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SECTION I. GENERAL INTRODUCTION 
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INTRODUCTION AND EXPLANATION OF DISSERTATION FORMAT 

Reliability is extremely important for systems involving issues of 

high cost (e.g., space program), safety (e.g., nuclear power plant), or 

security (e.g., military equipment). By definition, reliability is the 

probability of failure-free operation of a system under specified 

conditions for a specified period of time. The system could be a 

hardware system, a software system, a human body, or a combination of 

these. As missions to be accomplished are becoming more and more 

complicated, the need for highly reliable systems is inevitable. In 

achieving high reliability, three problems are faced by reliability 

engineers. First, the reliability-cost function increases 

exponentially. Second, the reliability of a component is usually 

limited by technology. Third, resources for achieving high reliability 

are limited. These problems lead to the subject of reliability 

optimization. 

Fifteen years ago, reliability studies concentrated on hardware 

systems. Both reliability theory and reliability optimization are 

well-known in terms of problem formulation and problem solving 

techniques. Since the 1960s, software has become increasingly an 

important part of larger systems. Since 1970, the cost of software has 

surpassed the cost of hardware as the major cost factor of a system. 

In response to this dramatic change, researchers began developing 

models for software reliability in the 1970s. Compared to the 

exponential growth in demand and size of today's software projects, 



3 

software reliability modeling is still in its infancy. In many cases, 

software cannot be treated as an isolated element. A complex system 

contains hardware subsystems and software subsystems both interacting 

with each other. Unfortunately, very few researchers have studied this 

issue. This research investigates methods for optimizing system 

reliability involving software and hardware. 

Traditionally, the reliability of a hardware system is improved by 

adding redundant components or by using better components. Determining 

the number of redundancies at each stage or the reliability level at 

each stage under available resources is the major concern in 

reliability optimization. Since the available options of an identical 

function component are finite and the number of redundancies is an 

integer, the growth of reliability, in either case, is discrete. 

Numerous techniques have been proposed for reliability optimization 

problems. The Lagrange multiplier method, dynamic programming method, 

branch-and-bound method, maximum principle method, and heuristic method 

are popular techniques. 

When software is involved, the techniques for hardware reliability 

optimization have to be reevaluated. First, redundancy of software can 

not be treated the same as hardware. The failure of a hardware 

component is primarily due to random failures and material 

deterioration. Parallel redundancy is based on the assumption of 

independent failure of components. Software failure is due to 

incorrect logic or incorrect statements in the program. An input state 
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which causes one copy of software to fail will do so for all copies. 

Although some people may argue that a redundant copy of software can be 

produced by an independent group, research has indicated that people 

make the same mistakes in software development. The degree of 

dependency among independent groups remains unanswered. Therefore, the 

issue of software redundancy is much more complicated. Secondly, the 

improvement of software reliability is primarily through debugging 

rather than redundancy. Even though the "number of faults" in a 

program is countable and the actual improvement of software reliability 

is discrete, most software reliability models are continuous models as 

opposed to the discrete growth in hardware redundancy. Therefore, the 

traditional method of integer programming for'hardware redundancy, 

allocation is not appropriate for software. 

When reliability optimization involves software and hardware, two 

types of decision variables need to be determined. For hardware, the 

decision variable is the number of redundancies which is an integer. 

For software, the decision variable is the reliability level which is a 

real number. When both types of decision variables are involved, the 

problem becomes a mixed-integer programming problem. Moreover, the 

reliability function and the constraint functions for software and 

hardware systems are nonlinear functions. Mixed integer programming 

for linear function is better known. But very few methods have been 

proposed for nonlinear mixed-integer programming problem. 
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This dissertation uses the alternate format. It is composed of 

five self-explanatory, yet related papers. In Sections II and III, two 

methods are proposed for mixed-integer reliability optimization 

problems. Section IV is a review and classification of software 

reliability models. It focuses on the nature of software, assumptions 

of software reliability modeling, factors affecting software 

reliability modeling, and modeling techniques. This review paves the 

way for future research in software reliability modeling and 

applications of software reliability model. Section V is a software 

life-cycle cost model for the optimal release time. The motivation is 

to point out the issue of software reliability cost and emphasize the 

•life cycle approach to the problem. Section VI integrates the material 

from Sections II through V. The purpose is to incorporate software 

into the reliability optimization problem. An abstract of each paper 

appears below. 

Abstract of Section II 

Section II, "A Comparative Study of Heuristic Reliability 

Optimization Methods" investigates the effectiveness of a mixed-integer 

programming method. This method is a combination of the heuristic 

redundancy method and the sequential search method. The heuristic 

method determines the integer variables (number of redundancies) by 

assuming that the real variables (reliability level) are known. The 

sequential search method determines the real variables. At each 
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iteration, a point in the multi-dimensional real space is chosen. Once 

the real variables are fixed, the heuristic method is applied to find 

the integer variables. When both types of decision variables are 

determined, the objective function can be computed. The next iteration 

moves to a new point according to the search strategy. As the search 

proceeds, the current best solution is continuously updated. 

Heuristic redundancy methods and sequential search methods were 

developed independently for different types of problems. Many 

heuristic redundancy methods have been proposed for the integer 

programming problem. Also, many sequential search methods have been 

proposed for real-variable peak-finding problems. This paper 

investigates their relative merits in obtaining the optimum solution-

Four heuristic methods and two sequential search methods were studied. 

Simulation was used to test these eight combinations on 100 simulated 

problems. The test problem is based on a bridge structure with three 

nonlinear constraints. 

Results of this simulation show that when heuristic methods are 

used to solve pure integer programming problem, the quality of the 

answer is proportional to the CPU time required to obtain the answer. 

When the sequential search technique is added to the heuristic method 

to solve the mixed-integer programming problem, the sequential search 

method is more significant in obtaining the optimal solution. This 

method is slow. But it takes advantage of the existing search methods 

and heuristic methods, and can solve a variety of problems. 
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Abstract of Section III 

Section III, "Reliability Optimization with Lagrange Multiplier 

and Branch-and-Bound," presents a new method for the mixed-integer 

reliability optimization problem by using the Lagrange multiplier 

method and the branch-and-bound method. The Lagrange multiplier method 

solves a constrained problem by introducing Lagrange multipliers. By 

multiplying Lagrange multipliers to each constraint and adding to the 

objective function, the constrained problem becomes unconstrained. 

According to the Kuhn-Tucker conditions, the necessary condition for an 

optimum to exist is that the first derivative vanishes. By taking 

derivative with respect to the number of components at each stage, the 

reliability level of the components, and Lagrange multipliers, a set of 

simultaneous equations are formed. The solutions to the set of 

simultaneous equation are stationary points to the problem. Since this 

method is based on differentiation, all variables are treated as real 

variables. A solution obtained by this method is a real number 

solution. 

The branch-and-bound method is then used to obtain the integer 

solution for integer variables. The branch-and-bound for integer 

programming divides the solution space by imposing a lower bound 

constraint to one problem and an upper bound constraint to another 

problem. For example, a constraint x 5 3 is added to one problem and x 

^ 4 is added to another when an integer variable takes value between 3 

and 4. The process continues until all the integer variables become 

integer and no better solutions can be found. 
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The results show that this method is superior to the method 

presented in Section I. The reasoning process is more logical than the 

heuristic method in obtaining the optimal solution. 

Abstract of Section IV 

Section IV, "A Review and Classification of Software Reliability 

Models," focuses on how a software reliability model is derived and how 

the reliability of software can be measured. 

Hardware reliability models are normally based on failure data. 

If a particular distribution fits very well to the failure data of a 

particular hardware, this distribution is used to estimate and predict 

the reliability of that hardware. However, this approach is not 

appropriate for software. Although many software reliability models 

have been proposed, very few of them have been tested on a variety of 

software products and very few of them have proven to be effective for 

a variety of software products. One of the difficulties is that each 

software is a new product. Past experiences can only serve as a 

reference point. 

Most software reliability models are theoretical models derived 

from assumptions. Software reliability theoreticians believe that 

there are some factors governing the failure process. Depending upon 

the assumptions imposed, dozens of software reliability models have 

been proposed. These models and related materials from about 300 

papers are reviewed and classified in Section IV. Attributes of 
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software reliability models are also discussed. Special attentions is 

given to the probabilistic models which can further be divided into the 

binomial model, Poisson model, and Markov process. 

Abstract of Section V 

The reliability optimization problem in Sections II and III 

implied that a functional relationship between software reliability and 

cost existed. Section V, "Reliability Cost in Software Life Cycle 

Models," investigates this relationship. It is recognized that 60% of 

the software life-cycle costs are incurred after release and the 

maintenance cost depends heavily upon the reliability at the release 

time.' Thus, an optimum release time model based on the nonstationary 

birth-and-death process is proposed. The trade-off between debugging 

cost and maintenance cost is studied. 

Abstract of Section VI 

Section VI, "Reliability Optimization with Software Components," 

integrates reliability-redundancy allocation techniques, software 

reliability-cost function, and software redundancy into a system 

reliability optimization problem. A series system with hardware 

components and software components is studied. The failure of hardware 

redundancies are independent of each other, while the failure of 

software redundancies are partially independent. 
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The unknown variables of this reliability optimization problem are 

the number of hardware redundancies, the number of software 

redundancies, the hardware reliability levels and the software 

reliability levels. The mixed-integer programming techniques in 

Sections II and III are used to solve this problem. Software 

reliability model in Section IV and software reliability cost in 

Section V are adapted to formulate the objective and constraint 

functions of this problem. 



11 

SECTION II. A COMPARISON OF HEURISTIC RELIABILITY OPTIMIZATION METHODS 
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INTRODUCTION 

Many optimization techniques have been proposed to allocate 

redundancy or reliability level for a system of series configuration 

[15]. But more important than optimizing system reliability with 

respect to a single type of variable, both redundancies and reliability 

levels are usually determined simultaneous. The purpose of this study 

is to investigate methods to maximize the reliability of a complex 

system subject to nonlinear constraints. Sequential search techniques 

and reliability optimization heuristics commonly used for optimizing a 

single type of variable are combined for solving a mixed-integer 

programming problem. Performance of these heuristics is accomplished 

through simulation. 

In this study, the system reliability is based on the following 

definition of a system. A system is composed of one or more stages (or 

subsystems). A stage is a unique functional unit of the system and may 

be composed of one or more components. Cost functions at different 

stages are assumed to be additive. The system reliability is the 

probability of successful operation of a system for a specified period 

of time under given conditions. It is usually expressed in terms of 

the reliabilities of both the stages and components. In evaluating the 

system reliability, it is necessary to specify the system structure, 

the component failure process, and the definitions of failures. 

For a series system, the system is operational only when all the 

stages are operational. For a parallel system, the system is 
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operational if one or more stages are operational. A general system 

(or complex system) is a nonparallel nonseries system, whose 

reliability can be evaluated by probability theory once the system 

structure is clearly defined. Other types of structures are the 

parallel-series system and the series-parallel system. In this study, 

a nonparallel-nonseries system is investigated. It is assumed that 

its components are independent of each other and the component 

reliability is deterministic. Figure 2.1 lists the system structures 

and their system reliabilities. 

The reliability of a system can be improved by increasing the 

component reliability or adding redundant components. The first method 

determines the component reliability levels to maximize the system 

reliability or minimize the total cost. However, this approach may not 

be economical because of the exponential increase of the reliability-

cost function. Also, the highly reliable component may not be 

available. The second method determines the number of redundancies at 

each stage, which means that if more components are used, the system 

gets voluminous, heavy, and costly. Quite frequently, optimization 

problems refer to only one of these two options. In the design stage, 

however, the reliability optimization methods should consider the 

tradeoff between reliability and redundancy with respect to cost and 

performance requirements. The component reliability is a real number 

between 0 and 1, while the number of redundancies is an integer number. 

To optimize both decision variables simultaneously, a mixed-integer 

programming problem is involved. 
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This mixed-integer reliability optimization problem was first 

given by Misra and Ljubojevic [9] to solve a four-stage series system 

using the Lagrange multiplier technique. Another method was given by 

Tillman et al. [13] that combines the sequential search method with a 

heuristic redundancy method proposed by Aggarwal et al. [2]. The 

sequential search method moves from point (a combination of decision 

variables) to point in the solution space to find the optimal solution 

of a multivariable function. When it is applied to the reliability 

optimization problem, the component reliabilities are the decision 

variables and the system reliability is the objective function to be 

maximized. For each move (change in the component reliability), the 

heuristic redundancy method is applied to determine the number of 

redundancies at each stage. Once the component reliabilities and the 

number of redundancies are determined, the system reliability is 

calculated and compared to the current best solution. If the solution 

is better, the current best solution is updated. The search continues 

until the stopping rule is reached. This method takes advantage of 

both the existing heuristic redundancy allocation methods and the 

sequential search methods. The algorithm is shown in Fig. 2.2. The 

third method, which modified some of the existing heuristics [4,13], 

was presented by Gopal et al. [4]. In their approach, component 

reliabilities are sequentially increased in order of descending value 

of a predefined sensitivity function. For every change in component 

reliability, redundancies are allocated to determined the new system 

reliability. At each stage, an inferior solution is rejected. 
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FIGURE 2.2. Combination of heuristic and search methods 
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Previous studies use a specific redundancy heuristic and a 

specific search method to solve a specific problem [4,13]. The 

heuristics' performance has not been investigated. This study intends 

to combine each of the two search methods [4,5] with each of the four 

major heuristic redundancy methods [3,6,11,12]. Comparison is based on 

a nonparallel-nonseries bridge system subject to three nonlinear 

constraints. One-hundred test problems are randomly generated. Each 

is tested by eight combinations of the methods. 
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REVIEW OF THE HEURISTIC REDUNDANCY ALLOCATION METHODS 

ation; 

Rg, Qg reliability and unreliability of the system 

Rj , Qj reliability and unreliability of the jth stage 

rj , qj reliability and unreliability of component j 

Xj number of components at stage j 

R Ci"!, • • •,rjij) ; vector of component reliability 

X (xi, • • •,Xfj) ; vector of the number of 

components used at each stage 

g£ i th constraint 

g£j amount of resource i consumed at stage j 

b£ amount of resource i available 

N xi 
b£ bi - 2 Z Agi :(k) 

j=l k=l 

Cj (rj) cost function of the jth component reliability 

Cg system cost function 

h step size; amount of increment in component 

reliability 

L+1 set of all the stages whose reliabilities 

can be increased. 

current optimal solution 

X® current solution 

X(±j) (xj^, • • • ,Xj±l, • • • .x^) ; add/subtract 1 at stage j 

X(-j,+s) (x^ , • • • ,xj-i , • • •, Xg + 1, • • • ,Xj^) ; subtract 1 from ; 



19 

and add 1 to Xg 

S(j) AQg(xj); decrement in Qg by increasing 

xj by 1 

Afj (xj) ^nRj (xj) - ̂ nRjCxj - 1) 

Agij(xj) gij(xj) - gij (xj - I) 

AQj(xj) decrement in Qj by increasing Xj by 1. 

The redundancy optimization problem can be formulated as 

Max Rg(X|R) 

subject to 

N 
Z gi;(x:) ̂  b£ for all i. 
j = l 

Assuming that the component reliabilities, R = (rj^, r^), are 

given constants, the above problem is to determine the number of 

redundancies at each stage, X = (xj^, x^). 

Depending upon the type of structure, failure mode, and constraint 

functions, the above problem may be converted into different forms [7]. 

Since 1956, numerous techniques have been proposed to solve a variety 

of reliability redundancy optimization problems [14,15]. Yet, none of 

them can effectively solve a large-scale general system with multiple 

nonlinear constraints. Those techniques are restricted to one or more 

of the following. 
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• Limited to a special type of system configuration, normally 

the series system, 

• Limited to a special type of constraint function, for example, 

the linear constraints, 

• Limited by the dimension of the problem, 

• Nonguaranteed global optimal solution, 

• Complicated computation. 

• Treated the problem as a nonlinear noninteger optimization, 

then approximated the optimal decision variables to an integer 

number through extensive discussion. 

Therefore, heuristic redundancy allocation methods have been 

suggested. . The heuristic method has the properties of simplicity, 

generality, and efficiency [7,15]. Many algorithms have been able to 

solve the series system with multiple nonlinear constraints 

[2,3,6,7,11], although global optimality is not yet guaranteed. 

Most redundancy allocation heuristics are based on the following 

steps. 

1. Initialize each stage with one component. 

2. Evaluate the sensitivity function to determine the stage to 

which a redundant component is to be added. A sensitivity 

function is defined as the trade-off between the increment 

of system reliability and the resources consumption. 

3. Increase the number of redundancies by one at the proposed 

stage and repeat steps 2 and 3 until the constraint is 

violated. 
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Four major heuristic redundancy methods compared in this study are 

summarized below. 

Sharma and Venkateswaran Method (S-V) 

The S-V method [12] is based on a series system of small Qj's. 

For a series system, the unreliability of the system can be expressed 

as follows. 

N N N 
Min Qg = 1 - n (1 - Q:) = Z Q: = 2 q*i 

j = l j = l j = l. ^ 

By this approximation, the maximization of Rg is equal to the 

minimization of the sum of Qj's. Therefore, adding a redundancy to the 

stage having the largest Qj would increase the system reliability by 

the largest amount. Although this method is simple and efficient, it 

does not incorporate the constraint functions into the selection 

criteria. In general, it does not yield the optimal solution as shown 

by Nakagawa and Miyazaki [10] and this study. The relative error 

increases and the optimality rate decreases as the number of decision 

variables increase. 

The Gopal, Aggarwall, and Gupta Method (G-A-G) 

The G-A-G method [3] is an improved version of their previous 

works [1,2]. A relative increment of resource is defined as 

Ag£j(xj) = Agij(xj)/max {Ag£j(xj)}. 
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A selection factor evaluates the ratio of relative increment of 

resource over the decrement of stage unreliability. A redundant 

component is proposed to be added to the stage having the least value 

of selection factor. The selection factor is defined as 

Fj(xj) = max {Ag^j(xj)}/AQj(xj). 

For the series, 

, ^ Xj Xj+1 xj 
AQj(xj) = qj - qj = rjqj • . 

The selection factor, Fj(xj), can be written in the following forms. 

a. The series system with linear constraints: 

Fj(xj) = Fj(xj-l)/qj for xj > 1 

Fj(l) = max {Ag£j(1)}/rjqj for xj = 1. 

b. The series system with nonlinear constraints; 

Fj(xj) = max {Ag^j(xj)}/fj(xj) 

fj(xj) = qjfjCxj-l) for Xj > 1 

fj(l) = rj-qj for Xj = 1. 

c. The complex system; 

AQg(xj) = QgfQi,..., (Qj=qjJ) , . . . , Q^) 
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•  • •  -  .  •  • •  " Qs^Ql»CQj^qjJ ),''',QN) 

— (q̂ j -

9Qj  

= fjQj 
3Qs (X) 

3Qj(x j )  

Max {Agf.(x:)} 
Fj(x:) = 2 • 

rjQj{3Qs(X)/9Qj(xj)} 

The G-A-G method is simple, fast, and easily programmable. It can 

be applied to a series or a general system with multiple nonlinear 

constraints. For a series system, the recursive representation of the 

selection factor simplifies the computation. 

The Extended Nakagawa and Nakashima Method (N-N) 

Originally, the N-N method [11] was based on the series system. 

The problem was formulated as 

N 
Max Rg = n R:(x:) 

j = l 

subject to 

N 
Z g£ : (xp S b£ for all i, 
j = l 
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With the assumption of monotonically nondecreasing constraints, the 

above problem can be transformed into 

N xj 
Max ^n Rg(X) = Z Z Af • (k) 

j-1 k-I 

subject to 

N Xj 

Z Z Ag£;(k) ̂  b£ for all i 
j=l k=l 

Afj(k) ̂  0 for all j and k 

Ag£j (k) 2: 0 for all i, j and k. 

A balancing coefficient, a, balances the weights between the 

increment of system reliability and the resource consumption. The 

sensitivity function is defined as 

S:= Af,-(x'+l)[ (1-a) • min {Axj^} + a Ax,-] 
^ ^ keL+i 

where 

Axj = rain {b?/Agij(Xj + 1)} 

A redundant component is then proposed to be added to the stage 

having the largest S£. Fourteen balancing coefficients (0.0, 0.1, ..., 

1.0, 1/0.9, 1/0.6, 1/0.3) are evaluated. The best solution is the 

final solution. 
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This method was later extended to the general system by redefining 

Afj(xj) = AQg(xj) [7]. According to Nakagawa and Miyazaki [10] and the 

results of this Section, the N-N method is the most accurate heuristic 

redundancy optimization method, but it requires the longest execution 

time because of the repetitive computation of 14 balancing 

coefficients. 

The Kohda and Inoue Method (K-I) 

The previous three methods improve system reliability by adding 

redundancy one-by-one to the selected stage. The algorithm stops when 

any constraint is violated. The K-I method [6] further examines the 

solution by adding a redundancy to one stage and subtracting a 

redundancy from another stage to determine whether the new solution is 

feasible and better. 

For every x"P(-j), the maximum S(kj) over {j(x"P (-j, + s) is 

feasible} is obtained. Then the deviation, 

D(j) = [s(kj) - S(j) ] |X*P(-j) 

is calculated. If the maximum deviation, D(^), is greater than zero, 

the system reliability can be improved by adding one redundant unit to 

stage / and subtracting one from stage k^. If the constraint is not 

monotonically nondecreasing, two redundancies are added to the stages 

to see if the solution is feasible and better. This method serves as 

an improved step to the solution obtained by any redundancy allocation 

method. 
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THE SEQUENTIAL SEARCH METHODS 

Without considering redundancy, the reliability allocation problem 

can be formulated as 

Max RG (R) 

subject to 

N 
2 gi;(R) i b£ Eor all i 
j = l 

or 

Min Cg(R) 

subject to 

RGCR) > R 
Vc 

Tj 5: rj for all j 

where 

,V Vf 
R and rj are given lower bounds. 

This problem, a typical nonlinear programming problem, restricts 

the decision variables, R = (r^ r^), between 0 and 1. To solve 

such a problem, numerous search techniques can be utilized. There are 

two basic types of search techniques: the simultaneous search and the 

sequential search. The simultaneous search, also called the exhaustive 



27 

search, evaluates the function value at predetermined points. The 

results of an experiment are not used to determine the next experiment. 

On the other hand, the results of a sequential search provide 

information for the next experiment. 

The exhaustive search method cannot be applied to a problem of 

moderate or large size. The use of the sequential search technique to 

handle the real part of the mixed-integer reliability optimization 

problem was first presented by Tillman et al. [13] and later by Gopal 

et al. [4]. These two sequential search methods are simple and 

efficient compared to the other search methods. Neither requires a 

differentiable objective function. They can be easily understood and 

implemented without any special mathematical background. Two search 

techniques proposed are summarized below. 

The Hooke and Jeeves Pattern Search Method (H-J) 

The H-J pattern search [5] begins with an arbitrarily selected 

base point. The search is composed of the exploratory move and the 

pattern move. An exploratory move finds a new pattern (direction) by 

adding and subtracting a step size to the current base point. A 

pattern move actually makes an improvement toward the optimal solution 

by adding two times the difference between the previous base point and 

the current base point. For each move (change in the decision 

variables), the function value is evaluated and compared with the 

current optimal solution. If a move gives a better solution, the base 



point and current optimal solution are updated. Otherwise, the step 

size is reduced by half. The search ends when the step size is smaller 

than a predetermined minimum step size and the functional value sees a 

limited improvement. The algorithm is shown in Fig. 2.3. 

The Gopal, Aggarwal, and Gupta Search Method (G-A-G) 

The G-A-G search method simplifies the search procedure by simply 

adding a step size to the component reliability. A sensitivity 

function was introduced to determine the order of adding a step size to 

the component reliability. The sensitivity function is defined as 

Sj(rj,X) = C Rg (ri, • • •, rj+h, • • •, rj^; X) - Rg(R,X)] , 

/ [Cj (rj-t-h) - Cj (rj) ] 

The algorithm is shown in Fig. 2.4. This method, although very simple 

and efficient, does not yield satisfactory solutions. 
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(ST̂  

ASSUME R°, THE INITIAL BASE 
POINT 

FIND OPTIMAL REDUNDANCIES, X*(R°), BY 
THE HEURISTIC APPROACH AT R° CALCULATE 
THE SYSTEM RELIABILITY R (R*,X (R®)). 

START AT BASE POINT 

MAKE EXPLORATORY MOVES WITH RESPECT TO R 
AT EACH MOVE FIND X* (R) BY THEIHEURISTIC 
APPROACH, AND CALCULATE R (R,X«(R)). 

IS 
PRESENT 

FUNCTIONAL VALUE: 
R- (H.X*(R)). ABOVE 

THAT AT BASE 
INT? 

SHALL ENOUGH? 

SET NEW BASE POINT 

OPTIHUH SOLUTION 
IS REACHED 
OPTIHUH SOLUTION 
IS REACHED 

^XiTEP SIZE^s. 
vYES JITH RESPECT TO^ vYES 

HAKE PAHERN MOVE WITH RESPECT TO R. 
FIND X*(R) BY THE HEURISTIC APPROACH. 
CALCULATE R, (*,%*(*)). 

DECREASE STEP SIZE WITH 
RESPECT TO R. 

MAKE EXPLORATORY MOVES WITH RESPECT TO R. 
AT EACH MOVE FIND X*(R) BY THE HEURISTIC 
APPROACH AND CALCULATE RjR,X*(R)). 

IS 
PRESENT 

FUNCTIONAL VALUE, 
R, fR,X«(R)). ABOVE 
* THAT AT BASE 

POINT? 

FIGURE 2.3. Combination o£ H-J search and heuristic methods 
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TOO SMALL 

STOP 

XlEAST ONCr^ 
OLD VALUE OF R 
J?,X HAS BEEN 
N̂wUPOATED̂  

/̂ (R.X) BEnER̂  
THAN OLD VALUE OF 

R.(R.X)7 ^ 

SET h - h/2 

UPDATE OLD VALUE 
OF RJR,X),R.X 

INITIALIZE R AND DETERMINE 
X USING ANY REDUNDANCY 
ALLOCATION METHOD 

COMPUTE RJR.X) AND CALL 
THESE OLD*VALUES OF 
R,,R,X RESPECTIVELY 

COMPUTE THE SENSITIVITY FUNCTION 
Sj(Rj.X) FOR ALL j AND FORM 
S • [(Sj.j) FOR ALL j] IN 
DECEN0IN6 ORDER OF S.'s 

IN THE ORDER OF S. SET Tj • fj+h 
ANO COMPUTE X USING REDUNDANCY 
ALLOCATION METHOD. THEM COMPUTE 
R,(R,X) 

FIGURE 2.4. Combination of G-A-G search and heuristic methods 
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FORMULATION OF THE RELIABILITY-REDUNDANCY ALLOCATION PROBLEM 

In the design stage, it must be decided whether or not to use 

highly reliable components or to add redundancies. For a system such 

as a space shuttle, a system reliability near 1.0 is desirable. Yet to 

minimize the shuttle weight, adding redundancy would be a real burden. 

On the other hand, in an ordinary industrial product, adding 

redundancies can be a good solution, since the cost of a reliable 

component is at least an exponential function of its reliability 

measure. The following mixed-integer reliability optimization problem 

is formulated to allow flexibility in the decision process for the 

systems falling between these two extremes. 

Max Rg(R, X) 

subject to 

N 
S g£j(rj,Xj) S b£ for all i. 
j"l 

R = (rj r^) and X = (xj, ..., x^) are to be determined for 

given gij's and bj's. 

The system studied is the bridge system shown in Fig. 2.1. 

Its system reliability can be evaluated as follows. 

Rs = Pr{system is good | component 5 is good} 

X Pr{component 5 is good} 
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+ Pr(system is good | component 5 is failed} 

X Pr{component 5 is failed} 

= RlR2 + R3R4 + R1R4R5 + R2R3R5 - RIR2R3R4 - RIR2R3R5 

- R1R2R4R5 - RIR3R4R5 - R2R3R4R5 + 2R1R2R3R4R5. 

The three nonlinear constraint functions from [13] are 

5 
g3(X) = Z Wjxjexp(xj/4) - W S 0 

j = l 

xj's i 1 are integers. 

0 < r J ' s < 1. 

The first constraint models the combination of volume and weight, 

which is a function of the number of redundancies. The second 

constraint models the cost, which is a function of the number of 

redundancies as well as the component reliability. The third 

constraint models the weight, which is a function of the number of 

redundancies only. The reliability function and cost function of the 

second constraint are 

gl(x) = Z P.xf - P < 0 
j-1 ^ 
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Fj = exp(-\jt) 

and 

Cj(rj) = aj(l/Xj)^j = aj(-C/^n rj)^i 

where Xj is the failure rate, t is the time, and aj and |3j are cost 

coefficients. 
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COMPUTATION AND RESULTS 

One-hundred sets of constraint coefficients of specified ranges as 

listed in Table 2.1 are randomly generated from uniform distribution. 

Each set of coefficients represents a test problem. 

TABLE 2.1. Ranges for coefficients of constraint functions 

Coefficient Range Coefficient Value Coefficient Value 

Pj 1.0-10.0 P 100 ' t 1000 

Wj 5.0 - 15.0 W 200 Pj 1.5 

Gjxl&S 0.3 - 9.0 C 200 -

where j=1,2,3,A,5. 

In order to investigate the effects of combining or not combining 

with the search method, the problems were first tested on the four 

heuristic redundancy methods with constant component reliability. Two 

component reliability levels, 0.7 and 0.85, were tested. The same 

problems were then tested by combining two sequential search methods 

with four heuristic redundancy methods using the algorithm outlined in 

Figs. 2.3 and 2.4. The extended N-N method used three values (0.5, 

1.5, and 2.5) instead of 14 values to reduce execution time. The K-I 

method utilized Aggarwal's redundancy method [1] to find a solution 

before the perturbation method is applied. Since the initial base 
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point may affect the final answer, two initial base points, 0.5 and 0.7 

were tested on each combination. 

The results are compared in the following criteria: 

1. Optimality rate (0): the number of times the method yields 

the highest system reliability. 

2. Maximum error rate (M): the number of times the method 

yields the lowest system reliability. 

3. 100 
Average absolute error (A); Z |RgJ - Rg-'j/lOO 

j = l 

where Rg-' is the system reliability of method i at the j th 

run and Rg-^ = max{ Rg^ } 

100 * ' , * I • 
4. Average relative error (R) : Z |RgJ - Rg-^ |/(lOOxRgJ). 

j = l 

5. Average execution time (T) : average CPU time of 100 runs. 

Table 2.2 summarizes the effects on the heuristic redundancy 

methods by relaxing the assumption of constant reliability. Data in 

each row of Table 2.2 are based on that particular experiment. In the 

case of constant component reliability, significant differences exist 

among the heuristic redundancy methods. The solution depends heavily 

upon the type of algorithm used. The quality of the result is 

proportional to the execution time required to obtain the answer. The 

simulation results are consistent over all criteria. 
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Having combined sequential search methods, the relative 

performance changed considerably. Using the G-A-G search method, G-A-

G/G-A-G is the best for optimality rate. G-A-G/N-N is the best for 

maximum error rate, while G-A-G/K-I is the best for average absolute 

error. Using the H-J search method, the differences among G-A-G, N-N, 

and K-I heuristic redundancy methods are leveled out. Except for the 

fact that K-I has a higher maximum error rate, the results are quite 

consistent. 

In Table 2.3, the results of eight combinations are compared. 

Data at each entry of Table 2.3 are the results compared over eight 

combinations of the method. Comparison of all criteria and all 

heuristic redundancy methods shows that the H-J search method is 

significantly better than the G-A-G search method. The differences 

among H-J/G-A-G, H-J/N-N, and H-J/K-I are not significant. It can be 

concluded that the search method is the dominant factor in solving this 

type of problems. The relative importance of the heuristic redundancy 

methods are leveled out when combined with the search methods. 

The algorithms were coded in Fortran 77 and run on an IBM PC/AT 

with a mathematical co-processor. The computation was done in double 

precision to avoid round-off errors. Because of the structure of the 

system, a low component reliability will yield a high system 

reliability. Therefore, the absolute errors are small and the relative 

errors are closed to the corresponding absolute errors. 



TABLE 2.2. Simulation results I 

Heuristic Method 

Search Method 

Base Point 1 (0.5) 
or r^ = 0.7 

S-V G-A-G N-N K-I 

Constant rj's 

G-A-G 

H-J 

Constant ij's 

G-A-G 

H-J 

Constant r^'s (%) 

G-A-G (lO"^) 

H-J (lO"^) 

Constant r^'s (sec) 

0 

0 

0 

G-A-G (sec) 

H-J (sec) 

AÎ 

A 

A 

T§ 

T 

T 

36 

6 

8 

55 

M 76 

M 72 

0.416 

45 

86 

0.213 

30.8 

58. 1 

53 

50 

35 

43 

11 

7 

0.311 

11 

15 

0.844 

123.3 

2 2 8 . 2  

68 

40 

31 

31 

9 

7 

0.101 

12 

17 

2.06 

288.5 

501.5 

55 

36 

43 

45 

12 

17 

0.532 

10 

22 

1.15 

166.1  

298.1 

0 = optimality rate. 

= maximum error rate. 

Ia = average absolute error. 

execution time. 
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Base Point 2 (0.7) 
or =0.85 Average 

S-V G-A-G N-N K-I S-V G-A-G N-N K-1 

42 57 71 70 39 55 69.5 62.5 

8 52 44 39 7 51 42 37.5 

10 36 41 31 9 35.5 36 37 

61 43 33 38 58 43 32 41.5 

76 11 8 15 76 11 8.5 13.5 

61 11 14 17 62.5 9 10.5 17 

0.1 0.086 0.016 0.05 -- -- --

45 12 12 9 45 11.5 12 9.5 

50 19 21 17 68 17 19 19.5 

0.204 0.82 1.94 1.20 0.208 0.832 2.0 1.18 

20.3 82.2 188.8 112 25.6 102.7 238.6 139 

53.9 199.6 446.4 273.6 56 214 474 285.9 



TABLE 2.3. Simulation results II 

Heurist ic Method Base Point 1 (0.5) 

Search Method S-V G-A-G N-N K-I 

G-A-G 
-,v 
U 2 10 7 6 

H-J 0 5 30 2& 37 

G-A-G 41 9 4 6 

H-J M 30 4 5 8 

G-A-G (lO"^) AT 62 » 29 26 

H-J (lO'S) A 87 17 19 23 

0 = opt imal i ty  rate .  

=  maximum error  rate ,  

|a = average  absolute  error .  
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Base Point 2 (0.7) Average 

S-V G-A-G N-N K-I S-V G-A-G N-N K-I 

0 12 5 7 1 11 6 6.5 

7 32 36 24 6 31 32 30.5 

43 7 4 9 42 8 ' 4 7.5 

25 8 6 6 27.5 6 5.5 7 

61 27 27 24 61.5 27 28 25 

52 21 23 18 68.5 19 22 20.1 



39 

REFERENCES 

1. Aggarwal, K. K. "Redundancy optimization in general system." 
IEEE Transactions on Reliability, R-25, 1976, 330-332. 

2. Aggarwal, K. K., J. S. Gupta, and K. B. Misra. "A new heuristic 
criterion for solving a redundancy optimization problem." IEEE 
Transactions on Reliability, R-24, 1975, 86-87. 

3. Gopal, K., K. K. Aggarwal, and J. S. Gupta. "An improved 
algorithm for reliability optimization." IEEE Transactions on 
Reliability, R-27, 1978, 325-328. 

4. Gopal, K., K. K. Aggarwal, and J. S. Gupta. "A new method for 
solving reliability optimization problem." IEEE Transactions on 
Reliability, R-29, 1980, 36-38. 

5. Hooke, R. and T. A. Jeeves. "Direct search solution of 
numerical and statistical problems." J. Assoc. Comp., 8, 1961, 
212-224. 

6. Kohda, T. and K. Inoue. "A reliability optimization method for 
complex systems with the criterion local optimality." IEEE 
Transactions on Reliability, R-31, 1982, 109-111. 

7. Kuo, W., C. L. Hwang, and F. A. Tillman. "A note on heuristic 
methods in optimal system reliability." IEEE Transactions on 
Reliability, R-27, 1978, 320-324. 

8. Misra, K. B. "A simple approach for constrained redundancy 
optimization problem." IEEE Transactions on Reliability, R-21, 
1972, 30-34. 

9. Misra, K. B. and M. D. Ljubojevic. "Optimal reliability design 
of a system: a new look." IEEE Transactions on Reliability, 
R-22, 1973, 255-258. 

10. Nakagawa, Y. and S. Miyazaki. "An experimental comparison of 
the heuristic methods for solving reliability optimization 
problems." IEEE Transactions on Reliability, R-30, 1981, 
181-184. 

11. Nakagawa, Y. and K. Nakashima. "A heuristic method for 
determining optimal reliability allocation." IEEE Transactions 
on Reliability, R-26, 1977, 156-161. 



40 

12. Sharma, J. and K. V. Venkateswaran. "A direct method for 
maximizing the system reliability." IEEE Transactions on 
Reliability, R-20, 1971, 256-259. 

13. Tillman, F. A., C. L. Hwang, and W. Kuo. "Determining component 
reliability and redundancy for optimum system reliability." 
IEEE Transactions on Reliability, R-26, 1977, 162-165. 

14. Tillman, F. A., C. L. Hwang, and W. Kuo. "Optimization 
Techniques for system reliability with redundancy — a review." 
IEEE Transactions on Reliability, R-26, 1977, 148-155. 

15. Tillman, F. A., C. L. Hwang, and W. Kuo. Optimization of 
Systems Reliability. Marcel Dekker, New York, 1985. 



41 

SECTION III. RELIABILITY OPTIMIZATION WITH THE LAGRANGE MULTIPLIER AND 

BRANCH-AND-BOUND TECHNIQUES 
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INTRODUCTION 

In the past two decades, numerous reliability optimization 

techniques have been proposed [12]. These techniques can be classified 

as the exact method and the iterative method. The exact method obtains 

the solution analytically. In general, it involves more mathematics 

and generate a more accurate solution. The Lagrange multiplier with 

Kuhn-Tucker conditions [8,9] and dynamic programming [12] are examples 

of the exact method. The iterative method obtains the solution by 

repeating the algorithm or enumerating the solutions. It does not 

require an extensive mathematical background. The branch-and-bound 

technique [10] and the heuristic method [13] are examples of the 

iterative method. 

In most reliability optimization problems, the decision variables 

are the number of redundancies that are integer (integer programming or 

redundancy allocation problems), the component reliabilities that are 

real numbers (real programming or reliability allocation problems), or 

a combination of both (mixed-integer programming or reliability-

redundancy allocation problems). In the methods that are based on 

differentiation, the decision variables must be continuous. Earlier 

studies treat the number of redundancies as real variables [8,9]. The 

real number answer is rounded off and the neighboring integer solutions 

are evaluated. The best feasible solution among the trials is taken as 

the final solution. This method works well if the problem is simple 

and the constraints are linear [9]. As the problem gets complicated, 
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the rounding off and trial-and-error procedure become inefficient and 

inaccurate. Furthermore, this approach provides no theoretical 

reasoning and has difficulties in extending the integer programming 

problem to the mixed-integer programming problem, which is frequently 

needed for reliability optimization. 

Other methods treat the redundancy allocation problem as an 

integer allocation process from the very beginning. Heuristics are the 

popular techniques [12] but offer the users little feeling about 

optimality. In addition, it is both inefficient and difficult to 

justify the methods to solve the reliability-redundancy allocation 

problem. The combination method studied in Section II provides one of 

a few ways to optimize the reliability-redundancy allocation problem. 

Unfortunately, it suffers numerical instability and low computational 

efficiency. 

A method combining the Lagrange multiplier technique with the 

branch-and-bound technique is proposed. The Lagrange multiplier 

technique quickly reaches an exact real number solution that is close 

to the optimal solution. Next, the branch-and-bound method is used to 

obtain the integer solution. This proposed method can solve both the 

redundancy allocation problem and the reliability-redundancy problem. 

When dealing with the latter problem, only branching and bounding the 

integer variable is necessary. 
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THE LAGRANGE MULTIPLIER AND KUHN-TUCKER CONDITIONS 

Notation: 

[xj] integer part of xj 

the ith Lagrange multiplier 

L Lagrange multiplier function 

g£ the ith constraint. 

The constrained reliability optimization problem can be formulated 

as follows: 

Max Rg(X,R) 

subject to 

gi(X,R) < bi i=l,...,M. (3.1) 

The Lagrange multiplier technique transforms the constrained 

optimization problem into the unconstrained problem by introducing the 

Lagrange multipliers, X^'s. The unconstrained optimization problem, 

called the Lagrangian, becomes 

M 
Max L(X,R,X) = Rg(X,R) - 2 Xi[gi(X,R) - b^] (3.2) 

i = l 

Xi's > 0. 
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According to the Kuhn-Tucker conditions [7], the necessary 

conditions for a maximum to exist are 

8L 
=0 (3.3) 

Br ; 

5L 
=0 (3.4) 

3xj-

9L 
Xi = X£[g£(X,R) - b^] = 0 - (3.5) 

9Xi 

X; > 0 (3.6) 

g£ - b£ 5 0 i " 1,..., M (3.7) 

Equations (3.3), (3.4), and (3.5) form a system of 2N + M 

simultaneous equations. The solutions to these simultaneous equations 

subject to Eqs. (3.6) and (3.7) are extreme points in Eq. (3.1). 

The nonlinear simultaneous equations can be solved by Newton's 

method, which expresses the multi-variable root-finding problem as 

follows [2]. 

Xk+1 = Xk " VJ(Xk)'l F(Xk) (3.8) 

where 

X^ X at the kth iteration 

V a positive scalar 

F(X) (fi(X), ..., f^CX))^ 
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J(Xj^) Jacobian matrix of F (Xj^) . 

The scalar, V, controls the rate of convergence. If V is greater 

than one, the convergence is faster. If V is greater than zero and 

less than one, the convergence is slower. For the reliability 

optimization problem, the scalar, V, is taken to be less than one, 

since the upper and lower bounds of xj and rj are not imposed on the 

constraints. This conservative measures avoids xj and rj converging in 

an infeasible region. 

Newton's method requires the evaluation of partial derivatives of 

the simultaneous equations. In some applications, the exact evaluation 

of the partial derivatives is inconvenient or even impossible. This 

difficulty can be overcome by using a finite difference approximation 

to the partial derivative [2], i.e., 

3fi(X) fi(X + ëjh) - fi(X) (3.9) 
__ _ _ 

where h is a small value and ej is a vector with one at the jth element 

and zero elsewhere. Other methods such as the secant approximation to 

the derivative in Newton's method [14], i.e., 

E(%k) - f(Xk-l) 
f'(Xk) 2 2 (3.10) 

~ ̂ k-1 

and the quasi-Newton method [2] are popular ways of solving nonlinear 

simultaneous equations without having to evaluate partial derivatives 
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explicitly. Subroutines for solving nonlinear simultaneous equations 

are available in many mathematical libraries. Examples are ZSCNT and 

ZSPOW of IMSL [6], and ZONE of PORT mathematical library [11]. These 

subroutines are accurate, convenient, and efficient. However, they may 

not converge, and the solution may be infeasible. In this study, the 

ZSCNT subroutine was used to verify solutions obtained by Newton's 

method. 
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THE BRANCH-AND-BOUND TECHNIQUE IN INTEGER PROGRAMMING 

The branch-and-bound technique of integer programming for 

reliability optimization is stated as follows [3]: 

1. Solve the problem as if all the variables were real numbers. 

This solution is the upper bound (for maximization problem) 

of the integer programming problem. 

2. Choose one variable at a time that has a noninteger value, 

say Xj, and branch that variable to the next higher integer 

value for one problem and to the next lower integer value 

for the other. The real value solution of the jth variable 

can be expressed as xj = [xj] + Xj, where [xj] is the 

Vc 
integer part of xj and 0 < xj < 1. The lower and upper 

bound constraints of the two mutually exclusive problems are 

Xj ^ [xj] + 1 and Xj ^ [xj], respectively. Add these two 

constraints to both branched problems (called the process of 

the jth branch-and-bound). Solve both problems by the 

Lagrange multiplier method. Now the jth variable becomes an 

integer in either branch. 

3. Fix the integer of xj for the following steps of branch-and-

bound. Select the branch that results in a higher system 

reliability. Then repeat step 2 using another variable xj^ ^ 

Xj for each of the new problems until all variables becomes 

integers. 
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4. Stop branching the problem if the solution is worse than the 

current best integer solution. Stop the iteration when all 

the desired integer variables are obtained. 

In step 2, there are many criteria for selecting the variable for 

branching [4]. This paper selects the variable xj that minimizes 

• f * 1 ''S mm (,X£ , 1-X£; . 

These steps can be directly applied to the mixed-integer 

programming problem. For mixed-integer programming problem, only the 

integer variables need to be enumerated by the branch-and-bound 

procedure. The real variables are free of restriction after each step 

of the branch-and-bound technique. Then by using the Lagrange 

multiplier technique, their new optimal values are obtained. Stop the 

branch-and-bound process whenever all the integer variables find 

integer values. 
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NUMERICAL EXAMPLES 

Example 1 

A four-stage series system with two linear constraints is 

formulated as a pure integer programming problem. The decision 

variables, X = (xj, X2, xg, x^), are the number of redundancies at each 

stage. The problem is formulated as 

Xj's i 1 are integers. 

Using the data given in Table 3.1, the real solution, X = 

(5.11672, 6.30536, 5.23536, 3.90151), was obtained using the Lagrange 

multiplier method and the Kuhn-Tucker conditions proposed by Misra [9]. 

By rounding the solution to the nearest integer, the solution becomes 

(5, 6, 5, 4). This paper suggests that the real solution be further 

elaborated by the branch-and-bound technique. As shown in Fig. 3.1, 

the final answer after the branch-and-bound process is also (5, 6, 5, 

4), which is globally optimal. Newton's method was programmed in 

Max 

subject to 

i = 1,2 (3.11) 
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Fortran and run on the NAS 9160. It took three seconds of CPU time to 

solve the problem. Even if both Misra's method [9] and this method 

draw the same conclusion about the decision variables, this method 

provides a logical reasoning in obtaining the solution. 

TABLE 3.1. Data for example 1 

Stage, j 12 3 4 

0.70 0.75 0.85 

2.3 3.4 4.5 

4 8 7 

bi  =  56  

b2 = 120 

'J 

=2j 

0.80 

1 . 2  

5 

Example 2 

A five-stage series system with three nonlinear constraints is 

formulated as a mixed-integer programming problem. Both the number of 

redundancies, xj, and the component reliability, rj, are to be 

determined. The problem from Ref. [12] is as follows; 

Max R (R,X) = n [l-(l-r:)*j] 
j = l 

subject to 



*4^3 

= 5.23537 
= 6.94276 
= 5.63151 
= 3.00000 
= 0.995768 

.X, S 5A 

*1 = 

*2 = 

*3 = 

*4 = 
Rc = 

5.00000 

6.00000 

6.31442 

4.00000 
0.997815 

Xj = 5.11672 
X2 = 6.30535 
X3 = 5.23553 
X4 = 3.90151 
Rg = 0.997917 

*2 -

Xj = 5.09315 
X2 = 6.00000 

X3 = 5.31038 
X4 = 4.00000 
Rg = 0.997856 

*4 > 4 

XI = 5.18914 

X2 = 6.16694 

X3 = 5.17326 
X4 = 4.00000 
Rg = 0.997895 

'1 ̂  

rxg > 7 

LX3 ? 6 

Xi = 6.00000 

X2 = 6.00000 

X3 = 4.75000 
X/j = 4.00000 
Rg = 0.997322 

*1 = 4.56563 

= 7.00000 

*3 = 4.82978 

X4 = 4.00000 

Rs = 0.997397 (_n 
t-O 

Xi = 5.00000 

Xg = 6.00000 

X3 = 5.00000 

xj = 4.00000 

R* = 0.99747 

'Xj = 5.00000 , 
X2 = 6.00000 

X3 = 6.00000 

X4 = 4.00000 

IMFEASIBLEl! 
= 0.9982017%/ 

FIGURE 3.1. Branch-and-bound of example 1 
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81(X) = Z Pjxt - P < 
j-1 

g2(X,R) = 2 Oj ( -k/^n rj )(xj+exp(xj/4)) - C S 0 
j = l 

5 
goCx) = Z W:x:exp(x'/4) - W ^ 0 (3.12) 

j=l 

0 < r j ' s < 1 

Xj's ^ 1 are integers. 

By taking the logarithm to the objective function, the Lagrangian 

can be written as 

L(X,R,X) = Z ̂ n [l-(l-r:)*j] - Z X£g£(X,R). (3.13) 
1=1 i=l 

The Kuhn-Tucker conditions to the problem are 

9L -^nq; q^J 

9rj 1-qj ^ /n r, 

• [1 + exp(xj/4)/4] - 2X]^XjPj -

\3Wjexp(xj/4)(1 + Xj/4) = 0 (3.14) 

9L x;q*j ^ 

Sr; 1-q.J r; 
J " 
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•(xj+exp(xj/4))/(rj^n rj) = 0 j=l,2,...,5 (3.15) 

3L 
\i = Xig;(X,R) ° 0 (3.16) 

3\i 

Xi > 0 (3.17) 

gi S 0 1=1,2,3. (3.18) 

Using the data given in Table 3.2, the system of simultaneous 

equations in Eqs. (3.14), (3.15), and (3.16) was solved by Newton's 

method. After the real number solution was obtained, the branch-and-

bound technique was used to find the integer variables while leaving 

the other variables free of restriction, except the previously 

investigated integer variables. The enumeration tree is shown in Fig. 

3.2. Newton's method was programmed in Fortran and run on the NAS 

9160. It took 16.2 seconds of CPU time to solve the problem. 

TABLE 3.2. Data for example 2 

j *j ^j W] P C W 

1 2.33x10-5 1 7 
2 1.45x10-5 2 8 
3 5.41x10-6 3 8 110 175 200 
4 8.05x10-5 4 6 
5 1.95x10-5 2 9 

gj = 1.5, j = 1,2,3,4,5 t = 1000 



Xi = 3.00000 Rj = 0.79109 
X2 = 2.50039 Rg = 0.83915 
X3 = 2.00000 R3 = 0.90631 
X. = 3.30064 R. •= 0.68951 

Rc = 0. 93966 

Xj = 3.00000 Rj = 0.78134 
Xg = 2.21778 Rg = 0.85786 
X3 = 3.00000 R3 = 0.84117 
X4 = 3.01639 R^ = 0.71265 
Xg = 2.24330 Rg = 0.84442 

R, = 0.93533 

X3 = 2.30569 R3 = 0.88464 

X, = 2.00000 R, = 0.85471 

R, = 0.93413 

Xi = 2.00000 Rj = 0.85542 
X2 = 2.71772 Rg = 0.82444 
X3 = 2.40347 R3 = 0.87816 
X4 = 3.48621 = 0.67503 

R, = 0.93502 

= 3.00000 Rj = 0.78509 
Xg = 2.51999 Rg = 0.84082 

X3 = 2.22435 R3 = 0.89204 
X4 = 3.25305 R4 = 0.69776 
Xg = 2.49529 Rg = 0.82819 

Re = 0.94187 

X2 = 2.55088 R2 = 0.83724 
X3 = 2.27356 R3 = 0.88927 
X4 = 3.34340 R4 = 0.69282 
Xg = 2.56027 Rg = 0.82444 

R. = 0.94270 

Xg = 2.91143 Rg = 0.80827 

R, = 0.92312 

FIGURE 3.2. Branch-and-bound of example 2 
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R, = 0.93152 

X, = 3,50171 
X3 = 2.00000 R3 = 0.90324 

= 0,67501 

Xl = 2.00000 Rj = 0.85417 

Rc = 0.932916 

R, = 0.92849 

R, = 0.91585 

0.89493 
0.68069 

Xj = 2.00000 

Xg = 3.00000 
X3 = 2.00000 INFEASIBLE 

= 4.00000 
X- = 3.00000 

Xl = 2.00000 Rj = 0.85194 
Xg - 2.03072 Rg = 0.86815 
X3 =• 3.00000 R3 = 0.83828 
X4 = 3.16773 R^ = 0.69605 

R, = 0.926811 

FIGURE 3.2 (Continued) 



*1 3.00000 «1 0.79063 

*? 
• 2.62608 R? - 0.82924 
• 2.00000 • 0.89225 

*4 3.00000 • 0.71938 

S 2.63864 «4 - 0.81619 
• 0.93758 

3.00000 
2.03647 
2.00000 
4.00000 
2.07129 

0.84268 

0.90026 

0.923988 

9 .... 

• 3.00000 
*2 - 2.22190 

> 2.25449 
R 

5 
0.919002 

0.81487 

*1 . 3.00000 RJ - 0.76938 

*7 - 1.57185 RG • 0.89525 
- 3.00000 RJ • 0.83241 

*4 • 4.00000 R^ - 0.62674 
» 1.56711 RG . 0.88528 

• 0.90476 

*1 • 3.00000 «1 • 0.77999 
• 3.35515 - 0.77708 

*3 2.00000 «3 • 0.90323 

*4 « 3.00000 "4 » 0.71217 

'5 2.00000 "5 • 0.86123 
0.93219 

XJ - 3.00000 RJ . 0.77960 

IG = 3.00000 RG - 0.80065 

X* • 2.00000 RJ - 0.90227 

XJ « 3.00000 "4 • 0.71044 

X* • 2.00000 < 0.85947 

R; = O 9Z9Ï5 

' 1 "  3.00000 

* 2 - 4.00000 

* 3 '  2.00000 1NFEASI8LE 

X. « 3.00000 

*5 ' 2.00000 

*L • 3.00000 • 0.80918 

*2 • 2.27272 «2 - 0.84599 
*3 • 2 00000 «3 • 0.89599 
*4 • 3,00000 «4 - 0.70687 

*5 • 3.00000 h • 0.79336 
> 0.93560 

IT 
X| . 3.00000 R; . 0.82648 XJ « 3.00000 
*2 - 2-00000 R2 • 0.87299 XG » 3.00000 
X3 - Z.OOOOO R3 • 0.87893 *3 • 2.00000 IHFTASIBLF 
X  ̂ • 3.00000 • 0.64725 *4 - 3.00000 
X5 - 3.00000 R5 » 0.77881 XJ « 3.00000 

RJ • 0.92476 

Ln 

FIGURE 3.2 (Continued) 
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This same problem was solved using a combination of the sequential 

search and the heuristic redundancy allocation methods investigated in 

Section II. The results, summarized in Table 3.3, show that the 

proposed method is superior to the combination of the two iterative 

methods. A higher system reliability is obtained with less resource 

consumed. Experience show that this mixed-integer programming problem 

has many local optimums. The search technique discussed in Section II 

has the drawback of being trapped by a local optimum and not being able 

to get out of it. The proposed method overcomes this drawback and has 

been shown to be quite effective, especially for the mixed-integer 

programming problem. 

TABLE 3.3. Comparison of two methods 

Lagrange Multiplier 
and the Branch-and-
Bound Method 

Hooke and Jeeves Pattern 
Search and Heuristic Method 

X (3, 3, 2, 3, 2) (3. 3, 2, 2, 3) 

R (0.77960, 
0.80065, 
0.90227, 
0.71044, 
0.85947) 

(0.7582, 
0.8000, 
0.9000, 
0.8000, 
0.7500) 

0.92975 0.91494 

81 

S2 

83 

27 28 

0.00001 0.033727 

10.57248 1.4118 



The combination of the Lagrange multiplier and the branch-and-

bound techniques takes advantage of the exact method and the 

enumerative method. The analytical method quickly reaches a solution 

that is close to optimum, and the enumerative method finds the integer 

solution. Since a good approximation is obtained by the former method, 

it does not take many iterations for the latter one to reach the 

optimal solution. In addition, the branch-and-bound method generates 

many sets of solutions. The competitive alternatives provide 

management with different options and flexibility. This general method 

can be applied to any twice differentiable constrained optimization 

problem. Nonlinear root-finding subroutines and numerical 

approximation can be used to eliminate the need of evaluating partial 

derivatives. 
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SECTION IV. A REVIEW AND CLASSIFICATION OF SOFTWARE RELIABILITY MODELS 
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INTRODUCTION 

Since the invention of the computer, computer software has 

gradually become an important part of a system. In the 1970s, the cost 

of software has surpassed the cost of hardware as being the major cost 

of a system [209]. In addition to the cost of developing a software, 

the penalty costs of software failures are even more significant. As 

missions accomplished by human beings are becoming more and more 

complex, for example, the air traffic control system, nuclear power 

plant control systems, the space program, and military systems, the 

failure of software usually involves very high costs, human lives, and 

a social impact. Therefore, how to measure and predict the reliability 

of a software becomes an important issue. 

In the past 15 years, more than 300 papers have been published in 

the areas of software reliability modeling, software reliability 

characteristics, and software reliability model validation. Since 

software is an interdisciplinary science, software reliability models 

are also developed from different perspectives of a software and 

different applications of the model. In order to pave the way for the 

future development and evaluation of highly reliability software and 

systems involving software and hardware, a detailed review of the 

existing software reliability models and the assumptions behind those 

models is of value. In this Section, a classification scheme for 

software reliability models is proposed. Software reliability models 

along with the characteristics of software and factors affecting 

software reliability are discussed. 
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CHARACTERISTICS OF SOFTWARE RELIABILITY MODELS 

In hardware reliability, the mechanism of failure occurrence is 

treated as a black box. It's the failure process that is of interest 

to the reliability engineers. The emphasis is on the analysis of 

failure data and the design of experiment. In software reliability, 

one is interested in the failure mechanism. Most software reliability 

models are analytical models derived from assumptions of how failures 

occur. The emphasis is on the model's assumptions and the 

interpretation of parameters. 

In order to develop a useful software reliability model and to 

make sound judgments when using the models, an in-depth understanding 

of how software is produced, how errors are introduced, how software is 

tested, how errors occur, the types of errors, and the environmental 

factors can help us in justifying the reasonableness of the 

assumptions, the usefulness of the model, and the applicability of the 

model under given user environment. 

General description of software and software reliability, software 

life cycle, the bug-counting concept, hardware reliability versus 

software reliability, time index, error analysis, error size, user 

environment, and flowgraph representation of a program are discussed 

below. 
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General Description of Software and Software Reliability 

Similar to the definition of hardware reliability, time-domain 

software reliability is defined as the probability of failure-free 

operation of a software for a specified period of time under specified 

conditions [209]. Software is a collection of instructions or 

statements of computer languages. It is also called a computer program 

or simply a program. Upon execution of a program, an input state is 

translated into an output state. Hence, a program can be regarded as a 

function mapping the input space to the output, space (P; I 0) , where 

the input space is the set of all input states and the output space is 

the set of all output states. An input state can be defined as a 

combination of input variables or a typical transaction to the program. 

Any program is designed to performed some specified functions. 

When the actual output deviates from the expected output, a "failure" 

occurs. It's worth noting that th® definition of failure differs from 

application to application and should be clearly defined in the 

specifications. For instance, a response time of 30 seconds could be a 

serious failure for air traffic control system, but acceptable for an 

air line reservation system. A "fault" is an incorrect logic, 

incorrect instructions, or inadequate instructions by executing it will 

cause a failure. In other words, faults are the sources of failures 

and failures are the realization of faults. Whenever a failure occurs, 

there must be a corresponding fault in the program, but the existence 

of faults may not cause the program to fail. A program will never fail 

as long as the faulty statements are not executed. 
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It should be noted that "error" and "bug" are loosely used by many 

authors to represent fault and sometimes failure. Failure and fault 

customarily defined above [137] will be used through this section. 

Error and bug will also be used when the distinction between the two is 

not critical. 

Bug-Counting Concept 

The bug-counting model assumes that conceptually there is a finite 

number of faults in the program. Given that faults can be counted as 

an integer number, bug-counting models estimate the number of initial 

faults at the beginning of the debugging phase and the number of 

remaining faults during or at the end of the debugging phase. Bug-

counting models use per-fault failure rate as the basic unit of failure 

occurrence. Depending upon the type of models, the failure rate of 

each fault is either assumed to be a constant, a function of debugging 

time, or a random variable from a distribution. Once the per-fault 

failure rate is determined, the program failure rate is computed by 

multiplying the number of faults remaining in the program by the 

failure rate of each fault. 

During the debugging phase, the number of remaining faults 

changes. One way of modeling this failure process is to represent the 

number of remaining faults as a stochastic counting process. 

Similarly, the number of failures experienced can also be denoted as a 

stochastic counting process. By assuming perfect debugging, i.e., a 
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fault is removed with, certainty whenever a failure occurs, the number 

of remaining faults is a nonincreasing function of debugging time. 

With imperfect debugging assumption, i.e., faults may be removed, 

introduced, or no change at each debugging, the number of remaining 

faults may increase or decrease. This bug-counting process can be 

represented by the binomial model. Poisson model, compound Poisson 

process, Markov process, and doubly stochastic process. 

Error Size 

Error size of a fault is defined as the probability that an input 

state randomly selected from the input space will execute that fault 

and result in a failure [56]. It can be expressed in the following 

form. 

1 N 
Si = - Z eij 

N j = l 

where 

1 if input state j executes fault i and fails 

®ij ° 
0 otherwise 

S£ error size of the ith fault 

N number of input states. 

One hypothesis about error says that a large sized fault is easier 

to detect and will be detected earlier, A small sized fault is more 
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subtle and will be detected later. Although this hypothesis is hard to 

validate, the idea of nonidentical size of error conforms with the 

assumption of nonconstant per-fault failure rate postulated by many 

software reliability models. 

User Environment 

The reliability of a software is subject to the user environment. 

The failure rate of a Fortran compiler for instruction is expected to 

be lower than for sophisticated applications. Operational profile and 

system load are two environmental factors discussed below. 

Operational profile is the distribution of input state execution. 

Depending upon the application, an input state could mean a typical 

transaction of daily operations, a partition of input space, or a 

combination of input variables. Since the relationship of input, 

fault, and failure is deterministic, how inputs are selected determines 

how failures occur. In other words, if the assumption says that faults 

are detected equal likely, it implies that input states are selected 

randomly. In testing, the test cases should be generated randomly 

according to the operational profile, so that the testing strategy will 

conform with the assumptions of the model. In the operational phase, 

some input states are executed more frequently than the others. This 

must be considered when evaluating the reliability of the software. 

The system load consideration is derived from the phenomenon that 

a software is more likely to fail at peak hours than at the normal 



operational hours [25,94]. In other words, the failure rate is not 

only a function of time (CPU time or operational time), but also a 

function of system load. This observation leads to a correction factor 

added to the software reliability model. 

Time Index 

In hardware, materials deteriorate over time. Hence, calendar 

time is a widely accepted index for reliability function. In software, 

failures will never happen if the program is not used. In the context 

of software reliability, "time" is more appropriately interpreted as 

the "stress" placed on or "amount of work" performed by the software. 

The following "time units" have been suggested as indices of the 

software reliability function. 

Execution time - CPU time; time when the CPU is busy. 

Operational time - Time the software is in use. This is usually 

referred to 8 working hours per day. 

Calendar time - This index is used for software running 24 hours a 

day. 

Run - A run is a job submitted to the CPU. 

Instruction - Number of instructions executed. 

Path - A path is the execution sequence of an input. 
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Models based on execution time, operational time, calendar time, 

and instruction executed belong to the time-domain model. Models based 

on run and path belong to the input-domain model. 

Although it may seem that software reliability models do not have 

a unified index, the unification can be achieved through unit 

conversion. For example, Musa et al. [155] have proposed methods of 

converting their execution time model to the calendar time model. 

Input-domain model can also be converted into time-domain model through 

a factor of "number of runs or paths executed per unit time." 

Software Life Cycle 

Software life cycle is normally divided into the requirement and 

specification phase, design phase, coding phase, testing phase, and 

operational and maintenance phase. The design phase may include a 

preliminary design and a detailed design. Testing phase may include 

module testing, integration testing, and field testing. The 

maintenance phase may include one or more subcycles, each having all 

the phases in the development stage. This classification is based on 

the functional point of view rather than a strict time sequence. In 

reality, software life cycle phases overlap each other. 

The factors governing the failures, the types of models applicable 

for reliability assessment, the purpose of reliability assessment, and 

the data available for parameter estimation vary from phase to phase 

[155,178]. In the early phase of software life cycle, a predictive 
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model is needed because no failure data are available. This type of 

model predicts the number of errors in the program before testing. In 

the testing phase, the reliability of the software improves through 

debugging. A reliability growth model is needed to estimate the 

current reliability level, and the time and resources required to 

achieve the objective reliability level. During this phase, 

reliability estimation is based on the analysis of failure data. After 

the release of a software, addition of new modules, removal of old 

modules, removal of detected errors, mixture of new code with 

previously written code, change of user environment, change of 

hardware, and management involvement have to be considered in the 

evaluation of software reliability. During this phase, an evolution 

model is needed. 

In addition to the relationship between software reliability model 

and software life cycle, the study of the type and percentage of errors 

introduced and removed within the software life cycle is also of 

interest to software reliability engineers. 

Graph Representation of a Program 

A program can very well be represented by a directed graph where 

decisions are the nodes, statements between two decisions is the arc, 

and execution sequence is the direction of the arc. This 

representation is also called the flowgraph of a program. Using 

flowgraph representation, the execution sequences of a program can be 
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traced through the paths of the flowgraph. In addition, the analysis 

of control flow and data flow of a flowgraph set the ground for many 

complexity metrics which, in turn, are used to estimate the number of 

errors in a program. 

Another view of the flowgraph treats a program as a reliability 

network. Each node represents a module or a subroutine. As the 

reliability of each module and the transition probabilities among the 

modules are determined, the reliability of the program can be evaluated 

by the techniques of reliability network [7,33]. Some other graph 

properties like connectivity and reachability can also be applied to 

represent software properties. 

Software Reliability versus Hardware Reliability 

Since the emergence of software reliability, reliability 

theoreticians and practitioners have discussed the issue of software 

reliability versus hardware reliability in terms of similarity, 

differences, modeling techniques, etc. [85,217], Because the basic 

modeling techniques of software reliability are adapted from 

reliability theory developed for hardware systems in the past 30 years, 

a comparison of software reliability and hardware reliability can help 

in the use of these theories and in the study of hardware-software 

systems. Table 4.1 lists the differences and similarities between the 

two. 
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TABLE 4.1. Software reliability versus hardware reliability 

Software Reliability Hardware Reliability 

Without considering program 
evolution, failure rate is 
statistically nonincreasing. 

Failures never occur if the software 
is not used. 

Failure mechanism is studied. 

CPU time and "run" are two popular 
indices for the reliability 
function. 

Most models are analytical models 
derived from assumptions. Emphasis 
is placed on the development of the 
model, the interpretation of the 
model assumptions, and the physical 
meaning of the parameters. 

Failure rate has a bathtub curve. 
The burn-in stage is similar to 
the software debugging stage. 

Material deterioration can cause 
failures even though the system 
is not used. 

Failure mechanism is treated as 
a black box. 

Calendar time is a universally 
accepted index for the reliability 
function. 

Failure data are fitted to some 
distributions. The selection of 
the underlying distribution is 
based on the analysis of failure 
data and experiences. Emphasis 
is placed on the analysis of 
failure data. 

Failures are caused by incorrect 
logic, incorrect statements, or 
incorrect input data. This is 
similar to the design errors of 
the complex hardware system. 

Failures are caused by material 
deterioration, random failures, 
design errors, misuse, and 
environmental factors. 

Failures are reproducible because Failures are not reproducible, 
the relationship between input state, 
program, and output is deterministic. 
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Error Analysis 

Error analysis, including the analysis o£ failures and the 

analysis of faults, plays an important role in the area of software 

reliability for several reasons. First, failure data must be 

identified, collected, and analyzed before they can be plugged into any 

software reliability model. In doing so, an unambiguous definition of 

failures must be agreed upon. Although not critical to theoreticians, 

it is extremely important in practice. Second, the analysis of error 

sources and error removal techniques provide information in the 

selection of testing strategies and the development of new 

methodologies. To facilitate our study, error analysis is studied by 

severity, error type, special errors, origination in the software life 

cycle, and uncovered destination in the software life cycle. 

Classification by severity 

In practice, it is often necessary to classify failures by their 

impact on the organization. As pointed out by Musa et al. [155], cost 

impact, human life impact, and service impact are common criteria. 

Each criterion can be further divided by the degree of severity. For 

example, minor error, incorrect result, partial operation, and system 

breakdown could be a criterion for service impact. 

To estimate the failure rate of each severity level, Musa et al. 

[155] suggest the following approaches. 
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1. Classify the failures and estimate failure rate separately 

for each class. 

2. Classify the failures, but lump the data together, weighing 

the time intervals between failures of different classes 

according to the severity of the failure class. 

3. Classify the failures, but ignore severity in estimating the 

overall failure rate. Develop failure rates for each 

failure class by multiplying the overall failure rate by the 

proportion of failures occurring in each class. 

In addition to the estimation of failure rate of each severity 

class, the penalty costs of failure can be measured in dollar value 

[62].  

Some special errors 

Transient error, internal error, hardware caused software error, 

previously fixed error, and generated error are some special errors of 

interest to software reliability engineers. Transient errors are 

errors that exist for too short a time to be isolated [209]. This type 

of error may happen repeatedly. In failure data collection, transient 

errors of the same type should be counted only once. Internal errors 

are intermediate errors whose consequences are not observed in the 

final output [105]. This happens when an internal error has not 

propagated to a point where the output is influenced. For instance, in 

fault-tolerant computing some errors may be guarded against by the 
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redundant codes and not observed in the Einal output. When setting up 

the reliability objective, decisions must be made to either count the 

internal error or to simply count the observable errors. 

Hardware caused software errors are errors if not carefully 

investigated will be regarded as a common software error [95]. For 

example, a program may be terminated during execution and receive an 

error message of operating system error. Without careful 

investigation, this error may be classified as software error while the 

operating system error was actually caused by the hardware. In 

software failure data collection, hardware caused software errors 

should be excluded from software errors. 

Previously fixed errors are old errors which have happened before, 

but were not removed by debugging. Generated errors are new errors 

introduced by debugging [209]. These two types of errors conform with 

the assumption of imperfect debugging which allows errors to be 

introduced or no change in the fault count at each debugging. 

Classification by the type of error 

By analyzing the failure data or trouble reports, errors can be 

classified by their properties. One of the classification schemes 

given by Thayer et al. [239] includes the following error types. 

- Computational errors 

- Logical errors 

- Input/output errors 

- Data handling errors 

- Operating system/system support errors 
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- Configuration errors 

- Routine/routine interface errors 

- Tape/processing interface errors 

- User interface errors 

- Data base interface errors 

- User requested change 

- Present data base errors 

- Global variable/compool definition errors 

- Recurrent errors 

- Documentation errors 

- Requirement compliance errors 

- Operator errors 

- Unidentified errors 

As failure data are collected, the frequency of each type can be 

obtained. Other classification schemes can be seen in Refs. [56,66]. 

Classification by error introduced in the software life cycle phase 

Within the software life cycle, errors can be introduced in the 

following phases [20,239]. 

- Requirement and specification 

- Design 

Functional design 

Logical design 

- Coding 

- Documentation 

- Maintenance 

For each phase, the frequency of occurrence can be obtained from 

failure data. It's recognized that errors introduced in the early 

phase of the software life cycle is more costly to remove [20]. 
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Classification by error removed in the software life cycle phase 

Errors are removed through testing which can be divided into the 

following stages [239]. 

- Validation 

- Integration testing 

- Acceptance testing 

- Operation and demonstration 

The frequency of occurrence at each category is also of interest 

to software reliability engineers. 

Classification by the techniques of error removal 

Some techniques of error removal given in Refs. [100,239] are 

summarized below. 

- Automated requirement aids 

- Functional specification review 

- Simulation 

- Design language 

- Design standard 

- Logic specification review 

- Module logic inspection 

- Module code inspection 

- Code standards auditor 

- Set/use analyzer 

- Unit test 

- Component test 

- Subsystem test 

- System test 
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This type of study gives us information in the selection and 

validation of software design and testing techniques. 
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CLASSIFICATION OF SOFTWARE RELIABILITY MODELS 

Software reliability models can be classified into the 

deterministic model and the probabilistic model. The deterministic 

model studies 1) the elements of a program by counting the number of 

operators, operands, and instructions, 2) the control flow of a program 

by counting the branches and tracing the execution paths, 3) the data 

flow of a program by studying the data sharing and data passing, and 4) 

other deterministic properties of a program. 

Performance measures of the deterministic model are obtained by 

analyzing the program texture and do not involve any random event. The 

deterministic model can be further divided into software science, 

information content, software complexity, and software quality 

attributes. In general, these models empirically measure the 

qualitative attributes of a software and are used in the early phases 

of the software life cycle to predict the number of errors in a program 

or used in the maintenance phase for assessing and controlling the 

quality of a software. 

The probabilistic model represents the failure occurrences and the 

fault removal as probabilistic events. It can be further divided into 

the error seeding model, curve fitting model, reliability growth model, 

execution path model, program structure model, input domain model, 

failure rate model, nonhomogeneous Poisson process model, Markov model, 

Bayesian model, and unified model. 
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The error seeding model estimates the number of errors in a 

program by using the capture-recapture sampling technique. Errors are 

divided into indigenous errors and introduced errors (seeded errors). 

The unknown number of indigenous errors are estimated from the number 

of introduced errors and the ratio of the two types of errors obtained 

from the debugging data. 

The curve fitting model uses regression analysis to study the 

relationship between software complexity and the number of errors in a 

program, the number of changes, failure rate, or time-between-failure. 

Both parametric and nonparametric methods have been attempted in this 

field. 

The reliability growth model measures and predicts the improvement 

of reliability through the debugging process. A growth function is 

used to represent the progress. The independent variables of the 

growth function can be time, number of test cases, or testing stages, 

and the dependent variables can be reliability, failure rate, or 

cumulative number of errors detected. 

The execution path model estimates software reliability based on 

the probability of executing a logic path of the program and the 

probability of an incorrect path. This model is similar to the input 

domain model because each input state corresponds to an execution path. 

The program structure model views program as a reliability 

network. A node represents a module or a subroutine and the directed 

arc represents the program execution sequence among modules. By 
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estimating the reliability of each node, the reliability of transition 

between nodes, and the transition probability of the network, and 

assuming independence of failure at each node, the reliability of the 

program can be solved as a reliability network problem. 

Input-domain model uses "run" (the execution of an input state) as 

the index of reliability function as opposed to "time" to the time-

domain model. The reliability of each run is defined as the number of 

successful runs over the total number of runs. Emphasis is placed on 

the probability distribution of input state or the operational profile. 

The failure rate model studies the functional forms of per-fault 

failure rate and the program failure rate at the failure intervals. 

Since mean-time-between-failure is the reciprocal of failure rate, 

models based on time-between-fai lure also belong to this category. 

The Markov model is a general way of representing the software 

failure process. The number of remaining faults is modeled as a 

stochastic counting process. When a continuous time discrete state 

Markov chain is adapted, the state of the process is the number of 

remaining faults and time-between-failure is the sojouring time from 

one state to another. If we assume that the failure rate of the 

program is proportional to the number of remaining faults, linear death 

process and linear birth-and-death process are two models readily 

available. The former assumes that the remaining error is 

monotonically nonincreasing, while the latter allows faults to be 

introduced during debugging. 
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When a nonstationary Markov model is considered, the model becomes 

very rich and unifies many of the proposed models. The nonstationary 

failure rate property can also simulate the assumption of nonidentical 

failure rate of each fault. 

The Bayesian model assume a prior distribution of the failure 

rate. This model is used when the software reliability engineer has a 

good feeling about the failure process and the failure data are rare. 

The unified model includes many models as special cases. Besides the 

continuous time discrete state Markov chain, the exponential order 

statistics [142], and the shock model [113] are two other general 

models. 

The Deterministic Models 

The deterministic model studies the elements of software and their 

interrelationship. It is also called software metrics or complexity 

metrics. With these metrics, programs can be measured and compared on 

the same basis. Software metrics are defined by analyzing the texture 

of the program or the flowgraph of the program rather than analyzing 

the failure process of the program as the probabilistic models do. 

These static models predict the number of errors in the program and do 

not involve time-dependent variables. Deterministic models are 

discussed below. 
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Software science 

Developed by Halstead [77], software science defines software 

metrics based on the number of distinct operators and the number of 

distinct operands in a program. Program length, volume, effort, level, 

difficulty, mental discrimination, and moments are defined and related 

to program size, program development time, program development effort, 

and the number of errors in a program [63]. Among these metrics, 

program length and volume have been used to estimate the number of 

errors in a program. 

Notation: 

Tjj number of distinct operators 

772 number of distinct operands 

total number of operators 

N2 total number of operands 

N length of the program 

V volume of the program 

B number of errors in the program 

B estimate of B 

I number of machine instructions 

Halstead defines 

Ni = %i/og2%i 

N2 = %2^082%2 

N = N 2 + N2 
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V = N^og2('?l + %2). 

Previous studies have shown that a high correlation exists between 

the number of machine instructions and the number of errors in the 

program [209]. Since program length N is proportional to the number of 

machine instructions (l=N/2 if we assume that one machine instruction 

contains one operator and one operand), the number of errors in a 

program is also proportional to Halstead's program length. The 

relationship can be written as 

(B « I) A (I = N/2) -» B « N. 

Halstead also derived a formula .to estimate B from V. The formula is 

Ê = V/3000. 

Entropy function (information content) 

The use of entropy function to estimate the number of errors in a 

program originates from Shannon's information theory [201]. 

Notation: 

X= (xj,. .., Xfj) a set of messages 

X£ the ith message in X 

P£ probability of X£ 

f£ self-information of X£ 

H entropy of X 
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entropy of each token 

Hp 

I=(ll 

entropy of the program 

> • • • J Ij^) input space 

the ith partition of I 

NI 

number of inputs in I; 

total number of input 

W software work 

Let X=(xi, Xff) be a set of messages from which a message is 

chosen. Then the self-information of any message, X£, is defined as 

If the probability of a message is 1, its self-information equals 

zero. If the probability of a message approaches 0, its self-

information tends to infinity. The expected value of self-information 

is called the "entropy" (a measure of disorderness) or information 

content of that message and is defined as 

H = - Z Pi^og2Pi. 
i = l 

To set up an analogy between entropy of a set of messages and 

entropy of a program, we assume there is an entropy associated with 

each token (operator or operand) of the program, and program entropy is 

the sum of all the token entropies. Each token is a set of messages 

consisting of all the distinct operators and distinct operands. If the 

occurrence of each distinct operator and operand is equal likely, then 

fi = - -^og2Pi 

n 
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Pi = l/(r?i + T?2) 

fi = - /og2Pi = ^og2(r?i + %2). 

The entropy of each token is 

1)1 
H-j. = Z P£E£ = -?og2(»7i + •ni) 

i = l 

where 

%T = + '72* 

And the entropy of the program is 

Hp = NH-j. = N^og2 (li + T?2) = V 

where N and V are Halstead's program length and program volume, 

respectively. Since Shannon's program entropy is equal to Halstead's 

program volume, the formula of estimating the number of errors from 

program volume is also applicable to program entropy. 

The idea of entropy metric can be applied to input classes as well 

as program tokens. Let the input space I of a program be partitioned 

into n classes, the entropy function of the program can be defined as 

[197] 

n NI- NI 
H = 2 •^og2 

i=l NI NI: 
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Since a different design will result in a different partition of 

input space and a different entropy value, this entropy function can 

serve as a metric of measuring design complexity. 

Another variation of entropy function called software work [88] is 

defined as 

n NI 
W = L Nl£ •(og2 • 

i=l Nli 

Software quality attributes 

The applicability of time-domain or input-domain software 

reliability models so far developed are limited to the testing phase. 

These models use failuo rate^or the number of remaining faults as a 

measure of software reliability. In the specification phase, design 

phase, and maintenance phase, the characteristics of a software can 

better be represented by software quality attributes rather than 

failure rate and the number of remaining errors. Although the 

correlation between software reliability and software quality 

attributes at a specific time point is difficult to be justified, they 

interact with each other in a long-term complicated manner. Poor 

quality attributes of today will lead to poor reliability in the 

future. 

Software quality attributes include, but are not limited to, the 

ones listed below. They are grouped into the specification and design 
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phase, initial operation phase, revision phase, and transition phase 

Depending upon the original authors, the definitions of these 

attributes may differ slightly and the meaning of two attributes may 

duplicate. The detailed definitions of these software quality 

attributes can be found in Refs. [21,24,140,148,249]. Software qual 

attributes from different sources are summarized as follows. 

Initial operation phase 

- Reliability 

Correctness 

Accuracy 

Completeness 

Integrity 

Resilience 

- Usability 

Validity 

Completeness 

Documentation 

- Efficiency 

- Economy 

Specification and design phase 

- Moduality, structureness 

- Clarity, conciseness 

- Consistency, stability 

Revision phase 

- Maintainability 

- Understandability 

Clarity 

Documentation 

- Testability 

Traceability 

Accessibility 
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- Flexibility 

Modifiability 

Expandability 

Transition phase 

- Portability 

- Reusability 

- Modularity 

- Interoperability 

In addition to the descriptive definition, some software quality 

attributes have been expressed quantitatively. For example, 

consistency of requirement specification has been represented by a 

connectivity matrix and a reachability matrix [58], and maintainability 

has been represented by a connectivity matrix [185]. In addition, 

complexity metric is another quantitative way of representing software 

quality attributes. Although the correlation between software quality 

attributes and complexity metrics has not been widely studied, numerous 

complexity metrics have been suggested for their empirical relationship 

[21,216]. A detailed discussion of complexity metrics is given in the 

next section. 

To measure and control the quality of a software, the software 

quality attributes and their highly correlated complexity metrics can 

be measured after specification and design phase, during operational 

phase, and after each major change in the maintenance phase. Anomolies 

reflected by the quality attributes can be identified and corrected. 

Since many attributes and complexity metrics are involved, a decision 
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table can be used to keep track of the conditions of each attribute and 

the actions to control the quality of the software. More work should 

be done in this area to find out quantitative metrics highly correlated 

to software quality attributes, and attributes highly correlated to 

reliability costs, resources, and productivity. 

Complexity metrics 

Complexity metrics in the context of software engineering is a 

measure of sophistication of a software program as opposed to the time 

complexity in algorithm analysis, which measures the running time as a 

function of problem size. The ultimate purposes of complexity are to 

1) estimate the costs, resources, and time required to develop, test, 

and maintain a software, 2) measure the reliability of a software and 

the productivity of software development, and 3) serve as a 

quantitative representation of software quality attributes. 

Although the relationship between complexity metrics and software 

quality, reliability, and productivity is empirical, complexity metrics 

have been widely used by practitioners because of their simplicity, 

intuition, and ease of automation. Once the program of measuring a 

complexity metric is written, this metric can be measured repeatedly 

with only the cost of computer time. Numerous complexity metrics have 

been proposed from the standpoint of program size, Halstead's software 

science, information content, data flow analysis, control flow 

analysis, and program syntax. In this review, only those metrics 
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related to reliability, error counting, and software quality attributes 

are discussed. 

Lines of code Lines of code is the most widely used metric of 

estimating the number of errors in a program, the resources required to 

develop a program, and the productivity of programmers. Depending upon 

the authors, lines of code may mean the number of machine instructions, 

the number of executable source statements with or without data 

declaration, or the total number of source statements (including 

comments). It has been shown that the number of errors in a program is 

proportional to the size of the program. This linear relationship can 

be written as 

B -  KI  

where 

B Number of errors in the program before debugging 

I Number of instructions 

K Constant of proportionality. 

The value of K is about 0.02 error/machine instruction [209]. 

Program change Program change [49] is the textual change in 

the source code of a module during the development phase. It includes 

changes to statements, insertion of statements, and changes followed by 

the insertion of new statements. A program change represents a 

conceptual change to the program. It has been shown that a high 
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correlation exists between the total number of changes and the total 

error occurrences. 

Takahashi and Kamayachi [236] studied the changes in program 

specification rather than textual changes. They also found a high 

correction with the number of errors in the program. 

Job step A job step is a programmer activity at the operating 

system command level [49]. Typical examples are editing texts, 

compiling source modules, link object modules, and executing entire 

program. This metric quantifies the frequency of computer system 

activities and can be used to estimate the requirements of computer 

resources, programmer's time, and programmer's efforts as well as 

software reliability. 

Data binding Defined by Basili and Turner [12], a data binding 

occurs when a procedure/function P modifies a global variable X and a 

procedure/function Q access X. When the execution sequence of P 

proceeds that of Q, data binding denoted by (P,X,Q) occurs. A higher 

number of data binding increases the possibility of causing error when 

procedures/functions are changed. 

Data span Data span is a measure of locality of data 

references. It is defined as the number of statements between two 

references to the same identifier with no intervening references to 

that identifier [55]. 

Cyclomatic number McCabe's cyclomatic number [139] originated 

from graph theory. The cyclomatic number V(G) of a graph G with n 

nodes, e edges, and p connected components is 
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V (G) = e - n + p. 

In a strongly connected graph (there is a path joining any pair of 

nodes), the cyclomatic number is equal to the maximum number of 

linearly independent circuits. The linearly independent circuits form 

a basis for the set of all circuits in G and any path through G can be 

expressed as a linear combination of them. 

When a program is represented as a flowgraph with an unique entry 

node and an unique exit node, this flowgraph becomes a strongly 

connected graph if a dummy edge from the exit node to the entry node is 

added. When the number of connected components is greater than 1, 

i.e., a main program and some subroutines, the above formula is 

modified to 

V(G) = e - n + 2p. 

The cyclomatic number of a graph with multiple connected 

components is equal to the sum of the cyclomatic number of each 

connected component. Another simple way of computing the cyclomatic 

number is as follows. 

V(G) = + 1 

where ÏÏ is the number of predicate nodes (decisions or branches) in the 

program. In other words, the cyclomatic number is a measure of the 

number of branches in a program. A branch occurs in IF, WHILE, REPEAT, 

and CASE statements (GO TO statement is normally excluded from the 



structured program). The cyclomatic number has been widely used in 

predicting the number of errors and as a measure of software quality. 

Maximum intersection number In contrast to the cyclomatic 

number which measures the number of decisions, the maximum intersection 

number (MIN) proposed by Chen [31] measures the levels of nested 

decisions. MIN is obtained by cutting a strongly connected graph such 

that each region is entered exactly once. Given a program of n 

decisions, the upper bound of MIN is n+1 when n-level nested structure 

occurs, and the lower bound of MIN is 2 when none of the decisions is 

nested. 

Knot count Knot count was suggested by Woodward et al. [251]. 

It measures the number of crossings of control flow in a program. 

Calls and jumps An early experiment by Akiyama and Fumio [3] 

shows that the number of errors is proportional to the number of 

subroutine calls plus the number of jumps (decisions). A simplified 

metric of this type considers only the number of subroutine calls or 

the number of jumps. 

Maintainability Haney [79] proposed a method of predicting 

maintainability by using a transition probability matrix. The expected 

number of changes at each module can be predicted from the initial 

number of changes of each module and a transition probability matrix of 

module change. 

T = A(I + P + p2 + . ..) = A(I - P)"l 

where 
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P = (p£j) transition probability matrix of module changes 

Pij probability of changing module i will result in 

changing module j 

A = (a;) vector of initial changes 

number of initial changes in module i 

T = (t() vector of total changes 

expected number of changes in module i 

I identity matrix. 

For a different design, the transition probability of module 

change, P, and the vector of total changes, T, are different. Given 

that P and A are available for alternative designs, T can be computed 

for each design and serves as a measure of maintainability. 

By letting a£ = 1 for all i, a metric of design complexity is 

defined as [185] 

1 n 
m Z (t£ - 1) 

n i = l 

where 

m design complexity 

n matrix size. 

2 
Notice that the series I + P + P + ... converges when the eigenvalue 

of P is greater than 0 and less than 1. 
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Accessibility Mohanty [148] defines the accessibility of a 

node as 

A k i  =  Z  A i j Q i j k l P i j  
ij 

where 

N£j node ij; the jth node of the ith level in the graph 

A£j accessibility of N£j 

P£j probability of successfully executing N£j 

Q£jkl probability of entering after executing N£j. 

Mohanty also suggests that ?£j can be estimated by 

Pij - kp/Clj 

where 

kp constant of proportionality 

C£j some measure of complexity. 

Since ?£j is the reliability of node N£j, the complexity metric 

chosen must have a high correlation with reliability. 

Testability Based on accessibility, Mohanty [148] further 

defines testability as 

^ij " AijPij 

TP£ " [ z  (1/T£j) ]"^ 
Si 
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T  .  [ -  "  
M  i = l  T P i  

where 

T^j testability of j 

TP£ testability of path i 

T testability of the program 

S£ set of node of path i 

M minimum number of paths in the program that cover all the 

nodes. 

Testedness Also based on accessibility, Mohanty [148] defines 

testedness as 

( \ 
W£j = 1 - exp V ~ / 

Aijqij 

w  = z W i 7 |s |  
s  

where 

W testedness of the program 

W^j testedness of node N;j 

qij=l-pij unreliability of node N£j 

F'j number of times N£j is executed 

S set of nodes in the program. 
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From the above formula, the testedness of node N^j is an 

exponentially increasing function of the number of times N£j is 

executed with rate l/(A£j-T£j), and bounded by 1. As F£j approaches 

from 0 to infinity, W£j increases from 0 to 1. 

Program evolution The program evolution model proposed by 

Belady and Lehman [17] describes the phenomenon of continuing changes, 

continuing growth, and increasing entropy of a program after release. 

A complexity metric for module changes is defined as 

Cr = MHR/MR 

where 

R release sequence number R 

number of modules at release R 

MHj^ number of modules handled in release interval R (1%) . 

To predict , two formulas have been suggested. 

Cr = KQ + K^R + K2R^ + S + 6 

CR = KQ + K^R + K2R^ + K3HRR + S + e 

where 

KQ,Kj[,K2,K3 coefficients 

5 cyclic component 

6 stochastic component; error 

IR release interval R 

HRR=MHR/IR handle rate of release R. 
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Another complexity metric called fault class is defined as 

Ci = 2^-1 

where is the fault complexity at release i. At each release, the 

remaining faults are either faults generated at that release or 

residual faults. Therefore, the total number of combinations (fault 

classes) at release i is 2^ ^. 

Schneider model Schneider [195] uses development effort in 

man-month and the number of subroutines to estimate the expected number 

of software problems. The empirical formula is given as 

E(N) = gO.333 

/ S/K \1.667 
=  KI ) 

0.047 

where 

E(N) expected number of problems 

E efforts in man-month 

S number of subroutines 

K thousand of source codes 

E(NJ.) expected remaining errors. 

By assuming a ratio of 100:15 between detected errors and remaining 

errors, the author gives 

E(Nj.) = 0.15E(N) . 
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Hybrid model The hybrid model uses more than one complexity 

metric discussed above to estimate the number of errors in the program. 

The types of complexity metrics included can be studied by regression 

analysis. 

Environmental factors and error estimation Methods of error 

estimation discussed above are all based on complexity metrics. A 

different approach taken by Takahashi and Kamayachi [236] studies the 

correlation between error rate and environmental factors. They 

considered the type of program, the frequency of specification change 

(CHG), the average number of programmer experience, the difficulty of 

programming (DIF), the amount of programming effort (EFF), the level of 

programming technology, the volume of design documentation (DOC), and 

the percentage of reused modules. The authors have shown a close 

relationship between error rate and CHG, DIF, EFF, and DOC. 

The Probabilistic Models 

The probabilistic models treat software failures and errors 

removal as random events. They can be broken down into the error 

seeding model, curve fitting model, reliability growth model, execution 

path model, program structure model, input domain model, failure rate 

model, nonhomogeneous Poisson process model, and Markov chain. Among 

those, curve fitting model and reliability growth model are traditional 

techniques used in hardware reliability and other areas. The others 

were developed specifically for software. 
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The probabilistic model is the mainstream of software reliability 

study because it can be integrated with the hardware reliability 

theory. As systems are getting more and more complex, more will 

involve both hardware component and software component. This common 

framework makes it possible to evaluate the reliability of a hardware-

software system. 

Error seeding model 

Originated from the idea of estimating the size of an animal 

population from recapture data [57], Mills [144] proposed an error 

seeding method to estimate the number of errors in a program by 

introducing pseudoerrors into the program. From the debugging data 

which consist of indigenous errors and induced errors, the unknown 

number of indigenous errors can be estimated. This model can be 

represented by a hypergeometric distribution. 

The probability of k induced errors in r removed errors follows a 

hypergeometric distribution. 

P(k;N+ni,ni,r) = 

where 

N number of indigenous errors 

number of induced errors 

r number of errors removed during debugging 
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k number o£ induced errors in r removed errors 

r-k number of indigenous errors in r removed errors 

Since nj, r, and k are known, the maximum likelihood estimate of N 

can be shown to be 

k 

This method was criticized for the inability of determining the 

type, the location, and the difficulty level of the induced errors such 

that they will be detected equal likely as the indigenous errors. 

Basin [14] suggests a two-step procedure with which one programmer 

detects nj errors and a second programmer independently detects r 

errors from the same program. With this method, the n^ errors detected 

by the first programmer resembles the induced errors in the Mill's 

model. Let k be the common errors found by two programmers. The 

hypergeometric model becomes 

ni(r-k) 
^ = 

P(k;N,N-ni,r) 

and the MLE of N is 

k 
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Since no errors are actually introduced into the program, the 

difficulties in Mill's method are overcome. 

Lipow [121] modified Mill's model by introducing an imperfect 

debugging probability q. The probability of removing k induced errors 

and r-k indigenous errors in m tests is a combination of binomial and 

hypergeometric distributions. 

A )  
P(k;N+ni ,ni,r,m) = \r) (1-q) q 

C 7  )  

N à r-k ^ 0, nj i k S 0, and m & r. 

The interval estimate of N can be found in Huang [90] and Ramzan [180]. 

Reliability growth model 

Widely used in hardware reliability to measure and predict the 

improvement of the reliability program, the reliability growth model 

represents the reliability or failure rate of a system as a function of 

time, testing stage, correction action, or cost. Dhillon [42] 

summarizes 10 reliability growth models developed for hardware systems. 

This empirical approach is also adapted for predicting the progress of 

software debugging process. Reliability growth models reported for 

software are summarized below. 

Duane growth model Plotting cumulative failure rate versus 

cumulative hours on log-log paper, Duane observed a linear relationship 

between the two. This model can be expressed as 
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Xe(t) = N(t)/t = at ^ 

and 

^ogXj. =• ^oga - P/ogt 

where 

N(t) cumulative number of failures 

t total time 

Xg cumulative failure rate 

a,P parameters 

The above formula shows that ^ogXj. is inversely proportional to 

•^ogt. 

This model was adapted by Coutinho [36] to represent the software 

testing process. He plotted the cumulative number of deficiencies 

discovered and the cumulative number of correction actions made versus 

the cumulative testing weeks on log-log paper. These two plots 

revealed a find-and-fix cycle, and are jointly used to predict the 

testing progress. 

The least squares fit can be used to estimate the parameters of 

this model [42]. • 

Weibull growth model Wall and Ferguson [247] proposed a model 

similar to the Weibull growth model for predicting the failure rate of 

a software during testing. 

Notation: 
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N(t) cumulative number of failures at time t 

M(t) maturity (man-month of testing, CPU time, calendar time, 

or number of tests) 

Mg scaling constant 

NQ parameters to be estimated 

\(t) failure rate at time t 

Xg initial failure rate; a constant 

G(t) M(t)/Mo 

The model is summarized as follows: 

N(t) = No[G(t)]P 

X(t) = N'(t) = NoG'(t)[G(t)]P"l. 

Let NoG'(t)=Xo' then 

X(t) = XgCG' 

= — (3[G' (t)]2"l. 

0 

For 0 < 0 < 1, \(t) is a decreasing function of t. By letting a=Xo/|î, 

this model is similar to the Weibull growth model with failure rate 

X(t) = 

This is the failure rate when failures follows the Weibull 

distribution. Note that the failure rate of the Weibull growth model 
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can be derived from the Duane model. The MLEs of Weibull parameters 

can be found in Ref. [42]. 

Wall and Feguson tested this model on 6 software projects and 

found that failure data correlate well with the model. In their study, 

/3 lies between 0.3 and 0.7. 

Wagoner's Weibull model Adapted from hardware reliability, 

Wagoner [246] uses a Weibull distribution to represent time between 

program failures. Let 

f(t) density function of time between failure 

X(t) failure rate function 

R(t) reliability function 

a,(3 scale and shape parameters 

n total number of failures 

n£ number of failures up to the ith time interval 

F(t) n^/n. 

The Weibull distribution has the following properties. 

f(t) = apiat)^ ^exp[-(at)^] 

R(t) = 1 - F(t) = exp[-(at)^] 

and 

X(t) = a|3(at)^ ^. 

The parameters estimation can be found in Ref. [246]. 
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Logistic growth curve model Suggested by Yamada and Osaki 

[252], the logistic growth curve model has been used to represent the 

cumulative number of errors detected during debugging. The expected 

cumulative number of errors detected up to time t is 

m(t) 
1 + ae-ft 

where K, a, and are parameters to be estimated by regression 

analysis. 

Gompertz growth curve model Nathan [165] adapted the Gompertz 

model to represent the cumulative number of errors corrected up to time 

t. The model has an S-shaped curve with the following form, 

N(t) = 

where 

a number of inherent errors 

N(0) number of corrections made before the first test interval 

is completed 

N(t) cumulative number of errors corrected at time t 

A N(0)/a 

^ny correction rate. 

The above formula can be written as 

^n [^n (N(t)/a) ] = [^n (N(0)/a)] + t/n? 
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where a is the upper limit of N(t) when t approaches infinity. 

The Gompertz model has been used in hardware reliability to 

predict system reliability. The model is as follows. 

R(t) =• 

where R(t) is the system reliability, a is the reliability upper bound, 

and y is the rate of improvement. One method of estimating the 

parameters is given in Dhillon [42]. 

Hyperbolic reliability growth model Sukert [229] adapted the 

hyperbolic reliability growth model to represent the debugging process 

of software. He assumed that testing is divided into N stages, each 

consisting of one or more tests until a change is made. Success counts 

and failure counts are recorded and fitted to the following model. 

Notation: 

j testing stage 

Rj reliability at the jth stage 

y growth rate 

Roa upper bound of the software reliability. 

Then the reliability of the software at stage j is 

Rj = Rco - -

J 

and the least squares estimates of RQ, and a are in Ref. [125]. 
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This model is a special case of a more general growth model for 

reliability improvement with a sequence of testing stages [254]. The 

model is 

Rj = Roo - 7f (j) . 

By setting f(j)=l/j, the hyperbolic model is obtained. 

Curve fitting model 

The curve fitting model finds a functional relationship between 

dependent and independent variables. Linear regression, quadratic 

regression, exponential regression, isotonic regression, and time 

series analysis have been applied to software failure data analysis. 

The dependent variables are the number of errors in a program, the 

number of modules change in the maintenance phase, time between 

failures, and program failure rate. Models of each type are discussed 

below. 

Estimation of errors The number of errors in a program can be 

estimated by a linear [9,176], or quadratic [93] regression model. A 

general formula is 

N = Z aiXi 
i 

or 

N = Z a^X; + Z b^Xf^ 
1 i 

where 
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N number of errors in the program 

X£ the ith error factors 

a£,b£ coefficients. 

Typical error factors are software complexity metrics and the 

environmental factors discussed in previous sections. Most curve 

fitting models involve only one error factor. A few of them study 

multiple error factors. 

Estimation of change Belady and Lehman [17] use time series 

analysis to study the program evolution process. Some of the models 

studied by them are 

MR  = Kg + KiR + S + 6 

CR = Kg + K^R + K2R^ + S + 6 

CR  = Kg + KiR + K2R^ + K 3 H R R  + S + 6 

HRr = Kl + S + 6 

CMHQ  = Kg + KID + S  + 6  

where 

R release sequence number 

MR  number of modules at release R 

IR inter-release interval R 

MHR modules handled in IR 

HRR MHR/IRÎ handle rate 

CR MHR/MR; complexity 

D number of days since first release 
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CMHQ cumulative modules handled up to day D 

€ error. 

This model is applicable for software having multiple versions and 

evolving for a long period of time, for instance, the operating system. 

Estimation of time between failures Crow and Singpurwalla [38] 

argue that software failure may occur in clusters. Also addressed by 

Ramamoorthy and Bastani [178], failure data may come in clusters at the 

beginning of each testing when different testing strategies are applied 

one after another. To investigate whether clustering happens 

systematically, a Fourier series was used to represent time between 

failures [38]. Data from two software projects were analyzed. 

Unfortunately, no statistical test was done to assess the adequacy of 

this model. 

Estimation of failure rate Isotonic regression and exponential 

regression have been proposed to estimate the failure rate of a 

software. 

Isotonic regression Given failure times tj, ..., t^, a 

rough estimate of failure rate at the ith failure interval is 

1 
^i " • 

'-i+1 ~ ("i 

Assuming that the failure rate is monotonically nonincreasing, an 

Vc 
estimate of this function i=l, 2, n can be found by the least 

squares fit to the ^£, i=l, 2, ..., n. This problem can be written as 

a quadratic programming problem. 
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Min Z iti - \')2 (t£ - ti_i) 
i = l 

subject to 

X'i-l - X* % 0 

\n S 0 

:V 
The objective function is the least squares fit of and the 

* 
constraints ensure monotonically nonincreasing of X£. 

This nonparametric estimation of program failure rate has been 

suggested by Gubitz and Ott [76] and Miller and Sofer [143]. By 

imposing different assumptions to the problem, for example, 

monotonicity and convexity of the failure rate function, or equal 

spaced time intervals [143], the isotonic regression problem can be 

formulated into different forms. 

Exponential regression Reported in Refs. [25,94], the 

failure of a program in the operational phase is a function of system 

load. This functional relationship has been studied by Butner and Iyer 

[25], using an exponential regression analysis. The probability of 

utilization-induced failure can be expressed as 

P(u) = 1 - e 7" 

where 

P(u) probability of utilization-induced failure 

2 7 utilization-induced failure rate (failure/unit-paging ) 
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u utilization factor (unit-paging^). 

Incorporating this function into a constant failure rate model, 

F(t,u) = 1 - e-^t e-7" 

= 1 - e"(^t+7u) 

where F(t,u) is the c.d.f. of time-between-failure in terms of time 

(CPU time or operational time) and system load. 

Input-domain model 

The input domain model uses "run" (input state) as the index of 

reliability function as opposed to "time" used by the time-domain model 

[169]. The basic input-domain model and an input-domain based 

stochastic model are discussed below. 

Basic input-domain model A program maps the input space to the 

output space. Input space is the set of all possible input states. 

Similarly, output space is the set of all possible output states for a 

given program and input space. During the operational phase, some 

input states are executed more frequently than the others. A 

probability can be assigned to each input state to form the operational 

profile of the program. This operational profile can be used to 

construct the input-domain software reliability model. 

In the input-domain model, software reliability is defined as the 

probability of successful run(s) randomly selected from the input 

space. Therefore, the reliability of one run can be defined.as 
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R(l) = Z p£e£ 
i 

e£ = 
0 if l£ fails 

1 otherwise 

or 

Fl 
R(1) = 1 - lim 

N 

where 

l£ input state i 

P£ probability of running the ith input state 

Fj number of failures in N runs 

N number of runs. 

In the operational phase, if errors are not removed when failures 

occur, the probability of experiencing k failures out of M randomly 

selected runs follows a binomial distribution. 

Pk = (k) [1 - R(l)]k[R(l)]M-k. 

During the testing phase, a sequence of M tests are selected randomly 

from the input space without repeating the same test. Then the 

probability of k failures out of M runs follows a hypergeometric 

distribution. 
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( 'K' ) ) 

G(k;N,Fi,M) = . 

( : ) 
If a sequence of k runs are not selected randomly from the 

operational profile, RCD may be different for each run, In general, 

the reliability of k runs can be expressed as [168] 

k 
R(k) = n R'(l) 

j=l 

where 

R(k) reliability over k runs 

Rj(1) R(1) of the jth input. 

The maximum likelihood estimate of R(l) can be obtained by running 

some test cases. It can be expressed as 

Ft 
Ê  ( 1 )  =  1  -  —  

Nt 

where 

F(- number of test cases that cause failure 

N(- number of test cases. 

Since the number of elements in the input space is a very large 

number, the number of test cases has to be large in order to have a 
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high confidence in estimation. To simplify the estimation of R(l), 

Nelson [168] modifies the above basic model by assuming that the input 

space is partitioned into m sets. As test cases are selected from each 

partition and all the errors from the test cases are removed, the 

reliability of one run can be formulated as 

R(1) = Z P£ (1 - f £> 
i 

where 

P£ probability that an input is from partition i 

f£ probability that an input from partition i will cause 

fai lure. 

The values of f^'s are given by Nelson for a quick estimation of 

the software reliability. For a partition i, the f£ value is 

0.001 if more than one test case belongs to the partition 

0.01 if only one test case belongs to the partition 

0.05 if no test case belongs to the partition, but all segments and 

segment pairs executed by that partition have been exercised 

in the testing 

0.1 same as above but not all segment pairs have been exercised 

in the testing 

0.1+0.2m if m segments (l^m^A) of that partition have not been 

exercised in the testing 

1 if more than 4 segment of that partition has not been 

exercised in the testing. 
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Input-domain based stochastic model The input-domain based 

stochastic model was proposed by Ramamoorthy and Bastani [178]. Unlike 

the failure rate model which keeps track of the failure rate at failure 

times, this model keeps track of the reliability of each run given a 

certain number of failures have occurred. 

Notation; 

j number of failures occurred 

k number of runs since the jth failure 

Tj(k) testing process for the kth run after the jth failure 

f(Tj(k)) severity of testing process; 0 < f(Tj(k)) < l/Xj 

Xj error size given j failures have occurred; a random 

variable 

Vj(k) probability of failure for the kth run after j failures; 

f(Tj-(k))Xj 

Rj(k|Xj) probability that no failure occurs over k runs after j 

failures 

E\j(0 expectation over Xj 

Aj size of the jth error 

X random variable that follows distribution F. 

Then 

k 
R • (k I X:) = n [1 - V • (i) ] 
J J i = l 

k 
= n [1 - f (T: (i))X:] 

i = l ^ 
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and 

k 
Rj (k) = E^. [ n [1 - f(T| (i))\;]] . 

J i=l J J 

Assuming that the testing process is identical to the operational 

process, 

f(Tj(k)) = 1 

Xj = Vj (k) for all k 

and 

" Aj-

Further assume that 

Aj = Xj_]^X. 

Hence, 

Rj(k) = E[(l - Xj)k] 

k . . 
= 2 (p (-1)'E[X/] 

i=l 

=  Z  ( B  ( - 1 ) M E [ ( 1  -  X ) ' ] } J .  
i=l 

other performance measures and parameters estimation can be found in 

Refs. [177,178]. 
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Execution path model 

The basic idea of the execution path model is similar to that of 

the input-domain model. The model is based on 1) the probability that 

an arbitrary path is selected, 2) the probability that an arbitrary 

path will cause a failure, and 3) the time required to execute a path. 

By partitioning the input space into disjoint subsets, some authors 

[168,208] implicitly assume that each partition corresponds to a logic 

path. Since one logic path may include more than one physical path and 

two logical paths may share the same physical path, the question of 

whether the execution path model should be based on logical path or 

physical path remains unanswered. 

If the logical path approach is used, testing should start with 

partitioning the input space and finding out the logic path for each 

partition. The test cases can then be selected from the disjoint 

subsets. If the physical path approach is used, testing should start 

with enumerating all the possible paths [139]. The test cases are then 

selected from those paths. Since the relationship between input state, 

partition of input state, and path is not readily available, the 

execution path model is discussed separately from the input domain 

model. 

Shooman decomposition model The decomposition model proposed 

by Shooman [208] assumes that the program is designed using structured 

programming methodology. Hence, the program can be decomposed into a 

number of paths. He also assumes that the majority of the paths are 

independent of each other. Let 
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N number o£ test cases 

k number of paths 

t£ time to run test i 

E(ti) expected time to run test i 

q£ probability of error on each run of case i 

qO probability of system failure on each run 

f£ probability that case i is selected 

nf total number of failures in N test 

H total testing hours 

XQ program failure rate. 

Then 

k 
ng = N Z f^qi 

i = l 

and 

qg = 1im nj/N. 
N-»oo 

Assume that on the average a failure in path i takes t£/2 to uncover, 

k 
H = N Z fitiCl - qi/2) 

i = l 

and 

Xq - 1im nf/H. 
N-»0 
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This model is very similar to the basic input-domain model. If 

R(1) denotes the reliability of an arbitrary path, then 

k 
R(l) = 1 - Z fiq;. 

i=l 

Program structure model 

By using structure design and structure programming, a program can 

be decomposed into a number of functional units. These functional 

units or modules are the basic building blocks of software. The 

program structure model studies the reliabilities and interrelationship 

of the modules. It is assumed that failures of the modules are 

independent of each other. This assumption is reasonable at the module 

level since they can be designed, coded, and tested independently, but 

may not be true at the statement level. Two models involving program 

structure are discussed below. 

Littlewood Markov structure model Littlewood's model [130] 

represents the transitions between program modules during execution as 

a Markov process. Two sources of failures are considered in the model. 

The first source of failure comes from a Poisson failure process at 

each module. It is recognized that as modules are integrated, new 

errors will be introduced. The second source of failure is the 

interface between modules. Assuming that failures at modules and 

interfaces are independent of each other, Littlewood has shown that the 

failure process of the entire program is asymptotically Poisson. Let 



123 

N number of modules 

P=(p£j) transition probability matrix of the process 

A=(a£j) infinitesimal matrix of the process 

X£ Poisson failure rate of module i 

q£j probability that transition from module i to module j 

fails 

n=(f£) limiting distribution of the process 

jLt£* first moment of the waiting time distribution. 

It can be shown that as and q£j approach zero, the program 

failure process is asymptotically a Poisson process with rate 

N 
Z ff£(X£ + Z a£jq£j). 
i=l jVi 

Littlewood extends the above model by relaxing the assumption of 

exponential waiting time at each module. He assumes that the waiting 

time distribution can be approximated by its first and second moments. 

As %£ and q£j approach zero, the program failure process is 

asymptotically a Poisson process with rate 

2j ff£P£j(M£jXi + qjj) 

_Z_ *£P£jW£j 
J 

= Z a£X£ + Z b£j.q£j 
i ij 



124 

where a£ represents the proportion of time spent in module i and b£j is 

the frequency of transition from i to j. 

Cheung's user-oriented Markov model The Cheung's user-oriented 

software reliability model [33] estimates the reliability of a program 

by representing a program as a reliability network. He uses a Markov 

model to represent the transitions among program modules and assumes 

that program modules are independent of each other. The execution 

starts with an entry module N and ends with an exit module N^. As the 

reliability of each module and the transition probability matrix of the 

Markov process are determined, the reliability of the program is the 

probability of successful execution from entry module to exit module at 

or before n steps. Let 

n number of modules 

Ni module i 

Ri reliability of module i 

P" the nth power of matrix P 

I identity matrix 

Rs reliability of the program 

c state of correct output 

F state of failure 

Q=(qij)  transition probability matrix of the module transition 

P=(Pij) transition probability matrix of the Markov process 

R diagonal matrix with R£ at R(i , i )  and zero elsewhere 

Mnl Minor of W(n,l) 
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J r 0 . .. Rn 1 
G ° L l-Ri ... 1-RnJ 2xn 

Then 

P  -  [ o  R p ]  

and 

Rg = P*(Ni, C) 

= S(Ni, Nn)Rn 

where 

00 

S = Z (RQ)k = (I - RQ)"1 = w"l. 
k=0 

Besides the evaluation of program reliability, a sensitivity 

analysis can be conducted to determine the most important module with 

the network. The importance of module i is defined as 

li = 0R/9Ri 

where 

R = Rn(-l)"+l|Mni|/|w|. 
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Failure rate models 

Based on the concept of bug-counting, the number of faults in the 

program increases or decreases by an integer number (normally assumed 

to decrease by 1) at each debugging. As the number of remaining faults 

changes, the failure rate of the program changes accordingly. Since 

the number of faults in the program is a discrete function, the failure 

rate of the program is also a discrete function with discontinuities at 

the failure times. Failure rate models study how failure rate changes 

at the failure time and the functional form of the failure rate during 

the failure intervals. Figure 4.1 shows a realization of failure 

process with failure times and failure intervals. 

f > 

^1-1 

FIGURE 4.1. Failure process 

The program failure rate during a failure interval is normally 

assumed to be dependent upon one or more of the following variables. 

- number of remaining faults in the program 

- failure rate of each fault 
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- time since the last failure 

- debugging time 

- number of testing stages 

- probability of removing or introducing a fault at each debugging 

Different assumptions lead to a different program failure rate and 

a different failure rate model. Once the program failure rate at the 

ith failure interval X(tj|ti_i), OSti^x; is determined, the ith failure 

time interval follows exponential distribution with rate X(tî|t£_j^). 

In other words, 

where Fp is the c.d.f. of program time-between-failure. And the 

reliability function given that i-1 faults hâve been removed at time 

Most failure rate models belong to the binomial type model with 

the following assumptions. 

1. The program contains N initial faults. 

2. Each fault has the same c.d.f. of time to failure. 

3. Whenever a failure occurs, a corresponding fault is removed 

with certainty. 

4. The failure rate of the program is proportional to the 

number of faults remaining in the program. 

5. Time spent in correcting the fault is negligible. 
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6. Faults are discovered independently. 

Assumption 1 says that the number of initial faults is an unknown 

constant to be estimated. Assumption 2 means that each fault has the 

same failure rate or equivalently each fault has the same probability 

to be detected. Assumption 3 implies perfect debugging with which the 

number of failures occurred is equal to the number of faults removed. 

Assumption 4 establishes a linear relationship between program failure 

rate and the number of remaining faults. Assumptions 5 and 6 simplify 

the problem and make it workable. The binomial type model [155] lays 

the basis for more complex models. The above simplified assumptions 

will be relaxed gradually as this review proceeds. 

The binomial type model treats the removal of faults as sampling-

without replacement from N initial faults, each having a time to 

failure distribution of F(t). Let X(t) be the number of failures 

occurred at time t, the probability of removing K faults at time t is 

Pr{X(t)=K} = (jj) [F(t)]K[l - F(t)]N"K. 

The c.d.f. of time to failure of each fault can be expressed in terms 

of the failure rate of each fault, ^(s). 

F(t) = 1 - exp [ - /Q 0(s)ds]. 

The mean value function and variance of the failure process can be 

expressed as follows. 

M(t) = E[X(t)] = NF(t) 
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and 

Var{X(t)} = NF(t) [1 - F(t)] . 

By definition, the program failure rate is 

X(t) = m' (t) = Nf(t). 

Let V(t) be the remaining number of failures at time t, 

Pj.{V(t)=K} = PptN - X(t) = K} 

= Pr(X(t) = N - K} 

= (k) [F(t)]N-K[l - F(t)]K 

and the expected number of remaining failures 

f (t) = E[V(t)] = N[1 - F(t)] . 

Let T£ be the random variable of the ith failure time, the c.d.f. of 

can be expressed as 

< t} = Pr{X(t) ^ i} 

N 
= Z Pr(x(t) = j} 
j = i 

N 
= Z (?) [F(t)]j[l - F(t)]N"J 
j = i 

and the c.d.f. of T^ given the (i-l)th failure occurred at t£-][ is 
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Pr{Ti > = [1 -

= exp[-(N-i+l) /^|_j^^(s)ds ] . 

Finally, the conditional reliability function is 

R(ti|ti_i) = exp[-(N-i+l) ^ #(s)ds] 

and the program hazard rate is 

Z(tj|ti_i) = (N-i + l)^(ti+ti_i) . 

By specifying a different per-fault failure rate function, a 

different class of binomial type model can be derived. Seven failure 

rate models are discussed below. It should be noted that not all of 

them follow exactly the assumptions postulated in the binomial model. 

The differences will be pointed out as needed. The following models 

list only the program failure rate or time-between-failure 

distribution. Other performance measures can be derived by following 

the procedure given in the binomial type model. 

Jelinski and Moranda De-Eutrophication Model The Jelinski and 

Moranda De-Eutrophication model [96] is one of the earliest software 

reliability models. Although simple, it is the most often cited model. 

Many probabilistic software reliability models are either a variant or 

an extension of this basic model. By assuming a constant failure rate 

of each fault, the program failure rate at the ith failure interval is 

\(ti|t£_i) = I^[N - (i-1)], 0 i t£ < Xi 
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and the c.d.f. oE the ith failure interval is 

Fp(tî|ti_i) = 1 - exp{-^[N - (i-l)]t£}. 

The reliability function is 

R(tî|t£_i) = exp [-0(N-i + l) t^] . 

The above model was modified by Lipow [122] to allow more than one 

failure in a time interval. The failure rate at the ith time interval 

becomes 

X(t£ I ti_p = (N - n£_P(6 

where n£_i is the number of failures occurred up to the (i-l)th 

interval. In this formulation, the failure time can be interpreted as 

the debugging effort which may include more than one failure. 

Extension of J-M model for varying program size The above J-M 

model assumes that the number of initial errors is an unknown constant. 

However, the integration testing is usually performed in a stepwise 

manner. Moranda [149] incorporates this changing program size 

debugging process into the original J-M model by further assuming that 

1. the indigenous error is proportional to the number of 

statements under testing, 

2. the number of statements at any time is known, and 

3. the failure rate of each fault is unaffected when new 

statements are added. 
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Ep errors per statement 

G(t) number of statements at time t 

X(t) number of failures occurred up to time t. 

Then 

X(t-|ti_i) = 0[G(t)Ep - X(t: + ti_i)] 

or 

X(t-|ti_i) = 0[G(t)Ep - (i-1)] . 

Jelinski-Moranda geometric De-Eutrophication model The J-M 

geometric De-Eutrophication model [150] assumes that the program 

failure rate decreases geometrically at failure times. Notice that 

this model deals with program failure rate rather than per-fault 

failure rate. The program failure rate and c.d.f. of time-between-

failure at the ith failure interval can be expressed as 

X(t-|ti_I) = XQK'"^ 0 3 t- < x; 

and 

Fp(t-|ti_i) = 1 - expE-XoK^"^-] 

where 

XQ initial program failure rate 

K parameter of geometric function (0 < K < 1) . 
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A modified version of J-M geometric model was suggested by Lipow 

[122] to allow multiple error removal in a time interval. The program 

failure rate becomes 

X(ti|ti_i) 

where n^-i is the cumulative number o£ errors found up to the (i-l)th 

time interval. 

Moranda geometric Poisson model The Moranda geometric Poisson 

model [130] assumes that at fixed time T, 2T, ... of equal length 

interval, the number of failures occurred at interval i, n£, follows a 

Poisson distribution with intensity rate ^. The probability of 

gett.ing m failures at the ith interval is 

e-V"' (XoRi-ly 
Pp{n£=m} = . 

ml 

Schick and Wolverton model The Schick and Wolverton (S-W) 

model [193] is similar to the J-M model, except it further assumes that 

the failure rate at the ith time interval increases with time since the 

last debugging. The program failure rate can be expressed as 

X(ti|t£_i) = <4[N - (i-l)]tî. 

A variation of the above model, also proposed by Schick and 

Wolverton [193], uses a parabolic function of time since the last 

debugging. The failure rate function becomes 

X(tî|ti_i) = 0[N - (i-1)] [at'^ + bt£ + c] 
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where a, b, and c are coefficients to be estimated. 

Modified Schick and Wolverton model Sukert [229] modifies the 

S-W model to allow more than one failure at each time interval. The 

program failure rate becomes 

\(tîlt£_i) = <»[N - ni_i]tj 

where n^-j is the cumulative number of failures at the (i-l)th failure 

interval. 

Lipow [122] also modifies the S-W model by assuming that the 

program failure rate at the ith failure interval is a function of the 

(i-l)th failure time and debugging time since the last failure. It can 

be expressed as 

X(tî|t£_i) = ^[N - ni_i] (ti/2 + ti_i). 

Goel and Okumoto imperfect debugging model Goel and Okumoto 

[72] extend the J-M model by assuming that a fault is removed with 

probability p whenever a failure occurs, the program failure rate at 

the ith failure interval is 

\(ti|ti_i) = ^[N - p(i-l)]. 

According to the functional form of the per-fault failure rate, 

the failure rate models can be classified into the exponential class, 

Weibull class, CI class, Pareto class, and others [155]. 
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Nonhomogeneous Poisson process model 

Based on the bug-counting concept, the nonhomogeneous Poisson 

process model (NHPP) represents the number of failures experienced up 

to time t as an NHPP, {X(t), t^O}. The main issue in the NHPP model is 

to determine an appropriate mean value function to denote the expected 

number of failures experienced up to a certain time point. With 

different assumptions, the model will end up with different functional 

forms of the mean value function. 

One simple class of NHPP model is the exponential mean value 

function model, which has an exponential growth of the cumulative 

number of failures experienced. Musa's basic execution time model 

[164] and Goel and Okumoto NHPP model [70] belong to this class< Other 

types of mean value function suggested by Ohba [170] are the S-shaped 

models and hyperexponential model. 

The NHPP model has the following assumptions [238]. 

1. The failure process has an independent increment, i.e., for 

any time points tQ=0 < tj < ... < t^j, the process increments 

X(ti)-X(to), X(TN)-X(TN-i) 

are independent variables. Or equivalently, the number of 

failures occurred during the time interval (t, t+s] depends 

on current time t and the length of time intervals s, and 

does not depend on the past history of the process. 

2. The failure rate of the process is 
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Pr{X(t+At)-X(t) = 1} = X(t)At + o(At). 

3. During a very short time interval At, the probability of 

more than one failures is negligible, i.e., 

Pr{X(t+At)-X(t) > 1} = o(At). 

4. Initial condition is X(0)=0. 

Based on the above assumptions, it can be shown that X(t) has a 

Poisson distribution with mean M(t), i.e., 

Pr{X(t)=m} = e 
ml 

By definition, the mean value function of the cumulative number of 

failures can be expressed in terms of the failure rate of the program, 

i.e., 

M(t) = /Q X(s)ds. 

And the expected number of initial faults is equal to the expected 

number of failures eventually experienced. The number of failures 

eventually experienced has a Poisson distribution with mean N^, i.e., 

E{X(<»)} = M(") = X- = E{N(0)} = NF, 

and 

e^o N/ 
Pj.{x(<»)=k} = 

k! 



137 

The NHPP model treats N(0) and X(m) as random variables rather than 

constants as the binomial model does. 

Due to the property of independent increment, the conditional 

probability can be derived as 

Pj.{X(t) = n|X(ti) = n^} = Pj.{x(t) - X(t£) = n - n^} 

[M(t) - M(ti)]"""i 
= exp{-[#(t) - M(ti)]}. 

Cn - n') 1 

Also, define the distribution of the number of remaining faults as 

X(t) = X(=) - X(t). 

Then 

PpIxCt) = k} = Pr{X(=) - X(t) = k} 

[m(") - M(t)]^ 
= exp (-[%(«) - M(t)]}. 

k! 

And the c.d.f. of the ith failure interval can be expressed as 

PffTi < t} = PflxCt) > i} 

" [w(t)]j 
= 2 exp[-M(t)]. 
j = i jl 

Finally, the reliability function and the conditional reliability 

function of the program are 
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R(t) = e = exp[- /Q \(s)ds] . 

and 

R(t£|t£_i) = exp{-[M(t£ + t£_p - M(t£_p]}. 

The exponential growth curve is a special case of NHPP with 

w(t) = NF(t) = n{i - exp[- /g 0(s)ds]} 

and 

X(t) = Nf(t) = N0(t)exp[- /g #(s)ds]. 

A special case of the exponential class NHPP model is to let 

0(t) = 

Then 

wCt) = N [1 - e , 

F(t) = 1 - e'^t, 

and 

R(t£|t£_i) = exp {-N [F(t£_i + tp - F(t£_i)]i, 

Based on the above general NHPP model, some special models are 

discussed below. 
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Musa exponential model Musa exponential model [164] can be 

summarized as 

0(t) = <t> 

M(t) = Xo[l - e'^Bt] 

and 

\(t) = 

" ̂ B[Xo - M(t)] . 

Goel and Okumoto NHPP model The Goel-Okumoto model [70] has 

mean value function of 

M(t) = N(1 - e 

and 

X(t) = 

An extension of the exponential mean value function model has been 

suggested by Yamada and Osaki [252]. They assume that faults comes 

from different sources with different failure rates. Let 

n number of types of fault 

failure rate of each type i fault 

P£ probability of type i fault. 

Then 
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M(t) = N Z pi[l - e 
i = l 

S~shaped growth model Most bug-counting models assume that 

each fault has the same probability to be detected. This assumption of 

independency in failure occurrence leads to an exponential growth of 

the cumulative number of failures. Ohba [170] observed an S-shaped 

growth which he claimed is due to the mutual dependency of faults. He 

argues that the detection of a fault will lead to the detection of its 

dependent faults. Therefore, in the early stage of debugging, as 

faults are detected, more dependent faults become detectable. This 

results in an increasing growth rate. As undetected faults decrease, 

the growth rate slows down gradually and finally approaches zero. Two 

types of S-shaped growth models, the delayed S-shaped growth model and 

the inflection S-shaped growth model have been proposed. 

Delayed S-shaped growth model The delayed S-shaped model 

[170,256] divides the debugging process into a fault detection stage 

followed by a fault removal stage. A fault is said to be removed from 

the program if it goes through both stages. By assuming that the 

probability of fault detection is proportional to the number of faults 

not detected and the probability of fault removal is proportional to 

the number of faults detected but not removed, this model can be 

expressed by the following differential equations. 

h'(t) = a[N - h(t)] 

Ai' (t) = X[h(t) - w(t)] 
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where 

h(t) number of faults detected at time t 

w(t) number of faults removed at time t 

a detection rate of each undetected fault 

X removal rate of each detected but not yet removed 

fault. 

By further assuming that w(t) can be solved as 

M(t) = n[i - (1 + ̂ t)e 

This function becomes the mean value function of the NHPP model. Other 

performance measures can be derived following the procedure discussed 

in the NHPP model. 

Based on the assumptions, the above model is not appropriate when 

1) the time delay between fault detection and fault removal is 

negligible, 2) the effort spent in failure detection and failure 

removal is not constant, and 3) new faults are generated during the 

debugging process. 

Inflection S-shaped growth model Ohba [170] models the 

dependency of faults by postulating the following assumptions. 

1. Some of the faults are not detectable before some other 

faults are removed. 

2. The detection rate is proportional to the number of 

detectable faults in the program. 
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3. Failure rate of each detectable fault is constant and 

identical. 

4. All faults can be removed. 

Then, the program failure rate during the ith failure interval is 

defined as 

[N - (i~l)] . 

where is the proportion of detectable faults when i faults have been 

removed and Mi[N-(i-l)3 is the number of detectable faults at the ith 

failure interval. As more faults are detected, more dependent faults 

become detectable. Therefore, the proportion of detectable faults is 

an increasing function of the detected faults. Let this function be 

a£ = r + i(l-r)/N, 0 3 r 3 1. 

Based on the above formulation, it can be shown that the mean value 

function of this NHPP model is 

N(1 - e'd^) 
M(t) = 

1 + (l-r)r ^ e 

As r approaches 1, the above model approaches the exponential growth 

model. As r approaches 0, the above model approaches the logistic 

growth model. 

Hyperexponential growth model The hyperexponential growth 

model is based on the assumption that a program has a number of 
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clusters of modules, each having a different initial number of errors 

and a different failure rate. Examples are new modules versus reused 

modules, simple modules versus complex modules, and modules which 

interact with hardware versus modules which do not interact with 

hardware. Since the sum of exponential distributions becomes a 

hyperexponential distribution, the mean value function of the 

hyperexponential class NHPP model is 

w(t) = Z N£ [1 - e 
i=l 

where 

n Number of clusters of modules 

N£ Number of initial faults in cluster i 

Failure rate of each fault in cluster i. 

Markov chain 

The Markov model is a generalized bug-counting model which 

represents the number of remaining faults at time t, N(t), as a 

continuous time discrete state Markov chain. The state of the Markov 

process is the number of remaining faults. The continuous time is the 

exponential time-to-failure. Binomial type model and Poisson type 

model are special cases of the Markov process. 
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A Markov process has the property that the future behavior of the 

process depends only on the current state and is independent of its 

past history. This assumption seems reasonable for software failure 

process. It can be argued that the future of a failure process depends 

only on the number of remaining faults at the present time and is not 

affected by the past error content [155]. 

A general Markov process allows transitions to occur from any 

state to any other state. In other words, multiple faults can be 

removed or introduced at each debugging. This model is suggested by 

Sumita and Shanthikumar [231]. In practice, there were not enough 

failure data to estimate all the parameters of the transition 

probability matrix. Some models have been developed as special .cases 

of Markov chain. They are the stationary linear death model with 

perfect debugging, stationary linear death model with imperfect 

debugging, nonstationary linear death model with imperfect debugging, 

and the nonstationary linear birth-and-death model. These models are 

discussed below. 

Linear death model with perfect debugging The Jelinski and 

Moranda model [96] is essentially a linear death model with perfect 

debugging. Let 

P£j probability of transition from state i to state j 

Pl^(t) Pr{N(t)=k}; probability of k remaining fault 

at time t. 

é failure rate of each fault. 
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The transition probabilities can be expressed as 

1 J=i-1 
Pij - 1 i=j=0 

0 otherwise i , j=0,1,...,N. 

And the transition rate diagram is shown in Fig. 4.2. 

(k+l)0 

K+1 
K-1 

FIGURE 4.2. Linear death with perfect debugging 

The differential-difference equation of P^Ct) is 

Pk'(t) = (k+l)*Pk+i(t) - k4fk(k)' 

Solving the above equation with the initial condition N(0)=N, all the 

performance measures of the J-M model derived in the binomial model can 

also be derived from this Markov chain point of view. 

Linear death model with imperfect debugging Suggested by Goel 

and Okumoto [71,72], the transition probabilities of the linear death 

model with imperfect debugging can be expressed as 
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P , j=i-l 
q=l-p , j=i 

Pij = 1 , i=j=0 
0 , otherwise i,j=0,1,...,N 

where p is the probability of successful debugging. And the transit 

rate diagram is shown in Fig. 4.3. 

(k+l)p^ 

K+1 
K-1 

FIGURE 4.3. Linear death with imperfect debugging 

This model assumes a probability q of not removing the fault 

whenever a failure occurs. Some performance measures are summarized 

follows. The expected number of remaining faults at time t is 

M(t) = E[N(t)] = Ne'P^t, 

The expected number of failures up to time t is 

M(t) = E[X(t)] = - [l -
P  

The expected number of imperfect debugging errors by time t is 
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Mj(t) = qix(t.) . 

Reliability function of the kth failure interval is 

k-1 / k-l\ . . 
Rl^(t)  =  Z i  j  j  qJ FN-(k-j- l ) ( t )  

j=0 

where 

Fj(t) = e-j*t. 

It has been shown that [71] 

Rjç(t) = exp{-[N - p(k-l)]^t}. 

Nonstationary linear death model with perfect debugging 

Suggested by Shanthikumar [203,204], the transition probabilities of 

the nonstationary linear death model with perfect debugging can be 

expressed as 

1 . j=i-l 
Pij = 1 , i=j=0 

0 , otherwise j=0,l,...,N 

and the transition rate diagram is shown in Fig. 4.4. 

The differential-difference equation of P^Ct) is 

Pk'(t) = (k+l)^(t)Pk+i(t) - k*(t)Pk(t). 

Solving the above equation with the initial condition N(0)=N, 

Pk(t) = (u) LF(t)]N-k[i _ F(t)]k 
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(k+l)0(t) k*(t) 

K + 1 
K-1 o 

FIGURE 4.4. Nonstationary linear death with perfect debugging 

where 

F(t) = 1 - exp[- /Q 0(s)ds]. 

This is the binomial type model derived in the failure rate model. 

Other performance measures can be found in that section. 

Nonstationary linear birth-and-death model The adaptation of 

nonstationary linear birth-and-death process was given by Kuo [111] and 

Kremer [106]. At each debugging, a fault was removed with probability 

p, a fault was introduced with probability q, and no change with 

probability 1-p-q. Kuo approaches the problem using a compound Poisson 

model while Kremer starts with a Markov chain. However, both 

approaches lead to the same conclusion. 

The transition probabilities can be expressed as 
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Pij 

P 
q 
l-p-q 

1 
0 

j-i-1 
j = i + l 
j = i 
j=i=0 

otherwise i,j=0,1,...,N 

and the transition rate diagram is shown in Fig. 4.5. 

(k+l)p0(t) kp^(t) 

kq0(t) (k-l)q0(t) 

• • o 

FIGURE 4.5. Nonstationary birth-and-death 

Hence, the differential-difference equation for the above process is 

Px'(t) = (k+l)p0(t)P]^+i (t) + (k-1) q0(t) Pjj-i (t) 

k0(t) (p+q)Pk(t) 

with initial condition 

Pn(0) = 1. 

The mean value function of N(t) is derived in Section V. The state 

probabilities and performance measures can be found in Refs. [106,111] 
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The random variable of this Markov process is the number of 

remaining faults. Similarly, the number of transitions or the number 

of failures experienced can also be represented as a Markov process. 

During the debugging process, keeping track of the number of failures 

experienced is more practical than keeping track of the number of 

faults remaining, since the number of remaining faults is normally 

unknown without further estimation. Combining the two processes, it 

becomes a bivariate Markov process. The transition rate diagram of 

this bivariate process is shown in Fig. 4.6. 

n,m-l 

q(n-l)^(t) 
n,m 

n-1,m+l 

n+1,m-l 

FIGURE 4.6. Bivariate process of fault-count and failure count 

The differential-difference equation of the above process is 
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PA,m(k) " (l-p-q)n4(k)Pn,m-l(t) + q(n-l)4^t)Pn-i,m-l(k) + 

p(n+l)f(t)Pn+i,m-l(t) " n4^t)Pn,m' 

where Pj^,^(t) is the probability of n remaining faults and m failures 

occurred at time t. 

Performance measures of this bivariate Markov model can be found 

in Kremer [106] and Kuo [111] . 

Other types of probabilistic models 

The Bayesian model and unified model are two other types of 

probabilistic software reliability models. The Bayesian approach has 

been discussed by Jewell [97,Serra and Barlow(200)], Kuo [111], 

Littlewood [124,125], Littlewood and Verrall [136], and Langberg and 

Singpurwalla [113] . Besides the nonstationary birth-and-death model 

[106,111], other unified models are the exponential order statistics 

model by Miller [142] and Scholz [198] and the shock model by Langberg 

and Singpurwalla [113]. 

This review classifies the software reliability models mainly by 

the modeling techniques. Other types of classification, for instance, 

by the usage in software life cycle phases or by the types of 

applications, can also be investigated. Table 4.2 summarizes related 

References for each category. These models are the fundamental sources 

for the study of software-related problems. Besides reliability 

assessment, systems reliability optimization, systems design. 
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reliability cost model, hardware-software system, and project 

management are areas which software reliability models can be applied. 
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TABLE 4.2. Summary of References 

Models References 

General Software 
Reliability Models 

Error Analysis 

System Load Effects 

Software Science 

Software Quality 
Attributes 

Complexity Metrics 

Error Seeding Models 

Reliability Growth 
Models 

Curve Fitting Models 

Input Domain Models 

Execution Paths Models 

Program Structure 
Models 

Failure Rate Models 

NHPP Models 

Markov Chain Models 

Bayesian Models 

1,8,30,39,41,43,48,67,74,75,84,87,91,92,105, 
116,117,129,137,155,159,183,189,202,209,218, 
229,234,239,245,254. 

3,56,66,95,153,154,181,190,243,244. 

25,27,94,188,244. 

63,77,118,195,206,207. 

21,24,140,175,184,249. 

9,10,11,12,13,31,49,58,64,93,100,119,139, 
148,176,184,185,201,206,216,236,243,248, 
251,257. 

10,14,51,90,180,193,194,242. 

36,37,42,134,165,247. 

17,18,25,38,76,81,143,215,236. 

15,168,169,177,178,217,219,224,235,250. 

46,47,50,208. 

7,33,130,133,196,232,233. 

4,10,29,40,44,68,80,96,98,99,104,123,124, 
126,127,128,131,135,149,150,151,166,167, 
204,211,221. 

32,70,78,111,145,156,157,162,164,170,171, 
187,222,22,254,255,256. 

71,72,106,114,132,203,213,231. 

2,97,124,125,136,192,240,241. 
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TABLE 4.2. (Continued) 

Models References 

Other Unified Models 7,103,113,142,198. 

Model Validation 4,5,147,162,182,199,225,226,227,228. 

Cost Models and 
Stopping Rule 

26,45,59,60,62,69,102,107,110,119,161,172, 
173,186,205,253. 

Software Management 20,22,23,52,79,88,89,108,109,146,160,161, 
163,179,185,209,214,220,223. 

Hardware-Software 
Systems 

27,73,82,83,85,101,112,217,230,240,241. 

Fault Tolerant Systems 16,19,26,28,35,53,86,138,141,191,237,257. 
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SECTION V. RELIABILITY COSTS IN SOFTWARE LIFE-CYCLE MODELS 



176 

INTRODUCTION 

The investigation of trade-off among reliability, schedule, 

resources, and costs in hardware development is also of interest in 

software development. Although a functional relationship clearly 

exists between software life-cycle cost and software reliability, the 

parameters associated with such a relationship are not readily 

available. One difficulty in developing reliability-related cost 

models for software is that, unlike hardware, each software system is a 

new product, so that previous experiences may .at most serve as a 

reference point. 

As software costs have increased over the past two decades, the 

cost structure of the system has changed dramatically. In 1960, about 

20 percents of the system's cost was spent on software. In 1985, that 

percentage had risen to 80 percents [23]. This change has drawn much 

attention as to how the software portion of the cost is determined and 

how it can be minimized. So far, studies of software cost have 

concentrated on development cost; however, life-cycle cost is more 

appropriate to study. 

In hardware, life-cycle cost is usually studied from a buyer's 

standpoint. It can be divided into procurement cost, maintenance cost, 

and disposal cost. Since software development and maintenance are 

normally performed by the same organization, software life-cycle cost 

is usually studied from the developer's point of view and is divided 

into development cost and maintenance cost. 
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The software development process can be broken down into 

requirement and specification phase, design phase, coding phase, and 

testing phase. Among these, testing including unit test, integration 

test, and filed test, accounts for 40 percents or more of the 

development cost. The maintenance activities include preventive 

maintenance, corrective maintenance, adaptive maintenance, enhancement, 

and growth. It is recognized that 60 percents of the software life-

cycle cost are maintenance costs [21]. Again, testing is also the 

major cost factor in the maintenance phase. 

For common software projects, reliability cost is mainly incurred 

by testing. For highly reliable software, such as that used in flight 

control systems, nuclear power plant control systems, and military 

systems, additional reliability cost is incurred at every phase of the 

software life cycle [23]. As indicated by Boehm [4], there is a very 

high productivity range of 1.87 between very low and very high 

reliability projects. Indeed, a large portion of the software life-

cycle cost is devoted to achieving high reliability. Table 5.1 

compares reliability costs incurred at each phase of the software life 

cycle for common and highly reliable software. Unfortunately, none of 

the existing quantitative software models can deal with this issue 

properly. Models that address the relationship between software 

reliability and cost are surveyed and summarized below. A generalized 

bug-counting software reliability cost minimization model is proposed. 
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TABLE 5.1. Reliability cost and software life-cycle phases 

Phase 
Reliability Cost of 
Common Software 

Additional Reliability 
Cost for Highly Reliable 

Software 

DEVELOPMENT 

Requirements 
and speci
fications 

Basic requirement and 
specification walkthrough 

Parallel development of 
requirement and specifi
cation, and detailed 
validation 

Design Basic design walkthrough Parallel design, fault-
tolerant design, and 
detailed verification. 

Coding Basic coding walkthrough Parallel coding of criti
cal modules, fault-
tolerant codes, and de
tailed code walkthrough 

MAINTENANCE 

Preventive 
maintenance 

Corrective 
maintenance 

Adaptive 
maintenance 

Totally devoted to reli
ability 

Totally devoted to reli
ability 

Testing 

Higher frequency of pre
ventive maintenance 

Immediate correction and 
extra testing 

Extra testing 

Enhancement 

Growth 

Equivalent to a development subcycle 

Equivalent to a development subcycle 
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REVIEW OF THE RELIABILITY-RELATED SOFTWARE COST MODELS 

The software life-cycle cost model and the software reliability 

model are two quantitative ways of dealing with reliability-related 

software costs. The software life-cycle model can be subdivided into 

the cost-estimation model, the resource-allocation model, and the 

program-evolution model, each describing a different aspect of software 

life-cycle cost. The cost-estimation model estimates the amount of 

resources required, the resource-allocation model shows how resources 

are distributed over the life cycle, and the program evolution model 

describes the dynamic nature of software and the trade-off between 

development cost and maintenance cost. 

Cost Estimation 

The cost-estimation model estimates efforts, including manpower, 

computer time, documentation, and project duration required at the 

development phase as well as over the entire life cycle. These 

estimates are based on cost factors identified from historical data by 

the regression analysis. Typical cost factors are the number of 

instructions, percentage of new instructions, number of files, number 

of reports, number of miles traveled, number of display consoles, pages 

of documentation, average experience of programmers, etc. [2,4,16,24]. 

A simple baseline model has only one cost factor, while a complicated 

model may involve many cost factors. A general formula can be 

expressed as follows. 
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E = Z aiXi 
i = l 

where 
E efforts 

X£ the ith cost factor 

ai,b£ coefficients of the ith cost factor 

n number of cost factors. 

Coefficients of the above model can be adjusted to reflect the 

particular application and environment by using a weighting method, a 

table driven method, or a formula. Adjustment may involve a single 

attribute or multiple attributes. Typical adjustment attributes are 

type of application, degree of difficulty, reliability, complexity, 

development methodology, etc. [5,16,24,25], For those models that 

include reliability as on of the cost attributes, the reliability cost 

can be estimated directly from the model. Otherwise, reliability cost 

can be estimated from the degree of difficulty, system complexity, and 

type of application. 

Resource Allocation 

The resource-allocation model distributes resources to the phases 

of the software life-cycle according to a manpower utilization curve. 

Originally, Norden applied the Rayleigh curve to represent the resource 

allocation in research and development projects [18]. The Rayleigh 

curve model was later adapted by Putnam to represent the manpower 
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buildup of the software life cycle [21]. Putnam's Rayleigh curve model 

can be summarized as follows. 

where 

y(t) =• 2Kate 
-at^ 

Y(t) = /Q y(s)ds = K(I - e ^ ) 

dy(t) 

dt 

-atd / 2^ 
2Kae \ (1 - 2at^) = 0 

(2a) 
1 /2  

.td 
Cd = YFTJ) = /Q y(s)ds = 0.3945K 

y(t) density function of manpower utilization 

Y(t) cumulative manpower utilization 

K total manpower 

tji development time (release time) 

Cjj development cost 

a constant of proportionality. 

Through empirical observation, development cost is defined as the 

time when the manpower curve reaches its peak, which is close to 40 

percents of the total cost. Other quantities such as degree of 

difficulty, productivity, and technology level are also derived. This 



same idea o£ fitting the staffing curve to a parametric distribution i 

also used in the Sech-square model by Parr [20], the parabolic model, 

and the trapezoid model by Basili and Beane [1]. As in the cost-

estimation model, reliability is not treated explicitly. However, 

reliability cost can be traced from difficulty level, testing phase, 

and total manpower. The 40 to 60 breakdown of development and 

maintenance costs serves as a guideline for reliability cost 

allocation. 

Program Evolution 

The program-evolution model describes the dynamic nature of 

software. The software is subject to constant change after delivery. 

Correcting errors, adding new functions, deleting unnecessary 

functions, adapting to the new environment, and improving performance 

are among the major activities of the evolution process. As new 

functions and new codes are added, the reliability of the software 

decreases. Unless effort is devoted to keeping the reliability under 

control, further changes will make it even more costly to maintain the 

desired reliability [3,13]. Resources can be devoted to growth which 

tends to increase the failure rate, to error removal which will 

decrease the failure rate, or to routine service which dose not affect 

the failure rate. The ultimate purpose of the evolution model is to 

consider these conflicting factors under limited resources and to 

provide a guideline to management for setting up the optimum 

reliability level and the optimum release time. 
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The program evolution can be approached by analytical or 

simulation models [3,14,26]. Reliability can be related to the size of 

the program (total number of modules, number of modules changed, number 

of modules added), release number, system load, operational profile, 

and complexity measures [15]. Unlike the cost-estimation model and the 

resource-allocation model, which are concerned with the amount of 

reliability cost, the program-evolution model describes the 

interactions between reliability and other factors. 
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SOFTWARE RELIABILITY AND COST 

The software-reliability model measures and predicts the 

reliability of the software during testing and maintenance phases. 

Software reliability is defined as the probability of failure-free 

operation of a software program under the specified conditions for a 

specified period of time. Most software reliability models fall into 

the category of the "bug-counting" model, which represent the number of 

remaining faults (or the number of failures experienced) at time t as a 

stochastic counting process. The following functions are derived to 

characterized the software failure process. 

• the number of faults remaining at time t, N(t) 

• the mean value function of N(t), M(t)=E[N(t)] 

• the failure rate of the software, X(t) 

• the reliability function, R(t) = exp [- /g X(s)ds] 

• The probability of k remaining faults at time t, P^ft) 

This counting process can be modeled as a continuous-time, 

discrete-state Markov chain. Under the following assumptions, the 

model is reduced to the birth-and-death process with linear birth rate 

and linear death rate [11,12]. 

1. The failure rate is proportional to the number of faults 

remaining, 

2. each fault has the same failure rate 0(t), and 

3. whenever a failure occurs, the number of faults is reduced 

by 1 with probability p, increased by 1 with probability q, 

and not changed with probability 1-p-q. 
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The transition diagram of the N(t) process is shown in Fig. 4.5. 

The differential equations of P^Ct) is 

P^Ct+At) = (k-l)q0(t)Pit-i(t)At 4- [l-k(p+q)f(t)At]Pk(t) + 

(k+l)p#(t)Pk+i(t)At + o(At) (5.1) 

with the initial condition 

1 for k = N 
Pk(0) = 

0 for k / N. 

Rearranging Eq. (5.1), dividing by At, and taking the limit as At ^ 0 

gives 

Pk'(t) = (k-l)q#(t)Pk_i(t) - k(p+q)^(t)Pjj(t) + 

(k+l)p^(t)Pk+l(t) (5.2) 

The mean value function of N(t) is defined as 

M(t) = E[N(T)] = Z kPk(t) (5.3) 
k=l 

Taking the derivative of Eq. (5.3) and substituting Eq. (5.2) into it. 

M'(t) = q4^t)Z(k-l)Pk_i(t) - p0(t)Z(k+l)Pi^+i(t) 
k k 

-(p-q)#(t)M(t) 

This differential equation of M(t) with initial condition, M(0)=N, 

gives [7] 
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M(t) = N*exp [-(p-q)/Q 0(s)ds]. 

The above mean value function can be incorporated into the 

software life-cycle cost model to determine the optimal release time 

and the optimal reliability level. Total reliability cost, consisting 

of reliability cost during testing and reliability cost during 

maintenance, can be formulated on a "per-fault" basis [7,10,19,22], 

The reliability cost during testing is a function of the number of 

faults removed during testing and the length of testing time. The 

reliability cost during maintenance is also a function of the number of 

faults removed during operation and the length of the operational time. 

Then, total reliability cost can be expressed as follows. 

TC(t) = Ci[M(0)-M(t)] 4- (C2+C3) [M(t)-M(T)] + C^t +C5(T-t) 

= (C2+C3-Ci)M(t) + (C4-C5)t +CiM(0) - (C2+C3)M(t) 

+ C5T. (5.4) 

The variable cost with respect to t is 

VC(t) = C6M(t) + Cyt 

= CgN-exp [ - (p-q) /Q 0(s)ds] + Cyt 

where 

Cj cost of correcting a fault during testing 

C2 cost of correcting a fault during operation 

C3 penalty costs per fault during operation 

cost of testing per unit time 
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Cg cost of maintenance per unit time 

Cg C2 + C3 - Cj 

C7 Cl^ - C5 

TC total reliability cost 

VC variable reliability cost with respect to t 

t optimal release time 

T useful life of the software. 

The minimum of the variable cost can be found by setting the 

derivative to zero. 

VC'(t) = -CgN^Ct) exp [ - (p-q) #(s)ds] + C7 

C7 
^(t)exp [-(p-q) /Q 0(s)ds] 

CgN 

and 

t c? 
^n0(t) - (p-q) Sn 0(s)ds = -?n 0 3 t 5 T. (5.5) 

CgN 

Given a specific failure rate function, the optimal release time can 

determined ^rom Eq. (5.5). 

For a constant failure rate model [8,9], 0(t)=0, the optimal 

release time can be shown to be 

t = ^ni-—; 
^7 
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For an exponentially decreasing failure rate, #(t) = 0e , 

and 

0 < t < T. (5.6) 

This is a single-variable root-finding problem and can be solved 

by Newton's method. It can be shown that the second derivative is 

positive for both the constant failure rate in Eg. (5.5) and the 

exponentially decreasing failure rate in Eq. (5.6). The solutions 

obtained by setting the first derivative to zero are indeed a minimum. 

As indicated by Musa et al. [17], failure identification 

personnel, failure correction personnel, and computer time are required 

in testing. These limiting resources should be considered in 

determining the cost coefficients of , C2, C^, and C5. In 

determining C3, the failure can be classified into levels of severity. 

The number of faults and cost per fault are estimated for each severity 

level. Then, C3 can be estimated based on expectation. 

To illustrate the exponentially decreasing failure rate model, let 

N=200, Ci=5, C2=20, €3=50, 0^=200, €5=20, p-q=0.95, T=200, ̂  = 

0.2/week, and = 0.01. From Eq. (5.6), 

19exp(-t/100) - O.Olt - 16.5 = 0 0 S t 5 200 
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The solution is t=13.3. Therefore, the life-cycle cost is 

minimized when testing time is 13.3 week. 
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. CONCLUSION 

The cost-estimation model, the resource-allocation model, and the 

program evolution model all deal with reliability - empirically, 

indirectly, and subjectively. However, these macro models point out 

different aspects of software reliability cost issues and pave the way 

for future development of reliability-related life-cycle cost models. 

Software-reliability models, based on rigorous reliability theory, can 

be used to estimate reliability cost more precisely. This study 

examined life-cycle cost modeling with emphasis on reviewing 

reliability cost in the software life cycle. Once the software-

reliability costs are taken care of, the software life-cycle cost can 

readily be obtained. 
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SECTION VI. RELIABILITY OPTIMIZATION WITH SOFTWARE COMPONENT 
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SOFTWARE RELIABILITY-COST FUNCTION 

Previous Sections have discussed the issues of mixed-integer 

reliability techniques, software reliability models, and software 

reliability costs. This Section applies these materials to integrate 

software components into the system reliability optimization problem. 

Assume that the reliability of a system with hardware components and 

software components is to be optimized subject to some constraints. 

Formulating this problem into a mixed-integer reliability optimization 

problem, the component reliability level and the number of redundancies 

of both hardware and software components are to be determined. 

To integrate software components into this optimization problem, 

two issues have to be investigated. First, a software reliability 

function and a software reliability-cost function have to be chosen so 

that they can be incorporated into the constraint function to represent 

the amount of resource required to reach a certain reliability level. 

Second, the reliability function of software redundancy with common-

cause failure has to be determined so that it can be incorporated into 

the objective function of the optimization problem. 

The software reliability-cost function represents the resources 

required to improve the reliability of the software. For the bug-

counting model, software reliability is a function of the number of 

initial faults and debugging time. Thus, the cost of improving a 

software from one reliability level to another can be related to the 

number of faults removed during the debugging period and the debugging 

time. 
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Based on the Jelinski-Moranda model, the expected number of faults 

removed after debugging time t is 

w(t) = N[ 1 - e ] 

and the program failure rate after debugging time t is 

X(t) = Nfe'^t. 

Representing debugging time in terms of failure rate, 

/n\ = ^n(N0) - 0t 

t = - [^n(N0) - ̂ nX] 
9 

A ^ _ * 
Let the objective failure rate be X . The debugging time t to reach 

* 
X can be represented as 

>'e 1 , Vc, 
t =• - [^nN0 - ̂ nX ] 

<t> 

it •)'( 
Also, the expected number of faults removed, M , to reach X can be 

represented as 

/(T*) - N(I -

= N[I - . 
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Let the current time be t and the current failure rate be the extra 

A 
debugging time and the extra faults removed to reach X are 

As indicated by Musa et al. [6], failure-identification personnel, 

failure-correction personnel, and computer time are the three cost 

factors involved in debugging. By associating the costs of failure-

identification personnel and computer time to At, and the cost of 

failure-correction personnel to Aw, a software reliability-cost 

function can be formulated as follows. 

At = t t = - 7(-^nX - -?nX ) 

* 
X > X . 

RC(X, x") = (Ci + C3)At + C2AM 

where 

it 

RC(X,X ) cost of reliability improvement from X to X 

Cl cost per unit time of the failure-identification 

personnel 

C2 cost per failure of the failure-correction personnel 

C3 cost per unit time of the computer. 
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In some cases, the reliability objective is based on the 

reliability level of a given operational time. For instance, the 

reliability objective is 0.98 for 100 operational hours. To formulate 

the reliability-cost function of this type, reliability can be 

represented as a function of debugging time plus operational time. 

Based on the Jelinski-Moranda model, 

r(t+s) = e = exp[-N#se ] 

where 

t debugging time 

s operational time 

X(t) program failure rate after t units of debugging time 

r(') reliability of a software component. 

To represent t in terras of r(t+s), 

^n r(t+s) = -N0se 

Similarly, w(t) can be represented in terras of r(t+s). Hence, 

M(t) = N(1 - e 
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The debugging cost of improving the reliability from r to r can be 

expressed as 

RCCr, r*) = (Ci + CgjAt + 

where 

* 
At = t - t 

= - Uns - /ns + ̂ n(-^nr) - ̂ n(-^nr )] if s ̂  s 
9 

- Un(--^nr) - ̂ n(-^nr )] if s = s 
V 

A/i = n ( t * )  -  M(t) 

1 )'c 
= — l^nr - /nrj 

<ps 
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SOFTWARE REDUNDANCY 

Besides debugging, adding redundancy is another way o£ improving 

the reliability o£ a software system. In software, redundancies are 

programs developed by different groups of people or different companies 

based on the same specifications. These programs are designed to 

perform the same function. In order to make the failures of the 

redundant copies to be as independent as possible, different computer 

languages, development tools, development methodologies, and testing 

strategies may be applied to different redundant programs. 

Nevertheless, it has been shown that software redundancies are not 

totally independent [1,5]. Some input data will fail more than one 

redundancy because of the common errors made by different development 

teams. For example, errors in specifications, design, acceptance 

testing, or input data may cause multiple copies of software to fail. 

This partial independency of software redundancies can be represented 

by a common-cause model. Some specific common-cause models have been 

proposed, especially in the area of nuclear safety, to consider nature 

disasters or power shut-down [2,4,7]. The common-cause model for 

software redundancy is developed as follows. 

Two-Component Model 

A system with two partially independent software components in 

parallel is shown in Fig. 6.1. Due to the common-cause failure, this 

system can be transformed into a series system with two independent 
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components in parallel and a common-cause component as shown in Fig. 

6.2. This two-component common-cause failure model has been addressed 

by Dhillon [2] for hardware systems. 

FIGURE 6.1. Two-component, software redundancy 

FIGURE 6.2. Transformed two-component software redundancy 

The reliabilities of the independent component and the common-

cause component can be derived as follows. 

Notation: 

X failure rate of each software component 
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X£ failure rate of the independent component 

Àg failure rate of the common-cause component 

6 common-cause ratio 

r reliability of each software component 

U£ reliability of the independent component 

Ug reliability of the common-cause component 

Rg system reliability 

Let 

X = \i + \c 

Q - Xg/X. 

Then 

Xg — 9X 

X£ = (1-9)X 

and 

r(t) = e-tt 

Ui(t) = E'^lt = 

Ug(t) = e = [r(t)]*. 

The reliability of this two-component common-cause system can be 

expressed as 
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R, = [l - (1-Ui)2 ] .Uc 

[l - (1 - rl-* )2 ].r* 

Two-Component Markov Model With Common-Cause 

A two-component Markov model with common-cause failure is shown in 

Fig. 6.3. 

2Xi Xi 

FIGURE 6.3. Two-component Markov model with common-cause failure 

Let the state number of this Markov process be the number of 

components failed. The differential equations of this Markov process 

is 

Po'(t) = -(2Xi + Xc)Po(t) 

Pl'(t) = 2XiPo(t) - XiPi(t) 

P2'(t) = XcPo(t) + XiPi(t) 
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Po(t) + PjCt) + P2(t) = 1 

with initial condition PQ(0)=1. 

Taking the Laplace transform, 

SPqCs) - 1 = -(2X£ + XG)PO(S) 

Po(s) = l/(s + 2Xi + \g) 

and 

sPjCs) = 2\£Po(S) - XfPiCs) 

Pl(s) = 2X£Po(S)/(S + X£) 

= a/(s + X^) + A/(s + 2X£ + 2Xg) 

where 

A = 2X1/(X£ + XG). 

Taking the inverse Laplace transform, the state probabilities are 

^-(2X£ + Xç)t 
Po(t) e 

and 

PjCt) = A.[e~^i'^ -

The system reliability is 

RgCt) = Po(t) + Pi(t) 
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-(2Xi+Xç)t ^ 

A . [  .  

Three-Component Model 

A system with three partially independent software components in 

parallel is shown in Fig. 6.4. Since some input data will cause one, 

two, or three components to fail, this system can be transformed into 

Fig. 6.5. 

r 

r 

r 

FIGURE 6.4. Three-component software redundancy 

This transformation is based on the assumption that the failure 

rate of each software component can be broken down into an independent 

failure rate, a two-component common-cause failure rate, and a three-

component common-cause failure rate. The system reliability can be 

derived as follows. 
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FIGURE 6.5. Transformed three-component software redundancy 

X = Xj + X2 + X3 

r(t) = e-tt 

Ujj(t) = e = r^k k = 1, 2, 3. 

where 

X^ k-component common-cause failure rate 

Uj^ k-component common-cause stage reliability. 

The system reliability is 

Rg = [1 " ] [ 1 - (l-Uj^) (I-U2) ] *113 

- [1 - ][(1 - r«2)(L - ,»1) ] .,'3. 
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Three-Component Markov Model With Common-Cause 

Based on the same argument, a three-component Markov model with 

common-cause failure is shown in Fig, 6.6. 

FIGURE 6.6. Three-component Markov model with common-cause failures 

The differential equations and initial condition are as follows. 

Po'(t) = -(3Xi + 3X2 + %3)Po(t) 

Pl'(t) = 3XiPo(t) - (2Xi + X2)Pi(t) 

P2'(t) = 3X2Po(t) + 2XiPi(t) - XiP2(t) 

P3'(t) = XgPoCt) + X2Pi(t) + XiP2(t) 

PgCt) + Pi(t) + P2(t) + PgCt) = 1 

and initial condition Po(t)=l. 

Taking the Laplace transform, 
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sPQCS) - 1 =• -(3X1+3X2+^3)^0(3) 

PQ(3) = 1/(S+3X1+3X2+X3) 

and 

sPi ( s )  =  SXiPgCs)  -  (2X I+X2)P I ( s )  

Pi (3) = 3XIPO(S)/(S+2XI+X2) 

= A/(S+2X1+X2) - A/(S+3X1+3X2+X3) 

where 

A = 3X1/(X1+2X2+X3). 

And 

SP2(S) = 3X2PO(S) + 2XiPi(s) - XiP2(s) 

P2(S) = 3X2PO(S)/(s+Xp + 2XiPi (s)/(s+Xi) 

= B/(s+Xi) - B/(3+3Xi+3X2+X3) + C/(s+Xi) - D/(S+2X1+X2) + 

E/(3+3X1+3X2+X3) 

where 

B = 3X2/(2X1+3X2+X3) 

C = 6xf/[(Xi+X2)(2X1+3X2+X3)] 

D = 6X1/[ (X1+X2)(X1+2X2+X3)] 
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E = 6X^/[(2Xi+3X2+&3)(Xl+2X2+X3)]. 

Taking the inverse Laplace transform, the state probabilities are 

PgCt) = exp [-(3X1+3X2+^3)%] 

PjCt) = A«{exp[-(2X1+X2)t] - exp[-(3X1+3X2+X3)t]} 

P2(t) = (B+C)exp [-X^t] - D'exp [-(2X1+X2) t] -

= (B-E)exp[-(3X1+3X2+X3) ] . 

The system reliability is 

RgCt) = Po(t) + Pi(t) + P2(t). 

N-Component Model 

Based on the same argument, an N-component system with common 

cause can be transformed from Fig. 6.7 to Fig. 6.8. 

The system reliability can be derived by defining 

N 
\ = Z \ 

k=l 

^k " %k/% 

9k 
Uk = r k = 1, . . . , N. 

The system reliability is 
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FIGURE 6.7. N-component software redundancy 

FIGURE 6.8. Transformed N-component software redundancy 
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Rg = [l- (1-Ui)^][l- (l-Ui)N ...[l - (1-Ui) (l-Uj^.j) ]ujj 

Jj[l - (l-Ui)N"k(l-Uk) ] . 

Further assume that 

Xj = aX, 0 < a i 1, for all N 

and 

^2 °° ••• = /3^ ^ Xjf, p - .1, 

From the above assumptions, it can be shown that 

- 1)%N 

X - Xi = (1 - o) X 

(1-a)X 

" jFI 
r ̂ - 1 

Xjt =• ^x^ 

and 

(1-a) 

The system reliability can then be written as 
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Rs - Ji - (l-Ol)K-k(l-Uk) ] 

• Jl [l - <1 - r")"-" CI - A)]. 

N-Component Markov Model With Common-Cause 

For a system of more than three software redundancies in parallel, 

it would be very difficult to estimate common-cause failure rate of two 

components, three components, etc. A simplified N-component Markov 

model is shown in Fig. 6.9. In this model, the common-cause failures 

cause all the redundancies to fail. This common-cause failure rate may 

represent the failure rate of system software whose failure will cause 

all the application software to fail. 

The differential equations of this Markov process is 

PN' (t) = "(NX + VP^Ct) 

Pk'(C) = (k+l)XPk+i(t) - (kX + Xc)Pk(C) k=N-l,...,l 

Po'(t) = Xc[Pi(t) + ... + P^Ct)] + XPi(t) 

N 
Z Pk(t) = 1 
k=0 

Pn(0) = 1. 
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NX ^ 

N-1 

\ 

FIGURE 6.9. N-component Markov model with common-cause failure 

Taking the Laplace transform and the inverse Laplace transform, the 

state probabilities can be derived as follows. 

sPpf(s) - 1 = -(NX + Xq)P]̂ (S) 

Pfj(s) = l/(s + NX + Xg) , 

then 

PN(t) = e-(N%+Xe)t. 

Also 

NXPn(s) - [(N-l)X + Xc]PN-I(s) = sPfj-iCs) 

Pf^-jCs) = NXPfij(s) 
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N N 

s+(Nl)\+\(. s+NX+Xç 

then 

Ppj-lCt) = Ne-[(N-l)X+X^]t _ N,-(NX+Xg)t 

Also 

(N-1) XPFJ_L (s) - [(N-2)X + Xç]PIQ_2(s) = SPN-2(S) 

(N-l)X 1 NX 
Pj^_2(s) = X X 

s+(N-2)X+Xj. s+(N-l)X+Xc s+NX+Xg 

= N(N-l) {1/[s+(N-2)X+Xg] (1) (2) + [s+(N-1)X+Xg] (-1) (1)' + 

[s+NX+Xç] (-1) (-2)} 

and 

Pj (s) = N! { [s+X+Xç] (1) (2) • • • (N-1) + 

[s+ZX+Xg](-1)(1)••• (N-2) + ••• + 

[s+NX+Xg] (-1) (-2) • • • [- (N-1) ] } . 

In general, 

N rN! r N 1 -, 
Pk(s )  = z 1— L n (p-j) J i 

j=k k! |=k s+jX+Xg 

and 
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P,a). I •{-[; 
j-k kl |;k 

The system reliability is 

N-1 
R(t) = Z Pk(t). 

k=l 

The above derivation of state probabilities are exact forms but 

complex. An approximated form of system reliability is derived as 

follows. 

Po'(t) = XctPlCk) + ••• + PN^t)] + XPi(t) 

= XgEl - Po(t)] + XPi(t). 

If 

XPl(t) « XgEl - Po(t)], 

neglecting XP^Ct), 

PQ' (t) = Xc[l - Po(t)] 

SPQCS) = XÇ/S - XGPGCS) 

PQCS) = 1/s - l/(s+Xç) 

and 

PgCt) = 1-0 
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The approximated system reliability is 

R(t) = 1 - Po(t) = 
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FORMULATION OF THE HARDWARE-SOFTWARE RELIABILITY OPTIMIZATION 

To optimize the reliability oE a hardware-software system, the 

reliability-redundancy allocation approach discussed in Sections II and 

III is applied. A general formulation of this problem is expressed as 

follows. 

Max Rg(X, R) 

subject to 

N 

S gi:(r:, x;) 5 b^ for all i 
j=l 

When software components are involved, the above problem can be 

transformed into the following form. 

Max Rg(RJ, •••, R^) 

subject to 

Z fi J (r •) •h£ • (x.-) + 
j eH 

Z f£j (rj ,rj)'hij (xj) S b^ for all i 
j eS 

where 

Rj(rj, Xj) reliability of stage j 

gij(rj, Xj) fij (rj)'hij(xj) or f£j (r°,rj)•h£j (xj) 

f£j(rj) hardware reliability-cost function of resource i 
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at stage j 

f£j(rj,rj) software reliability-cost function of resource i 

at stage j 
j' J 

redundancy-cost function of resource i at stage j 

H set of hardware stages 

S set of software stages. 

The objective function of the above formulation is represented in 

terms of the stage reliabilities. For hardware stage, the stage 

reliability is 

where rjj^ is Uj^ of the jth stage. 

The constraint function is represented as the product of a 

reliability-cost function and a redundancy-cost function. For hardware 

components, an example of reliability-cost function used in Sections II 

and III is 

Rj(rj, Xj) = 1 - (l-rj)*j. 

For software stage, the stage reliability is 

Rj = n"^ [ 1 - (1 - rj)*i ^(1 - rjk) ] 
k=l 

n" [l - (r," )»j-k (1 - r,"" )]. 
k=l 

rj(t) = exp[-Xjt] 
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For software components, the reliability-cost function is 

f(rj, rj) = (Ci + C3)At + 

where 

and 

« 
At = t - t 

- [^n(-^nr;) - -^n(-^nr|)] 
<P J J 

AM = n ( t  ) - M(t) 

— [/nr: - ̂ nr?] 
0s J J 

The redundancy-cost function, h£j(xj), depends upon the type of 

constraint involved. A constant function, increasing function, or 

decreasing function can be used as needed. 
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A NUMERICAL EXAMPLE 

To express a N-stage series system, the three constraint functions 

used in Sections II and III are adapted for hardware stages. For 

software stages, further assume that 

flj(rj) = f3j(rj) = 1 

hij(xj) = Po + PjXj 

h3j (xj) = WjXjexp(xj/4) 

h2j (xj) = Xj 

The hardware-software reliability optimization problem can be 

expressed as 

N 
Max R_(X,R) = n R;(x:,r;) 

j = l 

= n [ 1 - (l-rj)*j]' n n ̂  [ 1 - (l-r;^ )*i ^ (l-rj ] 
jcH jeS k-0 

subject to 

Z PjXj^ + Z (Po + PjXj) - P 
jeH jeS 

2 a:(-t/^n rj )^j(x;+exp(x;/4)) +• 
jeH 

I { x: (C1+C3) [̂ n(--̂ nr?) - ̂ n(-̂ nrj)]/0 + 
jeS ^ 
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XjC2[-^nrj - ̂ nrp/^s} 5 C 

N 
£ W{X:exp(x;/4) ̂  W 
j = l ^ 

A numerical example o£ a 5-stage series system was solved. Stages 

1 through 4 are hardware stages, while stage 5 is software stage. With 

the data given in Table 6.1, the problem was solved by the eight 

combination methods discussed in Section II using two initial base 

points, 0.5 and 0.7. The best solution among the 16 answers, as shown 

in Table 6.2, was obtained by the combination of H-J search method and 

the G-A-G redundancy method. 

TABLE 6.1. Data for numerical example 

j aj Pj Wj P C W 

1 2.33x10-5 1 7 

2 1.45x10-5 2 8 

3 5.41x10-6 3 8 110 175 200 

4 8.05x10-5 4 6 

5 4 9 

p- = 1.5, j = 1,2,3,4,5 t = 1000 

Ci = 0.015 C2 =50 C3 = 0.01 Po = 3 

<{) = 0.0012 rj = 0.9 t = 100 (CPU time for software) 

a - 0.8 8=2 
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TABLE 6.2. Result o£ the numerical example 

R (0.8672, 0.94, 0.94, 0.82, 0.90) 

X (3, 2, 2, 3, 3) 

Rj (0.9976, 0.9964, 0.9964, 0.9942, 0.9789) 

Rg 0.9640 
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SECTION VII. CONCLUSIONS 



CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY 

After two decades of development, reliability optimization has 

become a branch of reliability engineering. This is due to the 

increasing need of a highly reliable system and the fact of limited 

resources. This research formulates the reliability optimization into 

a mixed-integer programming problem which determines both the number of 

redundancies to be used and the component reliability levels. This 

formulation unifies the traditional approach of dealing with only 

redundancy or reliability. Although this extension is obvious, only 

three papers have been published on this specific topic since 1973. 

This is understandable because of the difficulty of the problem and the 

suspicion of the realism of the problem. This dissertation provides 

part of the answer to the above two questions by proposing two 

techniques for solving the mixed-integer reliability optimization 

problem and discussing a hardware-software system which matches this 

formulation very well. 

In order to integrate software into this reliability optimization 

problem, software reliability models, software reliability-cost 

function, software redundancy, and reliability costs in software life-

cycle models are investigated. These studies pave the way for the 

future study in software reliability and systems reliability with 

software components. Suggestions for future studies are discussed 

below. 
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1. New methods of solving the mixed-integer reliability 

optimization problem should be investigated. The 

combination method discussed in Section II provides no 

information about global optimality because of the heuristic 

approach used. Although very general, it is not efficient 

because of the iterative trials of the sequential search 

method. More efficient and effective search methods can be 

studied to take advantage of the features of the reliability 

problem. 

The Lagrange multiplier and branch-and-bound method is 

more accurate, but suffers from numerical instability in 

solving the simultaneous nonlinear equations. In the 

branch-and-bound stage, the branching variables are fixed, 

once an integer solution is obtained, rather than carried 

over to the subsequent problems as constraints. This 

proposed method helps the problem from becoming bigger and 

bigger which in turn would increase the difficulty of 

solving the nonlinear simultaneous equations, but a better 

solution may be missed by this heuristic. More studies can 

be done to investigate the significance of improvement in 

the final solution and the extra effort taken to carry over 

the branching variables. 

2. The integration of software and hardware components 

discussed in Section VI includes only the time-domain 
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software reliability model. Future studies shall be 

extended to the input-domain software reliability model. 

Expressing hardware reliability using input-domain concept 

can also be attempted. 

3. A system including a number of hardware components and 

software components, or a software system consisting a 

number of modules can be regarded as a network system. 

Techniques developed for network reliability can be applied 

to software system as well. 

4. Software reliability models have been criticized for their 

difficulty of being understood and implemented. The 

difficulty arises from the reliability theory behind these 

models. In implementation, the testing strategies must 

conform with the model assumptions, which frequently is in 

conflict with common practice. To make software reliability 

models easier to use, more study should be done to 

accommodate software reliability models to the testing 

strategies. Another direction is to extend the 

applicability of the model to encompass the entire software 

life cycle. 

5. In Section VI, software reliability-cost function is assumed 

to be a linear function of the debugging time and the number 

of faults removed. This function should be validated if 

real data are available. The validation of software 

reliability models also deserve more investigation. 
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6. Most software reliability models discussed in Section IV and 

reliability-cost function discussed in Sections V and VI are 

centered around the concept of bug-counting. In some cases, 

failures cannot be traced back to a fault (incorrect logic, 

incorrect statement, missing statement, etc.) in the 

program. For instance, slow response and numerical error 

may require the whole module to be rewritten using a new 

algorithm. In this case, even though the number of failures 

can be counted, counting the number of faults in the program 

would be misleading. Software reliability models for this 

type of situation should be studied. 
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