
INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly fi*om the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the upper
left-hand corner and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" X 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

IIIUM'I
Accessing the World's Information since 1938

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

Order Number 8805109

Integration of software reliability into systems reliability
optimization

Lin, Hsin-Hui, Ph.D.

Iowa State University, 1987

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages

2. Colored illustrations, paper or print

3. Photographs with dark background

4. Illustrations are poor copy

5. Pages with black marks, not original copy \/

6. Print shows through as there is text on both sides of page

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements

9. Tightly bound copy with print lost in spine

10. Computer printout pages with indistinct print

11. Page(s) lacking when material received, and not available from school or
author.

12. Page(s) seem to be missing in numbering only as text follows.

13. Two pages numbered . Text follows.

14. Curling and wrinkled pages

15. Dissertation contains pages with print at a slant, filmed as received

16. Other

UMI

Integration of software reliability into systems reliability

optimization

by

Hsin-Hui Lin

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Approved:

ajor Work

(p'oTr the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1987

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

i i

TABLE OF CONTENTS
PAGE

SECTION I. GENERAL INTRODUCTION 1

INTRODUCTION AND EXPLANATION OF DISSERTATION FORMAT 2
Abstract of Section II 5
Abstract of Section III 7
Abstract of Section IV 8
Abstract of Section V 9
Abstract of Section VI 9

SECTION II. A COMPARISON OF HEURISTIC RELIABILITY
OPTIMIZATION METHODS 11

INTRODUCTION 12

REVIEW OF THE HEURISTIC REDUNDANCY ALLOCATION METHODS 18
Sharma and Venkateswaran Method (S-V) 21
The Gopal, Aggarwail, and Gupta Method (G-A-G) 21
The Extended Nakagawa and Nakashiraa Method (N-N) 23
The Kohda and Inoue Method (K-l) 25

THE SEQUENTIAL SEARCH METHODS 26
The Hooke and Jeeves Pattern Search Method (H-J) 27
The Gopal, Aggarwal, and Gupta Search Method (G-A-G) 28

FORMULATION OF THE RELIABILITY-REDUNDANCY ALLOCATION PROBLEM ... 31

COMPUTATION AND RESULTS 34

REFERENCES 39

SECTION III. RELIABILITY OPTIMIZATION WITH THE LAGRANGE
MULTIPLIER AND BRANCH-AND-BOUND TECHNIQUES 41

INTRODUCTION 42

THE LAGRANGE MULTIPLIER AND KUHN-TUCKER CONDITIONS 44

THE BRANCH-AND-BOUND TECHNIQUE IN INTEGER PROGRAMMING 48

NUMERICAL EXAMPLES 50
Example 1 50
Example 2 51

CONCLUSION 59

REFERENCES 60

i i i

SECTION IV. A REVIEW AND CLASSIFICATION OF SOFTWARE
RELIABILITY MODELS 62

INTRODUCTION 63

CHARACTERISTICS OF SOFTWARE RELIABILITY MODELS 64
General Description of Software and Software Reliability 65
Bug-Counting Concept 66
Error Size 67
User Environment 68
Time Index 69
Software Life Cycle 70
Graph Representation of a Program 71
Software Reliability versus Hardware Reliability 72
Error Analysis 74

Classification by severity 74
Some special errors 75
Classification by the type of error 76
Classification by error introduced in the software life
cycle phase 77

Classification by error removed in the software life cycle
phase 78

Classification by the techniques of error removal 78

CLASSIFICATION OF SOFTWARE RELIABILITY MODELS 80
The Deterministic Models 83

Software science 84
Entropy function (information content) 85
Software quality attributes 88
Complexity metrics 91

Lines of code 92
Program change 92
Job step 93
Data binding 93
Data span 93
Cyclomatic number 93
Maximum intersection number 95
Knot count 95
Calls and jumps 95
Maintainability 95
Accessibility 97
Testability 97
Testedness . 98
Program evolution 99
Schneider model 100
Hybrid model 101
Environmental factors and error estimation 101

The Probabilistic Models 101
Error seeding model 102
Reliability growth model 104

iv

Duane growth model 104
Weibull growth model 105
Wagoner's Weibull model 107
Logistic growth curve model 108
Gompertz growth curve model 108
Hyperbolic reliability growth model 109

Curve fitting model 110
Estimation of errors 110
Estimation of change Ill
Estimation of time between failures 112
Estimation of failure rate 112

Isotonic regression 112
Exponential regression 113

Input-domain model 114

Basic input-domain model 114
Input-domain based stochastic model 118

Execution path model . 120
Shooman decomposition model 120

Program structure model 122
Littlewood Markov structure model. 122
Cheung's user-oriented Markov model 124

Failure rate models #»••••«•••••••••••••• 126
Jelinski and Moranda De-Eutrophication Model 130
Extension of J-M model for varying program size 131
Jelinski-Moranda geometric De-Eutrophication model 132
Moranda geometric Poisson model ... 133
Schick and Wolverton model 133
Modified Schick and Wolverton model 134
Goel and Okumoto imperfect debugging model 134

Nonhomogeneous Poisson process model 135
Musa exponential model 138
Goel and Okumoto NHPP model 139
S-shaped growth model 140

Delayed S-shaped growth model 140
Inflection S-shaped growth model 141
Hyperexponential growth model 142

Markov chain 143
Linear death model with perfect debugging 144
Linear death model with imperfect debugging 145
Nonstationary linear death model with perfect debugging . 147
Nonstationary linear birth-and-death model 148

Other types of probabilistic models 151

REFERENCES 155

SECTION V. RELIABILITY COSTS IN SOFTWARE LIFE-CYCLE
MODELS 175

INTRODUCTION 176

V

REVIEW OF THE RELIABILITY-RELATED SOFTWARE COST MODELS 179
Cost Estimation 179
Resource Allocation 180
Program Evolution 182

SOFTWARE RELIABILITY AND COST 184

CONCLUSION 190

REFERENCES 191

SECTION VI. RELIABILITY OPTIMIZATION WITH SOFTWARE
COMPONENT 193

SOFTWARE RELIABILITY-COST FUNCTION 194

SOFTWARE REDUNDANCY 199
Two-Component Model 199
Two-Component Markov Model With Common-Cause 202
Three-Component Model 204
Three-Component Markov Model With Common-Cause 206
N-Component Model 208
N-Component Markov Model With Common-Cause 211

FORMULATION OF THE HARDWARE-SOFTWARE RELIABILITY OPTIMIZATION ... 216

A NUMERICAL EXAMPLE 219

REFERENCES 222

SECTION VII. CONCLUSIONS 223

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY 224

ACKNOWLEDGEMENTS 228

vi

LIST OF TABLES

PAGE

TABLE 2.1. Ranges for coefficients of constraint functions 34

TABLE 2.2, Simulation results I 37a

TABLE 2.3. Simulation results II 38 &

TABLE 3.1. Data for example 1 51

TABLE 3.2. Data for example 2 54

TABLE 3.3. Comparison of two methods 58

TABLE 4.1. Software reliability versus hardware reliability 73

TABLE 4.2. Summary of References 153

TABLE 5.1. Reliability cost and software life-cycle phases 178

TABLE 6.1. Data for numerical example 220

TABLE 6.2. Result of the numerical example 221

vi i

LIST OF FIGURES

' page

FIGURE 2.1. Structure diagrams 14

FIGURE 2.2. Combination of heuristic and search methods 16

FIGURE 2.3. Combination of H~J search and heuristic methods 29

FIGURE 2.4. Combination of G-A-G search and heuristic methods ... 30

FIGURE 3.1. Branch-and-bound of example 1 . . . 52

FIGURE 3.2. Branch-and-bound of example 2 . . . i 55

FIGURE 4.1. Failure process ^2 126

FIGURE 4.2. Linear death with perfect debugging ; . 145

FIGURE 4.3. Linear death with imperfect debugging 146

FIGURE 4.4. Nonstationary linear death with perfect debugging . . . 148

FIGURE 4.5. Nonstationary birth-and-death . . 149

FIGURE 4.6. Bivariate process of fault-count and failure count . . 150

FIGURE 6.1. Two-component software redundancy . 200

FIGURE 6.2. Transformed two-component software I'edundancy 200

FIGURE 6.3. Two-component Markov model with coma&n-cause failure . 202

FIGURE 6.4. Three-component software redundancy 204

FIGURE 6.5. Transformed three-component softwar&Credundancy 205

FIGURE 6.6. Three-component Markov model with common-cause
failures ''•i 206

FIGURE 6.7. N-component software redundancy . .2v 209

FIGURE 6.8. Transformed N-component software re^fihdancy 209

FIGURE 6.9. N-component Markov model with commo»-èause failure . . 212

1

SECTION I. GENERAL INTRODUCTION

2

INTRODUCTION AND EXPLANATION OF DISSERTATION FORMAT

Reliability is extremely important for systems involving issues of

high cost (e.g., space program), safety (e.g., nuclear power plant), or

security (e.g., military equipment). By definition, reliability is the

probability of failure-free operation of a system under specified

conditions for a specified period of time. The system could be a

hardware system, a software system, a human body, or a combination of

these. As missions to be accomplished are becoming more and more

complicated, the need for highly reliable systems is inevitable. In

achieving high reliability, three problems are faced by reliability

engineers. First, the reliability-cost function increases

exponentially. Second, the reliability of a component is usually

limited by technology. Third, resources for achieving high reliability

are limited. These problems lead to the subject of reliability

optimization.

Fifteen years ago, reliability studies concentrated on hardware

systems. Both reliability theory and reliability optimization are

well-known in terms of problem formulation and problem solving

techniques. Since the 1960s, software has become increasingly an

important part of larger systems. Since 1970, the cost of software has

surpassed the cost of hardware as the major cost factor of a system.

In response to this dramatic change, researchers began developing

models for software reliability in the 1970s. Compared to the

exponential growth in demand and size of today's software projects,

3

software reliability modeling is still in its infancy. In many cases,

software cannot be treated as an isolated element. A complex system

contains hardware subsystems and software subsystems both interacting

with each other. Unfortunately, very few researchers have studied this

issue. This research investigates methods for optimizing system

reliability involving software and hardware.

Traditionally, the reliability of a hardware system is improved by

adding redundant components or by using better components. Determining

the number of redundancies at each stage or the reliability level at

each stage under available resources is the major concern in

reliability optimization. Since the available options of an identical

function component are finite and the number of redundancies is an

integer, the growth of reliability, in either case, is discrete.

Numerous techniques have been proposed for reliability optimization

problems. The Lagrange multiplier method, dynamic programming method,

branch-and-bound method, maximum principle method, and heuristic method

are popular techniques.

When software is involved, the techniques for hardware reliability

optimization have to be reevaluated. First, redundancy of software can

not be treated the same as hardware. The failure of a hardware

component is primarily due to random failures and material

deterioration. Parallel redundancy is based on the assumption of

independent failure of components. Software failure is due to

incorrect logic or incorrect statements in the program. An input state

4

which causes one copy of software to fail will do so for all copies.

Although some people may argue that a redundant copy of software can be

produced by an independent group, research has indicated that people

make the same mistakes in software development. The degree of

dependency among independent groups remains unanswered. Therefore, the

issue of software redundancy is much more complicated. Secondly, the

improvement of software reliability is primarily through debugging

rather than redundancy. Even though the "number of faults" in a

program is countable and the actual improvement of software reliability

is discrete, most software reliability models are continuous models as

opposed to the discrete growth in hardware redundancy. Therefore, the

traditional method of integer programming for'hardware redundancy,

allocation is not appropriate for software.

When reliability optimization involves software and hardware, two

types of decision variables need to be determined. For hardware, the

decision variable is the number of redundancies which is an integer.

For software, the decision variable is the reliability level which is a

real number. When both types of decision variables are involved, the

problem becomes a mixed-integer programming problem. Moreover, the

reliability function and the constraint functions for software and

hardware systems are nonlinear functions. Mixed integer programming

for linear function is better known. But very few methods have been

proposed for nonlinear mixed-integer programming problem.

5

This dissertation uses the alternate format. It is composed of

five self-explanatory, yet related papers. In Sections II and III, two

methods are proposed for mixed-integer reliability optimization

problems. Section IV is a review and classification of software

reliability models. It focuses on the nature of software, assumptions

of software reliability modeling, factors affecting software

reliability modeling, and modeling techniques. This review paves the

way for future research in software reliability modeling and

applications of software reliability model. Section V is a software

life-cycle cost model for the optimal release time. The motivation is

to point out the issue of software reliability cost and emphasize the

•life cycle approach to the problem. Section VI integrates the material

from Sections II through V. The purpose is to incorporate software

into the reliability optimization problem. An abstract of each paper

appears below.

Abstract of Section II

Section II, "A Comparative Study of Heuristic Reliability

Optimization Methods" investigates the effectiveness of a mixed-integer

programming method. This method is a combination of the heuristic

redundancy method and the sequential search method. The heuristic

method determines the integer variables (number of redundancies) by

assuming that the real variables (reliability level) are known. The

sequential search method determines the real variables. At each

6

iteration, a point in the multi-dimensional real space is chosen. Once

the real variables are fixed, the heuristic method is applied to find

the integer variables. When both types of decision variables are

determined, the objective function can be computed. The next iteration

moves to a new point according to the search strategy. As the search

proceeds, the current best solution is continuously updated.

Heuristic redundancy methods and sequential search methods were

developed independently for different types of problems. Many

heuristic redundancy methods have been proposed for the integer

programming problem. Also, many sequential search methods have been

proposed for real-variable peak-finding problems. This paper

investigates their relative merits in obtaining the optimum solution-

Four heuristic methods and two sequential search methods were studied.

Simulation was used to test these eight combinations on 100 simulated

problems. The test problem is based on a bridge structure with three

nonlinear constraints.

Results of this simulation show that when heuristic methods are

used to solve pure integer programming problem, the quality of the

answer is proportional to the CPU time required to obtain the answer.

When the sequential search technique is added to the heuristic method

to solve the mixed-integer programming problem, the sequential search

method is more significant in obtaining the optimal solution. This

method is slow. But it takes advantage of the existing search methods

and heuristic methods, and can solve a variety of problems.

7

Abstract of Section III

Section III, "Reliability Optimization with Lagrange Multiplier

and Branch-and-Bound," presents a new method for the mixed-integer

reliability optimization problem by using the Lagrange multiplier

method and the branch-and-bound method. The Lagrange multiplier method

solves a constrained problem by introducing Lagrange multipliers. By

multiplying Lagrange multipliers to each constraint and adding to the

objective function, the constrained problem becomes unconstrained.

According to the Kuhn-Tucker conditions, the necessary condition for an

optimum to exist is that the first derivative vanishes. By taking

derivative with respect to the number of components at each stage, the

reliability level of the components, and Lagrange multipliers, a set of

simultaneous equations are formed. The solutions to the set of

simultaneous equation are stationary points to the problem. Since this

method is based on differentiation, all variables are treated as real

variables. A solution obtained by this method is a real number

solution.

The branch-and-bound method is then used to obtain the integer

solution for integer variables. The branch-and-bound for integer

programming divides the solution space by imposing a lower bound

constraint to one problem and an upper bound constraint to another

problem. For example, a constraint x 5 3 is added to one problem and x

^ 4 is added to another when an integer variable takes value between 3

and 4. The process continues until all the integer variables become

integer and no better solutions can be found.

8

The results show that this method is superior to the method

presented in Section I. The reasoning process is more logical than the

heuristic method in obtaining the optimal solution.

Abstract of Section IV

Section IV, "A Review and Classification of Software Reliability

Models," focuses on how a software reliability model is derived and how

the reliability of software can be measured.

Hardware reliability models are normally based on failure data.

If a particular distribution fits very well to the failure data of a

particular hardware, this distribution is used to estimate and predict

the reliability of that hardware. However, this approach is not

appropriate for software. Although many software reliability models

have been proposed, very few of them have been tested on a variety of

software products and very few of them have proven to be effective for

a variety of software products. One of the difficulties is that each

software is a new product. Past experiences can only serve as a

reference point.

Most software reliability models are theoretical models derived

from assumptions. Software reliability theoreticians believe that

there are some factors governing the failure process. Depending upon

the assumptions imposed, dozens of software reliability models have

been proposed. These models and related materials from about 300

papers are reviewed and classified in Section IV. Attributes of

9

software reliability models are also discussed. Special attentions is

given to the probabilistic models which can further be divided into the

binomial model, Poisson model, and Markov process.

Abstract of Section V

The reliability optimization problem in Sections II and III

implied that a functional relationship between software reliability and

cost existed. Section V, "Reliability Cost in Software Life Cycle

Models," investigates this relationship. It is recognized that 60% of

the software life-cycle costs are incurred after release and the

maintenance cost depends heavily upon the reliability at the release

time.' Thus, an optimum release time model based on the nonstationary

birth-and-death process is proposed. The trade-off between debugging

cost and maintenance cost is studied.

Abstract of Section VI

Section VI, "Reliability Optimization with Software Components,"

integrates reliability-redundancy allocation techniques, software

reliability-cost function, and software redundancy into a system

reliability optimization problem. A series system with hardware

components and software components is studied. The failure of hardware

redundancies are independent of each other, while the failure of

software redundancies are partially independent.

10

The unknown variables of this reliability optimization problem are

the number of hardware redundancies, the number of software

redundancies, the hardware reliability levels and the software

reliability levels. The mixed-integer programming techniques in

Sections II and III are used to solve this problem. Software

reliability model in Section IV and software reliability cost in

Section V are adapted to formulate the objective and constraint

functions of this problem.

11

SECTION II. A COMPARISON OF HEURISTIC RELIABILITY OPTIMIZATION METHODS

12

INTRODUCTION

Many optimization techniques have been proposed to allocate

redundancy or reliability level for a system of series configuration

[15]. But more important than optimizing system reliability with

respect to a single type of variable, both redundancies and reliability

levels are usually determined simultaneous. The purpose of this study

is to investigate methods to maximize the reliability of a complex

system subject to nonlinear constraints. Sequential search techniques

and reliability optimization heuristics commonly used for optimizing a

single type of variable are combined for solving a mixed-integer

programming problem. Performance of these heuristics is accomplished

through simulation.

In this study, the system reliability is based on the following

definition of a system. A system is composed of one or more stages (or

subsystems). A stage is a unique functional unit of the system and may

be composed of one or more components. Cost functions at different

stages are assumed to be additive. The system reliability is the

probability of successful operation of a system for a specified period

of time under given conditions. It is usually expressed in terms of

the reliabilities of both the stages and components. In evaluating the

system reliability, it is necessary to specify the system structure,

the component failure process, and the definitions of failures.

For a series system, the system is operational only when all the

stages are operational. For a parallel system, the system is

13

operational if one or more stages are operational. A general system

(or complex system) is a nonparallel nonseries system, whose

reliability can be evaluated by probability theory once the system

structure is clearly defined. Other types of structures are the

parallel-series system and the series-parallel system. In this study,

a nonparallel-nonseries system is investigated. It is assumed that

its components are independent of each other and the component

reliability is deterministic. Figure 2.1 lists the system structures

and their system reliabilities.

The reliability of a system can be improved by increasing the

component reliability or adding redundant components. The first method

determines the component reliability levels to maximize the system

reliability or minimize the total cost. However, this approach may not

be economical because of the exponential increase of the reliability-

cost function. Also, the highly reliable component may not be

available. The second method determines the number of redundancies at

each stage, which means that if more components are used, the system

gets voluminous, heavy, and costly. Quite frequently, optimization

problems refer to only one of these two options. In the design stage,

however, the reliability optimization methods should consider the

tradeoff between reliability and redundancy with respect to cost and

performance requirements. The component reliability is a real number

between 0 and 1, while the number of redundancies is an integer number.

To optimize both decision variables simultaneously, a mixed-integer

programming problem is involved.

14

SYSTEM STRUCTURE SYSTEM RELIABILITY

SERIES SYSTEM ^ «g ' R. 'ih.
IN—O O- • • • -O OUT i"l ̂

PARALLEL SYSTEM

IN

R« - 1 - -̂ (1 - Ri)
—OUT » J-1 J

PARALLEL SERIES SYSTEM

IN

••il

-i-

1 . •
 1 OUT

SERIES PARALLEL SYSTEM

IN—

•"n ""zi *'nl

—QH-CQL™ ̂

m n
R - l - Tr(l -TTr.J
* J-1 j-lJi

OUT

BRIDGE SYSTEM

IN

 ̂ Ĵ 2 R, " *1*2 * *3̂ 4 ̂ *1*4*5
Q . * RgRgRg . RjRgRjR^

R. Y ® R. " *1*2*3*5 " *1*2*4*5
—O—1—O—J " *1*3*4*5 " *2*3*4*5

+ ZRJRjRBR^RJ

FIGURE 2.1. Structure diagrams

15

This mixed-integer reliability optimization problem was first

given by Misra and Ljubojevic [9] to solve a four-stage series system

using the Lagrange multiplier technique. Another method was given by

Tillman et al. [13] that combines the sequential search method with a

heuristic redundancy method proposed by Aggarwal et al. [2]. The

sequential search method moves from point (a combination of decision

variables) to point in the solution space to find the optimal solution

of a multivariable function. When it is applied to the reliability

optimization problem, the component reliabilities are the decision

variables and the system reliability is the objective function to be

maximized. For each move (change in the component reliability), the

heuristic redundancy method is applied to determine the number of

redundancies at each stage. Once the component reliabilities and the

number of redundancies are determined, the system reliability is

calculated and compared to the current best solution. If the solution

is better, the current best solution is updated. The search continues

until the stopping rule is reached. This method takes advantage of

both the existing heuristic redundancy allocation methods and the

sequential search methods. The algorithm is shown in Fig. 2.2. The

third method, which modified some of the existing heuristics [4,13],

was presented by Gopal et al. [4]. In their approach, component

reliabilities are sequentially increased in order of descending value

of a predefined sensitivity function. For every change in component

reliability, redundancies are allocated to determined the new system

reliability. At each stage, an inferior solution is rejected.

16

I EVALUATE SYSTEM RELIABILITY

STOPPING
CRITERION
^REACHED?

STOP

X̂̂ SYSTEM̂ X.
.^RELIABILITY^
BETTER THAN CURRENT
^J)PTIMAL SOLUTION? .

'START

UPDATE CURRENT OPTIMAL
SOLUTION AND COMPONENT
RELIABILITIES

CHANGE COMPONENT RELIABILITY
ACCORDING TO THE SEARCH METHOD

INITIALIZE COMPONENT RELIABILITIES
AND CURRENT OPTIMAL SOLUTION

USE REDUNDANCY ALLOCATION
METHOD TO FIND THE NUMBER
OF REDUNDANCIES AT EACH STAGE

FIGURE 2.2. Combination of heuristic and search methods

17

Previous studies use a specific redundancy heuristic and a

specific search method to solve a specific problem [4,13]. The

heuristics' performance has not been investigated. This study intends

to combine each of the two search methods [4,5] with each of the four

major heuristic redundancy methods [3,6,11,12]. Comparison is based on

a nonparallel-nonseries bridge system subject to three nonlinear

constraints. One-hundred test problems are randomly generated. Each

is tested by eight combinations of the methods.

18

REVIEW OF THE HEURISTIC REDUNDANCY ALLOCATION METHODS

ation;

Rg, Qg reliability and unreliability of the system

Rj , Qj reliability and unreliability of the jth stage

rj , qj reliability and unreliability of component j

Xj number of components at stage j

R Ci"!, • • •,rjij) ; vector of component reliability

X (xi, • • •,Xfj) ; vector of the number of

components used at each stage

g£ i th constraint

g£j amount of resource i consumed at stage j

b£ amount of resource i available

N xi
b£ bi - 2 Z Agi :(k)

j=l k=l

Cj (rj) cost function of the jth component reliability

Cg system cost function

h step size; amount of increment in component

reliability

L+1 set of all the stages whose reliabilities

can be increased.

current optimal solution

X® current solution

X(±j) (xj^, • • • ,Xj±l, • • • .x^) ; add/subtract 1 at stage j

X(-j,+s) (x^ , • • • ,xj-i , • • •, Xg + 1, • • • ,Xj^) ; subtract 1 from ;

19

and add 1 to Xg

S(j) AQg(xj); decrement in Qg by increasing

xj by 1

Afj (xj) ^nRj (xj) - ̂ nRjCxj - 1)

Agij(xj) gij(xj) - gij (xj - I)

AQj(xj) decrement in Qj by increasing Xj by 1.

The redundancy optimization problem can be formulated as

Max Rg(X|R)

subject to

N
Z gi;(x:) ̂ b£ for all i.
j = l

Assuming that the component reliabilities, R = (rj^, r^), are

given constants, the above problem is to determine the number of

redundancies at each stage, X = (xj^, x^).

Depending upon the type of structure, failure mode, and constraint

functions, the above problem may be converted into different forms [7].

Since 1956, numerous techniques have been proposed to solve a variety

of reliability redundancy optimization problems [14,15]. Yet, none of

them can effectively solve a large-scale general system with multiple

nonlinear constraints. Those techniques are restricted to one or more

of the following.

20

• Limited to a special type of system configuration, normally

the series system,

• Limited to a special type of constraint function, for example,

the linear constraints,

• Limited by the dimension of the problem,

• Nonguaranteed global optimal solution,

• Complicated computation.

• Treated the problem as a nonlinear noninteger optimization,

then approximated the optimal decision variables to an integer

number through extensive discussion.

Therefore, heuristic redundancy allocation methods have been

suggested. . The heuristic method has the properties of simplicity,

generality, and efficiency [7,15]. Many algorithms have been able to

solve the series system with multiple nonlinear constraints

[2,3,6,7,11], although global optimality is not yet guaranteed.

Most redundancy allocation heuristics are based on the following

steps.

1. Initialize each stage with one component.

2. Evaluate the sensitivity function to determine the stage to

which a redundant component is to be added. A sensitivity

function is defined as the trade-off between the increment

of system reliability and the resources consumption.

3. Increase the number of redundancies by one at the proposed

stage and repeat steps 2 and 3 until the constraint is

violated.

21

Four major heuristic redundancy methods compared in this study are

summarized below.

Sharma and Venkateswaran Method (S-V)

The S-V method [12] is based on a series system of small Qj's.

For a series system, the unreliability of the system can be expressed

as follows.

N N N
Min Qg = 1 - n (1 - Q:) = Z Q: = 2 q*i

j = l j = l j = l. ^

By this approximation, the maximization of Rg is equal to the

minimization of the sum of Qj's. Therefore, adding a redundancy to the

stage having the largest Qj would increase the system reliability by

the largest amount. Although this method is simple and efficient, it

does not incorporate the constraint functions into the selection

criteria. In general, it does not yield the optimal solution as shown

by Nakagawa and Miyazaki [10] and this study. The relative error

increases and the optimality rate decreases as the number of decision

variables increase.

The Gopal, Aggarwall, and Gupta Method (G-A-G)

The G-A-G method [3] is an improved version of their previous

works [1,2]. A relative increment of resource is defined as

Ag£j(xj) = Agij(xj)/max {Ag£j(xj)}.

22

A selection factor evaluates the ratio of relative increment of

resource over the decrement of stage unreliability. A redundant

component is proposed to be added to the stage having the least value

of selection factor. The selection factor is defined as

Fj(xj) = max {Ag^j(xj)}/AQj(xj).

For the series,

, ^ Xj Xj+1 xj
AQj(xj) = qj - qj = rjqj • .

The selection factor, Fj(xj), can be written in the following forms.

a. The series system with linear constraints:

Fj(xj) = Fj(xj-l)/qj for xj > 1

Fj(l) = max {Ag£j(1)}/rjqj for xj = 1.

b. The series system with nonlinear constraints;

Fj(xj) = max {Ag^j(xj)}/fj(xj)

fj(xj) = qjfjCxj-l) for Xj > 1

fj(l) = rj-qj for Xj = 1.

c. The complex system;

AQg(xj) = QgfQi,..., (Qj=qjJ) , . . . , Q^)

23

• • • - . • • • " Qs^Ql»CQj^qjJ),''',QN)

— (q̂ j -

9Qj

= fjQj
3Qs (X)

3Qj(x j)

Max {Agf.(x:)}
Fj(x:) = 2 •

rjQj{3Qs(X)/9Qj(xj)}

The G-A-G method is simple, fast, and easily programmable. It can

be applied to a series or a general system with multiple nonlinear

constraints. For a series system, the recursive representation of the

selection factor simplifies the computation.

The Extended Nakagawa and Nakashima Method (N-N)

Originally, the N-N method [11] was based on the series system.

The problem was formulated as

N
Max Rg = n R:(x:)

j = l

subject to

N
Z g£ : (xp S b£ for all i,
j = l

24

With the assumption of monotonically nondecreasing constraints, the

above problem can be transformed into

N xj
Max ^n Rg(X) = Z Z Af • (k)

j-1 k-I

subject to

N Xj

Z Z Ag£;(k) ̂ b£ for all i
j=l k=l

Afj(k) ̂ 0 for all j and k

Ag£j (k) 2: 0 for all i, j and k.

A balancing coefficient, a, balances the weights between the

increment of system reliability and the resource consumption. The

sensitivity function is defined as

S:= Af,-(x'+l)[(1-a) • min {Axj^} + a Ax,-]
^ ^ keL+i

where

Axj = rain {b?/Agij(Xj + 1)}

A redundant component is then proposed to be added to the stage

having the largest S£. Fourteen balancing coefficients (0.0, 0.1, ...,

1.0, 1/0.9, 1/0.6, 1/0.3) are evaluated. The best solution is the

final solution.

25

This method was later extended to the general system by redefining

Afj(xj) = AQg(xj) [7]. According to Nakagawa and Miyazaki [10] and the

results of this Section, the N-N method is the most accurate heuristic

redundancy optimization method, but it requires the longest execution

time because of the repetitive computation of 14 balancing

coefficients.

The Kohda and Inoue Method (K-I)

The previous three methods improve system reliability by adding

redundancy one-by-one to the selected stage. The algorithm stops when

any constraint is violated. The K-I method [6] further examines the

solution by adding a redundancy to one stage and subtracting a

redundancy from another stage to determine whether the new solution is

feasible and better.

For every x"P(-j), the maximum S(kj) over {j(x"P (-j, + s) is

feasible} is obtained. Then the deviation,

D(j) = [s(kj) - S(j)] |X*P(-j)

is calculated. If the maximum deviation, D(^), is greater than zero,

the system reliability can be improved by adding one redundant unit to

stage / and subtracting one from stage k^. If the constraint is not

monotonically nondecreasing, two redundancies are added to the stages

to see if the solution is feasible and better. This method serves as

an improved step to the solution obtained by any redundancy allocation

method.

26

THE SEQUENTIAL SEARCH METHODS

Without considering redundancy, the reliability allocation problem

can be formulated as

Max RG (R)

subject to

N
2 gi;(R) i b£ Eor all i
j = l

or

Min Cg(R)

subject to

RGCR) > R
Vc

Tj 5: rj for all j

where

,V Vf
R and rj are given lower bounds.

This problem, a typical nonlinear programming problem, restricts

the decision variables, R = (r^ r^), between 0 and 1. To solve

such a problem, numerous search techniques can be utilized. There are

two basic types of search techniques: the simultaneous search and the

sequential search. The simultaneous search, also called the exhaustive

27

search, evaluates the function value at predetermined points. The

results of an experiment are not used to determine the next experiment.

On the other hand, the results of a sequential search provide

information for the next experiment.

The exhaustive search method cannot be applied to a problem of

moderate or large size. The use of the sequential search technique to

handle the real part of the mixed-integer reliability optimization

problem was first presented by Tillman et al. [13] and later by Gopal

et al. [4]. These two sequential search methods are simple and

efficient compared to the other search methods. Neither requires a

differentiable objective function. They can be easily understood and

implemented without any special mathematical background. Two search

techniques proposed are summarized below.

The Hooke and Jeeves Pattern Search Method (H-J)

The H-J pattern search [5] begins with an arbitrarily selected

base point. The search is composed of the exploratory move and the

pattern move. An exploratory move finds a new pattern (direction) by

adding and subtracting a step size to the current base point. A

pattern move actually makes an improvement toward the optimal solution

by adding two times the difference between the previous base point and

the current base point. For each move (change in the decision

variables), the function value is evaluated and compared with the

current optimal solution. If a move gives a better solution, the base

point and current optimal solution are updated. Otherwise, the step

size is reduced by half. The search ends when the step size is smaller

than a predetermined minimum step size and the functional value sees a

limited improvement. The algorithm is shown in Fig. 2.3.

The Gopal, Aggarwal, and Gupta Search Method (G-A-G)

The G-A-G search method simplifies the search procedure by simply

adding a step size to the component reliability. A sensitivity

function was introduced to determine the order of adding a step size to

the component reliability. The sensitivity function is defined as

Sj(rj,X) = C Rg (ri, • • •, rj+h, • • •, rj^; X) - Rg(R,X)] ,

/ [Cj (rj-t-h) - Cj (rj)]

The algorithm is shown in Fig. 2.4. This method, although very simple

and efficient, does not yield satisfactory solutions.

29

(ST̂

ASSUME R°, THE INITIAL BASE
POINT

FIND OPTIMAL REDUNDANCIES, X*(R°), BY
THE HEURISTIC APPROACH AT R° CALCULATE
THE SYSTEM RELIABILITY R (R*,X (R®)).

START AT BASE POINT

MAKE EXPLORATORY MOVES WITH RESPECT TO R
AT EACH MOVE FIND X* (R) BY THEIHEURISTIC
APPROACH, AND CALCULATE R (R,X«(R)).

IS
PRESENT

FUNCTIONAL VALUE:
R- (H.X*(R)). ABOVE

THAT AT BASE
INT?

SHALL ENOUGH?

SET NEW BASE POINT

OPTIHUH SOLUTION
IS REACHED
OPTIHUH SOLUTION
IS REACHED

^XiTEP SIZE^s.
vYES JITH RESPECT TO^ vYES

HAKE PAHERN MOVE WITH RESPECT TO R.
FIND X*(R) BY THE HEURISTIC APPROACH.
CALCULATE R, (*,%*(*)).

DECREASE STEP SIZE WITH
RESPECT TO R.

MAKE EXPLORATORY MOVES WITH RESPECT TO R.
AT EACH MOVE FIND X*(R) BY THE HEURISTIC
APPROACH AND CALCULATE RjR,X*(R)).

IS
PRESENT

FUNCTIONAL VALUE,
R, fR,X«(R)). ABOVE
* THAT AT BASE

POINT?

FIGURE 2.3. Combination o£ H-J search and heuristic methods

30

TOO SMALL

STOP

XlEAST ONCr^
OLD VALUE OF R
J?,X HAS BEEN
N̂wUPOATED̂

/̂ (R.X) BEnER̂
THAN OLD VALUE OF

R.(R.X)7 ^

SET h - h/2

UPDATE OLD VALUE
OF RJR,X),R.X

INITIALIZE R AND DETERMINE
X USING ANY REDUNDANCY
ALLOCATION METHOD

COMPUTE RJR.X) AND CALL
THESE OLD*VALUES OF
R,,R,X RESPECTIVELY

COMPUTE THE SENSITIVITY FUNCTION
Sj(Rj.X) FOR ALL j AND FORM
S • [(Sj.j) FOR ALL j] IN
DECEN0IN6 ORDER OF S.'s

IN THE ORDER OF S. SET Tj • fj+h
ANO COMPUTE X USING REDUNDANCY
ALLOCATION METHOD. THEM COMPUTE
R,(R,X)

FIGURE 2.4. Combination of G-A-G search and heuristic methods

31

FORMULATION OF THE RELIABILITY-REDUNDANCY ALLOCATION PROBLEM

In the design stage, it must be decided whether or not to use

highly reliable components or to add redundancies. For a system such

as a space shuttle, a system reliability near 1.0 is desirable. Yet to

minimize the shuttle weight, adding redundancy would be a real burden.

On the other hand, in an ordinary industrial product, adding

redundancies can be a good solution, since the cost of a reliable

component is at least an exponential function of its reliability

measure. The following mixed-integer reliability optimization problem

is formulated to allow flexibility in the decision process for the

systems falling between these two extremes.

Max Rg(R, X)

subject to

N
S g£j(rj,Xj) S b£ for all i.
j"l

R = (rj r^) and X = (xj, ..., x^) are to be determined for

given gij's and bj's.

The system studied is the bridge system shown in Fig. 2.1.

Its system reliability can be evaluated as follows.

Rs = Pr{system is good | component 5 is good}

X Pr{component 5 is good}

32

+ Pr(system is good | component 5 is failed}

X Pr{component 5 is failed}

= RlR2 + R3R4 + R1R4R5 + R2R3R5 - RIR2R3R4 - RIR2R3R5

- R1R2R4R5 - RIR3R4R5 - R2R3R4R5 + 2R1R2R3R4R5.

The three nonlinear constraint functions from [13] are

5
g3(X) = Z Wjxjexp(xj/4) - W S 0

j = l

xj's i 1 are integers.

0 < r J ' s < 1.

The first constraint models the combination of volume and weight,

which is a function of the number of redundancies. The second

constraint models the cost, which is a function of the number of

redundancies as well as the component reliability. The third

constraint models the weight, which is a function of the number of

redundancies only. The reliability function and cost function of the

second constraint are

gl(x) = Z P.xf - P < 0
j-1 ^

33

Fj = exp(-\jt)

and

Cj(rj) = aj(l/Xj)^j = aj(-C/^n rj)^i

where Xj is the failure rate, t is the time, and aj and |3j are cost

coefficients.

34

COMPUTATION AND RESULTS

One-hundred sets of constraint coefficients of specified ranges as

listed in Table 2.1 are randomly generated from uniform distribution.

Each set of coefficients represents a test problem.

TABLE 2.1. Ranges for coefficients of constraint functions

Coefficient Range Coefficient Value Coefficient Value

Pj 1.0-10.0 P 100 ' t 1000

Wj 5.0 - 15.0 W 200 Pj 1.5

Gjxl&S 0.3 - 9.0 C 200 -

where j=1,2,3,A,5.

In order to investigate the effects of combining or not combining

with the search method, the problems were first tested on the four

heuristic redundancy methods with constant component reliability. Two

component reliability levels, 0.7 and 0.85, were tested. The same

problems were then tested by combining two sequential search methods

with four heuristic redundancy methods using the algorithm outlined in

Figs. 2.3 and 2.4. The extended N-N method used three values (0.5,

1.5, and 2.5) instead of 14 values to reduce execution time. The K-I

method utilized Aggarwal's redundancy method [1] to find a solution

before the perturbation method is applied. Since the initial base

35

point may affect the final answer, two initial base points, 0.5 and 0.7

were tested on each combination.

The results are compared in the following criteria:

1. Optimality rate (0): the number of times the method yields

the highest system reliability.

2. Maximum error rate (M): the number of times the method

yields the lowest system reliability.

3. 100
Average absolute error (A); Z |RgJ - Rg-'j/lOO

j = l

where Rg-' is the system reliability of method i at the j th

run and Rg-^ = max{ Rg^ }

100 * ' , * I •
4. Average relative error (R) : Z |RgJ - Rg-^ |/(lOOxRgJ).

j = l

5. Average execution time (T) : average CPU time of 100 runs.

Table 2.2 summarizes the effects on the heuristic redundancy

methods by relaxing the assumption of constant reliability. Data in

each row of Table 2.2 are based on that particular experiment. In the

case of constant component reliability, significant differences exist

among the heuristic redundancy methods. The solution depends heavily

upon the type of algorithm used. The quality of the result is

proportional to the execution time required to obtain the answer. The

simulation results are consistent over all criteria.

36

Having combined sequential search methods, the relative

performance changed considerably. Using the G-A-G search method, G-A-

G/G-A-G is the best for optimality rate. G-A-G/N-N is the best for

maximum error rate, while G-A-G/K-I is the best for average absolute

error. Using the H-J search method, the differences among G-A-G, N-N,

and K-I heuristic redundancy methods are leveled out. Except for the

fact that K-I has a higher maximum error rate, the results are quite

consistent.

In Table 2.3, the results of eight combinations are compared.

Data at each entry of Table 2.3 are the results compared over eight

combinations of the method. Comparison of all criteria and all

heuristic redundancy methods shows that the H-J search method is

significantly better than the G-A-G search method. The differences

among H-J/G-A-G, H-J/N-N, and H-J/K-I are not significant. It can be

concluded that the search method is the dominant factor in solving this

type of problems. The relative importance of the heuristic redundancy

methods are leveled out when combined with the search methods.

The algorithms were coded in Fortran 77 and run on an IBM PC/AT

with a mathematical co-processor. The computation was done in double

precision to avoid round-off errors. Because of the structure of the

system, a low component reliability will yield a high system

reliability. Therefore, the absolute errors are small and the relative

errors are closed to the corresponding absolute errors.

TABLE 2.2. Simulation results I

Heuristic Method

Search Method

Base Point 1 (0.5)
or r^ = 0.7

S-V G-A-G N-N K-I

Constant rj's

G-A-G

H-J

Constant ij's

G-A-G

H-J

Constant r^'s (%)

G-A-G (lO"^)

H-J (lO"^)

Constant r^'s (sec)

0

0

0

G-A-G (sec)

H-J (sec)

AÎ

A

A

T§

T

T

36

6

8

55

M 76

M 72

0.416

45

86

0.213

30.8

58. 1

53

50

35

43

11

7

0.311

11

15

0.844

123.3

2 2 8 . 2

68

40

31

31

9

7

0.101

12

17

2.06

288.5

501.5

55

36

43

45

12

17

0.532

10

22

1.15

166.1

298.1

0 = optimality rate.

= maximum error rate.

Ia = average absolute error.

execution time.

37 b

Base Point 2 (0.7)
or =0.85 Average

S-V G-A-G N-N K-I S-V G-A-G N-N K-1

42 57 71 70 39 55 69.5 62.5

8 52 44 39 7 51 42 37.5

10 36 41 31 9 35.5 36 37

61 43 33 38 58 43 32 41.5

76 11 8 15 76 11 8.5 13.5

61 11 14 17 62.5 9 10.5 17

0.1 0.086 0.016 0.05 -- -- --

45 12 12 9 45 11.5 12 9.5

50 19 21 17 68 17 19 19.5

0.204 0.82 1.94 1.20 0.208 0.832 2.0 1.18

20.3 82.2 188.8 112 25.6 102.7 238.6 139

53.9 199.6 446.4 273.6 56 214 474 285.9

TABLE 2.3. Simulation results II

Heurist ic Method Base Point 1 (0.5)

Search Method S-V G-A-G N-N K-I

G-A-G
-,v
U 2 10 7 6

H-J 0 5 30 2& 37

G-A-G 41 9 4 6

H-J M 30 4 5 8

G-A-G (lO"^) AT 62 » 29 26

H-J (lO'S) A 87 17 19 23

0 = opt imal i ty rate .

= maximum error rate ,

|a = average absolute error .

38 b

Base Point 2 (0.7) Average

S-V G-A-G N-N K-I S-V G-A-G N-N K-I

0 12 5 7 1 11 6 6.5

7 32 36 24 6 31 32 30.5

43 7 4 9 42 8 ' 4 7.5

25 8 6 6 27.5 6 5.5 7

61 27 27 24 61.5 27 28 25

52 21 23 18 68.5 19 22 20.1

39

REFERENCES

1. Aggarwal, K. K. "Redundancy optimization in general system."
IEEE Transactions on Reliability, R-25, 1976, 330-332.

2. Aggarwal, K. K., J. S. Gupta, and K. B. Misra. "A new heuristic
criterion for solving a redundancy optimization problem." IEEE
Transactions on Reliability, R-24, 1975, 86-87.

3. Gopal, K., K. K. Aggarwal, and J. S. Gupta. "An improved
algorithm for reliability optimization." IEEE Transactions on
Reliability, R-27, 1978, 325-328.

4. Gopal, K., K. K. Aggarwal, and J. S. Gupta. "A new method for
solving reliability optimization problem." IEEE Transactions on
Reliability, R-29, 1980, 36-38.

5. Hooke, R. and T. A. Jeeves. "Direct search solution of
numerical and statistical problems." J. Assoc. Comp., 8, 1961,
212-224.

6. Kohda, T. and K. Inoue. "A reliability optimization method for
complex systems with the criterion local optimality." IEEE
Transactions on Reliability, R-31, 1982, 109-111.

7. Kuo, W., C. L. Hwang, and F. A. Tillman. "A note on heuristic
methods in optimal system reliability." IEEE Transactions on
Reliability, R-27, 1978, 320-324.

8. Misra, K. B. "A simple approach for constrained redundancy
optimization problem." IEEE Transactions on Reliability, R-21,
1972, 30-34.

9. Misra, K. B. and M. D. Ljubojevic. "Optimal reliability design
of a system: a new look." IEEE Transactions on Reliability,
R-22, 1973, 255-258.

10. Nakagawa, Y. and S. Miyazaki. "An experimental comparison of
the heuristic methods for solving reliability optimization
problems." IEEE Transactions on Reliability, R-30, 1981,
181-184.

11. Nakagawa, Y. and K. Nakashima. "A heuristic method for
determining optimal reliability allocation." IEEE Transactions
on Reliability, R-26, 1977, 156-161.

40

12. Sharma, J. and K. V. Venkateswaran. "A direct method for
maximizing the system reliability." IEEE Transactions on
Reliability, R-20, 1971, 256-259.

13. Tillman, F. A., C. L. Hwang, and W. Kuo. "Determining component
reliability and redundancy for optimum system reliability."
IEEE Transactions on Reliability, R-26, 1977, 162-165.

14. Tillman, F. A., C. L. Hwang, and W. Kuo. "Optimization
Techniques for system reliability with redundancy — a review."
IEEE Transactions on Reliability, R-26, 1977, 148-155.

15. Tillman, F. A., C. L. Hwang, and W. Kuo. Optimization of
Systems Reliability. Marcel Dekker, New York, 1985.

41

SECTION III. RELIABILITY OPTIMIZATION WITH THE LAGRANGE MULTIPLIER AND

BRANCH-AND-BOUND TECHNIQUES

42

INTRODUCTION

In the past two decades, numerous reliability optimization

techniques have been proposed [12]. These techniques can be classified

as the exact method and the iterative method. The exact method obtains

the solution analytically. In general, it involves more mathematics

and generate a more accurate solution. The Lagrange multiplier with

Kuhn-Tucker conditions [8,9] and dynamic programming [12] are examples

of the exact method. The iterative method obtains the solution by

repeating the algorithm or enumerating the solutions. It does not

require an extensive mathematical background. The branch-and-bound

technique [10] and the heuristic method [13] are examples of the

iterative method.

In most reliability optimization problems, the decision variables

are the number of redundancies that are integer (integer programming or

redundancy allocation problems), the component reliabilities that are

real numbers (real programming or reliability allocation problems), or

a combination of both (mixed-integer programming or reliability-

redundancy allocation problems). In the methods that are based on

differentiation, the decision variables must be continuous. Earlier

studies treat the number of redundancies as real variables [8,9]. The

real number answer is rounded off and the neighboring integer solutions

are evaluated. The best feasible solution among the trials is taken as

the final solution. This method works well if the problem is simple

and the constraints are linear [9]. As the problem gets complicated,

43

the rounding off and trial-and-error procedure become inefficient and

inaccurate. Furthermore, this approach provides no theoretical

reasoning and has difficulties in extending the integer programming

problem to the mixed-integer programming problem, which is frequently

needed for reliability optimization.

Other methods treat the redundancy allocation problem as an

integer allocation process from the very beginning. Heuristics are the

popular techniques [12] but offer the users little feeling about

optimality. In addition, it is both inefficient and difficult to

justify the methods to solve the reliability-redundancy allocation

problem. The combination method studied in Section II provides one of

a few ways to optimize the reliability-redundancy allocation problem.

Unfortunately, it suffers numerical instability and low computational

efficiency.

A method combining the Lagrange multiplier technique with the

branch-and-bound technique is proposed. The Lagrange multiplier

technique quickly reaches an exact real number solution that is close

to the optimal solution. Next, the branch-and-bound method is used to

obtain the integer solution. This proposed method can solve both the

redundancy allocation problem and the reliability-redundancy problem.

When dealing with the latter problem, only branching and bounding the

integer variable is necessary.

44

THE LAGRANGE MULTIPLIER AND KUHN-TUCKER CONDITIONS

Notation:

[xj] integer part of xj

the ith Lagrange multiplier

L Lagrange multiplier function

g£ the ith constraint.

The constrained reliability optimization problem can be formulated

as follows:

Max Rg(X,R)

subject to

gi(X,R) < bi i=l,...,M. (3.1)

The Lagrange multiplier technique transforms the constrained

optimization problem into the unconstrained problem by introducing the

Lagrange multipliers, X^'s. The unconstrained optimization problem,

called the Lagrangian, becomes

M
Max L(X,R,X) = Rg(X,R) - 2 Xi[gi(X,R) - b^] (3.2)

i = l

Xi's > 0.

45

According to the Kuhn-Tucker conditions [7], the necessary

conditions for a maximum to exist are

8L
=0 (3.3)

Br ;

5L
=0 (3.4)

3xj-

9L
Xi = X£[g£(X,R) - b^] = 0 - (3.5)

9Xi

X; > 0 (3.6)

g£ - b£ 5 0 i " 1,..., M (3.7)

Equations (3.3), (3.4), and (3.5) form a system of 2N + M

simultaneous equations. The solutions to these simultaneous equations

subject to Eqs. (3.6) and (3.7) are extreme points in Eq. (3.1).

The nonlinear simultaneous equations can be solved by Newton's

method, which expresses the multi-variable root-finding problem as

follows [2].

Xk+1 = Xk " VJ(Xk)'l F(Xk) (3.8)

where

X^ X at the kth iteration

V a positive scalar

F(X) (fi(X), ..., f^CX))^

46

J(Xj^) Jacobian matrix of F (Xj^) .

The scalar, V, controls the rate of convergence. If V is greater

than one, the convergence is faster. If V is greater than zero and

less than one, the convergence is slower. For the reliability

optimization problem, the scalar, V, is taken to be less than one,

since the upper and lower bounds of xj and rj are not imposed on the

constraints. This conservative measures avoids xj and rj converging in

an infeasible region.

Newton's method requires the evaluation of partial derivatives of

the simultaneous equations. In some applications, the exact evaluation

of the partial derivatives is inconvenient or even impossible. This

difficulty can be overcome by using a finite difference approximation

to the partial derivative [2], i.e.,

3fi(X) fi(X + ëjh) - fi(X) (3.9)
__ _ _

where h is a small value and ej is a vector with one at the jth element

and zero elsewhere. Other methods such as the secant approximation to

the derivative in Newton's method [14], i.e.,

E(%k) - f(Xk-l)
f'(Xk) 2 2 (3.10)

~ ̂ k-1

and the quasi-Newton method [2] are popular ways of solving nonlinear

simultaneous equations without having to evaluate partial derivatives

47

explicitly. Subroutines for solving nonlinear simultaneous equations

are available in many mathematical libraries. Examples are ZSCNT and

ZSPOW of IMSL [6], and ZONE of PORT mathematical library [11]. These

subroutines are accurate, convenient, and efficient. However, they may

not converge, and the solution may be infeasible. In this study, the

ZSCNT subroutine was used to verify solutions obtained by Newton's

method.

43

THE BRANCH-AND-BOUND TECHNIQUE IN INTEGER PROGRAMMING

The branch-and-bound technique of integer programming for

reliability optimization is stated as follows [3]:

1. Solve the problem as if all the variables were real numbers.

This solution is the upper bound (for maximization problem)

of the integer programming problem.

2. Choose one variable at a time that has a noninteger value,

say Xj, and branch that variable to the next higher integer

value for one problem and to the next lower integer value

for the other. The real value solution of the jth variable

can be expressed as xj = [xj] + Xj, where [xj] is the

Vc
integer part of xj and 0 < xj < 1. The lower and upper

bound constraints of the two mutually exclusive problems are

Xj ^ [xj] + 1 and Xj ^ [xj], respectively. Add these two

constraints to both branched problems (called the process of

the jth branch-and-bound). Solve both problems by the

Lagrange multiplier method. Now the jth variable becomes an

integer in either branch.

3. Fix the integer of xj for the following steps of branch-and-

bound. Select the branch that results in a higher system

reliability. Then repeat step 2 using another variable xj^ ^

Xj for each of the new problems until all variables becomes

integers.

49

4. Stop branching the problem if the solution is worse than the

current best integer solution. Stop the iteration when all

the desired integer variables are obtained.

In step 2, there are many criteria for selecting the variable for

branching [4]. This paper selects the variable xj that minimizes

• f * 1 ''S mm (,X£ , 1-X£; .

These steps can be directly applied to the mixed-integer

programming problem. For mixed-integer programming problem, only the

integer variables need to be enumerated by the branch-and-bound

procedure. The real variables are free of restriction after each step

of the branch-and-bound technique. Then by using the Lagrange

multiplier technique, their new optimal values are obtained. Stop the

branch-and-bound process whenever all the integer variables find

integer values.

50

NUMERICAL EXAMPLES

Example 1

A four-stage series system with two linear constraints is

formulated as a pure integer programming problem. The decision

variables, X = (xj, X2, xg, x^), are the number of redundancies at each

stage. The problem is formulated as

Xj's i 1 are integers.

Using the data given in Table 3.1, the real solution, X =

(5.11672, 6.30536, 5.23536, 3.90151), was obtained using the Lagrange

multiplier method and the Kuhn-Tucker conditions proposed by Misra [9].

By rounding the solution to the nearest integer, the solution becomes

(5, 6, 5, 4). This paper suggests that the real solution be further

elaborated by the branch-and-bound technique. As shown in Fig. 3.1,

the final answer after the branch-and-bound process is also (5, 6, 5,

4), which is globally optimal. Newton's method was programmed in

Max

subject to

i = 1,2 (3.11)

51

Fortran and run on the NAS 9160. It took three seconds of CPU time to

solve the problem. Even if both Misra's method [9] and this method

draw the same conclusion about the decision variables, this method

provides a logical reasoning in obtaining the solution.

TABLE 3.1. Data for example 1

Stage, j 12 3 4

0.70 0.75 0.85

2.3 3.4 4.5

4 8 7

bi = 56

b2 = 120

'J

=2j

0.80

1 . 2

5

Example 2

A five-stage series system with three nonlinear constraints is

formulated as a mixed-integer programming problem. Both the number of

redundancies, xj, and the component reliability, rj, are to be

determined. The problem from Ref. [12] is as follows;

Max R (R,X) = n [l-(l-r:)*j]
j = l

subject to

*4^3

= 5.23537
= 6.94276
= 5.63151
= 3.00000
= 0.995768

.X, S 5A

*1 =

*2 =

*3 =

*4 =
Rc =

5.00000

6.00000

6.31442

4.00000
0.997815

Xj = 5.11672
X2 = 6.30535
X3 = 5.23553
X4 = 3.90151
Rg = 0.997917

*2 -

Xj = 5.09315
X2 = 6.00000

X3 = 5.31038
X4 = 4.00000
Rg = 0.997856

*4 > 4

XI = 5.18914

X2 = 6.16694

X3 = 5.17326
X4 = 4.00000
Rg = 0.997895

'1 ̂

rxg > 7

LX3 ? 6

Xi = 6.00000

X2 = 6.00000

X3 = 4.75000
X/j = 4.00000
Rg = 0.997322

*1 = 4.56563

= 7.00000

*3 = 4.82978

X4 = 4.00000

Rs = 0.997397 (_n
t-O

Xi = 5.00000

Xg = 6.00000

X3 = 5.00000

xj = 4.00000

R* = 0.99747

'Xj = 5.00000 ,
X2 = 6.00000

X3 = 6.00000

X4 = 4.00000

IMFEASIBLEl!
= 0.9982017%/

FIGURE 3.1. Branch-and-bound of example 1

53

81(X) = Z Pjxt - P <
j-1

g2(X,R) = 2 Oj (-k/^n rj)(xj+exp(xj/4)) - C S 0
j = l

5
goCx) = Z W:x:exp(x'/4) - W ^ 0 (3.12)

j=l

0 < r j ' s < 1

Xj's ^ 1 are integers.

By taking the logarithm to the objective function, the Lagrangian

can be written as

L(X,R,X) = Z ̂ n [l-(l-r:)*j] - Z X£g£(X,R). (3.13)
1=1 i=l

The Kuhn-Tucker conditions to the problem are

9L -^nq; q^J

9rj 1-qj ^ /n r,

• [1 + exp(xj/4)/4] - 2X]^XjPj -

\3Wjexp(xj/4)(1 + Xj/4) = 0 (3.14)

9L x;q*j ^

Sr; 1-q.J r;
J "

54

•(xj+exp(xj/4))/(rj^n rj) = 0 j=l,2,...,5 (3.15)

3L
\i = Xig;(X,R) ° 0 (3.16)

3\i

Xi > 0 (3.17)

gi S 0 1=1,2,3. (3.18)

Using the data given in Table 3.2, the system of simultaneous

equations in Eqs. (3.14), (3.15), and (3.16) was solved by Newton's

method. After the real number solution was obtained, the branch-and-

bound technique was used to find the integer variables while leaving

the other variables free of restriction, except the previously

investigated integer variables. The enumeration tree is shown in Fig.

3.2. Newton's method was programmed in Fortran and run on the NAS

9160. It took 16.2 seconds of CPU time to solve the problem.

TABLE 3.2. Data for example 2

j *j ^j W] P C W

1 2.33x10-5 1 7
2 1.45x10-5 2 8
3 5.41x10-6 3 8 110 175 200
4 8.05x10-5 4 6
5 1.95x10-5 2 9

gj = 1.5, j = 1,2,3,4,5 t = 1000

Xi = 3.00000 Rj = 0.79109
X2 = 2.50039 Rg = 0.83915
X3 = 2.00000 R3 = 0.90631
X. = 3.30064 R. •= 0.68951

Rc = 0. 93966

Xj = 3.00000 Rj = 0.78134
Xg = 2.21778 Rg = 0.85786
X3 = 3.00000 R3 = 0.84117
X4 = 3.01639 R^ = 0.71265
Xg = 2.24330 Rg = 0.84442

R, = 0.93533

X3 = 2.30569 R3 = 0.88464

X, = 2.00000 R, = 0.85471

R, = 0.93413

Xi = 2.00000 Rj = 0.85542
X2 = 2.71772 Rg = 0.82444
X3 = 2.40347 R3 = 0.87816
X4 = 3.48621 = 0.67503

R, = 0.93502

= 3.00000 Rj = 0.78509
Xg = 2.51999 Rg = 0.84082

X3 = 2.22435 R3 = 0.89204
X4 = 3.25305 R4 = 0.69776
Xg = 2.49529 Rg = 0.82819

Re = 0.94187

X2 = 2.55088 R2 = 0.83724
X3 = 2.27356 R3 = 0.88927
X4 = 3.34340 R4 = 0.69282
Xg = 2.56027 Rg = 0.82444

R. = 0.94270

Xg = 2.91143 Rg = 0.80827

R, = 0.92312

FIGURE 3.2. Branch-and-bound of example 2

56

R, = 0.93152

X, = 3,50171
X3 = 2.00000 R3 = 0.90324

= 0,67501

Xl = 2.00000 Rj = 0.85417

Rc = 0.932916

R, = 0.92849

R, = 0.91585

0.89493
0.68069

Xj = 2.00000

Xg = 3.00000
X3 = 2.00000 INFEASIBLE

= 4.00000
X- = 3.00000

Xl = 2.00000 Rj = 0.85194
Xg - 2.03072 Rg = 0.86815
X3 =• 3.00000 R3 = 0.83828
X4 = 3.16773 R^ = 0.69605

R, = 0.926811

FIGURE 3.2 (Continued)

*1 3.00000 «1 0.79063

*?
• 2.62608 R? - 0.82924
• 2.00000 • 0.89225

*4 3.00000 • 0.71938

S 2.63864 «4 - 0.81619
• 0.93758

3.00000
2.03647
2.00000
4.00000
2.07129

0.84268

0.90026

0.923988

9

• 3.00000
*2 - 2.22190

> 2.25449
R

5
0.919002

0.81487

*1 . 3.00000 RJ - 0.76938

*7 - 1.57185 RG • 0.89525
- 3.00000 RJ • 0.83241

*4 • 4.00000 R^ - 0.62674
» 1.56711 RG . 0.88528

• 0.90476

*1 • 3.00000 «1 • 0.77999
• 3.35515 - 0.77708

*3 2.00000 «3 • 0.90323

*4 « 3.00000 "4 » 0.71217

'5 2.00000 "5 • 0.86123
0.93219

XJ - 3.00000 RJ . 0.77960

IG = 3.00000 RG - 0.80065

X* • 2.00000 RJ - 0.90227

XJ « 3.00000 "4 • 0.71044

X* • 2.00000 < 0.85947

R; = O 9Z9Ï5

' 1 " 3.00000

* 2 - 4.00000

* 3 ' 2.00000 1NFEASI8LE

X. « 3.00000

*5 ' 2.00000

*L • 3.00000 • 0.80918

*2 • 2.27272 «2 - 0.84599
*3 • 2 00000 «3 • 0.89599
*4 • 3,00000 «4 - 0.70687

*5 • 3.00000 h • 0.79336
> 0.93560

IT
X| . 3.00000 R; . 0.82648 XJ « 3.00000
*2 - 2-00000 R2 • 0.87299 XG » 3.00000
X3 - Z.OOOOO R3 • 0.87893 *3 • 2.00000 IHFTASIBLF
X ̂ • 3.00000 • 0.64725 *4 - 3.00000
X5 - 3.00000 R5 » 0.77881 XJ « 3.00000

RJ • 0.92476

Ln

FIGURE 3.2 (Continued)

58

This same problem was solved using a combination of the sequential

search and the heuristic redundancy allocation methods investigated in

Section II. The results, summarized in Table 3.3, show that the

proposed method is superior to the combination of the two iterative

methods. A higher system reliability is obtained with less resource

consumed. Experience show that this mixed-integer programming problem

has many local optimums. The search technique discussed in Section II

has the drawback of being trapped by a local optimum and not being able

to get out of it. The proposed method overcomes this drawback and has

been shown to be quite effective, especially for the mixed-integer

programming problem.

TABLE 3.3. Comparison of two methods

Lagrange Multiplier
and the Branch-and-
Bound Method

Hooke and Jeeves Pattern
Search and Heuristic Method

X (3, 3, 2, 3, 2) (3. 3, 2, 2, 3)

R (0.77960,
0.80065,
0.90227,
0.71044,
0.85947)

(0.7582,
0.8000,
0.9000,
0.8000,
0.7500)

0.92975 0.91494

81

S2

83

27 28

0.00001 0.033727

10.57248 1.4118

The combination of the Lagrange multiplier and the branch-and-

bound techniques takes advantage of the exact method and the

enumerative method. The analytical method quickly reaches a solution

that is close to optimum, and the enumerative method finds the integer

solution. Since a good approximation is obtained by the former method,

it does not take many iterations for the latter one to reach the

optimal solution. In addition, the branch-and-bound method generates

many sets of solutions. The competitive alternatives provide

management with different options and flexibility. This general method

can be applied to any twice differentiable constrained optimization

problem. Nonlinear root-finding subroutines and numerical

approximation can be used to eliminate the need of evaluating partial

derivatives.

60

REFERENCES

1. Aggarwal, K. K., J.S. Gupta, and K. B. Misra. "A New Heuristic
Criterion for Solving a Redundancy Optimization." IEEE Trans,
on Reliability. R-24, No. 1, 1975, 86-87.

2. Burden, R. L. J. D. Faires, and A. C. Reynolds. Numerical
Analysis. 2nd edition. Prindle, Weber and Schmidt, Boston, MA.,
1981.

3. Garfinkel, R. S. and G. L. Nemhause. Integer Programming. John
Wiley & Sons, New York, 1972.

4. Gupta, 0. K. and A. Ravindran. "Branch-and-bound experiments in
convex nonlinear programming." Management Science, 31, No. 12,
1985, 1533-1546.

5. Hooke, R., and T. A. Jeeves. "Direct Search Solution of
Numerical and Statistical Problems." J. Assoc. Comp. Math., 8,
1961, 212-224.

6. IMSL Library Reference Manual. International Mathematical and
Statistical Libraries, Inc., Houston, Texas, 1984.

7. Kuhn, N. W. and A. W. Tucker. "Nonlinear programming." Proc.
Second Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, CA, 1951.

8. Misra, K.B., and M.D. Ljubojevic. "Optimal Reliability Design
of a System: a New Look." IEEE Trans, on Reliability, R-22, No.
4, 1973, 255-258.

9. Misra, K.B. "Reliability Optimization of a Series-parallel
System." IEEE Trans, on Reliability, R-21, No. 4, 1972,
230-238.

10. Nakagawa, Y. K. Nakashima, and Y. Hattori. "Optimal reliability
allocation by branch-and-bound technique." IEEE Trans.
Reliability. R-27, No. 1, (1978), 31-38.

11. PORT Mathematical Subroutine Library. AT&T Bell Laboratories,
Inc., Murray Hill, New Jersey, 1984.

12. Tillman, P.A., C.L. Hwang, and Way Kuo. Optimization of
Reliability. Marcel Dekker, New York, 1985.

61

13. Tillman, F.A., C.L. Hwang, and Way Kuo. "Determining Component
Reliability and Redundancy for Optimum System Reliability."
IEEE Trans, on Reliability, R-26, No. 3, 1977, 162-165

14. Wolf, P. "The secant method for simultaneous nonlinear
equations." Communications of the ACM, 12, 1959, 12-13.

62

SECTION IV. A REVIEW AND CLASSIFICATION OF SOFTWARE RELIABILITY MODELS

63

INTRODUCTION

Since the invention of the computer, computer software has

gradually become an important part of a system. In the 1970s, the cost

of software has surpassed the cost of hardware as being the major cost

of a system [209]. In addition to the cost of developing a software,

the penalty costs of software failures are even more significant. As

missions accomplished by human beings are becoming more and more

complex, for example, the air traffic control system, nuclear power

plant control systems, the space program, and military systems, the

failure of software usually involves very high costs, human lives, and

a social impact. Therefore, how to measure and predict the reliability

of a software becomes an important issue.

In the past 15 years, more than 300 papers have been published in

the areas of software reliability modeling, software reliability

characteristics, and software reliability model validation. Since

software is an interdisciplinary science, software reliability models

are also developed from different perspectives of a software and

different applications of the model. In order to pave the way for the

future development and evaluation of highly reliability software and

systems involving software and hardware, a detailed review of the

existing software reliability models and the assumptions behind those

models is of value. In this Section, a classification scheme for

software reliability models is proposed. Software reliability models

along with the characteristics of software and factors affecting

software reliability are discussed.

64

CHARACTERISTICS OF SOFTWARE RELIABILITY MODELS

In hardware reliability, the mechanism of failure occurrence is

treated as a black box. It's the failure process that is of interest

to the reliability engineers. The emphasis is on the analysis of

failure data and the design of experiment. In software reliability,

one is interested in the failure mechanism. Most software reliability

models are analytical models derived from assumptions of how failures

occur. The emphasis is on the model's assumptions and the

interpretation of parameters.

In order to develop a useful software reliability model and to

make sound judgments when using the models, an in-depth understanding

of how software is produced, how errors are introduced, how software is

tested, how errors occur, the types of errors, and the environmental

factors can help us in justifying the reasonableness of the

assumptions, the usefulness of the model, and the applicability of the

model under given user environment.

General description of software and software reliability, software

life cycle, the bug-counting concept, hardware reliability versus

software reliability, time index, error analysis, error size, user

environment, and flowgraph representation of a program are discussed

below.

65

General Description of Software and Software Reliability

Similar to the definition of hardware reliability, time-domain

software reliability is defined as the probability of failure-free

operation of a software for a specified period of time under specified

conditions [209]. Software is a collection of instructions or

statements of computer languages. It is also called a computer program

or simply a program. Upon execution of a program, an input state is

translated into an output state. Hence, a program can be regarded as a

function mapping the input space to the output, space (P; I 0) , where

the input space is the set of all input states and the output space is

the set of all output states. An input state can be defined as a

combination of input variables or a typical transaction to the program.

Any program is designed to performed some specified functions.

When the actual output deviates from the expected output, a "failure"

occurs. It's worth noting that th® definition of failure differs from

application to application and should be clearly defined in the

specifications. For instance, a response time of 30 seconds could be a

serious failure for air traffic control system, but acceptable for an

air line reservation system. A "fault" is an incorrect logic,

incorrect instructions, or inadequate instructions by executing it will

cause a failure. In other words, faults are the sources of failures

and failures are the realization of faults. Whenever a failure occurs,

there must be a corresponding fault in the program, but the existence

of faults may not cause the program to fail. A program will never fail

as long as the faulty statements are not executed.

66

It should be noted that "error" and "bug" are loosely used by many

authors to represent fault and sometimes failure. Failure and fault

customarily defined above [137] will be used through this section.

Error and bug will also be used when the distinction between the two is

not critical.

Bug-Counting Concept

The bug-counting model assumes that conceptually there is a finite

number of faults in the program. Given that faults can be counted as

an integer number, bug-counting models estimate the number of initial

faults at the beginning of the debugging phase and the number of

remaining faults during or at the end of the debugging phase. Bug-

counting models use per-fault failure rate as the basic unit of failure

occurrence. Depending upon the type of models, the failure rate of

each fault is either assumed to be a constant, a function of debugging

time, or a random variable from a distribution. Once the per-fault

failure rate is determined, the program failure rate is computed by

multiplying the number of faults remaining in the program by the

failure rate of each fault.

During the debugging phase, the number of remaining faults

changes. One way of modeling this failure process is to represent the

number of remaining faults as a stochastic counting process.

Similarly, the number of failures experienced can also be denoted as a

stochastic counting process. By assuming perfect debugging, i.e., a

67

fault is removed with, certainty whenever a failure occurs, the number

of remaining faults is a nonincreasing function of debugging time.

With imperfect debugging assumption, i.e., faults may be removed,

introduced, or no change at each debugging, the number of remaining

faults may increase or decrease. This bug-counting process can be

represented by the binomial model. Poisson model, compound Poisson

process, Markov process, and doubly stochastic process.

Error Size

Error size of a fault is defined as the probability that an input

state randomly selected from the input space will execute that fault

and result in a failure [56]. It can be expressed in the following

form.

1 N
Si = - Z eij

N j = l

where

1 if input state j executes fault i and fails

®ij °
0 otherwise

S£ error size of the ith fault

N number of input states.

One hypothesis about error says that a large sized fault is easier

to detect and will be detected earlier, A small sized fault is more

68

subtle and will be detected later. Although this hypothesis is hard to

validate, the idea of nonidentical size of error conforms with the

assumption of nonconstant per-fault failure rate postulated by many

software reliability models.

User Environment

The reliability of a software is subject to the user environment.

The failure rate of a Fortran compiler for instruction is expected to

be lower than for sophisticated applications. Operational profile and

system load are two environmental factors discussed below.

Operational profile is the distribution of input state execution.

Depending upon the application, an input state could mean a typical

transaction of daily operations, a partition of input space, or a

combination of input variables. Since the relationship of input,

fault, and failure is deterministic, how inputs are selected determines

how failures occur. In other words, if the assumption says that faults

are detected equal likely, it implies that input states are selected

randomly. In testing, the test cases should be generated randomly

according to the operational profile, so that the testing strategy will

conform with the assumptions of the model. In the operational phase,

some input states are executed more frequently than the others. This

must be considered when evaluating the reliability of the software.

The system load consideration is derived from the phenomenon that

a software is more likely to fail at peak hours than at the normal

operational hours [25,94]. In other words, the failure rate is not

only a function of time (CPU time or operational time), but also a

function of system load. This observation leads to a correction factor

added to the software reliability model.

Time Index

In hardware, materials deteriorate over time. Hence, calendar

time is a widely accepted index for reliability function. In software,

failures will never happen if the program is not used. In the context

of software reliability, "time" is more appropriately interpreted as

the "stress" placed on or "amount of work" performed by the software.

The following "time units" have been suggested as indices of the

software reliability function.

Execution time - CPU time; time when the CPU is busy.

Operational time - Time the software is in use. This is usually

referred to 8 working hours per day.

Calendar time - This index is used for software running 24 hours a

day.

Run - A run is a job submitted to the CPU.

Instruction - Number of instructions executed.

Path - A path is the execution sequence of an input.

70

Models based on execution time, operational time, calendar time,

and instruction executed belong to the time-domain model. Models based

on run and path belong to the input-domain model.

Although it may seem that software reliability models do not have

a unified index, the unification can be achieved through unit

conversion. For example, Musa et al. [155] have proposed methods of

converting their execution time model to the calendar time model.

Input-domain model can also be converted into time-domain model through

a factor of "number of runs or paths executed per unit time."

Software Life Cycle

Software life cycle is normally divided into the requirement and

specification phase, design phase, coding phase, testing phase, and

operational and maintenance phase. The design phase may include a

preliminary design and a detailed design. Testing phase may include

module testing, integration testing, and field testing. The

maintenance phase may include one or more subcycles, each having all

the phases in the development stage. This classification is based on

the functional point of view rather than a strict time sequence. In

reality, software life cycle phases overlap each other.

The factors governing the failures, the types of models applicable

for reliability assessment, the purpose of reliability assessment, and

the data available for parameter estimation vary from phase to phase

[155,178]. In the early phase of software life cycle, a predictive

71

model is needed because no failure data are available. This type of

model predicts the number of errors in the program before testing. In

the testing phase, the reliability of the software improves through

debugging. A reliability growth model is needed to estimate the

current reliability level, and the time and resources required to

achieve the objective reliability level. During this phase,

reliability estimation is based on the analysis of failure data. After

the release of a software, addition of new modules, removal of old

modules, removal of detected errors, mixture of new code with

previously written code, change of user environment, change of

hardware, and management involvement have to be considered in the

evaluation of software reliability. During this phase, an evolution

model is needed.

In addition to the relationship between software reliability model

and software life cycle, the study of the type and percentage of errors

introduced and removed within the software life cycle is also of

interest to software reliability engineers.

Graph Representation of a Program

A program can very well be represented by a directed graph where

decisions are the nodes, statements between two decisions is the arc,

and execution sequence is the direction of the arc. This

representation is also called the flowgraph of a program. Using

flowgraph representation, the execution sequences of a program can be

72

traced through the paths of the flowgraph. In addition, the analysis

of control flow and data flow of a flowgraph set the ground for many

complexity metrics which, in turn, are used to estimate the number of

errors in a program.

Another view of the flowgraph treats a program as a reliability

network. Each node represents a module or a subroutine. As the

reliability of each module and the transition probabilities among the

modules are determined, the reliability of the program can be evaluated

by the techniques of reliability network [7,33]. Some other graph

properties like connectivity and reachability can also be applied to

represent software properties.

Software Reliability versus Hardware Reliability

Since the emergence of software reliability, reliability

theoreticians and practitioners have discussed the issue of software

reliability versus hardware reliability in terms of similarity,

differences, modeling techniques, etc. [85,217], Because the basic

modeling techniques of software reliability are adapted from

reliability theory developed for hardware systems in the past 30 years,

a comparison of software reliability and hardware reliability can help

in the use of these theories and in the study of hardware-software

systems. Table 4.1 lists the differences and similarities between the

two.

73

TABLE 4.1. Software reliability versus hardware reliability

Software Reliability Hardware Reliability

Without considering program
evolution, failure rate is
statistically nonincreasing.

Failures never occur if the software
is not used.

Failure mechanism is studied.

CPU time and "run" are two popular
indices for the reliability
function.

Most models are analytical models
derived from assumptions. Emphasis
is placed on the development of the
model, the interpretation of the
model assumptions, and the physical
meaning of the parameters.

Failure rate has a bathtub curve.
The burn-in stage is similar to
the software debugging stage.

Material deterioration can cause
failures even though the system
is not used.

Failure mechanism is treated as
a black box.

Calendar time is a universally
accepted index for the reliability
function.

Failure data are fitted to some
distributions. The selection of
the underlying distribution is
based on the analysis of failure
data and experiences. Emphasis
is placed on the analysis of
failure data.

Failures are caused by incorrect
logic, incorrect statements, or
incorrect input data. This is
similar to the design errors of
the complex hardware system.

Failures are caused by material
deterioration, random failures,
design errors, misuse, and
environmental factors.

Failures are reproducible because Failures are not reproducible,
the relationship between input state,
program, and output is deterministic.

74

Error Analysis

Error analysis, including the analysis o£ failures and the

analysis of faults, plays an important role in the area of software

reliability for several reasons. First, failure data must be

identified, collected, and analyzed before they can be plugged into any

software reliability model. In doing so, an unambiguous definition of

failures must be agreed upon. Although not critical to theoreticians,

it is extremely important in practice. Second, the analysis of error

sources and error removal techniques provide information in the

selection of testing strategies and the development of new

methodologies. To facilitate our study, error analysis is studied by

severity, error type, special errors, origination in the software life

cycle, and uncovered destination in the software life cycle.

Classification by severity

In practice, it is often necessary to classify failures by their

impact on the organization. As pointed out by Musa et al. [155], cost

impact, human life impact, and service impact are common criteria.

Each criterion can be further divided by the degree of severity. For

example, minor error, incorrect result, partial operation, and system

breakdown could be a criterion for service impact.

To estimate the failure rate of each severity level, Musa et al.

[155] suggest the following approaches.

75

1. Classify the failures and estimate failure rate separately

for each class.

2. Classify the failures, but lump the data together, weighing

the time intervals between failures of different classes

according to the severity of the failure class.

3. Classify the failures, but ignore severity in estimating the

overall failure rate. Develop failure rates for each

failure class by multiplying the overall failure rate by the

proportion of failures occurring in each class.

In addition to the estimation of failure rate of each severity

class, the penalty costs of failure can be measured in dollar value

[62].

Some special errors

Transient error, internal error, hardware caused software error,

previously fixed error, and generated error are some special errors of

interest to software reliability engineers. Transient errors are

errors that exist for too short a time to be isolated [209]. This type

of error may happen repeatedly. In failure data collection, transient

errors of the same type should be counted only once. Internal errors

are intermediate errors whose consequences are not observed in the

final output [105]. This happens when an internal error has not

propagated to a point where the output is influenced. For instance, in

fault-tolerant computing some errors may be guarded against by the

76

redundant codes and not observed in the Einal output. When setting up

the reliability objective, decisions must be made to either count the

internal error or to simply count the observable errors.

Hardware caused software errors are errors if not carefully

investigated will be regarded as a common software error [95]. For

example, a program may be terminated during execution and receive an

error message of operating system error. Without careful

investigation, this error may be classified as software error while the

operating system error was actually caused by the hardware. In

software failure data collection, hardware caused software errors

should be excluded from software errors.

Previously fixed errors are old errors which have happened before,

but were not removed by debugging. Generated errors are new errors

introduced by debugging [209]. These two types of errors conform with

the assumption of imperfect debugging which allows errors to be

introduced or no change in the fault count at each debugging.

Classification by the type of error

By analyzing the failure data or trouble reports, errors can be

classified by their properties. One of the classification schemes

given by Thayer et al. [239] includes the following error types.

- Computational errors

- Logical errors

- Input/output errors

- Data handling errors

- Operating system/system support errors

77

- Configuration errors

- Routine/routine interface errors

- Tape/processing interface errors

- User interface errors

- Data base interface errors

- User requested change

- Present data base errors

- Global variable/compool definition errors

- Recurrent errors

- Documentation errors

- Requirement compliance errors

- Operator errors

- Unidentified errors

As failure data are collected, the frequency of each type can be

obtained. Other classification schemes can be seen in Refs. [56,66].

Classification by error introduced in the software life cycle phase

Within the software life cycle, errors can be introduced in the

following phases [20,239].

- Requirement and specification

- Design

Functional design

Logical design

- Coding

- Documentation

- Maintenance

For each phase, the frequency of occurrence can be obtained from

failure data. It's recognized that errors introduced in the early

phase of the software life cycle is more costly to remove [20].

78

Classification by error removed in the software life cycle phase

Errors are removed through testing which can be divided into the

following stages [239].

- Validation

- Integration testing

- Acceptance testing

- Operation and demonstration

The frequency of occurrence at each category is also of interest

to software reliability engineers.

Classification by the techniques of error removal

Some techniques of error removal given in Refs. [100,239] are

summarized below.

- Automated requirement aids

- Functional specification review

- Simulation

- Design language

- Design standard

- Logic specification review

- Module logic inspection

- Module code inspection

- Code standards auditor

- Set/use analyzer

- Unit test

- Component test

- Subsystem test

- System test

79

This type of study gives us information in the selection and

validation of software design and testing techniques.

80

CLASSIFICATION OF SOFTWARE RELIABILITY MODELS

Software reliability models can be classified into the

deterministic model and the probabilistic model. The deterministic

model studies 1) the elements of a program by counting the number of

operators, operands, and instructions, 2) the control flow of a program

by counting the branches and tracing the execution paths, 3) the data

flow of a program by studying the data sharing and data passing, and 4)

other deterministic properties of a program.

Performance measures of the deterministic model are obtained by

analyzing the program texture and do not involve any random event. The

deterministic model can be further divided into software science,

information content, software complexity, and software quality

attributes. In general, these models empirically measure the

qualitative attributes of a software and are used in the early phases

of the software life cycle to predict the number of errors in a program

or used in the maintenance phase for assessing and controlling the

quality of a software.

The probabilistic model represents the failure occurrences and the

fault removal as probabilistic events. It can be further divided into

the error seeding model, curve fitting model, reliability growth model,

execution path model, program structure model, input domain model,

failure rate model, nonhomogeneous Poisson process model, Markov model,

Bayesian model, and unified model.

81

The error seeding model estimates the number of errors in a

program by using the capture-recapture sampling technique. Errors are

divided into indigenous errors and introduced errors (seeded errors).

The unknown number of indigenous errors are estimated from the number

of introduced errors and the ratio of the two types of errors obtained

from the debugging data.

The curve fitting model uses regression analysis to study the

relationship between software complexity and the number of errors in a

program, the number of changes, failure rate, or time-between-failure.

Both parametric and nonparametric methods have been attempted in this

field.

The reliability growth model measures and predicts the improvement

of reliability through the debugging process. A growth function is

used to represent the progress. The independent variables of the

growth function can be time, number of test cases, or testing stages,

and the dependent variables can be reliability, failure rate, or

cumulative number of errors detected.

The execution path model estimates software reliability based on

the probability of executing a logic path of the program and the

probability of an incorrect path. This model is similar to the input

domain model because each input state corresponds to an execution path.

The program structure model views program as a reliability

network. A node represents a module or a subroutine and the directed

arc represents the program execution sequence among modules. By

82

estimating the reliability of each node, the reliability of transition

between nodes, and the transition probability of the network, and

assuming independence of failure at each node, the reliability of the

program can be solved as a reliability network problem.

Input-domain model uses "run" (the execution of an input state) as

the index of reliability function as opposed to "time" to the time-

domain model. The reliability of each run is defined as the number of

successful runs over the total number of runs. Emphasis is placed on

the probability distribution of input state or the operational profile.

The failure rate model studies the functional forms of per-fault

failure rate and the program failure rate at the failure intervals.

Since mean-time-between-failure is the reciprocal of failure rate,

models based on time-between-fai lure also belong to this category.

The Markov model is a general way of representing the software

failure process. The number of remaining faults is modeled as a

stochastic counting process. When a continuous time discrete state

Markov chain is adapted, the state of the process is the number of

remaining faults and time-between-failure is the sojouring time from

one state to another. If we assume that the failure rate of the

program is proportional to the number of remaining faults, linear death

process and linear birth-and-death process are two models readily

available. The former assumes that the remaining error is

monotonically nonincreasing, while the latter allows faults to be

introduced during debugging.

83

When a nonstationary Markov model is considered, the model becomes

very rich and unifies many of the proposed models. The nonstationary

failure rate property can also simulate the assumption of nonidentical

failure rate of each fault.

The Bayesian model assume a prior distribution of the failure

rate. This model is used when the software reliability engineer has a

good feeling about the failure process and the failure data are rare.

The unified model includes many models as special cases. Besides the

continuous time discrete state Markov chain, the exponential order

statistics [142], and the shock model [113] are two other general

models.

The Deterministic Models

The deterministic model studies the elements of software and their

interrelationship. It is also called software metrics or complexity

metrics. With these metrics, programs can be measured and compared on

the same basis. Software metrics are defined by analyzing the texture

of the program or the flowgraph of the program rather than analyzing

the failure process of the program as the probabilistic models do.

These static models predict the number of errors in the program and do

not involve time-dependent variables. Deterministic models are

discussed below.

84

Software science

Developed by Halstead [77], software science defines software

metrics based on the number of distinct operators and the number of

distinct operands in a program. Program length, volume, effort, level,

difficulty, mental discrimination, and moments are defined and related

to program size, program development time, program development effort,

and the number of errors in a program [63]. Among these metrics,

program length and volume have been used to estimate the number of

errors in a program.

Notation:

Tjj number of distinct operators

772 number of distinct operands

total number of operators

N2 total number of operands

N length of the program

V volume of the program

B number of errors in the program

B estimate of B

I number of machine instructions

Halstead defines

Ni = %i/og2%i

N2 = %2^082%2

N = N 2 + N2

85

V = N^og2('?l + %2).

Previous studies have shown that a high correlation exists between

the number of machine instructions and the number of errors in the

program [209]. Since program length N is proportional to the number of

machine instructions (l=N/2 if we assume that one machine instruction

contains one operator and one operand), the number of errors in a

program is also proportional to Halstead's program length. The

relationship can be written as

(B « I) A (I = N/2) -» B « N.

Halstead also derived a formula .to estimate B from V. The formula is

Ê = V/3000.

Entropy function (information content)

The use of entropy function to estimate the number of errors in a

program originates from Shannon's information theory [201].

Notation:

X= (xj,. .., Xfj) a set of messages

X£ the ith message in X

P£ probability of X£

f£ self-information of X£

H entropy of X

86

entropy of each token

Hp

I=(ll

entropy of the program

> • • • J Ij^) input space

the ith partition of I

NI

number of inputs in I;

total number of input

W software work

Let X=(xi, Xff) be a set of messages from which a message is

chosen. Then the self-information of any message, X£, is defined as

If the probability of a message is 1, its self-information equals

zero. If the probability of a message approaches 0, its self-

information tends to infinity. The expected value of self-information

is called the "entropy" (a measure of disorderness) or information

content of that message and is defined as

H = - Z Pi^og2Pi.
i = l

To set up an analogy between entropy of a set of messages and

entropy of a program, we assume there is an entropy associated with

each token (operator or operand) of the program, and program entropy is

the sum of all the token entropies. Each token is a set of messages

consisting of all the distinct operators and distinct operands. If the

occurrence of each distinct operator and operand is equal likely, then

fi = - -^og2Pi

n

87

Pi = l/(r?i + T?2)

fi = - /og2Pi = ^og2(r?i + %2).

The entropy of each token is

1)1
H-j. = Z P£E£ = -?og2(»7i + •ni)

i = l

where

%T = + '72*

And the entropy of the program is

Hp = NH-j. = N^og2 (li + T?2) = V

where N and V are Halstead's program length and program volume,

respectively. Since Shannon's program entropy is equal to Halstead's

program volume, the formula of estimating the number of errors from

program volume is also applicable to program entropy.

The idea of entropy metric can be applied to input classes as well

as program tokens. Let the input space I of a program be partitioned

into n classes, the entropy function of the program can be defined as

[197]

n NI- NI
H = 2 •^og2

i=l NI NI:

88

Since a different design will result in a different partition of

input space and a different entropy value, this entropy function can

serve as a metric of measuring design complexity.

Another variation of entropy function called software work [88] is

defined as

n NI
W = L Nl£ •(og2 •

i=l Nli

Software quality attributes

The applicability of time-domain or input-domain software

reliability models so far developed are limited to the testing phase.

These models use failuo rate^or the number of remaining faults as a

measure of software reliability. In the specification phase, design

phase, and maintenance phase, the characteristics of a software can

better be represented by software quality attributes rather than

failure rate and the number of remaining errors. Although the

correlation between software reliability and software quality

attributes at a specific time point is difficult to be justified, they

interact with each other in a long-term complicated manner. Poor

quality attributes of today will lead to poor reliability in the

future.

Software quality attributes include, but are not limited to, the

ones listed below. They are grouped into the specification and design

89

phase, initial operation phase, revision phase, and transition phase

Depending upon the original authors, the definitions of these

attributes may differ slightly and the meaning of two attributes may

duplicate. The detailed definitions of these software quality

attributes can be found in Refs. [21,24,140,148,249]. Software qual

attributes from different sources are summarized as follows.

Initial operation phase

- Reliability

Correctness

Accuracy

Completeness

Integrity

Resilience

- Usability

Validity

Completeness

Documentation

- Efficiency

- Economy

Specification and design phase

- Moduality, structureness

- Clarity, conciseness

- Consistency, stability

Revision phase

- Maintainability

- Understandability

Clarity

Documentation

- Testability

Traceability

Accessibility

90

- Flexibility

Modifiability

Expandability

Transition phase

- Portability

- Reusability

- Modularity

- Interoperability

In addition to the descriptive definition, some software quality

attributes have been expressed quantitatively. For example,

consistency of requirement specification has been represented by a

connectivity matrix and a reachability matrix [58], and maintainability

has been represented by a connectivity matrix [185]. In addition,

complexity metric is another quantitative way of representing software

quality attributes. Although the correlation between software quality

attributes and complexity metrics has not been widely studied, numerous

complexity metrics have been suggested for their empirical relationship

[21,216]. A detailed discussion of complexity metrics is given in the

next section.

To measure and control the quality of a software, the software

quality attributes and their highly correlated complexity metrics can

be measured after specification and design phase, during operational

phase, and after each major change in the maintenance phase. Anomolies

reflected by the quality attributes can be identified and corrected.

Since many attributes and complexity metrics are involved, a decision

91

table can be used to keep track of the conditions of each attribute and

the actions to control the quality of the software. More work should

be done in this area to find out quantitative metrics highly correlated

to software quality attributes, and attributes highly correlated to

reliability costs, resources, and productivity.

Complexity metrics

Complexity metrics in the context of software engineering is a

measure of sophistication of a software program as opposed to the time

complexity in algorithm analysis, which measures the running time as a

function of problem size. The ultimate purposes of complexity are to

1) estimate the costs, resources, and time required to develop, test,

and maintain a software, 2) measure the reliability of a software and

the productivity of software development, and 3) serve as a

quantitative representation of software quality attributes.

Although the relationship between complexity metrics and software

quality, reliability, and productivity is empirical, complexity metrics

have been widely used by practitioners because of their simplicity,

intuition, and ease of automation. Once the program of measuring a

complexity metric is written, this metric can be measured repeatedly

with only the cost of computer time. Numerous complexity metrics have

been proposed from the standpoint of program size, Halstead's software

science, information content, data flow analysis, control flow

analysis, and program syntax. In this review, only those metrics

92

related to reliability, error counting, and software quality attributes

are discussed.

Lines of code Lines of code is the most widely used metric of

estimating the number of errors in a program, the resources required to

develop a program, and the productivity of programmers. Depending upon

the authors, lines of code may mean the number of machine instructions,

the number of executable source statements with or without data

declaration, or the total number of source statements (including

comments). It has been shown that the number of errors in a program is

proportional to the size of the program. This linear relationship can

be written as

B - KI

where

B Number of errors in the program before debugging

I Number of instructions

K Constant of proportionality.

The value of K is about 0.02 error/machine instruction [209].

Program change Program change [49] is the textual change in

the source code of a module during the development phase. It includes

changes to statements, insertion of statements, and changes followed by

the insertion of new statements. A program change represents a

conceptual change to the program. It has been shown that a high

93

correlation exists between the total number of changes and the total

error occurrences.

Takahashi and Kamayachi [236] studied the changes in program

specification rather than textual changes. They also found a high

correction with the number of errors in the program.

Job step A job step is a programmer activity at the operating

system command level [49]. Typical examples are editing texts,

compiling source modules, link object modules, and executing entire

program. This metric quantifies the frequency of computer system

activities and can be used to estimate the requirements of computer

resources, programmer's time, and programmer's efforts as well as

software reliability.

Data binding Defined by Basili and Turner [12], a data binding

occurs when a procedure/function P modifies a global variable X and a

procedure/function Q access X. When the execution sequence of P

proceeds that of Q, data binding denoted by (P,X,Q) occurs. A higher

number of data binding increases the possibility of causing error when

procedures/functions are changed.

Data span Data span is a measure of locality of data

references. It is defined as the number of statements between two

references to the same identifier with no intervening references to

that identifier [55].

Cyclomatic number McCabe's cyclomatic number [139] originated

from graph theory. The cyclomatic number V(G) of a graph G with n

nodes, e edges, and p connected components is

94

V (G) = e - n + p.

In a strongly connected graph (there is a path joining any pair of

nodes), the cyclomatic number is equal to the maximum number of

linearly independent circuits. The linearly independent circuits form

a basis for the set of all circuits in G and any path through G can be

expressed as a linear combination of them.

When a program is represented as a flowgraph with an unique entry

node and an unique exit node, this flowgraph becomes a strongly

connected graph if a dummy edge from the exit node to the entry node is

added. When the number of connected components is greater than 1,

i.e., a main program and some subroutines, the above formula is

modified to

V(G) = e - n + 2p.

The cyclomatic number of a graph with multiple connected

components is equal to the sum of the cyclomatic number of each

connected component. Another simple way of computing the cyclomatic

number is as follows.

V(G) = + 1

where ÏÏ is the number of predicate nodes (decisions or branches) in the

program. In other words, the cyclomatic number is a measure of the

number of branches in a program. A branch occurs in IF, WHILE, REPEAT,

and CASE statements (GO TO statement is normally excluded from the

structured program). The cyclomatic number has been widely used in

predicting the number of errors and as a measure of software quality.

Maximum intersection number In contrast to the cyclomatic

number which measures the number of decisions, the maximum intersection

number (MIN) proposed by Chen [31] measures the levels of nested

decisions. MIN is obtained by cutting a strongly connected graph such

that each region is entered exactly once. Given a program of n

decisions, the upper bound of MIN is n+1 when n-level nested structure

occurs, and the lower bound of MIN is 2 when none of the decisions is

nested.

Knot count Knot count was suggested by Woodward et al. [251].

It measures the number of crossings of control flow in a program.

Calls and jumps An early experiment by Akiyama and Fumio [3]

shows that the number of errors is proportional to the number of

subroutine calls plus the number of jumps (decisions). A simplified

metric of this type considers only the number of subroutine calls or

the number of jumps.

Maintainability Haney [79] proposed a method of predicting

maintainability by using a transition probability matrix. The expected

number of changes at each module can be predicted from the initial

number of changes of each module and a transition probability matrix of

module change.

T = A(I + P + p2 + . ..) = A(I - P)"l

where

96

P = (p£j) transition probability matrix of module changes

Pij probability of changing module i will result in

changing module j

A = (a;) vector of initial changes

number of initial changes in module i

T = (t() vector of total changes

expected number of changes in module i

I identity matrix.

For a different design, the transition probability of module

change, P, and the vector of total changes, T, are different. Given

that P and A are available for alternative designs, T can be computed

for each design and serves as a measure of maintainability.

By letting a£ = 1 for all i, a metric of design complexity is

defined as [185]

1 n
m Z (t£ - 1)

n i = l

where

m design complexity

n matrix size.

2
Notice that the series I + P + P + ... converges when the eigenvalue

of P is greater than 0 and less than 1.

97

Accessibility Mohanty [148] defines the accessibility of a

node as

A k i = Z A i j Q i j k l P i j
ij

where

N£j node ij; the jth node of the ith level in the graph

A£j accessibility of N£j

P£j probability of successfully executing N£j

Q£jkl probability of entering after executing N£j.

Mohanty also suggests that ?£j can be estimated by

Pij - kp/Clj

where

kp constant of proportionality

C£j some measure of complexity.

Since ?£j is the reliability of node N£j, the complexity metric

chosen must have a high correlation with reliability.

Testability Based on accessibility, Mohanty [148] further

defines testability as

^ij " AijPij

TP£ " [z (1/T£j)]"^
Si

98

T . [- "
M i = l T P i

where

T^j testability of j

TP£ testability of path i

T testability of the program

S£ set of node of path i

M minimum number of paths in the program that cover all the

nodes.

Testedness Also based on accessibility, Mohanty [148] defines

testedness as

(\
W£j = 1 - exp V ~ /

Aijqij

w = z W i 7 |s |
s

where

W testedness of the program

W^j testedness of node N;j

qij=l-pij unreliability of node N£j

F'j number of times N£j is executed

S set of nodes in the program.

99

From the above formula, the testedness of node N^j is an

exponentially increasing function of the number of times N£j is

executed with rate l/(A£j-T£j), and bounded by 1. As F£j approaches

from 0 to infinity, W£j increases from 0 to 1.

Program evolution The program evolution model proposed by

Belady and Lehman [17] describes the phenomenon of continuing changes,

continuing growth, and increasing entropy of a program after release.

A complexity metric for module changes is defined as

Cr = MHR/MR

where

R release sequence number R

number of modules at release R

MHj^ number of modules handled in release interval R (1%) .

To predict , two formulas have been suggested.

Cr = KQ + K^R + K2R^ + S + 6

CR = KQ + K^R + K2R^ + K3HRR + S + e

where

KQ,Kj[,K2,K3 coefficients

5 cyclic component

6 stochastic component; error

IR release interval R

HRR=MHR/IR handle rate of release R.

100

Another complexity metric called fault class is defined as

Ci = 2^-1

where is the fault complexity at release i. At each release, the

remaining faults are either faults generated at that release or

residual faults. Therefore, the total number of combinations (fault

classes) at release i is 2^ ^.

Schneider model Schneider [195] uses development effort in

man-month and the number of subroutines to estimate the expected number

of software problems. The empirical formula is given as

E(N) = gO.333

/ S/K \1.667
= KI)

0.047

where

E(N) expected number of problems

E efforts in man-month

S number of subroutines

K thousand of source codes

E(NJ.) expected remaining errors.

By assuming a ratio of 100:15 between detected errors and remaining

errors, the author gives

E(Nj.) = 0.15E(N) .

101

Hybrid model The hybrid model uses more than one complexity

metric discussed above to estimate the number of errors in the program.

The types of complexity metrics included can be studied by regression

analysis.

Environmental factors and error estimation Methods of error

estimation discussed above are all based on complexity metrics. A

different approach taken by Takahashi and Kamayachi [236] studies the

correlation between error rate and environmental factors. They

considered the type of program, the frequency of specification change

(CHG), the average number of programmer experience, the difficulty of

programming (DIF), the amount of programming effort (EFF), the level of

programming technology, the volume of design documentation (DOC), and

the percentage of reused modules. The authors have shown a close

relationship between error rate and CHG, DIF, EFF, and DOC.

The Probabilistic Models

The probabilistic models treat software failures and errors

removal as random events. They can be broken down into the error

seeding model, curve fitting model, reliability growth model, execution

path model, program structure model, input domain model, failure rate

model, nonhomogeneous Poisson process model, and Markov chain. Among

those, curve fitting model and reliability growth model are traditional

techniques used in hardware reliability and other areas. The others

were developed specifically for software.

102

The probabilistic model is the mainstream of software reliability

study because it can be integrated with the hardware reliability

theory. As systems are getting more and more complex, more will

involve both hardware component and software component. This common

framework makes it possible to evaluate the reliability of a hardware-

software system.

Error seeding model

Originated from the idea of estimating the size of an animal

population from recapture data [57], Mills [144] proposed an error

seeding method to estimate the number of errors in a program by

introducing pseudoerrors into the program. From the debugging data

which consist of indigenous errors and induced errors, the unknown

number of indigenous errors can be estimated. This model can be

represented by a hypergeometric distribution.

The probability of k induced errors in r removed errors follows a

hypergeometric distribution.

P(k;N+ni,ni,r) =

where

N number of indigenous errors

number of induced errors

r number of errors removed during debugging

103

k number o£ induced errors in r removed errors

r-k number of indigenous errors in r removed errors

Since nj, r, and k are known, the maximum likelihood estimate of N

can be shown to be

k

This method was criticized for the inability of determining the

type, the location, and the difficulty level of the induced errors such

that they will be detected equal likely as the indigenous errors.

Basin [14] suggests a two-step procedure with which one programmer

detects nj errors and a second programmer independently detects r

errors from the same program. With this method, the n^ errors detected

by the first programmer resembles the induced errors in the Mill's

model. Let k be the common errors found by two programmers. The

hypergeometric model becomes

ni(r-k)
^ =

P(k;N,N-ni,r)

and the MLE of N is

k

104

Since no errors are actually introduced into the program, the

difficulties in Mill's method are overcome.

Lipow [121] modified Mill's model by introducing an imperfect

debugging probability q. The probability of removing k induced errors

and r-k indigenous errors in m tests is a combination of binomial and

hypergeometric distributions.

A)
P(k;N+ni ,ni,r,m) = \r) (1-q) q

C 7)

N à r-k ^ 0, nj i k S 0, and m & r.

The interval estimate of N can be found in Huang [90] and Ramzan [180].

Reliability growth model

Widely used in hardware reliability to measure and predict the

improvement of the reliability program, the reliability growth model

represents the reliability or failure rate of a system as a function of

time, testing stage, correction action, or cost. Dhillon [42]

summarizes 10 reliability growth models developed for hardware systems.

This empirical approach is also adapted for predicting the progress of

software debugging process. Reliability growth models reported for

software are summarized below.

Duane growth model Plotting cumulative failure rate versus

cumulative hours on log-log paper, Duane observed a linear relationship

between the two. This model can be expressed as

105

Xe(t) = N(t)/t = at ^

and

^ogXj. =• ^oga - P/ogt

where

N(t) cumulative number of failures

t total time

Xg cumulative failure rate

a,P parameters

The above formula shows that ^ogXj. is inversely proportional to

•^ogt.

This model was adapted by Coutinho [36] to represent the software

testing process. He plotted the cumulative number of deficiencies

discovered and the cumulative number of correction actions made versus

the cumulative testing weeks on log-log paper. These two plots

revealed a find-and-fix cycle, and are jointly used to predict the

testing progress.

The least squares fit can be used to estimate the parameters of

this model [42]. •

Weibull growth model Wall and Ferguson [247] proposed a model

similar to the Weibull growth model for predicting the failure rate of

a software during testing.

Notation:

106

N(t) cumulative number of failures at time t

M(t) maturity (man-month of testing, CPU time, calendar time,

or number of tests)

Mg scaling constant

NQ parameters to be estimated

\(t) failure rate at time t

Xg initial failure rate; a constant

G(t) M(t)/Mo

The model is summarized as follows:

N(t) = No[G(t)]P

X(t) = N'(t) = NoG'(t)[G(t)]P"l.

Let NoG'(t)=Xo' then

X(t) = XgCG'

= — (3[G' (t)]2"l.

0

For 0 < 0 < 1, \(t) is a decreasing function of t. By letting a=Xo/|î,

this model is similar to the Weibull growth model with failure rate

X(t) =

This is the failure rate when failures follows the Weibull

distribution. Note that the failure rate of the Weibull growth model

107

can be derived from the Duane model. The MLEs of Weibull parameters

can be found in Ref. [42].

Wall and Feguson tested this model on 6 software projects and

found that failure data correlate well with the model. In their study,

/3 lies between 0.3 and 0.7.

Wagoner's Weibull model Adapted from hardware reliability,

Wagoner [246] uses a Weibull distribution to represent time between

program failures. Let

f(t) density function of time between failure

X(t) failure rate function

R(t) reliability function

a,(3 scale and shape parameters

n total number of failures

n£ number of failures up to the ith time interval

F(t) n^/n.

The Weibull distribution has the following properties.

f(t) = apiat)^ ^exp[-(at)^]

R(t) = 1 - F(t) = exp[-(at)^]

and

X(t) = a|3(at)^ ^.

The parameters estimation can be found in Ref. [246].

108

Logistic growth curve model Suggested by Yamada and Osaki

[252], the logistic growth curve model has been used to represent the

cumulative number of errors detected during debugging. The expected

cumulative number of errors detected up to time t is

m(t)
1 + ae-ft

where K, a, and are parameters to be estimated by regression

analysis.

Gompertz growth curve model Nathan [165] adapted the Gompertz

model to represent the cumulative number of errors corrected up to time

t. The model has an S-shaped curve with the following form,

N(t) =

where

a number of inherent errors

N(0) number of corrections made before the first test interval

is completed

N(t) cumulative number of errors corrected at time t

A N(0)/a

^ny correction rate.

The above formula can be written as

^n [^n (N(t)/a)] = [^n (N(0)/a)] + t/n?

109

where a is the upper limit of N(t) when t approaches infinity.

The Gompertz model has been used in hardware reliability to

predict system reliability. The model is as follows.

R(t) =•

where R(t) is the system reliability, a is the reliability upper bound,

and y is the rate of improvement. One method of estimating the

parameters is given in Dhillon [42].

Hyperbolic reliability growth model Sukert [229] adapted the

hyperbolic reliability growth model to represent the debugging process

of software. He assumed that testing is divided into N stages, each

consisting of one or more tests until a change is made. Success counts

and failure counts are recorded and fitted to the following model.

Notation:

j testing stage

Rj reliability at the jth stage

y growth rate

Roa upper bound of the software reliability.

Then the reliability of the software at stage j is

Rj = Rco - -

J

and the least squares estimates of RQ, and a are in Ref. [125].

no

This model is a special case of a more general growth model for

reliability improvement with a sequence of testing stages [254]. The

model is

Rj = Roo - 7f (j) .

By setting f(j)=l/j, the hyperbolic model is obtained.

Curve fitting model

The curve fitting model finds a functional relationship between

dependent and independent variables. Linear regression, quadratic

regression, exponential regression, isotonic regression, and time

series analysis have been applied to software failure data analysis.

The dependent variables are the number of errors in a program, the

number of modules change in the maintenance phase, time between

failures, and program failure rate. Models of each type are discussed

below.

Estimation of errors The number of errors in a program can be

estimated by a linear [9,176], or quadratic [93] regression model. A

general formula is

N = Z aiXi
i

or

N = Z a^X; + Z b^Xf^
1 i

where

I l l

N number of errors in the program

X£ the ith error factors

a£,b£ coefficients.

Typical error factors are software complexity metrics and the

environmental factors discussed in previous sections. Most curve

fitting models involve only one error factor. A few of them study

multiple error factors.

Estimation of change Belady and Lehman [17] use time series

analysis to study the program evolution process. Some of the models

studied by them are

MR = Kg + KiR + S + 6

CR = Kg + K^R + K2R^ + S + 6

CR = Kg + KiR + K2R^ + K 3 H R R + S + 6

HRr = Kl + S + 6

CMHQ = Kg + KID + S + 6

where

R release sequence number

MR number of modules at release R

IR inter-release interval R

MHR modules handled in IR

HRR MHR/IRÎ handle rate

CR MHR/MR; complexity

D number of days since first release

112

CMHQ cumulative modules handled up to day D

€ error.

This model is applicable for software having multiple versions and

evolving for a long period of time, for instance, the operating system.

Estimation of time between failures Crow and Singpurwalla [38]

argue that software failure may occur in clusters. Also addressed by

Ramamoorthy and Bastani [178], failure data may come in clusters at the

beginning of each testing when different testing strategies are applied

one after another. To investigate whether clustering happens

systematically, a Fourier series was used to represent time between

failures [38]. Data from two software projects were analyzed.

Unfortunately, no statistical test was done to assess the adequacy of

this model.

Estimation of failure rate Isotonic regression and exponential

regression have been proposed to estimate the failure rate of a

software.

Isotonic regression Given failure times tj, ..., t^, a

rough estimate of failure rate at the ith failure interval is

1
^i " •

'-i+1 ~ ("i

Assuming that the failure rate is monotonically nonincreasing, an

Vc
estimate of this function i=l, 2, n can be found by the least

squares fit to the ^£, i=l, 2, ..., n. This problem can be written as

a quadratic programming problem.

113

Min Z iti - \')2 (t£ - ti_i)
i = l

subject to

X'i-l - X* % 0

\n S 0

:V
The objective function is the least squares fit of and the

*
constraints ensure monotonically nonincreasing of X£.

This nonparametric estimation of program failure rate has been

suggested by Gubitz and Ott [76] and Miller and Sofer [143]. By

imposing different assumptions to the problem, for example,

monotonicity and convexity of the failure rate function, or equal

spaced time intervals [143], the isotonic regression problem can be

formulated into different forms.

Exponential regression Reported in Refs. [25,94], the

failure of a program in the operational phase is a function of system

load. This functional relationship has been studied by Butner and Iyer

[25], using an exponential regression analysis. The probability of

utilization-induced failure can be expressed as

P(u) = 1 - e 7"

where

P(u) probability of utilization-induced failure

2 7 utilization-induced failure rate (failure/unit-paging)

114

u utilization factor (unit-paging^).

Incorporating this function into a constant failure rate model,

F(t,u) = 1 - e-^t e-7"

= 1 - e"(^t+7u)

where F(t,u) is the c.d.f. of time-between-failure in terms of time

(CPU time or operational time) and system load.

Input-domain model

The input domain model uses "run" (input state) as the index of

reliability function as opposed to "time" used by the time-domain model

[169]. The basic input-domain model and an input-domain based

stochastic model are discussed below.

Basic input-domain model A program maps the input space to the

output space. Input space is the set of all possible input states.

Similarly, output space is the set of all possible output states for a

given program and input space. During the operational phase, some

input states are executed more frequently than the others. A

probability can be assigned to each input state to form the operational

profile of the program. This operational profile can be used to

construct the input-domain software reliability model.

In the input-domain model, software reliability is defined as the

probability of successful run(s) randomly selected from the input

space. Therefore, the reliability of one run can be defined.as

115

R(l) = Z p£e£
i

e£ =
0 if l£ fails

1 otherwise

or

Fl
R(1) = 1 - lim

N

where

l£ input state i

P£ probability of running the ith input state

Fj number of failures in N runs

N number of runs.

In the operational phase, if errors are not removed when failures

occur, the probability of experiencing k failures out of M randomly

selected runs follows a binomial distribution.

Pk = (k) [1 - R(l)]k[R(l)]M-k.

During the testing phase, a sequence of M tests are selected randomly

from the input space without repeating the same test. Then the

probability of k failures out of M runs follows a hypergeometric

distribution.

116

('K'))

G(k;N,Fi,M) = .

(:)
If a sequence of k runs are not selected randomly from the

operational profile, RCD may be different for each run, In general,

the reliability of k runs can be expressed as [168]

k
R(k) = n R'(l)

j=l

where

R(k) reliability over k runs

Rj(1) R(1) of the jth input.

The maximum likelihood estimate of R(l) can be obtained by running

some test cases. It can be expressed as

Ft
Ê (1) = 1 - —

Nt

where

F(- number of test cases that cause failure

N(- number of test cases.

Since the number of elements in the input space is a very large

number, the number of test cases has to be large in order to have a

117

high confidence in estimation. To simplify the estimation of R(l),

Nelson [168] modifies the above basic model by assuming that the input

space is partitioned into m sets. As test cases are selected from each

partition and all the errors from the test cases are removed, the

reliability of one run can be formulated as

R(1) = Z P£ (1 - f £>
i

where

P£ probability that an input is from partition i

f£ probability that an input from partition i will cause

fai lure.

The values of f^'s are given by Nelson for a quick estimation of

the software reliability. For a partition i, the f£ value is

0.001 if more than one test case belongs to the partition

0.01 if only one test case belongs to the partition

0.05 if no test case belongs to the partition, but all segments and

segment pairs executed by that partition have been exercised

in the testing

0.1 same as above but not all segment pairs have been exercised

in the testing

0.1+0.2m if m segments (l^m^A) of that partition have not been

exercised in the testing

1 if more than 4 segment of that partition has not been

exercised in the testing.

118

Input-domain based stochastic model The input-domain based

stochastic model was proposed by Ramamoorthy and Bastani [178]. Unlike

the failure rate model which keeps track of the failure rate at failure

times, this model keeps track of the reliability of each run given a

certain number of failures have occurred.

Notation;

j number of failures occurred

k number of runs since the jth failure

Tj(k) testing process for the kth run after the jth failure

f(Tj(k)) severity of testing process; 0 < f(Tj(k)) < l/Xj

Xj error size given j failures have occurred; a random

variable

Vj(k) probability of failure for the kth run after j failures;

f(Tj-(k))Xj

Rj(k|Xj) probability that no failure occurs over k runs after j

failures

E\j(0 expectation over Xj

Aj size of the jth error

X random variable that follows distribution F.

Then

k
R • (k I X:) = n [1 - V • (i)]
J J i = l

k
= n [1 - f (T: (i))X:]

i = l ^

119

and

k
Rj (k) = E^. [n [1 - f(T| (i))\;]] .

J i=l J J

Assuming that the testing process is identical to the operational

process,

f(Tj(k)) = 1

Xj = Vj (k) for all k

and

" Aj-

Further assume that

Aj = Xj_]^X.

Hence,

Rj(k) = E[(l - Xj)k]

k . .
= 2 (p (-1)'E[X/]

i=l

= Z (B (- 1) M E [(1 - X) '] } J .
i=l

other performance measures and parameters estimation can be found in

Refs. [177,178].

120

Execution path model

The basic idea of the execution path model is similar to that of

the input-domain model. The model is based on 1) the probability that

an arbitrary path is selected, 2) the probability that an arbitrary

path will cause a failure, and 3) the time required to execute a path.

By partitioning the input space into disjoint subsets, some authors

[168,208] implicitly assume that each partition corresponds to a logic

path. Since one logic path may include more than one physical path and

two logical paths may share the same physical path, the question of

whether the execution path model should be based on logical path or

physical path remains unanswered.

If the logical path approach is used, testing should start with

partitioning the input space and finding out the logic path for each

partition. The test cases can then be selected from the disjoint

subsets. If the physical path approach is used, testing should start

with enumerating all the possible paths [139]. The test cases are then

selected from those paths. Since the relationship between input state,

partition of input state, and path is not readily available, the

execution path model is discussed separately from the input domain

model.

Shooman decomposition model The decomposition model proposed

by Shooman [208] assumes that the program is designed using structured

programming methodology. Hence, the program can be decomposed into a

number of paths. He also assumes that the majority of the paths are

independent of each other. Let

121

N number o£ test cases

k number of paths

t£ time to run test i

E(ti) expected time to run test i

q£ probability of error on each run of case i

qO probability of system failure on each run

f£ probability that case i is selected

nf total number of failures in N test

H total testing hours

XQ program failure rate.

Then

k
ng = N Z f^qi

i = l

and

qg = 1im nj/N.
N-»oo

Assume that on the average a failure in path i takes t£/2 to uncover,

k
H = N Z fitiCl - qi/2)

i = l

and

Xq - 1im nf/H.
N-»0

122

This model is very similar to the basic input-domain model. If

R(1) denotes the reliability of an arbitrary path, then

k
R(l) = 1 - Z fiq;.

i=l

Program structure model

By using structure design and structure programming, a program can

be decomposed into a number of functional units. These functional

units or modules are the basic building blocks of software. The

program structure model studies the reliabilities and interrelationship

of the modules. It is assumed that failures of the modules are

independent of each other. This assumption is reasonable at the module

level since they can be designed, coded, and tested independently, but

may not be true at the statement level. Two models involving program

structure are discussed below.

Littlewood Markov structure model Littlewood's model [130]

represents the transitions between program modules during execution as

a Markov process. Two sources of failures are considered in the model.

The first source of failure comes from a Poisson failure process at

each module. It is recognized that as modules are integrated, new

errors will be introduced. The second source of failure is the

interface between modules. Assuming that failures at modules and

interfaces are independent of each other, Littlewood has shown that the

failure process of the entire program is asymptotically Poisson. Let

123

N number of modules

P=(p£j) transition probability matrix of the process

A=(a£j) infinitesimal matrix of the process

X£ Poisson failure rate of module i

q£j probability that transition from module i to module j

fails

n=(f£) limiting distribution of the process

jLt£* first moment of the waiting time distribution.

It can be shown that as and q£j approach zero, the program

failure process is asymptotically a Poisson process with rate

N
Z ff£(X£ + Z a£jq£j).
i=l jVi

Littlewood extends the above model by relaxing the assumption of

exponential waiting time at each module. He assumes that the waiting

time distribution can be approximated by its first and second moments.

As %£ and q£j approach zero, the program failure process is

asymptotically a Poisson process with rate

2j ff£P£j(M£jXi + qjj)

Z *£P£jW£j
J

= Z a£X£ + Z b£j.q£j
i ij

124

where a£ represents the proportion of time spent in module i and b£j is

the frequency of transition from i to j.

Cheung's user-oriented Markov model The Cheung's user-oriented

software reliability model [33] estimates the reliability of a program

by representing a program as a reliability network. He uses a Markov

model to represent the transitions among program modules and assumes

that program modules are independent of each other. The execution

starts with an entry module N and ends with an exit module N^. As the

reliability of each module and the transition probability matrix of the

Markov process are determined, the reliability of the program is the

probability of successful execution from entry module to exit module at

or before n steps. Let

n number of modules

Ni module i

Ri reliability of module i

P" the nth power of matrix P

I identity matrix

Rs reliability of the program

c state of correct output

F state of failure

Q=(qij) transition probability matrix of the module transition

P=(Pij) transition probability matrix of the Markov process

R diagonal matrix with R£ at R(i , i) and zero elsewhere

Mnl Minor of W(n,l)

125

J r 0 . .. Rn 1
G ° L l-Ri ... 1-RnJ 2xn

Then

P - [o R p]

and

Rg = P*(Ni, C)

= S(Ni, Nn)Rn

where

00

S = Z (RQ)k = (I - RQ)"1 = w"l.
k=0

Besides the evaluation of program reliability, a sensitivity

analysis can be conducted to determine the most important module with

the network. The importance of module i is defined as

li = 0R/9Ri

where

R = Rn(-l)"+l|Mni|/|w|.

126

Failure rate models

Based on the concept of bug-counting, the number of faults in the

program increases or decreases by an integer number (normally assumed

to decrease by 1) at each debugging. As the number of remaining faults

changes, the failure rate of the program changes accordingly. Since

the number of faults in the program is a discrete function, the failure

rate of the program is also a discrete function with discontinuities at

the failure times. Failure rate models study how failure rate changes

at the failure time and the functional form of the failure rate during

the failure intervals. Figure 4.1 shows a realization of failure

process with failure times and failure intervals.

f >

^1-1

FIGURE 4.1. Failure process

The program failure rate during a failure interval is normally

assumed to be dependent upon one or more of the following variables.

- number of remaining faults in the program

- failure rate of each fault

127

- time since the last failure

- debugging time

- number of testing stages

- probability of removing or introducing a fault at each debugging

Different assumptions lead to a different program failure rate and

a different failure rate model. Once the program failure rate at the

ith failure interval X(tj|ti_i), OSti^x; is determined, the ith failure

time interval follows exponential distribution with rate X(tî|t£_j^).

In other words,

where Fp is the c.d.f. of program time-between-failure. And the

reliability function given that i-1 faults hâve been removed at time

Most failure rate models belong to the binomial type model with

the following assumptions.

1. The program contains N initial faults.

2. Each fault has the same c.d.f. of time to failure.

3. Whenever a failure occurs, a corresponding fault is removed

with certainty.

4. The failure rate of the program is proportional to the

number of faults remaining in the program.

5. Time spent in correcting the fault is negligible.

128

6. Faults are discovered independently.

Assumption 1 says that the number of initial faults is an unknown

constant to be estimated. Assumption 2 means that each fault has the

same failure rate or equivalently each fault has the same probability

to be detected. Assumption 3 implies perfect debugging with which the

number of failures occurred is equal to the number of faults removed.

Assumption 4 establishes a linear relationship between program failure

rate and the number of remaining faults. Assumptions 5 and 6 simplify

the problem and make it workable. The binomial type model [155] lays

the basis for more complex models. The above simplified assumptions

will be relaxed gradually as this review proceeds.

The binomial type model treats the removal of faults as sampling-

without replacement from N initial faults, each having a time to

failure distribution of F(t). Let X(t) be the number of failures

occurred at time t, the probability of removing K faults at time t is

Pr{X(t)=K} = (jj) [F(t)]K[l - F(t)]N"K.

The c.d.f. of time to failure of each fault can be expressed in terms

of the failure rate of each fault, ^(s).

F(t) = 1 - exp [- /Q 0(s)ds].

The mean value function and variance of the failure process can be

expressed as follows.

M(t) = E[X(t)] = NF(t)

129

and

Var{X(t)} = NF(t) [1 - F(t)] .

By definition, the program failure rate is

X(t) = m' (t) = Nf(t).

Let V(t) be the remaining number of failures at time t,

Pj.{V(t)=K} = PptN - X(t) = K}

= Pr(X(t) = N - K}

= (k) [F(t)]N-K[l - F(t)]K

and the expected number of remaining failures

f (t) = E[V(t)] = N[1 - F(t)] .

Let T£ be the random variable of the ith failure time, the c.d.f. of

can be expressed as

< t} = Pr{X(t) ^ i}

N
= Z Pr(x(t) = j}
j = i

N
= Z (?) [F(t)]j[l - F(t)]N"J
j = i

and the c.d.f. of T^ given the (i-l)th failure occurred at t£-][is

130

Pr{Ti > = [1 -

= exp[-(N-i+l) /^|_j^^(s)ds] .

Finally, the conditional reliability function is

R(ti|ti_i) = exp[-(N-i+l) ^ #(s)ds]

and the program hazard rate is

Z(tj|ti_i) = (N-i + l)^(ti+ti_i) .

By specifying a different per-fault failure rate function, a

different class of binomial type model can be derived. Seven failure

rate models are discussed below. It should be noted that not all of

them follow exactly the assumptions postulated in the binomial model.

The differences will be pointed out as needed. The following models

list only the program failure rate or time-between-failure

distribution. Other performance measures can be derived by following

the procedure given in the binomial type model.

Jelinski and Moranda De-Eutrophication Model The Jelinski and

Moranda De-Eutrophication model [96] is one of the earliest software

reliability models. Although simple, it is the most often cited model.

Many probabilistic software reliability models are either a variant or

an extension of this basic model. By assuming a constant failure rate

of each fault, the program failure rate at the ith failure interval is

\(ti|t£_i) = I^[N - (i-1)], 0 i t£ < Xi

131

and the c.d.f. oE the ith failure interval is

Fp(tî|ti_i) = 1 - exp{-^[N - (i-l)]t£}.

The reliability function is

R(tî|t£_i) = exp [-0(N-i + l) t^] .

The above model was modified by Lipow [122] to allow more than one

failure in a time interval. The failure rate at the ith time interval

becomes

X(t£ I ti_p = (N - n£_P(6

where n£_i is the number of failures occurred up to the (i-l)th

interval. In this formulation, the failure time can be interpreted as

the debugging effort which may include more than one failure.

Extension of J-M model for varying program size The above J-M

model assumes that the number of initial errors is an unknown constant.

However, the integration testing is usually performed in a stepwise

manner. Moranda [149] incorporates this changing program size

debugging process into the original J-M model by further assuming that

1. the indigenous error is proportional to the number of

statements under testing,

2. the number of statements at any time is known, and

3. the failure rate of each fault is unaffected when new

statements are added.

132

Ep errors per statement

G(t) number of statements at time t

X(t) number of failures occurred up to time t.

Then

X(t-|ti_i) = 0[G(t)Ep - X(t: + ti_i)]

or

X(t-|ti_i) = 0[G(t)Ep - (i-1)] .

Jelinski-Moranda geometric De-Eutrophication model The J-M

geometric De-Eutrophication model [150] assumes that the program

failure rate decreases geometrically at failure times. Notice that

this model deals with program failure rate rather than per-fault

failure rate. The program failure rate and c.d.f. of time-between-

failure at the ith failure interval can be expressed as

X(t-|ti_I) = XQK'"^ 0 3 t- < x;

and

Fp(t-|ti_i) = 1 - expE-XoK^"^-]

where

XQ initial program failure rate

K parameter of geometric function (0 < K < 1) .

133

A modified version of J-M geometric model was suggested by Lipow

[122] to allow multiple error removal in a time interval. The program

failure rate becomes

X(ti|ti_i)

where n^-i is the cumulative number o£ errors found up to the (i-l)th

time interval.

Moranda geometric Poisson model The Moranda geometric Poisson

model [130] assumes that at fixed time T, 2T, ... of equal length

interval, the number of failures occurred at interval i, n£, follows a

Poisson distribution with intensity rate ^. The probability of

gett.ing m failures at the ith interval is

e-V"' (XoRi-ly
Pp{n£=m} = .

ml

Schick and Wolverton model The Schick and Wolverton (S-W)

model [193] is similar to the J-M model, except it further assumes that

the failure rate at the ith time interval increases with time since the

last debugging. The program failure rate can be expressed as

X(ti|t£_i) = <4[N - (i-l)]tî.

A variation of the above model, also proposed by Schick and

Wolverton [193], uses a parabolic function of time since the last

debugging. The failure rate function becomes

X(tî|ti_i) = 0[N - (i-1)] [at'^ + bt£ + c]

134

where a, b, and c are coefficients to be estimated.

Modified Schick and Wolverton model Sukert [229] modifies the

S-W model to allow more than one failure at each time interval. The

program failure rate becomes

\(tîlt£_i) = <»[N - ni_i]tj

where n^-j is the cumulative number of failures at the (i-l)th failure

interval.

Lipow [122] also modifies the S-W model by assuming that the

program failure rate at the ith failure interval is a function of the

(i-l)th failure time and debugging time since the last failure. It can

be expressed as

X(tî|t£_i) = ^[N - ni_i] (ti/2 + ti_i).

Goel and Okumoto imperfect debugging model Goel and Okumoto

[72] extend the J-M model by assuming that a fault is removed with

probability p whenever a failure occurs, the program failure rate at

the ith failure interval is

\(ti|ti_i) = ^[N - p(i-l)].

According to the functional form of the per-fault failure rate,

the failure rate models can be classified into the exponential class,

Weibull class, CI class, Pareto class, and others [155].

135

Nonhomogeneous Poisson process model

Based on the bug-counting concept, the nonhomogeneous Poisson

process model (NHPP) represents the number of failures experienced up

to time t as an NHPP, {X(t), t^O}. The main issue in the NHPP model is

to determine an appropriate mean value function to denote the expected

number of failures experienced up to a certain time point. With

different assumptions, the model will end up with different functional

forms of the mean value function.

One simple class of NHPP model is the exponential mean value

function model, which has an exponential growth of the cumulative

number of failures experienced. Musa's basic execution time model

[164] and Goel and Okumoto NHPP model [70] belong to this class< Other

types of mean value function suggested by Ohba [170] are the S-shaped

models and hyperexponential model.

The NHPP model has the following assumptions [238].

1. The failure process has an independent increment, i.e., for

any time points tQ=0 < tj < ... < t^j, the process increments

X(ti)-X(to), X(TN)-X(TN-i)

are independent variables. Or equivalently, the number of

failures occurred during the time interval (t, t+s] depends

on current time t and the length of time intervals s, and

does not depend on the past history of the process.

2. The failure rate of the process is

136

Pr{X(t+At)-X(t) = 1} = X(t)At + o(At).

3. During a very short time interval At, the probability of

more than one failures is negligible, i.e.,

Pr{X(t+At)-X(t) > 1} = o(At).

4. Initial condition is X(0)=0.

Based on the above assumptions, it can be shown that X(t) has a

Poisson distribution with mean M(t), i.e.,

Pr{X(t)=m} = e
ml

By definition, the mean value function of the cumulative number of

failures can be expressed in terms of the failure rate of the program,

i.e.,

M(t) = /Q X(s)ds.

And the expected number of initial faults is equal to the expected

number of failures eventually experienced. The number of failures

eventually experienced has a Poisson distribution with mean N^, i.e.,

E{X(<»)} = M(") = X- = E{N(0)} = NF,

and

e^o N/
Pj.{x(<»)=k} =

k!

137

The NHPP model treats N(0) and X(m) as random variables rather than

constants as the binomial model does.

Due to the property of independent increment, the conditional

probability can be derived as

Pj.{X(t) = n|X(ti) = n^} = Pj.{x(t) - X(t£) = n - n^}

[M(t) - M(ti)]"""i
= exp{-[#(t) - M(ti)]}.

Cn - n') 1

Also, define the distribution of the number of remaining faults as

X(t) = X(=) - X(t).

Then

PpIxCt) = k} = Pr{X(=) - X(t) = k}

[m(") - M(t)]^
= exp (-[%(«) - M(t)]}.

k!

And the c.d.f. of the ith failure interval can be expressed as

PffTi < t} = PflxCt) > i}

" [w(t)]j
= 2 exp[-M(t)].
j = i jl

Finally, the reliability function and the conditional reliability

function of the program are

138

R(t) = e = exp[- /Q \(s)ds] .

and

R(t£|t£_i) = exp{-[M(t£ + t£_p - M(t£_p]}.

The exponential growth curve is a special case of NHPP with

w(t) = NF(t) = n{i - exp[- /g 0(s)ds]}

and

X(t) = Nf(t) = N0(t)exp[- /g #(s)ds].

A special case of the exponential class NHPP model is to let

0(t) =

Then

wCt) = N [1 - e ,

F(t) = 1 - e'^t,

and

R(t£|t£_i) = exp {-N [F(t£_i + tp - F(t£_i)]i,

Based on the above general NHPP model, some special models are

discussed below.

139

Musa exponential model Musa exponential model [164] can be

summarized as

0(t) = <t>

M(t) = Xo[l - e'^Bt]

and

\(t) =

" ̂ B[Xo - M(t)] .

Goel and Okumoto NHPP model The Goel-Okumoto model [70] has

mean value function of

M(t) = N(1 - e

and

X(t) =

An extension of the exponential mean value function model has been

suggested by Yamada and Osaki [252]. They assume that faults comes

from different sources with different failure rates. Let

n number of types of fault

failure rate of each type i fault

P£ probability of type i fault.

Then

140

M(t) = N Z pi[l - e
i = l

S~shaped growth model Most bug-counting models assume that

each fault has the same probability to be detected. This assumption of

independency in failure occurrence leads to an exponential growth of

the cumulative number of failures. Ohba [170] observed an S-shaped

growth which he claimed is due to the mutual dependency of faults. He

argues that the detection of a fault will lead to the detection of its

dependent faults. Therefore, in the early stage of debugging, as

faults are detected, more dependent faults become detectable. This

results in an increasing growth rate. As undetected faults decrease,

the growth rate slows down gradually and finally approaches zero. Two

types of S-shaped growth models, the delayed S-shaped growth model and

the inflection S-shaped growth model have been proposed.

Delayed S-shaped growth model The delayed S-shaped model

[170,256] divides the debugging process into a fault detection stage

followed by a fault removal stage. A fault is said to be removed from

the program if it goes through both stages. By assuming that the

probability of fault detection is proportional to the number of faults

not detected and the probability of fault removal is proportional to

the number of faults detected but not removed, this model can be

expressed by the following differential equations.

h'(t) = a[N - h(t)]

Ai' (t) = X[h(t) - w(t)]

141

where

h(t) number of faults detected at time t

w(t) number of faults removed at time t

a detection rate of each undetected fault

X removal rate of each detected but not yet removed

fault.

By further assuming that w(t) can be solved as

M(t) = n[i - (1 + ̂ t)e

This function becomes the mean value function of the NHPP model. Other

performance measures can be derived following the procedure discussed

in the NHPP model.

Based on the assumptions, the above model is not appropriate when

1) the time delay between fault detection and fault removal is

negligible, 2) the effort spent in failure detection and failure

removal is not constant, and 3) new faults are generated during the

debugging process.

Inflection S-shaped growth model Ohba [170] models the

dependency of faults by postulating the following assumptions.

1. Some of the faults are not detectable before some other

faults are removed.

2. The detection rate is proportional to the number of

detectable faults in the program.

142

3. Failure rate of each detectable fault is constant and

identical.

4. All faults can be removed.

Then, the program failure rate during the ith failure interval is

defined as

[N - (i~l)] .

where is the proportion of detectable faults when i faults have been

removed and Mi[N-(i-l)3 is the number of detectable faults at the ith

failure interval. As more faults are detected, more dependent faults

become detectable. Therefore, the proportion of detectable faults is

an increasing function of the detected faults. Let this function be

a£ = r + i(l-r)/N, 0 3 r 3 1.

Based on the above formulation, it can be shown that the mean value

function of this NHPP model is

N(1 - e'd^)
M(t) =

1 + (l-r)r ^ e

As r approaches 1, the above model approaches the exponential growth

model. As r approaches 0, the above model approaches the logistic

growth model.

Hyperexponential growth model The hyperexponential growth

model is based on the assumption that a program has a number of

143

clusters of modules, each having a different initial number of errors

and a different failure rate. Examples are new modules versus reused

modules, simple modules versus complex modules, and modules which

interact with hardware versus modules which do not interact with

hardware. Since the sum of exponential distributions becomes a

hyperexponential distribution, the mean value function of the

hyperexponential class NHPP model is

w(t) = Z N£ [1 - e
i=l

where

n Number of clusters of modules

N£ Number of initial faults in cluster i

Failure rate of each fault in cluster i.

Markov chain

The Markov model is a generalized bug-counting model which

represents the number of remaining faults at time t, N(t), as a

continuous time discrete state Markov chain. The state of the Markov

process is the number of remaining faults. The continuous time is the

exponential time-to-failure. Binomial type model and Poisson type

model are special cases of the Markov process.

144

A Markov process has the property that the future behavior of the

process depends only on the current state and is independent of its

past history. This assumption seems reasonable for software failure

process. It can be argued that the future of a failure process depends

only on the number of remaining faults at the present time and is not

affected by the past error content [155].

A general Markov process allows transitions to occur from any

state to any other state. In other words, multiple faults can be

removed or introduced at each debugging. This model is suggested by

Sumita and Shanthikumar [231]. In practice, there were not enough

failure data to estimate all the parameters of the transition

probability matrix. Some models have been developed as special .cases

of Markov chain. They are the stationary linear death model with

perfect debugging, stationary linear death model with imperfect

debugging, nonstationary linear death model with imperfect debugging,

and the nonstationary linear birth-and-death model. These models are

discussed below.

Linear death model with perfect debugging The Jelinski and

Moranda model [96] is essentially a linear death model with perfect

debugging. Let

P£j probability of transition from state i to state j

Pl^(t) Pr{N(t)=k}; probability of k remaining fault

at time t.

é failure rate of each fault.

145

The transition probabilities can be expressed as

1 J=i-1
Pij - 1 i=j=0

0 otherwise i , j=0,1,...,N.

And the transition rate diagram is shown in Fig. 4.2.

(k+l)0

K+1
K-1

FIGURE 4.2. Linear death with perfect debugging

The differential-difference equation of P^Ct) is

Pk'(t) = (k+l)*Pk+i(t) - k4fk(k)'

Solving the above equation with the initial condition N(0)=N, all the

performance measures of the J-M model derived in the binomial model can

also be derived from this Markov chain point of view.

Linear death model with imperfect debugging Suggested by Goel

and Okumoto [71,72], the transition probabilities of the linear death

model with imperfect debugging can be expressed as

146

P , j=i-l
q=l-p , j=i

Pij = 1 , i=j=0
0 , otherwise i,j=0,1,...,N

where p is the probability of successful debugging. And the transit

rate diagram is shown in Fig. 4.3.

(k+l)p^

K+1
K-1

FIGURE 4.3. Linear death with imperfect debugging

This model assumes a probability q of not removing the fault

whenever a failure occurs. Some performance measures are summarized

follows. The expected number of remaining faults at time t is

M(t) = E[N(t)] = Ne'P^t,

The expected number of failures up to time t is

M(t) = E[X(t)] = - [l -
P

The expected number of imperfect debugging errors by time t is

147

Mj(t) = qix(t.) .

Reliability function of the kth failure interval is

k-1 / k-l\ . .
Rl^(t) = Z i j j qJ FN-(k-j- l) (t)

j=0

where

Fj(t) = e-j*t.

It has been shown that [71]

Rjç(t) = exp{-[N - p(k-l)]^t}.

Nonstationary linear death model with perfect debugging

Suggested by Shanthikumar [203,204], the transition probabilities of

the nonstationary linear death model with perfect debugging can be

expressed as

1 . j=i-l
Pij = 1 , i=j=0

0 , otherwise j=0,l,...,N

and the transition rate diagram is shown in Fig. 4.4.

The differential-difference equation of P^Ct) is

Pk'(t) = (k+l)^(t)Pk+i(t) - k*(t)Pk(t).

Solving the above equation with the initial condition N(0)=N,

Pk(t) = (u) LF(t)]N-k[i _ F(t)]k

148

(k+l)0(t) k*(t)

K + 1
K-1 o

FIGURE 4.4. Nonstationary linear death with perfect debugging

where

F(t) = 1 - exp[- /Q 0(s)ds].

This is the binomial type model derived in the failure rate model.

Other performance measures can be found in that section.

Nonstationary linear birth-and-death model The adaptation of

nonstationary linear birth-and-death process was given by Kuo [111] and

Kremer [106]. At each debugging, a fault was removed with probability

p, a fault was introduced with probability q, and no change with

probability 1-p-q. Kuo approaches the problem using a compound Poisson

model while Kremer starts with a Markov chain. However, both

approaches lead to the same conclusion.

The transition probabilities can be expressed as

149

Pij

P
q
l-p-q

1
0

j-i-1
j = i + l
j = i
j=i=0

otherwise i,j=0,1,...,N

and the transition rate diagram is shown in Fig. 4.5.

(k+l)p0(t) kp^(t)

kq0(t) (k-l)q0(t)

• • o

FIGURE 4.5. Nonstationary birth-and-death

Hence, the differential-difference equation for the above process is

Px'(t) = (k+l)p0(t)P]^+i (t) + (k-1) q0(t) Pjj-i (t)

k0(t) (p+q)Pk(t)

with initial condition

Pn(0) = 1.

The mean value function of N(t) is derived in Section V. The state

probabilities and performance measures can be found in Refs. [106,111]

150

The random variable of this Markov process is the number of

remaining faults. Similarly, the number of transitions or the number

of failures experienced can also be represented as a Markov process.

During the debugging process, keeping track of the number of failures

experienced is more practical than keeping track of the number of

faults remaining, since the number of remaining faults is normally

unknown without further estimation. Combining the two processes, it

becomes a bivariate Markov process. The transition rate diagram of

this bivariate process is shown in Fig. 4.6.

n,m-l

q(n-l)^(t)
n,m

n-1,m+l

n+1,m-l

FIGURE 4.6. Bivariate process of fault-count and failure count

The differential-difference equation of the above process is

151

PA,m(k) " (l-p-q)n4(k)Pn,m-l(t) + q(n-l)4^t)Pn-i,m-l(k) +

p(n+l)f(t)Pn+i,m-l(t) " n4^t)Pn,m'

where Pj^,^(t) is the probability of n remaining faults and m failures

occurred at time t.

Performance measures of this bivariate Markov model can be found

in Kremer [106] and Kuo [111] .

Other types of probabilistic models

The Bayesian model and unified model are two other types of

probabilistic software reliability models. The Bayesian approach has

been discussed by Jewell [97,Serra and Barlow(200)], Kuo [111],

Littlewood [124,125], Littlewood and Verrall [136], and Langberg and

Singpurwalla [113] . Besides the nonstationary birth-and-death model

[106,111], other unified models are the exponential order statistics

model by Miller [142] and Scholz [198] and the shock model by Langberg

and Singpurwalla [113].

This review classifies the software reliability models mainly by

the modeling techniques. Other types of classification, for instance,

by the usage in software life cycle phases or by the types of

applications, can also be investigated. Table 4.2 summarizes related

References for each category. These models are the fundamental sources

for the study of software-related problems. Besides reliability

assessment, systems reliability optimization, systems design.

152

reliability cost model, hardware-software system, and project

management are areas which software reliability models can be applied.

153

TABLE 4.2. Summary of References

Models References

General Software
Reliability Models

Error Analysis

System Load Effects

Software Science

Software Quality
Attributes

Complexity Metrics

Error Seeding Models

Reliability Growth
Models

Curve Fitting Models

Input Domain Models

Execution Paths Models

Program Structure
Models

Failure Rate Models

NHPP Models

Markov Chain Models

Bayesian Models

1,8,30,39,41,43,48,67,74,75,84,87,91,92,105,
116,117,129,137,155,159,183,189,202,209,218,
229,234,239,245,254.

3,56,66,95,153,154,181,190,243,244.

25,27,94,188,244.

63,77,118,195,206,207.

21,24,140,175,184,249.

9,10,11,12,13,31,49,58,64,93,100,119,139,
148,176,184,185,201,206,216,236,243,248,
251,257.

10,14,51,90,180,193,194,242.

36,37,42,134,165,247.

17,18,25,38,76,81,143,215,236.

15,168,169,177,178,217,219,224,235,250.

46,47,50,208.

7,33,130,133,196,232,233.

4,10,29,40,44,68,80,96,98,99,104,123,124,
126,127,128,131,135,149,150,151,166,167,
204,211,221.

32,70,78,111,145,156,157,162,164,170,171,
187,222,22,254,255,256.

71,72,106,114,132,203,213,231.

2,97,124,125,136,192,240,241.

154

TABLE 4.2. (Continued)

Models References

Other Unified Models 7,103,113,142,198.

Model Validation 4,5,147,162,182,199,225,226,227,228.

Cost Models and
Stopping Rule

26,45,59,60,62,69,102,107,110,119,161,172,
173,186,205,253.

Software Management 20,22,23,52,79,88,89,108,109,146,160,161,
163,179,185,209,214,220,223.

Hardware-Software
Systems

27,73,82,83,85,101,112,217,230,240,241.

Fault Tolerant Systems 16,19,26,28,35,53,86,138,141,191,237,257.

155

REFERENCES

1. Abdel-Ghaly, A. A,, P. Y. Chan, and B. Littlewood. "Evaluation
of computing software reliability predictions." IEEE Trans.
Software Engineering, SE-12, No. 9, 1986, 950-967.

2. Adams, E, N. "Optimizing preventive service of software
product." IBM Journal of Research and Development, 28, No. 1,
1984.

3. Akiyama and Fumio. "An example of software system debugging."
IFIF Congress, 1971.

4. Angus, J. E. "The application of software reliability models to
a major CCCI system." Proc. Annual Reliability and
Maintainability Symposium, 1984.

5. Angus, J. E. "Software reliability model validation." Proc.
Annual Reliability and Maintainability Symposium, 1980.

6. Bailey, N. T. J. The Element of Stochastic Process. John Wiley
& Sons, New York, 1964.

7. Barlow, R. E. and N. D. Singpurwalla. "Assessing the
reliability of computer software and computer networks; an
opportunity for partnership with computer scientists." American
Statistician. 39, No. 2, 1985, 88-94.

8. Basili, V. R. and R. W. Selby, Jr. "Four applications of a
software data collection and analysis methodology." NATO

Advanced Study Institute, The Challenge of Advanced Computing
Technology to System Design Method, 1985.

9. Basili, V. R., R. W. Selby, and T. Y. Phillips. "Metric
analysis and data validation across Fortran projects." IEEE
Trans. Software Engineering, SE-9, No. 6, 1983, 652-663.

10. Basili, V. R. and D. H. Hutchens. "An empirical study of a
syntactic complexity family." IEEE Trans. Software Engineering,
SE-9, No. 6, 1983, 664-672.

11. Basili, V. R. and R. W. Reiter. "Evaluating automatable measure
of software development." Proc. Workshop on Quantitative
Software Models, 1979, 107-116.

12. Basili, V. R. and A. J. Turner. "Iterative Enhancement; a
practical technique for software development." IEEE Trans.
Software Engineering, SE-1, 1985, 390-396.

156

13. Basili, V. R. and B. T. Perricone. "Software errors and
complexity: an empirical investigation," Communications of the
ACM, 27, No. 1, 1984 42-45.

14. Basin, S. L. Estimation of software error rates via capture-
recapture sampling. Science Application, Inc., Palo Alto, CA.,
1973.

15. Bastani, F. B. An Input Domain Based Theory of Software
Reliability and Its Application. Ph.D. dissertation. University
of California, Berkeley, 1980.

16. Beaudry, M. D. "Performance related reliability measures for
computing systems." Proc. Intl. Conf. on Fault-Tolerant
Computing, 1977, 16-21.

17. Belady, L. A. and M. M. Lehman. "A model of large development."
IBM Systems Journal, 15, No. 3, 1976, 225-252.

18. Bendell, T. "The use of exploratory data analysis techniques

for software reliability assessment and prediction." NATO
Advanced Study Institute, The challenge of Advanced Technology

to System Design Method, 1985.

19. Bhargava, B. "Software reliability in real-time systems."
Proc. COMPCON, 1981, 297-309.

20. Boehm, B. W. Software Engineering Economics. Prentice-Hall
Inc., Englewood Cliffs, New Jersey, 1981.

21. Boehm, B. W. , J. R. Brown, and M. Lipow. "Quantitative
evaluation of software quality." Proc. Second Int'l Conf. on
Software Engineering, 1976, 592-605.

22. Boehm, B. W. "Software and its impact: a quantitative
assessment," Datamation, 19, No. 5, 48-59.

23. Brooks, F. P. Jr. The Mythical Man-Month. Addison-Wesley,
Reading, Mass., 1975.

24. Buckley, F. J. and R. Poston. "Software Quality Assurance."
IEEE Trans. Software Engineering, SE-10, No. 1, 1984, 36-41.

25. Butner, S. E. and R. K. Iyer. "A statistical study of
reliability and system load at SLAC." Proc. Int'l Conf. on
Fault-Tolerant Computing, 1980, 207-209.

26. Caspi, P. A. and E. F. Kouka. "Stopping rules for a debugging
process based on different software reliability models." Proc.
Int'l Conf. on Fault-Tolerant Computing, 1984, 114-119.

157

27. Castillo, X. and Siewiorek. "A workload dependent software
reliability prediction model." Proc. Int'1 Conf. on Fault-
Tolerant Computing, 1982, 279-286.

28. Castillo, X. and Siewiorek. "A performance-reliability model
for computing systems." Proc. Int'1 Conf. on Fault-Tolerant
Computing, 1980, 187-192.

29. Catuneanu, V. and A. Mihalache. "Improving the accuracy of the
Littlewood-Verrall model." IEEE Trans. Reliability, R-34, No.
5, 1985, 418-421.

30. Cavano, J. P. "Toward high confidence software." IEEE Trans.
Software Engineering, SE-11, No. 12, 1985, 1449-1455.

31. Chen, E. T. "Program complexity and program productivity."
IEEE Trans. Software Engineering, SE-4, No. 2, 1978, 187-194.

32. Chenoweth, H. B. "Modified Musa theoretic software
reliability." Proc. Annual Reliability and Maintainability
Symposium, 1981, 353-356.

33. Cheung, R. C. "An user-oriented software reliability model."
IEEE Trans. Software Engineering, SE-6, No. 2, 1980, 118-125.

34. Chiang, C. L. Introduction to Stochastic Processes in
Biostatistics. Wiley, New York, 1968.

35. Cifersky, J. "Generalized Markov model for reliability
evaluation of functionally degradable systems." Proc. Int'l
Conf. on Fault-Tolerant Computing, 1982, 275-278.

36. Coutinho, J. S. "Software reliability growth." Proc. Int'l
Conf. on Reliable Software, 1973, 58-64.

37. Crow, L. H. "Methods for assessing reliability growth
potential." Proc. Annual Reliability and Maintainability
Symposium, 1984, 484-489.

38. Crow, L. H. and N. D. Singpurwalla. "An empirically developed
Fourier series model for describing software failure." IEEE
Trans. Reliability, R-33, No. 2, 1984, 176-183.

39. Culpepper, L. M. "A system for reliable engineering software."
IEEE Trans. Software Engineering, SE-1, No. 2, 1975, 174-178.

40. Currit, P. A., M. Dyer, and H. D. Miller. "Certifying the
reliability of software." IEEE Trans. Software Engineering,
SE-12, No. 1, 1986, 3-11.

158

41. Daniels, B. K. "Software reliability." Reliability
Engineering, A, 1983, 199-234.

42. Dhillon, B. S. Reliability Engineering in Systems Design and
Operation. Van Nostrand Reinhold Co., New York, 1983.

43. Dhillon, B. S. "Software reliability - bibliography."
Microelectronics and Reliability, 22, No. 3, 1982, 625-640.

44. Dickson, J. C. "Quantitative analysis of software reliability."
Proc. Annual Reliability and Maintainability, 1972, 148-157.

45. Donelson, J. III. "Cost model for testing program based on
nonhomogeneous Poisson failure model." IEEE Trans. Reliability,
R-26, No. 3. 1977, 189-194.

46. Downs, T. "Extension to an approach to the modeling of software
testing with some performance comparisons." IEEE Trans.
Software Engineering, SE-12, No. 9, 1986, 979-987.

47. Downs, T. "An approach to the modeling of software testing with
some applications." IEEE Trans. Software Engineering. SE-11,
No. 4, 1985, 375-386.

48. Dunham, J. R. "Experiments in software reliability: life-
critical applications." IEEE Trans. Software Engineering,
SE-12, No. 1, 1986, 110-123.

49. Dunsmore, H. E. and J. D. Gannon. "Experimental investigation
of programming complexity," Proc. ACM/NBS 16th Annual Technical
Symposium; Systems and software, 1977, 117-125.

50. Duran, J. W. and J. Wiorkowski. "Quantifying software
validation by sampling." IEEE Trans. Reliability, R-29, No. 2,
1980, 141-144.

51. Duran, J. W. and J. Wiorkowski. "Capture-recapture sampling for
estimating software error content." IEEE Trans. Software
Engineering, SE-7, No. 1, 1981, 147-148.

52. Duvall, L. "Data needs for software reliability modeling."
Proc. Annual Reliability and Maintainability Symposium, 1980,
200-208.

53. Eckhardt, D. E. Jr. and L. D. Lee. "A theoretical basis for the
analysis of multiversion software subject to coincident errors."
IEEE Trans. Software Engineering, SE-11, No. 12, 1985,
1511-1517,

159

54. Elliott, R. W. "Measuring computer software reliability."
Computer and Industrial Engineering, 2, 1978, 141-151.

55. Elshoff, J. L. "An analysis o£ some commercial PL/1 programs."
IEEE Trans. Software Engineering, SE-2, 1976, 113-120.

56. Endres, A. "An analysis of errors and their causes in system
program." IEEE Trans. Software Engineering, SE-1, No. 2, 1975,
140-149.

57. Feller, W. An Introduction to Probability Theory and Its
Application. Vol. I. Wiley, New York, 1968.

58. Fischer, K. F. and M. G. Walker. "Improved software reliability
through requirements verification." IEEE Trans. Reliability,
R-28, No. 3, 1979, 233-240.

59. Forman, E. H. and N. D. Singpurwalla. "Optimal time interval
for testing hypothesis on computer software errors." IEEE
Trans. Reliability. R-29, No. 4, 1979, 250-253.

60. Forman, E. H. and N. D. Singpurwalla. "An empirical stopping
rule for debugging and testing computer software." Journal of
the American Statistical Association, 72, No. 360, 1977.

61. Fragola, J. R. and J. F., Spahn. "The software error effects
analysis: a quantitative design tool." Proc. Int'l Conf. on
Reliable Software. 1973, 90-93.

62. Friedman, M. "Modeling the penalty cost of software failure."
Proc. Annual Reliability and Maintainability Symposium, 1987,
359-363.

63. Funami, Y. and M. H. Halstead. "A software physics analysis of
Akiyama's debugging data." Proc. Computer Software Engineering
Symposium, 1976, 133-138.

64. Gilb, T. Software Metrics. Winthrop, Cambridge, Mass., 1977.

65. Girard, E. and J. C. Rault. "A programming technique for
software reliability." Proc. Int'l Conf. on Reliable Software,
1973, 44-48.

66. Glass, R. L. "Persistent software errors." IEEE Trans.
Software Engineering, SE-7, No. 2, 1981, 162-168.

67. Goel, A. L. "Software reliability models: assumptions,
limitations, and applicability." IEEE Trans. Software
Engineering. SE-11, No. 12, 1985, 1411-1423.

160

68. Goel, À. L. "A summary o£ the discussion on an analysis of
computing software reliability models." IEEE Trans. Software
Engineering, SE-6, No. 5, 1980, 501-502.

69. Goel, A. L. and K. Okumoto. "When to stop testing and start
using software?" Performance Evaluation Review, 1, No. 10,
1981, 131-138.

70. Goel, A. L. and K. Okumoto. "Time-dependent error detection
rate model for software reliability and performance measures."
IEEE Trans. Reliability, R-28, No. 3, 1979, 206-211.

71. Goel, A. L. and K. Okumoto. "A Markovian model for reliability
and other performance measures of software systems." Proc.
COMPCON, 1979, 769-774.

72. Goel, A. L. and K. Okumoto. "An analysis of recurrent software
errors in a real-time control system." • Proc. ACM Conf., 1978,
496-501.

73. Goel, A. L. and J. Soenjoto. "Models for hardware-software
system operational performance evaluation." IEEE Trans.
Reliability. R-30, No. 3, 1981, 232-239.

74. Govil, K. K. "Philosophy of a new structure of software
reliability modeling." Microelectronics and Reliability, 24,
No. 3, 1984, 407-409.

75. Greenspan, S. J, and C. L. McGowan. "Structuring software
development for reliability." Microelectronics and Reliability,
17, No. 1, 1978, 77-84.

76. Gubitz, M. and K. 0. Ott. "Quantifying software reliability by
a probabilistic model." Reliability Engineering, 5, 1983,
157-171.

77. Halstead, M. H. Elements of Software Science. Elsevier, New
York, 1977.

78. Hamilton, P. A. and J. D. Musa. "Measuring reliability of
computation center software." Proc. 3rd Int'1 Conf. on Software
Engineering, 1978, 29-36.

79. Haney, F. M. "Module connection analysis - a tool for
scheduling software debugging activities." Proc. AFIPS Conf.,
41, part I, 1972, 173-179.

80. Hansen, G. A. "Measuring software reliability." Mini-Micro
Systems, Aug. 1977, 54-57.

161

81. Hart, G. "The software integrity of a computer system installed
in Royal Navy Frigate." Microelectronics and Reliability. 22,
No. 6, 1982, 1061-1066.

82. Haynes, R. D. and W. E. Thompson. "Hardware and software
reliability and confidence limits for computer controlled
systems." Microelectronics and Reliability, 20, No. 1, 1980,
109-122.

83. Haynes, R. D. and W. E. Thompson. "Combined hardware and
software availability." Proc. Annual Reliability and
Maintainability Symposium, 1981, 365-370.

84. Hecht, H. "Mini-tutorial on software reliability." Proc.
COMPSAC, 1980, 383-385.

85. Hecht, H. "Can software benefit from hardware experience?"
Proc. Annual Reliability and Maintainability Symposium, 1975,
480-485.

86. Hecht, H. "Fault-tolerant software." IEEE Trans. Reliability,
R-28, No. 3, 1979, 227-232.

87. Hecht, H. and M. Hecht. "Software reliability in the system
context." IEEE Trans. Software Engineering, SE-12, No. 1, 1986,
51-58.

88. Hellerman, L. "A measure of computational work." IEEE Trans.
Computer, C-21, No. 5, 1972, 439-446.

89. Howden, W. E. "Empirical studies of software validation."
Microelectronics and Reliability, 19, No. 1, 1979, 39-47.

90. Huang, X. Z. "The hypergeometric distribution model for
predicting the reliability of software." Microelectronics and
Reliability, 24, No. 1, 1984, 11-20.

91. lannino, A. "Criteria for software reliability model
comparison." IEEE Trans. Software Engineering. SE-10, No. 6,
1984, 687-691.

92. IEEE Standard Glossary of Software Engineering Terminology. IEEE
Standard 729, 1983.

93. Islam, M. M. and F. Lombardi. "Estimation of total errors in
software." Microelectronics and Reliability, 22, No. 2, 1982,
281-285.

162

94. Iyer, R. K. and D. J. Rossetti. "Effect of system workload on
operating system reliability: a study on IBM 3081." IEEE Trans.
Software Engineering. SE-11, No. 12, 1985, 1438-1448.

95. Iyer, R. K. and P. Velardi. "Hardware-related software errors:
measurement and analysis." IEEE Trans. Software Engineering,
SE-11, No. 2, 1985, 223-231.

96. Jelinski, Z. and P. B. Moranda. "Software reliability
research." in Statistical Computer Performance Evaluation.
Academic Press, New York, 1972.

97. Jewell, W. S. "Bayesian extension to a basic model of software
reliability." IEEE Trans. Software Engineering, SE-11, No. 12,
1985, 1465-1471.

98. Joe, H. and N. Reid. "On the software reliability models of
Jelinski-Moranda and Littlewood." IEEE Trans. Reliability,
R-34, No. 3, 1985, 216-228.

99. Joe, H. and N. Reid. "Estimating the number of faults in a
system." American Statistical Association, 80, No. 389, 1985,
2,22-226.

100. Jones, T. C. "Measuring programming quality and productivity."
IBM Systems Journal, 17, No. 1, 1978, 39-63.

101. Kline, M. B. "Software and hardware R&M: what are the
differences?" Proc. Annual Reliability and Maintainability
Symposium, 1980, 179-185.

102. Koch, H. and P. Kubat. "Optimal release time of computer
software." IEEE Trans. Software Engineering, SE-9, No. 3, 1983,
323-327.

103. Koch, G. and P. J. C. Spreij. "Software reliability as an
application of martingale and filtering theory," IEEE Trans.
Reliability. R-32, No. 4, 1983, 342-345.

104. Koch, H. S. and P. Kubat. "Quick and simple procedures to
assess software reliability and facilitate project management."
Journal of Systems and Software, 1981, 271-276.

105. Kopetz, H. Software Reliability. Macmillan Press Ltd., London,
1979.

106. Kremer, W. "Birth-death and bug counting." IEEE Trans.
Reliability. R-32, No. 1, 1983, 37-47.

163

107. Krten, 0. J. and D. A. Levy. "Software Modeling for optimal
field entry." Proc. Annual Reliability and Maintainability
Symposium, 1980, 410-414.

108. Kubat, P. and H. S. Koch. "Managing test procedure to achieve
reliable software." IEEE Trans. Reliability, R-32, No. 3, 1983,
299-303.

109. Kubat, P. and H. S. Koch. "Pragmatic testing protocols to
measure software reliability." IEEE Trans. Reliability, R-32,
No. 4, 1983, 338-341.

110. Kuo, N. "On optimal burn-in modeling and its application to an
electronic product." Proc. 3rd Int'l Conf. on Reliability and
Maintainability, France, 1982, 18-22.

111. Kuo, W. "Software reliability estimation: a realization of
competing risk." Microelectronics and Reliability, 23, No. 2,
1983, 249-260.

112. Landrault, C. J. C. Laprie. "Reliability and Availability
modeling of systems featuring hardware and software faults."
Proc. Int'l Conf. on Fault-Tolerant Computing, 1977, 10-15.

113. Langberg, N. and N. Singpurwalla. "A unification of some
software reliability models." SIAM Journal on Scientific and
Statistical Computing, 6, No. 3, 1985, 781-790.

114. Laprie, J. C. "Dependability evaluation of software systems in
operation." IEEE Trans. Software Engineering. SE-10, No. 6,
1984, 701-714.

115. Lawless, J. F. Statistical Models and Methods for Lifetime
Data, John Wiley & Sons, New York, 1982.

116. Leveson, N. G. and P. R. Harvey. "Analyzing software safety."
IEEE Trans. Software Engineering, SE-9, No. 5, 1983, 569-579.

117. Levy, L . S. "A metaprogramming method and its economic
justification." IEEE Trans. Software Engineering, SE-12, No. 2,
1986, 272-277.

118. Lipow, M. "Number of faults per line of code." IEEE Trans.
Software Engineering, SE-8, No. 4, 1982, 437-439.

119. Lipow, M. "Prediction of software failures." Journal of
Systems and Software, 1, No. 1, 1979, 71-75.

164

120. Lipow, M. and T. A. Thayer. "Prediction of software failures."
Proc. Annual Reliability and Maintainability Symposium, 1977,
489-494.

121. Lipow, M. "Estimation of software package residual errors."
TRW Software Series, Report TRW-SS-72-09, Redondo Beach, CA.,
1972.

122. Lipow, M. "Some variation of a model for software time-to-
failure." TRW Systems Group, Correspondence, ML-74-2260.1.9-21,
Aug. 1974.

123. Littlewood, B. "A critique of the Jelinski-Moranda model for
software reliability." Proc. Annual Reliability and
Maintainability Symposium, 1981, 357-364.

124. Littlewood, B. "Stochastic reliability growth: a model for
fault removal in computer program." IEEE Trans. Reliability,
R-30, No. 4, 1981, 313-320.

125. Littlewood, B. "A Bayesian differential debugging model for
software reliability." Proc. COMPSAC, 1980, 511-517.

126. Littlewood, B. "Theories of software reliability; how good are
they and how can they be improved." IEEE Trans. Software
Engineering, SE-6, No. 5, 1980, 489-500.

127. Littlewood, B, "What makes a reliable program - few bugs or a
small failure rate?" Proc. COMPCON, 1980, 707-713.

128. Littlewood, B. "The Littlewood-Verrall model for software
reliability compared with some rivals." Journal of Systems and
Software. 1980, 251-258.

129. Littlewood, B. "How to measure software reliability and how not
to." IEEE Trans. Reliability. R-28, No. 2, 1979, 103-110.

130. Littlewood, B. "Software reliability models for modular program
structure." IEEE Trans. Reliability, R-28, No. 3, 1979,
241-245.

131. Littlewood, B. "Validation of a software reliability model."
Proc. Software Life Cycle Management Workshop, 1978, 146-152.

132. Littlewood, B. "A semi-Markov model for software reliability
with failure cost." Proc. Symposium on Computer Software
Engineering, 1976, 281-300.

133. Littlewood, B. "A reliability model for systems with Markov
structure." Applied Statistics. 24, No. 2, 1975, 172-177.

165

134. Littlewood, B. and P. A. Keiller. "Adaptive software
reliability modeling." IEEE 0731-3071/84,

135. Littlewood, B. and J. L. Verrall. "Likelihood function of a
debugging model for computer software reliability." IEEE Trans.
Reliability. R-30, No. 2, 1981, 145-148.

136. Littlewood, B. and J. L. Verrall. "A Bayesian reliability model
with stochastically monotone failure rate." IEEE Trans.
Reliability, R-23, No. 2, 1974, 108-114.

137. Lloyd, D. K. and M. Lipow. Reliability; Management, Methods,
and Mathematics. Lloyd, Redondo Beach, CA., 1977.

138. Makam, S. V. and A. Avizienis. "ARIES 81; a reliability and
life cycle evaluation tool for faulttolerant systems." Proc.
Int'1 Conf. on Fault-Tolerant Computing, 1982, 267-274.

139. McCabe, T. J. "A complexity measure." IEEE Trans. Software
Engineering, SE-2, 1976, 308-320.

140. McCall, J. A., P. Pierce, R. Hartley, and R. Thonerfelt.
"Measuring technology for software life cycle support,"
COMPCON, 1985, 310-320.

141. Migneault, G. E. "Software reliability and advanced avionics."
Proc. COMPCON, 1980, 715-720.

142. Miller, D. R. "Exponential order statistics models of software
reliability growth." IEEE Trans. Software Engineering, SE-12,
No. 1, 1986, 13-24.

143. Miller, D. R. and A. Sofer. "Completely monotone regression
estimation of software failure rate." Proc. Int'l Conf. on
Software Engineering, 1985, 343-348.

144. Mills, H. D. "On the statistical validation of computer
programs." IBM FSD, unpublished paper, July 1970.

145. Misra, P. N. "Software reliability analysis." IBM Systems
Journal. 22, No. 3, 1983, 262-270.

146. Miyamoto, I. "Reliability evaluation and management for an
entire software life cycle." Software Life Cycle Management
Workshop. 1978.

147. Moawad, R. "Comparison of current software reliability models."
Proc. Int'l Conf. on Software Engineering, 1984, 222-229.

166

148. Mohanty, S. N. "Models and measurements for quality assessment
of software." Computing Surveys, 11, No. 3, 1979, 251-275.

149. Moranda, P. B. "An error detection model for application during
software development." IEEE Trans. Reliability, R-30, No. 4,
1981, 309-312.

150. Moranda, P. B. "Event-altered rate models for general
reliability analysis." IEEE Trans. Reliability, R-28, No. 5,
1979, 376-381.

151. Moranda, P. B. "A comparison of software error-rate models."
Proc. Texas Conf. on Computing Systems, 1975, 6.1-6.9.

152. Moranda, P. B. "Prediction of software reliability during
debugging." Proc. Annual Reliability and Maintainability
Symposium, 1975, 327-332.

153. Morey, R. C. "Estimating and improving the quality of
information in a MIS." Communications of the ACM, 25, No. 5,
1982, 337-342.

154. Mourad, S. and D. Andrews. "The reliability of the IBM MVS/XA
operating system." Proc. Int'l Conf. on Fault-Tolerant
Computing, 1985, 93-98.

155. Musa, J. D., A. lannino, and K. Okumoto. Software Reliability;
Measurement, Prediction, Application, to be published by McGraw-
Hill, New York, 1987.

156. Musa, J. D. and K. Okumoto. "Application of basic and
logarithmic Poisson execution model in software reliability
measure." NATO Advanced Study Institute, The Challenge of
Advanced Computing Technology to System Design Method, 1985.

157. Musa, J. D. and K. Okumoto. "A logarithmic Poisson execution
time model for software reliability measurement." Proc. 7th
Int'l Conf. on Software Engineering, 1984, 230-238.

158. Musa, J. D. and K. Okumoto. "A comparison of time domains for
software reliability models." Journal of Systems and Software,
4, No. 4, 1984, 277-287.

159. Musa, J. D. and K. Okumoto. "Software reliability models:
concepts, classification, comparison, and practice." Proc.
Electronic Systems Effectiveness and Life Cycle Cost Conf., NATO
Advanced Study Series. Springer Verlag, Heidelberg, 1983,
395-424.

167

160. Musa, J. D. "Software reliability measurement." Journal of
Systems and Software, 1, No. 3, 1980, 223-241.

161. Musa, J. D. "Software reliability measures applied to system
engineering." Proc. COMPCON, 1979, 941-946.

162. Musa, J. D. "Validation of execution time theory of software
reliability." IEEE Trans. Reliability. R-28, No. 3, 1979,
181-191.

163. Musa, J. D. "The use of software reliability measures in
project management." Proc. COMPSAC, 1978, 493-498.

164. Musa, J. D. "A theory of software reliability and its
application." IEEE Trans. Software Engineering. SE-1, No. 3,
1975, 312-327.

165. Nathan, I. "A deterministic model to predict error-free status
of complex software development." Workshop on Quantitative
Software Models, 1979, 159-169.

166. Nayak, T. K. "Software reliability: statistical modeling and
estimation." IEEE Trans. Reliability, R-35, No. 5,. 1986,
566-570.

167. Nayak, T. K. "Estimating population size by recapture
sampling." Report. Department of Statistics, George Washington
University, 1986.

168. Nelson, E. "Estimating software reliability from test data."
Microelectronics and Reliability, 17, No. 1, 1978, 67-74.

169. Nelson, E. C. "A statistical basis for software reliability
assessment." TRW-SS-73-03. TRW, 1973.

170. Ohba, M. "Software reliability analysis models." IBM Journal
of Research and Development, 28, No. 4, 1984, 428-443.

171. Ohba, M., S. Yamada, K., K. Takeda, and S. Osaki. ,"S-shaped
software reliability growth curve; how good is it?" IEEE
CH1810-1/82, 1982, 38-44.

172. Okumoto, K. "A statistical method for software quality
control." IEEE Trans. Software Engineering, SE-11, No. 12,
1985, 1424-1430.

173. Okumoto, K. and A. Goel. "Optimal release time for software
systems based on reliability and cost." Journal of Systems and
Software. 1, No. 4, 1980, 315-318.

168

174. Parzen, E. Stochastic Processes. San Francisco, Holden-Day,
1962.

175. Peercy, D. E. "A software maintainability evaluation
methodology." IEEE Trans. Software Engineering, SE-7, No. 4,
1981, 343-351.

176. Potier, D. "Experiments with computer software complexity and
reliability." Proc. Int'l Conf. on Software Engineering, 1982,
94-101.

177. Ramamoorthy, C. V. and F. B. Bastani. "Modeling of the software
reliability growth process." Proc. COMPSAC, 1980, 161-169.

178. Ramamoorthy, C. V. and F. B. Bastani. "Software reliability -
status and perspectives." IEEE Trans. Software Engineering,
SE-8, No. 4, 1982, 354-371.

179. Ramamoorthy, C. V. and S. F. Ho. "Testing large software with
automated software evaluation systems." IEEE Trans. Software
Engineering. SE-1, No. 1, 1975, 46-58.

180. Ramzan, M. T. "Seeded bug volume for software validation."
Microelectronics and Reliability, 23, No. 5, 1983, 981-988.

181. Reifer, R. J. "Software failure modes and effects analysis."
IEEE Trans. Reliability, R-28, No. 3, 1979, 247-249.

182. Reiss, R. M. "A prediction experience with three software
reliability models." Workshop on Quantitative Software Models,
1979, 190-195.

183. Romeu, J. L. and K. A. Dey. "Classifying combined
hardware/software R models." Proc. Annual Reliability and
Maintainability Symposium. 1984, 282-287.

184. Ronback, J. A. "Software reliability - how it affects system
reliability." Microelectronics and Reliability, 14, No. 2,
121-140.

185. Rosene, A. F., J. E. Connolly, and K. M. Bracy. "Software
maintainability - what it means and how to achieve it." IEEE
Trans. Reliability, 30, No. 3, 1981, 240-245.

186. Ross, S. M. "Software reliability; the stopping rule problem."
IEEE Trans. Software Engineering. SE-11, No. 12, 1985,
1472-1476.

187. Ross, S. M. "Statistical estimation of software reliability."
IEEE Trans. Software Engineering, SE-11, No. 5, 1985, 479-483.

169

188. Rossetti, D. J. and R. K. Iyer. "Software related failures on
the IBM 3081: a relationship with system utilization."
CH1810-IEEE. 1982. 45-54.

189. Rubey, R. J. "Planning for software reliability." Proc. Annual
Reliability and Maintainability Symposium, 1977, 495-498.

190. Rubey, R. J., J. A. Dana, and P. W. Biche. "Quantitative aspect
of software validation." IEEE Trans. Software Engineering,
SE-1, No. 2, 1975, 150-155.

191. Rutledge, R. A. "The reliability of memory subject to hard and
soft failures." Proc. Int'1 Conf. on Fault-Tolerant Computing,
1980, 193-198.

192. Schick, G. J. and C. Y. Lin. "Use of a subjective prior
distribution for the reliability of computer software." Journal
of Systems and Software, 1, No. 3, 1980., 259-266.

193. Schick, G. J. and R. W. Wolverton. "An analysis of competing
software reliability models." IEEE Trans. Software Engineering,
SE-4, No. 2, 1978, 104-120.

194. Schick, G. J. and R. W. Wolverton. "Achieving reliability in
large software system." Proc. Annual Reliability and
Maintainability Symposium, 1974, 302-319.

195. Schneider, V. "Some experimental estimators for developmental
and delivered errors in software development projects." Proc.
COMPSAC. 1980.

196. Schneidewind, N. F. "The use of simulation in the evaluation of
software." Computer, 10, No. 4, 1977, 47-53.

197. Schutt, D. "On a hypergraph oriented measure for applied
computer science." Proc. COMPCON, 1977, 295-296.

198. Scholz, F. W. "Software reliability modeling and analysis."
IEEE Trans. Software Engineering, SE-12, No. 1, 1986, 25-31.

199. Scott, R. K. "Experimental validation of six fault-tolerant
software reliability models." Proc. Int'1 Conf. on Fault-
Tolerant Computing, 1984, 102-107.

200. Serra, A. and R. E. Barlow, ed. Theory of Reliability. North-
Holland, Amsterdam, 1986.

201. Shannon, C. and W. Weaver. The Mathematical Theory of
Communication. University of Illinois Press, Urbana, 1975.

170

202. Shanthikumar, J. G. "Software reliability models: a review."
Microelectronics and Reliability, 23, No.,5, 1983, 903-943.

203. Shanthikumar, J. G. "A general software reliability model for
performance prediction." Microelectronics and Reliability, 21,
No. 5, 1981, 671-682.

204. Shanthikumar, J. G. "A state and time-dependent error
occurrence-rate software reliability model with imperfect
debugging." Proc. COMPCON, 1981, 311-315.

205. Shanthikumar, J. G. and S. Tufekci. "Application of a software
reliability model to decide software release time."
Microelectronics and Reliability, 23, No. 1, 1983, 41-59.

206. Shen, V. Y. "Identifying error-prone software - an empirical
study." IEEE Trans. Software Engineering, SE-11, No. 4, 1985,
317-324.

207. Shen, V. Y., S. D. Conte, and H. E. Hunsmore. "Software science .
revisited: a critical analysis of the theory and its empirical
support." IEEE Trans. Software Engineering. SE-9, No. 2, 1983,
155-165.

208. Shooman, M. L. "Structure models for software reliability
prediction." Proc. Int'I Conf. on Software Engineering, 1984,
268-273.

209. Shooman, M. L. Software Engineering - Design, Reliability, and
Management. McGraw Hill, New York, 1983.

210. Shooman, M. L. "Software reliability - analysis and
prediction." Integrity in Electronic Flight Control Systems,
France, AGARD AG224, 1977.

211. Shooman, M. L. "Software reliability; measurement and models."
Proc. Annual Reliability and Maintainability Symposium, 1975,
485-491.

212. Shooman, M. L. "Probabilistic Models for Software Reliability
and Prediction." Statistical Computer Performance Evaluation.
Academic Press, New York, 1972.

213. Shooman, M. L. and A. K. Trivedi. "A many-state Markov model
for computer software performance parameters." IEEE Trans.
Reliability, R-25, No. 2, 1976, 66-68.

214. Simkins, D. J. "Software performance modeling and management."
IEEE Trans. Reliability, R-32, No. 3, 1983, 293-297.

171

215. Singpurwalla, N. D. and R. Soyer. "Assessing software
reliability growth using a random coefficient autoregressive
process and its ramifications." IEEE Trans. Software
Engineering. SE-11, No. 12, 1985, 1456-1464.

216. Soi, 1. M. "Software complexity: an aid to software
maintainability." Microelectronics and Reliability, 25, No. 2,
1985, 223-228.

217. Soi, I. M. and K. Gopal. "Hardware vs software reliability - a
comparative study." Microelectronics and Reliability, 20, 1980,
881-885.

218. Soi, I. M. and K. Gopal. "Some aspects of reliable software
packages." Microelectronics and Reliability, 19, 1979, 379-386.

219. Soi, I. M. and K. Gopal. "Error prediction in software."
Microelectronics and Reliability, 18, 1978, 433-436.

220. Soi, I. M. and K. Gopal. "Detection and diagnosis of software
malfunctions." Microelectronics and Reliability, 18, 1978,
353-356.

221. Spreij, P. "Parameter estimation for a specific software
reliability model." IEEE Trans. Reliability, R-34, No. 4, 1985,
323-328.

222. Strandberg, K. and H. Anderson. "On a model for software for
software reliability performance." Microelectronics and
Reliability, 22, No. 2, 1982, 227-240.

223. Strong, E. J. "Software reliability and maintainability in
large scale systems." Proc. COMPSAC, 1978, 755-760.

224. Sugiura, N. "On the software reliability." Microelectronics
and Reliability, 13, 1974, 529-534.

225. Sukert, A. "A guidebook for software reliability assessment."
Proc. Annual Reliability and Maintainability Symposium, 1980,
186-190.

226. Sukert, A. N. "Empirical validation of three software error
prediction models." IEEE Trans. Reliability, R-28, No. 3, 1979,
199-204.

227. Sukert, A. N. "A four-project empirical study of software error
prediction models." Proc. COMPSAC, 1978, 577-582.

172

228. Sukert, A. N. "Analysis of software error model predictions and
questions of data availability." Software Life Cycle Management
Workshop, 1978, 209-215.

229. Sukert, A. N. "An investigation of software reliability

models." Proc. Annual Reliability and Maintainability

Symposium, 1977, 478-484.

230. Sumita, U. and Y. Masuda. "Analysis of software
availability/reliability under the influence of hardware
failures." IEEE Trans. Software Engineering, SE-12, No. 1,
1986, 32-41.

231. Sumita, U. and J. G. Shanthikumar. "A software reliability
model with multiple error introduction and removal." IEEE
Trans. Reliability, R-35, No. 4, 1986, 459-462.

232. Suri, P. K. and K. K. Aggarwal. "Software reliability of
programs with network structure." Microelectronics and
Reliability, 21, No. 2, 1981, 203-207.

233. Suri, P. K. and K. K. Aggarwal. "Reliability evaluation of
computer programs." Microelectronics and Reliability, 20, 1980,
465-470.

234. Swearingen, D. and J. Donahoo. "Quantitative software
reliability models - data parameters; a tutorial." Workshop on
Quantitative Software Models, 1979, 143-153.

235. Szabo, S. G. "A schema for producing reliable software." Proc.
Int'1 Conf. on Fault-Tolerant Computing, 1980, 151-155.

236. Takahashi, M. and Y. Kamayachi. "An empirical study of a model
for program error prediction." Proc. Int'l Conf. on Software
Engineering, 1985, 330-336.

237. Taylor, D. J. "Redundancy in data structure: improving software
fault tolerance." IEEE Trans. Software Engineering, 6, No. 6,
1980, 585-594.

238. Taylor, H. M. and S. Karlin. An Introduction to Stochastic

Modeling. Academic Press, New York, 1984.

239. Thayer, T. A., M. Lipow, and E. C. Nelson. Software
Reliability. North-Holland Publishing Co., Amsterdam, 1978.

240. Thompson, W. E. and P. 0. Chelson. "Software reliability
testing for embedded computer systems." Workshop on
Quantitative Software Models, 1979, 201-208.

173

241. Thompson, W. E. and P. 0. Chelson. "On the specification and
testing of software reliability." Proc. Annual Reliability and
Maintainability Symposium, 1980, 379-383.

242. Trachtenberg, M. "The linear software reliability model and
uniform testing." IEEE Trans. Reliability. R-34, No. 1, 1985,
8-16.

243. Trachtenberg, M. "Order and difficulty of debugging." IEEE
Trans. Software Engineering, SE-9, No. 6, 1983, 746-747.

244. Troy, R. and Y. Romain. "A statistical methodology for the
study of the software failure process and its application to the
ARGOS center." IEEE Trans. Software Engineering, SE-12, No. 9,
1986, 968-978.

245. Troy, R. and R. Moawad. "Assessment of software reliability
models." IEEE CH1810-1, 1982, 28-37,

246. Wagoner, W. L. "The final report on a software reliability
measurement study." Report TOR-0074(41221)-1. The Aerospace
Corp., El Segundo, CA, 1973.

247. Wall, J. K. and P. A. Ferguson. "Pragmatic software reliability
prediction." Proc. Annual Reliability and Maintainability
Symposium, 1977, 485-488.

248. Walsh, T. "A software reliability study using a complexity
measure." Proc. AFIPS Conf., 48, 1979.

249. Walters, G. F. and J. A. McCall. "Software quality metrics for
life-cycle cost reduction." IEEE Trans. Reliability, R-28, No.
3, 1979, 212-220.

250. Williams, M. W. H. "Reliability of large real-time control
software systems." Proc. Int'l Conf. on Reliable Software,
1973, 1-6.

251. Woodward, M., M. Hennell, and D. Hedley. "A measure of control
flow complexity in program text." IEEE Software Engineering,
SE-5, No. 1, 1979, 45-50.

252. Yamada, S. and S. Csaki. "Software reliability growth modeling:
models and applications." IEEE Trans. Software Engineering,
SE-11, No. 12, 1985, 1431-1437.

253. Yamada, S. and S. Osaki. "Cost-reliability optimal release
policies for software systems." IEEE Trans. Reliability, R-34,
No. 5, 1985, 422-424.

174

254. Yamada, S. and S. Osaki. "Reliability growth model for hardware
and software systems based on nonhomogeneous Poisson process: a
survey." Microelectronics and Reliability, 23, No. 1, 1983,
91-112.

255. Yamada, S. "Software reliability analysis based on a
nonhomogeneous error detection rate model." Microelectronics
and Reliability, 24, No. 5, 1984, 915-920.

256. Yamada, S. "S-shaped reliability growth modeling for software
error detection." IEEE Trans. Reliability, R-32, No. 5, 1983,
475-478.

257. Yee, J. G. and S. Y. H. Su. "A scheme for tolerating fault data
in real-time systems." Proc. COMPSAC, 1978, 663-667.

175

SECTION V. RELIABILITY COSTS IN SOFTWARE LIFE-CYCLE MODELS

176

INTRODUCTION

The investigation of trade-off among reliability, schedule,

resources, and costs in hardware development is also of interest in

software development. Although a functional relationship clearly

exists between software life-cycle cost and software reliability, the

parameters associated with such a relationship are not readily

available. One difficulty in developing reliability-related cost

models for software is that, unlike hardware, each software system is a

new product, so that previous experiences may .at most serve as a

reference point.

As software costs have increased over the past two decades, the

cost structure of the system has changed dramatically. In 1960, about

20 percents of the system's cost was spent on software. In 1985, that

percentage had risen to 80 percents [23]. This change has drawn much

attention as to how the software portion of the cost is determined and

how it can be minimized. So far, studies of software cost have

concentrated on development cost; however, life-cycle cost is more

appropriate to study.

In hardware, life-cycle cost is usually studied from a buyer's

standpoint. It can be divided into procurement cost, maintenance cost,

and disposal cost. Since software development and maintenance are

normally performed by the same organization, software life-cycle cost

is usually studied from the developer's point of view and is divided

into development cost and maintenance cost.

177

The software development process can be broken down into

requirement and specification phase, design phase, coding phase, and

testing phase. Among these, testing including unit test, integration

test, and filed test, accounts for 40 percents or more of the

development cost. The maintenance activities include preventive

maintenance, corrective maintenance, adaptive maintenance, enhancement,

and growth. It is recognized that 60 percents of the software life-

cycle cost are maintenance costs [21]. Again, testing is also the

major cost factor in the maintenance phase.

For common software projects, reliability cost is mainly incurred

by testing. For highly reliable software, such as that used in flight

control systems, nuclear power plant control systems, and military

systems, additional reliability cost is incurred at every phase of the

software life cycle [23]. As indicated by Boehm [4], there is a very

high productivity range of 1.87 between very low and very high

reliability projects. Indeed, a large portion of the software life-

cycle cost is devoted to achieving high reliability. Table 5.1

compares reliability costs incurred at each phase of the software life

cycle for common and highly reliable software. Unfortunately, none of

the existing quantitative software models can deal with this issue

properly. Models that address the relationship between software

reliability and cost are surveyed and summarized below. A generalized

bug-counting software reliability cost minimization model is proposed.

178

TABLE 5.1. Reliability cost and software life-cycle phases

Phase
Reliability Cost of
Common Software

Additional Reliability
Cost for Highly Reliable

Software

DEVELOPMENT

Requirements
and speci
fications

Basic requirement and
specification walkthrough

Parallel development of
requirement and specifi
cation, and detailed
validation

Design Basic design walkthrough Parallel design, fault-
tolerant design, and
detailed verification.

Coding Basic coding walkthrough Parallel coding of criti
cal modules, fault-
tolerant codes, and de
tailed code walkthrough

MAINTENANCE

Preventive
maintenance

Corrective
maintenance

Adaptive
maintenance

Totally devoted to reli
ability

Totally devoted to reli
ability

Testing

Higher frequency of pre
ventive maintenance

Immediate correction and
extra testing

Extra testing

Enhancement

Growth

Equivalent to a development subcycle

Equivalent to a development subcycle

179

REVIEW OF THE RELIABILITY-RELATED SOFTWARE COST MODELS

The software life-cycle cost model and the software reliability

model are two quantitative ways of dealing with reliability-related

software costs. The software life-cycle model can be subdivided into

the cost-estimation model, the resource-allocation model, and the

program-evolution model, each describing a different aspect of software

life-cycle cost. The cost-estimation model estimates the amount of

resources required, the resource-allocation model shows how resources

are distributed over the life cycle, and the program evolution model

describes the dynamic nature of software and the trade-off between

development cost and maintenance cost.

Cost Estimation

The cost-estimation model estimates efforts, including manpower,

computer time, documentation, and project duration required at the

development phase as well as over the entire life cycle. These

estimates are based on cost factors identified from historical data by

the regression analysis. Typical cost factors are the number of

instructions, percentage of new instructions, number of files, number

of reports, number of miles traveled, number of display consoles, pages

of documentation, average experience of programmers, etc. [2,4,16,24].

A simple baseline model has only one cost factor, while a complicated

model may involve many cost factors. A general formula can be

expressed as follows.

180

E = Z aiXi
i = l

where
E efforts

X£ the ith cost factor

ai,b£ coefficients of the ith cost factor

n number of cost factors.

Coefficients of the above model can be adjusted to reflect the

particular application and environment by using a weighting method, a

table driven method, or a formula. Adjustment may involve a single

attribute or multiple attributes. Typical adjustment attributes are

type of application, degree of difficulty, reliability, complexity,

development methodology, etc. [5,16,24,25], For those models that

include reliability as on of the cost attributes, the reliability cost

can be estimated directly from the model. Otherwise, reliability cost

can be estimated from the degree of difficulty, system complexity, and

type of application.

Resource Allocation

The resource-allocation model distributes resources to the phases

of the software life-cycle according to a manpower utilization curve.

Originally, Norden applied the Rayleigh curve to represent the resource

allocation in research and development projects [18]. The Rayleigh

curve model was later adapted by Putnam to represent the manpower

181

buildup of the software life cycle [21]. Putnam's Rayleigh curve model

can be summarized as follows.

where

y(t) =• 2Kate
-at^

Y(t) = /Q y(s)ds = K(I - e ^)

dy(t)

dt

-atd / 2^
2Kae \ (1 - 2at^) = 0

(2a)
1 /2

.td
Cd = YFTJ) = /Q y(s)ds = 0.3945K

y(t) density function of manpower utilization

Y(t) cumulative manpower utilization

K total manpower

tji development time (release time)

Cjj development cost

a constant of proportionality.

Through empirical observation, development cost is defined as the

time when the manpower curve reaches its peak, which is close to 40

percents of the total cost. Other quantities such as degree of

difficulty, productivity, and technology level are also derived. This

same idea o£ fitting the staffing curve to a parametric distribution i

also used in the Sech-square model by Parr [20], the parabolic model,

and the trapezoid model by Basili and Beane [1]. As in the cost-

estimation model, reliability is not treated explicitly. However,

reliability cost can be traced from difficulty level, testing phase,

and total manpower. The 40 to 60 breakdown of development and

maintenance costs serves as a guideline for reliability cost

allocation.

Program Evolution

The program-evolution model describes the dynamic nature of

software. The software is subject to constant change after delivery.

Correcting errors, adding new functions, deleting unnecessary

functions, adapting to the new environment, and improving performance

are among the major activities of the evolution process. As new

functions and new codes are added, the reliability of the software

decreases. Unless effort is devoted to keeping the reliability under

control, further changes will make it even more costly to maintain the

desired reliability [3,13]. Resources can be devoted to growth which

tends to increase the failure rate, to error removal which will

decrease the failure rate, or to routine service which dose not affect

the failure rate. The ultimate purpose of the evolution model is to

consider these conflicting factors under limited resources and to

provide a guideline to management for setting up the optimum

reliability level and the optimum release time.

183

The program evolution can be approached by analytical or

simulation models [3,14,26]. Reliability can be related to the size of

the program (total number of modules, number of modules changed, number

of modules added), release number, system load, operational profile,

and complexity measures [15]. Unlike the cost-estimation model and the

resource-allocation model, which are concerned with the amount of

reliability cost, the program-evolution model describes the

interactions between reliability and other factors.

184

SOFTWARE RELIABILITY AND COST

The software-reliability model measures and predicts the

reliability of the software during testing and maintenance phases.

Software reliability is defined as the probability of failure-free

operation of a software program under the specified conditions for a

specified period of time. Most software reliability models fall into

the category of the "bug-counting" model, which represent the number of

remaining faults (or the number of failures experienced) at time t as a

stochastic counting process. The following functions are derived to

characterized the software failure process.

• the number of faults remaining at time t, N(t)

• the mean value function of N(t), M(t)=E[N(t)]

• the failure rate of the software, X(t)

• the reliability function, R(t) = exp [- /g X(s)ds]

• The probability of k remaining faults at time t, P^ft)

This counting process can be modeled as a continuous-time,

discrete-state Markov chain. Under the following assumptions, the

model is reduced to the birth-and-death process with linear birth rate

and linear death rate [11,12].

1. The failure rate is proportional to the number of faults

remaining,

2. each fault has the same failure rate 0(t), and

3. whenever a failure occurs, the number of faults is reduced

by 1 with probability p, increased by 1 with probability q,

and not changed with probability 1-p-q.

185

The transition diagram of the N(t) process is shown in Fig. 4.5.

The differential equations of P^Ct) is

P^Ct+At) = (k-l)q0(t)Pit-i(t)At 4- [l-k(p+q)f(t)At]Pk(t) +

(k+l)p#(t)Pk+i(t)At + o(At) (5.1)

with the initial condition

1 for k = N
Pk(0) =

0 for k / N.

Rearranging Eq. (5.1), dividing by At, and taking the limit as At ^ 0

gives

Pk'(t) = (k-l)q#(t)Pk_i(t) - k(p+q)^(t)Pjj(t) +

(k+l)p^(t)Pk+l(t) (5.2)

The mean value function of N(t) is defined as

M(t) = E[N(T)] = Z kPk(t) (5.3)
k=l

Taking the derivative of Eq. (5.3) and substituting Eq. (5.2) into it.

M'(t) = q4^t)Z(k-l)Pk_i(t) - p0(t)Z(k+l)Pi^+i(t)
k k

-(p-q)#(t)M(t)

This differential equation of M(t) with initial condition, M(0)=N,

gives [7]

186

M(t) = N*exp [-(p-q)/Q 0(s)ds].

The above mean value function can be incorporated into the

software life-cycle cost model to determine the optimal release time

and the optimal reliability level. Total reliability cost, consisting

of reliability cost during testing and reliability cost during

maintenance, can be formulated on a "per-fault" basis [7,10,19,22],

The reliability cost during testing is a function of the number of

faults removed during testing and the length of testing time. The

reliability cost during maintenance is also a function of the number of

faults removed during operation and the length of the operational time.

Then, total reliability cost can be expressed as follows.

TC(t) = Ci[M(0)-M(t)] 4- (C2+C3) [M(t)-M(T)] + C^t +C5(T-t)

= (C2+C3-Ci)M(t) + (C4-C5)t +CiM(0) - (C2+C3)M(t)

+ C5T. (5.4)

The variable cost with respect to t is

VC(t) = C6M(t) + Cyt

= CgN-exp [- (p-q) /Q 0(s)ds] + Cyt

where

Cj cost of correcting a fault during testing

C2 cost of correcting a fault during operation

C3 penalty costs per fault during operation

cost of testing per unit time

187

Cg cost of maintenance per unit time

Cg C2 + C3 - Cj

C7 Cl^ - C5

TC total reliability cost

VC variable reliability cost with respect to t

t optimal release time

T useful life of the software.

The minimum of the variable cost can be found by setting the

derivative to zero.

VC'(t) = -CgN^Ct) exp [- (p-q) #(s)ds] + C7

C7
^(t)exp [-(p-q) /Q 0(s)ds]

CgN

and

t c?
^n0(t) - (p-q) Sn 0(s)ds = -?n 0 3 t 5 T. (5.5)

CgN

Given a specific failure rate function, the optimal release time can

determined ^rom Eq. (5.5).

For a constant failure rate model [8,9], 0(t)=0, the optimal

release time can be shown to be

t = ^ni-—;
^7

188

For an exponentially decreasing failure rate, #(t) = 0e ,

and

0 < t < T. (5.6)

This is a single-variable root-finding problem and can be solved

by Newton's method. It can be shown that the second derivative is

positive for both the constant failure rate in Eg. (5.5) and the

exponentially decreasing failure rate in Eq. (5.6). The solutions

obtained by setting the first derivative to zero are indeed a minimum.

As indicated by Musa et al. [17], failure identification

personnel, failure correction personnel, and computer time are required

in testing. These limiting resources should be considered in

determining the cost coefficients of , C2, C^, and C5. In

determining C3, the failure can be classified into levels of severity.

The number of faults and cost per fault are estimated for each severity

level. Then, C3 can be estimated based on expectation.

To illustrate the exponentially decreasing failure rate model, let

N=200, Ci=5, C2=20, €3=50, 0^=200, €5=20, p-q=0.95, T=200, ̂ =

0.2/week, and = 0.01. From Eq. (5.6),

19exp(-t/100) - O.Olt - 16.5 = 0 0 S t 5 200

189

The solution is t=13.3. Therefore, the life-cycle cost is

minimized when testing time is 13.3 week.

190

. CONCLUSION

The cost-estimation model, the resource-allocation model, and the

program evolution model all deal with reliability - empirically,

indirectly, and subjectively. However, these macro models point out

different aspects of software reliability cost issues and pave the way

for future development of reliability-related life-cycle cost models.

Software-reliability models, based on rigorous reliability theory, can

be used to estimate reliability cost more precisely. This study

examined life-cycle cost modeling with emphasis on reviewing

reliability cost in the software life cycle. Once the software-

reliability costs are taken care of, the software life-cycle cost can

readily be obtained.

191

REFERENCES

1. Basili, V. R. and J. Beane. "Can the Parr curve help with
manpower distribution and resource estimation problem?" Journal
of Systems and Software, 2, No. 1, 1981, 59-69.

2. Basili, V. R. and K. Freburger. "Programming measurement and
estimation in the software engineering laboratory." Journal of
Systems and Software, 2, No. 1, 1981, 47-57.

3. Belady, L. A. and M. M. Lehman. "A model of large program
development." IBM Systems Journal, No. 3, 1976, 225-252.

4. Boehm, B. W. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

5. Boehm, B. W. and R. W. Wolverton. "Software cost modeling; some
lessons learned." Journal of Systems and Software, 1, No. 2,
1980, 195-201.

6. Feller, W. An INew York, 1973.Probability and Its Applications,
Vol. I. John Wiley and Sons, N.Y., 1973.

7. Forman, E. H. and N. D. Singpurwalla. "Optimal time intervals
for testing hypothesis in computer software errors." IEEE
Trans, on Reliability, R-28, No. 3, 1979, 250-253.

8. Goel, A. L. and K. Okumoto. "Time-dependent error-detection
rate model for software reliability and performance measures."
IEEE Trans. Reliability. R-28, No. 3, 1979, 206-211.

9. Jelinski, Z. and P. B. Moranda. "Software reliability
research." in Statistical Computer Performance Evaluation.
Academic Press, New York, 1972, 465-484.

10. Koch, H. S. and P. Kubat. "Optimal release time of computer
software." IEEE Trans. Software Engineering, SE-9, No. 3, 1983,
323-327.

11. Kremer, W. "Birth-death and bug counting." IEEE Trans.
Reliability, R-32, No. 1, 1983, 37-47.

12. Kuo, W. "Software reliability estimation: a realization of
competing risk." Microelectronics and Reliability, 23, No. 2,
1983, 249-260.

192

13. Lehman, M. M. "Programs, life cycles, and laws of software
evolution." Proceedings of the IEEE, 68, No. 9, 1980,
1060-1076.

14. Leman, M. M. and L. A. Belady. "Programming system dynamics or
the meta-dynamics of systems in maintenance and growth." IBM
Research Report, RC35A6, 1971,

15. McCall, J. "Measurement technology for software life cycle
support." Proceedings of the COMPCON, 1985, 313-320.

16. Mohanty, S. N. "Software cost estimation: present and future."
Software - Practice and Experience, 11, 1981, 103-121.

17. Musa, J. D., A. lannino, and K. Okumoto. Software Reliability!
Measurement, Prediction, Application. to be published by
McGraw-Hill, New York, 1987.

18. Norden, P. V. "Useful tools for project management." in
Operations Research and Development. John Wiley & Sons, New
York, 1963.

19. Okumoto, K. and A. L. Goel. "Optimal release time for software
systems." Proceedings of the COMPSAC, 1979, 500-503.

20. Parr, F. N. "An alternative to the Rayleigh curve model of
software development effort." IEEE Trans. Software Engineering,
SE-6, No. 5, 1980, 291-296.

21. Putnam, L. H. "A general empirical solution to macro software
sizing and estimation problem." IEEE Trans. Software
Engineering, SE-4, No. 7, 1978, 345-361.

22. Shanthikumar, J. G. and S. Tufekci. "Application of a software
reliability model to decide software release time."
Microelectronics and Reliability, 23, No. 1, 1983, 41-59.

23. Shooman, M. L. Software Engineering - Design, Reliability, and
Management.. McGraw Hill, New York, 1983.

24. Walston, C. E. and C. P. Felix. "A method of programming
measurement and estimation." IBM Systems Journal, 16, No. 1,
1977, 54-73.

25. Wolverton, R. W. "The cost of developing large scale software."
IEEE Computers, C-23, No. 6, 1974, 615-636.

26. Woodside, C. M. "A mathematical model for the evolution of
software." Journal of Systems and Software, 1, No. 3, 1980,
337-345.

193

SECTION VI. RELIABILITY OPTIMIZATION WITH SOFTWARE COMPONENT

194

SOFTWARE RELIABILITY-COST FUNCTION

Previous Sections have discussed the issues of mixed-integer

reliability techniques, software reliability models, and software

reliability costs. This Section applies these materials to integrate

software components into the system reliability optimization problem.

Assume that the reliability of a system with hardware components and

software components is to be optimized subject to some constraints.

Formulating this problem into a mixed-integer reliability optimization

problem, the component reliability level and the number of redundancies

of both hardware and software components are to be determined.

To integrate software components into this optimization problem,

two issues have to be investigated. First, a software reliability

function and a software reliability-cost function have to be chosen so

that they can be incorporated into the constraint function to represent

the amount of resource required to reach a certain reliability level.

Second, the reliability function of software redundancy with common-

cause failure has to be determined so that it can be incorporated into

the objective function of the optimization problem.

The software reliability-cost function represents the resources

required to improve the reliability of the software. For the bug-

counting model, software reliability is a function of the number of

initial faults and debugging time. Thus, the cost of improving a

software from one reliability level to another can be related to the

number of faults removed during the debugging period and the debugging

time.

195

Based on the Jelinski-Moranda model, the expected number of faults

removed after debugging time t is

w(t) = N[1 - e]

and the program failure rate after debugging time t is

X(t) = Nfe'^t.

Representing debugging time in terms of failure rate,

/n\ = ^n(N0) - 0t

t = - [^n(N0) - ̂ nX]
9

A ^ _ *
Let the objective failure rate be X . The debugging time t to reach

*
X can be represented as

>'e 1 , Vc,
t =• - [^nN0 - ̂ nX]

<t>

it •)'(
Also, the expected number of faults removed, M , to reach X can be

represented as

/(T*) - N(I -

= N[I - .

196

Let the current time be t and the current failure rate be the extra

A
debugging time and the extra faults removed to reach X are

As indicated by Musa et al. [6], failure-identification personnel,

failure-correction personnel, and computer time are the three cost

factors involved in debugging. By associating the costs of failure-

identification personnel and computer time to At, and the cost of

failure-correction personnel to Aw, a software reliability-cost

function can be formulated as follows.

At = t t = - 7(-^nX - -?nX)

*
X > X .

RC(X, x") = (Ci + C3)At + C2AM

where

it

RC(X,X) cost of reliability improvement from X to X

Cl cost per unit time of the failure-identification

personnel

C2 cost per failure of the failure-correction personnel

C3 cost per unit time of the computer.

197

In some cases, the reliability objective is based on the

reliability level of a given operational time. For instance, the

reliability objective is 0.98 for 100 operational hours. To formulate

the reliability-cost function of this type, reliability can be

represented as a function of debugging time plus operational time.

Based on the Jelinski-Moranda model,

r(t+s) = e = exp[-N#se]

where

t debugging time

s operational time

X(t) program failure rate after t units of debugging time

r(') reliability of a software component.

To represent t in terras of r(t+s),

^n r(t+s) = -N0se

Similarly, w(t) can be represented in terras of r(t+s). Hence,

M(t) = N(1 - e

198

The debugging cost of improving the reliability from r to r can be

expressed as

RCCr, r*) = (Ci + CgjAt +

where

*
At = t - t

= - Uns - /ns + ̂ n(-^nr) - ̂ n(-^nr)] if s ̂ s
9

- Un(--^nr) - ̂ n(-^nr)] if s = s
V

A/i = n (t *) - M(t)

1)'c
= — l^nr - /nrj

<ps

199

SOFTWARE REDUNDANCY

Besides debugging, adding redundancy is another way o£ improving

the reliability o£ a software system. In software, redundancies are

programs developed by different groups of people or different companies

based on the same specifications. These programs are designed to

perform the same function. In order to make the failures of the

redundant copies to be as independent as possible, different computer

languages, development tools, development methodologies, and testing

strategies may be applied to different redundant programs.

Nevertheless, it has been shown that software redundancies are not

totally independent [1,5]. Some input data will fail more than one

redundancy because of the common errors made by different development

teams. For example, errors in specifications, design, acceptance

testing, or input data may cause multiple copies of software to fail.

This partial independency of software redundancies can be represented

by a common-cause model. Some specific common-cause models have been

proposed, especially in the area of nuclear safety, to consider nature

disasters or power shut-down [2,4,7]. The common-cause model for

software redundancy is developed as follows.

Two-Component Model

A system with two partially independent software components in

parallel is shown in Fig. 6.1. Due to the common-cause failure, this

system can be transformed into a series system with two independent

200

components in parallel and a common-cause component as shown in Fig.

6.2. This two-component common-cause failure model has been addressed

by Dhillon [2] for hardware systems.

FIGURE 6.1. Two-component, software redundancy

FIGURE 6.2. Transformed two-component software redundancy

The reliabilities of the independent component and the common-

cause component can be derived as follows.

Notation:

X failure rate of each software component

201

X£ failure rate of the independent component

Àg failure rate of the common-cause component

6 common-cause ratio

r reliability of each software component

U£ reliability of the independent component

Ug reliability of the common-cause component

Rg system reliability

Let

X = \i + \c

Q - Xg/X.

Then

Xg — 9X

X£ = (1-9)X

and

r(t) = e-tt

Ui(t) = E'^lt =

Ug(t) = e = [r(t)]*.

The reliability of this two-component common-cause system can be

expressed as

202

R, = [l - (1-Ui)2] .Uc

[l - (1 - rl-*)2].r*

Two-Component Markov Model With Common-Cause

A two-component Markov model with common-cause failure is shown in

Fig. 6.3.

2Xi Xi

FIGURE 6.3. Two-component Markov model with common-cause failure

Let the state number of this Markov process be the number of

components failed. The differential equations of this Markov process

is

Po'(t) = -(2Xi + Xc)Po(t)

Pl'(t) = 2XiPo(t) - XiPi(t)

P2'(t) = XcPo(t) + XiPi(t)

203

Po(t) + PjCt) + P2(t) = 1

with initial condition PQ(0)=1.

Taking the Laplace transform,

SPqCs) - 1 = -(2X£ + XG)PO(S)

Po(s) = l/(s + 2Xi + \g)

and

sPjCs) = 2\£Po(S) - XfPiCs)

Pl(s) = 2X£Po(S)/(S + X£)

= a/(s + X^) + A/(s + 2X£ + 2Xg)

where

A = 2X1/(X£ + XG).

Taking the inverse Laplace transform, the state probabilities are

^-(2X£ + Xç)t
Po(t) e

and

PjCt) = A.[e~^i'^ -

The system reliability is

RgCt) = Po(t) + Pi(t)

204

-(2Xi+Xç)t ^

A . [.

Three-Component Model

A system with three partially independent software components in

parallel is shown in Fig. 6.4. Since some input data will cause one,

two, or three components to fail, this system can be transformed into

Fig. 6.5.

r

r

r

FIGURE 6.4. Three-component software redundancy

This transformation is based on the assumption that the failure

rate of each software component can be broken down into an independent

failure rate, a two-component common-cause failure rate, and a three-

component common-cause failure rate. The system reliability can be

derived as follows.

205

FIGURE 6.5. Transformed three-component software redundancy

X = Xj + X2 + X3

r(t) = e-tt

Ujj(t) = e = r^k k = 1, 2, 3.

where

X^ k-component common-cause failure rate

Uj^ k-component common-cause stage reliability.

The system reliability is

Rg = [1 "] [1 - (l-Uj^) (I-U2)] *113

- [1 -][(1 - r«2)(L - ,»1)] .,'3.

206

Three-Component Markov Model With Common-Cause

Based on the same argument, a three-component Markov model with

common-cause failure is shown in Fig, 6.6.

FIGURE 6.6. Three-component Markov model with common-cause failures

The differential equations and initial condition are as follows.

Po'(t) = -(3Xi + 3X2 + %3)Po(t)

Pl'(t) = 3XiPo(t) - (2Xi + X2)Pi(t)

P2'(t) = 3X2Po(t) + 2XiPi(t) - XiP2(t)

P3'(t) = XgPoCt) + X2Pi(t) + XiP2(t)

PgCt) + Pi(t) + P2(t) + PgCt) = 1

and initial condition Po(t)=l.

Taking the Laplace transform,

207

sPQCS) - 1 =• -(3X1+3X2+^3)^0(3)

PQ(3) = 1/(S+3X1+3X2+X3)

and

sPi (s) = SXiPgCs) - (2X I+X2)P I (s)

Pi (3) = 3XIPO(S)/(S+2XI+X2)

= A/(S+2X1+X2) - A/(S+3X1+3X2+X3)

where

A = 3X1/(X1+2X2+X3).

And

SP2(S) = 3X2PO(S) + 2XiPi(s) - XiP2(s)

P2(S) = 3X2PO(S)/(s+Xp + 2XiPi (s)/(s+Xi)

= B/(s+Xi) - B/(3+3Xi+3X2+X3) + C/(s+Xi) - D/(S+2X1+X2) +

E/(3+3X1+3X2+X3)

where

B = 3X2/(2X1+3X2+X3)

C = 6xf/[(Xi+X2)(2X1+3X2+X3)]

D = 6X1/[(X1+X2)(X1+2X2+X3)]

208

E = 6X^/[(2Xi+3X2+&3)(Xl+2X2+X3)].

Taking the inverse Laplace transform, the state probabilities are

PgCt) = exp [-(3X1+3X2+^3)%]

PjCt) = A«{exp[-(2X1+X2)t] - exp[-(3X1+3X2+X3)t]}

P2(t) = (B+C)exp [-X^t] - D'exp [-(2X1+X2) t] -

= (B-E)exp[-(3X1+3X2+X3)] .

The system reliability is

RgCt) = Po(t) + Pi(t) + P2(t).

N-Component Model

Based on the same argument, an N-component system with common

cause can be transformed from Fig. 6.7 to Fig. 6.8.

The system reliability can be derived by defining

N
\ = Z \

k=l

^k " %k/%

9k
Uk = r k = 1, . . . , N.

The system reliability is

209

FIGURE 6.7. N-component software redundancy

FIGURE 6.8. Transformed N-component software redundancy

210

Rg = [l- (1-Ui)^][l- (l-Ui)N ...[l - (1-Ui) (l-Uj^.j)]ujj

Jj[l - (l-Ui)N"k(l-Uk)] .

Further assume that

Xj = aX, 0 < a i 1, for all N

and

^2 °° ••• = /3^ ^ Xjf, p - .1,

From the above assumptions, it can be shown that

- 1)%N

X - Xi = (1 - o) X

(1-a)X

" jFI
r ̂ - 1

Xjt =• ^x^

and

(1-a)

The system reliability can then be written as

211

Rs - Ji - (l-Ol)K-k(l-Uk)]

• Jl [l - <1 - r")"-" CI - A)].

N-Component Markov Model With Common-Cause

For a system of more than three software redundancies in parallel,

it would be very difficult to estimate common-cause failure rate of two

components, three components, etc. A simplified N-component Markov

model is shown in Fig. 6.9. In this model, the common-cause failures

cause all the redundancies to fail. This common-cause failure rate may

represent the failure rate of system software whose failure will cause

all the application software to fail.

The differential equations of this Markov process is

PN' (t) = "(NX + VP^Ct)

Pk'(C) = (k+l)XPk+i(t) - (kX + Xc)Pk(C) k=N-l,...,l

Po'(t) = Xc[Pi(t) + ... + P^Ct)] + XPi(t)

N
Z Pk(t) = 1
k=0

Pn(0) = 1.

212

NX ^

N-1

\

FIGURE 6.9. N-component Markov model with common-cause failure

Taking the Laplace transform and the inverse Laplace transform, the

state probabilities can be derived as follows.

sPpf(s) - 1 = -(NX + Xq)P]̂ (S)

Pfj(s) = l/(s + NX + Xg) ,

then

PN(t) = e-(N%+Xe)t.

Also

NXPn(s) - [(N-l)X + Xc]PN-I(s) = sPfj-iCs)

Pf^-jCs) = NXPfij(s)

213

N N

s+(Nl)\+\(. s+NX+Xç

then

Ppj-lCt) = Ne-[(N-l)X+X^]t _ N,-(NX+Xg)t

Also

(N-1) XPFJ_L (s) - [(N-2)X + Xç]PIQ_2(s) = SPN-2(S)

(N-l)X 1 NX
Pj^_2(s) = X X

s+(N-2)X+Xj. s+(N-l)X+Xc s+NX+Xg

= N(N-l) {1/[s+(N-2)X+Xg] (1) (2) + [s+(N-1)X+Xg] (-1) (1)' +

[s+NX+Xç] (-1) (-2)}

and

Pj (s) = N! { [s+X+Xç] (1) (2) • • • (N-1) +

[s+ZX+Xg](-1)(1)••• (N-2) + ••• +

[s+NX+Xg] (-1) (-2) • • • [- (N-1)] } .

In general,

N rN! r N 1 -,
Pk(s) = z 1— L n (p-j) J i

j=k k! |=k s+jX+Xg

and

214

P,a). I •{-[;
j-k kl |;k

The system reliability is

N-1
R(t) = Z Pk(t).

k=l

The above derivation of state probabilities are exact forms but

complex. An approximated form of system reliability is derived as

follows.

Po'(t) = XctPlCk) + ••• + PN^t)] + XPi(t)

= XgEl - Po(t)] + XPi(t).

If

XPl(t) « XgEl - Po(t)],

neglecting XP^Ct),

PQ' (t) = Xc[l - Po(t)]

SPQCS) = XÇ/S - XGPGCS)

PQCS) = 1/s - l/(s+Xç)

and

PgCt) = 1-0

215

The approximated system reliability is

R(t) = 1 - Po(t) =

216

FORMULATION OF THE HARDWARE-SOFTWARE RELIABILITY OPTIMIZATION

To optimize the reliability oE a hardware-software system, the

reliability-redundancy allocation approach discussed in Sections II and

III is applied. A general formulation of this problem is expressed as

follows.

Max Rg(X, R)

subject to

N

S gi:(r:, x;) 5 b^ for all i
j=l

When software components are involved, the above problem can be

transformed into the following form.

Max Rg(RJ, •••, R^)

subject to

Z fi J (r •) •h£ • (x.-) +
j eH

Z f£j (rj ,rj)'hij (xj) S b^ for all i
j eS

where

Rj(rj, Xj) reliability of stage j

gij(rj, Xj) fij (rj)'hij(xj) or f£j (r°,rj)•h£j (xj)

f£j(rj) hardware reliability-cost function of resource i

217

at stage j

f£j(rj,rj) software reliability-cost function of resource i

at stage j
j' J

redundancy-cost function of resource i at stage j

H set of hardware stages

S set of software stages.

The objective function of the above formulation is represented in

terms of the stage reliabilities. For hardware stage, the stage

reliability is

where rjj^ is Uj^ of the jth stage.

The constraint function is represented as the product of a

reliability-cost function and a redundancy-cost function. For hardware

components, an example of reliability-cost function used in Sections II

and III is

Rj(rj, Xj) = 1 - (l-rj)*j.

For software stage, the stage reliability is

Rj = n"^ [1 - (1 - rj)*i ^(1 - rjk)]
k=l

n" [l - (r,")»j-k (1 - r,"")].
k=l

rj(t) = exp[-Xjt]

218

For software components, the reliability-cost function is

f(rj, rj) = (Ci + C3)At +

where

and

«
At = t - t

- [^n(-^nr;) - -^n(-^nr|)]
<P J J

AM = n (t) - M(t)

— [/nr: - ̂ nr?]
0s J J

The redundancy-cost function, h£j(xj), depends upon the type of

constraint involved. A constant function, increasing function, or

decreasing function can be used as needed.

219

A NUMERICAL EXAMPLE

To express a N-stage series system, the three constraint functions

used in Sections II and III are adapted for hardware stages. For

software stages, further assume that

flj(rj) = f3j(rj) = 1

hij(xj) = Po + PjXj

h3j (xj) = WjXjexp(xj/4)

h2j (xj) = Xj

The hardware-software reliability optimization problem can be

expressed as

N
Max R_(X,R) = n R;(x:,r;)

j = l

= n [1 - (l-rj)*j]' n n ̂ [1 - (l-r;^)*i ^ (l-rj]
jcH jeS k-0

subject to

Z PjXj^ + Z (Po + PjXj) - P
jeH jeS

2 a:(-t/^n rj)^j(x;+exp(x;/4)) +•
jeH

I { x: (C1+C3) [̂ n(--̂ nr?) - ̂ n(-̂ nrj)]/0 +
jeS ^

220

XjC2[-^nrj - ̂ nrp/^s} 5 C

N
£ W{X:exp(x;/4) ̂ W
j = l ^

A numerical example o£ a 5-stage series system was solved. Stages

1 through 4 are hardware stages, while stage 5 is software stage. With

the data given in Table 6.1, the problem was solved by the eight

combination methods discussed in Section II using two initial base

points, 0.5 and 0.7. The best solution among the 16 answers, as shown

in Table 6.2, was obtained by the combination of H-J search method and

the G-A-G redundancy method.

TABLE 6.1. Data for numerical example

j aj Pj Wj P C W

1 2.33x10-5 1 7

2 1.45x10-5 2 8

3 5.41x10-6 3 8 110 175 200

4 8.05x10-5 4 6

5 4 9

p- = 1.5, j = 1,2,3,4,5 t = 1000

Ci = 0.015 C2 =50 C3 = 0.01 Po = 3

<{) = 0.0012 rj = 0.9 t = 100 (CPU time for software)

a - 0.8 8=2

221

TABLE 6.2. Result o£ the numerical example

R (0.8672, 0.94, 0.94, 0.82, 0.90)

X (3, 2, 2, 3, 3)

Rj (0.9976, 0.9964, 0.9964, 0.9942, 0.9789)

Rg 0.9640

222

REFERENCES

1. Echhardt, D. E. Jr. and L. D. Lee. "Â theoretical basis for the
analysis of multiversion software subject to coincident errors."
IEEE Trans. Software Engineering, SE-11, No. 12, 1985,
1511-1517.

2. Dhillon, B. S. Reliability Engineering in System Design and
Operation. Van Nostrand, New York, 1983.

3. Dhillon, B. S. and J. Natesan. "Moments of N-unit redundant
systems with time dependent failure rate." Microelectronics and
Reliability. 23, No. 1, 1983, 61-69.

4. Dhillon, B. S. "On common-cause failures - bibliography."
Microelectronics and Reliability, 18, 1979, 533-534.

5. Knight, J. C. and N. G. Leveson. "An experimental evaluation of
the assumption of independence in multi-version programming."
IEEE Trans, software Engineering, SE-12, No. 1, 1986, 96-109.

6. Musa, J. D., A. lannino, and K. Okumoto. Software Reliability:
Measurement, Prediction, Application, to be published by
McGraw-Hill, New York, 1987.

7. Hecht, H. and H. Dussault. "Correlated failures in fault-
tolerant computers." IEEE Trans. Reliability, R-36, No. 2,
1987, 171-175.

223

SECTION VII. CONCLUSIONS

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY

After two decades of development, reliability optimization has

become a branch of reliability engineering. This is due to the

increasing need of a highly reliable system and the fact of limited

resources. This research formulates the reliability optimization into

a mixed-integer programming problem which determines both the number of

redundancies to be used and the component reliability levels. This

formulation unifies the traditional approach of dealing with only

redundancy or reliability. Although this extension is obvious, only

three papers have been published on this specific topic since 1973.

This is understandable because of the difficulty of the problem and the

suspicion of the realism of the problem. This dissertation provides

part of the answer to the above two questions by proposing two

techniques for solving the mixed-integer reliability optimization

problem and discussing a hardware-software system which matches this

formulation very well.

In order to integrate software into this reliability optimization

problem, software reliability models, software reliability-cost

function, software redundancy, and reliability costs in software life-

cycle models are investigated. These studies pave the way for the

future study in software reliability and systems reliability with

software components. Suggestions for future studies are discussed

below.

225

1. New methods of solving the mixed-integer reliability

optimization problem should be investigated. The

combination method discussed in Section II provides no

information about global optimality because of the heuristic

approach used. Although very general, it is not efficient

because of the iterative trials of the sequential search

method. More efficient and effective search methods can be

studied to take advantage of the features of the reliability

problem.

The Lagrange multiplier and branch-and-bound method is

more accurate, but suffers from numerical instability in

solving the simultaneous nonlinear equations. In the

branch-and-bound stage, the branching variables are fixed,

once an integer solution is obtained, rather than carried

over to the subsequent problems as constraints. This

proposed method helps the problem from becoming bigger and

bigger which in turn would increase the difficulty of

solving the nonlinear simultaneous equations, but a better

solution may be missed by this heuristic. More studies can

be done to investigate the significance of improvement in

the final solution and the extra effort taken to carry over

the branching variables.

2. The integration of software and hardware components

discussed in Section VI includes only the time-domain

226

software reliability model. Future studies shall be

extended to the input-domain software reliability model.

Expressing hardware reliability using input-domain concept

can also be attempted.

3. A system including a number of hardware components and

software components, or a software system consisting a

number of modules can be regarded as a network system.

Techniques developed for network reliability can be applied

to software system as well.

4. Software reliability models have been criticized for their

difficulty of being understood and implemented. The

difficulty arises from the reliability theory behind these

models. In implementation, the testing strategies must

conform with the model assumptions, which frequently is in

conflict with common practice. To make software reliability

models easier to use, more study should be done to

accommodate software reliability models to the testing

strategies. Another direction is to extend the

applicability of the model to encompass the entire software

life cycle.

5. In Section VI, software reliability-cost function is assumed

to be a linear function of the debugging time and the number

of faults removed. This function should be validated if

real data are available. The validation of software

reliability models also deserve more investigation.

227

6. Most software reliability models discussed in Section IV and

reliability-cost function discussed in Sections V and VI are

centered around the concept of bug-counting. In some cases,

failures cannot be traced back to a fault (incorrect logic,

incorrect statement, missing statement, etc.) in the

program. For instance, slow response and numerical error

may require the whole module to be rewritten using a new

algorithm. In this case, even though the number of failures

can be counted, counting the number of faults in the program

would be misleading. Software reliability models for this

type of situation should be studied.

228

ACKNOWLEDGEMENTS

I am particularly grateful to ray major professor, Dr. Way Kuo,

whose continuous support and encouragement through this work have made

this dissertation possible. I consider myself fortunate to have worked

with such a respectable educator. His persistence in high quality

research, devotion to education, kindness, and wisdom are admired and

respected.

Each of the members of the committee made valuable contribution to

this work and my six years of education at Iowa State University. Dr.

Roger W. Berger, chairman of my master's thesis work, introduced me to

the areas of Information Systems, Software, and Microcomputer which

stimulated my interest in Software Reliability. Dr. Herbert T. David

and William Q. Meeker Jr.'s course in Reliability is an important

theoretical guidance to this work. Dr. John Even's Queueing Theory and

Dr. Mervyn G. Marasinghe's Statistical Computation have been very

helpful in formulating and solving problems in this dissertation.

A special thanks shall be given to my wife, Hsueh-Foo, for her

love, sacrifice, and support. Thanks are also extended to my sons,

John and Albert, and my parents for their understanding and support

during this research.

