and interact with the virtual world.

A y-up coordinate system was used, with its origin placed at ground level in the middle

of the ve, z decreasing towards the front wall, and x increasing towards the right wall.

3.3.3 Procedure

After filling a short survey, the participant was asked to enter the move, face the front wall,

and stay on a circular landmark (r = 0.25 m) located in the middle of the ve (0, 0, 0), while

completing a series of target selection tasks. In each trial, the participant was presented with
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a horizontal array of virtual spheres of different sizes, starting in front of them and flying

towards them in z. All of the spheres had the same texture, scaled accordingly to the sphere’s

size. The participant was instructed to touch each sphere by extending their arm only to reach

the spheres; as opposed to wait for the spheres with their arm already extended. If a sphere

was touched, or if it got 0.5 m past the participant’s head in z, it disappeared. Each trial ended

when the participant had touched all of the spheres, or when the remaining spheres got past

their head.

Visual and auditory feedback were used to engage with the participant and indicate their

performance. A virtual counter was placed at ground level, 5 m in front of the participant

at (0, 0,−5), which would show the number of missed spheres during each block; the counter

would be reset to zero at the beginning of each block of trials. When the participant hit a

sphere, a spatialized sound, co-localized with the wand position, would be played; when the

spheres got past the participant’s head, a different spatialized sound, co-localized with the

overall centroid of the remaining spheres, would be played. Compared to the pilot study, the

recreated virtual world had enhanced depth cues, such as a grid floor, better lighting, and

textures for both the terrain and the spheres, some of these differences can be identified by

comparing Figures 3.1 and 3.2.

Figure 3.2. Experimental setup with an array two spheres

During each trial, at each application frame, the elapsed time (t), head pose (Ph, Qh), wand

pose (Pw, Qw), sphere positions (Pi) and possible collisions between the wand and the spheres

were recorded in a log file.
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3.3.4 Design

A within-subjects, factorial design was used, with three blocks of trials, each with a different

number of conditions presented in a random order. In every trial, all of the spheres appeared

0.3 m below the participant’s head and 5 m in front of them (Pi,y = Ph,y − 0.3, Pi,z = −5).

The first block each trial had only one sphere, moving at a constant speed of 2.5 m/s

in z. Factors were sphere radius (r1 ∈ {0.1, 0.2}) and sphere position (left: P1,x = 0.5, center:

P1,x = 0, and right: P1,x = 0.5). Each of the six conditions was presented to the participant in a

random order until completing five trials per condition (30 total). The first block was intended

only for training, so that users could become familiar with the environment and the task.

After completing the first block, the number of spheres was increased to two and velocity

was decremented to 1.5 m/s in z. The spheres were positioned 0.5 m apart in x but the pair

could appear offset to the right (P1,x = −0.5, P2,x = 0), or left (P1,x = −0.5, P2,x = 0), or appear

centered (P1,x = −0.25, P2,x = 0.25) with respect to the user (see Figure 3.3). Factors were

sphere radius (ri ∈ {0.1, 0.2}) and row position (left, center and right). Each of the 12 conditions

was presented to the participant in a random order until completing five trials per condition

(60 total).

left center right

x

-z

(0,y,0)

(-0.5,y,-5) (0,y,-5)

x

-z

(0,y,0)

(-0.25,y,-5) (0.25,y,-5)

x

-z

(0,y,0)

(0,y,-5) (0.5,y,-5)

Figure 3.3. Possible row positions—left, center and right—with respect to the user in the two–
sphere block

In the last block, there were 40 trials with three spheres per row moving with the same

velocity. Nevertheless, to simplify the presentation of predictive methods and results, the

scope of the analyses covered in this chapter only include the 2-sphere case. Instead, the

analysis of a more complex task with one, three, and six spheres, and different velocities is

presented in Chapter 5.
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3.3.5 Data integrity

Since the goal was to predict intended targets, and not trial performance, trials in which a

participant did not touch any sphere were discarded.

3.3.6 Predictive methods

Based on the results from the pilot study, all the feature-sets were evaluated using the

j48 classifier, the Weka [Hall et al. 2009] open source implementation of c4.5. The algorithm is

briefly described below.

C4.5 chooses its decision nodes recursively, based on the feature (A) that yields the greatest

information gain (I), such that

I(S, A) = H (S)−H (S|A), (3.1)

where H (S) is the entropy of the training set S, given by

H (S) = −
I

∑
i=1

pi log2 pi, (3.2)

where pi is the proportion of elements in S that belong to class i, which corresponds in this

experiment to the ratio of the number of trials in which sphere sphi was chosen to the number

of trials in the training set, i.e.,

pi =
ni

#(S)
. (3.3)

Finally, H (S|A) is the entropy of the training set (S) split by the values of feature A, its value

corresponds to

H (S|A) = ∑
v∈Values(A)

#(Sv)

#(S)
H (Sv), (3.4)

where Sv corresponds to the subset obtained by splitting S by the value v of feature A. In

addition to using I to choose its decision nodes, the c4.5 algorithm uses additional rules to

simplify the resulting tree and reduce overfitting.1

The advantage of c4.5, as stated in Section 3.2, is that it produces easy to interpret rules

and a relatively high accuracy. In this study’s scope, the decision trees allowed representation

and analysis of the possible participant strategies to solve each task. To further avoid tree

over-fitting to the experimental data, 10-fold cross validation was used on the generated tree

models.
1The sole usage of I for decision-node selection is characteristic of the id3 algorithm [Quinlan 1986], a

predecessor of c4.5.
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Due to the undirected nature of the studied task, participants may exhibit an overall

preference for the left or right sphere. Therefore, the results obtained from c4.5 are compared

to a zero-rule classifier that always predicts the most frequently chosen sphere. Such a

classifier is equivalent to a 1-node decision tree generated from an empty feature-set (∅).

3.3.6.1 Model comparison

Models are compared based on their accuracy (acc), or percentage of correct predictions.

To give a rough sense of the uncertainty around the accuracy (acc) measurements of each

model, the 95% CI of acc is approximated using

acc± z.95

√
acc (1− acc)

numTrials
, (3.5)

where z.95 ≈ 1.96 is the 97.5th percentile of the normal distribution. According to Mitchell

[1997, p. 141], this 95% CI approximation using the normal distribution is adequate when

numTrials ≥ 30, which is the case of this study.

In cases where the confidence interval comparison is not sufficient to elucidate “significant”

model differences, an additional test is warranted to gauge the uncertainty in the difference of

accuracies. Based on Equation (5.13) from [Mitchell 1997, p. 144] the 95% CI for the difference

between the accuracies of two classifiers is given by

(acca − accb)± z.95

√
acca (1− acca)

numTrials
+

accb (1− accb)

numTrials
(3.6)

Note, however, that all feature-sets are tested on the same trials, thus, the confidence

intervals given by Equation (3.6) may be too conservative [Mitchell 1997, p. 144].

3.4 Task-specific feature analysis

Based on the initial wand position (Pw), sphere diameter (W1,W2) and initial sphere position

(P1,P2), different values were calculated, including wand-sphere distances,

D1 = |Pw − P1| , (3.7)

D2 = |Pw − P2| , (3.8)

wand–sphere indices of difficulty using Shannon’s formulation (Equation (2.5)),

ID1 = log2

(
D1

W1
+ 1
)

, (3.9)

ID2 = log2

(
D2

W2
+ 1
)

, (3.10)

inter–sphere distance,
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Dsph = |P2 − P1| , (3.11)

inter–sphere indices of difficulty,

ID1,2 = log2

(
Dsph

W2
+ 1
)

(3.12)

ID2,1 = ID1,2 = log2

(
Dsph

W1
+ 1
)

, (3.13)

and total indices of difficulty

IDT1 = ID1 + ID1,2, (3.14)

IDT2 = ID2 + ID2,1, (3.15)

Using the c4.5 algorithm, feature-sets {IDT1,IDT2}, {ID1,2, ID2,1}, {ID1,ID2} and {D1,D2,r1,r2}

were evaluated to predict the first selected sphere.

3.4.1 Results

Participants showed an overall preference for the right sphere (∼ 64%). Thus, as shown in

the last row of Table 3.1, the decision tree generated using the zero-rule approach always

predicted sph2 as the selected sphere with an accuracy of 63.81%, 95% CI [61.41%, 66.21%].

Decision trees generated with the c4.5 algorithm from feature-sets 1–4 (see Table 3.1)

yielded approximately 71% ± 2.26% accuracy on predicting the selected sphere, with a

95% confidence level, which is significantly better than both chance (50%), and the aforemen-

tioned zero-rule predictor (64%± 2.4%). Even though all of the feature-sets yielded similar

accuracies, the generated tree for feature-set 1 was more complex than those generated for

feature-sets 2–4, making it less practical and perhaps over-fitted to the data [Mitchell 1997],

especially considering that its 4 non-leaf nodes were generated from only 2 attributes.

Table 3.1. Accuracy and 95% confidence intervals for the evaluated feature-sets

Feature-set Size Leaves acc 95% CI
1 IDT1, IDT2 9 5 70.56% [68.28%, 72.83%]

2 ID1,2, ID2,1 5 3 71.21% [68.95%, 73.47%]

3 ID1, ID2 5 3 70.95% [68.68%, 73.21%]

4 D1, D2, r1, r2 5 3 71.21% [68.95%, 73.47%]

5 ∅ 1 1 63.81% [61.41%, 66.21%]

Interestingly, the fact that feature-sets 2 and 4 had the same accuracy, 95% CI, and a similar

tree configuration (3 leaves out of 5 nodes) implies that they are equivalent. This may seem

surprising, given that the only relevant factors in the inter–sphere indices of difficulty (ID1,2,
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ID2,1) which compose feature-set 2, are sphere diameters (W1, W2),2 whereas feature-set 4

is composed not only of sphere radii (r1,r2), but also of wand–sphere distances (D1, D2). A

closer look at the generated decision tree for feature-set 4 (Figure 3.4), however, reveals that

the resulting tree included only sphere radii; wand-sphere distances (D1, D2) were probably

ignored by the c4.5 algorithm on the basis of low information gain. Thus, it is reasonable to

conjecture that the radii provide an equivalent information gain to feature-sets 2 and 3, since

their generated trees had similar configurations and yielded an equivalent accuracy.

r1

sph 2
(764.0/174.0)

0.1

r2

0.2

sph 1
(388.0/137.0)

0.1

sph 2
(390.0/133.0)

0.2

Figure 3.4. Decision tree for feature-set 4, suggesting that participants based their decisions
only on sphere size, with a preference for the right sphere. Leaves represent
prediction outcomes (sph1 is the left sphere, and sph2 is the right sphere), while
the other nodes represent tested attributes (r1 or r2). The numbers in parenthesis
within the leaves represent the total number of instances that fall into that leaf, over
the number of incorrectly predicted instances among these instances.

The overall tendency for choosing the right sphere (sph2) first is likely due to the majority

of the participants being right-handed; unfortunately, there weren’t enough left-handed

participants to evaluate the effects of handedness on the generated models. According to the

decision tree generated from feature-set 4 presented in Figure 3.4, participants would only

choose the left sphere (sph1) first if the right one (sph2) was smaller; sph2 would be selected

first if its radius was greater or equal than that of sph1.

3.5 Generalizable feature analysis

At each frame, measurements that could relate the target positions to the participant’s head

pose (Ph, Qh), and wand position (Pw) were calculated. Subsequently, these measurements

2Inter-sphere distances are equal for all of the trials (Dsph = 0.5), annulling their influence on ID1,2 and ID2,1

and, thus, on feature-set 2, see Equations (3.12) and (3.13).
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were averaged in a time window, and different feature–sets were evaluated to predict the

intended sphere.

3.5.1 Relative user-target features

First, the head-sphere vectors

Pih = Pi − Ph, (3.16)

are calculated, where Pi corresponds to the absolute position of sphere i ∈ {1, 2}.
Subsequently, the dot products between the normalized head (H), and Pih vectors

doti = Ĥ · P̂ih. (3.17)

are calculated. The head–target dot product, doti, has the advantage of being an easy to

interpret, normalized scalar: the closer doti gets to 1, the more the user’s head orientation is

aligned with sphi. Since the spheres do not overlap in the user’s field of view, the dot-product

difference

∆dot = dot1 − dot2. (3.18)

is calculated. This quantity serves to determine the relative pose of the user’s head with

respect to the spheres. The closer ∆dot gets to 1, the more the user’s head is aligned with sph1;

the closer the quantity gets to −1, the more the user’s head is aligned with sph2; a value of

0 implies that the user’s head is oriented right in the middle of both spheres.

Finally, the difference between wand–sphere distances

∆D = D1 − D2, (3.19)

is calculated. Where D1, and D2 are the wand–sphere distances given by Equations (3.7)

and (3.8). Similar to ∆dot, ∆D serves to determine the relative position of the user’s wand with

respect to the spheres. A positive ∆D implies that the wand is farther from sph1; a negative

quantity implies that the wand is farther from sph2; 0 implies that the wand is equidistant

from both spheres.

3.5.1.1 Distance score feature

To validate the usefulness of the proposed user–target features, their predictive accuracy

is compared to the distance scoring function proposed by Ortega [2013], presented in Equa-

tion (2.23). Since the experimental environment was composed of two targets, N = 1 is chosen,

such that only the closest target’s score is increased. Compared to the decay = 0.5 value

used by Ortega, a higher decay = 0.9 value is chosen to account for the fact that most of the

movement happened late in each trial; a low decay rate would not have permitted to revert
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the possible target-score accumulation that occurs while participants are waiting for targets to

become reachable. The resulting scoring function for each target i at frame t is therefore

dScorei(t) = dScorei(t− 1) +




(1− ji)∆t if ji < 1

−0.9 ∆t if ji ≥ 1

dScorei(t) ≥ 0, (3.20)

where ji = 0, · · · , I − 1 is the ascending target order based on the wand–target distance Di.

3.5.2 Time-window selection

To cope with issues of instability and inaccuracy that affect human movement [Shadmehr

et al. 2010], the values of ∆dot and ∆D are averaged in a time window, rather than using their

instant values.

In interactive usage contexts, both the feature averaging and the scoring function start

running upon user activation. The present analysis, however, is done post hoc, so the functions

are applied to the data during a graphically determined time window. Ideally, the time

window would start before the beginning of the reaching action, while the user is specifying

their intentions and actions [Norman 2002], and end before the target is reached. In the scope

of this study, the ∆dot profile was analyzed graphically over time, to determine an appropriate

window heuristically, as shown in Figure 3.5. Other possible approaches are discussed in the

future work section.

Because there is no time between trials, the starting non-zero ∆dot values in Figure 3.5

are likely due to participants fixating the last sphere they touched on the previous trial. The

subsequent convergence towards zero, between 0 s and 1 s suggests that their gaze is shared

between both spheres, probably while making their decision. After 1 s, ∆dot starts diverging

again, suggesting that participants’ heads are oriented towards one of the two spheres. If

this is the case, the increased divergence could be related to the increased separation of the

spheres in the participant’s field of view, as they get closer to them. Furthermore, after 1 s, the

red- and blue-colored selection labels of sph1, and sph2, are more clearly clustered above and

below zero, respectively.

This graphical evidence suggests that roughly 1 s, and 1.5 s are good start, and end times

for the window. These times roughly correspond to 42.5% and 63.8% of the 5th percentile of

the selection times (2.35 s). Within this window, both the mean dot product difference (∆dot)
and the mean wand–target distance (∆D) are calculated.
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Figure 3.5. ∆dot vs. time. Each line corresponds to a trial, colored according to the selected
sphere. The plot has been trimmed to the 5th percentile of the selection times
(2.35 s).
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3.5.3 Evaluation

Generalizable user–target feature-sets {∆dot}, {∆D}, {∆dot, ∆D}, and {∆dot, as well as their

combinations with the sphere radii, {∆dot, r1, r2}, {∆D,r1,r2}, and , ∆D,r1,r2} are evaluated

using the c4.5 classifier to predict the first sphere selected by the user (sphi).

Models generated from generalizable user–target features, ∆dot and ∆D, are compared to

the scoring classifier bestDRank, which always predicts the chosen sphere as the one with the

best dScore, given by Equation (3.20).

In the case of feature-sets combining generalizable features, ∆dot and ∆D, and task-specific

features, r1 and r2, the baseline classifier is the decision tree generated from the best feature-set

from Section 3.4, i.e., {r1,r2}.

The performance of bestDRank is simply evaluated by calculating its predictive accuracy,

i.e. the ratio of correct predictions to the number of trials. The performance of the remaining

features is evaluated based on the 10-fold cross validation accuracy of the decision-trees

generated from each feature-set.

3.5.4 Results and discussion

3.5.4.1 Generalizable user–target features

As shown in Table 3.2, all feature-sets performed better than chance and a zero-rule

predictor. On average, all of the proposed feature-sets performed better than the bestDRank
baseline classifier. Among the individual features, ∆D yielded less average accuracy than ∆dot
with a more complex tree, making it less practical and perhaps over-fitted to the data [Mitchell

1997, p. 67]. Furthermore, since the ∆D accuracy was only marginally higher than that of the

bestDRank baseline, no further analyses on the former are carried out.

Table 3.2. Tree size, number of leaves, accuracy and 95% confidence intervals for the evaluated
generalizable moving-target feature-sets

Feature-set Size Leaves acc 95% CI
bestDRank 1 1 68.09% [65.77%, 70.42%]

∆dot 3 2 70.69% [68.42%, 72.96%]

∆D 5 3 68.42% [66.1%, 70.74%]

∆dot, ∆D 11 6 71.73% [69.48%, 73.97%]

Given that their 95% CI overlap, the difference between accuracies of bestDRank, ∆dot,
and ∆dot, ∆D is calculated, as well as the 95% CI of this difference. Results are presented in

Table 3.3.

The fact that feature-set {∆dot, ∆D} yielded the greatest average accuracy, which was

significantly better than both the baseline bestDRank and feature ∆D confirms the value of

using head–target and wand–target relative features to predict intention in moving-target
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Table 3.3. Accuracy difference and 95% confidence intervals for the evaluated generalizable
moving-target feature-sets. Asterisks (*) denote a significant difference (α = 0.05).

Feature-seta Feature-setb ∆acc 95% CI
bestDRank ∆dot −2.59% [−5.96%, 0.67%]

bestDRank ∆dot, ∆D −3.63% [−7.01%,−0.41%]*
∆dot ∆dot, ∆D −1.04% [−4.33%, 2.2%]

∆D ∆dot, ∆D −3.31% [−6.68%,−0.08%]*

selection. As previously stated, this is likely due to the inherent visuomotor nature of the

moving-target selection tasks, where users need to fixate on the chosen target while moving

their hands towards them. This model is presented in Figure 3.6.

Due to the task and evaluation differences with previous work on intention prediction in

target selection, the results are not directly comparable to the latter, but suggest the potential

of the presented approach. The time-window limits are likely to change according to the task

(e.g., if the user has to search for their intended target in a cluttered environment), but it may

be possible to detect patterns similar to Figure 3.5 when the intended target is fixated upon,

which is more efficient than previous approaches that require large portions of the entire hand

trajectory as predictive inputs [McGuffin and Balakrishnan 2005; Lank et al. 2007; Wonner

et al. 2011].

Furthermore, in other tasks the generated tree nodes will likely have different split values

than those presented in Figure 3.6. It is possible, however, that the split values for trees in

other binary selection tasks will also be close to zero.

Finally, using a single relative head—target parameter, such as ∆dot, and a single wand–target

relative parameter, such as ∆D, may not be useful or viable in tasks with more and differently

positioned targets. A solution could be to create similar features for every possible pair of

targets.

3.5.5 Combined task-specific and generalizable features

Tables 3.4 and 3.5 show that Feature-set {∆dot, ∆D,r1,r2} performed significantly better than

all of the other feature-sets, surpassing the best task-specific feature-set, {r1, r2}, by almost 7%,

and the best generalizable feature-set, ∆dot, ∆D, by about 6%. Unfortunately, the generated

tree was too big (21 nodes) to fit in this paper.

Surprisingly, and contrary to the results from the previous section, combining the ∆dot
relative feature with the sphere radii (r1,r2) did not yield better accuracy than feature-set

{∆D,r1,r2}.

The fact that feature-set {∆D,r1,r2} performed marginally better than the baseline, {r1,r2},

suggests that a function of target size and distance, albeit different from ID, can adequately

predict the selected sphere in this type of task. In the results from Section 3.4, however, the



32

∆dot

∆D

<= 0.01553

∆D

> 0.01553

∆dot

<= 0.009622

sph2

(588.0/70.0)

> 0.009622

sph2

(57.0/9.0)

<= 0.000306

∆D

> 0.000306

sph1

(47.0/17.0)

<= -0.031784

sph2

(233.0/86.0)

> -0.031784

sph1

(413.0/131.0)

<= 0.017634

sph2

(204.0/81.0)

> 0.017634

Figure 3.6. Generated decision tree for feature-set {∆dot, ∆D}. The numbers in parenthesis
within the leaves represent the total number of instances that fall into that leaf, over
the number of incorrectly predicted instances among these instances.
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distance D0—measured at the beginning of each trial—was deemed to yield less information

gain than the sphere radii. The apparent increase in information gain by integrating ∆D,

observed in the present work, reflects a correlation between wand and object position, as pre-

viously suggested by Ortega [2013], but only after a certain preparation time [Nieuwenhuizen

et al. 2009].

Table 3.4. Tree size, number of leaves, accuracy and 95% confidence intervals for the evaluated
target-based feature-sets.

Feature-set Size Leaves acc 95% CI
r1, r2 5 3 71.21% [68.95%, 73.47%]

∆dot, r1, r2 7 4 73.35% [71.14%, 75.55%]

∆D, r1, r2 27 14 74.19% [72.01%, 76.37%]

∆dot, ∆D, r1, r2 21 11 78.02% [75.95%, 80.08%]

Table 3.5. Accuracy difference and 95% confidence intervals for the target-based feature-sets.
Asterisks (*) denote a significant difference (α = 0.05), dots (.) denote a marginal
difference (α = 0.1).

Feature-seta Feature-setb ∆acc 95% CI
r1, r2 ∆dot, r1, r2 −2.14% [−5.43%, 1.04%]

r1, r2 ∆D, r1, r2 −2.98% [−6.28%, 0.16%].
∆dot, r1, r2 ∆D, r1, r2 −0.84% [−4.05%, 2.32%]

∆D, r1, r2 ∆dot, ∆D, r1, r2 −3.83% [−7.04%,−0.85%]*

3.6 Discussion

Results are summarized according to the study hypotheses, each followed by a discussion.

3.6.1 Task-specific features for intention prediction in undirectedmoving-target selec-
tion

Considering that task-specific decision trees were built based only on the initial position of

the user’s wand and the initial size and position of the spheres, predictions bore a relatively

high accuracy, compared to both chance and a zero-rule predictor. It is likely, however, that

the accuracy will decrease if the number of targets is increased, but it is expected that the

accuracy will still be better than chance and a zero-rule predictor.

H1. ID can accurately predicting intention in undirected moving-target selection tasks.

Partially supported.
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Even though ID served as a good task-specific feature for predicting the intended moving

target, using solely sphere radii (r1, r2) yielded an equivalent accuracy (∼ 72%). Recall that all

of the evaluated ID measures, presented in Equations (3.9)–(3.15), are based on target radii.

This suggests that target size yields more information gain than the initial target distance, and

indicates a very basic strategy from the users in which distance does not play an important

role for choosing targets.

This may be due to the fact that the spheres get closer to the user throughout each

trial, eventually annulling the z component of the target’s distance Additionally, since there

was some waiting time before the targets were reachable, it is possible that users prepared

the starting horizontal position of their wands prior to executing the pointing task, even if

instructed otherwise.

3.6.2 Generalizable features for intention prediction in undirected moving-target se-
lection

H2. Relative user–target features can accurately predict intention in undirected moving-target

selection tasks. Supported.

The relative head–target and wand–target features, ∆dot and ∆D, respectively, proved

successful in predicting intended targets in the studied undirected moving-target selection

tasks. Combined, the features yielded a ∼ 72% accuracy on predicting intended targets, which

was significantly better than the isolated ∆D feature (∆acc = 3.31%), and the Ortega [2013]

scoring function (∆acc = 3.63%).

The relative head–target feature, ∆dot, proved to be useful not only for prediction, but also

for establishing the adequate time window. Currently, the window is established empirically,

from the ∆dot vs. t plot (Figure 3.5).

H3. Combining task-specific, and generalizable features yields better predictive accuracy

than using either separately. Supported.

The integration of features ∆dot, and ∆D, with r1 and r2, improved the predictive accuracy

of intended targets in undirected moving-target selection. The combined feature-set performed

significantly better than all of the other feature-sets, surpassing the best task-specific feature-

set, {r1, r2}, by almost 7%, and the best generalizable feature-set, ∆dot, ∆D, by about 6%.

As opposed to the task-specific features analysis, the results revealed that combining target

radii with target distances yielded better accuracies than using each feature separately, but

only if the distance was measured after the trial start, within the chosen time window.



35

3.7 Conclusion

This chapter evaluated the usage of Fitts’ ID and its separable components, D and W, as task

specific features, as well as ∆dot and ∆D, as generalizable features to predict intended targets

in undirected moving-target selection tasks. All of the evaluated feature-sets performed better

than chance, and a zero-rule predictor, and the combination of both types of features yielded

the best accuracy (∼ 78%).

The generalizable features were calculated within a time-window ending at about two-

thirds of the selection time, heuristically selected based on participant gaze. Future work

could explore automating this process by finding the optimal start and end window limits,

by measuring different inputs. Furthermore, these times could be related to existing models,

such as the Hick-Hyman Law [Hick 1952; Hyman 1953], presented in Equation (2.1). Notice,

however, that in interactive contexts, the time window may not be necessary, since users may

select their start and end times directly.

These results should be generalizable to different moving-target selection tasks, provided

that additional factors, such as a greater number of spheres with different starting positions

and different velocities, are taken into consideration. The potential of using other measures of

difficulty (either objective or subjective) formulated specifically for moving-target selection to

predict user intention should also be explored.
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Chapter 4

Prospective difficulty of 2-d static-target and moving-target
selection

Chapter 3 evaluated the hypothesis presented in Chapter 1 that ID was predictive of user

intention in undirected moving target selection, based on the premise that users form their

intentions by minimizing their prospective effort, as described by ID. Due to the inadequacy

of existing ID measures formulated specifically for moving-target selection, Chapter 3 resorted

to using a static-target formulation of ID, specifically the Shannon model (Equation (2.5)) and

its separate D and W components. Consistently with the results of Jagacinski et al. [1980]

for the MT of moving-targets, the results revealed that such ID was limited in usefulness for

predicting intention in moving-targets, thus, hinting at its inadequacy as a PD measure for

moving-target selection as well.

In order to address these limitations, this Chapter attempts to extend the PD-ID paradigm

to moving-target selection tasks. The proposed model is initially formulated and evaluated

in 2-d tasks to avoid issues inherent to 3-d interaction, such as incorrect depth-perception,

but bearing its extensibility to 3-d in mind. A general 2-d moving-target pointing task is

presented in Figure 4.1, along with its relevant attributes.

V
W

D
φ

θ

Figure 4.1. Measurements relevant to the target-selection tasks considered in this chapter. The
red and the green circles indicate the starting positions of the cursor and the target,
respectively. D is the initial distance between the cursor and the target, W is target
width, θ is the initial angle between the target and the cursor, V is the target speed,
and φ is the target’s movement direction relative to the initial cursor–target vector.



37

To achieve this goal, the current chapter introduces three models based on Fitts’ ID for the

PD of pointing at 2-d static targets, and 1-d and 2-d moving targets. The model formulae are

presented below, in Sections 4.1.1–4.1.3.

4.1 Formulations

4.1.1 PD formulation for 2-d static-target pointing tasks

Two-dimensional static-target pointing tasks refer to tasks with initial target angle θ ∈ [0, 360)◦.

For this type of task, the model proposed in this chapter separates the target-angle (θ) effect

from the ID = log2(2D/W) term, such that

PD = aθ + b log2

(
2D
W

)
,

where aθ and b are empirically derived coefficients; aθ is the per-angle θ intercept. This

formulation is based on Fitts original formulation for MT,1 and the 2-d ID extensions by

Murata and Iwase [2001], Appert et al. [2008], and Grossman and Balakrishnan [2004]. This

equation is developed in Section 4.2.2.

4.1.2 PD formulation for 1-d moving-target pointing tasks

One-dimensional moving-target pointing tasks refer to tasks with initial target angle θ ∈
{0, 180}◦, and target moving-direction φ ∈ {0, 180}◦. For this type of task, the proposed

model is based on the two-part model by Hoffmann and Chan [2012] with per-speed (V)

regression coefficients, such that

PD = aV + bV
√

D + cV log2

(
2D
W

)
,

where aV , bV , and cV are empirically derived coefficients. Based on an analogy between

control–display gain (G) and V, this formulation is inspired by the work of Shoemaker et al.

[2012], who found that two-part models can be used to describe static-target pointing with

different levels of G.

This formula is developed in Section 4.2.3. Additionally, as shown in Section 4.4.2.2,

coefficients aV , bV , and cV appear to be linearly related to the speed V of the target.

4.1.3 PD formulation for 2-d moving-target pointing tasks

Two-dimensional moving-target pointing tasks refer to tasks where the target’s moving

direction φ ∈ [0, 360)◦, regardless of the initial target angle θ. For this type of task, the

1The choice of Fitts formulation for ID is explained in Section 4.2.1.
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proposed model is an extension of the 1-d moving-target model, separating the initial target

distance D into two components, such that

PD = aV + b
√

Ds + cV
√

Dm + d log2

(
2Dm

W

)

Ds = |D sin φ|
Dm = |D cos φ|,

where aV , b, cV , and d are empirically derived coefficients; aV and cV are per-speed V
coefficients. The development of this formula is both analytical, as explored in Section 4.2.4,

and empirical, as explored in Section 4.4.2.2. Additionally, as shown in Section 4.4.2.2, aV

and cV appear to be linearly related to the speed V of the target.

4.2 Modeling

Based on the literature review presented in Chapter 2, and motivated by the goal of extending

the PD–ID paradigm to 2-d moving-target pointing tasks, this section presents an incremental

development of such a model. First, the choice of the ID formula for the PD of 1-d static-target

tasks is presented, followed by the extension to 2-d static-target tasks, 1-d moving-target tasks,

and, finally, 2-d moving-target tasks.

4.2.1 Choice of ID formulation

In contrast with the majority of the post-1990’s Fitts-related literature in hci, Fitts’ ID formula-

tion is chosen over the Shannon formulation. The most important reason for this choice is the

simplicity in deriving the formulae proposed to model prospective difficulty, notably the 2-d

model presented in Section 4.2.2. Another important reason for this choice is the compatibility

of Fitts’ ID with prospective pointing tasks: if there were a prospective task in which the

pointer started at the boundary of a static target (i.e., D = W/2), the expected difficulty

for an imagined movement should be 0, allowing one to hypothesize the intercept a = 0 in

Equation (4.1) The latter is not the case for the Shannon ID, since the intercept represents

a situation in which the pointer starts at the center of the target. Tasks in which D < W/2,

however, are out of the scope of this study as they may be hard to interpret prospectively,

besides not being adequately modeled in the Fitts paradigm [Soukoreff and MacKenzie 2004,

p. 768]. Lastly, choosing the Fitts ID is consistent with the subjective difficulty literature,

allowing comparison of the current results to previous work in the area.

Therefore, following the previous work in subjective difficulty and Fitts’ Law [Delignières

and Famose 1992; Slifkin and Grilli 2006; Grilli 2011; Chan and Hoffmann 2013], the model

for the PD of pointing at a 1-d static target is
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PD = a + b ID

ID = log2

(
2D
W

)
. (4.1)

4.2.2 Formulations of prospective difficulty in 2-d static-target pointing tasks

To the author’s knowledge, there is no extension to Fitts’ original ID that explicitly accounts for

the target angle θ. Indeed, the 2-d extensions to Fitts’ ID presented in Equations (2.10)–(2.12)

are based on the Shannon formulation. However, analogous models based on Fitts original ID
can be formulated as well.2 For example, Equation (2.10), by Murata and Iwase [2001], is

analogous to

IDMI = log2

(
2D
W

)
+ c sin θ, (4.2)

Equation (2.11), by Appert et al. [2008], is analogous to

IDACB = log2

(
2D
W

+
2D
H

+ 0.6 cos(θ)
2D

min(W, H)

)
, (4.3)

and Equation (2.12), by Grossman and Balakrishnan [2004], is analogous to

IDGB = log2



√

fW(θ)

(
2D
W

)2

+ fH(θ)

(
2D
H

)2

 . (4.4)

These three formulations are easier to manipulate than their Shannon counterparts. For

example, by isolating ID from the angle and shape effects in Equations (4.3) and (4.4), the

three equations can be expressed in a similar form,

ID2-d = log2

(
2D
W

)
+ f

(
θ,

W
H

)
. (4.5)

For Equation (4.2) there is no shape effect, only an angle effect expressed as

f
(

θ,
W
H

)
= f (θ) = c sin θ. (4.6)

For Equation (4.3), the angle and shape effects are expressed as

f
(

θ,
W
H

)
= log2

(
W
H

+ 0.6 cos(θ)
W

min(W, H)
+ 1
)

. (4.7)

2This is done by multiplying D by 2, and removing the “+1” terms from the Shannon-derived formulae. A
similar approach was taken by Shoemaker et al. [2012] to reformulate the distant pointing model by Kopper et al.
[2010].
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Finally, the angle and shape effects for Equation (4.4) are expressed as

f
(

θ,
W
H

)
= log2



√

fW(θ) + fH(θ)

(
W
H

)2

 . (4.8)

With these reformulations, Fitts’ ID becomes nested within ID2-d (i.e., ID2-d = ID, given

f (θ, W/H) = 0). Based on this equivalency, the linear relation between PD and ID found in

the literature also extends to ID2-d, thus

PD = a + b ID2-d, (4.9)

which can also be formulated as a model with one intercept per (θ, W/H) condition, such that

PD = aθ×W/H + b ID, (4.10)

where aθ×W/H = a + b f (θ, W/H). For univariate targets, where W = H, the formula is

further simplified to

PD = aθ + b ID, (4.11)

where aθ = a + b f (θ). If no specific form of f (θ, W/H), or f (θ) is assumed, Equations

(4.10) and (4.11) can be solved using the ubiquitous linear least-squares method, which

does not suffer from the shortcomings of its non-linear counterpart described at the end of

Section 2.1.2.2. For example, by using indicators, or dummy variables (xi) for the i levels of θ,

Equation (4.11) can be represented as

PD = α1 + α2 x2 + α3 x3 + . . . + αi−1 xi−1 + αi xi + b ID, (4.12)

such that

(x2, x3, . . . , xi−1, xi) =





(0, 0, . . . , 0, 0) if θ = θ1

(1, 0, . . . , 0, 0) if θ = θ2

(0, 1, . . . , 0, 0) if θ = θ3

. . .

(0, 0, . . . , 1, 0) if θ = θi−1

(0, 0, . . . , 0, 1) if θ = θi,

(4.13)

where θ1, . . . , θi, are the different levels of θ.
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4.2.3 Formulations of prospective difficulty in 1-d moving-target pointing tasks

As discussed in the Related Work section, the existing formulations for predicting MT in

moving-target selection are not compatible with the current PD–ID framework. Equation (2.15),

by Jagacinski et al. [1980], is simple but cannot be reduced to Fitts’ Law, so its use would imply

modeling static and moving targets differently; Equations (2.17) and (2.18), by Hoffmann

[1991], are derived from Fitts’ Law, but require the percentage of actual captures (unknown

in prospective action), otherwise resulting in potentially harder and unreliable calculations.

Therefore, it seems necessary to introduce another formulation to model the PD of moving-

target selection, that is both simple and compatible with Fitts’ ID.

To this end, an analogy between static-target selection under the effect of control-display

gain, and moving target selection without gain is given. Under control-display gain,

G =
Vdisplay

Vcontrol
, (4.14)

the movement time (MT) required to reach for a static target located at position x is

MT =
x

Vdisplay

=
x

G×Vcontrol
. (4.15)

On the other hand, with G = 1 (i.e., Vcontrol = Vdisplay) the MT required to reach for a target

located at position x, and moving with velocity Vtarget is

MT =
x

Vcontrol −Vtarget
. (4.16)

Combining (4.15) and (4.16) gives the equivalency

G = 1− Vtarget

Vcontrol
. (4.17)

Thus, reaching for a static target with G > 0 is equivalent to reaching for a moving target

with |Vcontrol| > |Vtarget|. Reaching for a static target with G = 0 (i.e., when the display does not

react to the control input) is equivalent to reaching for a moving target with Vcontrol = Vtarget—

in both cases the target always remains at the same distance and pointing at it is impossible.

Likewise, reaching for a static target with G < 0 (i.e., when the display’s velocity is opposite

to the control input) is equivalent to reaching for a moving target with |Vcontrol| < |Vtarget|—in

both cases the target gets farther from the cursor as time elapses. The major shortcoming of

this analogy is that it assumes that the user’s control velocity is constant.

This is the basis for hypothesizing that two-part formulations model 1-d moving-target

selection, analogous to the way Shoemaker et al. [2012] apply a two-part model to 1-d static-

target selection with gain. Furthermore, based on the approximate equivalency between the
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two-part formulations of Welford and Hoffmann, described in Section 2.1.2.1, the latter should

also model moving-target selection with the added benefit of mathematical correctness and,

more importantly, the apparent linear relation between the regression coefficients and V.3

For the prospective difficulty of 1-d moving-target selection tasks, the proposed relationship

is

PD = aV + bV
√

D + cV log2

(
2D
W

)
, (4.18)

where V is the target velocity. The form of this model is similar to that of Equation (2.15),

by Jagacinski et al. [1980], with aV = a− d (V + 1), and cV = c (V + 1). Aside from the log

and square-root terms, the biggest difference in both models is that Jagacinski’s model does

not allow the effect of D to be different for each V. However, it seems logical that higher

target speeds will require faster reaction times, hence more ballistic-type motions, which are

represented by the
√

D term in Hoffmann’s two-part model.

4.2.4 Formulations of prospective difficulty in 2-d moving-target pointing tasks

The motion required to point at a target moving in 2-d can be divided in two components,

one perpendicular to the target’s velocity, modeled by Equation (4.11), and one parallel to the

target’s velocity, modeled by Equation (4.18). Under these assumptions, the corresponding

model is hypothesized as

PD = aV×φ + bV log2

(
2Ds

W

)
+ cV

√
Dm + dV log2

(
2Dm

W

)
, (4.19)

where Ds is the perpendicular, or “static distance,” and Dm is the parallel, or “moving distance.”

Since the true Ds and Dm are unknown in prospective movements, it is assumed that Ds, Dm,

and D form a right triangle as shown in Figure 4.2, so that Ds = |D sin φ|, and Dm = |D cos φ|,
where φ is the target’s movement direction relative to the initial cursor–target vector.4

V
WD

DmDs

φ

Figure 4.2. Two-dimensional moving-target model. The red circle is the starting point, the dark
green circle is the moving target.

3It can be shown that the “Welford” coefficients in [Shoemaker et al. 2012, Table XI], with the corresponding
transformations described in Equations (2.8)–(2.1.2.1), vary linearly with G.

4In the more general case, when θ and φ are known, Ds = D sin φ
sin(φ+θ)

and Dm = D sin θ
sin(φ+θ)

.
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This simplification is compensated by having different bV , cV , and dV parameters per

speed, and a different intercept aV×φ per velocity (V, φ), allowing Ds and Dm to be rescaled,

which approximates the more general case in which Ds, Dm, and D do not form a right

triangle. The per-velocity intercept also allows for asymmetry on the effect of φ.

Dropping the denominator within the log2 (2Ds/W) term, and using the approximate

log–square-root equivalence suggested by Hoffmann and Chan [2012] results in,

PD = aV×φ + bV
√

Ds + cV
√

Dm + dV log2

(
2Dm

W

)
. (4.20)

Under this model the complete motion would be described in three parts—two ballistic

motions, one to align the cursor with the target’s movement axis and one in-line with the

target’s movement axis, and a homing in motion in-line with the target’s movement axis.

4.3 Methods

4.3.1 Apparatus

To evaluate the proposed models, an experiment was implemented using Scalable Vector

Graphics (svg) [W3C 2011] and deployed in an anonymous, online Qualtrics survey.

4.3.2 Participants

Participants were recruited by distributing the survey link using social media, and yielded

49 respondents who answered the entire survey, out of 83 partial attempts—only the responses

from the full attempts were retained. Twenty-one participants reported being students, and it

was determined via timestamps that 25 participants were in the Americas, one in India, and

the rest in either Europe or Africa.

Participants were aged 20 to 48 years old (M = 29.65, Mdn = 29); there were 14 females

and 35 males. Most respondents reported being right handed (45), no respondents reported

being ambidextrous.

4.3.3 Procedure

Upon opening the survey website, each participant was asked to accept a study consent form.

If agreed, an animation of a moving object was presented. After playing the animation, the

participant was asked if a moving object was visible on the screen—this question served as a

browser check. After successfully completing the browser check, the participant was asked to

fill in a short questionnaire concerning background and demographic information.

Subsequently, the participant was presented with two blocks of questions. In each question,

the participant was asked to assess the prospective difficulty of touching a circular target from

a starting point as fast as possible, without actually touching the screen or making any finger
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movements. The participant was advised to maximize the survey window prior to the start of

each block, to avoid distractions and reduce scrolling. In the first block each target was static;

in the second block each target was moving.

Each question was presented on a separate page and rated using radio buttons, as

suggested by Van Schaik and Ling [2007]. In each question the participant judged pointing

difficulty using a 9-point “Likert-type” scale, where 1 was labeled as “Very easy” and 9 was

labeled as “Very difficult.”

To give a scoring reference, a sample image (the anchor) corresponding to the middle

difficulty (5), was given both before each block and in the header of each question. The same

static-target anchor was given for both static and moving targets.

To prevent the participant from trying to execute the pointing task, the mouse pointer

disappeared when hovering over each image. There was no time limit for each answer and, in

the case of moving targets, the animations could be replayed at the participant’s discretion. A

screenshot of one of the moving-target questions is presented in Figure 4.3.

Figure 4.3. Screenshot of a moving-target question with φ = 45◦. The anchor is represented
with a blue target.

To speed up survey completion, once the participant selected a PD rating, the survey

would automatically advance to the next question, as opposed to selecting an answer and

clicking on the “next” button; the “next” button served only to skip questions, and there was
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no “back” button to revisit previous answers. The trade-off was that the participant could

not correct misclicked responses, but this was mitigated by implementing “auto-advance”

in the consent and browser-check questions, so that the participant would expect the same

behavior when answering horizontally-arranged multiple-choice questions. Nevertheless, two

participants commented on a few misclicks they made during the PD ratings.

At the end of each block, the participant was asked to rate how seriously they answered

the preceding block, using a 1–5 “Likert-type” scale, where 1 was labeled as “Not seriously at

all” and 5 was labeled as “Very seriously.”

4.3.4 Design

A within-subjects, factorial design was used, with two blocks of trials.

The first block consisted of static targets. Factors were target distance, D ∈ {200, 400} pix-

els (px); target radius, r ∈ {20, 40, 80}px; and target angle, θ ∈ {−45, 0, 45}◦. Notice that θ

was measured clockwise, consistently with the y-down screen coordinate system. Each of the

18 conditions was presented once to the participant in a random order. A sample of this task,

with a depiction of its parameters, is shown in Figure 4.4.

2r

D

−θ

Figure 4.4. Static-target task. The red circle is the starting point, the green circle is the target.

The second block consisted of moving targets. Factors were initial target distance,

D ∈ {200, 400}px; target radius, r ∈ {20, 40, 80}px; target speed, V ∈ {200, 400, 800}px/s;

and initial target-movement-direction, φ ∈ {−45, 0, 45}◦; the initial target angle θ was always

0◦. Each of the 54 conditions was presented once to the participant in a random order. A

sample of this task, with a depiction of its parameters, is shown in Figure 4.5.

V
2rD

φ

Figure 4.5. Moving-target task. The red circle is the starting point, the green circle is the
moving target.
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The anchor for both static- and moving-target tasks was set as (D = 200 px, r = 20 px,

θ = 0◦, V = 0 px/s). The choice of the same static-target anchor for both types of task was

based on the notion that moving-target selection is an extension to static-target selection.

4.3.5 Data integrity

Within the 49 complete survey attempts, two respondents rated more than 75% of their

static-target responses with the minimum value (1), which suggests that they did not relate to

the given anchor to rate their answers, therefore, all of their responses were discarded. Out of

the 47 remaining attempts, six respondents rated more than 75% of their 1-d moving-target

responses with the minimum value (1), which suggests that they may have been executing a

“crossing” task, in which they waited for the moving target to go over the cursor rather than

touching the target as fast as possible, as instructed,5 therefore, all of their responses were

removed. Within the 41 retained attempts, there were 2 missing answers in the static block,

and none in the moving block. In total, there were 736 complete answers for the static block,

and 2214 for the moving block.

4.3.6 Statistical methods

In general, the analyses in this chapter are conducted using Bayesian methods using Markov

Chain Monte Carlo (mcmc). Bayesian methods have several advantages compared to tra-

ditional frequentist methods, including the use of prior knowledge, the generation of full

parameter distributions, the ability to test complex models, and robustness against unbalanced

samples and multiple comparisons [Kruschke et al. 2012].

By generating full distributions for the parameters of each model, Bayesian methods allow

the formulation of probabilistic statements on the parameters and the models, as opposed to

relying on approximate confidence intervals, or the seemingly unreliable p-values [Kruschke

et al. 2012; Kaptein and Robertson 2012; Dragicevic et al. 2014]. Within this framework, testing

for the “statistical significance” of null, or point hypothesis are avoided; instead, the emphasis

is placed on the estimation of the different parameters, and the assessment of their credible

values using the 95% highest density intervals (HDI) of their distributions. Following the

recommendations from Gelman et al. [2013], the point estimates of each parameter are given

using the median value of the posterior distribution.

4.3.6.1 Models for inferential statistics

Since participant responses are recorded in an ordinal scale, to evaluate the main effects

of the experimental conditions and their interactions, on PD, the ordered probit regression

model with per-subject intercept of the form

5This behavior was identified in the comments section of the survey, wherein a respondent reported being
unsure if touching the target meant “crossing” it or “landing” in it, ultimately opting for the former.
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PDi =





1 if PD∗i < γ1

2 if γ1 < PD∗i ≤ γ2

· · ·
8 if γ7 < PD∗i ≤ γ8

9 if γ8 < PD∗i

PD∗i = αi + Xiβ + εi

αi ∼ N(0, σ2
u)

εi ∼ N(0, 1) (4.21)

is used, where αi is the per-subject intercept, and β is the coefficient vector for Xi that includes

different predictors according to the experimental block.

PD∗ and γk are both defined in the probit scale, however, for simplicity, all the estimates

in the inferential statistics sections are presented in the original 1–9 measurement scale.6

Once again, the emphasis is on estimating the effect sizes, corresponding to the coefficients of

the different predictors within β, rather than on testing the statistical significance of those

predictors.

The probit models are fit using mcmc sampling, using Stan [2014] via R [2014]. For

each model, four mcmc chains of 5,000 iterations each, including 2,500 warm-up iterations,

are drawn, for a total of 10,000 saved simulations. The convergence of the chains, and the

goodness-of-fit of the model is verified to ensure the validity of the inference, but these metrics

are not presented in the main body of the chapter.

4.3.6.2 Models for Regression Analysis

Unless otherwise indicated, a modified version of the Bayesian linear regression scripts by

Kruschke et al. [2012] are used to regress the proposed models for PD. Each model is fit in

Stan [2014], with four mcmc chains of 30,000 iterations, including 5,000 warm-up iterations,

for a total of 100,000 saved iterations.

Model fit is assessed using the posterior distribution of the model’s standard deviation σ,

and R2, calculated as the percentage of explained variance [Gelman and Hill 2007, p. 41],

R2 = 1− σ2

s2
y

, (4.22)

where sy is the standard deviation of y. The central value of this distribution is close to the

so-called adjusted r-squared (R2
adj).

7 As opposed to the traditional R2, used in most of the

6The scaling procedure consists in dividing each coefficient in β by M(γ2 − γ1, . . . , γ8 − γ7).
7The equivalency between the adjusted and unadjusted R2 is given by, R2

adj = 1− (1− R2) n−1
n−p−1 , where n is

the number of data points, and p is the number of fitted parameters, not including the intercept.
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Fitts’ literature, this estimate does not necessarily increase with the addition of new predictors,

which facilitates direct model comparison between nested models of different complexities.

The point estimates of R2 may also be lower than those obtained using least-squares

regression, since the R2 value is optimized in the latter, but not in Bayesian linear regression.

The difference in point estimates, however, is likely small, and less interesting than the

95% credible intervals of the R2 distribution.

4.3.7 Hypotheses

All of the following hypotheses assume univariate targets in a 2-d space, i.e., circles. Thus, the

difference between task dimensions (1-d, and 2-d) is given by the angles θ and φ of the target,

with respect to the starting position.

4.3.7.1 Static-target selection

H1. Fitts’ ID model with per-angle intercept, described in Equation (4.11), models the

prospective difficulty of two-dimensional static-target selection tasks better than the

classic Fitts’ ID model with single intercept, described in Equation (4.1).

4.3.7.2 Moving-target selection

H2. Hoffmann’s two-part model with per-velocity coefficients, described in Equation (4.18),

accurately models the prospective difficulty of one-dimensional moving-target selection

tasks.

H2.1. The coefficients aV , bV , and cV of Equation (4.18) vary linearly with V.

H3. The three-part model with per-speed coefficients, and per-velocity intercept, described

in Equation (4.20), accurately models the prospective difficulty of two-dimensional

moving-target selection tasks.

H3.1. In Equation (4.20) the coefficients bV , cV , and dV vary linearly with V, as well as

the coefficients aV×φ within the same angle φ.

4.4 Analysis

4.4.1 Static-target block

4.4.1.1 Inferential statistics

To evaluate the effects on PD of D, r, θ, and their interactions, the ordered probit regression

of Equation (4.21) is fit with the following 13 predictors:

• An indicator for D = 400
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• Two indicators for r ∈ {40, 80}

• Two indicators for θ ∈ {−45, 45}

• Two indicators for D× r

• Two indicators for D× θ

• Four indicators for r× θ,

which implies that the base values, i.e., Xi = 0, are set to D = 200, r = 20, and θ = 0.

Main Effects. The estimates in Figure 4.6 show that there are strong main effects of D,

and r, but relatively small effects of θ.

1.4
−1.2

−3.7
0.3

0.6

D = 400

r = 40

r = 80

θ = −45

θ = 45
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Figure 4.6. Main-effect coefficient plot for the fitted ordered probit model on static-target
PD ratings. Points, thick lines, and thin lines represent the medians, 50%, and
95% HDI for each of the coefficients in β.

As expected, PD increases with D, and decreases with larger radii r. Similarly, down-

ward targets (θ = 45) were perceived as more difficult than horizontal ones, by about

0.56, 95% HDI [0.13, 0.98]. There is also some evidence that the angle effect on PD is asym-

metrical, with downward angles being perceived as more difficult than upward angles,

p(βθ=45 > βθ=−45) = 0.89; however, the average difference in PD between upward and

downward angles is very small, Mdn(βθ=45 − βθ=−45) = 0.26, 95% HDI [−0.15, 0.69]. This is

surprising, and contradicts the findings of Whisenand and Emurian [1995], who found that

upward angles took more time to be reached; this discrepancy could indicate that PD is not

completely consistent with MT.

Two-way Interactions. As shown in Figure 4.7, the interaction effects have small magni-

tudes compared to the main effects, indicating that most of the changes in PD are explained

by the latter.

The D × r interaction shows that, at D = 400, the main, negative effect of r = 80,

Mdn(βr=80) = −3.66, 95% HDI [−4.17,−3.1], is slightly attenuated by about 0.62, 95% HDI [0.15, 1.07].
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Figure 4.7. Two-way interaction coefficient plot for the fitted ordered probit model on static-tar-
get PD ratings. Points, thick lines, and thin lines represent the medians, 50%, and
95% HDI for each of the coefficients in β.

Similarly, the D× θ interaction shows that, at D = 400, both main angle effects are considerably

reduced and made almost symmetrical,

Mdn(βθ=−45 + βD=400×θ=−45) = 0.19, 95% HDI [−0.22, 0.61], vs.

Mdn(βθ=45 + βD=400×θ=45) = 0.15, 95% HDI [−0.27, 0.56];

suggesting that at high distances, angle differences of θ = ±45 contribute less to PD.

On the contrary, on targets with radii r > 20 the asymmetrical effect of θ observed in the

main effects is exacerbated,

Mdn[(βθ=45 + βr=40×θ=45)− (βθ=−45 + βr=40×θ=−45)] = 0.45, 95% HDI [0.03, 0.9], and

Mdn[(βθ=45 + βr=80×θ=45)− (βθ=−45 + βr=80×θ=−45)] = 0.56, 95% HDI [0.11, 1.04].

4.4.1.2 Regression analysis

Prospective difficulty ratings are grouped by (D, r, θ) condition, and summarized using

means.

First, following Equation (4.1), a simple linear regression of the form

PD ∼ N(a + b ID, σ2) (4.23)

is fit. The results, presented on Table 4.1, show that the fit is quite good in terms of R2.

However, Figure 4.8 shows that the regression line consistently underestimates downward
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targets (θ = 45◦, represented by the green dots), and overestimates some of the horizontal

targets angles (θ = 0◦, represented by the red dots).

−0.08 + 1.39 ID

R2 = 0.97

2

3

4

5

6

2 3 4
ID

PD

θ −45◦ 0◦ 45◦

Figure 4.8. Regression for PD = a + b ID. The thick black line represents the posterior median
for the intercept and slope, the gray lines represent 100 posterior simulations from
intercept and slope.

Table 4.1. Posterior medians (first row) and 95% HDI (second row) of the of the regression
estimates for PD = a + b ID.

a b σ R2

−0.08 1.39 0.24 0.97
[−0.44, 0.29] [1.27, 1.51] [0.16, 0.34] [0.94, 0.99]

These results suggest that a model accounting for target direction might model the PD of

pointing at 2-d static-targets more accurately. Thus, following Equation (4.11), a linear

regression with per-angle intercept of the form

PD ∼ N(aθ + b ID, σ2) (4.24)

is fit.

The regression, displayed in Figure 4.9, shows a great fit, with a very good R2 = 0.99,

and no visible non-random patterns around the regression lines. The results, presented in

Table 4.2, show estimates of σ and R2 that are better (lower for σ, and higher for R2), and
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more precise than those of the simple linear model, shown in Table 4.1. This is reflected in

Figure 4.9, which shows that all of the points in the dataset fall within the lines formed by the

posterior draws of aθ and b, with no visible non-random patterns.

θ = 45◦ θ = −45◦ θ = 0◦

0.13 + 1.39 ID −0.11 + 1.39 ID −0.27 + 1.39 ID2

3

4

5

6

2 3 4 2 3 4 2 3 4
ID

PD

Figure 4.9. Regression for PD = aθ + b ID. The thick black lines represent the posterior median
for each intercept and slope, the gray lines represent 100 posterior simulations from
intercept and slope.

Table 4.2. Posterior medians (first row) and 95% HDI (second row) of the of the regression
estimates for PD = aθ + b ID.

aθ=0 aθ=−45 aθ=45 b σ R2

−0.27 −0.11 0.13 1.39 0.16 0.99
[−0.55, 0.02] [−0.4, 0.17] [−0.16, 0.4] [1.3, 1.48] [0.11, 0.24] [0.97, 0.99]

4.4.1.3 Participant performance and self assessment

The median time participants spent in each question was 5 s, 95% HDI [1, 20], and only in

five trials the survey window went out of focus. The median seriousness rating with which

participants assessed their performance was 4, 95% HDI [3, 5], with 1 being “Not seriously at

all,” and 5 “Very seriously.”

4.4.2 Moving-target block

4.4.2.1 Inferential statistics

To evaluate the effects on PD of D, r, V, and φ, and their interactions, the ordered probit

regression of Equation (4.21) is fit with the following 25 predictors:

• One indicator for D = 400
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• Two indicators for r ∈ {40, 80}

• Two indicators for V ∈ {−400,−800}

• Two indicators for φ ∈ {−45, 45}

• Two indicators for D× r

• Two indicators for D×V

• Two indicators for D× φ

• Four indicators for r×V

• Four indicators for r× φ

• Four indicators for V × φ,

implying that the base values, i.e., Xi = 0, are set to D = 200, r = 20, V = −200, and φ = 0.

Main Effects. The estimates in Figure 4.10 show that there are strong main effects of r, V,

and φ. As in the static block, PD decreased with larger r, however, as opposed to the static

block, PD was virtually unaffected by D, Mdn = −0.02, 95% HDI [−0.35, 0.33]. Additionally,

PD increased with |V|, and almost symmetrically with φ = ±45, Mdn(βφ=45− βφ=−45) = 0.07,

95% HDI [−0.32, 0.44]. Given the G–V analogy presented in Section 4.2.3, this is consistent

with the subjective assessments of Shoemaker et al. [2012], who found that higher G levels

were perceived as more difficult.
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Figure 4.10. Main-effect coefficient plot for the fitted ordered probit model on moving-target
PD ratings. Points, thick lines, and thin lines represent the medians, 50%, and
95% HDI for each of the coefficients in β.
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Two-way Interactions. Figure 4.11 shows that interaction effects have small magnitudes

compared to the main effects, indicating that most of the changes in PD are explained by the

latter.
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Figure 4.11. Two-way interaction coefficient plot for the fitted ordered probit model on moving–
target PD ratings. Points, thick lines, and thin lines represent the medians, 50%,
and 95% HDI for each of the coefficients in β.

Even though the main effect of D was very weak, the interactions between D and the

other main effects show some interesting, non-additive relations. For levels of r < 80, D had a

close-to-zero effect on PD; however, when r = 80, D added about 0.55, 95% HDI [0.22, 0.86],

to the prospective difficulty of the task, which indicates that the effect of r is lower on larger

distances (similar to the static block). Likewise, for levels of |V| < 800, D had a close-to-zero

effect on PD; however, when V = −800, D actually made the task easier on average by 0.55,
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95% HDI [0.22, 0.86], indicating perhaps that D gives more reaction time to participants on

high speed scenarios, and this is perceived as easier. Also, the D× φ interaction had a positive

effect on PD, which indicates that non-zero angles are perceived as more difficult with higher

distances.

Concerning the interactions between r and the other main effects, r > 20 mostly decrease

the effects of V and φ, Mdn(βr>20×(V,−200,φ,0)) = −0.24, 95% HDI [−0.78,−0.01]. The in-

teraction effects of r = 80× V = −800, and r = 40× φ = −45, however, are close to 0,

Mdn(βr=80×V=−400, βr=40×φ=−400) = 0.05, 95% HDI [−0.35, 0.43].

Finally, concerning the V × φ interaction, when |V| > 200, the angle effects are somehow

exacerbated. At V = −400, the φ = ±45 effects increase by about 0.22, 95% HDI [−0.26, 0.52],

and at V = −800, the φ = ±45 effects increase by about 0.49, 95% HDI [0.08, 0.86].

Symmetry of target movement-direction effects. In general, the main and interaction

effects of φ seem to be symmetrical, which suggests that the three-part model with per V × φ

intercept, described in Equation (4.20), is unnecessarily complex, and a simpler, nested model

with intercepts varying only by V, such that

PD = aV + bV
√

Ds + cV
√

Dm + dV IDm, (4.25)

may be sufficient. Indeed, this model already includes the interactions between D, r, V, and φ

in its non-constant terms.

4.4.2.2 Regression analysis

Prospective difficulty ratings are grouped by (D, r, V, φ) condition, and summarized using

means.

One-dimensional moving-target model. A subset of the moving-target tasks, where φ = 0,

is fit using Hoffmann’s two-part model with per-velocity coefficients, described in Equa-

tion (4.18). Therefore, a linear regression of the form

PD ∼ N(aV + bV
√

D + cV ID, σ2) (4.26)

is fit. The resulting estimates, presented in Table 4.3, show that the fit is very good in

terms of R2, with credible values above 0.92, and distributions of a, b, and c that increase in

magnitude with V. To interpret the results graphically, Formula (4.26) is reparametrized to

yield one simple regression line per (D, V) condition, each with intercept αD,V = aV + bV
√

D,

and slope cV .

The six regression lines, presented in Figure 4.12, show that the model fits the data very

well, without any noticeable non-random patterns around the regression lines. Based on the

intercepts of the reparametrized regression lines, the graph suggests that the PD–ID baseline

increases with |V|, and decreases with D. Based on the slopes, the graph suggests that the

rate of PD change per ID change increases slightly with |V|.
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Figure 4.12. Regression for PD = aV + bV
√

D + cV ID reparametrized to yield six simple
regression lines per (D, V) condition, each with intercept αD,V = aV + bV

√
D, and

slope cV . The thick black lines represent the posterior median for each intercept
and slope, the gray lines represent 100 posterior simulations from intercept and
slope.
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Table 4.3. Regression estimates for PD = aV + bV
√

D + cV ID.

Estimand Mdn 95% HDI
aV=−200 2.49 [1.32, 3.64]
aV=−400 3.5 [2.33, 4.63]
aV=−800 5.26 [4.1, 6.42]
bV=−200 −0.16 [−0.24,−0.08]
bV=−400 −0.19 [−0.27,−0.11]
bV=−800 −0.26 [−0.34,−0.18]
cV=−200 1.12 [0.88, 1.36]
cV=−400 1.19 [0.95, 1.43]
cV=−800 1.38 [1.14, 1.62]

σ 0.22 [0.13, 0.36]
R2 0.97 [0.92, 0.99]

Change of coefficients per V. Consistently with the k–G analyses from Shoemaker et al.

[2012], linear regressions of the point estimates from Table 4.3—âV = Mdn(aV), b̂V = Mdn(bV),

and ĉV = Mdn(cV)—on target velocity V are calculated using the default least-squares method

in R [2014]. The results, given in Table 4.4, show that there is some evidence of the linear

relation between V and â, V and b̂, as well as V and ĉ.

Table 4.4. Least-squares estimates for the regressions of the point estimates from Ta-
ble 4.3—âV = Mdn(aV), b̂V = Mdn(bV), and ĉV = Mdn(cV)—on target velocity
V.

Model Intercept Slope σ̂ R̂2

âV ∼ N(α1 + α2 V × 10−3, σ2
a ) 1.61 −4.58 0.07 1

b̂V ∼ N(β1 + β2 V × 10−3, σ2
b ) −0.12 0.17 0 1

ĉV ∼ N(ζ1 + ζ2 V × 10−3, σ2
c ) 1.03 −0.43 0.01 0.99

Similar to the analyses of Shoemaker et al. [2012], however, the least-squares standard

deviation estimates, σ̂a, σ̂b, and σ̂c, are too optimistic, as they ignore the uncertainty on a, b,

and c. This prevents the calculation of accurate confidence/credible intervals for α1, α2, β1, β2,

ζ1, and ζ2.

To give a better sense of uncertainty, a hierarchical model, which simultaneously estimates

the parameters in Tables 4.3 and 4.4, is fit. Following the recommendations from Gelman

[2006] for standard deviation parameters on hierarchical models, especially those with a low

number of groups (in the current study, for example, #(V) = 3), half-Cauchy priors8 are

chosen for σa, σb, σc, and σ, with scale parameter A = 5, which is wide with respect to the

range of the data (1–9). Since the center of the α1, α2, β1, β2, ζ1, and ζ2 distributions are

8The half-Cauchy distribution is equivalent to the right half of a 1-degree-of-freedom t distribution.
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not expected to have a considerable change with respect to the least-squares estimates from

Table 4.4, the latter are used as mean parameters for their priors; still, a wide prior variance

parameter (102) on their distribution is used to allow for some flexibility both in the mean

and the variance of the marginal posteriors. These weakly-informative priors give reasonable

constraints to the posterior distributions, improving the mcmc sampler convergence, while

minimally affecting the inferences from the data. In any case, the goal of this hierarchical

model is not to get accurate point estimates, especially of a, b, c, α, β, and ζ, for which rough

estimates are already known; rather, the goal is to get more realistic uncertainty around α, β,

and ζ, and better estimates of σa, σb, and σc.

The model is fit using Stan [2014], with four mcmc chains of 5,000 iterations, including

2,500 warm-up iterations, for a total of 10,000 saved iterations.9 The levels and estimates of

the model are shown in Table 4.5.

Table 4.5. Levels and estimates of the hierarchical regression
PDi ∼ N(aV[i] + bV[i]

√
Di + cV[i] IDi, σ2). α̂1, α̂2, β̂1, β̂2, ζ̂1, and ζ̂2 correspond to the

least-squares estimates from Table 4.4.

Model Estimand Mdn 95% HDI

aV ∼ N(α1 + α2 V × 10−3, σ2
a )

aV=−200 2.49 [1.46, 3.49]
aV=−400 3.47 [2.55, 4.38]
aV=−800 5.25 [4.15, 6.32]

bV ∼ N(β1 + β2 V × 10−3, σ2
b )

bV=−200 −0.16 [−0.23,−0.09]
bV=−400 −0.19 [−0.26,−0.13]
bV=−800 −0.26 [−0.34,−0.19]

cV ∼ N(ζ1 + ζ2 V × 10−3, σ2
c )

cV=−200 1.12 [0.89, 1.34]
cV=−400 1.2 [0.98, 1.39]
cV=−800 1.38 [1.15, 1.6]

σ ∼ half-Cauchy(5) σ 0.21 [0.13, 0.34]

αj ∼ N(α̂j, 102)
α1 1.62 [−2.42, 6.31]
α2 −4.53 [−11.88, 3.67]

σa ∼ half-Cauchy(5) σa 0.86 [0, 4.72]

β j ∼ N(β̂ j, 102)
β1 −0.13 [−1.11, 0.74]
β2 0.16 [−1.48, 2.05]

σb ∼ half-Cauchy(5) σb 0.11 [0, 0.98]

ζ j ∼ N(ζ̂ j, 102)
ζ1 1.03 [−2.45, 3.75]
ζ2 −0.41 [−6.03, 5.34]

σc ∼ half-Cauchy(5) σc 0.42 [0, 3.69]

The hierarchical-model results show that the standard deviations σa, σb, and σc are much

higher than those from Table 4.4. Correspondingly, the intervals around α1, α2, β1, β2,

9Due to the time it took the mcmc sampler to run the iterations compared to the linear regression models, the
number of iterations was reduced with respect to the latter. Nevertheless, the 10,000 iterations were sufficient for
the sampler to converge.
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ζ1, and ζ2 are wider than those that would be obtained from the least-squares regression.

Nevertheless, the similarity in the distributions of parameters a, b, c, and σ between Tables

4.3 and 4.5 suggests that, in spite of the wide uncertainty, linear relations between V and a,

V and b, as well as V and c, are plausible and congruent with the data.

Two-dimensional moving-target model. As suggested in the inferential statistics section,

the three-part model with per-speed intercepts described in Equation (4.25) is evaluated for

all the moving-target tasks. Therefore, a linear regression of the form

PD ∼ N(aV + bV
√

Ds + cV
√

Dm + dV IDm, σ2) (4.27)

is fit. The resulting estimates are presented in Table 4.6.

Table 4.6. Regression estimates for PD = aV + bV
√

Ds + cV
√

Dm + dV IDm.

Estimand Mdn 95% HDI
aV=−200 2.98 [2.23, 3.7]
aV=−400 3.59 [2.86, 4.33]
aV=−800 5.96 [5.25, 6.72]
bV=−200 0.08 [0.06, 0.1]
bV=−400 0.1 [0.09, 0.12]
bV=−800 0.1 [0.09, 0.12]
cV=−200 −0.22 [−0.27,−0.17]
cV=−400 −0.24 [−0.29,−0.18]
cV=−800 −0.31 [−0.36,−0.26]
dV=−200 1.31 [1.16, 1.47]
dV=−400 1.41 [1.26, 1.56]
dV=−800 1.41 [1.26, 1.56]

σ 0.26 [0.21, 0.32]
R2 0.97 [0.96, 0.98]

Table 4.6 shows that all of the coefficients are “statistically significant” in the sense that their

95% HDI do not include 0. However, the low values of bV indicate that
√

Ds contributes very lit-

tle to PD, and its coefficients show very small variations among levels of V, indicating that the

contribution of the “static distance” Ds to PD is minimally affected by V. There is no credible

difference between bV=−400 and bV=−800, and the difference between bV=−400 and bV=−200 is so

small, that a target starting at D = 400, moving with (V = −800, φ = ±45) would be perceived

as harder than a target with the same starting position, but moving with (V = −200, φ = ±45),

only by 0.37 units, 95% HDI [−0.06, 0.8].

It is possible that the differences between values of bV , and dV will be larger for targets

with different configurations, however, with the present experimental-design and observed

data this is not the case. This suggests that a model with fixed b, and d, such that
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PD = aV + b
√

Ds + cV
√

Dm + d IDm, (4.28)

may be sufficient to adequately fit the data. Therefore, its corresponding linear regression,

PD ∼ N(aV + b
√

Ds + cV
√

Dm + d IDm, σ2), (4.29)

is fit. The resulting estimates are presented in Table 4.7. The estimates are very similar to

those in Table 4.6; the previous differences between bV=−200 and bV∈{−400,−800}, and between

dV=−200 and dV∈{−400,−800} are now represented in aV , whose values present wider changes

between levels of V than in the previous model. In terms of goodness of fit both models

are very similar, there is no credible R2 difference, and the difference of 0.01 in σ, in both

the median and the upper bound of the 95% HDI, is not of practical importance in the 1–9

measurement scale.

To interpret the results graphically, Formula (4.29) is reparametrized to yield one simple re-

gression line per (D, V, |φ|) condition, each with intercept αD,V,|φ| = aV + b
√

D| sin φ|+ cV
√

D| cos φ|,
and slope d. The 12 regression lines presented in Figure 4.13 show that the model fits the data

very well, with no noticeable non-random patterns around the regression lines.

Table 4.7. Regression estimates for PD = aV + b
√

Ds + cV
√

Dm + d IDm.

Estimand Mdn 95% HDI
aV=−200 2.74 [2.04, 3.43]
aV=−400 3.72 [3.03, 4.42]
aV=−800 6.08 [5.39, 6.76]

b 0.1 [0.09, 0.11]
cV=−200 −0.22 [−0.27,−0.17]
cV=−400 −0.23 [−0.28,−0.19]
cV=−800 −0.3 [−0.35,−0.26]

d 1.38 [1.29, 1.47]
σ 0.27 [0.21, 0.33]
R2 0.97 [0.96, 0.98]

Based on the intercepts of the reparametrized regression lines, the graph suggests that the

PD–ID baseline increases with φ and |V|, and decreases with D. The slopes suggest that the

rate of PD change per ID stays roughly similar for all conditions.

Change of coefficients per V. In a manner analogous to the analyses presented in the 1-d

moving-target section, linear regressions on the per-V parameter estimates from Table 4.7—

âV = Mdn(aV), and ĉV = Mdn(cV)—are first calculated using the default least-squares method

in R [2014]. The results, shown in Table 4.8, give some evidence in support of the linear

relation between V and â, as well as V and ĉ.
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Figure 4.13. Regression for PD = aV + b
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Ds + cV
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Dm + d IDm reparametrized to yield
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D| sin φ|+ cV

√
D| cos φ|, and slope d. The thick black

lines represent the posterior median for each intercept and slope, the gray lines
represent 100 posterior simulations from intercept and slope.
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Table 4.8. Least-squares estimates for the regressions of the point estimates from Ta-
ble 4.7—âV = Mdn(aV), and ĉV = Mdn(cV)—on target speed V.

Model Intercept Slope σ̂ R̂2

âV ∼ N(α1 + α2 V × 10−3, σ2
a ) 1.56 −5.61 0.1 1

ĉV ∼ N(ζ1 + ζ2 V × 10−3, σ2
c ) −0.19 0.14 0.01 0.92

Once again, the least-squares estimates σ̂a, and σ̂c are too optimistic, as they ignore the

uncertainty on a, and c. Thus, to have a better sense of uncertainty around the estimates, and

assess the plausibility of a linear relation between V and a, as well as V and c, a hierarchical

model which simultaneously estimates the parameters in Tables 4.7 and 4.8, is fit. The

hierarchical model reuses the least-squares estimates α̂1, α̂2, ζ̂1, and ζ̂2 from Table 4.8 as

priors for the mean parameters of α1, α2, ζ1, and ζ2, respectively, as well as the distribution

medians Mdn(b), and Mdn(d) from Table 4.7, as priors for the mean parameters of b, and d,

respectively; the wide prior variance (102) allows for some flexibility both in the mean and

the variance of the marginal posteriors. Similar to the 1-d moving-target hierarchical model,

half-Cauchy priors are used for the variance parameters σa, σc, and σ.

The model is fit using Stan [2014], with four mcmc chains of 5,000 iterations, including

2,500 warm-up iterations, for a total of 10,000 saved iterations. The levels and estimates of the

model shown in Table 4.9, again, show higher estimates for σa, and σb than those obtained

in Table 4.8, and correspondingly, wider intervals around α̂1, α̂2, ζ̂1, and ζ̂2 than those that

would be obtained from the least-squares regression. Nevertheless, the minimal change in the

distributions of a, b, c, d, and σ between Tables 4.7 and 4.8 suggests that, in spite of the wide

uncertainty, the linear relations between V and a, and V and c are plausible and congruent

with the data.

4.4.2.3 Participant performance and self assessment

The median time participants spent in each question was 3 s, 95% HDI [1, 11], and only in 11

trials the survey window went out of focus. Participants replayed the animation in 15.31%

of the trials, but within those trials the median number of replays was 1, 95% HDI [1, 3].

The median seriousness rating with which participants assessed their performance was 4,

95% HDI [3, 5], with 1 being “Not seriously at all,” and 5 “Very seriously.”

4.5 Discussion

Results are summarized according to the study hypotheses, each followed by a discussion.

After the hypotheses discussions, the limitations of the current study and possible future work

are presented.



63

Table 4.9. Levels and estimates of the hierarchical regression
PDi ∼ N(aV[i] + b

√
Dsi + cV[i]

√
Dmi + d IDmi, σ2). α̂1, α̂2, ζ̂1, and ζ̂2 corre-

spond to the least-squares estimates from Table 4.8. b̂, and d̂ correspond to the
distribution medians for b, and d from Table 4.7.

Model Estimand Mdn 95% HDI

aV ∼ N(α1 + α2 V × 10−3, σ2
a )

aV=−200 2.7 [2.06, 3.33]
aV=−400 3.78 [3.19, 4.36]
aV=−800 6.06 [5.4, 6.74]

b ∼ N(b̂, 102) b 0.1 [0.09, 0.11]

cV ∼ N(ζ1 + ζ2 V × 10−3, σ2
c )

cV=−200 −0.22 [−0.26,−0.18]
cV=−400 −0.24 [−0.28,−0.2]
cV=−800 −0.3 [−0.35,−0.26]

d ∼ N(d̂, 102) d 1.38 [1.28, 1.46]
σ ∼ half-Cauchy(5) σ 0.26 [0.22, 0.33]

αj ∼ N(α̂j, 102)
α1 1.58 [−2.41, 5.3]
α2 −5.61 [−12.19, 1.22]

σa ∼ half-Cauchy(5) σa 0.64 [0, 4.18]

ζ j ∼ N(ζ̂ j, 102)
ζ1 −0.18 [−0.7, 0.43]
ζ2 0.15 [−0.94, 1.28]

σc ∼ half-Cauchy(5) σc 0.08 [0, 0.6]

4.5.1 Prospective difficulty of static-target selection

H1. Fitts’ ID model with per-angle intercept, described in Equation (4.11), models the

prospective difficulty of two-dimensional static-target selection tasks better than the

classic Fitts’ ID model with single intercept, described in Equation (4.1). Partially
supported.

Both the fixed intercept model of Equation (4.1),

PD = a + b ID,

and the per-angle intercept model of Equation (4.11),

PD = aθ + b ID,

yielded very good fits with credible values of R2 = [0.94, 0.99], and R2 = [0.97, 0.99], respec-

tively. However, compared to the results of the fixed intercept model, presented in Table 4.1,

the results of the per-angle intercept model presented in Table 4.2 showed slightly better,

and more precise estimates of σ and R2. The difference in precision, Mdn(σ1 − σ2) = 0.07,

95% HDI [−0.04, 0.2], however represents less than 1% of the total 1–9 scale range.
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Even though the 2-d model is “significantly better” in statistical terms,10the difference

in precision between both models is not of practical significance. The importance of the

model, however, lies in its flexibility and extensibility to other angles, therefore, H1 is partially

supported.

In any case, the fact that ID was linearly related to PD, supports the usage of the chosen

9-point rating scale, with labels at the poles, and a middle anchor, to measure prospective

difficulty. This point is crucial to validate the PD ratings for moving-target selection using

this scale.

4.5.2 Prospective difficulty of moving-target selection

H2. Hoffmann’s two-part model with per-velocity coefficients, described in Equation (4.18),

accurately models the prospective difficulty of one-dimensional moving-target selection

tasks. Supported.

The 1-d moving-target selection model of Equation (4.18),

PD = aV + bV
√

D + cV ID,

yielded a very good fit, with credible values of R2 = [0.92, 0.99], presented in Table 4.3,

and regression lines that closely follow the data with no visible non-random patterns in the

residuals, as shown in Figure 4.12. This was expected given the structural similarity between

Equation (4.18) and Jagacinski’s “general” model in Equation (2.15), as well as the G–Vtarget

analogy, presented in Section 4.2.3.

H2.1. The coefficients aV , bV , and cV of Equation (4.18) vary linearly with V. Supported.

The results suggest that coefficients aV , bV , and cV of Equation (4.18) vary linearly with V.

The analogy with gain, for which these approximated coefficients also seem to increase linearly,

also supports this hypothesis.Using the credible intervals presented in Table 4.5 allows PD to

be predicted using different V, while still propagating the uncertainty in these estimates.

H3. The three-part model with per-speed coefficients, and per-velocity intercept, described

in Equation (4.20), accurately models the prospective difficulty of two-dimensional

moving-target selection tasks. Supported.

It was determined that the three-part model with per-speed coefficients, and per-velocity

intercept of Equation (4.20),

PD = aV×φ + bV
√

Ds + cV
√

Dm + dV IDm,

10Which can also verified using a classical F–test, not shown.
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was unnecessarily complex for the evaluated dataset; however, the simpler model with

per-speed intercept and coefficient c described in Equation (4.28),

PD = aV + b
√

Ds + cV
√

Dm + d IDm,

yielded a very good fit, with credible values of R2 = [0.96, 0.98], presented in Table 4.7, and

regression lines that closely follow the data, with no visible non-random patterns in the

residuals, as shown in Figure 4.13.

Since Equation (4.28) is nested within Equation (4.20), this implies that the latter also fits

the data well, therefore H3 is supported. Even though the simpler model was sufficient for

the purposes of this chapter, Equation (4.20) should not be discarded for future analyses,

especially those having a wider variety of angles, in which angle asymmetry might have a

larger effect.

H3.1. In Equation (4.20) the coefficients bV , cV , and dV vary linearly with V, as well as

the coefficients aV×φ within the same angle φ. Partially Supported.

The results suggest that coefficients aV , and cV of Equation (4.28) increase linearly with V.

Contrary to what was hypothesized, b, and d were almost constant across V. For b, this

suggests that the prospective ballistic motion parallel to the target movement is minimally

affected by V. For d, this suggests that the effect of a same target width does not change

by V, as shown in the interaction plot in Figure 4.11. Using the credible intervals presented

in Table 4.9, this allows PD to be predicted using different V, while still propagating the

uncertainty in these estimates.

4.6 Conclusion

Contrary to most Fitts-related studies in hci, which have focused mostly on modeling

performance in static-target pointing tasks, the main goal of this study was to explore the

PD of moving-target pointing tasks in 2-d. This goal was achieved by developing and

empirically evaluating models for 2-d static-target pointing, and 1-d and 2-d moving-target

pointing. To the author’s knowledge, this is the first study to evaluate pointing tasks in which

the target is not moving directly toward, or directly away from the cursor, making the models

closer to generalization than some of the work in the literature.

The proposed models have, in the author’s opinion, relatively simple formulations. These

models are inspired on previous work on the MT of 2-d static-target tasks [Murata and Iwase

2001; Appert et al. 2008; Grossman and Balakrishnan 2004], as well as two-part models [Welford

et al. 1969; Hoffmann and Chan 2012], which have proven effective to model static-target

selection with different levels of G [Shoemaker et al. 2012]. Incidentally, the empirical data

analysis was made using Bayesian methods, less prevalent in hci yet very powerful—in this
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chapter, in particular, hierarchical Bayesian regressions allowed to propagate the uncertainty

on the main model parameters to secondary regressions made on those parameters themselves.

As will be discussed in Chapter 6, there are many opportunities to extend the current

work. Hopefully, this will incentivize and facilitate further hci research on moving-target

selection and subjective difficulty, which remain overshadowed by static-target selection and

performance. Additionally, it is hoped that the analytical methods presented in this chapter

will be considered as a viable alternative to the prevailing frequentist methods in hci, and

motivate more analyses to go beyond “statistical significance.”
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Chapter 5

Performance and intention in directed 3-d moving-target
selection

Chapters 1–3 hypothesized that ID was predictive of user intention in moving target selection,

based on the premise that users form their intentions by minimizing their prospective effort,

as described by ID. The results from Chapter 3, however, revealed that separating the W
and D components was more effective for predicting intention, in a similar way as the models

proposed in Chapter 4 separate D from ID to predict PD.

This similarity suggests that the proposed models may also be predictive of user intention,

but this relation needs to be further explored. In particular, in order to predict user intention

in vr, these models need to be extended to 3-d, and evaluated during action execution. To

achieve these goals, this chapter explores the applicability of the PD models from Chapter 4

to predict selection performance. The performance predictions are, in turn, used to predict

user intention by integrating them into the framework described in Chapter 3.

In order to generalize the results from Chapters 3 and 4, this chapter includes a wider

span of experimental factors, including more levels of velocity, target angle, and number of

spheres. Additionally, this chapter includes tasks in which users do not have to wait for the

targets to be within their reach, and tasks in which users must choose a specific target among

multiple others.

5.1 Extending the 2-d formulae to 3-d

One advantage of the 2-d model proposed in Chapter 4 is that it can theoretically be used

to model 3-d target-selection tasks. Consider the general 3-d moving-target pointing task

presented in Figure 5.1. Even though the target is moving in 3-d, the target velocity (V) and

initial target position (D) define a right triangle with sides D, Dm, and Ds, which, together

with W, are the inputs in the model in Equation (4.20).

In addition to the target altitude θ, present in 2-d tasks, 3-d tasks require an additional

angle to define the target position, in this case a z–x azimuth angle α is chosen. Due to depth-

perception problems in stereoscopic displays [Grossman and Balakrishnan 2004; Bowman et al.
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Figure 5.1. Three-dimensional moving-target model. The red and green spheres indicate the
starting positions of the cursor and the target, respectively. The initial target
point (D) is determined by the initial cursor–target distance (D), z–x azimuth
angle (α), and altitude angle (θ).

2004], targets with identical (V, D), but displayed at different screen depths, given by (θ, α),

may be perceived with different PD. This effect has previously been observed for the MT
required to acquire 3-d static targets [Teather and Stuerzlinger 2011].

Analogous to 2-d tasks, the initial angular coordinates (α, θ) could be represented with

different aV×α×θ intercepts. Yet again, it is hypothesized that, as long as the target is defined

within the user’s field of view, the initial α and θ will have a minimal effect, since these angles

change as the target moves.

Likewise, the target orientation can no longer be solely defined with φ. In fact, as shown

in Figure 5.2, any rotation γ of V around D defines right triangles with equal dimensions Ds,

and Dm. Since their parameters are identical, all of these triangles are considered equal in the

2-d models of the previous chapter; if the effect of γ is large, however, the 2-d moving-target

model needs to be extended in order to be used effectively in 3-d.
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x

y

z

α

V

D

Dm

Ds
θ

φ
γ

x

y

z

α

V

D

Dm

Ds

θ

φ

x

y

z

α

V

D
Dm

Ds
θ

φ
γ

Figure 5.2. Identical model parameters V, Dm, and Ds for three different γ rotations of V
around D.
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Finally, to generalize the model to 3-d, the calculations of Dm, and Ds can be simplified

by using vector algebra. At any given instant, the displacement vector between the target’s

position P, and the user’s wand position Pw is given by

D′ = Pw − P. (5.1)

Given this, Dm, and Ds correspond to the lengths of the projection and rejection of D′ on the

target’s unit velocity V̂, respectively, such that

Dm = |D′ · V̂| (5.2)

Ds = ||D′ − (D′ · V̂) V̂||. (5.3)

Alternatively, the value of Dm can be reused to calculate Ds, which can be less expensive

computationally if the calculations are executed serially, such that

Ds =
√

D′ ·D′ − D2
m. (5.4)

5.2 Subjective difficulty and performance

In Chapter 1 it was argued that prospective and performance assessments are related, but

the former can complement or even supersede the latter because they are not dependent on

action execution. Nonetheless, measures of performance, such as MT or percentage of errors

are still important to evaluate users and interfaces objectively. Additionally, measuring the

PD of a given task requires either direct participant assessment, which interrupts the task,

or the usage of sensors such as eeg [Kourtis et al. 2012], which may be invasive and are not

available in all vr setups.

Based on the correlation between subjective difficulty (prospective, and perceived) and MT
explored in previous work, it is hypothesized that the proposed PD formulae should also

predict MT, such that

MT = aV + bV
√

Ds + cV
√

Dm + dV log2

(
2Dm

W

)
. (5.5)

The relation between PD and MT, however, may be different for moving targets than for static

ones. In particular, in Chapter 4 it was observed that PD increases with V even for targets

that are moving toward the cursor, but in this case the MT should decrease with V as long

as the target has not been missed. This may imply that the signs in some of the regression

coefficients in the proposed formulae for PD may be contrary in MT formulae. Therefore,

this chapter investigates the relation between the PD models of 2-d moving-target pointing

introduced in Chapter 4, and the performance of 3-d moving-target selection tasks.
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5.3 Predicting user intention in directed tasks

Chapter 3 evaluated the possibility of predicting intention in undirected tasks using ID,

based on the premise that users form their intentions by minimizing their prospective effort,

as described by ID. In directed tasks, such as the ones studied in this chapter, the user

must select the given target regardless of the prospective effort required to reach it. The

principle of minimizing prospective effort, however, may still apply when choosing the path

required to reach the specified target, similar to the way people choose routes in everyday

life [Christenfeld 1995; Bailenson et al. 2000].

According to the initial segment strategy (iss) [Christenfeld 1995; Bailenson et al. 2000],

people tend to choose routes whose initial segments are straight, and where turns occur

last—both characteristics are found in the model for 2-d moving-target selection proposed in

Section 4.2.4. Therefore, the hypothesis that the target with the minimal M̂T as predicted by

Equation 5.5 is the intended target is evaluated in this chapter.

Since prediction is based only on one feature, a scoring function based on the one proposed

by Ortega [2013], presented in Equation (2.23), is used. At each frame t, M̂T is calculated for

each of the I targets using Equation (5.5). Targets are then ordered ascendingly by M̂T, their

order given by i = 0, · · · , I − 1. The score for each target i is calculated following

T̂Scorei(t) = T̂Scorei(t− 1) +




(N − i)∆t if i < N

−(decay · N)∆t if i ≥ N

T̂Scorei(t) ≥ 0 (5.6)

where N is an arbitrary number of faster-to-reach targets, and decay is the rate with which

scores decrease when a target i ≥ N. In Ortega’s studies with 100 spheres, a distance-based

scoring function, dScorei(t), was used with N = 20, and decay = 0.5, in Chapter 3, dScorei(t)
was used with N = 1, and decay = 0.9. To validate the usefulness of T̂Scorei(t), its predictive

accuracy is compared to dScorei(t)

5.4 Hypotheses

The following hypotheses guided the design and analysis of the current study,

5.4.1 Moving-target selection performance in 3-d

H1. The three-part model with per-speed coefficients, and per-velocity intercept, described in

Equation (5.5), accurately models the movement time of three-dimensional moving-target

selection tasks.
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H1.1. The azimuth α, altitude θ, and γ angles, not modeled in Equation (5.5), have a

small effect on MT.

H1.2. In Equation (5.5) the coefficients aV , bV , cV , and dV vary linearly with V.

5.4.2 Predicting user intention in 3-d moving-target directed-selection tasks

H2. At any given instant, the minimal movement time estimated by Equation (5.5) can be

used to predict the intended target in a 3-d moving-target directed-selection task.

H2.1. The accuracy of the predictions based on estimated movement time will be greater

than those based on wand-target distance.

These hypotheses assume univariate targets in a 3-d space, i.e., spheres.

5.5 Methods

5.5.1 Participants

Participants from Iowa State University were recruited through the Psychology Department

research participant pool (sona), through word of mouth, and through the hci mailing list.

There were 33 participants, aged 18 to 39 years old (M = 23.48, Mdn = 21); ten participants

were females, and only one participant was left handed. Most participants (31) were students,

and nine participants reported having past experience in vr.

5.5.2 Apparatus

The user study took place in the Virtual Reality Applications Center, at Iowa State University.

The code-base from Study 1 was reused and modified to implement this experiment. The

vr jugglua application was deployed in the C6, a six-surface cave-like virtual environment.

All of the faces of the 3.05 m3
ve, except the back wall, were projected using active stereo

at 4096× 4096 px. The participant’s head and wand pose (P, Q) were tracked using a 6-dof

Intersense is-900 inertial–ultrasonic hybrid tracker, allowing them to adequately perceive the

3-d world, and interact with it.

5.5.3 Procedure

Upon arriving to the study site, the participant was asked to read and accept a study consent

form. If consent was granted, the participant was asked to answer a Qualtrics survey regarding

their video game, vr, sports, and demographic background. The participant was also asked to

complete the “Perspective Taking/Spatial Orientation Test” [Hegarty and Waller 2004], and the

Simulator Sickness Questionnaire (ssq) [Kennedy et al. 1993]. Subsequently, the participant’s
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visual acuity was evaluated using the Interactive Visual Acuity Chart (ivac) [Olitsky et al.

2006].

After completing the pre-survey questionnaire, the participant was asked to enter the

C6 and step on a circular landmark located in the middle of the ve (0, 0, 0), facing the

front wall. After inquiring if the participant’s perception of the virtual world was adequate,

the experimenter asked the participant to choose a comfortable starting position for their

wand (Pw,0), specifying that they should return to this position at the beginning of each trial.

In each trial, the participant was presented with an array of equally-textured virtual

spheres of different sizes, initially located in front of them, and moving with different

velocities. The spheres would start moving when the participant’s wand was placed within a

green translucent sphere, sph0, of radius 0.05 m centered at Pw,0.

The participant was asked to keep the wand within sph0 until the goal sphere became

highlighted. If they did not follow this instruction, sph0 would turn red. Once the goal sphere

became highlighted, sph0 would disappear and the participant was asked to extend their arm

to touch the goal sphere. If any sphere was touched during the selection process, whether

highlighted or not, it disappeared. The trial, however, would end only when the highlighted

sphere was touched, or if its distance to the user’s head was greater than 2 m, in which case it

was assumed to be unreachable.

Visual and auditory feedback were used to indicate participant performance. A virtual

counter was placed in front of the participant at (−1,−1,−10), which showed the number of

highlighted spheres missed by the participant during each experimental block. The counter

would be reset to zero at the beginning of each block of trials. Two different sounds were

played: one when the participant hit any sphere, and another when the trial ended due to the

highlighted sphere being too far away, respectively.

At each frame, the elapsed time, the pose of the participant’s head (Ph, Qh) and wand (Pw, Qw),

each of the sphere positions (Pi), and the possible wand–sphere collisions were recorded in a

log file. The experimental setup is depicted in Figure 5.3.

After all the trials were complete, the participant was asked to exit the C6 and fill a

post-experiment survey, which included the ssq. The total length of the study was less than

60 minutes.

5.5.4 Design

A within-subjects, factorial design was used, with three blocks of trials, each with a different

number of conditions presented in a random order without replacement.

In the first block there was one sphere per trial.1 The target was placed in one of the

front vertices of an imaginary tetrahedron whose sides were 1 m, with one vertex placed

at Pw,0, and the three others in front of the participant. Factors were sphere position, P ∈
1Notice that participants were still instructed to stay at Pw,0 before this sole sphere became highlighted.
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{up, bottom-left, bottom-right}, radius, r ∈ {0.1, 0.2}m, speed, V ∈ {0.5, 1, 1.5}m/s, and initial

movement direction, φ ∈ {15, 30, 45}◦. Since there were already 54 conditions, the value of

the initial γ angle was set randomly between 180◦, and 360◦; there was one trial per condition,

for a total of 1,782 trials.

In the second block there were three spheres per trial. The targets were placed in one

of the front vertices of an imaginary tetrahedron whose sides were 1 m, with one vertex

placed at Pw,0, and the three others in front of the participant. Factors were sphere position,

P ∈ {up, bottom-left, bottom-right}, radius, r ∈ {0.1, 0.2}m, speed, V ∈ {0.5, 1, 1.5}m/s, and

initial movement direction, φ ∈ {15, 30, 45}◦. The value of the initial γ angle was set randomly

between 180◦, and 360◦, and the (P, r, V, γ) conditions of the two remaining spheres were also

set randomly within the possible experimental values. There was one trial for each of the

54 conditions in this block, for a total of 1,782 trials.

In the last block there were six spheres per trial. The targets were placed in one of

the front vertices of two imaginary tetrahedrons, each with sides of 1 m, with one vertex

placed at Pw,0, and the three others in front of the participant; the front vertices of the sec-

ond tetrahedron correspond to the vertically-mirrored positions of the first tetrahedron’s

front vertices (this arrangement is shown in Figure 5.3, middle). Factors were sphere posi-

tion, P ∈ {up, up-left, bottom-left, bottom, bottom-right, up-right}, radius, r ∈ {0.1, 0.2}m, speed,

V ∈ {0.5, 1, 1.5}m/s, and initial movement direction, φ ∈ {15, 30, 45}◦. The value of the initial

γ angle was set randomly between 180◦, and 360◦, and the (P, r, V, γ) conditions of the five

remaining spheres were also set randomly within the possible experimental values. There

was one trial for each of the 108 conditions in this block, for a total of 3,564 trials.

Regardless of the block, in all trials the initial sphere positions were set at Pi −Vi ∗ 1 s.

The goal sphere became highlighted after getting past its original tetrahedral position P, i.e.

after approximately 1 s, when approximately at D = 1 m.2 The criterion for highlighting the

sphere was D < 1 m. Notice that, at the moment of highlight all spheres were approximately

at their tetrahedral position Pi, at about the same distance from Pw,0. This was done to give

participants some time to perceive the motion of the different spheres, and to make the sphere

arrangements seemingly aleatory.

5.6 General results

5.6.1 Experimental issues

There were several technical issues, as well as some participant wellness problems during the

execution of the experiment.

2These values are approximate due to the variable frame rate.



74

Figure 5.3. Experimental setup with six spheres. Left, the sphere starting positions, middle the
spheres approximately at their controlled positions, right the spheres after the goal
sphere gets highlighted. The green sphere represents sph0.

5.6.1.1 Technical issues

Incomplete logging. Because of logging problems, the data from the first two participants

was incomplete, so they were excluded from the performance and intention analyses.

Tracking interruptions. In some trials, the wand tracker lost track of the participant’s

wand causing a delay between the real and the virtual wand or, in the worst case scenario, a

complete cessation of the tracking. In the latter cases, the experimenter asked the participants

to stop the motion of the wand to allow the tracking to resume. This was most noticeable

on participants with brusque movements. Fortunately, by virtue of the experimental design,

in which trials would not start before the participant placed the wand at sph0, this issue did

not affect consecutive trials. Finally, in several trials the head tracker stopped functioning,

an issue that was most often detected and fixed at the end of each block; nonetheless, the

participants did not seem to notice this issue. No trials were removed from the data due to

tracking interruptions.

Projector problems. During five experimental sessions, one or two of the C6 projectors

could not be started. In three instances the affected projector was in the right screen, in

one instance the affected projector belonged to the front screen, and in the last instance both

the right and front faces were affected. These sessions were, nonetheless, included in the

analyses.

5.6.1.2 Participant-wellness issues

Two participants had noticeable wellness problems. The first of these participants had

a cast on their right arm upon arrival, but decided to participate using with their left hand.

The second participant decided to take a break during the three-sphere block, and declared

having some discomfort on their right shoulder; even though the experimenter suggested to

terminate the session without any consequences for the participant, they decided to continue
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using their left hand. This last participant commented having some nausea by the end of the

experiment. These sessions were retained in the analyses.

5.6.1.3 Simulator sickness questionnaire

The ssq ratings were scored using the procedure described by Kennedy et al. [1993, p. 212].

The results, shown in Figure 5.4, show that the score distributions assessed before and after

the experiment are very similar. Notice that each of the categories, nausea, oculomotor,

disorientation, as well as the total score, have different scales.
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Figure 5.4. Distributions of the pre- and post-experiment assessment scores of the ssq by scale.
Lower and upper lines of the boxes represent the first and third quantiles, their
distance called the inter-quantile range (IQR), thick box lines represent the median
values, upper and lower whiskers represent values that are within 1.5 IQR of the
box hinges. Points represent values that are greater than the third quantile plus
1.5 IQR.

Even though the main goal of this study is not to explore simulator sickness, these results

give some evidence against a possible effect of simulator sickness in trial performance and

participant action. This evidence, however, contradicts the conjecture that simulator sickness

is worsened in moving-target selection presented in Chapter 1.
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5.7 Performance analysis

5.7.1 Exploratory data analysis

In accordance with some of the ideas of Tukey [1980], a brief exploratory analysis is carried

out before attempting to apply statistical-modeling techniques to summarize the data. This

analysis serves the purpose of presenting the general trends in the data, informally assessing

the aforementioned hypotheses, and possibly unveiling (or letting the reader discover) unex-

pected findings. Following Tukey’s [1980, p. 24] statement that “the picture-examining eye is

the best finder we have of the wholly unanticipated,” this analysis is mostly carried out using

data visualization techniques; numerical methods to quantify the magnitude and uncertainty

of the different effects are instead presented in the subsequent section.

5.7.1.1 Between-block trial performance

As shown on the left Figure 5.5, the percentage of successful captures ρ per participant

decreased with the increase of Spheres per block. An effect of fatigue is discarded, given the

similarity between the pre- and post-experiment scores of the ssq presented above.

It is likely, however, that this difference is due to a delayed reaction time RT as the number

of spheres increased, which is congruent with the Hick-Hyman law [Hick 1952; Hyman 1953].

This is consistent with the increase in T that follows the increment of spheres per block

displayed on the right of Figure 5.5.
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Figure 5.5. Distribution of participant success rates (left), and successful trial completion times
(right) per experimental block.

T is used as a proxy for RT, which cannot be measured directly from the data. This
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substitution is not perfect since participants may have selected other spheres prior to attaining

the target sphere in trials where the number spheres was greater than one. In the 1-sphere

trials, additionally, some participants may have “cheated” by approaching the target sphere

before it was highlighted, which corresponds to the values of T close to zero at the tip of the

lower whisker of the 1-sphere T boxplot.

5.7.1.2 Effects on MT for the successful trials in the 1-sphere block

It is clear that the number of spheres per trial affected participant performance. However,

the main goal of the current section, in terms of performance prediction, is to identify the

factors that affect the MT required to reach a single moving target. Therefore, the scope of

this analysis covers only the successful trials of the 1-sphere block; the extension to multiple

targets is left for future work.

In this section, a distinction is made between controlled factors, i.e., P, r, V, and φ that were

systematically assigned to each trial , and experimental covariates, i.e., factors that were either

assigned randomly, or not controlled for during each trial.

Controlled factors. Among the main factors, V had the strongest effect on the MT of the

successful trials, as shown in Figure 5.6. As expected, MT decreased with the increase of V.

In low velocity trials, additionally, the span of MT was also larger.

Target radius r also had a visible effect on MT. Over all, bigger targets had shorter MT,

although this decrease is visibly smaller for targets with high V, suggesting an interaction

between both. Additionally, in low V trials, the span of MT was smaller for targets with

r = 0.2, than for targets with r = 0.1.

Targets whose position P was up with respect to sph0 had larger MT than targets located

below sph0. This increase in MT was smaller for targets with high V, suggesting an interaction

between P, and V.

Increases in φ resulted only in small increases of MT. In general, this increase was more

visible for small targets located above sph0.

Experimental covariates. Due to the experimental design, there are certain factors that

were not controlled for, which could have an effect on MT, including γ, and the initial wand

position at the highlight frame in each trial.

The effect of γ on MT. To avoid generating too many experimental conditions, the angle γ

was randomly assigned between 180◦ and 360◦. Yet, in order to generalize the 2-d model to

3-d without further modification, its effect on MT must remain small.

As seen at the top of Figure 5.7, the distribution of angles is close to uniform in the

[180, 360]◦ range. As highlighted by the superimposed smoothing curve, on average, MT re-

mained very similar across the range of assigned γ angles. This suggests a very small effect

of γ on MT, which supports the usage of the 2-d model for 3-d tasks.
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Figure 5.6. Distributions of movement times for the successful trials per experimental factor in
the 1-sphere block.
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Figure 5.7. Movement times per γ angle for the successful trials in the 1-sphere block. The top
bars show the distribution of γ binned every 10◦.

Wand positions at the highlight frame. To avoid hindering the flow of the study, only a soft

constraint was placed on the wand position before the highlight frame, i.e., sph0 which would

change from green to red whenever it did not encircle the tip of the wand. Even though

this allowed participants to approach the target sphere before it became highlighted, the

three position density plots of Figure 5.8 show that the highest density of wand positions

was within sph0, p(||Pw − Pw,0|| < 0.05) = 0.5. In a few trials, however, participants seem to

have “cheated” by placing their wand beyond sph0, thus approaching the target, p(Pw,z − z0 <

−0.05) = 0.17. Similarly, the negative skew of the wand positions along the y axis reflects

the fact that in some trials participants got closer to the bottom targets by lowering their

wands below sph0; this phenomenon was less visible for trials were the target was initially

above the user. Finally, the distribution of wand positions along the x axis, shown on the left

part of Figure 5.8, was symmetrical with respect to x0. The fact that participants were more

compliant with their left–right and up positions relative to Pw,0 may reflect a problem of depth

perception and occlusion of the wand tip by sph0.

The effect of the different Pw at the highlight frame on each trial’s MT can be seen in

Figure 5.9. Overall, an increase in the wand–sphere distance ||Pw − P|| resulted in an increase

of about 0.88 s in MT, as highlighted by the trend line. This implies that even within the bounds

of sph0, depicted by the vertical orange lines, the average change in MT is about 0.09 s. The

trend line was purposely chosen as a least-squares linear model to represent the approximate
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Figure 5.8. Front and right views of the distribution of wand positions at the frame where the
sphere was highlighted in the 1-sphere trials. Red, blue, and green points represent
the wand positions in trials where the sphere was at the bottom-right, bottom-left,
and up, respectively. Correspondingly colored stars represent the sphere positions
in those frames. The orange circle represents sph0. The top, and side black ribbons
represent the densities of the distributions of x0 and z0, and y0, overlayed on the
length of sph0 along that coordinate shown in orange. Coordinates are relative to
Pw,0.
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increase in MT per ||Pw − P||, but it is clear that such a simple model would yield poor MT
predictions.3

Figure 5.9. Movement times for each of the distances between the target sphere and the wand
at the highlight frame ||Pw − P||, for the successful trials in the 1-sphere block. The
top bars show the distribution of ||Pw − P|| binned every 0.025 m. The orange lines
represent the distance between the target sphere and Pw,0 ± 0.05 m.

5.7.2 Regression analysis

Successful trials in the 1-sphere block are grouped by (P, r, V, φ) condition. In accordance

with the typical Fitts literature, each condition’s MT is summarized using means. Due to

their variation with respect to the controlled conditions, the wand and sphere positions

per condition are set as their mean at the highlight frame, i.e., Pw = (Pw,x, Pw,y, Pw,z), and

P = (Px, Py, Px). Using Pw, and P, Dm, and Ds are calculated using Equations (5.2), and (5.4).

Following Equation (5.5), a linear regression of the form

MT ∼ N(aV + bV
√

Ds + cV
√

Dm + dV IDm, σ2) (5.7)

is fit. The resulting estimates, presented in Table 5.1, show a very good fit in terms of R2,

with credible values in [0.89, 0.96]. The distributions of a, b, c, and d decrease in magnitude

3Such a linear model would suffer from several deficiencies, which includes explaining only a small percentage
of the variance of MT (R2 = 0.15, portrayed by the narrow confidence interval compared to the span of the
data [Gelman and Hill 2007, p. 62]), and the clearly heterogeneous variance in the residual distribution.
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with V, and the non-intercept parameter with highest magnitude is c, potentially indicating

the importance of the ballistic component of the movement along the target trajectory on MT.

The regression is represented graphically in Figure 5.10.

V = 1.5 V = 1 V = 0.5

−0.2

−0.1

0

0.1

0.5 0.75 1 1.25 0.5 0.75 1 1.25 0.5 0.75 1 1.25
M̂T

M
T
−

M̂
T

P bottom-right bottom-left up

Figure 5.10. Residuals (MT − M̂T) vs. fitted values (M̂T) for the
MT ∼ N(aV + bV

√
Ds + cV

√
Dm + dV IDm, σ2) regression. The dotted lines

represent ±σ̂.

The residual plot of the regression, presented in Figure 5.10, suggests that the residual

variance increases with the decrease in V. This implies that MT predictions for low speed

targets, V = 0.5, will be less accurate than predictions for high speed targets, V = 1.5.

Such a result is consistent with existing theories on moving target interception, which

suggest that tasks with less temporal constraints (e.g., when targets have low V) are more

prone to sensory-motor noise, thus resulting in more variable MT [Tresilian 2005, 134–135].

Therefore, given that the lack of precision in MT predictions for lower V may be due to

irreducible noise, and that there are only two visible outliers, the model is not further

modified.

5.7.2.1 Change of coefficients per V

Consistently with the PD analyses from Chapter 4, and the gain analyses of Shoemaker et al.

[2012], linear regressions on the per-V parameter estimates from Table 5.1—âV = Mdn(aV),

b̂V = Mdn(bV), ĉV = Mdn(cV), and d̂V = Mdn(dV)—are first calculated using the default

least-squares method in R [2015]. The results, shown in Table 5.2, give some evidence in

support of the linear relation between V and â, V and b̂, V and ĉ, and, to a lesser degree

V and d̂.
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Table 5.1. Regression estimates for PD = aV + bV
√

Ds + cV
√

Dm + dV IDm.

Estimand Mdn 95% HDI
aV=0.5 −3 [−4.75,−1.21]
aV=1.0 −2.48 [−3.93,−1.04]
aV=1.5 −1.82 [−3.14,−0.51]
bV=0.5 1.25 [0.83, 1.67]
bV=1.0 1.03 [0.61, 1.46]
bV=1.5 0.83 [0.4, 1.24]
cV=0.5 3.09 [1.36, 4.76]
cV=1.0 2.47 [1.07, 3.88]
cV=1.5 1.74 [0.54, 2.94]
dV=0.5 0.16 [0.1, 0.23]
dV=1.0 0.11 [0.04, 0.17]
dV=1.5 0.09 [0.03, 0.16]

σ 0.07 [0.05, 0.08]
R2 0.93 [0.89, 0.96]

Table 5.2. Least-squares estimates for the regressions of the point estimates from Ta-
ble 5.1—âV = Mdn(aV), b̂V = Mdn(bV), ĉV = Mdn(cV), and d̂V = Mdn(dV)—on
target speed V.

Model Intercept Slope σ̂ R̂2

âV ∼ N(α1 + α2 V, σ2
a ) −3.62 1.19 0.06 0.99

b̂V ∼ N(β1 + β2 V, σ2
b ) 1.46 −0.42 0.01 1

ĉV ∼ N(ζ1 + ζ2 V, σ2
c ) 3.78 −1.35 0.04 1

d̂V ∼ N(δ1 + δ2 V, σ2
d ) 0.19 −0.07 0.02 0.79

As discussed in Section 4.4.2.2, the least-squares estimates on regression coefficients tend

to be too optimistic. Thus, to better assess the uncertainty around the estimates of Table 5.2,

a hierarchical model which simultaneously estimates the latter parameters and those in

Table 5.1, is fit. The hierarchical model reuses the least-squares estimates α̂1, α̂2, β̂1, β̂2, ζ̂1, ζ̂2,

δ̂1, and δ̂2 from Table 5.2 as priors for the mean parameters of α1, α2, β1, β2, ζ1, ζ2, δ1, and δ2,

respectively; the wide prior variance (22), with respect to the range of MT (0.38–1.36), allows

for some flexibility both in the mean and the variance of the marginal posteriors. Given the

low number of levels of #(V) = 3, and following the recommendations of Gelman [2006] for

standard deviation parameters on hierarchical models, half-Cauchy priors are chosen for σa,

σb, σc, σd, and σ, with scale parameter A = 1, which, again, is wide with respect to the range

of MT.

The model is fit using Stan [2015], with four mcmc chains of 10,000 iterations, including

5,000 warm-up iterations, for a total of 20,000 saved iterations. The levels and estimates of the

model shown in Table 5.3, show higher estimates for σa, σb, σc, and σd than those obtained in
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Table 5.2, and correspondingly, wider intervals around α̂1, α̂2, ζ̂1, ζ̂2, δ̂1, and δ̂2 than those that

would be obtained from the least-squares regression. Nevertheless, the minimal change in the

distributions of a, b, c, d, and σ between Tables 5.1 and 5.3 suggests that, in spite of the wide

uncertainty, the linear relations between V and a, b, c, and d are plausible and congruent with

the data.

Table 5.3. Levels and estimates of the hierarchical regression
MTi ∼ N(aV[i] + bV[i]

√
Dsi + cV[i]

√
Dmi + dV[i] IDmi, σ2). α̂1, α̂2, β̂1, β̂2, ζ̂1,

ζ̂2, δ̂1, and δ̂2 correspond to the least-squares estimates from Table 5.2.

Model Estimand Mdn 95% HDI

aV ∼ N(α1 + α2 V, σ2
a )

aV=0.5 −3.08 [−4.26,−1.93]
aV=1.0 −2.48 [−3.39,−1.64]
aV=1.5 −1.84 [−2.94,−0.75]

bV ∼ N(β1 + β2 V, σ2
b )

bV=0.5 1.27 [0.96, 1.59]
bV=1.0 1.04 [0.75, 1.31]
bV=1.5 0.83 [0.48, 1.2]

cV ∼ N(ζ1 + ζ2 V, σ2
c )

cV=0.5 0.16 [0.1, 0.22]
cV=1.0 0.11 [0.05, 0.17]
cV=1.5 0.09 [0.03, 0.16]

dV ∼ N(δ1 + δ2 V, σ2
d )

dV=0.5 0.16 [0.1, 0.22]
dV=1.0 0.11 [0.05, 0.17]
dV=1.5 0.09 [0.03, 0.16]

σ ∼ half-Cauchy(1) σ 0.07 [0.05, 0.08]

αj ∼ N(α̂j, 22)
α1 −3.7 [−5.69,−1.76]
α2 1.22 [−0.47, 2.98]

σa ∼ half-Cauchy(1) σa 0.28 [0, 1.34]

β j ∼ N(β̂ j, 22)
β1 1.48 [0.21, 2.71]
β2 −0.44 [−1.57, 0.77]

σb ∼ half-Cauchy(1) σb 0.2 [0, 1.14]

ζ j ∼ N(ζ̂ j, 22)
ζ1 3.86 [1.99, 5.8]
ζ2 −1.39 [−3.14, 0.27]

σc ∼ half-Cauchy(1) σc 0.28 [0, 1.36]

δj ∼ N(δ̂j, 22)
δ1 0.19 [−0.74, 1.19]
δ2 −0.07 [−0.96, 0.82]

σd ∼ half-Cauchy(1) σd 0.11 [0, 0.86]

5.8 Predictive analysis

The T̂Scorei(t) scoring function used in this section is calculated using the M̂T predictions

given by Equation 5.5 with the parameter estimates from Table 5.1.



85

5.8.1 Three-sphere trials

5.8.1.1 Wand positions at the highlight frame

Before attempting to predict the intended sphere in each trial, the wand positions at the

highlight frame are visualized to identify potential issues, and differences with the 1-sphere

trials, that could affect the predictions.

As shown in Figure 5.11, compared to the 1-sphere block of trials, there was a larger

percentage of wand positions within sph0 at the highlight frame, p(||Pw − Pw,0|| < .05) = 0.64.

“Cheating” was not possible in this block since the goal sphere was unknown before it became

highlighted, as opposed to the 1-sphere block. Thus, as shown in the top right, and right-

most distributions of Figure 5.11, instead of placing their wand beyond sph0, participants

who did not have their wand within sph0 tended to place their wand closer to their bodies,

p(Pw,z − z0 > .05) = 0.22, and below sph0, p(Pw,y − y0 < −.05) = 0.13.

Figure 5.11. Front and right views of the distribution of wand positions at the frame where the
goal sphere was highlighted in the 3-sphere trials. Red, blue, and green points
represent the wand positions in trials where the sphere was at the bottom-right,
bottom-left, and up, respectively. Correspondingly colored stars represent the
sphere positions in those frames. The orange circle represents sph0. The top, and
side black ribbons represent the densities of the distributions of x0 and z0, and y0,
overlayed on the length of sph0 along that coordinate shown in orange. Coordinates
are relative to Pw,0.
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5.8.1.2 Predictive accuracy

At each frame (t) after the goal sphere is highlighted, T̂Score, and dScore are calculated,

with N ∈ {1, 2}× decay ∈ {0.5, 0.9}. For each of these scores, the predicted sphere corresponds

to the sphere with the maximum score. Subsequently, nine frames per trial are extracted,

corresponding to the last frame before 0.1 T, 0.2 T, · · · , 0.9 T, T, where T is the time required to

complete each trial. Finally, the accuracy across trial percentages p T is calculated, the results

are presented in Figure 5.12.

The results indicate that the T̂Score predictor is better than the dScore predictor before

50% of the total trial time T has elapsed. Before 0.5 T, the dScore predictor is less reliable than

chance; after 0.5 T, the dScore predictor’s accuracy gets gradually better than that of T̂Score.

This change in accuracy may reflect an increasing error in the M̂T predictions yielded by

Equation 5.5 with the parameter estimates from Table 5.1. The increased error, however, is

expected given that the Ds, and Dm predictors at T > 0 are outside of the range of the Ds,

and Dm used to train the model, i.e., those at T = 0. Alternatively, this change could indicate a

shift to a ballistic phase in which D ' Dm is most influential on T. Finally, notice that at 1.0 T,

none of the predictors have 100% accuracy, suggesting that the decay rates may be too low for

the explored tasks.

5.8.2 Six-sphere trials

5.8.2.1 Wand positions at the highlight frame

As shown in Figure 5.13, the percentage of wand positions within sph0 at the highlight

frame was very similar to the 3-sphere block, p(||Pw − Pw,0|| < 0.05) = 0.6. As in the 3-sphere

block, participants who did not have their wand within sph0 tended to place their wand

closer to their bodies, p(Pw,z − z0 > 0.05) = 0.25, but also to the right of sph0, p(Pw,x − x0 >

0.05) = 0.13. Given that most participants were right handed, this suggests a search for a

more comfortable waiting position.

5.8.2.2 Predictive accuracy

The accuracy of T̂Score, and dScore across trial percentages 0.1 T, 0.2 T, · · · , 0.9 T, T is

calculated following the same procedure as in the 3-sphere trials. The results are presented in

Figure 5.12.

The results indicate that the T̂Score predictor is better than the dScore predictor before

40% of the total trial time T has elapsed. Before 0.4 T, the dScore predictor is less reliable than

chance; instead, between [0.5 T, 0.7 T], the T̂Score predictor is less reliable than chance; and

between [0.8 T, 1.0 T], both predictors have fairly similar accuracy except when N = 1, and

decay = 0.9, in which case the dScore predictor is about 5% better. Notice, once again, that

at 1.0 T, none of the predictors get 100% accuracy, suggesting that the decay rates may be too

low for the explored tasks.
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Figure 5.12. Three-sphere accuracy comparison for the T̂Score, and dScore predictors for trial
percentages 0.1 T, 0.2 T, · · · , 0.9 T, T, using different N, and decay parameters. The
dotted lines represent the accuracy given by chance, i.e. 1/3.
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Figure 5.13. Front and right views of the distribution of wand positions at the frame where the
goal sphere was highlighted in the 6-sphere trials. Red, pink, blue, brown, green,
and purple points represent the wand positions in trials where the sphere was
at the bottom-right, bottom, bottom-left, up-left, up, and up-right, respectively.
Correspondingly colored stars represent the sphere positions in those frames.
The orange circle represents sph0. The top, and side black ribbons represent the
densities of the distributions of x0 and z0, and y0, overlayed on the length of sph0

along that coordinate shown in orange. Coordinates are relative to Pw,0. Only a
sample of 1,000 trials out of the 2,705 successful trials is shown.
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Figure 5.14. Three-sphere accuracy comparison for the T̂Score, and dScore predictors for trial
percentages 0.1 T, 0.2 T, · · · , 0.9 T, T, using different N, and decay parameters. The
dotted lines represent the accuracy given by chance, i.e. 1/3.
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5.9 Discussion

Results are summarized according to the study hypotheses, each followed by a discussion.

5.9.1 Moving-target selection performance in 3-d

H1. The three-part model with per-speed coefficients, and per-velocity intercept, described in

Equation (5.5), accurately models the movement time of three-dimensional moving-target

selection tasks. Supported.

The three-part moving-target selection model of Equation (5.5),

MT = aV + bV
√

Ds + cV
√

Dm + dV log2

(
2Dm

W

)
,

yielded a good fit, with credible values of R2 ∈ [0.89, 0.96], presented in Table 5.1. The

residuals, displayed in Figure 5.10, indicated a wider variance for V = 0.5, compared to

V ∈ 1.0, 1.5, but given that there were only two visible outliers, no further modifications to

the model were considered. Given that a very similar model was used to predict PD, these

results give further evidence to the relation between PD, and MT.

H1.1. The azimuth α, altitude θ, and γ angles, not modeled in Equation (5.5), have a

small effect on MT. Partially supported.

The α, and θ angles were varied simultaneously as sphere positions up, bottom-right, and

bottom-left, which impeded the evaluation of their effects separately. Figure 5.6 suggested that

targets located upward with respect to sph0 had a larger MT than targets located below sph0,

but this effect was not visible in the residual plot (Figure 5.10).

Finally, as seen in Figure 5.7, MT remained very similar across the range of assigned

γ angles. This suggests a small effect of γ on MT.

H1.1. In Equation (5.5) the coefficients aV , bV , cV , and dV vary linearly with V. Supported.

The results suggest that coefficients aV , bV , cV , and dV of Equation (5.5) decrease linearly

with the increase in V. Using the credible intervals presented in Table 5.3 allows MT to be

predicted using different V, while still propagating the uncertainty in these estimates.

5.9.2 Predicting user intention in 3-d moving-target directed-selection tasks

H2. At any given instant, the minimal movement time estimated by Equation (5.5) can

be used to predict the intended target in a 3-d moving-target directed-selection task.

Partially supported.
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Even though it was possible to predict the intended sphere using the estimated MT via

the T̂Scorei(t) scoring function with mostly above random accuracy, the resulting accuracy

was very low. In certain cases in the 6-sphere block, the accuracy was actually worse than

chance, as shown in Figure 5.14.

Notice, however, that the parameter estimates used to calculate M̂T were obtained from

the 1-sphere block, which included a different range of Ds, and Dm inputs, had RT = 0,

and did not have issues of target clutter or occlusion, as opposed to the 3- and 6-sphere

blocks. Even though the Hick-Hyman law allows modeling RT = log2(I + 1), where I is the

number of targets in the scene, as the RT elapses, the Dm is reduced by RT V, and the initial

wand position may change, possibly resulting in a different Ds. Therefore, integrating the

Hick-Hyman law in the current model is not straightforward.

A more viable way to enhance M̂T predictions in blocks with multiple targets, and

presumptively the accuracy of T̂Scorei(t), would be to include subject variations in the

parameters of Equation (5.5). Indeed, the parameter estimates of Table 5.1 are given for

the average MT per-condition, and not for all trials.

H2.1. The accuracy of the predictions based on estimated movement time will be greater

than those based on wand-target distance. Partially supported.

The T̂Scorei(t) scoring function yielded better accuracies than dScorei(t) only for trials

before 0.5 T and 0.4 T in the 3- and 6-sphere blocks, respectively. In all subsequent times,

dScorei(t) was consistently more accurate. As previously suggested, this inversion in prediction

accuracy may indicate a shift in movement to a ballistic phase as the trial advances, in which

D ' Dm is most influential on T.

5.10 Conclusion

This chapter explored the possibility of using the 2-d moving-target models for PD presented

in Chapter 4 to predict performance and intention in 3-d moving-target selection. The

model yielded a good fit on the MT values of the 1-sphere block, but it exhibited poor, yet

above random, accuracy predicting intended targets in the 3- and 6-sphere blocks. Future

work should explore possible extensions to this model to accommodate for user variations.

Additionally, as shown in Chapter 3, combining this predictor with other features may result

in considerable increases in accuracy.

To the author’s knowledge, this is the first study to model MT in 3-d moving-target

selection tasks, as well as the first study to model MT for moving-target selection tasks of any

dimensionality in which the target is not moving directly toward, or directly away from the

cursor.
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Chapter 6

Conclusion

The current work provides an in-depth, empirical investigation on moving-target selection, a

task that is increasingly common, yet largely understudied in human–computer interaction.

In particular, predictive models were developed for three of the stages involved in the action

of selecting a moving target: the intended selection, the prospective difficulty selection, and

the selection performance.

Intention prediction models were developed using decision trees and scoring functions

with features specific to undirected selection tasks (i.e., tasks in which the users are free to

select an object among multiple others), and generalizable features that can also be used

in directed selection tasks (i.e., the more common experimental tasks in which users are

instructed to select a specific object). As shown in Chapter 3, target size (W) was deemed as

the most predictive feature for intention in undirected selection, with an accuracy of (∼ 71%)

for two targets with equal velocities, but different initial positions—this was contrary to

the expectation that ID, measured at the start of each trial, would be the most predictive

feature in this type of task. In terms of generalizable features in undirected selection, results

presented in Chapter 3 indicate that a combination of head-target relative gaze (∆dot), and

cursor-target relative distance (∆D), averaged in a 1–1.5 s time window, were predictive of

selection intention with an accuracy of (∼ 72%). The combination of these task-specific and

generalizable features in undirected selection resulted in an accuracy of (∼ 78%). Finally, in

Chapter 5, scoring functions based on the predicted movement time (M̂T), and cursor–target

distance, yielded poor, yet above random, accuracy in predicting the intended target in a

directed selection task with 3 and 6 spheres.

Prospective difficulty (PD) models were developed and evaluated in 1-d, and 2-d moving-

target selection tasks in Chapter 4. These models describe the motion required to attain a

target in three parts: two ballistic motions, one to align the cursor with the target’s movement

axis and one in-line with the target’s movement axis, and a homing in motion in-line with the

target’s movement axis. The ballistic motions were represented with square-root distances,

whereas the homing-in motion was represented with Fitts’ ID. Overall, PD was shown to

increase with target speed (V), ID, and the cursor–target-axis distance, and to decrease with
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the cursor–target distance along the target’s movement axis. Contrary to the expectations,

the ballistic motion required to align the cursor with the target’s movement axis, and the

homing-in motion along the target’s movement axis were minimally affected by target speed.

Performance prediction was explored in Chapter 5 by evaluating the usage of the 2-d

model of PD presented in Chapter 4 as a mean movement time (MT) predictor in 3-d moving-

target selection. The three-part model yielded a good fit with the observed data, but, contrary

to the PD model, the coefficients related to ballistic and homing-in motions decreased as the

target speed increased. Such a difference was expected given that faster targets require shorter

movement times to be successfully selected.

6.1 Limitations and future work

6.1.1 Intention prediction models

Overall, the main limitation of the studied intention prediction models is that they were

generated based on a post hoc analysis of moving-target selection. Nevertheless, their

usefulness to address the challenges of moving-target selection needs to be assessed in an

interactive context, where predictions can be integrated to enhance the moving-target task

(e.g., using predictions as inputs of the enhancements described in Section 1.1.2.

Decision trees can integrate different predictive features and can be interpreted as simple if-

else rules, allowing them to be implemented in real-time. If the predictions were to be adapted

during execution, however, the major difficulty would be to recalculate the trees in real-time

without impacting performance. Future work should explore the possible optimizations that

would allow adaptation of decision trees during interaction.

Scoring functions, on the other hand, use only one input feature, but can adapt in real-time

to changes in user and target states with a small computational overhead. Unfortunately, the

accuracy of such functions was very poor in directed tasks, which could indicate the limitations

of using a single feature for scoring. Future work should explore accuracy enhancements

to the proposed scoring functions, which could include integration of different features as

composite scores, as well as parameter tuning.

6.1.2 PD prediction models

In order to develop the models for PD in 2-d moving-target selection mentioned earlier in this

chapter, the existing PD model for 1-d static-target selection was first extended to 2-d. Thus,

the limitations and future work related to the formulation of this 2-d static-target model are

presented prior to those related to the 1-d, and 2-d moving-target models.
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6.1.2.1 Two-dimensional static-target tasks

Target angle θ. The main limitation of the 2-d static target tasks evaluated in Chapter 4 was

the small range of explored target angles θ. Although the literature shows that both diagonal

and vertical targets are the hardest to attain, this study explored only diagonal, right-handed

angles, for which the angle effect was very small. It is possible, however, that vertical targets

could have a larger impact on PD, due to the tendency to perceive vertical distances as longer

than horizontal distances [Higashiyama 1996]. To have a better understanding of the effect

of θ, future work on 2-d static-targets should include a wider range of target angles.

Underlying function for aθ . Perhaps related to the small range of explored angles, was

the inability to find an underlying function for aθ . Neither of the functional forms of f (θ)
suggested by Murata and Iwase [2001] or Appert et al. [2008] gave a reasonable approximation

to aθ .This prevents generalization of the 2-d model, and making PD predictions for other angles

based on it. Yet, assuming that the target-angle effect is small for most angles θ ∈ [0, 360)◦, it

may be possible to get reasonable predictions using the 1-d static-target formula.

Future work should continue to explore the underlying function for the angle effect

represented in aθ . Once again, this exploration may be facilitated by including a wider variety

of θ angles in the experimental conditions.

6.1.2.2 Moving-target tasks

Target velocity (V, φ). Similar to static-target tasks, the main limitation in the evaluated

moving-target tasks was the small range of explored target speeds V, and movement direc-

tions φ.1 With the current range of evaluated velocities, it is difficult to generalize the results

to additional experimental conditions; even though the wide credible intervals obtained from

the hierarchical models allow propagating this uncertainty to predictions on new data. Future

work should include a wider variety of velocities and compare the current models’ predictions

to the actual observations.

Initial target angle θ. In all of the evaluated moving-target pointing tasks, the initial target

angle θ = 0. Based on the 2-d static-target model, different target angles could be represented

with different intercepts, which would result in a aV×θ term. It is hypothesized, however, that

the θ effect will have a minimal impact on PD, especially for tasks where φ < {0, 180}◦, since

in those cases the θ angle is changing at every frame. Future work should explore these claims

with experiments including initial target angles θ ∈ [0, 360)◦.

Inter-formula compatibility. The 1-d moving-target pointing model is not nested within

the 2-d model, i.e., there is no constraint on the 2-d model that would lead to the 1-d one.

Specifically, the ID term varies per speed V for the 1-d moving-target formula, but it stays

1It is worth noting that previous experiments on moving-target selection included only two [Jagacinski et al.
1980] or three [Al Hajri et al. 2011] levels of non-zero speeds, and none of them explored target movement
directions φ < {0, 180}◦.
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almost constant in the 2-d formula. This may imply that there is a shortcoming in the

derivation of the 2-d formula, or that 1-d moving-target tasks are inherently different from

2-d ones (e.g., because users may be more inclined to wait for the target in the former), and

this difference is reflected in an interaction between ID and V that does not happen in 2-d.

Nevertheless, the six bottom panes of Figure 4.13 indicate that the 1-d moving-target

data can be adequately described by the 2-d moving-target model. Once again, future work

should evaluate these formulae with an extended range of velocities to evaluate this apparent

incongruence and explore the theoretical and practical limitations of the proposed models.

6.1.2.3 Methods for assessing PD

A possible shortcoming in the evaluation of the proposed PD models concerns the reliabil-

ity of the prospective assessments given by the user on each task. By using a discrete scale

to evaluate a continuous quantity, there is an inherent loss of precision in each assessment.

Regardless of the scale, it may be difficult for participants to quantify their prospective judg-

ments. Therefore, future work should also attempt to assess the proposed models of PD in

moving-target selection using measures that do not rely on self assessment, such an approach

has been explored in static-target selection using eeg [Kourtis et al. 2012].

6.1.3 Performance prediction models

6.1.3.1 Target velocity

Similar to PD, the study of MT for tasks with a wider range of V, and φ values would

allow further generalization of the proposed models. In particular, more precise estimates

for the linear relation between V and the coefficients of Equation (5.5) can be obtained by

studying selection tasks with additional levels of V.

6.1.3.2 Target distance

In the design of the experiment described in Chapter 5, D was kept constant at 1 m, and

the change in Dm, and Ds, was ensured by changing the φ angle. This constraint allowed the

study of other experimental conditions without making the main study too long, but led to

heavily correlated Dm, and Ds values. Even though the variability in initial wand positions

mitigated this effect, such a correlation impedes a clear distinction of the effects of Dm, and

Ds on MT. Therefore, future work should explore different D values.

6.1.3.3 Additional measures of performance

In accordance with the main body of target selection in hci, the analysis of performance

was mostly limited to MT. However, considering that there is a critical velocity beyond

which selection is impossible, it seems important to quantify the effect of V, and other

experimental factors, on target success rate (ρ). Predicting ρ would allow a reevaluation of
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the Hoffmann [1991] moving-target model,2 as well as the refinement of intention prediction

models, which are currently limited to successful trials. Thus, future work on moving-target

selection should also evaluate and attempt to model ρ, and other measures of performance.

6.1.4 General issues

6.1.4.1 Target shape

Target shape was not considered in the development of any of the models. Nevertheless,

a formulation for 2-d bivariate targets (e.g., rectangles, where W , H) was suggested for

PD, in which each θ × (W/H) combination should have its own intercept, as specified in

Equation (4.10). The major drawback of this solution is that the degrees of freedom of the

model are reduced with each θ × (W/H) combination, requiring a large number of data

points to be evaluated. This approach can also be generalized to 3-d.

For more complex shapes a different ID term, such as those proposed in [Sheikh and

Hoffmann 1994; Murata 1999; Grossman and Balakrishnan 2005], may be necessary. Since

these ID terms implicitly include the target’s angular position effect, the per-angle intercept

may add unnecessary redundancy to the model. Therefore, future work should explore the

effect of target shape on PD and MT.

6.1.4.2 Target acceleration

In the explored moving-target selection tasks, the target velocity was always constant.

Such simplification is acceptable in certain tasks where targets have nearly constant velocities

(e.g., in air traffic control systems, or in tasks where objects are moving on a conveyor belt)

but may not be reasonable for most motions that follow real-world dynamics. Thus, it is

likely that the proposed models for PD, and MT will yield less accurate responses for targets

whose velocities are markedly non-constant. On the other hand, intention predictions based

on inputs measured throughout a time window are less likely to suffer from a loss in accuracy

due to changes in velocity.3 To evaluate these claims, future work should investigate the effect

of target acceleration on selection performance, prospective difficulty, and intention detection.

2As described in Chapter 2, the usage of the Hoffmann moving-target model without ρ results in potentially
harder and unreliable calculations.

3Indeed, in Ortega’s experiment [Ortega 2013], target movement directions were constantly changing.
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