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1 Introduction to Happy Numbers 

Happy numbers were first introduced to me through the Holl Mini-Workshop for MSM 

students at Iowa State University.  The presenter, Leslie Hogben, led our group in an exploration 

of happy numbers that invoked our curiosities and led to many interesting discoveries.  While 

happy numbers do not seem to have a practical application (that I’ve discovered at least), they 

are an enjoyable recreational math concept.  

Definition 
 Happy numbers are numbers greater than one such that when the digits of the number are 

squared and summed repeatedly, the number eventually goes to 1.  For example, take the number 

82.  .  Since 82 eventually went to 1, 82 is a8 8 ; 6 00 ; 1 2 + 22 = 6  2 + 82 = 1  2 + 02 + 02 = 1  

happy number.  However, not all numbers exhibit this type of behavior.  Consider the number 4. 

4 yields a different, and most interesting result.  6; 1 7 ;  3 8;42 = 1  2 + 62 = 3  2 + 72 = 5

.  From this we see that9; 8 45; 1 2; 4 0; 252 + 82 = 8  2 + 92 = 1  2 + 42 + 52 = 4  2 + 22 = 2  2 + 02 = 4  

4 is part of a cycle, because applying the function of squaring the digits and taking their sum will 

eventually lead back to the initial number.   Once you reach a number in the cycle, you will stay 

in the cycle indefinitely.  There are eight numbers (4, 15, 37, 58, 89, 145, 42, 20) in this cycle.  A 

number may also “fall into” the cycle.   A number like 90 is not part of the cycle, but by applying 

the function, it will eventually reach a number in the cycle. 9 1 ; 2 + 02 = 8

. 37 is a part of the cycle, so 90 fell into the cycle.5 ;  6 1;  6 782 + 12 = 6  2 + 52 = 6  2 + 12 = 3  
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Happy Tree 

At the Holl workshop, our group started by investigating the numbers 1 - 100 and 

determined if they were happy, part of the cycle, or go to the cycle.  The tree in Figure 1 

shows all the numbers less than 100 that are happy, and how they get to 1. The remaining 

numbers less than 100 are in the cycle or fall into the cycle (4, 15, 37, 58, 89, 145, 42, 20).  The 

tree uses numbers greater than 100 (such as 130) where necessary in order to complete the tree. 

This “happy tree” is based on the drawing of Matt Parker from Numberphile Youtube video 

series. [6] 

 

Figure 1: Happy Tree 
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Naturally this poses the question, will this tree “grow” forever?  In other words, are there 

infinitely many happy numbers?  Well to become happy, the sums of squares need to eventually 

lead to 1.  Any power of 10 would fit that description, as all powers of 10 begin with a digit of 

one, followed by zeros.  Therefore there are infinitely many happy numbers, as there are an 

infinitely many  powers of 10.  

Cycle 

The happy tree contains only a small fraction of the numbers less than 100.  Happy 

numbers has a lower density of 0.1138 and the upper density of 0.18577. [5]   During the 

workshop we found that the rest of the numbers were either part of the cycle or go to the cycle. 

Matt Parker [6] dubbed this cycle, and the numbers that go into it, the “melancoil.”  Figure 2 

shows all the numbers less than 100 that are either part of the cycle or go to the cycle. It also 

includes three digit numbers when necessary to complete the diagram. 

This diagram shows some interesting discoveries.  The trees that span from the cycle vary 

greatly in length, with no numbers leading to 42 (except those within the cycle) and forty-two 

numbers leading to 89.  It begs the question- if we were to continue towards infinity, would there 

still be no numbers leading to 42?  Would there still be a larger amount of numbers leading to 

89?  These would be interesting questions for further research.  
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Figure 2: Melancoil 

Behavior of Numbers 

 At the Holl workshop, we determined the classification of numbers less than 100 and 

then posed the question, can we prove that all numbers are either one, happy, part of the cycle, or 

go to the cycle?  If we could show that applying the function of summing the squares of the 

digits to a number greater than 100 always produced a smaller value, we could conclude that all 

numbers eventually led to two digit numbers, and given that all two digit numbers are either one, 
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happy, part of a cycle, or goes to the cycle, we would be able to conclude all numbers do so as 

well.  By testing several numbers, we saw that it did, indeed, appear to decrease in value.  The 

theorem and its proof follows below. 

A number with  digits can be written as (and juxtaposition does notn + 1 a ...aan n−1 0  

imply multiplication).  For , define a = a ...aan n−1 0 (a) ..S2 = a2
n + a2

n−1 + . + a2
0   

Lemma 1: For , 00a ≥ 1 (a)S2 < a  

Proof:  Assume .  Consider a number  with  digits  and assume that n ≥ 2 a n + 1

. Or in another way, (a)S2 > a .. 0 a ..a2
n + a2

n−1 + . + a2
0 ≥ 10 an

n + 1 n−1
n−1 + . + a0  

Given that  are single digit positive integers and the leading digit  ≠ 0,  then, a , ... aan  n−1  0   

 . Therefore,  and by substitution0a1 n > an
2 a ..10a  10a  ... 10a  n +  n−1 + . +  0 > 2

n + a2
n−1 + . + a2

0  

. Simplifying the expression we have0a  10a  ... 10a  0 a ..1 n +  n−1 + . +  0 ≥ 10 an
n + 1 n−1

n−1 + . + a0  

.  This is a contradiction because a  10 0)a 10 0)a ... 0a9 0 ≥ ( n − 1 n + ( n−1 − 1 n−1 + . + 9 2 a 19 0 ≤ 8  

and  .10 0)a 0( n − 1 n ≥ 9  

 
Theorem 2:  All numbers are either one, happy, part of the cycle, or goes to the cycle. 
 
Proof:  By Lemma 1, repeatedly applying the sum of squares of digits function to a base 

10 number greater than 100 will eventually lead to 2 digit number, indicating all numbers are 

either one, happy, part of the cycle, or go to the cycle.   ▢ 

2 Other exponents 
Consider what happens if the iterated function used an exponent other than 2; what 

changes would occur?  This question led me to the discovery of fixed points.  With an exponent 
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of 2, 1 was the only number that returned itself.  With an exponent of 3, that is not the case. 

While 1 still returns 1, there are other numbers that do the same thing.  There are five fixed 

numbers to be exact- 1, 153, 370, 371, and 407.  This will be established below and is known [2]. 

For all of these numbers, if their digits are cubed, the sums of the cubes returns the same number. 

The last four numbers are also known as “narcissistic numbers.”  Wolfram Math World defines 

narcissistic numbers as “An n-digit number that is the sum of the nth powers of its digits is called 

an n-narcissistic number. It is also sometimes known as an Armstrong number, perfect digital 

invariant, or plus perfect number.” [7]  

Thus we now have five options for all numbers; they are either fixed, happy, part of the 

cycle, go to the cycle, or go to a fixed point.   To find the fixed points, we need to apply the 

function to numbers one by one and identify the numbers that return themselves.  (This is best 

done through the aid of programming.)  Fortunately, just like the function with an exponent of 2, 

applying the function with higher exponents will eventually decrease the number as well. 

Therefore to find the fixed points for any exponent, we do not need to search all numbers, just 

those below a certain bound.  The higher the exponent, , the higher the bound.  A proof of thee  

bound of  is reproduced below.01 e+1   

For , define  given an exponent .a = a ...aan n−1 0 (a) ..Se = ae
n + ae

n−1 + . + ae
0 e  

Theorem 3:  < when  [1](a)Se a a 0≥ 1 e+1  

Proof: Suppose that   Then , wherea 0 .≥ 1 e+1 0 a ..a = 10 an
n + 1 n−1

n−1 + . + a0  

 are single positive integers, , and . Given that is  digits, a , ... aan  n−1  0 an  0≠ n ≥ e + 1 a n + 1  

long, and each digit is at most 9, (a) n )9Se ≤ ( + 1 e   

 

http://mathworld.wolfram.com/Digit.html
http://mathworld.wolfram.com/Sum.html
http://mathworld.wolfram.com/Power.html
http://mathworld.wolfram.com/Digit.html
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0 9 )1 n = ( + 1 n  

       n)9> 9n + ( n−1  

       n)9> 9e + ( e  

        n )9= ( + 1 e  

So then , and by substitution .  Since , then   ▢0 n )91 n > ( + 1 e (a) 0Se ≤ 1 n a 0≥ 1 e+1 (a) .Se < a  

 We now turn our attention to the cycle, or rather, the cycles.  When the exponent was 2, 

there was one cycle of eight numbers.  However, using the exponent of 3 yields four small cycles 

of numbers.  They are: (55, 250, 130); (136, 244); (160, 217, 352); (919, 1459) [2]  By Theorem 

2, we know that these are the only cycles given that all numbers greater than 10,000 will 

decrease under the operation of summing cubes of digits, and these were the only cycles found 

for numbers less than 10,000. 

The happy numbers of exponent 3 also have unique qualities.  While there is no pattern to 

happy numbers (that is currently known at least), cubic happy numbers share that quality that 

they are all congruent to 1 modulo 3. [2]  The proof is reproduced below. 

Proof: Consider the cubic happy number (where juxtaposition does not implya ...aan n−1 0  

multiplication) or written another way . Given that fact that0 a ..10 an
n + 1 n−1

n−1 + . + a0   

 (mod 3) and (mod 3), then (mod 3)a3 ≡ a 01 n ≡ 1 .. ... an
3 + an−1

3 + . + a0
3 ≡ an + an−1 +  + a0  

and (mod 3).  Given that the sum of the digits0 a ..10 an
n + 1 n−1

n−1 + . + a0 ... ≡ an + an−1 +  + a0  

cubed of happy numbers eventually equal 1, and 1 1 (mod 1), then all happy numbers are≡  

congruent to 1 modulo 3. ▢ 

There are many differences between the behavior for numbers with exponents of two and 

exponents of three.  This raises the question, what happens with other exponents?  How many 
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fixed points and cycles will they yield?  Is there any way to predict these number of fixed points 

and cycles?  These questions are best answered with the assistance of a program.  

Given an exponent , the program will need to search through for all fixed pointse 01 e+1  

and cycles.  As the exponent increases, the program will have ten times more numbers to search 

through, and therefore at some point comprehensive list of fixed points will not be possible. 

However, the program was able to find all the fixed points for exponents 2-7, and cycles for 2-6 

in a reasonable amount of time.  The results are listed in the table below.  

Exponent Fixed Points Cycles 

2 1 (4, 15, 37, 58, 89, 145, 42, 2) 

3 1 
153 
370 
371 
407 

(55, 250, 130) 
(136, 244) 
(160, 217, 352) 
(919, 1459) 

4 1 
1634 
8208 
9474 

(13139, 6725, 4338, 4514, 1138, 4179, 9219) 
(2178, 6514) 

5 1 
4150 
4151 
54748 
92727 
93084 
194979 

(244, 2080, 32800, 33043, 1753, 20176, 24616, 16609, 74602, 
25639, 70225, 19996, 184924, 93898, 183877, 99394, 178414, 
51625, 14059, 63199, 126118, 40579, 80005, 35893, 95428, 95998, 
213040, 1300) 
(92873, 108899, 183635, 44156, 12950, 62207, 24647, 26663 
23603) 
(8294, 9044, 61097, 83633, 41273, 18107, 49577, 96812, 99626, 
133682, 41063) 
(8299, 150898, 127711, 33649, 68335, 44155) 
(9045, 548525, 313179, 650550, 63198, 99837, 167916, 91410, 
60075, 27708, 66414, 17601, 24585, 40074, 18855, 71787, 83190, 
92061, 66858, 84213, 34068, 41811, 33795, 79467, 101463) 
(10933, 59536, 73318, 50062) 
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(24594, 37973, 93149, 119366, 74846, 59399, 180515, 39020, 
59324, 63473, 26093, 67100) 
(58618, 76438) 
(89883, 157596) 

6 1 
548834 

(17148, 383891, 1057188, 657564, 246307, 169194, 1113636, 
94773, 771564, 301676, 211691, 578164, 446171, 172499, 
1184692, 844403, 275161, 179996, 1758629, 973580, 927588, 
1189067, 957892, 1458364, 333347, 124661, 97474, 774931, 
771565, 313205) 
(23949, 1083396, 841700, 383890, 1057187, 513069, 594452, 
570947, 786460, 477201) 
(63804, 313625) 
(93531, 548525, 313179, 650550) 

7 1 
1741725 
4210818 
98000817 
9926315 
14459929 

 

Table 1  

3 Applications in the Classroom 
I have the pleasure of teaching Algebra 1 to 8th grade students and wanted to give them 

an opportunity to develop number sense, look for patterns, and build an understanding of 

recursive functions through exploring happy numbers.  In the lesson, we started off by building 

an understanding of what it means to “sum the squares of the digits of a number.”  Students were 

not accustomed to seeing functions rewritten descriptively, rather than with an equation.  

I took the number 23 and summed the squares of the digits.  I asked the students what 

they think would happen if I kept doing this.  Most students, inaccurately, thought that the 

number would mostly increase and keep increasing.  I think that came from an understanding 
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that squaring a number makes it bigger, but they did not think about how the biggest square of a 

digit we would have is 81.  

After students saw that 23 lead to 1 through the recursive function, I defined all such 

numbers as “happy.”  For middle schoolers, clear definitions are important, as well as being able 

to describe them in their own words.  The first thing I had students do in their groups was write 

their own definition of happy numbers.  This allowed me to check understanding of happy 

numbers before moving on. 

I then challenged students to find as many happy numbers as they can.  This showed 

students that there are many happy numbers, that there are patterns to happy numbers, and it 

helped students develop number sense and an understanding of happy numbers.  This part of the 

lesson provoked curiosity and creativity from the students.  Many students realized that the 

numbers that we found from 23 on our way to 1 (13, 10, and 1) are also happy numbers.  They 

also quickly learned that the reverse of these numbers were also happy.  In other words, the order 

of the digits did not matter.  Other students realized that all the powers of 10 are happy, or started 

taking the numbers 23, 13, etc and adding zeros onto the end.  One student realized if the sum of 

the squares was 10, the number was happy.  The easiest route for him to do this was the number 

1,111,111,111.  Another student, having the same realization, stuck to the digits of 0, 1, 2, and 3 

and found many unique numbers others did not consider, such as 2,211 or 301. She transposed 

these numbers into many other numbers.  

After giving students sufficient time to find these patterns, we discussed and highlighted 

the key findings as a class.  When posed with the question “Are there an infinite amount of 

happy numbers?” a few students seemed stumped or unsure, but many quickly surmised that 



12 

because there are an infinite amount of powers of 10, there are naturally an infinite amount of 

happy numbers.  Then I asked the class “Are there non-happy numbers?”  Many realized that 

there are non-happy numbers, and one student predicted that non-happy sum to single digits 

other than 1.  Another student disproved this with the number 7, and we also talked about how 

we do not stop summing the digits with a recursive function just because we reached a single 

digit. 

To introduce the cycle, I used the number 4, and said we will investigate what happens 

when we sum the squares of the digits.  We continued to do this until we reached the number 4 

again.  Some students were flummoxed why I stopped, while other students immediately let out a 

knowledgeable “ohhhhhhhhh.”  Using the age-old wise teaching words of “what do you notice?” 

students pointed out that we ended up back where we started, that the numbers got stuck in a 

loop. From here other questions arose: “Are there other cycles?”  “What about the numbers that 

are not part of cycle?” 

While we did not reach a conclusion to the first question (some students did hang out 

after class to ask more questions about that), we did figure out what happens to numbers that 

were not happy or part of the cycle.  Using another example, students discovered that other 

numbers lead to the cycle.  Students used the last few remaining minutes to fill out a table and 

label numbers a happy, part of the cycle, or goes to the cycle.  Based off of the natural curiosity 

and questions that they posed, a good follow lesson would be to look at other exponents.  
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4 Lesson Plan 

Overview of Lesson 
Students will introduced to the concept of a recursive function through happy numbers. 

Students will explore the different outcomes that will occur through this function, and make 
predictions.  Students will be guided to prove their predictions.  Students can also extend their 
exploration of happy numbers by using different exponents or bases.  

Common Core State Standards for Mathematical Practice 
MP1 Make sense of problems and persevere in solving them. 
MP3 Construct viable arguments and critique the reasoning of others. 
MP7 Look for and make use of structure. 
MP8 Look for and express regularity in repeated reasoning. 

Learning Objectives  
The objective of this lesson is focused on reasoning and problem solving skills.  Students 

will be making sense of the recursive function for happy numbers.  Using that structure, students 
will see how the function results in two different outcomes.  Students will construct an argument 
as to whether there it is possible to have more than those two outcomes.  This relates to the Iowa 
Core Standard HSF.BF.A.1.a 
“Determine an explicit expression, a recursive process, or steps for calculation from a context.” 

Prerequisites 
Students should have background knowledge on using exponents.  Knowledge of other 

bases can help extend the lesson, but is not required. 

Time Required 
45- 90 minutes.  Basics of the lesson can be done in one class period, but further 

explorations and extensions could make this two class periods.  

Materials and Preparation Required 
Student handout, calculators 

http://www.corestandards.org/Math/Practice/MP1/
http://www.corestandards.org/Math/Practice/MP3/
http://www.corestandards.org/Math/Practice/MP7/
http://www.corestandards.org/Math/Practice/MP8/
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Lesson Plan 

Introduction 
Start with the number 23.  Define what it means to “sum the squares of the digits.”  Ask 

the students to make a prediction about what will happen. (Will the value increase?  Decrease? 
Stay the same?)  Repeat summing the squares until you get to one.  Ask the students what 
happens when we sum the squares of 1.  Ask students if they think this will happen with any 
other numbers. Define these numbers as “happy numbers.”  

Cycle 
Ask students to share their happy numbers, and highlight any patterns, such as 10, 100, 

1000, etc.  Then ask students to share numbers that were not happy.  Highlight one of the 
numbers that is part of the cycle.  Use the number to introduce the cycle. Ask students to explain 
why a cycle occurred, and predict if any other numbers would enter into this cycle.  Ask students 
to predict if there are any other cycles. 

Testing Numbers 
Students should define what the possible results of recursive function are.  Then have 

students work collectively to complete the table.  Ask students to define any patterns they see, 
such as numbers like 23 and 32 both are happy. 

Proofs, Predictions, and Extension 
After completing the table, ask students if they all numbers will behave the same way. 

Guide students to prove their hypothesis.  Or consider having students make and test predictions 
about changing the function to an exponent of 3 or using a different base. 
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Student Handout 
Write your own definition of a happy number 
 
 
 
 
With your group, find as many happy numbers as you can 
 
 
 
 
 
 
 
 
 
 
 
What do you notice about the non-happy numbers? 
 
 
 
 
 
 
 
 
 
What are the possible results of the recursive function? 
 
 
 
 
 
 
 
 



16 

Determine if the following numbers in the table are happy, part of the cycle, or go to the cycle 

 
Do you notice any patterns with the numbers that are happy? 
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5 Python Code for Fixed Points and Cycles
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