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ABSTRACT 

Floods are an increasingly significant hazard in the United States because of 

the major changes to the hydrology of the landscape. Floods cause financially 

greater loss and more loss of life per year than any other natural hazard. In order to 

best assess floods and their effects on landscape most effectively, hydrologic 

modeling was conducted on the Bear Creek watershed in central Iowa, which 

extends over portions of three counties, Hamilton, Hardin and Story. Geographic 

Information System (GIS) was used to obtain the necessary data for completion of 

this project. A Digital Elevation Model (DEM) was the primary data set used for the 

hydrologic modeling. The DEM was used to model hydrologic processes due to the 

changes in elevation. A triangulated irregular network (TIN) was created from the 

DEM to see these changes in another dimension. The Hydrologic Engineering 

Center-Hydrologic Modeling System (HEC-HMS) was used to assess the landscape 

characteristics of the Bear Creek watershed. HEC-HMS is a modeling system 

designed to simulate the precipitation-runoff in watersheds. HEC-GeoHMS was 

used as a precursor for preprocessing data before input into HEC-HMS. A GIS soil's 

layer containing Iowa Soil Properties and Interpretations Database (ISPAID) was 

analyzed for this project. The analysis included a query within GIS of the flood 

frequency code to identify soil polygons that were labeled PONDED. These soil 

polygons were then displayed as an image within the boundaries of the Bear Creek 

watershed. GIS was used to calculate the amount of water (volume) that each of 

these soil polygons can hold. Changes in discharge under different storm events 



viii 

were calculated and displayed based on discharges from HEC-Hydrologic Modeling 

System. This research provides information for landowners about flooding and its 

potential damaging impacts on the landscape. Using this hydrologic assessment, 

alternative strategies can be developed to minimize the impacts of flooding within 

the Bear Creek watershed. Those strategies include taking some areas out of 

production in order to construct wetlands. The wetlands will serve as a sink to hold 

the water, hopefully minimizing the impacts of floodwater. 



1 

CHAPTER 1. INTRODUCTION 

Literature Review 

Iowa has an interesting and diverse geological past that shaped its landscape 

into what it is today (Prior 1991 ). Iowa contains about 14,500,820 hectares of land. 

The Bear Creek watershed in central Iowa is a small drainage basin covering about 

6,940 hectares. The watershed is located within the Des Moines Lobe subregion of 

the Western Corn Belt Plains ecoregion. This area is one of the youngest and 

flattest ecological subregion in Iowa (Griffith et al. 1994). About 10,500 to 30,000 

years ago, the Des Moines Lobe was formed due to the continental glacier 

advancement through Iowa known as the Wisconsinan Glaciation. This landform 

region is marked by bands of small ridges, on a generally flat landscape, created by 

the stagnation of the retreating glacier. The glacier moved through Iowa's landscape 

carrying frozen soil and rocks collected from the northern landscape. In the present 

interglacial environment, Iowa's landscape and landforms are the result of 

quaternary processes operating at different times and intensities over different parts 

of the state. 

The physical landscape has been influenced by rapid economic and social 

change within the last 150 years in particular since the 1930's. As populations 

continue to increase, the competition and conflict of the uses of rivers and steams 

also continues to increase. According to Rosgen, "Rivers and streams have been a 

major component of development over time, and as such, an understanding of the 

natural stability of rivers and streams is necessary if maintenance of their functions 

and health are to be secured" (Rosgen 1994). 
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Naturally flowing water also played a major role in shaping the landscape. 

Due to the changes in the environment such as channelization, scouring and 

downcutting of banks, forest and prairie land converted to agricultural fields leading 

to increased erosion, uplands were lowered in elevations, slopes were less steep 

due to erosion in some places and deposition in others, and lowlands were 

accumulations of sediment brought by surface runoff and stream flow (Prior 1991 ). 

The Western Corn Belt Plains ecoregion, which covers most of Iowa, can be 

characterized as extensive cropland located on moderately level to slightly rolling 

dissected glacial till plains and morainal hills with broad smooth ridge tops (Griffith et 

al. 1994). The rolling, predominately agricultural landscape is generally 

characterized by low relief, fertile soils, and a poorly developed stream network. 

This region in Iowa was once a tallgrass prairie ecosystem, with scattered wet 

prairie marshes in topographic lows and gallery forests along streams and rivers. 

Gallery forests are narrow tracts of woodland along the banks of a watercourse 

flowing through open country (Isenhart et al. 1997). Much of the landscape has 

been converted to agricultural uses. Most of the region is used for growing corn, 

soybeans and forage for livestock (Burkhart et al. 1994). Two-thirds of the native 

hardwood forests and about 99% of prairie have been converted to agricultural fields 

or pastures. Continuous cultivation of the land has led to reductions in soil quality 

and infiltration rates and an increase in surface runoff. 

From a geological perspective, floods are a natural consequence of stream 

flow in a continually changing environment. Floods are dangerous, life threatening 

and destructive and have been occurring throughout history (Nelson 2000). Floods 
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are caused by weather occurrences that deliver more water to a drainage basin than 

can be readily absorbed or stored within the basin. A number of factors can 

contribute to flooding such as heavy, intense rainfall, runoff from deep snow cover, 

over-saturated soil, frozen soil, ice jams, changes in agricultural practices, changes 

in infiltration rates and urbanization (Hirschboeck 1991 ). 

Throughout history, humans have developed civilizations along rivers and 

streams. Streams are sources for water for human consumption, industry and 

agriculture. Streams provide transportation corridors, energy and a way to dispose 

of waste (Nelson 2000). Where a floodplain exists, flow that cannot be contained 

spreads onto the adjacent floodplain. Because humans usually construct 

civilizations and grow crops along floodplains, techniques to reduce the impact of 

floods or overflow are necessary (Leopold 1994). 

Efforts are increasing to protect streams and their natural environments. For 

example, riparian vegetation is an important resource that should protect streams in 

a way that the vegetation will serve as a sink for sediments, nutrients, and 

pesticides. It also will protect the streambank from erosion and reduces surface 

runoff (National Research Council 1993). Most of the evidence about the uses and 

benefits of riparian zones and the role they play as sinks for pollutants comes from 

existing vegetated riparian zone research (Lowrance 1984, Isenhart et al. 1997). 

Content of the Problem 

Bear Creek flows into the Skunk River, and its upper region was originally 

characterized as low, wet prairie with connections to defined marshes with very good 

soil. Changes in the upper watershed from a low, wet prairie with a meandering 
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stream and slow moving water to one with a well-defined stream and increased 

velocities of water are the results of altered watershed hydrology (Isenhart et al. 

1997). Whether or not the Bear Creek watershed is classified as stable or unstable 

depends on the specific reach of the stream observed. In the northern section of the 

stream, according to the Channel Evolution Model (Leopold 1998), the stream is 

classified as unstable due to the disequilibria of the landscape because of the most 

recent channelization efforts. In the southern section of the stream, a stable 

classification is observed because of the restabilization of the landscape. 

With the arrival of European settlers and the moldboard plow, the Iowa 

landscape was converted from prairie to agricultural land in a relatively short period 

of time. Along with tillage came drainage and channelization that has caused a loss 

of about 45% of Iowa's original stream resource (Bulkley 1975). With the introduction 

of extensive subsurface tile drains, excavation of surface drainage ditches or 

dredging and stream channelization, the land conversion from native vegetation to 

agricultural uses has contributed to problems of water flow and water quality and 

also has resulted in stream channel incision and widening. Records indicate that 

artificial drainage of the marshes and wet prairie in the upper region was completed 

by 1902 (Isenhart et al. 1997). Artificial drainage in the rest of the Bear Creek 

watershed continued after 1902. These early drainages have increasingly 

transformed the surface and subsurface hydrology of the landscape. Results show 

that nearly all naturally occurring wetlands have been replaced by streams that are a 

result of artificial tile drainage and other hydrologic changes (Anderson et al. 2000). 

Stream channelization on Bear Creek continued into the 1970's and still affects the 
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nature of the stream today. Typical modifications during channelization include the 

removal of any obstructions, whether natural or artificial, that inhibit the stream's 

water flow and widening and deepening of a new or previously straightened channel 

to maximize conveyance of water (Simpson et al. 1982, Keller 1996). These 

modifications affect one or more of the dependent hydraulic variables of slope, 

depth, width, and roughness of the channel, thus disturbing the dynamic equilibrium 

of the stream. This may lead to instability of the channelized section of the stream 

(Brookes 1988). 

Vegetation influences the channel width, depth and slope (Zimmerman et al. 

1967). Removal of debris and bankside vegetation increases the hydraulic 

efficiency, increases current velocity adjacent to the bank, and reduces the 

resistance to erosion (Shields and Nunnally 1984). Through altering one or more of 

the interdependent hydraulic variables, the existing equilibrium is disrupted, and, to 

compensate for this, there are natural changes in the remaining hydraulic variables 

in an attempt to attain a new equilibrium. For example, a straightened stream may 

immediately react to the increased slope by increasing the sediment discharge 

through bank erosion resulting from incision and increase slope. Eventually, the 

channel may widen through erosion, with a corresponding reduction of velocity, and 

the adjusted cross-section will be more efficient in dissipating the energy (Jansen et 

al. 1979). 

Table 1.1 illustrates some of the detrimental impacts that human-caused 

developments have on natural floodplains (Water Resources Council 1976). These 
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Table 1.1. Human-caused impacts on floodplains 
Changes in Hydrology Changes in Geomorphology 

Increased in magnitude and frequency Stream channel widening and 
of severe floods downcutting 

Increased frequency of erosive Increased streambank erosion 
bankfull floods 

Increased in annual volume of surface Stream relocation/enclosure or 
runoff channelization 

Increased stream velocity Shifting bars of course-grained 
sediments 

Decrease in dry weather baseflow 
lmbedding of stream sediments 

impacts are based on a comparison of the changes in hydrology and 

geomorphology. 

A variety of agricultural management practices have contributed to altered 

flow regimes and to the detriment of the stream's integrity. Many factors are 

disruptive to the natural environment such as deforestation and drainage activities in 

combination with cropping and grazing practices (Trautman 1939). Drainage 

practices have had, among other environmental impacts, serious disruptive effects 

on the flow regime of regional streams by substantially increasing discharge peaks 

and stream erosive power. Conditions of channel morphology disequilibria have 

been created in many drainage systems. The impact of changes to the stream 

environment is to reduce average water depth, eliminate most forms of bank cover 

and broadly expose the water surface (Brookes 1988). 
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The morphology of a stream is important if stream stabilization is to occur. 

The physical appearance and functional status of a stream is the result of the 

adjustment of stream boundaries to the magnitude and intensity of streamflow and 

erosional debris produced in a watershed. Under normal conditions, water flows 

within the channel and is called channelized flow. The volume of flow when the 

channel is filled to its maximum determines much of the channel's geometry (i.e., 

channel width and depth, meander amplitude and wavelength, channel sinuosity and 

slope). When the volume of water in a channel is above its maximum-holding 

potential, flooding occurs (Rosgen 1996). 

Stream channel morphology is often described in terms of a width/depth ratio 

related to the bankfull stage cross-section. The width/depth ratio varies primarily 

with: 1) the dimension of the channel cross-section for a given slope, 2) the 

boundary roughness as a function of streamflow and sediment regime and bank 

erodibility factors including the nature of streambank materials, and 3) the 

distribution of energy (boundary stress) in the stream channel (Rosgen 1985). 

Stream width is a function of streamflow occurrence and magnitude, size and 

type of transported sediment and the bed and bank materials of the channel. 

Channel width generally increases downstream as the square root of discharge 

increases (Leopold et al. 1964). The bankfull cross-sectional area of a stream is 

correlated with streamflow and drainage area as it relates to channel size (Rosgen 

1994). The word "bankfull" in its original context was used to describe the elevation 

on the bank where flooding began, and this usually applies to streams with an 
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observed floodplain. Bankfull has a great influence on stream morphology and 

flooding potential (Rosgen 1996). 

In unstable streams, bankfull indicators are difficult to determine (Wharton 

1995). Bankfull indicators are usually based on a minimum width/depth ratio 

(Wolman 1955) when associated with changes in natural environment such as 

change in vegetation or sediment. Bankfull can be measured based on the 

sediment size, location, level and type of vegetation and the width/depth ratio 

(Williams 1978). According to Rosgen, the usage of the indicators must correspond 

with four basic principles: 

(1) Indicators must be in designated areas for specific stream types 

(2) Know recent history of droughts and floods in the area to avoid 

misleading indicators 

(3) Use multiple-indicators for assurance of a common stage or 

elevation 

(4) Calibrate field determined bankfull stage to verify the difference 

between the floodplain and the terrace (Rosgen 1996). 

In Figure 1 .1, the discharge above the elevation of the bankfull stage is the 

bankfull discharge based on the Manning equation. Manning's equation is noted 

below: 

V = 1.49/n * (R213) (S 112) 
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After a bankfull elevation has been established, a stage vs. discharge curve can be 

calculated to aid in determining the magnitude of the discharge relative to the 

elevation. The bankfull curve was developed for a hypothetical stream by computing 

discharge for different elevations. When discharge is greater than bankfull , water 

spreads onto the floodplain thus causing the bankfull stage to increase. 
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(0 ... 
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Figure 1.1. Determination of bankfull stage from a rating curve (Leopold 1998). 



10 

An accurate definition of "bankfull" is important because it helps determine 

how stream width, cross-sectional area and average channel depth are measured 

(Rosgen 1994). Bankfull discharge is associated with maximum flow and has a 

frequent recurrence interval, which, in a "natural" stream, generally occurs every 1.5 

to 2 years as determined by using a flood frequency analysis (Dunne and Leopold 

1978). 

The most widely accepted definition of bankfull stage is defined by Dunne and 

Leopold (page 156): 

Bankfull stage corresponds to the discharge at which channel maintenance is 
the most effective, that is, the discharge at which moving sediment, forming or 
removing bars, forming or changing bends and meanders and generally doing 
work that results in the average morphologic characteristics of channels. 

A stream flowing at bankfull, whether stable or unstable, will not be at the 

overflow level everywhere along the channel because there are differences in height 

of bank and depth of channel (Leopold 1997). The determination of the frequency of 

floods is a very important aspect of flood modeling. A common problem in hydrology 

is the flood frequency analysis, the determination of flood flows at different 

recurrence intervals. Continuous hydrologic simulation is a valuable tool to 

determine flood frequencies in watersheds (Water Resource Council 1976). Due to 

channelization and other variables, such as bankfull and increased velocity, being 

altered, flooding of streams and rivers has become a major problem in Iowa. 

Watershed Hydrologic Modeling 

Spatially distributed precipitation-runoff models are useful for assessment of 

the hydrologic effects of land surface change (Storck et al. 1998). Hydrologic 
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modeling as defined by David Maidment (page 1) is "a mathematical representation 

of the flow of water and its components on some part of the land surface or the 

subsurface environment." (Frey 2001 ). Hydrologic simulation (also called 

precipitation-runoff) modeling began in the 1950's and 1960's. The purpose is to 

predict streamtlow, given an observed precipitation, with certain time intervals 

(Storck et al 1998). Hydrologic modeling is also used to translate precipitation into 

water depths, water flow and volumes of water in storage (Maidment 1993). A 

diagram comparing a natural and designed stream is shown in Figure 1.2. In the 

designed channel, the banktull volume compared to the natural channel is twice as 

large, the floodplain has been reduced to approximately halt the size and the 

basetlow within the designed channel has more than tripled. 

Thesis Organization 

This thesis includes the candidate's original work on a hydrologic study of the 

Bear Creek watershed using GIS and HEC-HMS technologies. This thesis contains 

one manuscript written by the author in a format suitable tor publication. The 

manuscript entitled "Using GIS and HEC-HMS to assess the hydrologic conditions of 

the Bear Creek watershed" was written tor submission to the Journal of the 

American Water Resources Association. 

The manuscript contains an abstract, introduction, methodology, results, 

conclusion and references. The manuscript is preceded by an abstract, introduction 

that includes the literature review, content of the problem, watershed hydrologic 

modeling, objectives, importance of the study and references. The manuscript is 

followed by a general conclusion and perspective section. 
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Figure 1.2. A comparison diagram between a "designed" and channelized 
stream (Rosgen 1993). 

Objectives 

The objectives of this study are to: 

(1 ). Model the hydrologic processes of the Bear Creek watershed. 

(2). Calculate and display the changes in discharge of the stream under different 
storm conditions. 

(3). Delineate areas of the watershed that are prone to ponding. 
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Importance of Study 

This study is valuable for the assessment of the conditions of the Bear Creek 

watershed after storm events. Certain areas are more prone to flooding and 

ponding than others. The results from this study will show the areas that are prone 

to ponding and assess changes in stream channel discharge as a result of a series 

of simulated rainfall events. This information will be important in assessing the 

impacts of storm events on a particular area. This information will also be a useful 

aid in selecting potential sites for constructed wetlands. 

Wetlands are areas of soil that are covered by water. This water remains at 

or near the soil surface all year or for extended periods of time during the year. 

Water saturation is an important determinant in how the soil develops and the type 

of plant and animal communities that exist within and on the soil. There are many 

different types of wetlands. Ponded areas can be classified as a type of wetland 

because of the saturation of the soil after storm events. The time that the water 

remains in these ponded areas present the difficulty in classifying ponded areas as 

wetlands. If flooding occurs on a continuous basis and the ponded areas are always 

saturated, this area can potentially be classified as a wetland (Environmental 

Protection Agency 2001 ). 
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CHAPTER 2. USING GIS AND HEC-HMS TO ASSESS THE 
HYDROLOGIC CONDITIONS OF THE BEAR CREEK 

WATERSHED 

A paper to be submitted to the Journal of the American Water Resources 
Association 

Rodney K Jones and Steven E Jungst 

Abstract 

Floods are an increasingly significant hazard in the United States because of major 

changes to the hydrology of the landscape. Floods cause financially greater loss 

and major loss of life per year than any other natural hazard. There have been 

several significant floods within the past ten years that have had a tremendous 

impact on the landscape of Iowa. Geographic Information System (GIS) and 

Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) 

technologies were used to develop flood simulations to assess the conditions of the 

Bear Creek watershed in central Iowa. HEC-HMS is a modeling system designed to 

simulate the precipitation-runoff in watersheds. The model provides information 

about stream discharge rates that can then be used to determine potential flood 

distribution on the landscape. Information from this study can be used as input to 

evaluate the extent of flooding for a given storm event and to evaluate alternative 

strategies to minimize the impacts of flooding. 

Introduction 

The physical landscape has been influenced by gradual economic and social 

change within the last 150 years, in particular since the 1930's. Human impact on 
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streams and stream channels has been widespread throughout the period of 

habitation of the planet (Cole 1976). As populations continue to increase, the 

competition and conflict for uses of steams also continues to increase. Rivers and 

streams have been a major component of development over time, and as such, an 

understanding of the natural stability of rivers and streams is necessary if 

maintenance of their functions and health are to be secured (Rosgen 1994). 

A flood is the occurrence of a flow that overtops the streambanks. Hydrologic 

research concludes that floods occur when parts of a drainage basin is saturated 

and unable to absorb additional water, so the water runs onto and across the 

surface as overland flow (Leopold 1994). Bankfull stage-discharge has a great 

influence on stream morphology and flooding potential (Rosgen 1996). An accurate 

definition of "bankfull" is important because it helps determine how stream width, 

cross-sectional area and average channel depth are measured (Rosgen 1994). In a 

"natural" stream, flooding generally occur every 1 .5-2 years as determined using a 

flood frequency analysis (Dunne and Leopold 1978). 

The purpose of this research is to develop a technique for modeling stream 

discharge rates in the Bear Creek watershed by using Geographic Information 

System (GIS) and Hydrologic Engineering Center-Hydrologic Modeling System 

(HEC-HMS). HEC-HMS, a hydrologic modeling system, is used to predict stream 

discharge in the simulation of an actual flood situation. The study specifically uses a 

GIS digital elevation model and Geo HEC-HMS software (Environmental Systems 

Research Institute 2000) for the initial analysis of the HEC-HMS model. From this 

research, the areas within the Bear Creek watershed that are prone to ponding and 
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the changes in discharge of the stream under different storm conditions have been 

determined. 

Hydrologic modeling is important because it provides an assessment of the 

Bear Creek watershed by modeling hydrologic processes. Hydrologic modeling can 

provide landowners with important information about the benefits of taking ponded 

areas out of agricultural production and possibly constructing wetlands in order to 

minimize the impacts of flooding. 

Description of Study Area 

Iowa has an interesting and diverse geological past, which shaped its 

landscape into what it is today (Prior 1991 ). Iowa contains about 14,500,820 

hectares of land. The Bear Creek watershed in central Iowa is a small drainage 

basin covering about 6,940 hectares. The watershed is located within the Des 

Moines Lobe sub-region of the Western Corn Belt Plains eco-region. This area is 

one of the youngest and flattest ecological sub regions in Iowa (Griffith et al. 1994). 

Land use in the watershed is primarily row cropping, which is typical of the Corn Belt 

(Mohanty et al. 1994). Figure 2.1 shows the land cover of the Bear Creek 

watershed. Corn and soybeans make up about 85% of the land cover within the 

Bear Creek watershed. 

Flowing water has contributed to the formation of Iowa's valleys. In these 

valleys, flooding has been a major concern over the years because of the altered 

conditions of the streams and the landscape (Prior 1991 ). The condition of the soils 

in the watershed has been affected greatly by the changes in the landscape. 
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Many of the soils in north central Iowa are naturally poorly drained or 

somewhat poorly drained and contain excess water which could interrupt farm 

operations or ruin crops. Therefore, tile drainage systems are used to regulate the 

water level in the soils (Seigley 1999). 

Landcover 
• Farmsted 

Permanent grassway 
• Corn 
• Soybeans 

Set aside 
Roadway 
Cemetery 

• Lagoons 
• Forest 

Figure 2.1 Land cover of the Bear Creek watershed. 



21 

Table 2.1 indicates characteristics of some of the soils in the Bear Creek 

watershed. These soils range from well to poorly drained. Approximately 55% of the 

soils within the Bear Creek watershed are poorly drained or somewhat poorly 

drained. The drainage class information was obtained from the Iowa Soil Properties 

and Interpretations Database (ISPAID). 

Restoration research efforts began in the Bear Creek watershed in the early 

1990's by the Agroecology Issue Team of the Leopold Center for Sustainable 

Agriculture. Within this project, a riparian management system was created along 

stretches of Bear Creek. A multispecies riparian buffer model was used that 

consists of a 33-foot-wide strip of four to five rows of trees, a 12-foot wide strip of 

one to two rows of shrubs and a 21-foot-wide strip of native, warm-season grasses 

(Isenhart et al 1997). 

Table 2.1. Characteristics of some of the Bear Creek watershed soils (Note: mixed 
drainage class means soils can range from well to ~oorl~ drained}. 
Soil Name Soil Map Area % of Drainage Slope(%) 

Symbol (ha) watershed Class 

Harps-Okoboji 956 52 2.56 very poor 0-2 
Canisteo 507 1259 9.27 poor 0-2 
Coland 135 97 8.84 poor 0-2 
T al cot 32-40 559 19 2.57 poor 0-2 
Webster 107 859 2.22 poor 0-2 
Clarion-Storden 638C2 79 3.08 mixed 5-9 
Coland-Terril 2018 122 7.40 mixed 1-5 
Hanlon-Spillville 1314 10 5.20 mixed 0-2 
Spillville-Coland 1585 129 14.02 mixed 0-2 
Spillville 485 42 4.56 moderate 0-2 
Farrar 2538 186 2.47 well 2-5 
Lester 2368 81 2.94 well 2-5 
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Along with the buffer, the Bear Creek watershed restoration project 

incorporates soil bioengineering and grade control technologies for streambank 

stabilization and constructed wetlands. The objectives of these components are to 

minimize soil erosion and intercept surface and subsurface agricultural chemicals 

from adjacent crop fields, slow floodwaters, improve wildlife habitat and provide 

alternative, marketable products (Environmental Protection Agency 1999). 

The Bear Creek watershed empties into the Skunk River just north of Ames, 

Iowa. The Skunk River can produce major floods in Ames. Figure 2.2 is the location 

of the Bear Creek watershed located in portions of Hamilton, Hardin and Story 

counties. 

Methodology 

Figure 2.3 illustrates the relationship between GIS and HEC-HMS model and 

the steps used in this project. The first step of the process was the acquisition of the 

raw GIS data. A Digital Elevation Model (DEM) of the watershed area were 

processed and analyzed within GIS using a spatial hydrology database for the 

creation of the Triangulated Irregular Network (TIN) from the DEM. The data was 

then preprocessed using the HEC-GeoHMS. After the preprocessing, the hydrologic 

data, HMS Inputs and watershed characteristics were entered into HEC-HMS for the 

modeling processes. The results were viewed and displayed in HEC-HMS. 
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Figure 2.2 Location of the Bear Creek watershed. 



GIS 

Raw GIS Data 
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Watershed Hydrology 

Grid Format 
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HMS Inputs 

Characteristics 

HEC-HMS 

Figure 2.3 The relationship between GIS, HEC-GeoHMS and HEC-HMS (Hydrologic 
Engineering Center 2000). 

Preparation of Digital Elevation Model (DEM) 

A DEM is a digital representation of a continuous variable over a two

dimensional topographical surface by a regular array of z values referenced to a 

common datum (United States Geological Survey 1987). As a raster data set, the 

DEM contains elevation points of the earth's surface in a grid format spaced at 10-

meter intervals. The data were obtained from USGS 7.5 minute quad maps with 

elevations measured in feet. The scale of the data used was 1 :24,000. The 

reference system for this DEM was North American Datum 83 (NAD83). 

Within ArcView GIS, Spatial Analyst was used to import and view the DEMs. 

Six DEMs were downloaded for this project. The six DEMs are as follows: Story 

City, McCallsburg, Ames, Nevada, Ellsworth and Radcliffe. Because several DEM 

data sets were not connected, the DEMs were clipped by using an ArcScript from 

the Environmental System Research Institute (Appendix A). Using a mosaic script 
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from ESRI (Appendix 8), the DEMs were merged into a single coverage for proper 

analysis. Figure 2.4 is a DEM of the Bear Creek watershed after the clip and mosaic 

commands were performed. This image represents elevation changes. The darker 

images represent the higher elevations. 

Creation of a Triangulated Irregular Network (TIN) from DEM 

A TIN is a three-dimensional surface represented by interconnected triangles. 

A TIN is a significant alternative to the regular raster of a DEM. In a TIN model, 

irregularly spaced sample points can be adapted to a terrain and connected by lines 

forming triangles that represent a surface. The triangle's continuous surface defines 

elevations of the three corner points of the triangle (Mark 1975). A TIN was used in 

this project to determine the stream network within the watershed. 

Elevation in feet 
D 923-974 • 974-1024 
r• 11024.1015 
Ill 1075-1125 
Ill 1125-1176 
- 1176-1226 
D No D;:it;:i 

Figure 2.4 Digital Elevation Model (DEM) of Bear Creek watershed 
after the clip and mosaic. 
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Three-0 (3-0) Analyst, an ArcView extension, was used to create the TIN. 

The TIN provides a more accurate three-dimensional static view of the land surface 

(Maidment 1993). Figure 2.5 is a TIN where the different shades of the TIN 

represent the changes in elevations. 

Elevation in feet 

C:=J 923-974 
974-1024 

fllll 1024-1075 
!allll 1075-1125 
- 1125-1176 
- 1176-1226 
C:=J No Data 

Figure 2.5 Triangulated Irregular Network (TIN) of the Bear Creek watershed. 

Acquisition of Digital Orthophoto Quadrangles (DOQ) 

An orthophoto is a photograph in which objects are shown in their true 

orthographic position. Thus, orthophotos can be used to make direct measurements 

such as distances, angles, positions and areas. Because of the true representation 

of all surface objects on the orthophotos, a direct correlation between surface 

objects and actual objects can be observed (Vision International 2001 ). The DOQs 

were used to view the Bear Creek watershed. 
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The DOQs were obtained from the USGS Global Information System (GLIS) 

as zipped files. The files were unzipped using WinZip. A similar clip grid command 

was used on the DOQs as for the DEMs. The ground resolution of the DOQs was 1-

meter. This image was projected in the Universal Transverse Mercator (UTM) on 

the NAD83 (USGS 2001) with coordinates in meters. Figure 2.6 shows the Bear 

Creek watershed boundary superimposed on the DOQ. 

Primary Data Layers 

The watershed hydrologic processes began by downloading an Arc/Info 

coverage from the Bear Creek watershed research done by the Forestry 

Department. This coverage included soils, topography, land cover and stream 

centerline. Table 2.2 explains the significance of each of the data layers for this 

project. 

Table 2.2. Data layers used for analyzing the landscape of the Bear 
Creek watershed (Miller 2000). 

Soils 
Topography 
Land Cover 
Stream 

aids in modeling infiltration and runoff of the watershed 
influences infiltration & flow direction 
aids in assessing vegetation and the uses of the land 
visualize stream centerline 

Watershed Hydrologic Processes 

Analysis of watershed hydrologic processes was necessary to achieve the 

objectives of this project. Those analysis were: (1) to simulate storm events (2) to 

calculate and display the changes in the discharge rates of the stream and (3) to find 

the soils in the watershed most prone to ponding and calculate the volume of water 
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that each ponded area can contain. The first stage involved HEC-HMS and GIS. 

The second stage involved calculating and displaying the changes in stream 

discharge by using the HEC-HMS and GIS. The last stage involved extracting soil 

data from the soil coverage and a simple query within GIS. The last stage involved 

GIS Hydrology Modeling and Map calculator processes. 

HEC-Hydrologic Modeling System 

HEC-HMS is a modeling system designed to simulate the precipitation-runoff 

process of dendritic stream channel systems. In addition to unit hydrograph and 

hydrologic routing options, capabilities currently available in this system include a 

quasi-dimensionally distributed runoff transformation (grid format), precipitation and 

moisture depletion option that can be used for continuous simulation. This program 

features an integrated work environment, including database and data entry utilities, 

computation engine and result reporting tools. A graphical user interface (GUI) 

allows the transition from different parts of the program. Computation results are 

viewed from a basin model schematic map. Peak flow, total volume, time-series 

tables and graphs are included in the global and element summary table information 

(Dodson & Associatesa 2001 ). 

A hydrologic model, as used in this study, is defined as the equations that 

represent the behavior of hydrologic system components. In a situation that involves 

HEC-HMS, the known input is precipitation and the unknown output is runoff, or the 

known input is upstream flow and the unknown output is downstream flow 

(Hydrologic Engineering Center 2000). The HEC-HMS contains three models: the 

basin, precipitation and control specification. The Basin model represents the 
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Figure 2.6 Digital orthophotos of Bear Creek watershed. 

physical attributes of the model. The Precipitation model provides rainfall data. The 

Control Specification model is relevant to the timing of the storm event (Furnans 

2000). 

HEC-HMS uses different options to represent parameters within the basin 

model such as (1) computation of runoff volume, (2) determination of overland and 

interflow, (3) determination of baseflow and (4) determination channel flow 

(Hydrologic Engineering Center 1999). 

Preprocessing GIS Data with HEC-GeoHMS 

HEC-GeoHMS is a set of ArcView scripts developed using the Avenue 

programming language and Spatial Analyst (HEC 2000). Integrated data 
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management and graphical user interface is included in this script. GeoHMS is used 

for many different analyses such as delineation of sub-basins and streams, terrain 

information and preparation of hydrologic inputs. HEC-GeoHMS provides the 

connection for translating GIS spatial information into hydrologic models (Doan 

2000). 

HEC-GeoHMS was used to process digital spatial data, obtain necessary 

hydrologic information and generate the hydrologic parameters for the use of HEC

HMS. These parameters included the sub-basins, reaches, sources, sinks and 

diversion in the Bear Creek watershed. HEC-GeoHMS uses a DEM to derive sub

basin delineation and prepare several hydrologic inputs. HEC-HMS then accepts 

these inputs as the beginning of hydrologic modeling (HEC 2000). The 

preprocessing involves an extensive step-by-step execution of each sub-routine 

(McPherson and Henneman 2000). The DEM was downloaded and prepared for 

analysis in GeoHMS. 

Preprocessing with HEC-GeoHMS began with terrain preprocessing. Within 

the terrain preprocessing, drainage basin characteristics were established. These 

characteristics included filling the sinks, establishing the flow direction and 

accumulation, defining the stream and the stream segmentation. After the drainage 

basin was complete, sub-watersheds were defined and a new HMS Project was 

started. After the new project was started, the basin processing began. The basin 

processing included characteristics such as basin merge, stream merge, stream 

profile and split basin at confluences of each sub-watershed. The basin merge was 

a simple process that merged all of the contributing areas of the watershed together. 
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The stream merge function merged the stream as continuous flow. The stream 

profile allowed a visual view of the basin merge and the stream merge. The split 

basin at confluences separated the main channel from the tributaries. After this 

process was completed, basin characteristics were calculated including stream 

length, stream slope, basin centroid elevation, longest flow path and centroidal flow 

path. After the basin characteristics were defined, HMS was the final step of 

preprocessing before creating a schematic layout of the Bear Creek watershed using 

HEC-HMS. The result of preprocessing was the formulation of a basin model 

schematic map, which permits the inputs into HEC-HMS. Figure 2.7 is a schematic 

layout, a visual representation created by preprocessing the DEM of Bear Creek 

watershed using HEC-GeoHMS. 

The elements of the schematic layout are as follows: the sub-basin, reach, 

reservoir, junction, diversion, source and sink. Two or more sub-basins converge 

and form a junction. For example, R10W10 and R20W20 are sub-basins. These 

two sub-basins connect at JR30, which is a junction. Within the different sub-basins 

the loss determination, runoff transformation and the baseflow are calculated. At the 

different junctions, the routing method takes place. The schematic layout shows the 

path that water flows from the source of the watershed to the outlet. 

The Basin Model 

Modeling with HMS involves four sets of calculations (1) quantifying rainfall 

losses into the soil, (2) converting excess rainfall to runoff (3) routing of runoff and 
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(4) baseflow determination (HEC 1999). HMS provides different methods for 

simulating precipitation-runoff process: 

( 1) alternatives in determining losses 

(2) runoff transformation methods 

(3) hydrologic routing options and 

(4) baseflow determination. 

!\! HMS • Basin Model -- NewProj l!!I~ f3 
file fdit farameters .S.imulate ~iew Map !:!elp 

Subbasin 

/ 
Rncn 

Resnvoi1 

0 
Junction 

C 
Divusion 

G 
Sou,c, 

0 
Sink 

~ 
Figure 2.7 Basin model schematic layout of the Bear Creek watershed (HEC 2000) . 
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Loss Determination 

Loss rates are defined as the rainfall losses absorbed by the ground. Loss 

calculation can be achieved by several methods such as initial/constant, Soil 

Conservation Service (SCS) Curve Number, gridded SCS Curve Number, and the 

Green and Ampt (HEC 2000). These methods can be classified as lumped or linear

distributed methods. In the lumped method, losses are averaged spatially in a sub

basin while in linear-distributed method, losses are calculated for each individual grid 

cell (Boss International 2001 ). For this project, SCS Curve Number (CN) was used 

to measure runoff volume. 

The SCS CN method was selected because of the data availability of the soil 

coverage and the land use for the Bear Creek watershed. The SCS CN is probably 

the most widely used of all the methods. Because of the fine resolution of the land 

use and soil data for the Bear Creek watershed, the SCS CN was the best choice for 

determining runoff losses within the watershed. 

The SCS CN method estimates precipitation excess relative to total 

precipitation, soil cover, land use and antecedent moisture by using the following 

equations (Ponce and Hawkins 1996): 

qp = (0.0021 QA)/T P 

where 

qp = peak runoff rate, 
T P = time of peak flow 
Q = runoff depth and 
A= area 

Tp = D/2 + 0.6 Tc 
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where 

T p = time of peak flow, 
Tc= time of concentration and 
D = the duration of excess rainfall. 

For each hydrologic soil type (A,B,C,D), there is a corresponding curve number. 

From A to D, a decrease in the infiltration capacity of the soil occurs (Boss 

International 2001 ). A SCS CN was calculated for each soil type and the average 

for the sub-watershed was taken and used as the SCS CN. In Appendix C, the 

curve numbers for each sub-basin are documented. 

Runoff Transformation 

The runoff transformation method converts excess precipitation to direct 

runoff at a sub-basin outlet. This method describes water that has not infiltrated that 

moves over (overland flow) or just beneath (interflow) the watershed surface. This 

method is also achieved by either lumped or linear-distributed methods. In the 

lumped method, the amount of runoff is determined using hydrographs such as 

Clark, Synder, Kinematic wave or SCS (HEC 2000). In the linear-distributed method 

such as Modified Clark, the excess rainfall from each grid cell is "lagged" to the 

basin outlet. Because Bear Creek is an ungaged watershed, the SCS Unit 

Hydrograph as used to calculate the lag time using the SCS lag-time formula 

(Furnans 2000) as noted below: 

t1ag = 0.6 tc 

tc = time of concentration 

tc = L 0 · 8/190✓s *{(1000/CN) - 9}0·7 

where 



s = watershed slope (ft/ft) 
CN = Curve Number and 
L = watershed length. 

Routing 
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Routing is defined as the movement of runoff from sub-basin outlets. HMS's 

routing method options are Muskingum, the Modified Puls, the Kinematic Wave, 

confluence, bifurcation and the Muskingum-Cunge methods (HEC 2000). For this 

project, the Muskingum routing method was used to determine channel flow. This 

method is widely used and tor this project, Muskingum method was used as a 

standard in comparison with the Squaw Creek watershed. These watersheds are in 

close proximity to each other and are similar in soil types, land uses and farming 

practices. The Muskingham method computed a downstream hydrograph based on 

a given upstream hydrograph as a boundary condition tor each sub-watershed 

(Cunge 1969). 

The Muskingum routing method uses a simple finite difference approximation 

of the continuity equation. This method estimates K and X. K is the travel time of 

the flood wave through the routing reach and Xis a dimensionless weight (0.5~X~0). 

For an ungaged watershed, K and X can be estimated from channel characteristics. 

For this project, K is estimated as 0.4 and X is estimated as 0.2 with 22 subreaches 

taken from the Squaw Creek watershed. 

Baseflow Determination 

No basetlow, constant monthly, exponential recession, and linear reservoir 

are methods used to determine baseflow (HEC 2000). These methods simulate the 

subsurface drainage of water from the watershed into the stream. Because there 
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was limited baseflow data in the Bear Creek watershed, the no baseflow model was 

used in this project. The subsurface tile lines with the Bear Creek watershed 

actually provides flow to the stream that can also be considered tile flow. 

The Precipitation Model 

The physical attributes of the HEC-HMS model are now complete, so the next 

step is to complete the model that deals with simulated rainfall. There are many 

methods by which to describe rainfall simulation such as User Hyetograph, User 

Gage Weighting, the Frequency-Based Storm, Inverse-Distance Gage Weighting, 

Gridded Precipitation, SCS Hypothetical Storm and No Precipitation (HEC 2000). 

The Frequency-Based Storm method was chosen for this model because of the lack 

of rainfall data that represents the entire Bear Creek watershed. This method 

allowed simulation to be based on rainfall data in inches from the United States 

Department of Agriculture (USDA)-National Resource Conservation Service 

(NRCS). In this project, five rainfall simulations were: a 100-year 24-hour rainfall, 

50-year 24-hour rainfall, 25-year 24-hour rainfall, 10-year 24-hour rainfall and 2-year 

24-hour rainfall. The precipitation depths in each of the simulations were obtained 

from USDA-NRCS. In this example of a 2-Year 24 Hour Rainfall, the precipitation 

depth was 1.51 inches. A 2-Year 24 Hour Rainfall describes a typical rainfall event 

that happens every 2 years with a duration of 24 hours. Table 2.3 shows the 

amount of rainfall in inches during the simulation events relative to the time. 
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Table 2.3 Rainfall in inches of the simulated storm event relative to time. 

Time 100 Year 50 Year 25 Year 10 Year 2 Year 

5 min 0.8 0.5 0.5 0.4 0.2 

15 min 1.5 1.1 1.0 0.7 0.3 

1 hr 2.3 1.8 1.6 1.3 0.4 

2 hrs 3.0 2.6 2.4 1.7 0.5 

3 hrs 3.5 3.2 3.1 2.1 0.6 

6 hrs 4.9 4.0 3.7 3.0 0.7 

12 hrs 5.8 4.9 4.5 3.5 0.9 

24 hrs 6.5 5.8 5.3 4.5 1.5 

The Control Specification 

The final piece of the model involves time in which rainfall took place. In a 

hypothetical simulation, the number of days and the time of day are strictly up to the 

modeler. In an example of a 24-hour rainfall event, the time event begins at 

midnight on the 14th of July and ends at midnight on the 15th of July using sampling 

time intervals of 5 minutes. Using the set time interval, the unit hydrograph 

produces data after every five minutes. Five-minute intervals represent the time 

taken by the model to simulate discharge and display the results in a unit 

hydrograph. 
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Results 

The results can be viewed in tabular or graphical form. For this model, an 

actual storm event was modeled to determine the accuracy of the HMS modeling 

process. 

Within the Bear Creek watershed, a recording rain gauge is located on the 

Risdal Farm. Data were collected and analyzed from the summer of 1992. On July 

15, 1992, the Bear Creek discharge after a storm event was noted as approximately 

34.0 cfs. According to the conditions and based upon previous rainfall data, this 

discharge was associated with a 2-year 24-hour rainfall event. This rainfall data was 

entered into the HEC-HMS model and discharge at the Risdal weir was simulated. 

After the computation, the calculated model results were very similar to the observed 

discharge. Modeled discharge for the storm event was 34.5 cfs. In Figure 2.8, the 

graph indicates the result of the simulation at junction 90, the location of the Risdal 

weir, in cubic feet per second (cfs). Because the results are very similar to observed 

discharge at that location, the accuracy of this model to predict discharge of a storm 

event appears to be acceptable. 

Stream Discharge Simulation 

For this project, GIS was used to display the changes in discharge at each 

junction under different storm events. These discharges were computed during the 

HEC-HMS simulations. X Tools extension to ArcView GIS allowed the display of the 

changes in discharge by buffering different reaches based on the calculated 

discharge taken from HEC-HMS. 
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Figure 2.8 Results from the storm event of July 1992 (in cubic feet 
per second). 
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The changes in stream discharge are more noticeable from upstream to 

downstream as the elevation decreases and the water flow increases. Table 2.4 

shows the discharges relative to the junctions. These discharges are used to buffer 

the stream showing the changes in the discharge under different storm events. 

Increasing buffered widths in Figures 2.9 to 2.13 represent increasing discharge 

rates. These buffered widths are not meant to represent the actual width of the Bear 

Creek. 
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Table 2.4 Discharges of the stream relative to junctions (cubic feet/second). 
Junction 100 Year 50 Year 25 Year 10 Year 2 Year 

30 290.7 251 .5 220.2 161.6 16.8 

50 338.4 292.1 255.1 186.3 18.4 

70 219.4 191.4 169.8 125.2 17.0 

90 557.2 482.7 423.8 310.4 34.4 

100 599.5 519.2 455.4 334.3 36.7 

120 657.0 568.0 497.2 364.0 38.5 

150 912.5 786.7 686.7 499.5 49.2 

Ponded Areas 

The next step was to identify the areas within the Bear Creek watershed that 

are prone to ponding. This step was independent of any HEC-HMS modeling. The 

soil data were derived from the ISPAID database. ISPAID database includes a flood 

frequency code for each soil polygon. A query of the soil areas that are prone to 

ponding were identified by using the following flood frequency codes attached to the 

· soil polygons: 

NONE 
RARE 
OCCAS 
COMMON 
FREQ 
PONDED 

= 
= 
= 
= 
= 
= 

Flooding is not probable 
Flooding is unlikely but possible 
Flooding occurs 50 times or less in 100 years 
Flooding is likely under normal conditions 
Flooding occurs 50 times or more in 100 years 
Water ponds on soils in closed depressions 
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Junction 30 

Junction 70 

Discharge rates at junctions 
16.8 cfs at JR30 • 18.4 cfs at JR50 

D 17.0 cfs at JR70 • 34.4 cfs at JR90 
36.7 cfs at JRlO0 • 38.5 cfs at JR120 

D 49.2 cfs at JR150 

Figure 2.9 Discharges of the stream during a 2-year storm event. 
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Discharge rates at junctions 
161.6 cfs at JR30 

• 186.6 cfs at JR50 
D 125.2 cfs at JR70 
• 310.4 cfs at JR90 

334.3 cfs at JRl 00 • 364.0 cfs at JR120 
D 499.5 cfs at JR150 

Figure 2.1 O Discharges of the stream during a 10-year storm event. 
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Discharge rates at junctions • 220.2 cfs at JR30 • 255.1 cfs at JR50 
D 169.8 cfs at JR70 • 423.8 cfs at JR90 

455.4 cfs at JRlO0 • 497.2 cfs at JR120 
D 686.7 cfs at JR150 

Figure 2.11 Discharges of the stream during a 25-year storm event. 
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Discharge rates at junctions • 251.5 cfs at JR30 
• 292.1 cfs at JR50 
D 191.4 cfs at JR70 
• 482.7 cfs at JR90 

519.2 cfs at JRlO0 • 568.0 cfs at JR120 
D 786.7 cfs at JR150 

Figure 2.12 Discharges of the stream during a SO-year storm event. 
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Discharge rates at junctions • 290. 7 cfs at JR30 • 338.4cfs at JR50 
D 219.4 cfs at JR70 
• 557 .2 cfs at JR90 

599.5 cfs at JRlO0 • 657.0 cfs at JR120 
D 912.5 cfs at JR150 

Figure 2.13 Discharges of the stream during a 100-year storm event. 
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For this project, soils classified as PONDED were identified and displayed 

using GIS. GIS functions, Hydrology Modeling and Map Calculator, were used to 

calculate the total volume of water that can be held by soil polygons that was labeled 

PONDED. Figure 2.14 shows the Bear Creek watershed and the areas that are 

prone to ponding. These soils are prone to ponding without any flooding or 

disruption. Most of the ponded soils are located on the outer fringes of the 

watershed. If wetlands are constructed and used for storage of water within the 

Bear Creek watershed, the areas that are closer to the stream should be selected 

first. This concept works best in a watershed without a tile drainage system. 

Because the Bear Creek watershed includes tile drainage systems, the decision to 

construct wetlands to help minimize the impacts of flooding must be further 

examined to weigh the pros and cons. 

The total amount of water that can be held by the ponded areas is 8,650,300 

cubic meters within the Bear Creek watershed. The total amount of water that can 

be held by soils that are within 250 meters of the stream is 501,500 cubic meters. 

This is important because these are the areas that are most likely to be used for 

storage of any surface flow if wetlands are constructed. 

The amount of storage available within these ponded areas that are within 

250 meters of the stream is an important concept. In order to simulate the storage

holding capacity of these ponded areas, the time (in hours) that it would take each 

rainfall event to produce 501,500 cubic meters of discharge was calculated. Results 

are shown in Table 2.5. 
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Figure 2.14 Soils of the Bear Creek watershed that are prone to ponding. 
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Table 2.5. Time (in hours) to produce discharge of 501,500 cubic meters. 

Rainfall event 

100 year 
50 year 
25 year 
20 year 

2 year 

Conclusion 

Time (in hours) 

5.5 
6.5 
7.5 
10 
100 

Completion of this research project shows that the future of hydrologic 

modeling of the Bear Creek watershed is promising. Currently, rainfall data are 

being collected and hopefully more accurate hydrologic modeling can be done in the 

near future. 

Within the Bear Creek watershed, hydrologic modeling of hydrologic 

processes was completed, the stream discharge rates were calculated and 

displayed and the ponded areas were identified and also displayed. Future research 

is needed to accurately assess the actual locations where flooding will occur for a 

given storm event. This can be accomplished by using HEC-RAS and Virtual Reality 

software. This information would provide more substantial evidence for the 

landowners of the benefits of taking some ponded areas out of production and 

possibly constructing wetlands to help minimize the impacts of flooding. 



49 

References 

Boss International. 2001. website: www.bossintl.com 

Cole, G. 1976. Land drainage in England and Wales. Journal of the Institute of 
Water Engineers, 30: 354-361. 

Cunge, J. A. 1969. "On the subject of Flood Propagation computation method 
(Muskingham Method). J. Hydraulic Res, Vol 7: 205-230. 

Doan, J. 2000. "HEC-GeoHMS Tools for Hydrologic Modeling." Proceedings from 
the 20th ESRI International Conference, San Diego, CA. USAGE, Davis, CA. 

Dodson & Associatesa presented by Christopher Johnson. 2001. Introduction to 
HEC-HMS. American Society of Civil Engineers. 

Dunne, T., and L. B. Leopold. 1978. Water in environmental planning.W.H. Freeman 
Co., San Francisco. 

Environmental Protection Agency (EPA). 1999. website: 
www.epa.gov/owow/showcase/bearcreek/summary.html 

ESRI. 2000. website: www.esri.com/library/glossary/glossary.html. 

Furnans, J. 2000. Surface Water Quality Modeling. Center for Research in Water 
Resources. University of Texas. 

Griffith, G. E., Omernik, J. M., Wilton, T. F., and Poerson, S. M. 1994. Ecoregions 
and Subregions of Iowa: A Framework for Water Quality Assessment and 
Management. The Journal of the Iowa Academy of Science, 101, 5-13. 

Hydrologic Engineering Center. 2000. Hydrologic Modeling System (HEC-HMS): 
Technical Reference Manual. U.S. Army Corp of Engineers (USAGE), Davis, CA. 

Hydrologic Engineering Center. 1999. HEC-HMS user manual. USAGE, Davis, CA. 

Isenhart, T. M., R. C. Schultz and J. P. Colletti. 1997. Watershed Restoration and 
Agricultural Practices in the Midwest: Bear Creek of Iowa. Watershed Principles and 
Practices. p318-334. 

Leopold, L. B. 1994. A view of a river. Harvard University Press, Cambridge, 
Massachusetts. 



50 

Maidment, David R. 1993. GIS and Hydrologic Modeling, in Environmental 
Modeling, ed. by M.F. Goodchild, B.O. Parks and L. Steyaert, Oxford University 
Press, New York. pp 147-167. 

Mark, D. M. 1975. Computer Analysis if Topography: A Comparison of Terrain 
Storage Methods. Geografisker Annal er 57 A: 179-188. A quantitative comparison of 
regular grids and triangulated networks. 

McPherson, M. M. and H.E. Henneman. 2000. DEM Processing for Hydrologic 
Modeling Studies. United States Army Corps of Engineers. 

Miller, S. 2000. Data Availability for Hydrologic Modeling in the United States and 
Mexico. United States Department of Agriculture. 

Mohanty, B.P., U. S. Tim, C.E. Anderson, and T. Woestman. 1994. Impacts of 
Agricultural Drainage Well Closure on Crop Production: A Watershed Case Study. 
Water Resource Bulletin. 

Prior, Jean C. 1991. Landforms of Iowa. University of Iowa Press for the Iowa 
Department of Natural Resources. 

Ponce, V. M., and R.H. Hawkins. 1996. Runoff Curve Number: Has it Reached 
Maturity? Journal of Hydrologic Engineering, American Society of Civil Engineers, 
1(1), 11-19. 

Rosgen, D. L. 1994. A classification of natural rivers. Wildland Hydrology, Colorado. 
Catena 22: 169-199. 

Rosgen, D. L. 1996. Applied river morphology. Wildland Hydrology, Colorado. 

Seigley, LS. 1999. Closures of Agricultural Drainage Wells (ADWs) Improves Water 
Quality. Iowa Department of Natural Resources. 

USGS. 1987. Digital Elevation Models. Data Users Guide 5, U.S. Department of 
Interior, Reston, VA. Describes the creation and data structures of USGS DEMs in 
detail. 

USGS. 2001. website: mapping.usgs.gov/www/ndop. 

Vision International. 2001. GeoData - Digital Orthophotos. Autometric, Inc. 
OrthoKork. 



51 

CHAPTER 3. GENERAL CONCLUSION AND PERSPECTIVES 

Completion of this research project indicated the need for future work in the 

area of flood modeling within the Bear Creek watershed. This project also 

demonstrated the growing capabilities of technologies such as HEC-HMS and GIS. 

The continued advancement in technology will continue to revolutionize the area of 

hydrologic modeling. No other flood hydrologic modeling research has been 

conducted for the Bear Creek watershed. This project could be the initial step to 

spark the interest in hydrologic modeling. 

The major advantage of using HEC-HMS for this project is that it allows the 

use of hypothetical storm events within the Precipitation Model for any basin. This is 

important because of the fact that the Bear Creek watershed has limited rainfall data 

applicable that represents the entire watershed. Additional rainfall gauges are now 

being added to the Bear Creek watershed. With the addition of these gauges, more 

information will be available to more sufficiently represent the Bear Creek 

watershed. 

Because this project dealt with the modeling of hydrologic processes within 

the Bear Creek watershed, identifying the soils that are prone to ponding and 

calculating and displaying changes in discharge rates of the stream channel under 

different storm events, steps in the area of hydrologic modeling within the Bear 

Creek watershed has been taken. However, much more work is needed to ensure 

the validity of HEC-HMS and GIS to accurately assess flooding conditions of Bear 

Creek. 
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There are research opportunities in this area in the future. This research can 

be used as a basis to determine the exact locations of water flowing onto the 

landscape under flood conditions using HEC-RAS. HEC-River Analysis System 

incorporates several aspects of hydraulic modeling, including water surface profile 

computations, bridge hydraulics, unsteady flow and one-dimensional steady flow. 

HEC-GeoRas, as HEC-GeoHMS, is a precursor to the actual modeling system. 

HEC-GeoRAS is an ArcView GIS extension designed to process geo-spatial data for 

use within HEC-RAS. In order for research results from this project to be taken into 

HEC-RAS, additional work is need such as identification of the flow path centerlines, 

cross-sectional stream attributes, main channel banks and land use in order to 

develop Manning's n coefficient. HEC-GeoRAS preprocessing begins with the 

development of HEC-RAS steady-state simulations. This is accomplished by using 

geometry data, flow data, open-flow data, reach boundary conditions and steady

flow conditions. The HEC-GeoRAS post-processing incorporates the water surface 

profile derived from the HEC-RAS model into a spatial environment into GIS. The 

water surface profile data is used to develop a water surface TIN. The water surface 

TIN is then intersected with the terrain model TIN and this is how the flood 

visualization within HEC-RAS occurs. The results can be shown in 2 or 3 

dimensions. Virtual reality technology can also be used to show the results. 

Using the discharge data from this project coupled with areas that are prone 

to ponding, HEC-RAS can be used to show the exact locations on the landscape 

that the water will go during flood conditions. This continued research will present 

more evidence of the benefits of taking some ponded areas out of agricultural 
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production to help minimize the impacts of flooding by using the ponded areas as 

water storages. 
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APPENDIX A. CLIP GRID SCRIPT 

DiskFile : clipgrid.ave : Clip Grid 
' Programmer: Tom Van Niel 
'Created : 03-Nov-99 
' Revisions : 05-Nov-99/Tom Van Niel/ Allow user to specify whether 
' Clip Theme should be a Grid or a Feature Theme. 

: 15-Jun-00/Tom Van Niel/ add in SetAnalysisExtent 
command to output grid extent equal to extent of 
input FSrc or Grid - eliminates lots of nodata vals. 

' Function : Clips all Input Grids by the Clip Theme. OUTPUT Grid 
' matches the INPUT Grid geographically (pixels line up). 

All non-zero areas in CLIP theme are use~ to "clip" out 
the INPUT Grid. 

' References : None 
'Called By : GUI 
' Calls : None 
' Sister Code: None 

' Initialize Variables 
theView = av.GetActiveDoc 
If (not (theView.GetClass.GetClassName = "View")) then 
MsgBox.Warning("A View must be active to use this function.","Exiting") 
Return Nil 

End 
thePrj = theView.GetProjection 
Counter= 0 
Typelist = {Grid,FSrc} 
theNumFields = {} 

'Get Input Grid to be Clipped 
lnSrclist = SourceDialog.ShowClass("Select In GRID(s). Grid(s) to be 
clipped." ,Grid) 

If (lnSrclist.Count = 0) then return NIL end 
theCellSize = Grid. Make(I nSrclist. Get(Counter)) .GetCellSize 
theExtent = Grid.Make(lnSrclist.Get(Counter)).GetExtent 

' Get Data Source Type (i.e. Grid or Feature) 
DType = MsgBox.ListAsString(Typelist,"Select Data Source Type for CLIP 
Theme"+NL+"(Select ""Grid"" to select from GRID Themes"+NL+"or ""FSrc"" to 
select from Feature Themes)","Data Source Type Input") 

' Get Clip Theme 
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NullSrclist = SourceDialog.ShowClass("Select CLIP Theme. Non-zero areas in CIIP 
Theme will be retained in the OUTPUT Grid.",DType) 
If (NullSrcList.Count = 0) then return NIL end 
If (NullSrclist.Count > 1) then 

msgbox.ERROR("Must Select only one CLIP Theme","Clip BOUNDING THEME 
SELECT ERROR") 

return NIL 
End 

' Make Clip Grid (Convert Shape to Grid if DataSourceType is Feature Source) 
If (DType.GetClassName = "Grid") then 

NullGrid = Grid.Make(NullSrclist.Get(0)) 
NullRect = GTheme.Make(NullGrid).ReturnExtent 

Elseif (DType.GetClassName = "FSrc") then 
NullFtheme = Theme.Make(NullSrclist.Get(0)) 
NullRect = NullFtheme.ReturnExtent 
NullFtab = NullFtheme.GetFtab 
theFields = NullFtab.GetFields 
For each Fld in theFields 

If (Fld.lsTypeNumber) then 
theNumFields.Add(Fld) 

End 
End 
theFld = MsgBox.ListAsString(theNumFields,"Select Field containing values to 

retain in Clip","Field Selection") 
NullGrid = Grid.MakeFromFtab(nullFTab,thePrj,theFld,{theCellSize,theExtent}) 

End 

' Loop through all In Grids Selected 

For Each Grd in lnSrclist 
lnGrid = Grid.Make(lnSrclist.Get(Counter)) 
' Clip Ingrid with Clip Grid 
Grid.SetAnalysisExtent(#GRID_ENVTYPE_VALUE,NullRect) 
OutGrid = nullGrid.Con(lnGrid,nullGrid) 
'Save Output Grid 
lnBase = lnSrclist.Get(Counter).GetFileName.GetBaseName 
lnBase = lnBase.left(4)+"cl" 
OutFN = av.GetProject.GetWorkDir.MakeTmp(lnBase,"") 
OutGridStrng = msgbox.lnput("Enter Output Grid File Name","GRID 

NAME" ,OutFN .asString) 
If (outGridStrng = NIL) then return NIL End 
OutGridStrng = OutGridStrng.Trim.Substitute(" ","") 
OutGridFN = FileName.Make(OutGridStrng) 
OutGrid.SaveDataSet(OutGridFN) 
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If (OutGrid.HasError) then 
msgbox.ERROR("Out GRID HAS ERROR, MIGHT BE INVALID GRID NAME 

EXITING","SaveDataSet ERROR") 
return NIL 

End 

'Ask User if Want to Add Grid to View 
AddGrd = msgBox.YesNo("Add OutPut Grid to the View?","Add GRID",FALSE) 
If (AddGrd = TRUE) then 
OutGTheme = GTheme.Make(OutGrid) 
the View.AddTheme(OutGTheme) 

End 
Counter = Counter + 1 

End'Forloop 
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APPENDIX B. MOSAIC SCRIPT 

'Description: Mosaics multiple grid themes, making a smooth transition 
' over overlapping areas. 
I 

' Name: Spatial.GridMosaic 
I 

' Requires: Spatial Analyst 
I 

'Self: 

' Returns: 

' FileName: ggmosaic.ave 
I 

I GET THE ACTIVE THEMES 
theView = av.GetActiveDoc 
gl = theView.GetActiveThemes 

' FIND THE OUTPUT NAME FOR GRID 
gridFN = SourceManager.PutDataSet(GRID,"Output Grid :" , 
"newgrd1 ".asFileName,TRUE) 
if (gridFN = NIL) then return NIL end 

'ADD THE GRIDS OF ACTIVE THEMES TO A GRIDLIST 
gs={} 
X=O 
for each gg in gl 

X=X+1 
if (x > 1) then 
gx = gg.GetGrid 
gs.Add(gx) 

end 
end 

gy = theView.GetActiveThemes.Get(0).GetGrid 
MOSAIC THE GRIDS IN THE GRIDLIST AND SAVE THE RESULTING 

'GRID IN THE WORK DIRECTORY 
av.GetProject.GetWorkDir.SetCwd 
n_g = gy.mosaic(gs) 
n_g.SaveDataSet(gridFN) 
ngt = GTheme.make(n_g) 

theView.Addtheme(ngt) 



58 

APPENDIX C. CURVE NUMBERS FOR HEC-HMS SUB-BASINS 

Sub-Basin 

R10W10 
R20W20 
R30W30 
R40W40 
R50W50 
R60W60 
R70W70 
R80W80 
R90W90 

R100W100 
R110W110 
R120W120 
R130W130 
R140W140 
R150W150 

Curve# 

78 
78 
69 
78 
75 
85 
78 
75 
75 
75 
75 
69 
69 
78 
98 
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