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ABSTRACT
Cracks on the surface of a wind turbine blade (WTB) can be a sign of current or future damage to the underlying structure
depending on the severity of the cracks. We investigated a new method for automatically detecting surface cracks based on
image processing techniques. The method was evaluated by varying crack parameters and our method parameters. Identifying
and quantifying cracks as small as hair thickness is possible with this technique. Orientation of a crack did not affect the
results. The effects of uneven background illumination (present in images captured on-tower) were significantly reduced by
optimizing the threshold value for the Canny edge detection method. The accuracy of quantifying a crack was increased by
processing an image with both the Sobel and Canny edge detection methods and then combining the results to reduce
background noise.
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1. INTRODUCTION
Visual inspection is widely used as part of routine maintenance programs for large scale structures
such as WTBs, aircraft, and bridges. Given the scale of these structures, inspection times are
lengthy and the accuracy of the results is highly dependent on the skill of the inspector. Visual
inspection is prone to distractions and eye fatigue [1]. For WTB inspection, inspector safety is also
a concern because “sky workers” perform the inspection while suspended by a rope attached to the
turbine or supported by a platform [2]. An alternative to sky workers is the use of telescopes
mounted on the ground. It is well established that eye strain and eye fatigue occur in long term use
of telescopes [3]. Visual inspections are not consistent because inspectors vary in their ability to
detect small surface flaws (such as hairline cracks) that occur under normal blade operating
conditions. Knowing the severity of the crack is important because the potential future damage is
proportional to the severity of the crack. Quantifying the location and severity of a crack will
enable future technologies that can automate the blade repair process, which is currently a manual
labor intensive process.

Accounting for 18% of the total turbine cost, WTBs are a major challenge for maintenance due
to the large-scale, on-tower location, and composite materials [4]. The annual Operation &
Maintenance (O&M) cost of a wind farm is in the range of 0.5–2.2 cents/kWh depending on turbine
size and the useful life of the turbine. O&M costs are 10–20% of the total cost of energy (COE) for
a wind project, based on current COE figures of 3.5–6 cents/kWh [5]. Although information is
scarce on the cost breakdown of O&M costs, blade failure ranks in the top third of failure rates
among all the critical large mechanical components. Blade repair adds a significant downtime per
failure, 4 days on average, using expensive cranes and skilled technicians [6]. Early inspection can
help prevent severe structural damage and reduce O&M costs (SGS Group, 2010). The SGS Group
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points out that repairing a blade (with significant damage) costs 26% of the original blade cost. If
the problem is detected early enough by using a third-party inspection company, the cost would be
0.64% of the original blade cost [7].

Turbine blades typically are coated with two thin protective layers, a gel coat and a water-based
varnish, to prevent infiltration of moisture, sand, and salt into the underlying fiberglass composite
material, which can lead to delamination and other types of structural damage. Depending on the stress
applied to a blade surface, gel coat thickness varies between 0.3 mm where loads are light and 0.6 mm
along the leading edge where it makes first contact with wind and loads are particularly high [8]. The
health of the protective layers is a major O&M concern and is a significant contribution to COE using
existing on-tower inspection and repair methods. Companies like BASF have focused their efforts on
developing more durable coating materials [9]. However, gel coat defects like cracks and erosion can
still occur as early after commissioning a turbine due to environment-related events such as heavy
rains. With wind energy moving offshore, the blades will experience a more challenging environment –
high moisture and salt – and potentially higher O&M costs.

Cracks that occur in the protective layers include stress cracks, crazing, and thermal cracks as
shown in Figure 1. These can significantly reduce the aerodynamic efficiency of blades and lead to
structural damage, which is more difficult to detect and repair. This paper addresses the
characteristics of the WTB surface cracks and method parameters for automatic computer-aided
optical inspection. Similar methods have been studied for aircraft health inspection. For example, a
stereoscopic method has been successfully applied to a limited number of surface cracks on aircraft
skins [10], [11]. The remainder of the paper is organized as follows. In the next section we describe
the methodology of crack detection. Then we present the results for some candidate images,
followed by concluding remarks.

2. METHODOLOGY
The three stage crack detection methodology includes: (1) a line detection method to quickly scan
a WTB and locate crack regions, (2) an edge detection method that produces a detailed
representation of a crack, and (3) a crack quantification method that characterizes the severity of a
crack (e.g., size, color) [12]. A series of synthetic cracks were created to control the common
characteristics of surface cracks so that we could study the factors that affect the visibility of a
crack. Brownian motion was used to create a random crack with correlation between neighboring
points on the crack. Variations in thickness and color were also considered. 

2.1. Synthetic crack generation
A set of representative synthetic cracks was generated with one-dimensional Brownian motion in a
controlled fashion as shown in Figure 2. One-dimensional Brownian motion represents a random
displacement from the current location based on a random number generated from a standard
normal distribution. The background color of the region surrounding the synthetic cracks was
defined as either white or light gray to be consistent with the paint color of a blade. The color of the
synthetic crack was varied to represent the severity of a crack. The color of surface cracks gradually
changes as the cracks deepen and become easier to identify in digital images. The complexity of a
surface crack was reflected in its non-uniform thickness, variation in color, and small deviations
along the direction of crack propagation.

Differences in the intensity level of pixels, irregular distribution and geometry of noise (e.g.,
dirt), and uneven illumination of the image background are three major factors that can decrease the
detectability of a crack [13]. The geometry and color of a crack may have some level of impact on
the defect detectability. Therefore, we generated three representative groups of synthetic cracks to
test the corresponding three hypotheses listed in Table 1.
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Figure 1. Types of gel coat cracks



Three field images were selected to further investigate the hypotheses in Table 1 and to evaluate
if the parameters that define detectability are consistent with the six synthetic cracks. After testing
the method on the three groups of synthetic cracks, the field images shown in Figure 3 were used
to evaluate the accuracy of the method. The results were compared to the synthetic cracks to check
whether the synthetic cracks captured the basic characteristics of real cracks.

The field images in Figure 3(a) has a hairline crack on the right side and is the most difficult
crack to detect with the human eye. Hairline cracks share the same characteristics as the synthetic
cracks in the second group as shown in Figure 2-2(a) and (b). Figure 3(b) is a stress crack with
uneven background illumination and was used to investigate the effect of the orientation of the line
detection masks. The third crack, shown in Figure 3(c), exhibits crazing and significant background
noise. Given the spider web geometry, some of the small cracks may not coincide with the four
directions of standard line detection masks. The images in Figure 3(b) and (c) were also used to
evaluate the effects of uneven illumination and noise on the detectability of cracks, corresponding
to the synthetic cracks in group three as shown in Figure 2-3(a) and (b). The background color of
Figure 3(a) and (b) was light gray and Figure 3(c) had a white background color, which corresponds
to the synthetic cracks in the first group of Table 1.

2.2. Line detection
A line detection method can be used to perform a quick blade scan. It is simple, fast, and sensitive
to individual line segments. Cracks can be treated as a set of connected segments. A line is a basic
type of intensity discontinuity in a digital image and the most common method to detect them is to
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Figure 2. Synthetic cracks: 1. Different intensity level of pixels 2. Hairline thickness cracks 3. Noises & uneven illumination

Table 1. The characteristics of cracks to test the hypotheses

No. Hypothesis Characteristics of cracks

1 Different intensity levels of background The color of the cracks is the same, 
pixels affect the detectability cracks but the background color is either 
using image processing techniques. white or light gray.

2 Automatic crack detection can detect Small color differences between a crack 
small thickness cracks or weak and its background were used. Crack 
intensity levels of pixels that an thickness was set to one pixel.
inspector would miss.

3 Irregular noise and uneven Non-uniform thicknesses of two synthetic 
illumination affect detectability crack images were used. One has irregular 
of cracks. noise and the other has uneven illumination.



process the image with a linear spatial filter mask having a binary format. The process consists of
moving the center of the mask to each pixel in an image and computing the response at each pixel,
which is the sum of the product of the mask coefficients and the intensity of the 8 neighboring pixels
and is given by 

(1)

where, zi is the intensity of the pixel associated with the mask coefficient wi.
Theoretically, only an odd number size of the mask is considered since R is the response from

the center of the filter mask at a specific pixel, (x, y). The smallest mask is a 3 × 3 matrix (i.e., 8
neighboring pixels).There are four standard line detection masks corresponding to the orientation of
the lines, namely, horizontal, 45°, vertical, and –45° as shown in Table 2. The larger number – 2 –
in the mask matrix represents the direction of the mask and it has a strong response to one pixel
thickness segments. Increasing the number from 2 to 3 will smooth the output image but continually
increasing the number will create fuzzy results. Although the vertical line detector masks responded
strongly to one pixel thickness lines, it can also detect vertical lines with different thicknesses. 
A binary union operation between the four standard line detector masks creates a composite mask
that can detect lines in any direction.

A threshold value was used to convert a gray-scale image to a binary image. Suppose f (x, y)
represents the intensity of a pixel at (x, y) and T is a selected threshold value, any pixel where
f (x, y) ≥ T is set to 1 and is classified as an object pixel. Otherwise, the pixel is set to 0 and is
classified asa background pixel. The converted image g (x, y) is defined as

(2)

The MATLAB toolbox provides a function, graythresh, that computes a threshold using Ostu’s
method [13]. However, this method tends to generate significant noise when the background
illumination is uneven.
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Figure 3. (a) Hairline crack (RGB image: 157-by-272). (b) Stress cracks (Gray-scale: 247-by-350). (c) Crazing (RGB image: 270-by-435)

Table 2. Standard line detector masks
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2.3. Edge detection
A major advantage of edge detection is that uneven illumination does not affect the detectability of
an edge. Edge detection was used to capture the outer contour of non-uniform thickness cracks and
to complement the inadequacy of line detectors in detecting meaningful discontinuities in intensity
values. Unlike line detection, edge detection uses first- or second-order derivatives to compute the
maximum rate of change of grayscale levels of pixels. Edge detection gave much smoother results
by eliminating noise having a small number of pixels. However, this process may take a long time
when the size of the images are large (e.g., 2 MB). Therefore, line detection was applied first so that
a fast scan of the entire blade can be performed in a reasonable amount of time and then the edge
detection method was used to extract detailed information from the areas identified by line detection. 

The MATLAB function, edge (), supports several common detection methods including: Sobel,
Prewitt, Laplacian of a Gaussian (LoG), and Canny. The key difference between these methods is
how the first or second-order derivatives are approximated. The first order derivative in image
processing is a vector for a 2D function f (x, y) given by 

(3)

with the magnitude of the vector being and the angle is

defines the edge direction. Both the Sobel and Canny methods were considered since Sobel is the
most commonly used and Canny is considered to be the most powerful edge detector. The Sobel
method had default masks as shown in Table 3 to compute the gradient, ∇f, which is composed of
vectors Gx and Gy, given by

(4)

where z1, .... z9 are the pixel values of the pixel neighborhood and pixel z5 is the pixel that the mask
is being applied to as shown in Table 4.

The Canny method is more complex and includes a Gaussian filter, a local gradient, an edge
direction computation algorithm, and provides edge linking by incorporating the weak pixels that
are connected to the strong pixels. 

The default threshold number for the Sobel and Canny methods does not guarantee a accurate
result. However, both of these methods offer promising results by optimizing the threshold value.
The Sobel method offered less noisy results as compared to the Canny method but also tended to
miss a significant number of the defects. By updating the threshold number, the Canny method
produced the smoothest result. The Sobel method did not reduce the background noise
significantlyas the threshold value was adjusted. On the other side, the noise generated by Sobel
method looks like points, where the Canny method produced noise that tended to be small segments.
If we treat the noisy results as connected pixels, then we can filter them by eliminating number of
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Table 3. Sobel detector masks

Table 4. Pixel Neighborhood
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connected pixels less than a specific threshold value, say 3 pixels. With this method, Sobel method
can eliminate noisy results better since the noisy results generated by Sobel method are small dots.

Adjustment of the edge detection threshold values requires a lot of human intervention, which
is not the goal of this research. The default threshold value was used as a starting point and was
adjusted using a fixed step size. The edge detection method was performed with the new threshold
value and the results were compared with the previous results to determine if the difference 
is within an acceptable tolerance. For example, the default threshold value for the Canny method is
T = [t1, t2] that produces an image A0 containing all the detected edges corresponding to the cracks.
The threshold value was updated to T1 = [t1 + .1 × (t2 – t1), t2 – .1 × (t2 – t1)] and applied again,
producing a new set of detected edges in image A1. The process was repeated until Ai+1 – Ai ≥ D,
where D is standard deviation of all As.

2.4. Quantifying crack severity
Two methods were used to quantify the severity of a crack. The easiest method was to find the
bounding rectangle (parallel to the x and y axes) that encloses the pixels from the edge detection
method. This region identified the most likely required repair area. However, it did not provide any
further information about the orientation of the crack and tended to overestimate the magnitude. 

The second approach was to find the minimum enclosing envelope (i.e., the envelope orientation
is not constrained). The envelope can be found by estimating the parameters of a line that minimizes
the maximum distance to all the points on the crack edges. Using the start and end points of the
detected edges, the sides of the envelope can be found by projecting the end points onto the estimated
line. The other two sides of the envelope correspond to the maximum deviation of the crack on each
side of the line. 

To minimize the maximum distance to the line, the function fminimax in MATLAB was used to

find the best fit parametric line, denoted by . The function, fminimax, requires an initial guess

for the parameters of the line [a, b, c, d] and a function that computes the maximum distance of all points
along the edges to the given line. The function stops when the change in [a, b, c, d] values is within a
specified tolerance (i.e., the change is negligible) or a maximum number of iterations is reached. The
default iteration limit is 500 in MATLAB. In this study a limit of 2500 iterations was used.

2.5. Potential errors
Any inspection technique can result in two kinds of errors: false-positive (Type 1) or a defect is missed
(Type 2). For crack detection, a Type 1 error can be caused by noise, which cannot be totally avoided.
Missing a defect (Type 2) could occur due to uneven illumination or line and edge detection method
parameters. The consequences of a Type 1 error in this context are not as severe as the Type 2 error,
since missing defects can lead to ignoring the necessary maintenance, leading to future structural
damage. Type 2 error can be reduced significantly by adjusting the threshold values.

3. RESULTS
The results of the image processing show that (1) noise, intensity level of pixels, and uneven illumination
are major factors that affect detectability, (2) the line detection method is capable of quickly scanning a
blade to find crack regions, and (3) uneven illumination is not a major factor in edge detection methods.
The Canny method offers the best results in detecting discontinuities in the surface. The severity of a
crack is difficult to quantify because we only considered 2D images in the paper. However, the crack size
and intensity level of pixels offer important insights on the magnitude of a crack.

The six synthetic cracks and three representative field images were tested with both line and edge
detection methods. The Canny method had the best results by far in terms of detecting
discontinuities in the surface. Generally, uneven illumination had much less influence on the
detectability of edge detection methods as compared to line detection. For a very bright background,
edge detection offered much better results. Unlike line detection, edge detection eliminated low
levels of noise and the detected edges were much smoother.

3.1. Factors affecting detectability
The intensity level of pixels is important. The results for the first group of synthetic cracks showed
that our method can detect a crack regardless of background color. When applying the MATLAB
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graythresh function, the two images resulted in very different optimal threshold numbers and
clearly delineated defects. Not surprisingly, the applicable threshold range was significantly
different for the two images. The image with a white background had lower and upper threshold
values of 0.746 and 0.999, respectively. The image with a gray background had lower and upper
threshold values of 0.745 and 0.827, respectively. Upper threshold values eliminated more noise
with low- to middle-level intensity levels for pixels in the background, which can make the results
more definitive if there is a lot of noise in the background. However, the tradeoff is that some of
the defects will be filtered out if the defect has a lower intensity level than the noise in the
background. 

Surprisingly, crack thickness did not affect the detectability of a crack for synthetic cracks
and field images. Also, crack orientation was not a significant factor. In the line detection
method, when images were rotated counter-clockwise in 10 degree increments, the line detector
masks were able to detect lines in all orientations. Edge detection methods are based on first-
or second- order derivatives, which are not affected by crack orientation. Therefore, both line
and edge detection methods were not affected by crack orientation. In other words, the
orientation of the field camera is not expected to affect the results.These results suggest that
the computer-based method is amenable to on-tower inspection of blades that would be in
different orientations.

Background illumination is important because automatic threshold computing methods tend to
fail when the background illumination of an image is uneven (i.e., there is variance in the pixel
values). Uneven illumination had a major effect on the line detection method as shown in Figure 4(b).
The original image of stress cracks in Figure 3(b) had very bright lighting on the background and
the results were poor. Therefore, the lighting problem still poses a challenge for line detection. This
problem can be addressed to a limited extent with existing image processing techniques. Further
research is warranted to reduce the effects of uneven lighting on crack detection. Edge detection
methods reduce the uneven illumination problem for the same cracks as shown in Figure 5(b) and (d).
Also edge detection methods reduce the background noise problem for the crazing cracks shown in
Figure 6. This supports the hypothesis we made earlier that it would be most effective to use the
line detection method to perform a quick scan and then apply an edge detection method to
investigate the details of a crack.

3.2. Edge detection
Edge detection methods like Sobel and Canny produced much smoother results than the line
detection method. Noise and uneven illumination did not have a significant impact on edge
detection. The intensity level of pixels is very important to both line and edge detection methods
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because if the intensity level of noise is larger than the intensity level of the defect, the defect will
not be detected since the method will consider it to be background noise and eliminate it. 

When testing synthetic cracks with the line and edge detection methods, the first two groups of
synthetic cracks had the same results. Neither the color or size of the crack affected the result. In
other words, both the line and edge detection methods could easily detect hairline cracks when there
is no significant background noise or no uneven illuminations. However, both the Sobel and Canny
methods required adjustments to the threshold values to detect some cracks. Without these
adjustments, these methods had difficulty detecting stress cracks under uneven illumination
conditions and crazing cracks with noisy backgrounds. 

With the default threshold value, Canny method offered much better results as shown in
Figure 5(c), where Sobel method missed a significant number of cracks as shown in Figure 5(a).
Both the Sobel and Canny methods could produce better results by optimizing the threshold
values as shown in Figure 5(b) and (d). The Canny method result is much smoother but also
noisier as shown in Figure 5(d).

The crazing crack from Figure 3(c) contains a lot of noise, which is common to blades. Both the
Canny and Sobel methods were able to reduce the background noise effect, which means the
computer-based optical inspection method is feasible for on-tower inspection (see Figure 6).

3.3. Quantifying the cracks
After the cracks were detected, they were bounded in a rectangle and a minimum enclosing
envelope. The rectangle indicated the recommended repair area. The envelope provided
additional information on the direction and magnitude of the cracks. However, if there was a lot
of noise, the parallel lines were just the lines enclosing all the noise such as in in Figure 4(c).
Therefore, eliminating noise as much as possible is very important in estimating the magnitude
of a crack. 

The first synthetic crack in Group 1 was selected to demonstrate the capability of quantifying a
crack since the direction of the crack is clear and it is easy to determine if the approximation line
follows the direction of the crack. First, the recommended repair area is enclosed in the yellow
rectangle with 423-by-301 pixels as shown in Figure 7, where the original image has 434-by-328
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Figure 5. Edge detection with different threshold values. (a) Sobel method with default threshold (b) Sobel method with optimal
threshold (c) Canny method with default threshold (d) Canny method with optimal threshold



pixels shown in Figure 2-1(a). The minimum envelope for the crack was bounded by the light blue
lines that are parallel to the purple line with parametric equations listed below.

(5)

where t ∈ [– 0.46, 0.502].
The two parallel lines in light blue enclosed the cracks with minimum distance to the purple line as

shown in Figure 7. The severity of a crack was defined by its intensity along the crack. The location of
the cracks on the blade can be critical. For instance, if a crack occurred along the leading edge or the root
section, it may create greater damage or accelerate structural damage than in other areas since the leading
edge contacts the wind first and the root section is affected by a greater accumulation of fatigue loads.

3.4. Example from field images
A set of 27 field images were collected by Fraunhofer-IWES at a nearby wind farm in August 2011.
The 27 images were processed with the edge detection methods and the results were consistent.
One of the sample cracks that was detected and quantifiedis shown in Figure 8.
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Figure 6. Edge detection reduce noise significantly (a) Sobel method (b) Canny method

Figure 7. Quantification of the synthetic crack in Figure 2-1-(a)



4. CONCLUSION AND FUTURE WORK
This paper evaluated image processing techniques for detecting cracks in wind turbine blades,
namely, the line detection method and the Sobel and Canny edge detection methods. Uneven
illumination and background noise in blade images had the most impact on the quality of the results.
Threshold values for the methods are critical for the successful detection of cracks. We have
described an iterative method that automatically finds a suitable threshold value. Given the
negligible computation time required by the line detection method, it is ideally suited for quick
scans of the entire blade surface. It can quickly identify hairline cracks that are invisible to the naked
eye. Image processing thresholds and filters can be used to minimize false-positives caused by
surface irregularities like dirt or dust. However, this approach does not work well for obtaining
detailed information about a crack because of the effect of uneven illumination. 

Edge detection methods provide more detailed information about cracks than line detection, but
these methods have difficulty distinguishing between surface irregularities and cracks. A two stage
analysis is recommended. First, identify crack regions using the line detection method, reducing the
amount of subsequent image processing to only those areas where cracks have been detected. Then
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Figure 8. Quantification of a field image with a crack



the list of crack regions is analyzed with edge detection to produce more information about the
cracks. Edge detection is particularly useful when there is uneven illumination. 

The results showed that automated optical inspection for crack detection shows promise for
maintenance work on in-service wind turbine blades. With a high quality image and processing
tools, image processing techniques can consistently identify cracks that are invisible to human eyes,
even when looking at the blade from different angles. Further research is necessary to apply these
methods to more sample cracks and to investigate methods that minimize errors caused by uneven
lighting and noise.
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