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The effect of cation ordering on the electric field-induced relaxor to normal ferroelectric phase 

transition in Pb(Mg1/3Nb2/3)O3-based ceramics was investigated. Both A-site, La-doping, and B-

site, Sc-doping, were found to enhance the chemical ordering in these relaxor ceramics. However, 

the enhanced chemical orderings showed different impacts on the dielectric and ferroelectric 

properties in these perovskite materials. The 5% La-doping was observed to shift the dielectric 

maximum temperature (Tmax) to a significantly lower temperature and suppress the electric field-

induced transition to a ferroelectric phase. In contrast, the 5% and 10% Sc-doping showed little 

effect on Tmax but strengthened the ferroelectric coupling. The difference is discussed on the 

basis of cation size and charge imbalance. An electric field-temperature phase diagram is also 

proposed for the 0.90Pb(Mg1/3Nb2/3)O3–0.10Pb(Sc1/2Nb1/2)O3 based on its history dependence of 

the electric field-induced phase transition. 
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I. Introduction 

Complex perovskite Pb(Mg1/3Nb2/3)O3 (PMN)-based relaxor ferroelectrics have been 

extensively studied for several decades due to their unique dielectric, ferroelectric, and 

electrostrictive properties.1-3 The characteristic diffuse phase transition was initially suggested to 

be caused by microscale compositional fluctuations.1 Such chemical heterogeneities were later 

confirmed by transmission electron microscopy investigations, taking the form of nanometer 

scale B-site cation ordered domains.4-7 Coupling to this chemical ordering, electrical dipole 

ordering also exists in the form of polar nanoregions in these relaxor ferroelectrics and these 

nanoscale polar domains persist well above the diffuse phase transition temperature Tmax.
8 

The B-site 1:1 cation ordered domains in PMN are highly stable against extended thermal 

annealing.5-7 Two models have been proposed to interpret the nonstoichiometric chemical 

ordering in these PMN-based 1:2 complex perovskites. One is the “space charge model” where 

Mg and Nb occupy the {111} plane alternatively.2-6 This model suggests that the cation ordered 

domains carry negative space charges. The disordered matrix is Nb-rich and hence positively 

charged. The space charge prevents the growth of the cation ordered domains during thermal 

annealing. The other B-site cation ordering model is the recently proposed “random site model” 

and seems to have gained more experimental support.7,9-14 In this model, every other {111} plane 

of the B-site sublattice is occupied solely by Nb cations. The rest {111} planes of the B-site 

sublattice are occupied randomly by Mg and Nb cations at a ratio of 2:1. This model preserves 

the charge neutrality of the cation ordered domains and the growth of the chemically ordered 

domains is limited by kinetics considerations.9-12 

The electrical dipole ordered nanoregions in PMN are structurally distorted along the 

<111> directions and the polar axis of these nanodomains is randomly fluctuating among the 
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eight equivalent directions.2,3 External electric fields can strengthen the dipole ordering and grow 

the polar nanoregions into large domains.15-24 This process corresponds to a first order relaxor to 

normal ferroelectric phase transition. Presumably, the nanoscale cation ordering should have 

strong interactions with the nanoscale dipole ordering and the cation ordering would not be 

affected by external electric fields. However, the particular information on such interactions is 

still lacking and the effect of cation order on the electric field-induced polar nanoregion 

coarsening in the PMN-based relaxor ferroelectrics is still not clear.12,25,26 The present work 

investigates the influence of chemical ordering on the field-induced phase transition in La-doped 

and Sc-doped PMN ceramics. 

 

II. Experimental Procedure 

Pb1-xLax(Mg(1+x)/3Nb(2-x)/3)O3 (x = 0.05, abbreviated as PLMN5 hereafter) and (1-

x)Pb(Mg1/3Nb2/3)O3–xPb(Sc1/2Nb1/2)O3 (x = 0.05, 0.10, abbreviated as PSMN5 and PSMN10 

hereafter, respectively) ceramics were prepared via the columbite method developed by Swartz 

and Shrout.27 The starting materials used in this work were commercially available high purity 

(better than 99.9 wt.%) PbO, MgO, Nb2O5, La2O3, and Sc2O3 powders. After vibratory milling in 

isopropyl alcohol for 6 hours and subsequent drying, the well-mixed stoichiometric powders of 

B-site oxides were calcined at 1100C for 6 hours. The calcined powders were then mixed with 

La2O3 and/or PbO powders, milled for 6 hours, and calcined at 900C for 4 hours to form phase 

pure perovskite powders. Pressed cylinders, 15 mm in diameter by 20 mm thick, were formed by 

cold-isostatic pressing at 350 MPa. The preformed pellets were then hot pressed in an Al2O3 die 

at 1150C for 2 hours in air. Afterward, the thin slices from the hot pressed piece were buried in 

PMN powder and annealed at 1250C for 1 hour. With an oxygen flow rate about 1000 ml/min, a 
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second annealing was then carried out at 900C for 6 hours in an atmosphere containing excess 

PbO. A heating/cooling ramp rate of 300C/hour was generally used for these thermal processes. 

One slice of the 0.90Pb(Mg1/3Nb2/3)O3–0.10Pb(Sc1/2Nb1/2)O3 ceramic was further thermally 

treated at 1250C for 3 hours and slowly cooled to 900C at the rate of 10C/hour. This slow-

cooled sample is referred to as “PSMN10 ordered” ceramic hereafter. 

The density of these ceramics was measured by the Archimedes’ method and their grain 

size was examined by scanning electron microscopy (SEM). The surface layers of the annealed 

slices were removed by mechanical grounding and x-ray diffraction was used to check the phase 

purity and the cation ordering. The cation ordering was also examined by dark field imaging in a 

transmission electron microscope (TEM). Dielectric characterization was performed with an 

LCR meter (HP-4284A, Hewlett-Packard) in conjunction with an environmental chamber (9023, 

Delta Design). A heating/cooling rate of 3°C/min was used during the measurement. Electric 

field-induced phase transition was then evaluated by the thermal depolarization measurement 

with a picoammeter (Model 484, Keithley) and the polarization hysteresis measurement with a 

standardized ferroelectric test system (RT-66A, Radiant technologies). 

 

III. Results and Discussion 

Density measurement indicates that all four ceramics have relative densities in the range 

of 95~98%. SEM examination confirms the high relative density and also reveals the grain size 

in these ceramics. As shown in Fig. 1, PSMN5, PSMN10 and PLMN5 have fine grains (average 

grain size <5m) while the “PSMN10 ordered” ceramic has larger grains (average grain size 

~8m). X-ray diffraction confirms that phase pure perovskite was formed in all compositions. 

Fig. 2 shows the diffraction spectrum with 2 from 15 to 25. The appearance of the (½ ½ ½) 
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peak in the “PSMN10 ordered” and PLMN5 ceramics is indicative of an enhanced ordering on 

the B-site cation sublattice. It has been reported before that doping by La at A-site and Sc at B-

site are both capable of coarsening B-site cation ordering domains in PMN.5,11,12,28 It is evident 

from Fig. 2 that the effect of Sc-doping on enhancing the chemical ordering is more moderate 

compared to that of the La-doping. The strong cation ordering that is detectable by x-ray 

diffraction only developed in the slowly cooled PSMN10 sample (the “PSMN10 ordered” 

ceramic). The ordering parameter , evaluated according to the common procedure used in 

literature,11 for the “PSMN10 ordered” and PLMN5 ceramic is 0.9 and 0.7, respectively. The 

strong 1:1 cation ordering in these two ceramics is further confirmed by TEM analysis. Figure 3 

shows the dark field images formed with the (½ ½ ½) superlattice spot in the <110>-zone axis 

electron diffraction pattern. Cation ordering domains on the order of 100 nm were observed in 

both ceramics, with those in the “PSMN10 ordered” ceramic slightly larger than those in the 

PLMN5 ceramic. 

PSMN5, PSMN10 and PLMN5 have similar grain size while the “PSMN10 ordered” 

ceramic has larger grains. The difference in grain size may contribute to their different dielectric 

properties. However, it is believed that the cation ordering plays a decisive role in dictating the 

dielectric and ferroelectric properties in these PMN-based relaxor ferroelectrics. The argument is 

made based on the experimental observations on undoped PMN. In this prototype relaxor 

ferroelectric ceramic, extended high temperature annealing presumably develops larger grains. 

However, no noticeable change in dielectric properties was observed primarily due to the fact 

that the degree of cation ordering was not altered during the annealing.5-7 The following 

discussion is, therefore, focused on the effect of cation ordering on the dielectric and ferroelectric 

properties. 
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The dielectric properties of these ceramics are shown in Fig. 4. The relative permittivity 

of all samples exhibits characteristics of a typical relaxor, namely a broad peak and a strong 

frequency dispersion. The maximum dielectric loss occurs in the vicinity of Tmax and is in the 

range of 0.10~0.12 for all four ceramics. In PLMN5, the relative permittivity was dramatically 

suppressed and the temperature at dielectric maxima Tmax shifted considerably to a lower 

temperature (-80C at 1 kHz). The results are consistent with previous studies.5,28 The shift in 

Tmax was suggested to be caused by the smaller size of La3+ cations and the deviation of Mg:Nb 

ratio from 1:2.5 In contrast, little change in Tmax was noted in both PSMN5 and PSMN10. 

Increasing Sc-dopants from 5% to 10% led to an increase in Tmax about 4C at 1kHz and a 

decrease in relative permittivity. At the same Sc-doping level of 10%, it is interesting to notice 

that the Tmax of the “PSMN10 ordered” ceramic was about 9C lower at 1kHz than that of the 

PSMN10 ceramic, together with a further decrease in the permittivity. In these Sc-doped PMN 

ceramics, the degree of chemical ordering presumably increases in the sequence of PSMN5, 

PSMN10, and “PSMN10 ordered”. Results from Fig. 4 indicate that such an increase in cation 

order leads to a decrease in the relative permittivity. In this respect, the PLMN5 follows the same 

trend; it has strong chemical order but weak dielectric response. 

It is known that several ferroelectric states exist in PMN-based relaxor ferroelectrics 

under different temperature/electric field conditions.15-24 One of the most important parameters 

that delineate these states is the thermal depolarization temperature Td0 under the “zero-field-

heating after field-cooling” condition. The temperature Td0 is typically several tens of degrees 

lower than the diffuse phase transition temperature Tmax and marks a real phase transition. 

Therefore, Td0 has been considered as an intrinsic material property for relaxor ceramics.22 

Typically, Td0 is measured by monitoring the thermal depolarization current of a field cooled 
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sample. Figure 5 shows the results of such measurement on the four hot-pressed ceramics. The 

PSMN5, PSMN10 and “PSMN10 ordered” ceramics were field-cooled with 10 kV/cm down to -

150C and the PLMN5 ceramic was cooled with the same field down to -185C before the 

measurement. Again, the PLMN5 ceramic showed a completely different behavior from that of 

Sc-doped ceramics. A very weak and broad current peak was detected at -155C during heating. 

In sharp contrast to this, strong peaks were detected in all three Sc-doped ceramics. The thermal 

depolarization process in both PSMN5 and PSMN10 occurred in a relatively wide temperature 

range compared to that in the “PSMN10 ordered” ceramic. The measured Td0 values are -66C, -

64C, and -51C for PSMN5, PSMN10, and “PSMN10 ordered”, respectively, and are listed in 

Table 1 with other dielectric properties. 

It is worth comparing the Tmax and Td0 of PSMN10 with those of “PSMN10 ordered”. 

Slow cooling enhanced the cation order in the “PSMN10 ordered” ceramic. The strengthened 

chemical ordering increased the Td0 from -64C to -51C and decreased the Tmax from -8C to -

17C. In other words, the enhanced chemical ordering in “PSMN10 ordered” reduced the gap 

between Td0 and Tmax. It should be pointed out that Td0 and Tmax converge to the Curie 

temperature Tc in normal ferroelectrics with long range dipole order. Therefore, increasing the 

lengthscale of the chemical ordering in Sc-doped PMN leads to an increase in the lengthscale of 

the electric dipole order as well.12 

The electric field-induced relaxor to normal ferroelectric phase transition was 

characterized by the polarization hysteresis measurement at temperatures below Tmax. The result 

for PLMN5 at 30kV/cm is shown in Fig. 6. It is evident that a normal ferroelectric phase could 

hardly be forced to form by external fields. Consistent with the thermal depolarization 

measurement, very low remanent polarization Pr and saturation polarization Ps was measured. 
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The A-site La-doping shifted both Tmax and Td0 significantly down to lower temperatures. In 

general, a normal ferroelectric phase could be induced by electric fields in relaxor ferroelectrics 

at temperatures in the vicinity of Td0. The polarization hysteresis loop did open up slightly at -

150C, which is close to Td0 (-155C). However, it seems that the electrical dipoles in the 

random polar nanodomains are frozen and cannot be aligned by external electric fields at such 

low temperatures. 

In contrast, the polarization hysteresis measurements on PSMN5, PSMN10, and 

“PSMN10 ordered” showed a very well defined relaxor to normal ferroelectric phase transition, 

as demonstrated in Fig. 7. It is clear that square hysteresis loops, indicating the presence of a 

normal ferroelectric phase, can be induced by external electric fields at temperatures around Td0. 

The enhanced chemical ordering in Sc-doped PMN at least preserves, if not enhances, the 

electric field-induced relaxor to normal ferroelectric phase transition. 

Ferroelectric properties, the remanent polarization Pr and the coercive field Ec, were 

measured from the hysteresis loops and are plotted in Fig. 8. Sharp contrast is seen again 

between the PLMN5 and the three Sc-doped ceramics. The PLMN5 ceramic showed a minimal 

Pr and a low Ec. The three Sc-doped ceramics showed a peak in Pr at -120C, indicating the 

optimum temperature to align most of the electrical dipoles. A high Pr (>15C/cm2) was 

observed to persist at -50C in the slow cooled “PSMN10 ordered” ceramic. At -20C, which is 

close to their Tmax, Pr was found to diminish for all three Sc-doped ceramics. A monotonic 

decrease in the coercive field Ec with increasing temperature is shown in Fig. 8(b). This indicates 

a higher resistance for the polarization switching at lower temperatures, consistent with previous 

observations.19-22 In comparison to PSMN5 and PSMN10, “PSMN10 ordered” shows a higher Ec 
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at temperatures below Td0. This could be a result of the larger polar nanodomains in this ceramic, 

since a larger polar domain needs a higher field to switch its polarization. 

Strong dependence of the field-induced phase transition in undoped PMN upon 

temperature/electric field history has been previously reported.19-23 Such history dependence was 

also examined in the PSMN10 and the “PSMN10 ordered” ceramics with the polarization 

hysteresis measurement. Three temperature/electric field conditions were used and compared. In 

the first condition, the sample was initially heated to 150C and held for one hour and then zero-

field cooled down to the desired temperature for the hysteresis measurement. At this temperature, 

the measurement was performed at electric fields in the sequence of 5, 10, 15, 20, 30, and 40 

kV/cm, respectively. This condition is referred to as “zero-field-cooled” condition in the 

following. In the second condition, the hysteresis measurement was carried out right after the 

measurement under the first condition at the same temperatures at the same field sequence. The 

second condition is referred to as “poled” condition in the following discussion. In the third 

condition, the sample was initially heated to 150C for one hour and then zero-field cooled to -

150C. At -150C, a ferroelectric phase was induced by applying a full cycle of AC field of 

40kV/cm. Then the sample was zero-field heated to desired temperatures for polarization 

hysteresis measurement at fields in the sequence of 5, 10, 15, 20, 30 and 40 kV/cm. 

Identical polarization hysteresis loops were observed under the second and the third 

conditions at all field levels in both the PSMN10 and the “PSMN10 ordered” ceramics. However, 

a significant difference was noticed in the hysteresis loops measured under the first condition 

when the field was below a critical level. Figure 9 shows the comparison between the “zero-field 

cooled” and the “poled” conditions in the PSMN10 ceramic. At -120C, a lower Pr was observed 

under the “poled” condition at field levels of 5, 10, and 15 kV/cm. However, the situation was 
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reversed at 20kV/cm where a higher Pr was measured under the “poled” condition, as shown in 

Fig. 9 (a) and (b). Identical hysteresis loops under these two conditions were observed at 30 and 

40 kV/cm field levels at this temperature. The electric field level marking the different 

appearance of the hysteresis loops (taken as 25 kV/cm for this temperature) is termed the critical 

electric field in discussion followed. At -100C and -80C, a higher Pr was measured under the 

“poled” condition at fields below the critical electric field, as shown in Fig. 9 (c) and (d). The 

critical field was roughly determined to be 12.5kV/cm at -100C and 7.5kV/cm at -80C. 

Similar plots for the “PSMN10 ordered” ceramic under the “zero-field cooled” and 

“poled” conditions are shown in Fig. 10. Again, a higher Pr was measured under the “poled” 

condition at fields below a critical electric field. At -120C and -80C, a significant difference in 

Pr was noticed. The critical electric field was determined as 25kV/cm at -120C, 12.5kV/cm at -

80C, and 7.5kV/cm at -50C, respectively. 

The critical field can be considered as a threshold field for transforming the relaxor 

ferroelectric state to the normal ferroelectric state. This is best illustrated by the hysteresis loops 

displayed in Fig. 9(d), Fig. 10(a), and Fig. 10(b). The hysteresis loops in these figures under the 

“poled” condition are asymmetric, with one corner sharp and one round. Such loops strongly 

resemble those in poled normal ferroelectric ceramics, such as piezoelectric lead zirconate 

titanate ceramics. According to previous studies on undoped PMN and Pb(Zn1/3Nb2/3)O3,
22,29 the 

PSMN10 and the “PSMN ordered” ceramics are believed to be at a “frozen macrodomain” state 

at electric fields below the critical electric field and at a “normal ferroelectric” state at fields 

above the critical levels. Therefore, an electric field vs. temperature phase diagram can be 

constructed for the PSMN10 and the “PSMN10 ordered” ceramics based on the values of the 

critical electric fields at different temperatures (Fig. 11). The “frozen macrodomain” state (FR) 
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and the “normal ferroelectric” state (FE) are delineated by the boundary line that defines the 

critical electric field. Both states are bounded at the upper temperature end by the characteristic 

Td0. At temperatures above Td0, a typical relaxor behavior (R) with polar nanodomains is 

expected. It is evident from Fig. 11 that the “FE” state in the “PSMN10 ordered” ceramic is 

shifted to higher temperatures. 

Previous studies have shown that both La-doping and Sc-doping are capable of enhancing 

the B-site cation ordering.5,9-12,28 However, such enhanced chemical ordering seems to have 

different effects on the electrical dipole ordering in the polar nanoregions. Such difference may 

be caused by the different chemical ordering mechanisms. The A-site La-doped PMN takes the 

chemical formula Pb1-xLax(Mg(1+x)/3Nb(2-x)/3)O3. La3+ cation (1.50Å), which has a smaller ionic 

radius than Pb2+ (1.63Å), substitutes Pb cation on the A site sublattice as a donor dopant. The 

smaller size of the La cation in the A-site and the increased molar fraction of the larger B-site 

Mg cation are believed to be the primary cause for the enhanced B-site cation ordering.10,30,31 

The smaller La3+ also leads to a more compact unit cell which in turn leads to a higher resistance 

for the shuffling of the ferroelectric active Nb5+ in response to external fields. In addition, the 

increased Mg/Nb ratio in PLMN5 also contributes to the weak ferroelectric response since Mg is 

ferroelectric inactive.30,31 Therefore, the field-induced transition to a ferroelectric phase is 

suppressed in this material. 

The ordering mechanism for the Sc-doping is somewhat different. The introduction of 

larger Sc3+ cations (0.885Å) stabilizes the B-site cation order by increasing the size difference 

between the two B-site sublattices.30,31 At the same time, the lattice is more open for Nb5+ to 

shuffle in response to external electric fields. In addition, Sc is ferroelectrically more active than 
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Mg.31 Therefore, both chemical ordering and electrical dipole ordering are enhanced in the Sc-

doped PMN relaxor ferroelectrics. 

 

IV. Conclusions 

Both A-site La doping and B-site Sc doping enhance the B-site cation order in PMN-

based relaxor ferroelectrics. However, the enhanced chemical ordering has distinct effects on the 

electrical dipole ordering in these oxides. In the La-doped PMN (PLMN5) ceramic, the dielectric 

and ferroelectric responses were deeply suppressed. In contrast, the Sc-doped PMN (PSMN5, 

PSMN10, and “PSMN10 ordered”) ceramics display a normal ferroelectric state within a wide 

temperature range. Both the chemical ordering and the electrical dipole ordering are strengthened 

at the same time by Sc-doping. 
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Fig. 1. SEM micrographs of the fresh fracture surfaces of the four hot-pressed ceramics. (a) 

PSMN5, (b) PSMN10, (c) PSMN10 ordered, and (d) PLMN5. 

Fig. 2. X-ray diffraction spectra of the PSMN5, PSMN10, PSMN10 ordered, and PLMN5 

ceramics. The 1:1 cation order is detected in the “PSMN10 ordered” and PLMN5 

ceramics. 

Fig. 3. TEM dark field imaging with the (½ ½ ½) superlattice spot in the <110>-zone axis 

electron diffraction pattern. (a) PSMN10 ordered, and (b) PLMN5. 

Fig. 4. Dielectric properties of the PSMN5, PSMN10, “PSMN10 ordered”, and PLMN5 

ceramics. (a) Relative permittivity vs. temperature plot at 1kHz, 10kHz, and 100kHz. (b) 

Dielectric loss vs. temperature plot at 1kHz, 10kHz, and 100kHz. 

Fig. 5. Depolarization current measurement under zero-field heating of the hot-pressed ceramics 

after field-cooling at 10kV/cm. 

Fig. 6. Polarization vs. electric field curves measured at 4 Hz with the PLMN5 ceramic at (a) -

100C, (b) -120C, (c) -150C, and (d) -196C. 

Fig. 7. Polarization vs. electric field curves measured at 4 Hz at -50C, -80C, -120C, and -

150C, respectively. (a) PSMN5, (b) PSMN10, (c) PSMN10 ordered. 

Fig. 8. Ferroelectric properties of the four ceramics measured from the P~E hysteresis loops. (a) 

Remanent polarization Pr, and (b) coercive field Ec. 

Fig. 9. History dependence of the ferroelectric behavior in the relaxor ferroelectric PSMN10 

ceramic. ○: the “zero-field cooled” condition; ●: the “poled” condition. (a) 15kV/cm at -

120C, (b) 20kV/cm at -120C, (c) 10kV/cm at -100C, and (d) 5kV/cm at -80C. 
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Fig. 10. History dependence of the ferroelectric behavior in the relaxor ferroelectric “PSMN10 

ordered” ceramic. ○: the “zero-field cooled” condition; ●: the “poled” condition. (a) 

19kV/cm at -120C, (b) 10kV/cm at -80C, and (c) 5kV/cm at -50C. 

Fig. 11. The electric field-temperature phase diagram proposed for the relaxor ferroelectric 

PSMN10 and “PSMN10 ordered” ceramics based on the history dependence. “R” 

denotes the relaxor ferroelectric nanodomain state, “FE” denotes the normal 

ferroelectric macrodomain state, and “FR” denotes the frozen ferroelectric 

macrodomain state. 
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Table 1. Dielectric properties of the Sc-doped and La-doped PMN ceramics. 

 

 

Ceramic εr,max @ 1kHz Peak loss @ 1kHz Tmax @ 1kHz (C) Td0 (C) 

PSMN5 19674 0.105 -12 -66 

PSMN10 17518 0.115 -8 -64 

PSMN10 ordered 15436 0.116 -17 -51 

PLMN5 3245 0.102 -80 -155 
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