## INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced tecnnoiogicai means yo photographi añd reproúlice ưtis ưociment have been used, the quality is heavily dependent upon the quality of the original submitted.

The fo!lowing explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small over!cp. If necessary, sectioning is continued again - beginning beiow tine first row and continuing on untii complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "phoiographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.
```
University Microfilms International
300 Nortn Zeeb Road Ann Arbor, Michigan 48106 USA
St. Jonn's Road. Tyier's Green High Wycombe, Bucks, England HP10 8HR
```


## 7400185

```
HO. TRIEU=KY
    PROBAEILISTIC FOEUICTIOM OF THE JUMINY CURVE
OF LOW ALLOY STEELS FROM TOMPOSITIUN ANU
GRAIN SIZE.
IOWA STATE UNIVERSITY, PH.D.., 1976
```


## University

Microfilms
International

# Probabilistic prediction of the Jominy curve of low alloy steels from composition and grain size 

by

Trieu-Ky Ho

# A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY 

Major: Mechanical Engineering

## Approved:

Signature was redacted for privacy.


Signature was redacted for privacy.

## For the Major Department

Signature was redacted for privacy.

## For the Graduate College

# Iowa State University Ames, Iowa 

1978

## TABLE OF CONTENTS

Pageiv
INTRODUCTION ..... 1
IDENTIFY A METHOD FOR PREDICTING THE JOMINY HARDNESS PROFILE OF A MATERIAL FROM ITS COMPOSITION ZND GRAIN SIZE ..... 4
Predict Hardenability from Chemical Composition and Grain Size ..... 4
riardenability Concept ..... 21
Hardenability Effects in Relation to the Percentage of Martensite ..... 26
Kramer's Multiplying Factor for Carbon, Manganese, Silicon, Nickel, Chromium, Molybdenum and Copper ..... 36
Calculation of the Jominy Curve by the Addition Method ..... 44
Correlation Between Jominy Test and Quenched Round Bars ..... 53
Calculation of Jominy End-Quench Curve from Analysis ..... 58
Hardenability of High Carbon Alloy Steel ..... 61
Summary ..... 729
DEVISE A METHOD TO PREDICT THE STATISTICAL DISPERSION IN THE JOMINY HARDNESS PROFILE PREDICTION ..... 73 b
Mean and Standarā Deviation of Multiplying Factor for Carbon, Manganese, Silicon, Nickel, Chromium, Molybdenum and Copper ..... 74
Jominy Hardenability Test ..... 91
COMPARE THE METHOD WITH THE JOMINY DATA FROM STEEL PRODUCERS ..... 114
Sensitivity Analysis of Content of Alloy Element on the Hardenability of Steel ..... 115
INCORPORATE THE METHODOLOGY INTO A COMPUTER PROGRAM THAT IS EASY FOR THE DESIGNER TO USE ..... 155
Page
SUMMARY AND CONCLUSIONS ..... 156
REFERENCES ..... 159
ACKNOWLEDGMENT ..... 163
APPENDIX ..... 164

## NOMENCLATURE

C: Carbon content of alloy steel, percent
Mn : Manganese content of alloy steel, percent
Si: Silicon content of alloy steel, percent
Ni: Nickel content of alloy steel, percent
$\mathrm{Cr}:$ Chromium content of alloy steel, percent
Mo: Molybdenum content of alloy steel, percent
Cu: Copper content of alloy steel, percent.
S: Sulphur content of alloy steel, percent
P: Phosphorus content of alloy steel, percent
$D_{I C}$ : Carbon factor (ideal critical diameter) of alloy steel, in
$D_{I}$ : Critical diameter of alloy steel, in
$f_{M n}$ : Multiplying factor for manganese in prediction of the hardenability of alloy steel
$f_{S i}:$ Multiplying factor for silicon in prediction of the hardenability of alloy steel
$f_{i v i}$ : Multiplying factor for nickel in prediction of the harāenability of alloy steel
$f_{C r}$ : Multiplying factor for chromiun in prediction of the hardenability of alloy steel
$f_{\text {MO }}$ : Multiplying factor for molybdenum in prediction of the hardenability of alloy steel
$f_{\text {Cu }}$ : Multiplying factor for coppex in the prediction of the hardenability of alloy steel
$\tau$ : Half temperature time or time constant, second
a: Thermal diffusivity of the steel, in ${ }^{2} / \mathrm{sec}$
G.S.:ASTM grain size of low alloy carbon steel
I.H.: Initial hardness, hardness at the extreme quenched end of the Jominy test piece, Rockwell C
D.H.: Distant hardness, hardness at some distance from the quenched end of the Jominy test piece, Rockwell C
$Q_{p}$ : Mean of predicted Jominy hardness, Rockwell $C$
$\sigma_{Q}:$ Standard deviation of predicted Jominy hardness, ${ }^{2}$ p Rockwell C
$Q_{M}$ : Mean of measured Jominy hardness, Rockwell C
$\sigma_{Q}:$ Standard deviation of measured Jominy hardness, Rockwell C
$\mu_{x}$ : Mean of random variable $x$
$\sigma_{x}$ : Standard deviation of random variable $x$
$\mu_{y}$ : Mean of random variable $y$
$\sigma_{y}$ : Standard deviation of random variable $y$
$\sigma_{y / x}$ : Standard deviation of $y$ on $x$
R: Coefficient of correlation
N: Number of data points

## INTRODUCTION

Adequate hardenability has long been recognized as one of the first requirements for proaucing certain āesired mechanicai properties in a heait-treated steel. Hardenability of a steel is the capacity, when it is quenched and tempered to obtain an essentially martensitic structure throuohout the cross section The cooling rate during heat treatment and such factors as composition and grain size which control transformation at elevated temperature, affect the hardenability of a steel. In o-der to compare the hardenability of one steel with that of another steel, the cooling rate, composition, and grain size have to be considered in relation to the microstructure resulting from the transformation of austenite. "Critical diameter" has been widely accepted and used as an index for hardenability comparison of low carbon alloy steels.

The critical diameter of a low alloy steel is defined as the largest diameter of a right circular cylindrical bar that contains at its center a microstructure of $50 \%$ martensite after it is quenched in a medium with an infinite severity of quench. The method proposed by Grossmann (1) enables us to predict the critical diameter of a low carbon alloy steel from its grain size ana chemical composition. A Jominy endquench hardness curve can be predicted by using the empirical relationship between critical diameter and ratio of initial
hardness, I.H. (which depends on carbon content of the steel alone), to distant hardness, D.H., as developed by Field (2). The critical diameter of a low carbon alloy steel can be correlated to the Jominy end-quench distance which has a microstructure of $50 \%$ martensite. Consequently, the hardenability of low carbon alloy steel can be characterized by its Jominy end-quench hardness curve.

The designer often makes a decision concerned with heat treatment before the steel to be used in the product is smeltad. It is important that the designer be able to predict important properties from composition. Such predictions should include mean values as well as some measure of statistical dispersions.

Since a tempered hardness predictive procedure would incorporate a Joniny test (if the material is on hand) or a Jominy prediction, the first step toward a complete method of predicting quenched and tempered properties is to statistically estimate the Jominy signature of the material for those cases wherein the material is not on hand for test.

The methodology once developed can be automated using the computer to make routine Jominy signature preaiotions conveniently available to a designer.

It is the objective of this investigation to:

1. Identify a method for predicting the Jominy hardness profile of a material from its composition and
grain size.
2. Devise a method to predict the statistical dispersion in the Jominy hardness profile prediction.
3. Compare the results of the method with actual Jominy data from steel producers.
4. Incorporate the methodology if successful, into a computer program that is easy for the designer to use.

# IDENTIFY A METHOD FOR PREDICTING THE JOMINY HARDNESS PROFILE OF A MATERIAL FROM ITS COMPOSITION AND GRAIN SIZE Predict Hardenability from Chemical Composition and Grain Size 

In 1942 Grossmann (1) proposed that the hardenability of a low carbon alloy steel may be calculated from its chemical composition and grain size. According to his thesis the steel is considered as having a base hardenability due to its carbon content without any other alloy element. The total hardenability of the steel is established by multiplying the base hardenability by a factor reflecting the contribution of each additional chemical element. The effect of the as-quenched grain size of the steel is incorporated in the base hardenability.

## Critical diameter

Grossmann expressed the hardenability of an alloy carbon steel in terms of "critical diameter", namely the diameter of bar, in inches, that will just harden all the way through (absence of unharãeneã corej in an "iajeai": quenchi. The hardenability may also be related to the Jominy hardness test through the $50 \%$ martensite hardness criterion of the steel.

Grossmann method for predicting the critical diameter of a low carbon alloy steel from chemical composition and grain size

In developing his thesis, Grossmann made the assumption that the effect of each alloy element on the hardenability of the steel is independent of every other and that the steel is heat-treated at an austenitizing temperature sufficiently high to dissolve all the carbides. Stable undissolved carbides are absent in the steel as-quenched. The amount of carbide that precipitates from austenite depends upon the quenching temperature and the time period during which the test piece is held at the quenching temperature prior to quenching. For simple alloy steels, the calculated hardenability correlated with the measured hardenability value (see Table $l$ and Figure 1), but in case of complex alloy steel, especially in chromium steels, and chrome-molybdenum and chrome-vanadium steels, the calculation indicated only a maximum possible hardenability. The actual hardenability obtained may be much less. Grossmann explained this by reasoning that since chromium, molvbdenum and vanadium have strong tendencies to form carbides, the smaller hardenability effect of complex steels is due to the decrease in ailoy and carbon content of the austenite before quenching caused by the presence of undissolved carbides.

Steven (3), studying the effect on hardenability of chromium and molybdenum combinations, found that when both elements were present the hardenability was lower than that

Table 1. Calculated and actual hardenability (data from Table 18 of (1))

| Average Grain Size | Composition of Steels (\%) |  |  |  |  |  |  |  |  | Calculated | Actual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | M n | P | S | Si | Ni | Cr | Cu | Mo | $\mathrm{D}^{\text {rin. }}$ | $\mathrm{D}_{\underline{\text { r }}}^{\text {in }}$. |
| 4-6 | 0.41 | 0.79 | 0.015 | 0.026 | 0.20 | 0.07 | 0.07 | 0.03 |  | 1.35 | 1.34 |
| 7 | 0.63 | 0.94 | 0.03 .1 | 0.027 | 0.20 | 0.03 | 0.05 | 0.02 |  | 1.58 | 1.71 |
| 5 | 0.61 | 0.85 | 0.017 | 0.025 | 0.33 | 0.06 | 0.05 | 0.02 |  | 1.82 | 1.87 |
| 6.2 | 0.65 | 1.04 | 0.015 | 0.25 | 0.19 | 0.03 | 0.27 | 0.02 |  | 2.84 | 2.66 |
| 6.2 | 0.66 | 0.97 | 0.019 | 0.020 | 0.25 | 0.03 | 0.07 | 0.02 | 0.10 | 2.79 | 2.53 |
| 7 | 0.51 | 1.05 | 0.014 | 0.029 | 0.29 |  | 0.21 | 0.06 |  | 2.10 | 2.22 |
| 5 | 0.39 | 1.74 | 0.023 | 0.021 | 0.26 | 0.01 | 0.13 | 0.07 |  | 2.89 | 2.77 |
| 6 | 0.57 | 0.68 | 0.019 | 0.028 | 2.00 |  | 0.17 | 0.05 |  | 2.25 | 2.28 |
| 7 | 0.69 | 0.81 | 0.014 | 0.024 | 0.24 | 0.01 | $?$ | 0.08 | 0.22 | 2.18 | 2.4 |
| 6 | 0.40 | 1.70 | 0.022 | 0.030 | 0.21 | 0.21 | 0.13 | 0.06 | 0.05 | 3.15 | 2.70 |
| 7 | 0.41 | 1.82 | 0.015 | 0.024 | 0.21 | 0.18 | 0.09 | 0.10 | 0.03 | 2.93 | 2.77 |
| 7 | 0.41 | 1.85 | 0.019 | 0.029 | 0.25 | 0.13 | 0.10 | 0.09 | 0.02 | 3.02 | 3.07 |
| 6 | 0.41 | 1.77 | 0.019 | 0.014 | 0.20 | 0.28 | 0.16 | 0.07 | 0.05 | 3.41 | 3.17 |
| 7 | 0.46 | 1.88 | 0.019 | 0.024 | 0.25 | 0.15 | 0.12 | 0.05 | 0.03 | 3.42 | 3.63 |
| 6 | 0.45 | 2.01 | 0.28 | 0.019 | 0.22 | 0.18 | 0.20 | 0.06 | 0.04 | 4.20 | 4.22 |



Figure 1. Relationship between calculated hardenability and that found by experiment (cited from Figure l of (1))
expected from a combination of the factors of the individual element (see Figure 2). It is possible that interactions may occur whenever two or more stable carbide-forming elements are present in the element alloy.


Figure 2. Multiplying factor chromium-molybdenum combination (cited from Figure 20 of (3))

Grossmanh's multiplying factor of phosphorias, sulphur, silicon, manganese, nickel, chromium, and molybdenum

In order to predict the hardenability of a heat treated alloy steel from its chemical composition and grain size, Grossmann developed a set of graphs (multiplying factors) for alloy elements commoniy present in commercial steels.

According to Grossmann's hypothesis the presence of a certain amount of chemical element multiplies the hardenability by a certain factor. The multiplying factor of
phosphorus was originally determined by adding phosphorus to successive ingots of two steels, so that in each series the steels were substantially identical except for the phosphorus content. The composition of the two steels, which Grossmann used in his original experiment, was as shown in Table 2. The hardenabilities were measured in terms of critica? diameter and results were plotted in Figure 3 as critical diameter ( $D_{I}$ ) v.s. phosphorus content, percent. In the figure the two lines, one for each steel, were drawn to represent the increase in hardenability due to phosphorus. The slope of these lines are such that the increase in hardenability due to phosphorus is the same percentage in the high hardenability steel as in the low hardenability steel. Thus, the effect of phosphorus on hardenability can be derived by taking the ratio of the critical diameter of the steel in Table 2 to the intercept 0 f the corresponaing straight iine in Figure 3 : wnich is the critical diameter of the given steel with zero percentage of phosphorus.

Figure 4 shows the effect of phosphorus on hardenability in terms of multiplying factor. Similarly, the effect of sulphur silicon, nickel, chromium, manganese, molybdenum and copper (copper has approximately the same effect on hardenability as nickel) were determined and superposed as depicted in Figure 5. It was found that all the alloy elemer.ts mentioned above,

Table 2. Steels for study of effect of phosphorus (cited from Table 2 of (1))

| Composition (\%) |  |  |  |  |  |  |  | Average Grain Size | Ideal Diameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | Mn | P | S | Si | Ni | Cr | Cu |  | $\mathrm{D}_{\mathrm{I}^{\prime}}$ in. |
| 0.62 | 0.98 | 0.020 | 0.018 | 0.22 | 0.05 | 0.05 | 0.02 | 4.5 | 1.95 |
| 0.62 | 0.98 | 0.038 | 0.018 | 0.22 | 0.05 | 0.05 | 0.02 | 4.5 | 1.99 |
| 0.62 | 0.98 | 0.056 | 0.018 | 0.22 | 0.05 | 0.05 | 0.02 | 4.5 | 2.08 |
| 0.62 | 0.98 | 0.077 | 0.018 | 0.22 | 0.05 | 0.05 | 0.02 | 4.5 | 2.22 |
| 0.62 | 0.98 | 0.097 | 0.018 | 0.22 | 0.05 | 0.05 | 0.02 | 4.5 | 2.38 |
| 0.63 | 0.94 | 0.031 | 0.027 | 0.20 | 0.03 | 0.05 | 0.02 | 7.0 | 1.71 |
| 0.63 | 0.94 | 0.047 | 0.027 | 0.20 | 0.03 | 0.05 | 0.02 | 7.0 | 1.81 |
| 0.63 | 0.94 | 0.067 | 0.027 | 0.20 | 0.03 | 0.05 | 0.02 | 7.0 | 1.86 |
| 0.63 | 0.94 | 0.086 | 0.027 | 0.20 | 0.03 | 0.05 | 0.02 | 7.0 | 1.91 |
| 0.63 | 0.94 | 0.104 | 0.027 | 0.20 | 0.03 | 0.05 | 0.02 | 7.0 | 1.97 |



Figure 3. Effect of phosphorus content on hardenability determined experimentally (cited from Figure 3 of (1))


Figure 4. Multiplying factor for phosphorus (cited from Figure 4 of (1))


Figure 5. Multiplying factor of manganese, silicon, nickel, chromium, molybdenum, and sulphur (cited from Figure 27 in (1))
except sulphur, increase the hardenability of the steel.

Grossmann's carbon factor
Data on "pure steels" were not available in terms of "ideal critical diameter" as needed for deiermining the carbon factor (the base hardenability due to carbon content alone) of a steel. Grossmann first assumed that the cooling time (or cooling rate), in the range of $930^{\circ}$ to $1100^{\circ} \mathrm{F}$, that would just cause the steel to harden fully is a constant fraction of the "half temperature time" ${ }^{1}$ (the time it takes for the metal to cool from the quenching temprature to a temperature halfway between the quenching temperature and temperature of the medium). Secondly, he assumed that the time for full hardening is a constant fraction of the time for half hardening. Digges (4) has shown that, there is a linear relationship between the carbon content and the cooling time from $1100^{\circ}$ to $930^{\circ} \mathrm{F}$, which will just provide full hardening of the steel. When the half temperature time is known, the ideal critical diameter (base hardenability due to carbon content alone) can be calculated by using the relation (5):

$$
D_{I}=D_{I}^{2}=K^{*} \tau
$$

$1_{\text {Present }}$ day terminology would be "time constant".
where $D_{I}$ is the "ideal critical diameter" $K$ is a known constant, and $\tau$ is the half temperature time.

In Grossmann's original test, different amounts of carbon were added to successive ingots during an open-hearth heat. These successive ingots were substantially identical except for carbon content. The chemical analysis, as-quenched grain size and the measured ideal critical diameter $D_{I C}$ corrected to ASTM No. 5 grain size, were as shown in Table 3. The ratio between the total hardenability of the steel and the product of the multiplying factors of all the other alloy elements, except carbon, will be the hardenability effect of the carbon alone. The results were tabulated as in Table 4.

If the linear relationship between carbon content and cooling time postulated by Digges (4) is true and the two assumptions mentioned are valid, then there should be a straight line relationsnip between carbon content ancinaif temperature time $\tau$ is to be expecter. Since $D_{T}^{2}$ is proportional to half temperature time $\tau\left(D_{I}^{2}=K * \tau\right)$, there should be a linear correlation between $D_{I}^{2}$ and carbon content. As is shown in Figure 6, the three available data points suggest a straight line containing the origin, suggesting zero hardenability at zero carbon content. (Coefficient of correlation between $D_{I}^{2}$ and carbon content is 0.996434, which is significant at five percent level). Grossmann presented this evidence of the "straight. line" relationship between carbon content and $D_{I}^{2}$. It is known that the pure

Table 3. Ingots with carbon addjtions (cited from Table 9 of (1))

| Composition (\%) |  |  |  |  |  |  |  | Average <br> Grain <br> Size | ```Ideal Diameter D I' in. Corrected to No. 5 Grain Size``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{C}$ | Mn | P | S | Sj. | Ni | Cr | Cu |  |  |
| 0.41 | 0.79 | 0.015 | 0.026 | 0.20 | 0.07 | 0.07 | 0.03 | 4.6 | 1.34 |
| 0.54 | 0.79 | 0.015 | 0.026 | 0.20 | 1). 07 | 0.07 | 0.03 | 4.6 | 1.52 |
| 0.68 | 0.79 | 0.015 | 0.026 | 0.20 | $1) .07$ | 0.07 | 0.03 | 4.6 | 1.75 |

Table 4. Effect of carbon alone (cited from Table ll of (1))

| Carbon <br> (8) | $\begin{aligned} & \text { Ideal Diameter } \mathrm{D}_{I} \\ & \text { at No. } 5 \\ & \text { Grain Size } \end{aligned}$ | Divided by Factior <br> for other <br> Elements | ```Ideal Diameter of Pure Iron-Carbon Alloy at No. 5 Grain Size DI``` | $D_{I}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.41 | 1.34 | 5.2'74 | 0.2540 | 0.0647 |
| 0.54 | 1.52 | 5.274 | 0.2882 | 0.0831 |
| 0.68 | 1.75 | 5.2.14 | 0.3316 | 0.1098 |



Figure 6. Relation of square of ideal diameter to carbon content (cited from Figure 17 of (1))
iron has practically negligible hardenability. From Figure 6 the carbon factor of grain size 5 was established and shown in Figure 7.

By the work of Grossmann and Stephenson (6) it had been shown that an increase of one grain size number caused a certain percentage increase in $D_{I}^{2}$, which means that the relationship between $D_{I}^{2}$ and grain size could be drawn as a series of parallel straight lines on semilogarithmic coordinate paper. If this was true, then it was clear that the


Figure 7. Hardenability of pure iron-carbon alloys, expressed as ideal diameter (cited from Figure 18 of (1))
relationship between grain size and $D_{I}$ could likewise be drawn as a series of parallel straight lines on semilogarithmic coordinate paper as shown in Figure 8. The meaning of Figure 8 is merely that if the hardenability is known for a steel at one grain size, its hardenability at some other grain size can be read directly from Figure 8. Based on the carbon factor of grain size 5 and with the aid of Figure 8 the carbon factors for grain size $4,6,7$ and 8 were established and are shown in Figure 7.

Calculation of critical diameter from chemical composition and grain size

So far the base hardenability due to carbon content alone and multiplying factors for different alloy elements have been determined. The general formula for calculating hardenability of a low carbon alloy steel from its chemical composition and grain size is as follows:

$$
D_{I}=D_{I C}{ }^{*}{\underset{M n}{ }{ }^{*} f_{S i}{ }^{*} f_{N i}, \ldots \text { etc. } . . . \text { et. }}
$$

where:
$D_{I}$ - critical diameter, inches;
$\mathrm{D}_{\text {IC }}$ - ideal critical diameter for the carbon percentage
f - multiplying factor for alloy element from Figure 5.
Suppose we want to predict the hardenability of a steel which has the chemical composition and grain size as shown in the following table. Ideal critical diameter and multiplying


Figure 8. Effect of grain size on hardenability (cited from Figure lf of (1))
factors for different alloy elements, shown in third column of the table were read from Figure 7 and Figure 5 for the given content of carbon and alloy elements. The product of the ideal critical diameter and multiplying factors is the ideal diameter of the given steel.

Example of hardenability calculation:

| Element | Percentage <br> in Steel | Multiplying <br> Factor |
| :--- | :---: | :---: |
| Carbon | 0.50 | 0.24 |
| Manganese | 0.90 | 4.00 |
| Phosphorus | 0.02 | 1.05 |
| Sulphur | 0.02 | 0.98 |
| Silicon | 0.10 | 1.10 |
| Nickel | 0.28 | 1.10 |
| Chromium | 0.30 | 1.70 |
| Molybienum | 0.05 | 1.16 |
| Copper | 0.05 | 1.02 |
| Product (critical |  |  |

Lamont's multiplying factor for manganese, silicon, nickel, chromium, molybdenum

Multiplying factors for alloy elements in steel established by Grossmann (1) were restricted to narrow range of alloy contents. Crafts and Lamont (7) extended the range of alloy contents of the muitiplying factors and found that they
agree fairly well with those published by Grossmann. In their experiments, Crafts assumed that Grossmann's factor for carbon, grain size, pnosphorus, suiphur, and copper were correct. üsing these factors and those determined experimentally, the ideal critical diameter was predicted on the assumption that the element under consideration accounted for all the change in the hardenability of the steel. The multiplying factor for a given element was determined as the ratio between the experimentally determined critical diameter and the critical diameter calculated by Grossmann's method from the other components of the composition. And the results are as shown in Figures 9 through 13. Crafts and Lamont also observed that the hardness at $50 \%$ martensite microstructure was influenced by alloying elements to a much greater degree than was indicated by Grossmann. The difference in hardness at 50\% martensite microstructure appeared to be due to the character of the nonmartensitic part of the structure, the amount of which is determined largely by the amount and type of alloying elements in the steel.

Hardenability Concept

The hardenability of a steel is measured in terms of the severity of the cooling conditions necessary to avoid the pearlite and bainite transformation. The less rapid the


Figure 9. Multiplying factor for manganese (cited from Figure 1 of (7))


Figure 10. Multiplying factor of silicon (cited from Figure 2 of (7))


Figure ll. Multiplying factor for nickel (cited from Figure 4 of (7))


Figure 12. Multiplying factor for chromium (cited from Figure 5 of (7))


Figure 13. Multiplying factor for molybdenum (cited from Figure 6 of (7))
cooling necessary to prevent the formation of bainite and pearlite, the higher is the hardenability. Thus there are two hardenabilities, pearlitic and bainitic (8).

For plan carbon steel of moderate or small grain size which has been cooled at such a rate that it consists of $50 \%$ martensite and $50 \%$ nonmartensitic product, the nonmartensitic product has been reported by Grossmann, Asimow, and Urban (5) as pearlite. Therefore, if alloying elements that retard equally the pearlite and bainite transformations are added to plain carbon steels, the measured hardenability of the resulting steels, on the basis of $50 \%$ martensite, will be the pearlitic hardenability. If on the other hand, alloying elements are added that have a great retarding effect on the pearlite transformation than on the bainite, a composition will be reached in which bainite will restrict the formation of martensite: and the measurements of the further additions of the alloying elements will then apply to the bainitic hardenability.

The isothermal transformation data indicate that the elements that have the same or less of a carbide-forming tendency than iron retara the pearijite and the bainite transormations by approximately equal percentage. Thus the elements carbon, manganese, nickel, silicon, chromium (up to 0.5 percent) and molybdenum (up to 0.2 percent) do not appear to affect the nonmartensitic transformation selectively for small or moderate
addition. The multiplying factors established by Grossmann can be assumed to be applied to the pearlite hardenability.

## Hardenability Effects in Relation to the Percentage of Martensite

Hodge and Orehoski (9) established the relationship between hardenability and percentage of martensite in some low alloy steels. This enables us to predict the full martensitic hardenability from a calculation of the hardenability on a $50 \%$ martensite criterion and to determine from the hardness values of a hardenability test, such as an end-quench test, the point corresponding to a desired percentage of martensite. Orehoski expressed the hardness at 50\%, 80\%, 90\%, 95\%, and 99.9\% martensitic microstructure as a function of carbon content of the steel. And the relationship between critical diameter values at the above percentage martensite criteria were also established. The results are as shown in Figure 14 through 22. It was found that the differences between the hardenability values based on $50 \%$ martensite and other percentage martensite criteria increased as the hardenability increased and that, in the steels of higher hardenability, these differences were fairly large.

Later Hodge and Orehoski (9) showed that the hardenability effects of the alloys may be represented by a single factor curve for 50,95 and 99.9 percent martensite and they proposed


Figure 14. Relationship between carbon content and $50 \%$ martensite Rockwell $C$ hardness


Figure 15. Relationship ketween carbon content and $80 \%$ martensite Rockwell $C$ hardnesis (data cited from Table 4 of (9))


Figure 16. Relationship between carbon content and $90 \%$ martensite Rockwell $C$ hardness (data cited from Table 4 of (9))


Figure 17. Relationship between carbon content and 95\% (data cited from Table 4 of (9))


Figure 18. Relationship between carbon content and $99.9 \%$ martensite Rockwell C harness (data cited from Table 4 of (9))


Figure 19. Relationship between hardenability based on $50 \%$ martensite and $80 \%$ (data cited from Table 2 of (9))


Figure 20. Relationship between hardenability based on $50 \%$ martensite and $90 \%$ martensite hardenability


Figure 21. Relationshio between hardenability absed on $50 \%$ martensite and $95 \%$ martenside harderiability (data cited from Table 2 of (9))


Figure 22. Relationship between hardenability based on $50 \%$ martensite and 99.9\% martensite hardenability (data cited from rable 2 of (9))
that the relationship between full martensite hardenability and 50 percent martensite hardenability is a function of the base hardenability of the iron carbon alone.

> Kramer's Multiplying Factor for Carbon, Manganese, Silicon, Nickel, Chromium, Molybdenum and Copper

The carbon factor curve obtained by Grossmann was dependent upon the factors for all the other alloying elements present in the steel. It has been found that the effect of manganese and silicon on hardenability was not a linear function of the alloy, which Grossmann had assumed in the determination of the multiplying factor curves. Kramer, Siegel and Brooks (10) reexamined the effect of carbon on hardenability and found that it is approximately three times higher than that reported by Grossmann.

To Estahiish the level of the carbon curve: Kramer determined the critical diameter of the iron-carbon alloys very Iow in residual elements. The hardenability curves were then derived by a series of successive approximations in which the previously determined curves were initially used.

Kramer first used the manganese and silicon curves developed by Crafts and Lamont (7) to develop a carbon curve, this new carbon curve was then employed to develop new manganese and silicon curves, and the procedure was repeated until further cycling caused no changes. This process of
cycling established the general shape of the carbon curve, whose level was determined from low-alloy steels. The balanced carbon, manganese, and silicon curves were then used to determine the effect of the other alloying elements on hardenability, and these factors curves were again cycled through a process of successive corrections until a completely balanced system was obtained. Kramer's multiplying factor curves showed that the effect of carbon (Figure 23 and Figure 24) on hardenability is approximately three times higher than that reported by Grossmann (l). The effect of grain size on hardenability for aluminum-killed steels is the same as predicted by Grossmann (1), but it is less on sili-con-killed steels.

The factor curve for manganese (Figure 25) differs markedIy as to shape and magnitude from those reported by Grossmann (1) and Crafts and Lamont (7). Manganese up to 1.00 per cent has relatively little effect on hardenability, but above this level it has a very large effect on hardenability. The factor curve for silicon (Figure 26) is lower than that reported by Grossmann (1) and Craft.s and Lamont (7). In general, silicon has a relatively small effect on hardenability. The factor curve for nickel shown in Figure 27 shows good agreement with those determined by Crafts and Lamont up to approximately 3 percent nickel. The factor cuve for copper (Figure 28) is similar to that for nickel. Copper exerts a considerable influence on


Figure 23. Relationship between carbon content and square of ideal critical diameter (data cited from Figure 8 of (10))


Figure 24. Reiation between ideai aiameter ( $D_{I}$ ), carbon con-
tent, and grain size


Figure 25. Multiplying factor for manganese (data cited from figure 13 of (10))


Figure 26. Multiplying factor for silicon (data cited from Figure 14 of (10))


Figure 27. Multipiying factor for chromium (data cited from Figure 18 of (10))


Figure 28. Multiplying factor of nickel (data cited from Figure 15 of


#### Abstract

the hardenability, as little as 0.10 percent copper raises the hardenability by almost 17 percent. The factor curve for chromium and molybdenum are shown in Eicures 29 and 30 since chromium and molybdenum form stable carbides, their effect on hardenability is strongly dependent on heat treatment. This has resulted in large scattering of hardenability multiplying factors at high percentages of these alloving elements.


Calculation of the Jominy Curve by the Adむiたion Method

Crafis and Lamont (ll) proposed an addition method to predict the Jominy hardness curve, which characterizes the hardenability of a low and medium carbon alloy steel, by the addition of Rockwell $C$ units proportional to the carbon and alloy content, grain size, and position in the Jominy test specimen. The caicuiation is started from a oase that includes the effect of carbon content and position in the Jominy test specimen. Rockwell $C$ units are added to the base in proportion to the alloy content and grain size. This sum represents the Rockwell $C$ hardness up to the level at which a disproportionate increase of hardness is caused by the formation of martensite, and above this level an increment for martensite hardening is added. The effect of alloys are directly proportional to the amounts present and are


Figure 29. Multiplying factor for molybdenum (data cited from figure 19 of (10))


Figure 30. Multiplying factor for copper (data cited from Figure 16 of (10))
independent of each other, the carbon and the position in the specimen. Furthermore, the factors for determining the martensite increment are dependent only on carbon content and are independent of cooling rate and alloy content.

The addition method for calculating Rockwell C hardness of the Jominy hardenability test will be illustrated by the following example.

Assumed that it is desired to know the Jominy hardness curve for an 8645 steel of grain size 8 and of the following composition.

The alloy addition units (Figure 3l) for each element and the actual grain size (Figure 32) are as shown in the third column of the table. If the sum of the total alloy and grain size addition units and the carbon base hardness at a specified Jominy station (Figures 33 and 34)for the given carbon content of the steel, is greater than the martensite-base hardness (Figure 33) for the given carbon content of the steel, there will be a martensite increment hardness. It is determined by subtracting the martensite base hardness from the sum of the carbon-base hardness and total alloy and grain size aāition units and muitipiying this difference by the martensite factor (Figure 35). The product is added to the martensite-base hardness to obtain the calculated Jominy hardness as indicated in the following table. If the hardness


Figure 31. Addition units for alloying elements (cited from Figure 4 of (11))


Figure 32. Addition unit for grain size (cited from Figure 4 of (ll))


Figure 33. Carbon-base hardness, martensite-base hardness and maximum hardness with respect tio caroon content (cited from Figure 2 of (11))


Figure 34. Carbon-base hardness with respect to position on the Jominy test specimen (cited from Figure 3 of (11))


Figure 35. Factor of determining martensite increment (cited from Figure 5 of (lil))

Jominy Rockwell $C$ hardness calculation by addition method:

| Step of Calculation | 4/16 | 8/16 | 16/16 | 32/16 |
| :---: | :---: | :---: | :---: | :---: |
| Carbon-base hardness (A) | 12.1 | 5.4 | -0.3 | -5.0 |
| (plus) Alloy-addition |  |  |  |  |
| Units (B) | 34.0 | 34.0 | 34.0 | 34.0 |
| Sum | 46.1 | 39.4 | 33.7 | 29.0 |
| (minus) Martensite-Base |  |  |  |  |
| Hardness (C), Figure 33 | 30.0 | 30.0 | 30.0 | 30.0 |
| Difference | 16.1 | 9.4 | 3.7 |  |
| (times) Martensite factor |  |  |  |  |
| f, Figure 35 |  |  |  |  |
| Product | 37.0 | 21.6 | 8.5 |  |
| (plus) Martensite-base |  |  |  |  |
| Hardness, Figure 34 | 30.0 | 30.0 | 30.0 |  |
| Total ( $\mathrm{R}_{\mathrm{M}}$ ) | 67.0 | 51.6 | 38.5 |  |
| Calculated Hardness (R) | 58.7 | 51.6 | 38.5 | 29.0 |

Composition, grain size of steel 8645:


## Correlation Between Jominy Test and Quenched Round Bars

For any particular steel, the extent to which it hardens when quenched varies with the cooling rate (cooling time) in the quench. Different cooling times occur along the length of a Jominy bar and various cooling times are also found at various positions in different size of quenched bars, quenched with various severity of quench. Asimow, Craig and Grossmann (12) established the correlation between Jominy test and quenched round bars by correlating the half-temperature time at various distance from water-cooled end of a Jominy specimen with that of different positions within a round bar when using a known severity of quenching. It was found that the extent of hardening for any particular steel correlated well with the "half-temperature time" in cooling. It is possible to predict from the results of a Jominy test what the hardness distribution will be on the cross section of a quenched round bar through the relation estabiished by Asimow. The halftemperature time at various distances from water cooled end of a Jominy bar was measured by Jominy as shown in Table 5 and are plotied as shown in Figure 36. The caicuiated curve in Figure 36 was developed by Asimow and Craig by establishing that the water-quench end has an average severity of quench $H=2.33$ and the severity of quench of the air cooling is 0.022. The cooling time at the center of bar subjected to

Table 5. Half temperature times at various distances from water-cooled end

| Distance from <br> water-cooled face, in. | Time-sec. to cool <br> one-half temperature |  |
| :--- | :--- | :--- |
| $1 / 16$ | 0.0625 | 2.5 |
| $1 / 8$ | 0.1250 | 10.5 |
| $3 / 16$ | 0.1875 | 16 |
| $1 / 4$ | 0.2500 | 22 |
| $3 / 8$ | 0.3750 | 33 |
| $1 / 2$ | 0.5000 | 52 |
| $5 / 8$ | 0.6250 | 66 |
| $3 / 4$ | 0.7500 | 81 |
| $9 / 8$ | 1.1250 | 130 |
| $5 / 4$ | 1.2500 | 150 |
| 2 | 2.00 | 224 |

acited from Table 1 of (11).


Figure 36. Half-temperature times - calculated and experimental values (cited from Figure (1) of (12))
ideal quench is related to the diameter of the bar according to the following relationship:
$D=2.0^{*}\left(a^{*} \tau\right)^{1 / 2}$
where:
$D$ is the diameter of the bar, inches.
a is the thermal diffusivity of the steel, $L^{2} / T$
$\tau$ is the half-temperature time.

Using a value of $0.009 \mathrm{in}^{2} / \mathrm{sec}$. for a , the formula becomes,

$$
D=0.179 * \tau
$$

With the aid of the above expression and the relation between half-temperature time and distance from water quench end of a Jominy bar (Figure 36), it is possible to establish the relationship between the diameter of round in ideal quench with the distance from water-cooled end of the Jominy bar. The results are shown in Figure 37. Therefore, if we can determine the location from the water-cooled end of a Jominy bar, which has a $50 \%$ martensite microstructure or hardness, the critical diameter of the alloy steel can be determined from Figure 37.


Figure 37. Relation between Jominy-Boegehold hardenability bar and diameter of round with ideal quench (cited from Figure 11 of (12))

## Calculation of Jominy End-Quench Curve from Analysis

The Jominy hardness curve of a low and medium carbon alloy steel can be predicted from its critical diameter, which depends on the grain size and chemical composition of the steel, using the method proposed by Field (2). The method is based upon the following assumptions:

1. The hardness at the extreme quenched end of the Jominy test piece (initial hardness or I.H.) is a function only of the carbon content of the steel.
2. The hardness at any other distance from the end of the Jominy test piece (D.H.) is a function of carbon content, alloy content and grain size of the steel being tested.
3. The ratio of the initial hardness (I.H.) to the hardness at any other distance (D.H.) is a constant function of the critical diameter ( $D_{I}$ ), which in turn is a function of carbon content, alloy content, and grain size of the steel being tested.

From the carbon content of the steel, the initial hardness (I.H.) of the quenchea ena iwhich is a function of carbon content only of the steel) can be determined from Figure 38. By Figure 39, the ratio of I.H./D.H. (ratio of initial hardness to distance hardness) at different Jominy


Figure 38. Relationship between (1/16)" quenched end Rockwell C hardness and carbon content: (cited from Table 1 and 3 of (9), and Table $I$ and II of (2))


Figure 39. Relationship between ideal critical diameter and the ratio of initial hardness to distance hardness (土. H./D.H.)
stations can be determined from critical diameter, which can be measured experimentally, or predicted from grain size and composition of the steel. The Jominy hardness curve can be calculated by taking the ratios of the initial hardness I.H. and I.H./D.H. values.

## Hardenability of High Carbon Alloy Steel

High carbon (hypereutectoid) alloy steels normally contain large quantities of undissolved carbides when hardened by commercial austenitizing procedures. The hardenability effect of a given quantity of alloy is influenced by the prior structure, prior carbide size and shape and distribution, and austenitizing time and temperature. In order to determine a single factor for the hardenability effect of an alloy element, the above conditions must be strictly controiled: so that the quancity of alloy and carton in austenite solution would not be varied. Since the as-quenched grain size does not vary greatly from ASTM No. 6 to No. 8 when excess carbides are present, its effect on hardenability of high carbon steel is less important compared to the other factors.

Jatczak and Devine (13) developed hardenability factors for carbon, manganese, silicon, chromium, nickel and molybdenum in nominally 1.00 percent carbon steels by the endquench test. The steels were austenized at 1475, 1525 and
$1575^{\circ} \mathrm{F}$ and held for 20 to 40 minutes at quenching temperature from a normalized and spheroidize annealed prior structure. The criterion of hardenability (critical diameter) used in this investigation was the distance from the quenched end which has a hardness of 60 Rockwell $C$, and the first austenite decomposition product was pearlite.

Multiplying factors to be used for calculating hardenability of high carbon alloy steels that are hardened from 1475, 1525 or $1575^{\circ} \mathrm{F}$ and have a normalized prior structure, are shown in Figure 40, 41 and 42. Because these factors were calculated according to a base composition of $1.00 \mathrm{C}, 0.25 \mathrm{Mn}$, $0.25 \mathrm{Si}, 0.25 \mathrm{Cr}$, and 0.25 Ni , the factors originate at $0.25 \%$ content for the alloying elements and at $1.0 \%$ for carbon. When using these graphs the critical diameter values for the base composition should be considered and the contents of
 associated with them factors less than 1.00 . It was found that if the nickel content of the composition exceeds $1.0 \%$, the computed hardenability value was always lower than the measured value and the divergence increased with nickel content. The disagreement between measured and computed hardenability at the higher nickel levels lay in an interdependence of the effects of manganese and nickel on each other, in which the combined effect was far larger than consideration of their


Figure 40. Multiplying factor for high-carbon steels austenitized at $1,475^{\circ} \mathrm{F}$ (cited from Figure 7 of (14))


Figure 4i. Multipiying factors for high-carbon steels austenitized at $1,525^{\circ} \mathrm{F}$ (cited from Figure 8 of (14))


Figure 42. Multiplying factor for high carbon steels austenitized at $1,575^{\circ} \mathrm{F}$ (cited from Figure 9 of (14))
single effects indicated. The combined hardenability multiplying factors for nickel and manganese in normalized nickel-chromium-molybdenum $1.0 \%$ carbon steels at several hardening temperatures are shown in Figure 43a. In addition, it was found that while the molybdenum contribution to hardenability in the high nickel multi-alloy steels was apparently independent of other alloying elements, the specific effect was noticeably greater above 0.20 g molybdenum than in molybdenum steels alone or in low nickel, chromium-nickeimolybdenum compositions. The chromium and silicon multiplying factors were found to be unchanged. Figure 43 b gives the multiplying factors for these three elements appropriate for


Figure 43a. Combined hardenability multiplying factors for nickel and manganese in normalized nickel-chromium-molybdenum $1.0 \%$ carbon steels at several hardenability temperatures (cited from Figure 7 of (13))


Figure 43b. Hardenability factors for molybdenum, chromium and silicon to be used with normalized muitialloyed compositions containing more than $1.0 \%$ nickel (cited from Figure 8 of (13))
normalized chromium-nickel-molybdenum steels of greater than 1.0\% nickel content.

Investigation of the existing data of effect of alloy elements on the haraenability of high carbon alloy steels end quenched from spheroidized annealed prior structure, showed almost complete dependence of each element upon the others for the value of its hardenability effect. Furthermore, some combinations such as nickel and molybdenum had a combined effect significantly greater than expected from their individual contributions. So it is concluded that the multiplying factor approach could not be used to predict the hardenability of annealed prior structure high carbon steels.

As shown in Figure 44, the hardenability, critical


Figure 44. Correlation ketween hardenability based on normalized and
annealed prion structure in alloyed $1.0 \%$ carbon steels (data cited from Table II of (13))
diameter, of annealed high carbon alloy steel can be predicted from that of normalized conditions through the simple linear ralationship between them.

The figure also shows that, except for very low hardenability (critical diameter less than 1.50 inches) for the same steel annealed prior structure always has a higher hardenability than the normalized condition.

Jatczak and Girardi (15) used the distance as determined metallographically to $10 \%$ transformation to pearlite and/or Dainite from the quenched end as the hardenability criterion. They determined the multiplying factor for the calculation of hardenability of hypereutectoid carbon steels hardened from $1700^{\circ} \mathrm{F}$, with normalized and spheroidized prior structure and holding at austenitizing temperature for 35 to 40 minutes. The results are as shown in Figure 45 for normalized steel and Figure 46 for annealed steel. Good agreement has been found between the predicted and measured hardenability values provide that nickel content did not exceed $1.00 \%$ or silicon $0.50 \%$ when molybdenum content was in excess of $0.15 \%$. But when the nickel or silicon in the presence of $0.15 \%$ or more moly̆üanum exceeded the above vaiues, the steei hardenability proved somewhat higher than expected from the hardenability factors determined from the single alloy analysis. Metallographic examination disclosed that this anomalous behavior in hardenability was observed whenever the first product of
transformation was bainite instead of pearlite. Since both nickel and silicon have a greater effect on bainitic hardenability than on pearlitic hardenability, new curves have been developed for silicon up to $0.75 \%$ and nickel up to $1.50 \%$.

The factors shown in Figure 45 representing the normalized prior structure in $1.00 \%$ carbon steels were used in calculation of case hardenability of numerous single and multi-alloy carburizing steels quenched directly from the carburizer at $1700^{\circ} \mathrm{F}$. In all instances except steels containing principally chromium, the agreement between calculated and measured case hardenability was good. Microscopic examination of the hardened chromium $1.00 \%$ carbon steels heat-treated from the normalized condition and case structures of the carburized chromium steels rehardened from $1700^{\circ} \mathrm{F}$ disclosed many excess carbide particles in the microstructure. However, very few were visible in the carburized chromium steels quenched directly from the carburizer. The greater effect of chromium in the direct quenched carburizing steels is obviousiy the result of the better sclution of chromium and carbon. New factors for chromium, therefore, were developed for use in direct quenching of carburizing chromium steeis and are shown by solid line on Figure 45.

Many commercial high-carbon alloy steels contain combinations of alloying elements which produce bainite as the first subcritical transformation product in normal hardening


Figure 45. Multiplying factor for calculation of case hardenability in Carburizing steels and of hardenability of prior normalized high carbon analyses (cited from Figure 4 of (15))


Figure 46. Multiplying factors for calculation of hardenability of prior spheroidized annealed high carbon analyses (cited from Figure 5 of (15))
operation and such steels are generally spheroidized for ease of machining prior to the hardening operation. Hardenability multiplying factor for carbon, manganese, silicon, chromium, nickel, and molybdenum have been developed, by Thittenberger, Burt and Carney (16), for hypereutectoid low-alloy steels in which bainite is the first subcritical transformation product. These factors permit the calculation of 95,80 and 50 percent martensite hardenability from chemical composition when steels with spheroidized structure are quenched from 1475, 1525 and $1575^{\circ} \mathrm{F}$. The 80 多 mariensite multiplying factors for the various alloying elements in spheroidized hypereutectoid carbon steels austenized for 30 minutes at $1525^{\circ} \mathrm{F}$ are as shown in Figure 47.

It is observed that the carbon hardenability factor decreased as the carbon content increased from 0.75 to 1.25 percent. The relatively low hardenability of the highercarbon steels is believed to reflect an effect of the large volume of undissolved carbides. Silicon has a higher effect on hardenability than that found in the work of Jatczak and Devine (13). They considered pearlite as the first transformation product. The difference between the two results was explained by the fact that silicon has a much greater effect on the retardation of the transformation of bainite than that on pearlite transformation.


Figure 47. The $80 \%$ martensite multiplying factors for the various alloying elements in spheroidized hypereutectoid steels austenitized 30 min . at $1525^{\circ} \mathrm{F}$ (cited from Figure 8 of (16))

## Summary

Hardenability of a steel is the capacity, when it is quenched and tempered, to obtain an essentially martensite structure throughout the cross section. For low carbon alloy steels, it is characterized by the "critical diameter".

Critical diameter of a low alloy steel is defined as the largest size of a cylindrical bar that contains at its center a microstructure of 50 percent martensite if it is quenched in a medium with an infinity serverity of quench.

When the alloy content of the steel is low, the effect of alloy elements on hardenability is independent of each other. For manganese, phosphorus, silicon, nickel, chromium molybdenum, and copper, these alloy elements increase the hardenability of steel.

Grossmann (l) predicted the hardenability of low carbon ailoy steel from its ghemical composition and grain size by associating a multiplying factor for each alloy element of the steel. The critical diameter of the steel will be the product of multiplying factors of each alloy elements present in the steel and the base hardenability due to carbon content and grain size of the steel.

Different sets of multiplying factors for alloy elements have been established empirically by Grossmann (l), Crafts and Lamont (7) and Kramer et al.; (10). For low carbon alloy
steel, these multiplying factors predict the actual hardenability fairly well. Due to the carbide forming tendency and synergistic hardenability effects of alloy elements, these multiplying factors can only predict the maximum obtainable hardenability of complex and high alloy steels.

The relationshio which correlated the quenched end distance of a Jominy hardenability test specimen, which has a microstructure of 50 percent martensite, and the critical diameter, enables us to predict hardenability of low carbon alioy steel from a Jominy harāenability test harciness profile. On the other hand if the hardenability, critical diameter, of a low carbon alloy steel are known, the Jominy hardness profile can be predicted using the relationshio of ratio of initial hardness (I.H.), which depends on carbon content of the steel only, to distance hardness (D.H.) and critical diameter of Field (2).

## DEVISE A METHOD TO PREDICT THE STATISTICAL DISPERSION IN THE JOMINY HARDNESS PROFILE PREDICTION

The critical diameter based on $50 \%$ martensite microstructure of low and medium carbon alloy steels, can be predicted, within $\pm 15 \%$ accuracy (17) using the method of multiplying factors for alloy elements proposed by Grossmann (1). Different sets of multiplying factors for carbon, manganese, silicon, chromium, nickei, molybdenum and copper have been developed by Grossmann (1), Crafts and Lamont (7) and Kramer, Siegel and Brooks (10).

It has been recommended by several investigators (16, 17, 18) Kramer's factors should be used to calculate the hardenabilities (critical diameter) of low and medium carbor alloy steels which complete solution of carbon and alloy can be readily obtained. Calculations with Kramer's multiplying factors are accurate within $\pm 15 \%$ at critical diameter values up to 4.5 inches (17). For steels with critical diameter greater than 4.5 inches, the Kramer's factors (and all others also) are not sufficiently accurate for practicai use for the following reasons. First steels of high hardenability are primarily bainitic, and the hardenability effects of several elements (such as molybdenum) are very different when bainite is the first transformation product. Second, when some
solution and carbide forming elements (such as nickel and molybdenum) are used together, they produce synergistic hardenability effect - that is the specific effect of each alloying element is larger than its effect when by itself in a composition. Third, steels of high hardenability usually contain large quantities of strong carbide forming elements which are often not completely dissolved.

Mean and Standard Deviation of Multiplying
Factor for Carbon, Manganese, Silicon, Nickel, Chromium, Molybdenum and Copper

The mean and standard deviation of multiplying factor for carbon, manganese, silicon, nickel, chromium, molybdenum and copper will be developed from polynomials using the leastsquare regression method. The results can be incorporated into a digital computer program for the prediction of hardenabilities of low and madium antson alloy steels.

## Carbon factor

Grossmann (1) showed that for a given grain size, there is a linear relationship between carbon content of an alloy steel and the square of ianal sritical diameter (carbon factor) which can be expressed by the following expression:

$$
D_{I C}^{2}=K * C
$$

where
$D_{\text {IC }}$ is the carbon factor or ideal critical diameter,

K is a constant
$C$ is carbon content of the steel, percent
The variation of the data as a function of carbon content is such that a linear standard deviation regression model is appropriate. The standard deviation, $\sigma$, of $D_{I C}^{2}$ on $C$ therefore is taken to be a linear function of $C$, i.e. $\sigma=\sigma_{0}{ }^{*} C$, where $\sigma_{0}$ is a constant, which depends on the distribution and scattering of the data points.

Kramer's experimental carbon factors for low alloy steels corrected to grain size 7 with carbon content in the range of 0.2 to 0.7 percent, are tabulated in Table 6 and are as shown in Figure 23. With the aid of Iowa CADET (19), subroutine MEO 238, the value of $K$ and $\sigma_{0}$ were determined.
$K=0.9551$
$\sigma_{0}=0.14022$
The coefficient of correlation between $D_{I C}^{2}$ and $C$ is 0.9923 and for a sample size of 29 the fit is significant at 99\% confiaence levei.

From the above result and using the relationship between ideal critical diameter and grain size (Figure 8) as developed by Grossmann (ij, square of the ideal critical diameter at other grain sizes can be expressed as a function of carbon content of the steel (in the range of 0.2 to 0.7 percent) as follows:

Table 6. Carbon factor for low alloy steel ${ }^{\text {a }}$

| $C^{b}$ | $D_{I C} C^{c}$ | $C^{b}$ | $D_{I C}{ }^{c}$ | $C^{b}$ | $D_{I C}^{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.22 | 0.176 | 0.470 | 0.524 | 0.700 | 0.640 |
| 0.232 | 0.168 | 0.482 | 0.552 |  |  |
| 0.261 | 0.209 | 0.500 | 0.371 |  |  |
| 0.273 | 0.218 | 0.514 | 0.537 |  |  |
| 0.291 | 0.332 | 0.541 | 0.471 |  |  |
| 0.359 | 0.394 | 0.541 | 0.510 |  |  |
| 0.400 | 0.295 | 0.550 | 0.566 |  |  |
| 0.409 | 0.332 | 0.552 | 0.610 |  |  |
| 0.41 | 0.383 | 0.552 | 0.640 |  |  |
| 0.432 | 0.420 | 0.564 | 0.524 |  |  |
| 0.432 | 0.524 | 0.591 | 0.552 |  |  |
| 0.443 | 0.396 | 0.659 | 0.702 |  |  |
| 0.459 | 0.483 | 0.682 | 0.624 |  |  |

${ }^{\text {a }}$ Data cited from Figure 8 of (10).
${ }^{\mathrm{b}} \mathrm{C}$ - carbon content of the steel: percent.
${ }^{C_{D C}}{ }_{\text {IC }}$ - carbon factor, ideal critical diameter, inches.

Grain size ASTM No. 4:

$$
D_{I C}^{2}=(1.5503) * C
$$

Grain size ASTM No. 5:

$$
D_{I C}^{2}=(1.3096) * C
$$

Grain size ASTM No. 6:

$$
D_{I C}^{2}=(1.1114) * C
$$

Grain size ASTM No. 7:

$$
D_{I C}^{2}=(0.9551) * C
$$

Grain size ASTM No. 8:

$$
D_{I C}^{2}=(0.8240) * C
$$

and

$$
\sigma=\sigma_{0} * C=(0.14022) * C
$$

where $\sigma$ is the standard deviation of $D_{\text {IC }}^{2}$ on carbon content $C$ of the steel, which was assumed to be the same for all grain size of the same carbon content.

If a random variable $x$ has mean $\mu_{x}$ and standard deviation $\sigma_{x}$ the mean $\mu_{\sqrt{x}}$ and standard deviation $\sigma_{\sqrt{x}}$ of random variable $\sqrt{\mathrm{x}}$ can be calculated by the following expression (20):

$$
\mu_{\sqrt{x}}=\mu_{x}\left(I .0-0 . I 25 *\left(\sigma_{x} / \mu_{x}\right)^{2}\right)
$$

and

$$
\sigma_{\sqrt{x}}=\mu_{x}-\mu_{\sqrt{x}}^{2}
$$

Therefore, the mean and standard deviation of the carbon factor $D_{I C}$ can be calculated from that of $D_{I C}^{2}$ by the above equations. The carbon factor $D_{I C}$ is as shown in Figure 24.

If x is a random variable and
$y_{i}=1.0+A x_{i}+B x_{i}^{2} \quad i=1, \ldots, n$
where $A$ and $B$ are constants, under the assumption that the variance of $x$ is small compared to that of $y$ and thus can be neglected. The least square regression method gives us:

$$
\begin{aligned}
& A=\frac{\sum_{i=1}^{n} x_{i}{ }^{4} \sum_{i=1}^{n} x_{i}\left(y_{i}-1\right)-\sum_{i=1}^{n} x_{i}{ }^{3}\left(y_{i}-1\right)}{\sum_{i=1}^{n} x_{i}{ }^{4} \sum_{i=1}^{n} x_{i}{ }^{2}-\left(\sum_{i=1}^{n} x_{i}{ }^{3}\right)^{2}} \\
& B=\frac{\sum_{i=1}^{n} x_{i}^{2}{ }^{2} \sum_{i=1}^{n} x_{i}{ }^{2}\left(y_{i}-1\right)-\sum_{i=1}^{n} x_{i}{ }^{3} \sum_{i=1}^{n} x_{i}\left(y_{i}-1\right)}{\sum_{i=1}^{n} x_{i}{ }^{4} \sum_{i=1}^{n} x_{i}{ }^{2}-\left(\sum_{i=1}^{n} x_{i}{ }^{3}\right)} \\
& \sigma_{y}=\sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n}\left(y_{i}-\frac{\sum_{i=1}^{n} y_{i}}{n}\right)^{2}} \\
& \sigma_{y / x}=\sqrt{\frac{1}{(n-2)} \sum_{i=1}^{n}\left(y_{i}-1 \cdot 0-A_{x}-B_{x}\right)^{2}}
\end{aligned}
$$

$R=\sqrt{1-\left(\frac{\sigma}{\sigma^{\prime} / x}\right)^{2}}$
where
$\sigma_{y}-$ standard deviation of $y$.
$\sigma_{y / x}$ - standard deviation of $y$ on $x$, which is independent
of $x$ and is a constant
R - coefficient of correlation between $y$ and $x$ $-1.0 \leq R \leq 1.0$

In practical engineering application, the chemical analyses of the alloying elements in the steel precised to $\pm 0.005$ percent. Multiplying factors for the alloying elements were determined by the iteration method and their values are always greater than unity, it would be reasonable to assume that the variance of the alloying element content is so small compared to the variance of the multiplying factors of the alloy elements that use of Equation (1) through (5) to express alloy multiplying factor as a function of the ailoying element content is justified.

Furthermore, Berkson (21) has showed that in the experiment in which one of the variates is a controlled observation (a controlled observation is one made when instead of wanting to know the value of some unknown quantity we wish to bring the quantity to a specified value) the line estimated by least square minimizing the sum of the squared residuals of the dependent uncontrolled variate, (as uncontrolled
observation is mace when, wishing to ascertain the value of some unknown quantity, we measure it with an instrument) is the same, where $x$ and $y$ is the controlled variate, that is, there is only one regression. The estimated line is not biased by the estimate of an error of observation in the independent controlled variate despite omission of account of it in the seast square fit. In determining the effect of alloy elements on the hardenability of a steel, a speciried amount of a given alloy element is added to the steei, that is we try to bring the alloy content of the alloy to a specified value, so that the alloy content of the steel is a controlled observation. And the regression equations which express the multiplying factor os alloy elements as a function of alloy content will not be biased even though there is error of observation in the chemical analysis of the steel.

Multiplying factor for manganese
Based on Kramer's et al. (10) experimental data points of the hardenability effect of manganese (tabulated in Table 7 and shown in Figure 25), the multiplying factor of manganese, by Equations (1, 2, 3, 4 and 5), can be expressed as follows:

$$
\begin{aligned}
f_{\mathrm{Mn}}= & 1.0+0.23535 * \mathrm{Mn}+0.56981 * \mathrm{Mn}^{2} \\
& \text { for Mn less than } 3.0 \text { percent }
\end{aligned}
$$

Table 7. Multiplying factor for manganese ${ }^{\text {a }}$

| $0 . \%$ | 之. 00 | 1.06 | 1.85 | 1.61 | 2.50 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.40 | 1.20 | 1.11 | 1.90 | 1.52 | 3.10 |
| 0.45 | 1.28 | 1.16 | 1.85 | 1.67 | 2.95 |
| 0.57 | 1.13 | 1.19 | 1.98 | 1.69 | 3.05 |
| 0.60 | 1.20 | 1.20 | 1.91 | 1.67 | 3.30 |
| 0.62 | 1.38 | 1.21 | 2.09 | 1.75 | 3.48 |
| 0.79 | 1.30 | 1.21 | 2.35 | 1.81 | 3.50 |
| 0.86 | 1.58 | 1.38 | 2.28 | 1.88 | 3.55 |
| 0.95 | 1.60 | 1.38 | 2.48 | 2.19 | 4.21 |
| 1.00 | 1.76 | 1.48 | 2.75 | 2.67 | 5.40 |
| $a_{\text {Data }}$ cited from Table 13 of (10). <br> $\mathrm{b}_{\mathrm{Mn}}$ - manganese content of the steel, percent. <br> ${ }^{f_{M_{n}}}$ - multiplying factor for manganese. |  |  |  |  |  |

$\sigma_{f_{M n}}=1.0354$
$\sigma_{\mathrm{f}_{\mathrm{Mn}} / \mathrm{Mn}}=0.18577$
$R=0.98377$
with thirty data points, the curve fit is significant at one percent level.

The nomenclature is
$f_{M n}$ is the multiplying factor for manganese
Mn is the manganese content of the steel, percent
$\sigma_{\mathrm{f}}^{\mathrm{Mn} \text { manganese }}$ is the standard deviation of multiplying factor for
$\sigma_{\mathrm{f}_{\mathrm{Mn}}} / \mathrm{Mn}$ is the standard deviation of multiplying factor
for manganese on manganese content of the steel
$R$ is the coefficient of correlation between multiplying factor for manganese and manganese content of the steel

Multiplying factor for silicon
In general, silicon has relatively small effect on hardenability. Basedon Kramer etal. (10) experimental data points of the hardenability effect of silicon (tabulated in Table 8 and shown in Figure 26), the multiplving factor for silicon, by Equations (1, 2, 3, 4 and 5), can be expressed by the following expression:

$$
\begin{aligned}
f_{s i}= & 1.0+0.22111 * S i+0.12802 * \mathrm{Si}^{2} \\
& \text { for silicon content less than } 2.0 \text { percent }
\end{aligned}
$$

where

$$
\begin{aligned}
& \sigma_{f_{S i}}=0.31602 \\
& \sigma_{f_{S i}} / S i=0.09115 \\
& R=0.95750
\end{aligned}
$$

with twenty-two data points, the curve fit is significant at

Table 8. Multiplying factor for silicon ${ }^{\text {a }}$
$\mathrm{Si}^{\mathrm{b}} \quad \mathrm{f}_{\mathrm{Si}}^{\mathrm{c}} \quad \mathrm{Si}^{\mathrm{b}} \quad \mathrm{f}_{\mathrm{Si}}^{\mathrm{c}}$

| 0.00 | 1.00 | 0.72 | 1.24 |
| :--- | :--- | :--- | :--- |
| 0.08 | 1.00 | 0.73 | 1.19 |
| 0.19 | 1.00 | 0.96 | 1.41 |
| 0.22 | 1.01 | 1.01 | 1.30 |
| 0.15 | 1.07 | 1.11 | 1.31 |
| 0.26 | 1.09 | 1.45 | 1.55 |
| 0.29 | 1.25 | 1.48 | 1.50 |
| 0.39 | 1.10 | 1.61 | 1.70 |
| 0.45 | 1.14 | 1.94 | 2.05 |
| 0.50 |  | 1.95 | 2.01 |
| 0.55 |  |  | 1.75 |

${ }^{a}$ Data cited from Figure i4 of (10).
${ }^{\mathrm{b}}$ Si - silicon content of the steel, percent.
${ }^{\epsilon_{f_{S i}}}$ - multiplying factor for silicon.
one percent level.
The nomenclature is
$f_{S i}$ is the multiplying factor for silicon
Si is the silicon content of the steel, percent
$\sigma_{f_{S i}}$ is the standard deviation of multiplying factor
$\sigma_{f_{S i}} /$ isi $\begin{aligned} & \text { is the standard deviation of multiplying factor } \\ & \text { filcon on silicon content of the steel }\end{aligned}$
$R$ is the coefficient of correlation between multiplying factor for silicon and silicon content of the steel

## Multiplying factor for nickel

For high nickel alloy steels, the $50 \%$ nonmartensite product was found to be bainite instead of pearlite. Results obtained by different investigators (1, 6, 9), showed good agreement with each other up to 3 percent nickel. Above 3 percent nickel. the hardenability effect of nickel showed large scattering in points.

Based on Kramer's et al. (10) experimentai data points of the hardenability effect of nickel up to 3 percent nickel (tabulated in Table 9 and shown in Figure 27), the multiplying factor for nickel can be expressed by the following expression by using Equations (1, 2, 3, 4 and 5).

$$
\begin{aligned}
\mathrm{f}_{\mathrm{Ni}}= & 1.0+0.76710 * \mathrm{Ni}-0.12289 * \mathrm{Ni}^{2} \\
& \text { for nickel content less than } 3.0 \text { percent }
\end{aligned}
$$

Table 9. Multiplying factor for nickel ${ }^{\text {a }}$
$\mathrm{Ni}^{\mathrm{b}} \quad \mathrm{f}_{\mathrm{Ni}}^{\mathrm{C}} \quad \mathrm{Ni}{ }^{\mathrm{b}} \quad \mathrm{f}_{\mathrm{Ni}}{ }^{\mathrm{c}}$

| 0.00 | 1.00 | 1.00 | 1.65 |
| :--- | :--- | :--- | :--- |
| 0.07 | 1.00 | 1.49 | 1.77 |
| 0.25 | 1.309 | 1.79 | 1.77 |
| 0.32 | 1.29 | 1.97 | 1.91 |
| 0.31 | 1.44 | 1.77 | 2.15 |
| 0.53 | 1.53 | 2.09 | 1.97 |
| 0.77 | 1.68 | 2.71 | 2.08 |
| 0.93 | 1.56 | 2.82 | 2.28 |
| 0.94 |  | 3.07 | 2.31 |

$a_{\text {Data }}$ cited from Figure 15 of (10).
$\mathrm{b}_{\mathrm{Ni}}$ - nickei content of the sieei, perceni.
$c_{f_{\mathrm{Ni}}}$ - multiplying factor for nickel.
$\sigma_{\mathrm{f}_{\mathrm{Ni}}}=0.39031$
$\sigma_{\mathrm{f}_{\mathrm{Ni}} / \mathrm{Ni}}=0.12870$
$R=0.94407$
with eighteen data points, the curve fit is significant at one percent level.

The nomenclature is
$f_{N i}$ is the multiplying factor for nickel
Ni is the nickel content of the steel, Dercent
$\sigma_{f_{N i}}$ is the standard deviation of multiplying factor for Ni nickel
$\sigma_{f} / \mathrm{Ni}$ is the standard deviation of multiplying factor for nickel on the nickel content of the steel
$R$ is the coefficient of correlation between the multiplying factor for nickel and nickel content of the steel

Multiplying factor for chromium
Chromium has a strong tendency to form stable carbide at high percentage content. The hardenability effect of chromium is strongly dependent on heat treatment. In general, the normalizing temperature had little effect on the hardenability factor, but as expected the austenitizing temperature and time had amarked influence.

Based on Kramer's et al. (10) experimental data points on the hardenability effect of chromium up to about 3 percent (tabulated in Table 10 and shown in Figure 28), the multiplying factor for chromium can be expressed by the following expression by using Equations (i, 2, 3, 4 and 5).

$$
\begin{aligned}
\mathrm{f}_{\mathrm{Cr}}= & 1.0+1.6338 * \mathrm{Cr}+0.02704 * \mathrm{Cr}^{2} \\
& \text { for chromium content less than } 3.0 \text { percent } \\
\sigma_{\mathrm{f}_{\mathrm{Cr}}}= & 1.2405
\end{aligned}
$$

Table 10. Multiplying factor for chromium ${ }^{\text {a }}$

| $\mathrm{Cr}^{\mathrm{b}}$ | $\mathrm{f}_{\mathrm{Cr}}{ }^{\mathrm{C}}$ | $\mathrm{Cr}^{\mathrm{b}}$ | $\mathrm{f}_{\mathrm{Cr}^{\mathrm{C}}}$ | $\mathrm{Cr}^{\mathrm{b}}$ | $\mathrm{f}_{\mathrm{Cr}}{ }^{\mathrm{C}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 1.00 | 0.46 | 1.50 | 1.02 | 2.82 |
| 0.07 | 1.11 | 0.50 | 2.18 | 1.46 | 3.91 |
| 0.10 | 1.09 | 0.51 | 1.77 | 1.50 | 3.05 |
| 0.10 | 1.21 | 0.51 | 1.87 | 1.74 | 3.93 |
| 0.18 | 1.23 | 0.58 | 1.73 | 2.00 | 3.91 |
| 0.20 | 1.36 | 0.64 | 1.77 | 1.89 | 4.32 |
| 0.20 | 1.50 | 0.82 | 1.96 | 2.38 | 4.62 |
| 0.27 | 1.46 | 0.73 | 2.14 | 2.52 | 5.66 |
| 0.34 | 1.50 | 0.74 | 2.25 |  |  |

${ }^{2}$ Data cited from Figure 18 of (10).
${ }^{\mathrm{b}} \mathrm{Cr}$ - chromium content of the steel, percent.
$\mathrm{C}_{\mathrm{f}_{\mathrm{Cr}}}$ - multiplying factor for chromium.

```
\(\sigma_{\mathrm{f}_{\mathrm{Cr}} / \mathrm{Cr}}=0.2541\)
\(R=0.97879\)
```

with twenty-nine data points, the curve fit is significant at one percent level.

The nomenclature is
$\mathrm{f}_{\mathrm{Cr}}$ is multiplying factor for chromium
Cr is chromium content of the steel, percent
$\sigma_{\mathrm{fr}}$ is the standard deviation of multiplying factor for
$\sigma_{\mathrm{f}_{\mathrm{Cr}}} / \operatorname{Cr}$ is the standard deviation of multiplying factor
for chromium on chromium content of steel
$R$ is the coefficient of correlation of multiplying factor for chromium and chromium content of the steel

## Multiplying factor for molybdenum

The hardenability effect of molybdenum is also strongly dependent on heat treatment. It has been found that, if both chromium and molybdenum were present, the hardenability was lower than that expected from a consideration of the factors of individual elements.

Based on Kramer's etal. (10) experimental data points of the hardenability effect of molybdenum up to about 1.1 percent molybdenum (tabulated in Table 11 and shown in Figure 29), the multiplying factor for molybdenum can be expressed by the following expression by using Equations (1, 2, 3, 4 and 5).

Table ll. Multiplying factor for molybdenum ${ }^{a}$


| 0.00 | 1.00 | 0.16 | 1.09 | 0.38 | 1.44 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.01 | 1.04 | 0.16 | 1.57 | 0.44 | 1.48 |
| 0.03 | 1.09 | 0.18 | 1.30 | 0.66 | 1.63 |
| 0.05 | 1.15 | 0.20 | 1.48 | 0.59 | 2.39 |
| 0.09 | 1.26 | 0.21 | 1.57 | 0.62 | 2.13 |
| 0.10 | 1.39 | 0.27 | 1.35 | 0.62 | 2.48 |
| 0.12 | 1.57 | 0.31 | 1.76 | 0.65 | 2.13 |
| 0.13 | 1.30 | 0.35 | 1.57 | 1.04 | 3.17 |
| 0.15 | 1.22 | 0.37 | 1.83 | 1.05 | 3.59 |

${ }^{\text {Data }}$ cited from Figure 19 of (10).
$\mathrm{b}_{\text {MO }}$ - molybdenum content of the steel; percent.
${ }^{c_{f}}{ }_{M O}$ - multiplying factor for molybdenum.

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{Mo}}=1.0+1.5718 * \mathrm{Mo}+0.58931 \mathrm{MO}^{2} \\
& \quad \text { for molybdenum content less than } 1.1 \text { percent } \\
& \sigma_{\mathrm{f}_{\mathrm{Mo}}}=0.63094 \\
& \sigma_{\mathrm{f}_{\mathrm{Mo}} / \mathrm{Mo}}=0.23261 \\
& \mathrm{R}=0.92956
\end{aligned}
$$

witn twenty-seven data points, the curve fit is significant at one percent level.

Where
$\mathrm{f}_{\text {Mo }}$ is the multiplying factor for molybdenum
Mo is the molybdenum content of the steel, percent
$\sigma_{f_{\text {Mo }}}$ is the standard deviation of multiplying factor
$\sigma_{f_{M O}} /$ Mo $\begin{aligned} & \text { is the standard deviation of multiplying factor } \\ & \text { for molybdenum to the molybdenum content of the } \\ & \text { steel }\end{aligned}$
$R$ is the coefficient of correlation between the multiplying factor for and molybdenum content of the steel

## Multiplying factor for copper

Copper exerts a considerable influence on the hardenability and its effect is similar to that of nickel.

Based on the experimental data points of the hardenability effect of copper up to 2 percent copper (tabulated in Table 12 and shown in Figure 30), the multiplying factor for copper, by

Table 12. Multiplying factor for copper ${ }^{\text {a }}$
$\mathrm{Cu}^{\mathrm{b}}$
$\mathrm{E}_{\mathrm{Cu}}{ }^{\mathrm{C}}$

| 0.00 | 1.00 |
| :--- | :--- |
| 0.04 | 1.03 |
| 0.07 | 1.10 |
| 0.09 | 1.07 |
| 0.20 | 1.34 |
| 0.33 | 1.55 |
| 0.58 | 1.72 |
| 0.88 | 1.65 |
| 1.08 | 1.87 |
| 1.67 | 1.87 |
| 2.22 | 2.07 |

$a_{\text {Data }}$ cited from Figure 16 of (10).
${ }^{b}{ }_{C u}$ - copper content of the steel, percent.
${ }^{c_{f}}{ }^{\text {Cu }}$ - multiplying factor for copper.

Equations (1, 2, 3, 4 and 5) can be expressed by the following expression.

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{Cu}}=1.0+1.1763 * \mathrm{Cu}-0.33386 * \mathrm{Cu}^{2} \\
& \quad \text { for copper content less than } 2.0 \text { percent } \\
& \sigma_{\mathrm{f}_{\mathrm{Cu}}}=0.38747 \\
& \sigma_{\mathrm{f}_{\mathrm{Cu}}} / \mathrm{Cu}=0.12079 \\
& \mathrm{R}=0.95016
\end{aligned}
$$

with eleven data points, the curve fit is significant at one percent level.

Where
${ }^{f_{C u}}$ is the multiplying factor for copper
Cu is the copper content of the steel, percent
$\sigma_{f_{\mathrm{Cu}}}$ is the standard deviation of multiplying factor
$\sigma_{f_{C u}} / C u$ is the standard deviation of multiplying factor
只 is the coefficient of correlation between the multiplying factor for copper and copper content of steel

Jominy Hardenability Test

In order to obtain a reproducible and meaningful Jominy hardness curve for the comparison of hardenability of different low and medium alloy steels, the following items should be kept as nearly identical as possible in making duplicate tests:


Figure 48. Hardenability test specimen in fixture for water quenching (cited from Figure 1 of (22))


Figure 49. Optional specimen - a test (cited from Figure 3 of (22))


Figure 50. Preferred test specimen (cited from Figure 2 of (22))


Figure 51. Optional specimen - B test (cited from Figure 4 of (22))

1. pretreatment of steel before the final quenching test is made;
2. surface finish of the bar to be hardened or of the face to be cooled;
3. rate of heating;
4. scale formation;
5. temperature to which piece is heated;
6. temperature and agitation of cooling medium, and
7. careful sectioning and grinding after hardening to avoid tempering in this operation.

Geometry and preparation of the test specimen; heat treatment temperature and time; and method for hardness measurement have been recommended and standardized, for the Jominy hardenability test, by the SAE (Society of Automotive Engineering) (22).

1. The test specimen: the test specimen is a i in. diameter cylinder 4 in. long with means for hanging it in a vertical position for end quenching. Figure 48 shows a test specimen in the fixture ready for quenching illustrating the preferred form of specimen. Figures 49, 50 and 51 give the details of the preferred specimen and two optional specimens.

The bar from which the specimen is machined shall be a forged or rolled $1 \frac{1}{4}$ in. round representing the full cross section of the product. This point is of primary importance since any attempt to secure test specimens from any portion
of the bloom, billet or bar other than the full cross section may introduce factors tending to affect the reproducibility of results. The condition of this hot formed bar shall be such that there is no decarburization on the one inch specimen machined from it.
2. Normalizing prior to heating for end-quenching: the forged or rolled round shall be normalized prior to machining the test specimen. This is of importance since the structure of material before quenching may materially affect the hardening characteristics. In order that variaiions in prior structure may be controlled as much as possible, the normalizing temperature listed in Table 13 should be used. The steel shall be held at such temperature for one hour and cooled in still air. If the normalized specimen is too hard it may be given a short time temper at about 100 degrees below the ${ }^{A} \sigma_{1}$ temperature (temperature which steel transforms from pearlite and ferrite to ferrite and austenite) to improve machineability. The record of hardenability test results must always state the prior thermal history of the specimen tested.
3. Heating for end quenching: the specimen shall be heated to the austenitizing temperature shown in Table 13. The specimen shall be placed in a furnace which is at the specified temperature and shall be held at this temperature for 30 minutes. It is necessary to determine by means of a

Table 13. Standard Jominy end quench test specimen normalizing and austenitizing temperature

thermocouple the time required for a test specimen to come to the specified temperature to be sure that the above heating time and temperature requirements are met.

It is important that while heating the test specimen, care should be taken that its environment is such that practically no scaling or decarburization takes place on the end to be quenched. An adequately protective atmosphere in the furnace is suitable for meeting the above requirements. In the absence of such atmospheres, the specimen shall be inserted in a suitable container and placed with the bottom end of the specimen resting on a graphite or carbon disc.
4. Quenching: The test piece shall be placed on a fixture so that a column of water at a temperature of 40 to 85 degrees $F$ and may be directed against the bottom face of the pice.

The column of water passing through an opening 1/2 in. in diameter shall rise to a free height of $2 \frac{1}{2}$ in. above the opening. The fixture shail be dry at the beginning of each test.

In performing the test, the water supply shall be shut off with a quick opening valve and the hot specimen placed over the water pipe so that the bottom of the specimen is $1 / 2$ in. from the opening of the water pipe and the water shall then be turned on. The time between removal of the specimen from the furnace and the beginning of the quench shail not be
more than 5 seconds. The sample shall remain on the fixture for at least 10 minutes. A condition of still air shall be maintained around the piece during cooling.
5. Hardness measurement: Two flats 180 degrees apart shall be ground not less than 0.015 in. deep along the entire length of the bar and Rockwell $C$ hardness measurements made along the length.

The preparation of the two flats must be carried out with considerable care. They should be mutually parallel and the grinding done in such a manner that no change in the quenched structure takes place.

Reading shall be taken in steps of $1 / 16$ in. for the first 1 in. Distance between readings for the last 2 in. may be at the discretion of the tester.

Jominy Hardness curve prediction
If the initiai naraness (i.n.j (nardness at lís in. from quench end) of the steel is known and the ratio of initial hardness to distance hardness (I.H./D.H.) at different Jominy stations can be expressed as a function of critical diameter, which in turn can be determined from chemical composition and grain size of the steel, the Jominy hardness can be predicted.

Based on the experimental Jominy hardness curve of Field (2) and Hodge and Orehoski (9) (tabulated in Table l4

Table lu. Initial hardness (hardness at $1 / 16$ in. from quench end) ${ }^{a}$

| $C^{b}$ | I.H. | $C$ | I.H. | $C$ | I.H. | $C$ | I.H. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.15 | 41.0 | 0.28 | 50.0 | 0.34 | 54.0 | 0.39 | 55.5 |
| 0.19 | 44.0 | 0.28 | 48.0 | 0.35 | 54.0 | 0.40 | 58.0 |
| 0.19 | 46.0 | 0.29 | 51.0 | 0.36 | 54.5 | 0.40 | 57.0 |
| 0.19 | 44.5 | 0.30 | 52.5 | 0.36 | 53.0 | 0.41 | 58.0 |
| 0.19 | 45.5 | 0.30 | 50.0 | 0.37 | 56.5 | 0.41 | 56.0 |
| 0.20 | 46.0 | 0.31 | 50.5 | 0.37 | 56.5 | 0.41 | 58.0 |
| 0.21 | 44.0 | 0.31 | 52.0 | 0.38 | 57.5 | 0.42 | 56.5 |
| 0.22 | 44.0 | 0.32 | 51.0 | 0.38 | 56.0 | 0.44 | 57.5 |
| 0.23 | 45.5 | 0.32 | 51.5 | 0.38 | 55.0 | 0.48 | 60.5 |
| 0.25 | 48.5 | 0.33 | 53.0 | 0.38 | 54.5 | 0.48 | 60.0 |
| 0.26 | 49.5 | 0.33 | 52.0 | 0.38 | 57.5 | 0.51 | 60.0 |
| 0.27 | 50.0 | 0.34 | 53.0 | 0.39 | 57.5 | 0.60 | 65.0 |

a Data cited from Tables 1 and 3 of (10) and from Tables 1 and 2 of (2).
${ }^{b} C$ - carbon content of the steel, percent.
$C_{\text {If. }}$ - initial hardness, Rockwell C.
and shown in Figure 38 ), use the least square regression method and with the aid of Iowa CADET (19) library subroutine ME0225: the initial hardness of the steel can be expressed as a function of carbon content of the steel as follows:

$$
\begin{aligned}
\text { I.H. }= & 35.54749+22.25735 * \mathrm{C}+177.4605 * \mathrm{C}^{2}-305.1492 * \mathrm{C}^{3} \\
& +132.5669 * \mathrm{C}^{4} \\
& \text { for carbon content in the range of } 0.2 \text { to } 0.66362 \\
& \text { percent }
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { I.H. }= 65.0 \\
& \text { for carbon content greater than } 0.66362 \text { percent } \\
& \sigma_{\text {I.H. }}= 5.4962 \\
& \sigma_{\text {I.H. }}= 1.13 \\
& R=0.97864
\end{aligned}
$$

witn tiniríy-seven data points, the curue fit is significant at one percent level.

The nomenclature is
I.H. is the initial hardness of the steel, Rockwell $C$
$C$ is the carbon content of the steal. percent
$\sigma_{\text {I.H. }}$. is the standard deviation of the initial hardness,
$\sigma_{\text {I.H. }}$ is the standard deviation of the initial hardness

Table 15a. Jominy Rockwell C hardness

| No. | Jominy stat jon (sixteenth of an inch) |  |  |  |  |  |  |  |  |  |  |  |  |  | Critical Diameter (in.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | l | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 | 28 | 32 |  |
| 1 | 64.0 | 64.0 | 64.0 | 64.0 | 64.0 | 64.0 | 63.0 | 62.0 | 61.0 | 57.0 | 50.0 | 45.0 | 42.0 | 41.0 | 5.30 |
| 2 | 65.0 | 65.0 | 65.0 | 65.0 | 65.0 | 65.0 | 64.0 | 63.0 | 63.0 | 62.0 | 61.0 | 57.0 | 52.0 | 48.0 | 6.33 |
| 3 | 59.0 | 58.5 | 58.8 | 58.0 | 58.0 | 58.0 | 57.5 | 56.5 | 55.3 | 52.0 | 49.5 | 45.8 | 44.8 | 42.5 | 6.37 |
| 4 | 60.8 | 60.3 | 59.0 | 59.0 | 58.8 | 58.8 | 58.0 | 57.8 | 57.8 | 55.0 | 52.5 | 49.8 | 46.0 | 42.3 | 6.38 |
| 5 | 61.3 | 60.0 | 59.8 | 59.0 | 59.5 | 59.3 | 58.3 | 58.3 | 56.8 | 54.3 | 50.5 | 47.5 | 44.8 | 41.5 | 6.37 |
| 6 | 60.5 | 60.0 | 59.0 | 58.3 | 58.0 | 58.0 | 57.5 | 56.8 | 55.5 | 53.5 | 49.8 | 47.3 | 43.5 | 42.5 | 6.32 |
| 7 | 59.0 | 58.3 | 57.5 | 57.3 | 57.3 | 56.8 | 56.0 | 54.5 | 53.3 | 49.3 | 47.5 | 44.8 | 41.0 | 42.0 | 6.22 |
| 8 | 60.5 | 59.8 | 59.0 | 58.8 | 59.0 | 58.8 | 58.0 | 57.0 | 56.8 | 55.0 | 48.5 | 47.5 | 43.3 | 41.8 | 6.19 |
| 9 | 60.3 | 60.0 | 59.3 | 59.3 | 58.8 | 58.3 | 58.8 | 57.5 | 56.8 | 54.3 | 51.0 | 48.3 | 44.0 | 41.0 | 6.15 |
| 10 | 60.5 | 59.8 | 60.0 | 59.3 | 59.5 | 59.5 | 58.0 | 57.0 | 55.5 | 51.0 | 48.5 | 44.8 | 44.3 | 44.8 | 6.05 |
| 11 | 61.8 | 60.8 | 60.8 | 60.8 | 60.3 | 58.8 | 58.5 | 57.8 | 57.3 | 54.0 | 49.8 | 46.5 | 44.0 | 41.0 | 5.96 |
| 12 | 59.8 | 60.0 | 59.0 | 58.0 | 58.0 | 57.0 | 56.0 | 56.0 | 55.8 | 53.0 | 48.8 | 46.5 | 43.5 | 41.8 | 5.95 |
| 13 | 60.8 | 60.3 | 60.0 | 59.0 | 59.0 | 58.8 | 57.5 | 56.8 | 56.0 | 51.8 | 48.0 | 44.5 | 42.0 | 39.3 | 5.82 |
| 14 | 61.0 | 60.3 | 59.5 | 59.8 | 59.8 | 59.3 | 58.3 | 57.8 | 56.5 | 53.0 | 49.3 | 45.3 | 43.0 | 41.0 | 5.74 |
| 15 | 6.1 .0 | 61.0 | 60.5 | 60.0 | 59.0 | 59.0 | 58.3 | 57.8 | 56.3 | 53.3 | 47.8 | 45.0 | 42.3 | 39.3 | 5.66 |
| 16 | 58.3 | 57.3 | 56.5 | 56.0 | 56.0 | 55.8 | 54.5 | 53.8 | 52.3 | 47.0 | 42.8 | 40.8 | 39.3 | 37.5 | 5.53 |
| 17 | 59.5 | 59.0 | 58.5 | 57.5 | 57.5 | 57.0 | 56.3 | 55.3 | 53.0 | 49.5 | 46.0 | 42.3 | 39.5 | 39.8 | 5.52 |
| 18 | 60.8 | 59.8 | 59.3 | 58.8 | 58.5 | 58. | 58.3 | 57.0 | 54.5 | 50.0 | 45.3 | 42.3 | 40.5 | 40.0 | 5.48 |
| 19 | 59.8 | 59.3 | 59.0 | 58.8 | 58.3 | 58.0 | 57.0 | 55.8 | 53.8 | 51.0 | 47.8 | 40.8 | 41.0 | 40.3 | 5.46 |
| 20 | 60.3 | 59.3 | 58.5 | 58.8 | 58.5 | 58.3 | 57.0 | 55.5 | 54.5 | 49.8 | 45.0 | 42.5 | 40.5 | 39.3 | 5.43 |
| 21. | 59.0 | 58.5 | 58.0 | 57.0 | 57.0 | 57.0 | 56.8 | 56.0 | 53.8 | 49.0 | 44.3 | 42.0 | 39.5 | 38.0 | 5.40 |


| No. | Jominy station (sixteenth of an inch) |  |  |  |  |  |  |  |  |  |  |  |  |  | Critical Diameter (in.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 | 28 | 32 |  |
| 22 | 61.3 | 60.5 | 59.5 | 59.3 | 59.0 | 58.5 | 57.8 | 56.8 | 54.8 | 49.5 | 46.0 | 42.5 | 38.8 | 39.5 | 5.31 |
| 23 | 59.5 | 58.3 | 58.0 | 58.3 | 57.8 | 57.3 | 57.0 | 55.5 | 53.0 | 46.5 | 43.5 | 39.8 | 38.0 | 37.8 | 5.30 |
| 24 | 59.5 | 59.5 | 58.5 | 58.0 | 57.3 | 57.0 | 56.0 | 54.3 | 51.3 | 45.0 | 43.0 | 39.5 | 38.0 | 37.0 | 5.29 |
| 25 | 59.8 | 59.0 | 57.8 | 58.0 | 57.8 | 56.8 | 55.0 | 53.5 | 49.5 | 43.5 | 41.8 | 40.8 | 38.8 | 38.3 | 5.25 |
| 26 | 60.0 | 59.0 | 58.0 | 58.0 | 58.0 | 57.5 | 56.3 | 55.0 | 53.0 | 46.8 | 43.3 | 40.8 | 38.0 | 36.5 | 5.24 |
| 27 | 60.8 | 59.8 | 59.0 | 58.5 | 58.0 | 57.8 | 57.0 | 55.8 | 54.3 | 48.5 | 44.3 | 40.3 | 39.3 | 38.0 | 5.19 |
| 28 | 61.3 | 60.0 | 58.8 | 58.5 | 58.3 | 58.0 | 56.8 | 53.8 | 51.8 | 46.0 | 42.5 | 39.3 | 37.8 | 37.8 | 5.02 |
| 29 | 58.8 | 57.5 | 57.0 | 56.8 | 56.3 | 55.! | 53.0 | 51.0 | 46.5 | 43.6 | 41.3 | 39.5 | 38.0 | 37.5 | 4.98 |
| 30 | 59.0 | 57.8 | 57.3 | 57.0 | 56.5 | 56.0) | 54.8 | 52.5 | 49.3 | 44.5 | 40.5 | 38.5 | 37.3 | 36.3 | 4.93 |
| 31 | 65.0 | 65.0 | 65.0 | 64.8 | 64.3 | 64.0) | 62.3 | 62.0 | 57.0 | 43.5 | 45.5 | 39.0 | 36.0 | 34.0 | 4.79 |
| 32 | 59.0 | 58.3 | 57.3 | 56.5 | 56.0 | 55.3 | 52.5 | 50.3 | 45.3 | 40.0 | 37.5 | 36.8 | 33.8 | 34.3 | 4.32 |
| 33 | 64.0 | 64.0 | 64.0 | 63.0 | 63.0 | 62.1) | 62.0 | 62.0 | 58.0 | 38.0 | 35.0 | 33.0 | 31.0 | 30.0 | 4.32 |
| 34 | 65.5 | 64.5 | 64.3 | 64.0 | 63.5 | 63.3 | 62.3 | 59.0 | 51.0 | 39.0 | 41.8 | 39.3 | 34.8 | 32.8 | 4.15 |
| 35 | 65.5 | 65.8 | 65.3 | 64.3 | 63.3 | 62.5 | 63.0 | 56.5 | 42.8 | 43.5 | 38.5 | 35.0 | 33.0 | 32.0 | 4.14 |
| 36 | 66.0 | 66.0 | 65.5 | 65.0 | 64.3 | 64.5 | 63.8 | 60.8 | 50.5 | 46.3 | 41.5 | 37.0 | 34.8 | 32.8 | 4.11 |
| 37 | 65.3 | 65.0 | 64.5 | 63.8 | 63.3 | 63.0 | 60.8 | 54.3 | 45.8 | 40.8 | 40.5 | 36.0 | 33.8 | 32.3 | 3.86 |
| 38 | 66.3 | 67.0 | 65.0 | 65.0 | 64.5 | 64.3 | 62.5 | 55.8 | 43.8 | 39.8 | 40.5 | 35.3 | 32.0 | 32.5 | 3.83 |
| 39 | 65.8 | 65.5 | 65.0 | 64.8 | 64.0 | 64.5 | 61.3 | 55.8 | 43.8 | 41.0 | 39.8 | 34.8 | 33.0 | 32.0 | 3.81 |
| 40 | 65.0 | 64.8 | 65.0 | 64.3 | 63.3 | 62.5 | 60.0 | 53.3 | 43.5 | 39.5 | 39.5 | 35.3 | 33.0 | 32.3 | 3.79 |
| 41 | 66.0 | 65.8 | 64.8 | 64.0 | 64.0 | 62.0 | 54.3 | 43.5 | 40.8 | 40.0 | 35.0 | 33.3 | 32.0 | 3.78 | 3.78 |
| 42 | 66.0 | 65.0 | 65.0 | 64.5 | 63.5 | 62.8 | 61.0 | 53.5 | 42.8 | 40.8 | 40.0 | 36.0 | 33.3 | 32.3 | 3.73 |

Table 15a (Continued)

| No. | Jominy station (sixteenth of an inch) |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { Critical } \\ \text { Diameter } \\ \text { (in.) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 | 28 | 32 |  |
| 43 | 65.0 | 65.0 | 65.0 | 64.0 | 63.3 | 63.3 | 61.5 | 53.8 | 42.0 | 39.3 | 40.5 | 36.0 | 32.8 | 31.8 | 3.66 |
| 44 | 58.0 | 57.0 | 56.5 | 56.0 | 54.0 | 52.5 | 46.8 | 43.0 | 41.0 | 38.5 | 36.5 | 35.0 | 33.0 | 32.5 | 3.65 |
| 45 | 65.3 | 65.0 | 65.0 | 63.8 | 63.3 | 62.8 | 60.3 | 51.5 | 40.8 | 39.5 | 38.8 | 34.3 | 32.0 | 31.0 | 3.59 |
| 46 | 62.0 | 61.5 | 61.0 | 60.3 | 59.3 | 58.3 | 54.0 | 46.5 | 39.8 | 35.3 | 37.5 | 31.5 | 27.0 | 26.8 | 3.57 |
| 47 | 65.0 | 64.8 | 64.3 | 63.8 | 63.0 | 62.3 | 58.0 | 49.3 | 40.8 | 40.5 | 38.8 | 34.5 | 32.5 | 31.8 | 3.54 |
| 48 | 65.8 | 65.3 | 64.8 | 64.5 | 64.3 | 63.5 | 62.0 | 55.8 | 44.3 | 41.0 | 40.3 | 36.3 | 33.8 | 32.3 | 3.53 |
| 49 | 65.3 | 65.8 | 65.0 | 64.0 | 63.5 | 63.0 | 59.8 | 48.5 | 41.8 | 41.8 | 37.0 | 34.0 | 32.3 | 30.8 | 3.53 |
| 50 | 64.5 | 64.0 | 63.3 | 62.8 | 62.0 | 60.5 | 57.5 | 47.8 | 40.5 | 39.3 | 37.5 | 33.5 | 31.5 | 30.0 | 3.53 |
| 51 | 63.3 | 62.5 | 61.3 | 60.3 | 59.0 | 57.5 | 52.0 | 45.0 | 38.8 | 35.0 | 38.5 | 32.5 | 28.8 | 26.5 | 3.52 |
| 52 | 66.5 | 66.0 | 65.0 | 64.0 | 63.0 | 61.8 | 56.3 | 45.3 | 38.8 | 42.0 | 38.0 | 32.3 | 31.5 | 30.5 | 3.51 |
| 53 | 65.0 | 65.3 | 65.0 | 64.0 | 63.0 | 62.3 | 59.0 | 49.0 | 40.0 | 39.8 | 38.3 | 33.8 | 32.0 | 31.3 | 3.51 |
| 54 | 65.0 | 65.3 | 64.3 | 64.0 | 63.0 | 62.5 | 58.0 | 46.5 | 38.8 | 41.3 | 37.3 | 33.3 | 30.8 | 30.5 | 3.51 |
| 55 | 64.5 | 64.3 | 62.81 | 62.5 | 61.8 | 60.5 | 55.8 | 45.0 | 38.5 | 39.0 | 36.8 | 33.0 | 30.8 | 29.3 | 3.49 |
| 56 | 54.8 | 53.5 | 52.8 | 52.3 | 51.8 | 50.5 | 45.0 | 40.0 | 37.8 | 33.5 | 31.8 | 31.0 | 29.0 | 29.8 | 3.49 |
| 57 | 63.0 | 62.8 | 62.0 | 61.0 | 60.0 | 59.0 | 54.3 | 45.8 | 39.5 | 38.3 | 35.3 | 30.8 | 28.3 | 27.3 | 3.48 |
| 58 | 62.8 | 62.5 | 61.83 | 61.3 | 60.5 | 58.3 | 52.8 | 42.5 | 37.5 | 36.8 | 35.3 | 31.0 | 28.5 | 27.0 | 3.39 |
| 59 | 65.5 | 66.0 | 64.83 | 64.0 | 64.0 | 53.! | 55.3 | 41.8 | 38.8 | 40.5 | 35.0 | 33.0 | 31.3 | 30.5 | 3.34 |
| 60 | 58.8 | 57.8 | 56.5 | 56.0 | 54.5 | 52.5 | 45.8 | 39.3 | 35.3 | 31.8 | 30.0 | 29.3 | 28.5 | 28.5 | 3.32 |
| 61 | 65.5 | 64.8 | 64.0 | 63.3 | 62.8 | 60.0 | 51.0 | 40.8 | 37.5 | 41.5 | 35.3 | 32.3 | 30.8 | 29.3 | 3.17 |
| 62 | 44.0 | 44.0 | 42.0 | 39.0 | 36.0 | $34.1)$ | 30.0 | 28.0 | 26.0 | 24.0 | 23.0 | 22.0 | 22.0 | 21.0 | 3.16 |
| 63 | 64.8 | 64.3 | 63.3 | 62.0 | 61.0 | 58.1) | 47.8 | 40.0 | 35.0 | 40.5 | 35.3 | 31. 5 | 29.5 | 29.3 | 3.00 |
| 64 | 54.8 | 53.5 | 52.5 | 50.0 | 46.5 | 42.5 | 37.5 | 33.8 | 31.8 | 30.0 | 23.5 | 20.0 | 17.0 | 3.7.0 | 2.92 |


| No. | Jominy station (sjxteenth of an inch) |  |  |  |  |  |  |  |  |  |  |  |  |  | Critical Diameter (in.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 | 28 | 32 |  |
| 65 | 65.3 | 65.0 | 63.8 | 62.8 | 61.8 | 57.5 | 44.3 | 37.8 | 37.3 | 37.8 | 33.3 | 32.0 | 30.0 | 29.3 | 2.92 |
| 66 | 63.5 | 62.0 | 60.13 | 60.3 | 58.8 | 56.3 | 43.8 | 37.0 | 37.0 | 35.5 | 31.3 | 30.5 | 29.3 | 27.8 | 2.91 |
| 67 | 65.3 | 65.0 | 64.3 | 63.3 | 62.0 | 58.8 | 44.5 | 38.0 | 38.3 | 37.3 | 33.0 | 32.3 | 30.0 | 29.5 | 2.90 |
| 68 | 56.0 | 55.3 | 53.3 | 51.5 | 48.0 | 43.0 | 37.3 | 34.8 | 31.8 | 30.3 | 24.5 | 21.5 | 18.5 | 17.0 | 2.86 |
| 69 | 54.8 | 53.5 | 52.3 | 50.5 | 47.3 | 43.0 | 37.8 | 35.3 | 32.8 | 30.3 | 25.8 | 20.0 | 17.5 | 16.5 | 2.85 |
| 70 | 54.0 | 52.5 | 51.13 | 49.8 | 46.3 | 42.! | 37.8 | 33.5 | 31.5 | 29.0 | 29.0 | 27.3 | 25.0 | 25.3 | 2.85 |
| 71 | 55.0 | 54.3 | $53.1)$ | 51.0 | 48.0 | 43.15 | 37.5 | 35.0 | 32.8 | 30.3 | 27.8 | 22.0 | 19.0 | 17.5 | 2.85 |
| 72 | 57.0 | 57.5 | 56.13 | 55.5 | 54.3 | 51.3 | 37.8 | 30.5 | 27.8 | 25.3 | 25.0 | 23.5 | 22.5 | 22.0 | 2.84 |
| 73 | 65.0 | 64.3 | 63.3 | 62.3 | 60.8 | 56.0 | 41.3 | 37.0 | 41.0 | 35.5 | 33.8 | 32.3 | 29.8 | 29.0 | 2.75 |
| 74 | 64.5 | 64.5 | 63.3 | 61.8 | 59.3 | $54.1)$ | 41.0 | 37.3 | 39.3 | 36.0 | 33.0 | 32.0 | 30.0 | 28.8 | 2.73 |
| 75 | 65.0 | 64.3 | 63.5 | 63.0 | 60.5 | 55.5 | 41.0 | 36.3 | 39.0 | 35.0 | 33.0 | 31.3 | 29.3 | 28.8 | 2.70 |
| 76 | 59.0 | 58.0 | 58.0 | 56.0 | 55.0 | 50.1 | 34.0 | 32.0 | 31.0 | 29.0 | 27.0 | 26.0 | 25.0 | 23.0 | 2.66 |
| 77 | 53.0 | 51.8 | 50.8 | 48.5 | 44.5 | 36.5 | 34.1 | 30.3 | 29.6 | 27.3 | 26.0 | 25.8 | 24.5 | 25.0 | 2.62 |
| 78 | 46.0 | 46.0 | 42.0 | 38.3 | 34.5 | 30.3 | 28.5 | 25.0 | 23.9 | 21.0 | 20.0 | 18.5 | 17.0 | 16.5 | 2.60 |
| 79 | 53.1 | 51.9 | 50.8 | 48.6 | 44.5 | 40.1 | 34.0 | 31.3 | 30.0 | 27.3 | 26.0 | 25.8 | 24.4 | 25.0 | 2.60 |
| 80 | 48.0 | 46.5 | 44.0 | 39.3 | 35.0 | 30.0 | 28.3 | 25.5 | 24.9 | 23.0 | 21.5 | 20.5 | 20.0 | 19.5 | 2.49 |
| 81 | 50.3 | 49.0 | 47.0 | 43.0 | 38.0 | 35.0 | 31.0 | 28.5 | 28.0 | 25.5 | 24.0 | 23.8 | 22.5 | 22.0 | 2.47 |
| 82 | 47.3 | 46.0 | 43.0 | 38.3 | 34.8 | 29.3 | 27.8 | 24.5 | 24.1 | 21.0 | 20.3 | 19.0 | 18.0 | 17.0 | 2.45 |
| 83 | 47.3 | 46.3 | 44.5 | 40.8 | 35.0 | 30.8 | 29.1 | 25.8 | 25.2 | 23.3 | 22.0 | 19.5 | 20.5 | 20.0 | 2.42 |
| 84 | 46.8 | 45.5 | 44.3 | 40.0 | 34.3 | 29.3 | 27.7 | 25.0 | 24.2 | 22.0 | 20.8 | 19.8 | 18.5 | 18.5 | 2.38 |
| 85 | 45.3 | 42.5 | 38.5 | 35.0 | 32.0 | 29.0 | 27.8 | 25.0 | 24.2 | 22.5 | 21.5 | 20.0 | 19.5 | 1.9 .0 | 2.30 |


| No. | Jominy station (sixteenth of an inch) |  |  |  |  |  |  |  |  |  |  |  |  |  | Crj.tical Diameter (in.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 | 28 | 32 |  |
| 86 | 51.0 | 50.0 | 49.0 | 46.0 | 39.0 | 33.0 | 27.0 | 24.0 | 23.0 | 20.0 | 18.0 | 17.0 | 17.0 | 15.0 | 2.30 |
| 87 | 48.5 | 47.5 | 46.5 | 44.0 | 37.0 | 28.0 | 26.0 | 23.5 | 23.1 | 20.0 | 18.0 | 17.5 | 17.5 | 3.7.0 | 2.26 |
| 88 | 59.0 | 58.0 | 55.0 | 52.5 | 46.0 | 38.0 | 28.0 | 28.0 | 26.5 | 24.5 | 23.5 | 23.0 | 16.5 | 21.0 | 2.26 |
| 89 | 47.0 | 46.3 | 41.8 | 36.5 | 32.8 | 28.5 | 27.1 | 24.8 | 24.1 | 22.3 | 21.0 | 20.3 | 19.5 | 19.5 | 2.25 |
| 90 | 60.3 | 59.0 | 57.5 | 53.0 | 45.8 | 39.0 | 31.5 | 29.5 | 28.3 | 26.3 | 24.5 | 24.0 | 23.5 | 22.0 | 2.25 |
| 91 | 47.3 | 46.0 | 41.3 | 35.5 | 32.0 | 28.0 | 26.8 | 24.0 | 23.3 | 21.0 | 19.5 | 19.0 | 17.5 | 16.5 | 2.24 |
| 92 | 51.0 | 49.5 | 47.5 | 43.0 | 35.5 | 27.0 | 25.5 | 23.0 | 22.7 | 21.0 | 19.5 | 18.5 | 17.0 | 17.0 | 2.16 |
| 93 | 46.8 | 45.8 | 43.0 | 37.3 | 32.0 | 27.3 | 26.0 | 24.3 | 23.6 | 22.0 | 20.0 | 19.0 | 18.0 | 18.0 | 2.15 |
| 94 | 46.5 | 46.0 | 42.0 | 36.5 | 32.0 | 27.5 | 26.3 | 23.5 | 23.2 | 20.5 | 19.5 | 18.5 | 17.5 | 17.0 | 2.14 |
| 95 | 50.0 | 49.0 | 47.5 | 43.0 | 35.5 | 27.0 | 25.4 | 23.0 | 22.1 | 19.5 | 18.0 | 16.0 | 14.5 | 16.0 | 2.13 |
| 96 | 45.5 | 42.0 | 36.5 | 34.0 | 30.8 | 27.5 | 26.4 | 24.3 | 23.6 | 21.5 | 20.5 | 20.0 | 19.0 | 18.2 | 2.13 |
| 97 | 58.3 | 56.8 | 54.5 | 49.3 | 41.8 | 35.8 | 29.3 | 27.5 | 25.5 | 24.3 | 23.0 | 22.5 | 21.5 | 20.8 | 2.13 |
| 98 | 45.3 | 41.0 | 36.3 | 32.5 | 30.5 | 27.3 | 26.2 | 23.0 | 22.7 | 20.5 | 19.5 | 18.0 | 17.0 | 16.5 | 2.13 |
| 99 | 47.0 | 46.3 | 42.5 | 36.5 | 32.0 | 27.0 | 25.9 | 23.5 | 23.3 | 20.8 | 19.5 | 17.5 | 16.0 | 15.0 | 2.13 |
| 100 | 47.0 | 46.0 | 43.0 | 37.0 | 33.0 | 28.0 | 26.6 | 24.3 | 23.5 | 21.0 | 20.0 | 20.0 | 18.0 | 17.5 | 2.11 |
| 101 | 58.5. | 56.8 | 54.8 | 49.5 | 41.5 | 35.3 | 29.5 | 27.0 | 25.5 | 24.3 | 23.5 | 22.3 | 21.5 | 21.0 | 2.11 |
| 102 | 50.5 | 49.5 | 48.0 | 43.5 | 35.5 | 26.5 | 24.7 | 22.0 | 21.9 | 20.5 | 19.0 | 18.0 | 17.0 | 17.0 | 2.10 |
| 103 | 50.0 | 48.5 | 47.0 | 41.0 | 34.0 | 26.5 | 25.1 | 22.5 | 22.2 | 20.0 | 18.5 | 17.5 | 17.0 | 17.5 | 2.04 |
| 104 | 49.5 | 48.0 | 46.5 | 40.0 | 32.5 | 26.0 | 24.2 | 22.0 | 21.5 | 19.5 | 18.0 | 17.0 | 13.0 | 15.5 | 2.04 |
| 105 | 62.3 | 61.0 | 60.0 | 58.0 | 40.0 | 33.0 | 32.3 | 32.0 | 31.0 | 28.8 | 27.0 | 24.8 | 21.8 | 19.5 | 2.04 |
| 106 | 46.3 | 45.0 | 39.8 | 34.0 | 30.3 | 26.5 | 25.1 | 23.0 | 22.5 | 19.5 | 18.5 | 17.0 | 15.5 | 15.5 | 2.04 |

Table 15a (Continued)

| No. | Jominy station (sixteenth of an inch) |  |  |  |  |  |  |  |  |  |  |  |  |  | Critical Diameter(in.)$\qquad$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 | 28 | 32 |  |
| 107 | 46.3 | 45.0 | 39.8 | 34.0 | 30.3 | 28.0 | 25.0 | 23.0 | 21.8 | 19.5 | 18.5 | 17.0 | 15.5 | 15.5 | 2.04 |
| 108 | 50.0 | 49.0 | 46.5 | 40.5 | 34.0 | 26.5 | 24.6 | 21.5 | 21.0 | 18.5 | 17.5 | 17.0 | 14.0 | 15.0 | 2.03 |
| 109 | 57.3 | 55.5 | 54.0 | 49.5 | 39.5 | 32.0 | 26.0 | 24.3 | 23.5 | 22.5 | 21.0 | 19.0 | 18.0 | 18.0 | 2.03 |
| 110 | 58.0 | 56.5 | 54.0 | 48.3 | 39.5 | 33.5 | 28.8 | 25.8 | 24.8 | 22.5 | 22.0 | 21.5 | 20.5 | 19.5 | 2.03 |
| 11.1 | 50.0 | 48.5 | 47.0 | 42.0 | 32.5 | 26.5 | 24.7 | 22.0 | 21.7 | 19.5 | 19.0 | 18.0 | 16.0 | 15.0 | 2.03 |
| 112 | 58.8 | 57.8 | 55.0 | 48.5 | 40.0 | 34.5 | 30.0 | 28.0 | 27.0 | 25.5 | 25.0 | 25.0 | 23.0 | 22.0 | 2.02 |
| 113 | 59.0 | 57.8 | 55.0 | 49.0 | 39.3 | 33.83 | 28.8 | 27.0 | 26.3 | 25.0 | 24.3 | 23.5 | 22.0 | 22.0 | 2.00 |
| 114 | 57.8 | 56.3 | 53.8 | 47.3 | 38.3 | 32.8 | 28.0 | 26.3 | 25.3 | 24.0 | 23.0 | 22.0 | 21.0 | 20.3 | 2.00 |
| 115 | 49.0 | 47.0 | 43.8 | 37.3 | 33.3 | 30.0) | 26.8 | 25.3 | 24.0 | 22.3 | 21.0 | 19.5 | 18.0 | 18.0 | 2.00 |
| 116 | 47.0 | 46.0 | 41.8 | 35.0 | 30.3 | 27.0 | 24.0 | 22.3 | 21.3 | 19.5 | 18.5 | 17.5 | 17.5 | 17.0 | 1.99 |
| 117 | 47.3 | 45.5 | 40.0) | 34.0 | 30.5 | 26.8 | 26.0 | 23.5 | 23.0 | 21.0 | 19.5 | 18.5 | 17.0 | 16.0 | 1.97 |
| 118 | 50.5 | 49.0 | 47.5 | 41.0 | 32.5 | 26.0 | 24.2 | 22.0 | 21.2 | 19.0 | 18.5 | 17.5 | 15.5 | 14.5 | 1.96 |
| 11.9 | 46.5 | 45.0 | 41.0 | 35.0 | 30.3 | 25.13 | 24.4 | 22.0 | 21.5 | 19.0 | 18.0 | 16.8 | 15.5 | 15.0 | 1.94 |
| 120 | 50.0 | 49.0 | 47.0 | 39.5 | 32.0 | 26.1) | 24.5 | 23.0 | 22.5 | 20.0 | 19.0 | 18.0 | 16.5 | 15.5 | 1.94 |
| 121 | 59.8 | 58.0 | 55.8 | 44.8 | 38.8 | 33.1) | 28.5 | 26.8 | 26.5 | 24.8 | 24.5 | 24.0 | 22.8 | 22.5 | 1.93 |
| 122 | 44.0 | 39.8 | 35.18 | 31.8 | 30.3 | 26.3 | 25.2 | 23.3 | 22.8 | 20.5 | 18.5 | 17.0 | 16.0 | 15.5 | 1.93 |
| 123 | 50.0 | 49.5 | 47.1 | 41.0 | 32.0 | 24.5 | 23.1 | 21.0 | 20.6 | 19.0 | 18.0 | 17.0 | 15.5 | 15.0 | 1.92 |
| 124 | 48.0 | 46.0 | 41.0 | 35.5 | 31.5 | 26.13 | 25.6 | 23.3 | 23.0 | 20.4 | 19.5 | 18.8 | 18.0 | 17.8 | 1.90 |
| 125 | 59.5 | 57.5 | 54.3 | 46.8 | 38.0 | 33.1 | 29.0 | 27.5 | 27.0 | 25.5 | 25.0 | 23.5 | 21.5 | 22.0 | 1.99 |
| 126 | 48.0 | 46.0 | 41.0 | 35.5 | 31.3 | 28.9 | 25.8 | 24.0 | 22.6 | 20.4 | 19.6 | 18.8 | 18.0 | 17.8 | 1.90 |
| 127 | 49.0 | 47.5 | 46.5 | 40.0 | 32.0 | 25.5 | 24.2 | 22.5 | 22.1 | 20.0 | 18.5 | 17.5 | 16.0 | 15.5 | 1.89 |
| 128 | 52.5 | 51.0 | 48.0 | 40.0 | 32.5 | 27.0 | 25.5 | 23.0 | 22.8 | 21.0 | 20.0 | 19.5 | 17.5 | 17.5 | 1.87 |

Table 15a (Continued)


Table 15 (Continued)

| No. | Jominy station (sixteenth of an inch) |  |  |  |  |  |  |  |  |  |  |  |  |  | Critical Diameter (in.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 | 28 | 32 |  |
| 151 | 53.0 | 52.0 | 49.8 | 45.0 | 40.5 | 36.5 | 32.3 | 30.0 | 28.0 | 25.0 | 19.0 | 16.0 | 14.0 | 13.0 | 2.25 |
| 152 | 51.8 | 50.5 | 48.3 | 43.5 | 37.8 | 35.0 | 31.0 | 28.3 | 26.5 | 21.8 | 18.0 | 15.0 | 13.5 | 12.0 | 2.18 |
| 153 | 500 | 48.0 | 46.0 | 40.0 | 36.5 | 25.0 | 22.6 | 20.5 | 20.4 | 18.5 | 17.0 | 15.0 | 13.5 | 13.5 | 2.13 |
| 154 | 50.0 | 50.5 | 47.5 | 43.5 | 35.0 | 30.! | 25.0 | 23.0 | 19.5 | 18.5 | 16.5 | 15.5 | 14.5 | 13.5 | 2.13 |
| 1.55 | 56.5 | 55.5 | 54.5 | 54.0 | 43.3 | 30.0 | 26.0 | 24.3 | 23.0 | 20.0 | 18.0 | 15.5 | 14.0 | 11.5 | 2.10 |
| 156 | 45.3 | 43.5 | 38.5 | 33.8 | 30.5 | 25.6 | 24.4 | 22.0 | 21.2 | 19.5 | 16.5 | 15.5 | 14.0 | 13.0 | 2.05 |
| 157 | 49.0 | 48.5 | 46.5 | 415 | 33.5 | 25.0 | 22.3 | 21.5 | 21.1 | 17.5 | 17.5 | 16.0 | 13.5 | 11.0 | 2.04 |
| 158 | 49.0 | 47.0 | 45.0 | 38.5 | 3 i .0 | <4.ij | 22.6 | 20.5 | 20.1 | 18.0 | 16.5 | 15.5 | 13.5 | 13.5 | 1.92 |
| 159 | 49.5 | 48.5 | 46.5 | 39.0 | 31.0 | 24.0 | 22.6 | 21.0 | 20.6 | 18.0 | 17.0 | 16.0 | 13.0 | 14.0 | 1.90 |
| 160 | 47.3 | 45.5 | 39.13 | 33.8 | 30.3 | 26.3 | 24.9 | 22.0 | 21.5 | 18.5 | 17.5 | 16.0 | 14.5 | 13.5 | 1.88 |

Table 15b. Composition of Jominy bar

| No. | Percent times 100 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{C}$ | M 12 | Si | Ni | Cr | Mo | Cu | S | P | Al | V | B |
| 1 | 60 | 8.3 | 32 | 53 | 48 | 21 | 4 | 1.5 | 1 | 4.3 | 0.0 | 0.0 |
| 2 | 66 | 6.L | 27 | 122 | 61 | 22 | 7 | 0.9 | 1 | 3 | 0.0 | 0.0 |
| 3 | 45 | 96 | 29 | 3 | 99 | 24 | 2.1 | 1.8 | 1.7 | 4.8 | 0.6 | 0.0 |
| 4 | 46 | 94 | 26 | 3 | 92 | 18 | 4 | 1.8 | 1.6 | 4.3 | 0.6 | 0.0 |
| 5 | 44 | 96 | 26 | 1 | 92 | 20 | 3 | 1.6 | 1.3 | 5.7 | 0.5 | 0.0 |
| 6 | 43 | 96 | 30 | 3 | 97 | 17 | 3 | 2.2 | 0.9 | 5.9 | 0.5 | 0.0 |
| 7 | 43 | 95 | 30 | 3 | 95 | 23 | 2 | 1.7 | 1.2 | 6.5 | 0.5 | 0.0 |
| 8 | 45 | 9 J . | 29 | 2 | 92 | 19 | 3.1 | 1.8 | 1.7 | 9.6 | 0.6 | 0.0 |
| 9 | 45 | 92 | 28 | 3 | 92 | 18 | 3.2 | 1.8 | 1.2 | 5 | 0.6 | 0.0 |
| 10 | 48 | 9 J . | 29 | 2 | 92 | 21 | 2.6 | 1.9 | 1.2 | 0.5 | 0.6 | 0.0 |
| 11 | 48 | 88 | 28 | 1 | 92 | 18 | 2.1 | 2.5 | 0.8 | 5.7 | 0.3 | 0.0 |
| 12 | 47 | 95 | 32 | 1 | 93 | 23 | 2.0 | 1.3 | 1.4 | 5.4 | 0.5 | 0.0 |
| 13 | 44 | 94. | 26 | 8 | 90 | 22 | 1.6 | 1.0 | 1.2 | 4.9 | 1.2 | 0.0 |
| 14 | 48 | 96 | 26 | 1. | 95 | 20 | 2.6 | 1.7 | 2.0 | 4.4 | 0.6 | 0.0 |
| 15 | 47 | 88 | 25 | 3 | 93 | 20 | 3.0 | 1.8 | 1.3 | 2.7 | 0.5 | 0.0 |
| 16 | 38 | 99 | 30 | 1 | 96 | 21 | 2.0 | 3.0 | 0.8 | 7.6 | 0.4 | 0.0 |
| 17 | 43 | 87 | 27 | 4 | 92 | 20 | 3.4 | 1.4 | 1.0 | 4.4 | 0.4 | 0.0 |
| 18 | 43 | 86 | 22 | 2 | 86 | 20 | 2.0 | 1.5 | 0.9 | 2.1 | 0.7 | 0.0 |
| 19 | 44 | 95 | 27 | 2 | 93 | 21 | 3.1 | 1.8 | 1.0 | 5.2 | 0.6 | 0.0 |
| 20 | 44 | 97 | 28 | 3 | 92 | 20 | 3.0 | 1.8 | 1.0 | 4.2 | 0.5 | 0.0 |
| 21 | 45 | 95 | 27 | 3 | 95 | 24 | 2.6 | 1.7 | 1.5 | 5.8 | 0.5 | 0.0 |

## Table 15b (Continued)

| No. | Percent times 100 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Mn | Si | Ni | $\overline{\mathrm{Cr}}$ | Mo | Cu | 5 | P | A1 | V | B |
| 22 | 48 | $9!$ | 26 | 1 | 92 | 21 | 2.1 | 1.7 | 1.4 | 5.2 | 0.6 | 0.0 |
| 23 | 41 | $8 \%$ | 28 | 2 | 91 | 19 | 2.5 | 1.9 | 0.8 | 4.6 | 0.3 | 0.0 |
| 24 | 40 | 85 | 27 | 2 | 92 | 17 | 2.5 | 2.1 | 0.8 | 6.2 | 0.6 | 0.0 |
| 25 | 40 | 92 | 26 | 1 | 92 | 17 | 1.9 | 2.1 | 1.1 | 5.6 | 0.4 | 0.0 |
| 26 | 43 | 90 | 27 | 3 | 93 | 20 | 2.5 | 2.1 | 1.3 | 3.2 | 0.4 | 0.0 |
| 27 | 45 | 90 | 27 | 1 | 91 | 19 | 2.3 | 1.7 | 1.2 | 4.5 | 0.5 | 0.0 |
| 28 | 44 | 87 | 25 | 1 | 87 | 18 | 1.7 | 2.0 | 1.2 | 5.3 | 0.3 | 0.0 |
| 29 | 41 | 95 | 26 | 3 | 92 | 17 | 3.1 | 1.9 | 0.8 | 2.9 | 0.3 | 0.0 |
| 30 | 41 | 87 | 27 | 3 | 89 | 18 | 2.1 | 1.9 | 0.8 | 4.4 | 0.3 | 0.0 |
| 31 | 63 | 10\% | 30 | 2 | 83 | 2 | 2.1 | 1.4 | 1 | 4.7 | 0.7 | 0.0 |
| 32 | 41 | 80 | 20 | 2 | 87 | 29 | 2.6 | 1.9 | 1.5 | 3.1 | 0.6 | 0.0 |
| 33 | 60 | $13 \%$ | 47 | 3 | 5 | 2 | 4.0 | 2.8 | 1.5 | 3.4 | 0.0 | 0.1 |
| 34 | 61 | 98 | 26 | 1 | 82 | 2 | 1 | 2.3 | 1.9 | 2.1 | 0.4 | 0.0 |
| 35 | 67 | 93 | 27 | 1 | 79 | 2 | 1.1 | 1.4 | 1.7 | 2.1 | 0.3 | 0.0 |
| 36 | 64 | 99 | 28 | 1 | 81 | 2 | 0.7 | 2.1 | 1.7 | 6.0 | 0.3 | 0.0 |
| 37 | 61 | 89 | 25 | 1 | 78 | 2 | 2.3 | 2.0 | 1.4 | 4.3 | 0.6 | 0.0 |
| 38 | 61 | 85 | 30 | 2 | 86 | 2 | 3.0 | 2.1 | 0.8 | 4.3 | 0.2 | 0.0 |
| 39 | 63 | 95 | 26 | 1 | 74 | 2 | 1.7 | 1.9 | 1.1 | 4.2 | 0.6 | 0.0 |
| 40 | 60 | 90 | 26 | 3 | 79 | 2 | 4.0 | 1.8 | 1.2 | 2.7 | 0.5 | 0.0 |
| 41 | 61 | $9]$. | 28 | 2 | 79 | 2 | 1.5 | 1.9 | 1.5 | 2.5 | 0.5 | 0.0 |
| 42 | 61 | 84 | 26 | 3 | 86 | 2 | 2.3 | 1.9 | 0.7 | 2.3 | 0.2 | 0.0 |

Table 15b (Continued)

| No. | C | Mn | Si | Ni | Cr | mo | Cu | S | P | A1 | V | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 43 | 62 | 93 | 27 | 1 | 79 | 2 | 2.0 | 2.9 | 1.3 | 3.0 | 0.4 | 0.0 |
| 44 | 42 | 88 | 24 | 3 | 82 | 19 | 2.6 | 2.7 | 1.3 | 6.1 | 0.7 | 0.0 |
| 45 | 63 | 95 | 26 | 1 | 74 | 2 | 1.7 | 1.9 | 1.1 | 4.2 | 0.6 | 0.0 |
| 46 | 50 | 83 | 28 | 1. | 90 | 2 | 1.5 | 1.9 | 0.6 | 3.5 | 0.2 | 0.0 |
| 47 | 59 | 91 | 26 | 1 | 79 | 2 | 1.5 | 1.8 | 0.9 | 3.5 | 0.6 | 0.0 |
| 48 | 61 | 93 | 27 | 1. | 78 | 2 | 0.8 | 1.6 | 1.6 | 3.8 | 0.2 | 0.0 |
| 49 | 61. | 92 | 27 | 1 | 77 | 2 | 4.0 | 1.7 | 1.5 | 4.3 | 0.5 | 0.0 |
| 50 | 56 | 85 | 27 | 1. | 7 | 2 | 1.0 | 2.4 | 0.8 | 2.0 | 0.2 | 0.0 |
| 51 | 50 | 78 | 27 | 4 | 90 | 2 | 5 | 1.9 | 0.7 | 1.6 | 0.2 | 0.0 |
| 52 | 60 | 76 | 29 | 3 | 82 | 2 | 5 | 2.3 | 0.9 | 1.6 | 0.2 | 0.0 |
| 53 | 60 | 91 | 25 | 2 | 75 | 2 | 2.5 | 2.0 | 1.8 | 1.5 | 0.3 | 0.0 |
| 54 | 58 | 73 | 30 | 5 | 79 | 2 | 1.0 | 2.1 | 0.5 | 2.8 | 0.2 | 0.0 |
| 55 | 59 | 88 | 29 | 2 | 78 | 2 | 1.5 | 2.3 | 0.8 | 2.0 | 0.2 | 0.0 |
| 56 | 38 | 66 | 27 | 2 | 92 | 20 | 2.8 | 1.9 | 1.9 | 4.7 | 0.0 | 0.0 |
| 57 | 52 | 81 | 34 | 4 | 9. | 2 | 0.7 | 2.4 | 0.7 | 4.4 | 0.2 | 0.0 |
| 58 | 53 | 81 | 20 | 1 | 89 | 2 | 1.0 | 2.0 | 0.9 | 5.4 | 0.2 | 0.0 |
| 59 | 61 | 86 | 28 | 1 | 75 | 2 | 1.0 | 2.1 | 0.7 | 2.1 | 0.2 | 0.0 |
| 60 | 41 | 83 | 25 | 53 | 47 | 18 | 2.3 | 1.8 | 1.0 | 3.3 | 0.0 | 0.0 |
| 61 | 59 | 87 | 22 | 3 | 80 | 2 | 1.1 | 1.8 | 0.6 | 2.1 | 0.2 | 0.0 |
| 62 | 18 | 80 | 25 | 103 | 42 | 35 | 3.0 | 1.5 | 1.5 | 5.5 | 0.0 | 0.0 |
| 63 | 58 | 79 | 25 | 1 | $!5$ | 2 | 1.4 | 2.4 | 0.5 | 0.7 | 0.2 | 0.0 |
| 64 | 32 | 82 | 29 | 1 | 93 | 2 | 0.6 | 2.3 | 1.5 | 4.2 | 0.2 | 0.0 |

Table 15b (Continued)

| No. | Percent times 100 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Mn | Si | Ni | $0 \cdot 0$ | Mo | Cu | 5 | P | Al | V | B |
| 65 | 58 | 73 | 30 | 5 | 19 | 2 | 1.0 | 2.1 | 0.5 | 7.8 | 0.2 | 0.0 |
| 66 | 57 | 78 | 23 | 1 | 72 | 2 | 1.9 | 2.1 | 1.0 | 3.0 | 0.5 | 0.0 |
| 67 | 61. | 79 | 26 | 2 | 75 | 2 | 1.5 | 1.9 | 0.7 | 2.1 | 0.2 | 0.0 |
| 68 | 33 | 84 | 24 | 1 | 34 | 2 | 1.5 | 2.4 | 1.0 | 5.5 | 0.2 | 0.0 |
| 69 | 34 | 83 | 30 | 3 | 93 | 2 | 1.5 | 2.5 | 2.1 | 5.0 | 0.2 | 0.0 |
| 70 | 34 | 58 | 26 | 2 | 9.1 | 18 | 1.5 | 1.4 | 2.1 | 4.5 | 0.0 | 0.0 |
| 71 | 34 | 88 | 26 | 2 | 39 | 2 | 1.1 | 2.4 | 1 | 6 | 6 | 0.8 |
| 72 | 43 | 148 | 18 | 2 | 3 | 2 | 2.1 | 2.8 | 3.7 | 0.5 | 0.5 | 0.2 |
| 73 | 60 | 76 | 30 | 1 | 73 | 2 | 1.6 | 2.2 | 0.7 | 1.6 | 1.6 | 0.2 |
| 74 | 57 | 78 | 22 | 1 | 72 | 2 | 2.1 | 1.8 | 1.2 | 1.9 | 1.9 | 0.4 |
| 75 | 59 | 79 | 24 | 1 | 72 | 2 | 1.0 | 2.0 | 0.7 | 2.3 | 2.3 | 0.2 |
| 76 | 45 | 89 | 29 | 4 | 27 | 2 | 0.0 | 0.0 | 0.0 | 5.3 | 0.0 | 0.1 |
| 77 | 32 | 85 | 26 | 54 | 54 | 19 | 3.1 | 2.4 | 1.0 | 4.4 | 0.2 | 0.0 |
| 78 | 20 | 77 | 28 | 39 | 48 | 18 | 4.1 | 0.8 | 0.9 | 5.8 | 0.6 | 0.0 |
| 79 | 32 | 85 | 26 | 54 | 54 | 19 | 3.1 | 2.4 | 1.0 | 4.4 | 0.0 | 0.0 |
| 80 | 21 | 113 | 25 | 40 | 40 | 16 | 3.7 | 1.5 | 1.6 | 2.4 | 0.5 | 0.0 |
| 81 | 26 | 115 | 27 | 26 | 52 | 8 | 4.3 | 1.5 | 0.8 | 4.1 | 0.0 | 0.0 |
| 82 | 21 | 115 | 27 | 24 | 49 | 8 | 2.4 | 1.8 | 1.0 | 0.5 | 0.3 | 0.0 |
| 83 | 22 | 114 | 27 | 41 | 45 | 18 | 3.6 | 1.6 | 1.1 | 4.3 | 0.5 | 0.0 |
| 84 | 21 | 86 | 28 | 47 | 51 | 24 | 17 | 0.6 | 1.2 | 6.5 | 0.6 | 0.0 |
| 85 | 20 | 79 | 29 | 52 | 46 | 22 | 5.5 | 0.8 | 0.8 | 4.7 | 0.6 | 0.0 |

## Table 15b (Continued)

| No. | Percent times 100 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Mn | Si | Ni | Cr | Mo | Cu | S | P | A1 | V | B |
| 86 | 2.7 | 84 | 25 | 3 | 6 | 20 | 2.3 | 4.6 | 0.8 | 4.5 | 0.4 | 0.0 |
| 87 | 25 | 84 | 25 | 3 | 6 | 20 | 2.3 | 4.6 | 0.8 | 4.5 | 0.4 | 0.0 |
| 88 | 41 | 1.60 | 20 | 1 | 7 | 2 | 3.4 | 2.1 | 0.8 | 3.2 | 0.1 | 0.0 |
| 89 | 21 | 1.17 | 31. | 43 | 39 | 15 | 3.5 | 1.5 | 1.1 | 3.1 | 0.3 | 0.0 |
| 90 | 43 | 157 | 28 | 3 | 7 | 2 | 4.6 | 1.9 | 1.1 | 3.4 | 0.2 | 0.0 |
| 91 | 20 | 124 | 28 | 25 | 48 | 8 | 2.7 | 2.3 | 0.9 | 2.2 | 0.2 | 0.0 |
| 92 | 25 | 90 | 24 | 1 | J. 3 | 23 | 2.9 | 2.8 | 0.7 | 3.7 | 0.4 | 0.0 |
| 93 | 21 | 87 | 26 | 44 | 51 | 22 | 2.6 | 1.6 | 1.0 | 5.3 | 0.5 | 0.0 |
| 94 | 21 | 78 | 27 | 48 | 46 | 22 | 6.0 | 0.9 | 0.8 | 4.8 | 0.7 | 0.0 |
| 95 | 28 | 91 | 25 | 2 | 1.3 | 24 | 2.0 | 1.4 | 1.1 | 3.7 | 0.4 | 0.0 |
| 96 | 20 | 78 | 33 | 44 | ! 50 | 18 | 7.4 | 0.8 | 0.9 | 6.1 | 1.0 | 0.0 |
| 97 | 39 | 158 | 25 | 1 | 7 | 2 | 2.0 | 1.6 | 1.2 | 2.7 | 0.2 | 0.0 |
| 98 | 19 | 84 | 27 | 40 | 50 | 18 | 6.0 | 0.8 | 0.7 | 5.2 | 0.3 | 0.0 |
| 99 | 21 | 83 | 27 | 55 | !50 | 21 | 2.2 | 1.3 | 1.7 | 4.9 | 0.4 | 0.0 |
| 100 | 23 | 87 | 27 | 62 | 46 | 17 | 3.5 | 1.7 | 0.9 | 3.8 | 0.2 | 0.0 |
| 101 | 39 | 149 | 24 | 5 | 8 | 2 | 5.5 | 2.3 | 1.5 | 3.3 | 0.2 | 0.0 |
| 102 | 27 | 84 | 25 | 3 | 6 | 20 | 2.3 | 4.6 | 0.8 | 4.5 | 0.4 | 0.0 |
| 103 | 27 | 83 | 25 | 3 | .ll | 26 | 4.0 | 3.7 | 1.5 | 8.0 | 0.5 | 0.0 |
| 104 | 25 | 93 | 24 | 2 | 13 | 24 | 3.4 | 2.9 | 0.9 | 3.6 | 0.4 | 0.0 |
| 105 | 51 | 73 | 22 | 1 | 9 | 2 | 2.5 | 1.7 | 0.5 | 4.4 | 0.2 | 0.0 |
| 106 | 20 | 81 | 26 | 69 | 47 | 20 | 3.2 | 1.6 | 1.1 | 3.1 | 0.3 | 0.0 |

## Table 15b (Continued)

| No. | Percent times 100 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Mn | Si | Ni . | Cr | Mo | Cu | S | P | A1 | V | B |
| 107 | 20 | 81 | 26 | 69 | 47 | 20 | 3.2 | 1.6 | 1.1 | 3.1 | 0.0 | 0.0 |
| 108 | 27 | 79 | 25 | 3 | 10 | 26 | 3.8 | 3.8 | 1.6 | 6.7 | 0.5 | 0.0 |
| 109 | 41 | 155 | 25 | 1. | 2 | 2 | 1.4 | 1.2 | 1.4 | 6.1 | 0.2 | 0.0 |
| 110 | 40 | 156 | 23 | 2. | 5 | 2 | 5.0 | 2.2 | 0.9 | 2.8 | 0.2 | 0.0 |
| 111 | 27 | 79 | 25 | 3 | 10 | 26 | 3.7 | 3.8 | 1.6 | 6.5 | 0.5 | 0.0 |
| 112 | 42 | 163 | 23 | 1. | 3 | 2 | 3.8 | 1.8 | 0.9 | 2.0 | 0.1 | 0.0 |
| 113 | 42 | 155 | 24 | 2 | 4 | 2 | 0.6 | 2.1 | 1.2 | 3.2 | 0.2 | 0.0 |
| 11.4 | 39 | 157 | 20 | 1. | 4 | 2 | 2.0 | 1.7 | 0.6 | 2.3 | 0.2 | 0.0 |
| 115 | 25 | 77 | 27 | 60 | 50 | 15 | 1.7 | 2.0 | 0.8 | 2.9 | 0.0 | 0.0 |
| 116 | 21 | 52 | 27 | 190 | 4 | 21 | 10 | 2.1 | 0.9 | 3.1 | 0.0 | 0.0 |
| 117 | 21 | 81 | 21 | 41. | 49 | 22 | 3.1 | 1.6 | 1.0 | 1.3 | 0.4 | 0.0 |
| 118 | 28 | 84 | 25 | 2 | 8 | 24 | 2.4 | 4.2 | 1.4 | 5.5 | 0.3 | 0.0 |
| 119 | 23 | 87 | 27 | 62. | 46 | 17 | 3.5 | 1.7 | 0.9 | 3.8 | 0.2 | 0.0 |
| 120 | 27 | 94 | 25 | 2. | 14 | 24 | 3.4 | 3.1 | 0.8 | 3.5 | 0.5 | 0.0 |
| 121 | 39 | 158 | 19 | 1. | 4 | 2 | 2.1 | 1.8 | 0.8 | 4.1 | 0.2 | 0.0 |
| 122 | 20 | 82 | 27 | 45 | 50 | 19 | 5.9 | 0.6 | 1.0 | 4.9 | 0.8 | 0.0 |
| 123 | 26 | 84 | 26 | 2 | 9 | 24 | 2.5 | 3.9 | 1.4 | 5.6 | 0.3 | 0.0 |
| 124 | 24 | 119 | 31 | 48 | 34 | 14 | 2.1 | 2.5 | 1.4 | 2.0 | 0.3 | 0.0 |
| 125 | 44 | 152 | 23 | 1 | 7 | 2 | 1.6 | 1.9 | 1.2 | 2.0 | 0.2 | 0.0 |
| 126 | 24 | 119 | 31 | 48 | 34 | 14 | 2.1 | 2.5 | 1.4 | 2.0 | 0.3 | 0.0 |
| 127 | 29 | 95 | 25 | 2 | 14 | 25 | 3.4 | 3.3 | 0.9 | 3.6 | 0.5 | 0.0 |

Table 15b (Continued)

| No. | Percent times 100 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{C}$ | Mn | Si | Ni | cr | Mo | Cu | S | P | Al | v | B |
| 128 | 30 | 88 | 25 | 1 | 3 | 25 | 2.5 | 2.1 | 1.0 | 7.6 | 0.3 | 0.0 |
| 129 | 30 | 87 | 28 | 1 | 4 | 26 | 2.0 | 2.3 | 0.9 | 8.5 | 0.4 | 0.0 |
| 130 | 37 | 149 | 24 | 3 | 4 | 2 | 3.6 | 2.0 | 0.7 | 3.1 | 0.2 | 0.0 |
| 131. | 20 | 82 | 25 | 38 | 4.7 | 21 | 5.5 | 0.7 | 1.1 | 4.5 | 0.6 | 0.0 |
| 132 | 42 | 104 | 24 | 1 | 29 | 2 | 3.8 | 1.6 | 0.6 | 1.0 | 0.0 | 0.0 |
| 133 | 38 | 157 | 20 | 1 | 3 | 2 | 1.5 | 1.4 | 0.8 | 4.1 | 0.2 | 0.0 |
| 134 | 23 | 80 | 28 | 52 | 52 | 20 | 1.3 | 1.9 | 1.2 | 5.3 | 0.3 | 0.0 |
| 135 | 36 | 154 | 19 | 2 | 3 | 2 | 1.5 | 1.9 | 0.8 | 2.3 | 0.2 | 0.0 |
| 136 | 29 | 80 | 26 | 1 | 7 | 19 | 1.5 | 4.5 | 0.9 | 5.3 | 0.4 | 0.0 |
| 1.37 | 30 | 87 | 28 | 1 | 4 | 26 | 2.0 | 2.3 | 0.9 | 8.5 | 0.4 | 0.0 |
| 138 | 42 | 147 | 22 | 4 | 5 | 2 | 4.5 | 2.1 | 0.8 | 2.5 | 0.2 | 0.0 |
| 139 | 39 | 140 | 24 | 1 | 2 | 2 | 1.1 | 1.4 | 0.7 | 2.8 | 0.2 | 0.0 |
| 140 | 41 | 1.49 | 24 | 2 | 2 | 2 | 1.2 | 1.8 | 0.5 | 3.0 | 0.2 | 0.0 |
| 141 | 36 | 147 | 23 | 1 | 7 | 2 | 2.0 | 1.8 | 0.7 | 2.6 | 0.2 | 0.0 |
| 1.42 | 36 | 1.38 | 22 | 1 | 1 | 1 | 1.4 | 1.7 | 1.6 | 4.9 | 0.0 | 0.0 |
| 143 | 40 | 139 | 21 | 4 | 5 | 2 | 4.3 | 2.1 | 0.6 | 1.3 | 0.2 | 0.0 |
| 144 | 39 | 138 | 23 | 1 | 6 | 2 | 4.6 | 2.2 | 0.8 | 3.7 | 0.2 | 0.0 |
| 145 | 34 | 83 | 22 | 1 | 5 | 20 | 2.6 | 1.6 | 0.8 | 1.5 | 0.2 | 0.0 |
| 146 | 26 | 1.62 | 24 | 1 | 1.9 | 2 | 2.4 | 1.5 | 1.2 | 3.6 | 0.2 | 0.0 |
| 147 | 26 | 76 | 26 | 4 | J. 2 | 25 | 3.1 | 4.0 | 0.8 | 5.1 | 0.5 | 0.0 |
| 148 | 30 | 79 | 27 | 1 | 91 | 2 | 1.3 | 2.0 | 1.0 | 2.6 | 0.2 | 0.0 |
| 149 | 31 | 80 | 27 | 1 | 90 | 2 | 1.3 | 1.5 | 1.2 | 4.6 | 0.2 | 0.0 |

## Table 15b (Continued)

| No. | Percent times 100 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Mn | Si | Ni | $\overline{C r}$ | Mo | Cu | S | P | A1 | V | B |
| 150 | 29 | 79 | 24 | 1 | 88 | :2 | 2.0 | 2.2 | 1.1 | 7.7 | 0.5 | 0.0 |
| 151 | 33 | 82 | 25 | 1 | 92 | 2 | 1.1 | 2.1 | 1.1 | 4.1 | 0.2 | 0.0 |
| 152 | 30 | 79 | 25 | 1 | 91 | 2 | 1.0 | 1.9 | 1.1 | 2.6 | 0.2 | 0.0 |
| 153 | 27 | 78 | 25 | 3 | 10 | 23 | 2.6 | 4.2 | 1.4 | 5.5 | 0.5 | 0.0 |
| 154 | 28 | 146 | 17 | 5 | . 15 | 1 | 2.4 | 2.3 | 0.7 | 0.4 | 0.2 | 0.0 |
| 155 | 39 | 85 | 25 | 3 | 4 | 0 | 8.3 | 0.8 | 1.9 | 3.5 | 0.0 | 0.1 |
| 156 | 20 | 113 | 26 | 47 | 38 | 10 | 1.1 | 2.8 | 1.2 | 0.0 | 0.2 | 0.0 |
| 157 | 27 | 81 | 24 | 2 | 8 | 21 | 2.5 | 3.7 | 1.2 | 4.8 | 0.2 | 0.0 |
| 158 | 26 | 82 | 25 | 2. | 8 | 21 | 2.5 | 3.6 | 1.2 | 5.1 | 0.3 | 0.0 |
| 159 | 27 | 82 | 24 | 2. | 3 | 21 | 2.5 | 3.9 | 1.0 | 4.8 | 0.2 | 0.0 |
| 160 | 22 | 96 | 21 | 40 | 43 | 16 | 3.5 | 1.8 | 1.2 | 2.1 | 0.4 | 0.0 |

$R$ is the coefficient of correlation between initial
hardness and carbon content of the steel

Experimental Jominy hardness curve data were obtained from a steel company research laboratory, and are tabulated in Table 15a. The critical diameter of each alloy steel can be determined from its Jominy hardness curve through the relationship between the Jominy quench end distance of $50 \%$ martensite hardness and the critical diameter of the alloy steel (Figure 39). For example, an alloy steel which has a carbon content of 0.44 percent and the Jominy hardness curve were determined experimentally and are as shown in the following data:

| Station No. l/l6 in. | $\underline{1}$ | $\underline{2}$ | $\underline{3}$ | $\underline{4}$ | $\underline{5}$ | $\underline{6}$ | $\underline{10}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness Rockwell C | 60.3 | 59.3 | 58.5 | 58.8 | 58.5 | 58.3 | 55.5 |


| Station No. l/l6 in. | $\underline{12}$ | $\underline{16}$ | $\underline{20}$ | $\underline{24}$ | $\frac{28}{}$ | $\frac{32}{}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness Rockwell C | 54.5 | 49.8 | 45.0 | 42.5 | 40.5 | 39.3 |

For a carbon content of 0.44 percent, the $50 \%$ martensite hardness was found (from Figure 14) to be 43.1 Rockwell C. This hardness lies between the Jominy Hardness of station number 20, and station number 24. A polynomial of fourth degree will be determined by using least-square regression method based on the following six data points:

Station No. $1 / 16$ in. $12 \quad 16 \quad 20 \quad \underline{24} \quad \underline{28} \quad \underline{32}$ Hardness Rockwell C $\begin{array}{lllllll} & 54.5 & 49.8 & 45.0 & 42.5 & 40.5 & 39.3\end{array}$
and the polynomial was found as follows:

$$
\begin{aligned}
y= & 45.87487-4.114609 * x-0.437111 * x^{2} \\
& +0.014989 * x^{3}-0.0001709 * x^{4}
\end{aligned}
$$

where
$y$ is the hardness in Rockwell $C$
$x$ is the Jominy distance from the quench end in $1 / 16$ of an inch

If we let $y$ equal to the $50 \%$ martensite hardness corresponding to the carbon content of the steel, which in our example is 43.10 Rockwell $c$, the value of $x$ can be determined by solving the above polynomial numerically. This was done by using Iowa CADET (Iy) ibibrary suorouitine vansec, and the eñ quench distance $x$ is found to be l. 431 inches.

From Figure 37, for an end quench distance of 1.431 inches, the critical diameter of the steel is 5.43 inches. Similarly the critical diameter of the steels in Table $15 a$ were determined and are tabulated in the last column of Table 15a.

For Jominy station number 4, data in Table l5a showed that, the relationship between the ratio of initial hardness
to distance hardness (I.H./D.H.) and critical diameter can be expressed by the following equations:

$$
\begin{aligned}
& y=1.0-0.008283 *(x-7.0) \\
& \sigma_{y / x}=0.023 \quad \text { for } x \text { in the range of } 3.5 \text { to } 6.5 \\
& R=0.616354
\end{aligned}
$$

and the curve fit is significant at one percent level

$$
\begin{aligned}
y= & 1.02899-0.0818586 *(x-3.5)-0.0923808 *(x-3.5)^{2} \\
& -0.1002404 *(x-3.5)^{3} \\
\sigma_{y / x} & =0.063692 \text { for } x \text { in the range of } 1.5 \text { to } 3.5 \\
R= & 0.94286
\end{aligned}
$$

and the curve fit is significant at one percent level. The nomenclature is
$x$ is the critical diameter of the alloy steel, inches
$y$ is the ratio of initial hardness to distance hardness I.H. $/ \mathrm{D} / \mathrm{H}$.
$\sigma_{y / x}$ is the siandara deviation of I.H./D. H . on critical
$R$ is the coefficient of correlation between I.H./D.H. and critical diameter

FOT Jominy stations number 8, 12, $16,20,24,20$, and 32 , the ratio of initial hardness to the distance hardness of a given Jominy station approaches unity as the value of the critical diameter becomes larger and larger. An exponential model has been fitted for the relationship between critical
diameter and ine ratio of initial saraness to distance hardness (I.H./D.H.).

$$
\begin{equation*}
y=1.0+A^{*} e^{B^{*} X} \tag{a}
\end{equation*}
$$

or

$$
\begin{align*}
& y-1.0=A^{*} e^{B * x} \\
& \ln (Y-1.0)=\ln A+B^{*} x \\
& u=K+B * x \tag{b}
\end{align*}
$$

where
$y$ is the ratio of initial hardness to distance harāness at a given Jominy station
$x$ is the critical diameter of the steel, inches

We can consider the critical diameters ( $x$ ) and the ratio Of initial harāness to distance hardness (I.H./D.H.), whiči can be calculated by taking the ratio of jominy haraness at station 1 to that of Jominy station $3,12,16,20,24,28$, and 32 in Table 15a, as pairs of data points. The relationship between critical Giameter and the ratio of initial haraness to distance haraness, that is the value of $K$ and $B$ in Equation (b), can be determined by using the least square regression method. Tinis was done by using Iowa Cadet (19) library subroutine MEO225, and the results are summarized as follows:


$$
u=1.535503-0.85966 * x
$$

```
\(\sigma_{u / x}=0.39055\) for \(x\) in the range of 1.5 to 6.5
\(R=-0.94885\)
```

and the curve fit is sigii ificant at one percent level.

Jominy station number 12:

$$
\begin{aligned}
& u=1.516167-0.65066 * x \\
& \sigma_{u / x}=0.19035 \text { for } x \text { in the range of } 1.5 \text { to } 6.5 \\
& \mathrm{R}=-0.97706
\end{aligned}
$$

and the curve fit is significant at one percent level.

Jominy station number 16:

$$
\begin{aligned}
& \mathrm{u}=1.471133-0.5444188 * \mathrm{x} \\
& \sigma_{\mathrm{u} / \mathrm{x}}=0.16144 \text { for } \mathrm{x} \text { in the range of } 1.5 \text { to } 6.5 \\
& \mathrm{R}=-0.97669
\end{aligned}
$$

and the curve fit is significant at one percent level.
Jominy station number 20:

$$
\begin{aligned}
& \mathrm{u}=1.46169-0.481393^{\star} \mathrm{x} \\
& \sigma_{\mathrm{u} / \mathrm{x}}=0.159499 \text { for } \mathrm{x} \text { in the range of } 1.5 \text { to } 6.5 \\
& \mathrm{R}=-0.97166
\end{aligned}
$$

and the curve fit is significant at one percent level.

Jominy station number 24:

$$
\begin{aligned}
& \mathrm{u}=1.411127-0.41921 * \mathrm{x} \\
& \sigma_{\mathrm{u} / \mathrm{x}}=0.159686 \text { for } \mathrm{x} \text { in the range of } 1.5 \text { to } 6.5
\end{aligned}
$$

$$
R=-0.964516
$$

and the curve fit is significant at one percent level.

Jominy station number 28:

$$
\begin{aligned}
& u=1.392689-0.3797674 * x \\
& \sigma_{u / x}=0.1529495 \text { for } x \text { in the range of } 1.5 \text { to } 6.5 \\
& \mathrm{R}=-0.9622918
\end{aligned}
$$

and the curve fit is significant at one percent level.

Jominy station number 32:

$$
\begin{aligned}
& u=1.372598-0.3577734 * x \\
& \sigma_{u / x}=0.1528825 \text { for } x \text { in the range of } 1.5 \text { to } 6.5 \\
& R=-0.9580142
\end{aligned}
$$

and the curve fit is significant at one percent level.

The nomenclature is

> u is equal to $\ln (\mathrm{y}-1.0)$, and y is the ratio of initial hardness to distance hardness (I.H./D.H.)
x is the critical diameter of the alloy steel, inches
$R$ is the coefficient of correlation between $u$ and $x$
Two random variables $x$ and $y$, if $x=\ln (y)$ is a normal distribution then $y$ will be a log normal distribution. The mean anc siandard deviation of $x\left(H_{x}, \sigma_{x}\right)$ and $\bar{y}\left(\mu_{y}, \sigma_{y}\right.$ ) are related to each other by the following expression (21):

$$
\begin{aligned}
& \mu_{y}=\operatorname{Exp}\left(\mu_{x}+\frac{\sigma_{x}}{2.0}\right) \\
& \sigma_{y}^{2}=\left(\operatorname{Exp}\left(\sigma_{x}^{2}\right)-1.0\right)\left(\operatorname{Exp}\left(2.0 * \mu_{x}+\sigma_{x}{ }^{2}\right)\right)
\end{aligned}
$$

In performing the least square regression to determine the value of $K$ and $B$ in Equation (b), it was assumed that $u=\ln (y-1.0)$ is normally distributed. Therefore, the mean $\mu_{y}$ and standard deviation $\sigma_{y}$ (which is the mean and standard deviation of ratio of initial hardness to distance hardness I.H./D.H.) can be calculated easily from the mean and standard deviation of $u$ by the above two relations and

$$
\begin{aligned}
& \mu_{y}=\operatorname{Exp}\left(\mu_{u}+\frac{\sigma_{u / x}^{2}}{2.0}\right)+1.0 \\
& \left.\sigma_{y / x}^{2}=\operatorname{Exp}\left(\sigma_{u / x}^{2}\right)-1.0\right)\left(\operatorname{Exp}\left(2.0 * \mu_{u}-\sigma_{u / x}^{2}\right)\right)
\end{aligned}
$$

## COMPARE THE METHOD WITH THE JOMINY DATA FROM

 STEEL PRODUCERSA computer program has been developed, which will predict the mean and standard deviation of Jominy hardness at stations $1,4,8,12,16,20,24,28$, and 32 from chemical composition and grain size of low and medium carbon alloy steel. This program is based on the expressions for the multiplying factors for carbon, manganese, silicon, nickel, chromium, molybdenum, copper, initial hardness, and the ratio of initiai harảness to distance hardness at different Jominy stations which have been discussed earlier.

This computer program has been used to predict the Jominy hardness curve for a few alloy steels and the results showed good agreement with the experimental measured values (12).

The following symbols will be used in the tabulation of the results of the test of the program.

GS - ASTM grain size of the alloy steel
C - Carbon content of the alloy steel, percent
Mn - Manganese content of the steel, percent
Si - Silicon content of the alloy steel, percent
Ni - Nickel content of the alloy steel, percent
Cr - Chromium content of the alloy steel, percent
Mo - Molybdenum content of the alloy steel, percent

Cu - Copper content of the alloy steel, percent f - Multiplying factor for alloy elements
$S_{f}$ - Standard deviation of multiplying factors of alloy elements
$D_{I}$ - Critical diameter of the alloy steel, inches
$S_{D_{I}}$ - Standard deviation of critical diameter, inches
$J$ - Jominy station number, sixteenth of an inch
I.H./D.H. - Ratio of initial hardness to distance haräness

SI.H./D.H. - Standard deviation of initial hardness to distance hardness
$Q_{p}$ - Predicted hardness, Rockwell C
$S_{Q_{p}}$ - Standard deviation of the predicted hardness,
$Q_{M}$ - Experimental measured hardness, Rockwell $C$

Sensitivity Analysis of Content of Alloy Element on the Hardenability of Steel

The hardenadiiity, criticai diameter, of sieel cian lue calculated by the following expression

$$
D_{I}=D_{I C}{ }^{f} M_{n}{ }^{f} S i^{f}{ }_{N i}{ }^{f} \mathrm{Cr}^{f}{ }^{\mathrm{MO}}{ }^{f} \mathrm{Cu}
$$

The method of propagation of error gives us:

$$
\begin{aligned}
\delta_{D_{I}} & =\left(\frac{\partial D_{I}}{\partial D_{I C}}\right)^{2} \delta_{D_{I C}}^{2}+\left(\frac{\partial D_{I}}{\partial f_{M n}}\right)^{2} \delta_{f_{M n}}^{2}+\left(\frac{\partial D_{I}}{\partial f_{S i}}\right)^{2} \delta_{S i} \\
& +\left(\frac{\partial D_{I}}{\partial f_{N i}}\right)^{2} \delta_{N i}{ }^{2}+\left(\frac{\partial D_{I}}{\partial f_{C r}}\right)^{2} \delta_{C r}{ }^{2}+\left(\frac{\partial D_{I}}{\partial f_{M O}}\right)^{2} \delta_{M O}{ }^{2} \\
& +\left(\frac{\partial D_{I}}{\partial F_{C u}}\right)^{2} \delta_{C u}
\end{aligned}
$$

Where $\delta_{x}$ is the change in $x$. From the expressions of the carbon factor and multiplying factor for alloy elements.

$$
\begin{aligned}
& \left(\frac{\partial D_{I}}{\partial D_{I C}}\right)^{2}=\frac{0.38758}{C} \text { for G.S. } 4 \\
& \left(\frac{\partial D_{I}}{\partial D_{I C}}\right)^{2}=\frac{0.32740}{C} \text { for G.S. } 5
\end{aligned}
$$

$$
\left(\frac{\partial D_{I}}{\partial D_{I C}}\right)^{2}=\frac{0.27785}{C} \text { for G.S. } 6
$$

$$
\left(\frac{\partial D_{I}}{\partial D_{I C}}\right)^{2}=\frac{0.23878}{C} \text { for G.S. } 7
$$

$$
\left(\frac{\partial D_{I}}{\partial D_{I C}}\right)^{2}=\frac{0.20600}{C} \text { for G.S. } 8
$$

$$
\left(\frac{\partial f_{\mathrm{Mn}}}{\partial \mathrm{Mn}}\right)^{2}=(0.23535+1.1396 \mathrm{Mn})^{2}
$$

$$
\left(\frac{\partial f_{S i}}{\partial{ }_{S i}}\right)^{2}=(0.22111+0.25604 S i)^{2}
$$

$$
\left(\frac{\partial f_{\mathrm{Ni}}}{\partial \mathrm{Ni}}\right)^{2}=(0.76710-0.24578 \mathrm{Ni})^{2}
$$

$$
\left(\frac{\partial \mathrm{Cr}^{2}}{\partial \mathrm{Cr}_{r}}\right)^{2}=(1.6338+0.05407 \mathrm{Cr})^{2}
$$

$$
\left(\frac{\partial f_{\mathrm{MO}}}{\partial_{\mathrm{MO}}}\right)^{2}=(1.5718+1.17862 \mathrm{MO})^{2}
$$

$$
\left(\frac{\partial f_{\mathrm{Cu}}}{\partial_{\mathrm{Cu}}}\right)^{2}=(1.1763-0.66772 \mathrm{Cu})^{2}
$$

Consider a steel which has the following chemical composition and grain size
G.S. 6

壬

| C | 0.33 | 0.604 |
| :--- | :--- | :--- |
| Mn | 0.88 | 1.648 |
| Si | 0.28 | 1.072 |
| Ni | 0.56 | 1.391 |
| Cr | 0.57 | 1.940 |
| Mo | 0.25 | 1.430 |
| Cu | 0.00 | 1.000 |

The mean and standard deviation of the critical diameter of the steel are $D_{I}=4.121$ in and $\sigma_{D I}=1.783 \mathrm{in}$.

In practical engineering application the chemical
analysis of the steel is precised to $\pm 0.005$ percent.
For $\delta_{\mathrm{C}}=\delta_{\mathrm{Mn}}=\delta_{\mathrm{Si}}=\delta_{\mathrm{Ni}}=\delta_{\mathrm{Cr}}=\delta_{\mathrm{MO}}=\delta_{\mathrm{Cu}}=0.05$ percent
$\delta_{D}^{2}=30.154 \times 10^{-4} \mathrm{in}^{2}$

$$
\delta_{D}=0.0549 \mathrm{in}
$$

which is very small compared with the standard deviation of critical diameter.

Steel: NE9430 ${ }^{\text {I }}$ (Figure 52)

| G.S. | $\underline{7}$ | $\underline{\underline{f}}$ | $\underline{S_{f}}$ |
| :--- | :---: | :---: | :---: |
| C | 0.32 | 0.551 | 0.041 |
| Mn | 1.34 | 2.339 | 0.186 |
| Si | 0.43 | 1.119 | 0.091 |
| Ni | 0.31 | 1.226 | 0.129 |
| Cr | 0.37 | 1.608 | 0.254 |
| MO | 0.09 | 1.146 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |



[^0]

Figure 52. Jominy hardnesis curve of steel NE9430

Steel: NE9440 ${ }^{\text {l }}$ (Figure 53)

| G.S. | 7 | f | $\mathrm{S}_{\underline{f}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C | 0.41 | 0.624 | 0.046 |  |  |
| Mn | 0.90 | 1.673 | 0.186 |  |  |
| Si | 0.57 | 1.168 | 0.091 |  |  |
| Ni | 0.37 | 1.267 | 0.129 |  |  |
| Cr | 0.31 | 1.509 | 0.254 |  |  |
| Mo | 0.15 | 1.249 | 0.233 |  |  |
| Cu | 0.00 | 1.000 | 0.000 |  |  |
| $D_{I}=2.912$ inches, $S_{D_{I}}=1.27$ inches |  |  |  |  |  |
| J | I.H./D.H. | SI.H./D.H. | $\underline{Q}_{\underline{p}}$ | ${ }^{s_{Q_{P}}}$ | ${ }^{Q_{M}}$ |
| 1 | 1.000 | 0.000 | 57.2 | 1.13 | 56.0 |
| 4 | 1.066 | 0.064 | 53.9 | 3.43 | 53.0 |
| 8 | 1.430 | 0.175 | 40.6 | 5.23 | 44.5 |
| 12 | 7.700 | 0.134 | 33.9 | 2.1 | 3¢ $=0$ |
| 16 | 1.904 | 0.147 | 30.2 | 2.45 | 33.0 |
| 20 | 2.075 | 0.173 | 27.8 | 2.42 | 30.0 |
| 24 | 2.225 | 0.200 | 25.9 | 2.40 | 29.0 |
| 28 | 2.348 | 0.207 | 24.6 | 2.27 | 28.0 |
| 32 | 2.408 | 0.217 | 24.0 | 2.25 | 27.0 |

${ }^{1}$ Steel composition and grain size, measured Jominy hardness were cited from Tables I and II of (2).


Figure 53. Jominy harciness curve of steel NE9440

Steel: Al340 ${ }^{1}$ (Figure 54)

| G.S. | $\underline{7}$ | $\underline{f}$ | $\underline{S_{f}}$ |
| :--- | :--- | :--- | :--- |
| C | 0.40 | 0.616 | 0.045 |
| Mn | 1.77 | 3.201 | 0.186 |
| Si | 0.19 | 1.047 | 0.091 |
| Ni | 0.10 | 1.075 | 0.129 |
| Cr | 0.08 | 1.131 | 0.254 |
| Mo | 0.02 | 1.032 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |

$$
D_{I}=2.592 \text { inches, } S_{D_{I}}=1.143 \text { inches }
$$

| J | I.H./D.H. | $\mathrm{SI}_{\text {I.H./D.H. }}$ | $Q^{P}$ | $\mathrm{S}_{\mathrm{Q}_{\mathrm{P}}}$ | $\mathrm{Q}_{\mathrm{M}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0.000 | 56.7 | 1.13 | 57.0 |
| 4 | 1.102 | 0.064 | 51.6 | 3.18 | 47.0 |
| 8 | 1.566 | 0.230 | 37.0 | 5.80 | 33.0 |
| 12 | 1.859 | 0.165 | 30.8 | 2.86 | 28.0 |
| 16 | 2.076 | 0.175 | 27.5 | 2.43 | 24.0 |
| 20 | 2.254 | 0.201 | 25.4 | 2.37 | 22.0 |
| 24 | 2.401 | 0.225 | 23.8 | 2.34 | 21.0 |
| 28 | 2.522 | 0.234 | 22.7 | 2.21 | 20.0 |
| 32 | 2.579 | 0.243 | 22.2 | 2.19 | 20.0 |

${ }^{1}$ Steel composition, grain size and measured Jominy hardness were cited from Table II of (2).


Figure 54. Jominy hardness curve of steel Al340

Steel: NE9630 ${ }^{1}$ (Figure 55)



Steel: NE9640 ${ }^{1}$ (Figure 56)

| G.S. | $\underline{8}$ | $\underline{£}$ | $\underline{S_{f}}$ |
| :--- | :---: | :--- | :---: |
| C | 0.36 | 0.558 | 0.048 |
| Mn | 1.48 | 2.596 | 0.186 |
| Si | 0.55 | 1.160 | 0.091 |
| Ni | 0.03 | 1.023 | 0.129 |
| Cr | 0.56 | 1.923 | 0.254 |
| MO | 0.01 | 1.016 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |

$$
D_{I}=3.357 \text { inches, } S_{D_{I}}=1.481 \text { inches }
$$

| $\underline{J}$ | I.H./D.H. |  | $\mathrm{S}_{\text {I.H./D.H. }}$ |  | $\mathrm{Q}_{\mathrm{P}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 |  | $\mathrm{~S}_{Q_{P}}$ | $\frac{Q_{M}}{}$ |  |
| 4 | 1.039 | 0.000 | 55.7 | 1.13 | 56.0 |
| 8 | 1.293 | 0.119 | 43.4 | 4.19 | 46.0 |
| 12 | 1.522 | 0.100 | 36.7 | 2.56 | 39.0 |
| 16 | 1.709 | 0.115 | 32.7 | 2.33 | 33.5 |
| 20 | 1.800 | 0.139 | 30.0 | 2.35 | 31.0 |
| 24 | 2.017 | 0.163 | 27.8 | 2.36 | 30.0 |
| 28 | 2.138 | 0.175 | 26.2 | 2.25 | 29.0 |
| 32 | 2.201 | 0.185 | 25.5 | 2.24 | 28.0 |

[^1]

## Steel: NE8630 ${ }^{1}$ (Figure 57)

| G.S. | $\underline{8}$ | $\underline{f}$ | $\underline{S_{f}}$ |
| :--- | :--- | :---: | :---: |
| C | 0.34 | 0.527 | 0.045 |
| Mn | 0.88 | 1.648 | 0.186 |
| Si | 0.33 | 1.087 | 0.091 |
| Ni | 0.54 | 1.378 | 0.129 |
| Cr | 0.51 | 1.840 | 0.254 |
| Mo | 0.22 | 1.374 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |
|  | $\mathrm{D}_{\mathrm{I}}=$ | 3.294 inches $\mathrm{S}_{\mathrm{D}_{\mathrm{I}}}=1.441$ inches |  |


| J | I.H./D.H. | $\mathrm{S}_{\text {I.H./D.H. }}$ | $\mathrm{Q}_{\mathrm{P}}$ | $\mathrm{S}_{Q_{P}}$ | ${ }^{Q_{M}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0.000 | 53.4 | 1.13 | 54.0 |
| 4 | 1.043 | 0.064 | 51.4 | 3.36 | 49.5 |
| 8 | 1.310 | 0.226 | 91.2 | a. 15 | ¢2.0 |
| 12 | 1.544 | 0.104 | 34.8 | 2.50 | 36.0 |
| 16 | . 734 | 0.119 | 30.9 | 2.26 | 31.0 |
| 20 | 1.895 | 0.144 | 28.4 | 2.27 | 28.5 |
| 24 | 2.044 | 0.168 | 26.3 | 2.27 | 27.0 |
| 28 | 2.166 | 0.179 | 24.8 | 2.16 | 26.5 |
| 32 | 2.229 | 0.189 | 24.1 | 2.15 | 26.0 |

${ }^{1}$ Steel composition, grain size and measured Jominy hardness were cited from Tables I and II of (2).


Steel: NE8630 ${ }^{1}$ (Figure 58)

| G.S. | $\underline{I}$ | $\underline{f}$ | $\underline{S_{f}}$ |
| :--- | :--- | :--- | :--- |
| C | 0.33 | 0.560 | 0.041 |
| Mn | 0.87 | 1.636 | 0.186 |
| Si | 0.28 | 1.072 | 0.091 |
| Ni | 0.48 | 1.340 | 0.129 |
| Cr | 0.50 | 1.824 | 0.254 |
| Mo | 0.20 | 1.338 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |

$$
D_{I}=3.210 \text { inches, } S_{D_{I}}=1.398 \text { inches }
$$

| J | I.H./D.H. | $\mathrm{S}_{\text {I.H./D.H. }}$ | ${ }^{Q_{P}}$ | $\mathrm{s}_{\mathrm{Q}_{\mathrm{p}}}$ | ${ }^{\text {M }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0.000 | 2.8 | 1.13 | 52.0 |
| 4 | 1.047 | 0.064 | 50.6 | 3.30 | 49.0 |
| 8 | 2.333 | 0.135 | 40.0 | 4.27 | 41.5 |
| 12 | 1.574 | 0.110 | 33.7 | 2.50 | 35.0 |
| 16 | 1.768 | 0.125 | 30.0 | 2.25 | 30.0 |
| 20 | 1.932 | 0.150 | 27.5 | 2.25 | 27.5 |
| 24 | 2.081 | 0.174 | 25.6 | 2.25 | 26.5 |
| 28 | 2.204 | 0.185 | 24.1 | 2.13 | 26.0 |
| 32 | 2.256 | 0.195 | 23.5 | 2.12 | 25.0 |

${ }^{1}$ Steel composition, grain size and measured Jominy hardness were cited from Tables I and II of (2). .


Steel: NE8630 ${ }^{1}$ (Figure 59)

| G.S. | $\underline{6}$ | $\underline{f}$ | $\underline{S_{f}}$ |
| :--- | :---: | :---: | :---: |
| C | 0.33 | 0.604 | 0.038 |
| Mn | 0.88 | 1.648 | 0.168 |
| Si | 0.28 | 1.072 | 0.091 |
| Ni | 0.56 | 1.391 | 0.129 |
| Cr | 0.57 | 1.940 | 0.254 |
| Mo | 0.25 | 1.430 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |

$D_{I}=4.121$ inches, $S_{D_{I}}=1.783$ inches

| J | I.H./D.H. | $\mathrm{S}_{\text {I.H./D.H. }}$ | $\underline{Q_{P}}$ | $s_{Q_{p}}$ | $\mathrm{Q}_{\mathrm{M}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0.000 | 52.8 | $1 . \overline{13}$ | 53.0 |
| 4 | 1.024 | 0.023 | 51.6 | 1.60 | 52.5 |
| 8 | 1.152 | 0.062 | 46.0 | 2.67 | 47.5 |
| 12 | 1.318 | 0.061 | 40.2 | 2.06 | 42.0 |
| 16 | 1.468 | 0.076 | 36.1 | 2.04 | 37.5 |
| 20 | 1.601 | 0.096 | 33.1 | 2.14 | 35.0 |
| 24 | 1.738 | 0.118 | 30.5 | 2.21 | 33.0 |
| 28 | 1.852 | 0.131 | 28.7 | 2.15 | 32.0 |
| 32 | 1.914 | 0.141 | 27.8 | 2.15 | 31.0 |

${ }^{1}$ steel composition, grain size and measured Jominy hardness were cited from Tables I and II of (2).


Figure 59. Jominy hardness curve of steel NE8630

Steel: NE8630 ${ }^{1}$ (Figure 60)

| G.S. | $\underline{I}$ | $\underline{f}$ | $\underline{S_{f}}$ |
| :--- | :---: | :---: | :---: |
| C | 0.29 | 0.525 | 0.039 |
| Mn | 0.82 | 1.576 | 0.186 |
| Si | 0.28 | 1.072 | 0.091 |
| Ni | 0.50 | 1.353 | 0.129 |
| Cr | 0.52 | 1.859 | 0.254 |
| Mo | 0.21 | 1.356 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |
|  |  |  |  |


| $\underline{J}$ | I.H./D.H. | $S_{\text {I.H./D.F. }}$ | ${ }^{Q_{P}}$ | $\mathrm{S}_{Q_{\mathrm{P}}}$ | $Q_{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0.000 | 50.4 | 1.13 | 51.0 |
| 4 | 2.058 | 0.064 | 47.8 | 3.10 | 47.0 |
| 8 | 1.392 | 0.159 | 36.7 | 4.43 | 39.0 |
| 12 | 1.650 | 0.125 | 30.7 | 2.46 | 32.0 |
| 15 | 1.852 | 0.138 | 27.4 | 2.17 | 28.0 |
| 20 | 2.020 | 0.164 | 25.1 | 2.15 | 25.5 |
| 24 | 2.171 | 0.188 | 23.4 | 2.14 | 24.5 |
| 28 | 2.293 | 0.199 | 22.2 | 2.03 | 24.0 |
| 32 | 2.355 | 0.208 | 21.6 | 2.01 | 23.0 |



Figure 60. Jominy houdness curve NE8630

Steel: NE8630 ${ }^{1}$ (Figure 61)

| G.S. | $\underline{8}$ | $\underline{f}$ | $\underline{S_{f}}$ |
| :--- | :--- | :--- | :--- |
| C | 0.27 | 0.470 | 0.040 |
| Mn | 0.78 | 1.530 | 0.186 |
| Si | 0.28 | 1.072 | 0.091 |
| Ni | 0.40 | 1.287 | 0.129 |
| Cr | 0.47 | 1.774 | 0.254 |
| Mo | 0.18 | 1.302 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |

$$
D_{I}=2.292 \text { inches, } S_{D_{I}}=1.004 \text { inches }
$$

| J | I.H./D.H. | $\mathrm{S}_{\text {I.H./D.H. }}$ | $\mathrm{Q}_{\mathrm{P}}$ | $\mathrm{S}_{\mathrm{Q}_{\mathrm{P}}}$ | $\mathrm{Q}_{\mathrm{M}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0.000 | 49.2 | 1.13 | 50.0 |
| 4 | 1.170 | 0.0637 | 42.2 | 2.51 | 43.0 |
| 8 | 1.733 | 0.298 | 29.3 | 5.46 | 32.0 |
| 12 | 2.044 | 0.201 | 24.3 | 2.51 | 26.0 |
| 16 | 2.267 | 0.206 | 21.9 | 2.10 | 23.0 |
| 20 | 2.449 | 0.233 | 20.3 | 2.03 | 21.0 |
| 24 | 2.589 | 0.255 | 19.2 | 2.00 | 20.0 |
| 28 | 2.705 | 0.262 | 18.4 | 1.88 | 19.0 |
| 32 | 2.758 | 0.270 | 18.0 | 1.86 | 19.0 |

${ }^{1}$ Steel composition, grain size and measured Jominy haraness were cited from Tables I and II of (2).


Steel: NE8720 ${ }^{1}$ (Figure 62)

| G.S. | $\underline{7}$ | $\underline{f}$ | $\underline{S_{f}}$ |
| :--- | :---: | :---: | :---: |
| C | 0.20 | 0.436 | 0.032 |
| Mn | 0.75 | 1.497 | 0.186 |
| Si | 0.24 | 1.060 | 0.091 |
| Ni | 0.58 | 1.404 | 0.129 |
| Cr | 0.42 | 1.691 | 0.254 |
| Mo | 0.27 | 1.467 | 0.233 |
| Cu | 0.00 | 1.000 | 0.000 |

$$
D_{I}=2.410 \text { inches, } S_{D_{I}}=1.048 \text { inches }
$$

| J | I.H./D.H. | $\mathrm{S}_{\text {I. H./D.H. }}$ | ${ }^{Q_{P}}$ | ${ }^{S} Q_{P}$ | ${ }^{2}{ }_{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0.000 | 44.9 | 1.13 | 46.0 |
| 4 | 1.138 | 0.064 | 39.5 | 2.45 | 40.5 |
| 8 | 1.662 | 0.269 | 27.8 | 4.85 | 31.5 |
| 12 | 1.967 | 0.106 | 23.0 | 2.30 | 25.0 |
| 16 | 2.188 | 0.193 | 20.7 | 1.94 | 22.0 |
| 20 | 2.369 | 0.220 | 19.1 | 1.88 | 21.0 |
| 24 | 2.512 | 0.243 | 18.0 | 1.85 | 19.5 |
| 28 | 2.631 | 0.251 | 17.2 | 1.74 | 19.0 |
| 32 | 2.686 | 0.259 | 16.9 | 1.73 | 18.5 |

${ }^{1}$ Steel composition, grain size and measured Jominy hardness were cited from Tables I and II of (2).


Steel: NE8270 ${ }^{1}$ (Figure 63)

| G.S. | $\underline{8}$ | $\underline{f}$ | $\underline{S_{f}}$ |
| :--- | :--- | :--- | :--- |
| C | 0.19 | 0.394 | 0.034 |
| Mn | 0.73 | 1.475 | 0.186 |
| Si | 0.25 | 1.063 | 0.091 |
| Ni | 0.6 | 1.416 | 0.129 |
| Cr | 0.45 | 1.741 | 0.254 |
| Mo | 0.32 | 1.563 | 0.233 |
| Cu | 0.0 | 1.000 | 0.000 |
|  | $\mathrm{D}_{\mathrm{I}}=2.383$ inches, $\mathrm{S}_{\mathrm{D}_{\mathrm{I}}}=1.040$ inches |  |  |


| J | I.H./D.H. | $\mathrm{S}_{\text {I. H./D. }}$. | $\underline{Q_{P}}$ | $\mathrm{S}_{\mathrm{O}_{\mathrm{P}}}$ | $\mathrm{Q}_{\mathrm{M}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0000 | 0.000 | 44.3 | 1.13 | 45.5 |
| 4 | 1.145 | 0.064 | 38.8 | 2.39 | 38.5 |
| 8 | 1.678 | 0.275 | 27.1 | 4.82 | 28.5 |
| 12 | 1.984 | 0.189 | 22.5 | 2.28 | 24 |
| 16 | 2.205 | 0.196 | 20.2 | 1.91 | 20 |
| 20 | 2.387 | 0.223 | 18.7 | 1.85 | 19 |
| 24 | 2.529 | 0.246 | 17.7 | 1.82 | 18 |
| 28 | 2.648 | 0.254 | 16.9 | 1.71 | 17 |
| 32 | 2.702 | 0.252 | 16.5 | 1. 70 | 17 |

${ }^{1}$ Steel composition, grain size and measured Jominy hardness were cited from Tables I and II of (2).


Figure 63. Jominy hariness curve of steel NE8720

The Iron and Steel Committee of the War Engineering Board and the Iron and Steel Division, General Standards Committee, of the Society of Automotive Engineering, Inc., and the Technical Committee on Alloy Steel of American Iron and Steel Institute have devised hardenability bands for commercial alloy steels (23).

Maximum and minimum hardness at different Jominy stations of several alloy commercial steels have been predicted and compared the results with the devised hardenability band vaiues. The maximum and minimum predicted hardness are based respectively on the upper bound and lower bound chemical compositions of the alloy steel. Commercial alloy steels usually have fine grain size, an ASTM No. 8 grain size have been assumed in the prediction.

Predicted and devised hardenability band of steel 8650H: (Figure 64)

| Jominy <br> Station | $\frac{\text { Hardenability }}{\text { Band }^{1}}$ |  | Predicted Hardness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | x. |  |  |
|  | Max. | Min. | $\underline{Q_{P}}$ | ${ }^{S_{Q_{P}}}$ | $\underline{Q_{P}}$ | ${ }^{S_{Q_{P}}}$ |
| 1 | 65.0 | 58.0 | 62.5 | 1.13 | 59.6 | 1.13 |
| 4 | 65.0 | 55.0 | 62.1 | 1.81 | 51.1 | 2.97 |
| 8 | 62.0 | 48.0 | 60.8 | 1.29 | 35.5 | 6.60 |
| 12 | 58.0 | 41.0 | 57.5 | 1.37 | 29.4 | 3.02 |
| 16 | 56.0 | 38.0 | 53.9 | 1.56 | 26.5 | 2.52 |
| 20 | 51.0 | 32.5 | 50.7 | 1.80 | 24.5 | 2.44 |
| 24 | 49.0 | 31.0 | 47.3 | 2.06 | 23.2 | 2.40 |
| 28 | 47.0 | 30.0 | 44.6 | 2.15 | 22.2 | 2.25 |
| 32 | 6.0 | 29.5 | 43.1 | 2.22 | 21.8 | 2.24 |


| Steel $8650 \mathrm{H}^{\mathrm{l}}$ | C | Mn | Si | Ni | Cr | Mo | Cu |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | ---: |
| ASTM G.S. 8 | $46 / 54$ | $70 / 105$ | $20 / 35$ | $35 / 75$ | $35 / 65$ | $15 / 25$ | 0.0 |

[^2]

Predicted and devised hardenability band of steel 434021: (Figure 65)

| Jominy | Harȧenabiiity |  | Fredicted F̈araness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Station | Band ${ }^{1}$ |  | Max. |  | Min. |  |
|  | Max. | Min. | $\mathrm{Q}_{\mathrm{P}}$ | ${ }^{\mathrm{S}_{\mathrm{Q}_{\mathrm{P}}}}$ | $\underline{Q}_{\mathrm{P}}$ | ${ }^{S_{Q_{P}}}$ |
| 1 | 60.0 | 52.5 | 59.1 | $\overline{1.13}$ | 55.1 | $\overline{1.13}$ |
| 4 | 60.0 | 52.5 | 59.1 | 1.13 | 53.8 | 1.64 |
| 8 | 60.0 | 52.0 | 59.0 | 1.13 | 47.5 | 2.90 |
| 12 | 60.0 | 51.0 | 58.5 | 1.12 | 41.4 | 2.18 |
| 16 | 60.0 | 50.0 | 57.5 | 1.13 | 37.1 | 2.14 |
| 20 | 60.0 | 48.0 | 56.3 | 1.16 | 34.i | 2.24 |
| 24 | 60.0 | 46.0 | 54.5 | 1.25 | 31.4 | 2.31 |
| 28 | 60.0 | 44.5 | 52.7 | 1.34 | 29.5 | 2.24 |
| 32 | 60.0 | 43.0 | 51.6 | 1.41 | 28.6 | 2.24 |


| Steel $4340 \mathrm{H}^{1}$ | C | Mn | $\underline{\mathrm{Si}}$ | $\underline{\mathrm{Ni}}$ | $\underline{\mathrm{Cr}}$ | $\underline{M o}$ | $\underline{\mathrm{Cu}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ASTMi G.S. $\quad$ O | $37 / 45$ | $60 / 95$ | 20,35 | 250,200 | 55,95 | 20,30 | 0.00 |

$1_{\text {Steel }}$ composition and devised haraenabiiity band were cited from Chart 1 of (23).


Figure 65. Hardenability band of steel 434021

Predicted and devised hardenability band of steel 8750 H : (Figure 66)

| Jominy | HardenabiIity |  | Preaicted Hardness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Station | Band ${ }^{\text {I }}$ |  | Max. |  | Min. |  |
|  | Max. | Min. |  | ${ }^{5} \mathrm{Q}_{\mathrm{P}}$ | $\mathrm{Q}_{\mathrm{P}}$ | ${ }^{S_{Q_{P}}}$ |
| 1 | 65.0 | 58.0 | 62.5 | $\overline{1.13}$ | 9.6 | $\overline{1.13}$ |
| 4 | 65.0 | 56.5 | 62.3 | 1.82 | 53.0 | 3.18 |
| 8 | 64.0 | 51.0 | 61.3 | 1.21 | 37.4 | 6.34 |
| 12 | 62.0 | 43.5 | 58.6 | 1.28 | 31.0 | 3.01 |
| 16 | 60.0 | 38.5 | 55.4 | 1.44 | 27.8 | 2.53 |
| 20 | 57.5 | 35.0 | 52.5 | 1.66 | 25.7 | 2.47 |
| 24 | 55.5 | 33.5 | 49.2 | 1.92 | 24.2 | 2.43 |
| 28 | 54.5 | 32.5 | 46.5 | 2.03 | 23.1 | 2.29 |
| 32 | 53.5 | 32.5 | 45.0 | 2.12 | 22.6 | 2.27 |


| Steel $8750 \mathrm{H}^{1}$ | $\underline{\mathrm{C}}$ | $\underline{\mathrm{Mn}}$ | $\underline{\mathrm{Si}}$ | $\underline{\mathrm{Ni}}$ | $\underline{\mathrm{Cr}}$ | $\underline{M o}$ | $\underline{\mathrm{Cu}}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASTM G.S. 8 | $46 / 54$ | $70 / 105$ | 20,35 | 35,75 | 35,65 | $20 / 30$ | 0.00 |

[^3]

Figure 66. Hardenability band of steel 8750 H

Predicted and devised hardenability band of steel 8622 H : (Figure 67

| Jominy <br> Station | Hardenability |  | Predicted Hardness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Band ${ }^{1}$ |  | Max. |  | Min. |  |
|  | Max. | Min. | $\mathrm{Q}_{\mathrm{p}}$ | ${ }^{{ }^{S^{Q_{P}}}}$ | QP | ${ }^{\mathrm{S}_{\mathrm{Q}_{\mathrm{P}}}}$ |
| 1 | 49.5 | 42.0 | 49.2 | 1.13 | 44.9 | 1.13 |
| 4 | 43.5 | 27.5 | 48.0 | 1.54 | 26.2 | 1.18 |
| 8 | 34.0 | 21.0 | 42.2 | 2.70 | 18.8 | 5.31 |
| 12 | 29.0 | - | 36.6 | 2.01 | 16.0 | 2.12 |
| 16 | 27.0 | - | 32.8 | 1.95 | 14.9 | 1.72 |
| 20 | 25.5 | - | 30.1 | 2.03 | 14.1 | 1.66 |
| 24 | 24.5 | - | 27.8 | 2.09 | 13.8 | 1.64 |
| 28 | 24.0 | - | 26.1 | 2.02 | 13.4 | 1.54 |
| 32 | 24.0 | - | 25.3 | 2.02 | 13.3 | 1.53 |


| Steel $8622 \mathrm{H}^{1}$ | $\underline{\mathrm{C}}$ | $\underline{\mathrm{Mn}}$ | $\underline{\text { Si }}$ | $\underline{\mathrm{Ni}}$ | $\underline{\mathrm{Cr}}$ | $\underline{M o}$ | $\underline{\mathrm{Cu}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASTM G.S. 8 | $20 / 27$ | $60 / 95$ | $20 / 35$ | $35 / 75$ | $35 / 65$ | $15 / 25$ | 0.00 |

[^4]

Figure 67. Jardenability band of steel 8622 H

Predicted and devised hardenability band of steel 8722H: (Figure 68)

| Jominy Station | Hardenability |  | Predicted Hardness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Band ${ }^{1}$ |  | Max. |  | Min. |  |
|  | Max. | Min. | $\overline{\mathrm{Q}_{\mathrm{P}}}$ | ${ }^{\mathrm{S}_{\mathrm{Q}_{\mathrm{P}}}}$ | ${ }^{\mathrm{Q}_{\mathrm{P}}}$ | ${ }^{\mathrm{S}_{\mathrm{Q}_{\mathrm{P}}}}$ |
| 1 | 49.5 | 42.0 | 49.2 | 1.13 | 44.9 | 1.13 |
| 4 | 44.0 | 28.5 | 48.1 | 1.55 | 27.8 | 1.30 |
| 8 | 35.5 | 22.5 | 43.4 | 2.35 | 19.7 | 5.35 |
| 12 | 31.0 | - | 38.1 | 1.88 | 16.6 | 2.16 |
| 16 | 28.5 | - | 34.3 | 1.88 | 15.4 | 1.75 |
| 20 | 27.0 | - | 31.5 | 1.98 | 14.6 | 1.68 |
| 24 | 26.5 | - | 29.1 | 2.06 | 14.2 | 1.66 |
| 28 | 26.0 | - | 27.3 | 2.01 | 13.8 | 1.56 |
| 32 | 26.0 | - | 26.4 | 2.01 | 13.7 | 1.56 |


| Steel $8722 \mathrm{H}^{1}$ | C | Mn | Si | $\underline{\mathrm{Ni}}$ | Cr | Mo | Cu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASTM G:S $=8$ | 20/27 | 60/95 | 20/35 | 35/75 | 35/65 | 20/30 | 0.00 |

${ }^{1}$ Steel composition and devised hardenability band (cited from Chart 26 of (23)).


Figure 68. Hasdenability band of steel 8722 H

Predicted and devised hardenability band of steel 4150H: (Figure 69)

| Jominy <br> Stat.on | $\frac{\text { Hardenability }}{\operatorname{Band}^{1}}$ |  | Predicted Hardness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max. |  | Min. |  |
|  | Max. | Min. | $Q_{p}$ | $\mathrm{S}_{\mathrm{Q}_{\mathrm{P}}}$ | Qp | ${ }^{S_{Q_{P}}}$ |
| 1 | 65.0 | 58.0 | 62.5 | 1.13 | 59.6 | 1.13 |
| 4 | 65.0 | 57.0 | 62.4 | 1.83 | 57.0 | 3.67 |
| 8 | 64.0 | 53.0 | 61.5 | 1.18 | 45.0 | 4.82 |
| 12 | 63.0 | 47.0 | 59.1 | 1.24 | 37.9 | 2.81 |
| 16 | 62.0 | 42.0 | 56.2 | 1.38 | 33.7 | 2.51 |
| 20 | 61.0 | 39.0 | 53.4 | 1.59 | 30.9 | 2.51 |
| 24 | 60.0 | 37.0 | 50.2 | 1.85 | 28.7 | 2.52 |
| 28 | 59.0 | 36.0 | 47.5 | 1.97 | 27.1 | 2.39 |
| 32 | 58.0 | 35.5 | 46.0 | 2.06 | 26.4 | 2.38 |


| Steel $4150 \mathrm{H}^{1}$ | $\underline{\mathrm{C}}$ | $\underline{\mathrm{Mn}}$ | $\underline{\mathrm{Si}}$ | $\underline{\mathrm{Ni}}$ | $\underline{\mathrm{Cr}}$ | $\underline{M o}$ | $\underline{\mathrm{Cu}}$ |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASTM G.S. 8 | $46 / 54$ | $70 / 105$ | $20 / 35$ | Mx. | 25 | $80 / 115$ | $15 / 25$ | 0.00 |

[^5]

Figure 69. Hardenability band of steel 4150 H

Predicted and devised hardenability band of steel 4130H: (Figure 70)

| Jominy Station | Hardenability |  | Predicted Hardness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Band ${ }^{1}$ |  | Max. |  | Min. |  |
|  | Max. | Min. | $\overline{Q_{\mathrm{P}}}$ | $\mathrm{S}_{\mathrm{Q}_{\mathrm{p}}}$ | ${ }^{Q_{P}}$ | $\overline{\mathrm{S}_{\mathrm{Q}_{\mathrm{P}}}}$ |
| 1 | 54.0 | 46.5 | 53.4 | 1.13 | 49.2 | 1.13 |
| 4 | 52.0 | 39.0 | 52.1 | 1.61 | 37.8 | 2.05 |
| 8 | 43.5 | 30.0 | 45.7 | 2.94 | 26.0 | 5.77 |
| 12 | 37.5 | 26.0 | 39.6 | 2.16 | 21.6 | 2.48 |
| 16 | 33.5 | 23.0 | 35.5 | 2.10 | 19.7 | 2.04 |
| 20 | 31.5 | 21.0 | 32.5 | 2.19 | 18.4 | 1.96 |
| 24 | 30.5 | 20.0 | 30.0 | 2.25 | 17.6 | 1.93 |
| 28 | 30.0 | - | 28.2 | 2.18 | 16.9 | 1.81 |
| 32 | 29.5 | - | 27.3 | 2.18 | 16.7 | 1.80 |


| Steel $4130 \mathrm{H}^{1}$ | C | $\underline{\mathrm{Mn}}$ | $\underline{\mathrm{Si}}$ | $\underline{\mathrm{Ni}}$ | $\underline{\mathrm{Cr}}$ | Mo | Cu |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASTM G.S. 8 | $27 / 34$ | $35 / 65$ | $20 / 35$ | MX .25 | $80 / 115$ | $15 / 25$ | 0.00 |

${ }^{1}$ Steel composition and hardenability band (cited from Chart 1 of (23)).


Figure 70. Hardenability band of steel 4130 H

# INCORPORATE THE METHODOLOGY INTO A COMPUTER PROGRAM THAT IS EASY FOR THE DESIGNEN TO USE 

A computer program has been developed to predict the mean and standard deviation of the Jominy hardness profile from chemical composition and grain size of the low alloy carbon steel. The computer program consists of four subroutines. Subroutine JOMINY, Subroutine RATIOP, Subroutine DIDEAL and Subroutine RANDOM, and have been listed and documented in the Appendix.

Based on Kramer's multiplying factors for alloy elements; the prediction of the Jominy hardness curve from chemical composition and grain size of low alloy aarbon steels, agreed fairly well with the measured Jominy hardness data only for simple steels and steels with low alloy content. For complex steeis and steel with high alloy content, the effect of each alloy element on hardenability of steel will not be independenc of each other, especially when some carbide forming elements (such as nickel and molybdenum) are used together, they produce synergistic hardenability effects that is the specific effect of each alloying element is larger than its effect when by itself in a composition. Steels of high hardenability usually contain large quantities of strong carbide forming elements; which are often not completely dissolved. The correlation between alloying elements on the hardenability of steels and the effect of heat treatment history and time on the carbide forming tendency of the alloying elements are necessary to investigate in order to have a good prediction of the Jominy haraness profile of complex and high alloy content steels.

The criterion used to determine the hardenability of low alloy carbon steels was the 50 percent martensite transformation point, and the other 50 percent transformation
the bias may be different.

## Recommendations

1. Vith the computer program available, a concerted effort should be made to compare as many predictions as possible for the classes of steels of interest to the user. A correlation can be made between predictions and tests at every principle station, and any bias of the mean for such classes can be assessed and the mean prediction adjusted.
2. With the computer program available: it is recommended that the addition method of Crafts and Lamont (ll) for predicting tempered hardness be investigated and the data upon which it is based examined, in order that any bias in the prediction and the dispersion in the prediction of tempered hardness can be quantitatively assessed.
3. In estimating critical diameter, the point of interest is the size of bar in which the structure is 50 percent martensite at the center. In order to determine the critical diameter of low alloy steel by Jominy test, it would be better to locate the distance from the quench end of the Jominy bax, which has a 50 percent martensite microstructure and measure the corresponding hardness, instead of predicting the 50 percent martensite hardness from carbon content of the steel alone.
4. For complex steels and steel with high alloy
content, the effect of each alloy element on hardenability of steel will not be independent of others, especially when some carbide-forming elements (such as nickel and molybdenum) are used together. They produce synergistic hardenability effects - that is the specific effect of each alloying element is larger than its effect when by itself in a composition. Steels of high hardenability usually contain large quantities of strong carbide forming elements, which are often not completely dissolved. The correlation between alloying elements on the hardenability of steels and the effect of heat treatment history and time on the carbide forming tendency of the alloying elements must be investigated in orier to have a good prediction of the Jominy hardness profile of complex and high alloy content steels.
5. The criterion used to determine the hardenability of low alloy carbon steel was the 50 percent martensite transformation point, and the other 50 percent transformation product may be bainite or pearlite. The effect of alloying elements on the nonmartensite product transformation of the steel should be investigated for more precise hardEnability predictions.
6. There are numerous alloy combinations which exhibit specific hardenability of a low alloy carbon steel. The opportunity is now present to estimate the best combination
to meet a specified Jominy hardness profile in the light of the alloy market and inventory conditions. By iinear programinng and optimization techniaues; the cost of the steel can be reduced to a minimum.

## REFERENCES

1. M. A. Grossmann. "Hardenability Calculated from Cnemical Composition." Trans. Am. Inst. Min. Met. Eng. 150 (1942):227-259.
2. J. Field. "Calculation of Jominy End-Quench Curve from Analysis." Metal Progress 43 (1943):402405.
3. W. Steven. "The Effect on the Hardenability of Small Addition of Chromium and Molybdenum to a Grain-size-Controlled 0.9\% Nickel-Steel." Int. Iron and Steel Inst. 149 (1944):239-252.
4. T. G. Digges. "Effect of Carbon on the Hardenability of High Purity Iron-Carbon Alloys." Trans. Amer. Soc. Metals 26 (1938):408-421.
5. M. A. Grossmann, M. Asimow and S. F. Urban. "Hardenability, its Relation to Quenching, and Some Quantitative Data," pp. 124-196. In Hardenability of Alloy Steels. Cleveland, Ohio: American Society of Metals, 1939.
6. M. A. Grossmann and R. L. Stephenson. "The Effect of Grain Size on Hardenability." Trans. Amer. Soc. Metals 29 (1941):I-13.
7. W. Crafts, and J. L. Lamont. "Effect of Some Elements on Hardenability." Trans. Am. Inst. Min. Met. Eng. 158 (1944):157-167.
8. J. H. Hollsman and L. D. Jazze. "The Hardenability Concept." Trans. Am. Inst. Min. Met. Eng. 167 (1946):601-616.
O. I. M. Hodge and $M=\underline{A}=$ Orehoski. "Relationship between Hardenability and Percentage of Martensite in some Low-Alloy Steels." Trans. Am. Inst. Min. Met. Eng. 167 (1946):627-642.
9. I. R. Kramer, S. Siegel and J. G. Brooks. "Factor for the Calculation of Hardenability." Trans. Am. Inst. Min. Met. Eng. 167 (1946):670-679.
```
ll. W. Crafts and J. L. Lamont. "Addition Method for
        Calculating Rockwell C Hardness of the Jominy
        Hardenability Test." Trans. Am. Inst. Min.
        Met. Eng. 167 (1946):698-718.
12. A. Asimow, w. F. Craig and M. A. Grossmann. "Correla-
        tion Between Jominy Test and Quenched Round
        Bars." SAE Trans. 49 (1941):283-292.
13. C. F. Jatczak and R. W. Devine Jr. "Calculation of
        Hardenability in High Carbon Alloy Steels."
        Trans. Amer. Soc. for Metals 47 (1955):748-765.
14. C. F. Jatczak. "Determining Hardenability from
        Composition." Metal Progress 100 (September
        1971): 60-65.
15. C. F. Jatczak and D. J. Girardi. "Multiplying
        Factors for the Hardenability of Hypereutectioid
        Steels Hardened from \(1700^{\circ} \mathrm{F} . "\) ASM Trans. 51
        (1959):335-352.
16. E. J. Whittenberger, R. R. Burt and D. J. Carney.
        "Hardenability Factors for Hypereutectoid Low
        Alloy Steels." Trans. Amer. Inst. of Mining and
        Metallurgical Engineering 206 (August 1956):
        1008-1016.
17. Anthony, F. de Retane and Douglas V. Doane. "Predicting Hardenability of Carburizing Steels." Metal Progress iô (September 1971): ©5-69.
18. Cobbert H. Robert. "How Steel Plant Applies Calculated Hardenabilities." Metal Progress ill (May 1977):35-37.
19. Iowa CADET, Computer Aided Design Subroutine Library, Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 1974.
20. C. Mischke. "A Rationale for Mechanicai Design to a Reiiability Specification." First Design Technology Transfer Conference of the A.S.M.E., October 1974, Proceedings, p. 221.
21. J. Berkson. "Are There Two Regressions?" Journal of American Association 45 (1950):164-180.
```

22. Society of Automotive Engineers. "SAE Handbook." New York: The Society 1948.
23. Tentative Hardenability Bands. "Contributions to the Metallurgy of Steel; No. ll." New York: American Iron and Steel Institute, 1946.

ACKNOWLEDGMENT

It is a pleasure to acknowledge the many suggestions and criticisms of Professor C. R. Mischke, Professor A. E. Bergles, Professor J. L. Hall, Professor L. C. Peters, Professor W. F. Riley, and Professor H. A. David, especially Dr. Charles R. Mischke who helped me to obtain the Jominy hardness test data from Bethlehem Steel Corporation and encouraged me during the past few years of my graduate study.

This dissertation was supported by the Department of Mechanical Engineering and the Engineering Research Institute of Iowa State University.

## APPENDIX

Documentation of Subroutine JOMINY Documentation of Subroutine RATIOP Documentation of Subroutine DIDEAL Documentation of Subroutine RANDOM Listing of Subroutine JOMINY

Listing of Subroutine RATIOP
Listing of Subroutine DIDEAL
Listing of Subroutine RANDOM

Subroutine JOMINY (A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, $\mathrm{B} 4, \mathrm{~B} 5, \mathrm{~B} 6, \mathrm{~B} 7, \mathrm{~B} 8$ ):

This subroutine determines the mean and standard deviation of the Jominy hardness curve of a low alloy carbon steel from its composition and grain size.

The critical diameter $D_{I}$ of a low carbon alloy steel can be predicted by the following formula:

$$
D_{I}=f_{C} * f_{M n} * f_{S i} * f_{N i} * f_{C r} * F_{M o} * f_{\mathrm{Cu}}
$$

where $f$ is the multiplying factor associate with each alloy element in the steel. The Jominy hardness curve will be predicted through the relationship between critical diameter and ratio of initial hardness (I.H. which is function of carbon content of the steel only) and the distant hardness (D.H.).

For detailed information see "Probabilistic Prediction of the Jominy Hardness Curve of Low Allcy Steel from Composition and Grain Size", by T. K. Ho, Ph.D. thesis, Iowa State University, Ames, Iowa, 1978.

Calling program requirements:
Provide the equivalent of the following statement.
Dimension $\mathrm{B} 3(7), \mathrm{B} 4(7), \mathrm{B} 5(9), \mathrm{B} 6(9), \mathrm{F} 7(9), \mathrm{B} 8(9)$

Subroutine RANDOM, RATIOP, DIDEAL must be available for the call of this subroutine:

Al: ASTM grain size of the low alloy carbon steel
A2: Carbon content of the low alloy carbon steel, percentage
A3: Manganese content of the low alloy carbon steel, percent

A4: Silicon content of the low alloy carbon steel, percent
A5: Nickel content of the low alloy carbon steel, percent
A6: Chromium content of the low alloy carbon steel, percent
A7: Molybdenum content of the low alloy carbon steel, percent

A8: Copper content of the low alloy carbon steel, percent
B1: Mean critical diameter of the low alloy carbon steel, inch

B2: Standard deviation of critical diameter of the low alloy carbon steel, inch

B3: Column vector of mean multiplying factor for carbon, manganese, silicon, nickel, chromium, molybdenum, copper

B4: Column vector of standard deviation of multiplying factor for carbon, manganese, silicon, nickel, chromium, molybdenim, and copper

B5: Mean ratio of initial hardness (I.H.) to distant hardness (D.H.) at Jominy stations 1, 4, 8, 12, 16, 20, 24, 28, 32

B6: Standard deviation of ratio of initial hardness (I.H.) to distant hardness (D.H.) at Jominy stations 1, 4, 8, 12, 16, 20, 24, 28, 32

B7: Mean Jominy haraness at Jominy stations 1, 4, 8, 12, 16, 20, 24, 28, 32, Rockwell C

B8: Standard deviation of Jominy hardness at Jominy stations 1, 4, 8, 12, 16, 20, 24, 28, 32, Rockwell C

Preempted names
Subroutine RANDOM
Subroutine RATIOP
Subroutine DIDEAL
Size: 13220 Bytes WATFIV compiler

Subroutine RATIOP (Il, A1, B1, B2):
This subroutine calculates the mean and standard deviation of ratio of initial hardness (I.H.) to distant hardness (D.H.) at different Jominy stations from ideal critical diameter of the steel.

If x is the mean critical diameter of the steel, y is the ratio of initial hardness to distant hardness at a given Jominy station, and $u=\ln (y-1)$. Then $x$ and $y$ can be related by the following expressions:

Jominy station 4:

$$
\begin{aligned}
& \mu_{y}=1.0-0.008283 *(x-7.0) \\
& \sigma_{y / x}=0.023005 \text { for } 3.5 \leq x \leq 7.0
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{y}= & 1.02899-0.0818586 *(x-3.5) \\
& -0.0923808 *(x-3.5)^{2}-0.1002404 *(x-3.5)^{2} \\
\sigma_{y / x} & =0.063692
\end{aligned}
$$

for

$$
1.5 \leq x \leq 3.5
$$

Jominy station 8:

$$
\begin{aligned}
& u_{u}=1.593563-0.858657 * y \\
& \sigma_{u / x}=0.390554
\end{aligned}
$$

for

$$
1.5 \leq x \leq 7.0
$$

Jominy station 12:

$$
\begin{aligned}
& \mu_{u}=1.516167-0.650661 * x \\
& \sigma_{u / x}=0.190353
\end{aligned}
$$

for

$$
1.5 \leq x \leq 7.0
$$

Jominy station 16:

$$
\begin{aligned}
& \mu_{u}=1.471133-0.544419 * x \\
& \sigma_{u / x}=0.161444
\end{aligned}
$$

for

$$
1.5 \leq x \leq 7.0
$$

Jominy station 20 :

$$
\begin{aligned}
& \mu_{u}=1.461690-0.481383^{*} x \\
& \sigma_{u / x}=0.159499
\end{aligned}
$$

for

$$
1.5 \leq x \leq 7.0
$$

Jominy station 24:

$$
\begin{aligned}
& \mu_{u}=1.411127-0.419207 \star_{x} \\
& \sigma_{u / x}=0.15986
\end{aligned}
$$

for

$$
\text { 1. } 5 \leq x \leq 7.0
$$

Jominy station 28:

$$
\begin{aligned}
& \mu_{u}=1.392689-0.379767 * x \\
& \sigma_{u / x}=0.152950
\end{aligned}
$$

for

$$
1.5 \leq x \leq 7.0
$$

Jcminy station 32:

$$
\begin{aligned}
& \mu_{u}=1.372598-0.357773 * x \\
& \sigma_{u / x}=0.152883
\end{aligned}
$$

for

$$
1.5 \leq x \leq 7.0
$$

With the assumption that $u$ has a normal distribution, the mean and standard deviation $\mu_{y}$ and $\sigma_{Y}$ of $y$ can be related to the mean and standard deviation $\mu_{u}$ and $\sigma_{u / x}$ of $u$ by the following equations:

$$
\underline{y}_{y}=\operatorname{Exp}\left\{\mu_{1 u}+\frac{\sigma_{u / x}^{2}}{2}\right\}
$$

and

$$
\sigma_{y}^{2}=\left\{\operatorname{Exp}\left(\sigma_{u / x}^{2}\right)-1\right\}\left\{\operatorname{Exp}\left(2 \mu_{u}+\sigma_{u / x}^{2}\right)\right\}
$$

For detailed information see "Probabilistic Prediction of the Iominy Hardness Curve of Iow Alloy Steels from Composition and Grain Size", by T. K. Ho, Ph.D. thesis, Iowa State University, Ames, Iowa, 1978.

Calling program requirements:
None
Call list arguments:

Il: Index for Jominy station
$=1$ Jominy station No. 4
$=2$ Jominy station No. 8
$=3$ Jominy station No. 12
$=4$ Jominy station No. 16
$=5$ Jominy station No. 20
$=6$ Jominy station No. 24
$=7$ Jominy station No. 28
$=8$ Jominy station No. 32

A2: Critical diameter of the low carbon alloy steel, inch
Bl: Mean of ratio of initial hardness (I.H.) to distant hardness (D.H.) at a given Tominy station

B2: Standard deviation of ratio of initial hardness (I.H.)
to distant hardness (D.H.) at a given Jominy station
Preempted names:
None
Size:
1576 Bytes WATFIV compiler

Subroutine DIDEAL (I1, A2, B1, B2):
This subroutine determines the mean and standard deviation of carbon factor (iceal critical diameter) of an alloy low carbon steel form its carbon. content and grain size. The carbon factor at different grain sizes were expressed as a function of carbon content by the following equations:

Grain size ASTM No. 4

$$
\mu_{D_{I C}}^{2}=(1.550281) * C
$$

Grain size ASTM No. 5

$$
\mu_{D_{I C}}^{2}=(1.309604) * C
$$

Grain size ASTM No. 6

$$
\psi_{D_{I C}}^{2}=(1.111438) * C
$$

Grain size ASTM No. 7

$$
\mu_{D_{I C}}^{2}=(0.955099) * C
$$

Grain size ASTM No. 8

$$
\mu_{D_{I C}}^{2}=(0.823952) * C
$$

and

$$
\sigma^{2} D_{I / C}^{2}=(0.140223) * C \text { for grain sizes } 4 \text { to } 8
$$

where
${ }^{\mu} D_{I}^{2}$ is the mean of square of carbon factor $\sigma_{D_{1 / C}}^{2}$ is the standard deviation of square of carbon content of the steel

The mean $\mu_{D_{I}}$ and standard deviation $\sigma_{D_{I / C}}$ of the carbon factor can be related to $\mu_{D_{I}}^{2}$ and $\sigma_{D_{I / C}}^{2}$ by the following expressions:

$$
\begin{aligned}
& \mu_{D_{I}}=\mu_{D_{I}^{2}}^{2\left\{1.0-0.125\left(\frac{\sigma_{I}^{2} / C}{\mu}\right)^{2}\right\}} \\
& \sigma_{D_{I}}^{2}=\mu_{D_{I}^{2}}^{2}-\mu_{D_{I}}^{2}
\end{aligned}
$$

For detailed information see "Probabilistic Prediction of the Jominy Hardness Curve of Low Alloy Steels from Composition and Grain Size": by T. K. Ho, Ph.D. thesis, Iowa State University, Ames, Iowa, 1978. Calling program requirements:

None
Call List Arguments:
Il: Index for ASTM grain size
$=1$ ASTM grain size 4
$=2$ ASTM grain size 5
$=3$ ASTM grain size 6
$=4$ ASTM grain size 7
$=5$ ASTM grain size 8

A2: Carbon content of the alloy steel, percent
Bl: Mean carbon factor (ideal critical diameter), in.
B2: Standard deviation of carbon factor, in.

Preempted names:
None
Size:
880 bytes WATFIV compiler

Subroutine RANDOM:
The subroutine RANDOM has no call list. It is called in order to load a battery of Function suoprograms which aid the user in executing the algebra of random variables.

Programming is based upon the following equations given in "A Rationale for Mechanical Design to a Reliability Specification," C. Mischke, First Design Technology Transfer Conference of the A.S.M.E., October 1974, Proceedings, p. 221.

When the exponent $n$ is fractional, the mean of $x$ must be positive.

Real Function Algebraic Operation
Value of Function

MEANI $\left(\mu_{x}, \sigma_{x}, \mu_{y}, \sigma_{y}, \rho\right) \quad z=x+y \quad \mu_{z}$
$\operatorname{SIGMAI}\left(\mu_{x}, \sigma_{x}, \mu_{y}, \sigma_{y}, \rho\right)$
$\sigma_{z}$
$\operatorname{MEAN} 2\left(\mu_{x}, \sigma_{x}, \mu_{y}, \sigma_{y}, \rho\right) \quad z=x-y \quad \mu_{z}$
$\operatorname{SIGMA} 2\left(\mu_{x}, \sigma_{x}, \mu_{y}, \sigma_{y}, \rho\right) \quad \sigma_{z}$
MEAN3 ( $\left.\mu_{X}, \sigma_{X}, \mu_{\bar{Y}}, \sigma_{Y y}, \rho\right) \quad z=x y \quad \mu_{z}$
$\operatorname{SIGMA} 3\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}, \mu_{\mathrm{y}}, \sigma_{\mathrm{y}}, \rho\right) \quad \sigma_{\mathrm{z}}$
MEANA $\left(\mu_{X}=\sigma_{x}=H_{y}=\sigma_{y}=\rho\right) \quad z=x / y \quad \mu_{z}$
$\operatorname{SIGMA} 4\left(\mu_{x}, \sigma_{x}, \mu_{y}, \sigma_{y}, \rho\right) \quad \sigma_{z}$
MEAN5 $\left(\mu_{x}, \sigma_{x}, \mu_{y}, \sigma_{y}\right) \quad z=x^{y} \quad \mu_{z}$
$\operatorname{SIGMA} 5\left(\mu_{x}, \sigma_{x}, \mu_{y}, \sigma_{y}\right) \quad \sigma_{z}$

CALLING PROGRAM REQUIREMENTS:
Declaration: REAL MEAN1, MEAN2, MEAN3, MEAN4, MEAN5

FUNCTION CALI LIS? ARGUMENTS:

$$
\begin{aligned}
& \mu_{x}=\text { mean of the variate } x, \text { real FORTRAN variable } \\
& \sigma_{x}=\begin{array}{l}
\text { standard deviation of the variate } x, ~ r e a l ~ F O R T R A N ~
\end{array} \\
& \mu_{y}=\text { mean of the variate } y \text {, real FORTRAN variable } \\
& \sigma_{y}=\begin{array}{l}
\text { standard deviation of the variate } y, ~ r e a l ~ F O R T R A N ~
\end{array} \\
& \rho=\text { correlation coefficient, real FORTRAN variable }
\end{aligned}
$$

PREEMPTED NAMES:

None.

SIZE: li732 bytes WATFIV compiler

SUGRDUTINE JOMINY GGS,C,MN,SI,NI,CR,MO,CU,DI,SIGDI,FACTOR, SIGFAC, 1 RATIO,SIGRAT,QJ,SIGQJ)
$c$
$c$
$c$
REAL MN,NI,MO,MEAN3,MEAN4

DIMENSION XT(5),YT(5),FACTOR(7),SIGFAC(7),RATIO(G),SIGRAT(G),QJ(G) 1 -SIGQJ(9).SIGYT(5)
$c$
NO $=6$
GO TO 10
5 CONTINUE
$c$

C*


c
C CARBON MULYIPLYING FACTOR.
$c$

```
        00 1000 I= 1.5
```

        \(X T(I)=3 \cdot 0+F L D A T(I)\)
        CALL DIDEAL (I,C.Y,SIGY)
        IF(GS.EQ.XT(I))GO TO 101
        \(Y T(I)=Y\)
        SIGYT(I) =SIGY
    1000 CONTINUE
    c
c INTERPULATION OF MEAN AND STANDARD DEVIATION OF CARBON
C MULTIPLICATION FACTOR (IDEAL CRITICAL DIAMETER).
$=$
CALL INTER(5,XT,YT,GS,Y,IJK1)
CALL INTER(5,XT,SIGYT,GS,SIGY,IJKI)

```
Table Al (Contimued)
    101 FACTOR(1)=Y
        SIGFAC(1)=SIGY
C
C MANGANESEE MULTIPLYING fACTOR.
C
    200 FACTOR(z')=1.0
        SIGFAC(こ)=0.0
        IF(MN.EO.O.O)GO TO 210
        SIGFAC(2)=0.1857668
        FACTOR(2)=1.0+0.235349*MN+0.569809*MN*MN
c
G SILICON MULTIPLYING FACIOR.
    210 FACTOR(3)=1.0
        SIGFAC(3)=0.0
        IF(SI.EO.0.0)GO TO 220
        SIGFAC(3)=0.0911506
        FACTOR(3)=1.0+0.221108*SII+0.128023*SI*SI
C
C NIEKEL MULTIPLYING FACTGIR.
C
    220 SIGFAC(4)=0.0
        FACTOR(4)=1.0
        IF(NI.EQ.0.0)GO TO 230
        SIGFAC(4)=0.1286972
        FACTOR(4)=1.0+0.767098*NI-0.122888*NI*NI
C
C CHROMIUM MULTIPLYING FAC:TOR.
230 FACTOR(5)=1.0
    SIGFAC(5)=0.0
    IF(CR.EQ.0.0)GO TO 240
    SIGFAC(5)=0.254099
    FACTOR(5)=1.0+1.633811*CR+0.027041*CR*CR
C
```

```
C MOLYGDENUM MULTIPLYING FACTOR.
C
    240 FACTOR(6)=1.0
        SIGFAC(6)=0.0
        IF(MO.EQ.O.O)GO TO 250
        SIGFAC(E)=0.2326137
        FACTOR(6)=1.0+1.571771*NCI+0.589309*MO*MO
C
C COPPER MULTIPLYING FACTGIFR.
c
    250 SIGFAC(7)=0.0
        FACTOR(7)=1.0
        IF(CU.EQ.O.O)GO TO 260
        SIGFAC(7)=0.120791
        FACTOR(7)=1.0+1.176284*CU-0.333859*CU*CU
c
C CRITICAL DIAMETER.
C
260 DI=FACTOR(1)
            SIGDI=SIGFAC(1)
C
        CALL RANOICM
c
` MEAN CF CRITICAL DIAMETER OF THE MATERIAL.
C
    DI=MEAN3(DI,SIGDI,FACTOFI(I),SIGFAC(I),0.0)
C
C StANDARD DEVIATIGN DF THE CRITICAL DIAMETER OF THE MATERIAL.
C
        SIGDI=SI(;MAB(DI,SIGDI,FACTOR(I).SIGFAC(I).0.0)
    270 CONTINUE
C
```



```
C** * * * & # *!ROCKELL HARONESS; AT JOMINY STATION 1******

```

C
0J(1)=35.54749+22.25735*に+177.4605*C*C-305.1492*C*C*C
1
+132.5669*C゚*C*C:*C
SIGQJ(1)=1.13
IF(C.GE.0.66362)QJ(1)=65,0
RATIO(1)=1.0
SIGRAT(1)=0.0
C

```

```

C *
\succ* *****JOMINY HARDNESS CURVE*****
C*

```

```

C
370 DO 380 I=2.9
C

```

```

C*
*
C* **ね市れRATIO OFIIH/DH*****

```

```

C
II=1-1
CALL RATIOP(II,DI,RATIO(I),SIGRAT(I))
MEAN OF JOMINY STATIDN HARDNESS.
QJ(I)=MEAN4(OJ(1),SIGOJ(1),RATIO(I),SIGRAT(I),0.0)
C

```

C STANDARD LIEVIATION OF JOMINY STATION HARDNESS.
\(c\)
SIGQJ(I) \(=\) SIGMAA(QJ(1),SIGQJ(I),RATIO(I),SIGRAT(I), O.0)
380 CONTINUE
RETURN
C

C *
C* **被れ*FROTECTIONS*****
C*

\(=\)
10 IFFRR: \(=0\)
IF (GS.LT.4.0.ER.GS.GT.8.0)GO TO 20
25 IF(C.LT.O.2.OR.C.GT.O.8) ©O TO 30
35 IF(MN.LT. O.O.OR.MN.GT. 3.0.)GO TO 40
45 IF (SI.LT. (1.0.OR.SY. GT. 2.0) GO TO 50
55 IF (NI.LT. O.O.OR.NI.GT.3.1)GO TO 60
65 IF (CR.LT. O.O.OR.CFR.GT.2.E)GO TO 70
75 IF (MO.LT. (). O.OR.MO.GT. 1.0.5)GO TO 80
85 IF (CU.LT. (1.0.OR.CU.GT.2. 2 )GO TO 90
C
C
IF (IFERR) 5: 5. 100
C
20 (FERQ \(=1\) WRITE (NO.15)
 WRITE (NO, i’1)GS

1 /. IN THE RAN(IE DF 4.0 AND 8.0.)
GO TO 25
c
30 IFERR \(=1\)
WRITE (NO. 1.5)
```

            WRITE(NO,31)C
    31 FORMAT(IX,'A2 = .,G15.7.1X, CARBON CONTENT OF THE MATERIAL MUST * *
        1 /,: BE: IN THE RANGE CIF: 0.2 AND 0.8 PERCENT.')
        GO TO 35
    ```

40 IFERR \(=1\)
WRITE (NO, 15)
WRITE (NO,41)MN
 1 ...' BE: IN THE RANGE GIF 0.0 AND 3.0 PERCENT.")

GO TO 45
\(c\)
50 IFERT \(=1\) WRITE (NO, 15) WRITE (NO, 51)SI
51 FORMAT(1), 'A4 \(=\cdot . G 15.7,1 X\), SILCON CONTENT OF THE MATERIAL MUST • 1 ./.' BE: IN THE RANGE [IF 0.0 AND 2.0 PERCENT.') GO TO 55
\(C\)
60 IFERR=1 WRITE (NO.15) WRITE (NO, 61)NI
61 FORMAT (1K.'AS \(=\) '.G15.7.1X.'NICKEL CONTENT OF THE MATERIAL MUST •, 1 .. BE IN THE RANGE OF 0.0 AND 3.1 PERCENT.') GO TO 65
C
70 1FERA = 1 WRITE (ND,15) WRITE (NO"71)CR
71 FORMAT \(\left(1 \times,{ }^{\prime} A G={ }^{\circ}, G 15.7,1 X,{ }^{\circ}\right.\) CHROMIUM CONTENT OF THE MATERIAL MUST• 1 . 1. BE IN YHE RANCE OF 0.0 AND 2.5 PERCENT. *) GO TO 75
C
80 IFERR=1 WRITE (NO.15)
```

        WRITE(NO.81)MO
        81 FORMATCIX,'AT = *,G15.7.1X, 'MOLYBDENUM CONTENT OF THE MATERIAL. .
        1 /.: MUST BE IN THE RANGE OF 0.0 AND I.OS PERCENT.'%
        GO TO 35
    C
90 WRITE(NO, 15)
WRITE (NO,91)CU
91 FORMATIIX,'AB = ',G15.7.1X,"COPPER CONTENT DF THE MATERIAL MUST * *
1 %. 日E IN THE RANGE OF 0.0 AND 2.2 PERCENT.")
C
100 RE TURN
ENO

```

Table A2. Subroutine RATIOP
SUBROUTINE RATIOP(I,X,R,SIGR)
C

THIS SUGRIUTINE CALCULATE:S THE RATIO OF IH/DH AT DIFFERENT JOMINY STATIDNS FRDM CRIYICAL DIAMETER OF THE STEEL.

G0 TO (10.20.30.40.50.60.70.80).1
C
c

10 IF (X•LT•3.5)GO TO 91
\(R=1.0-0.00\) () 283 ж ( \(x-7\) - 0)
IF (R.LT•1.00)R=1.00 SIGR=0.02.3005
RETURN
\(91 X X=X-3.5\)
 \(S I G R=0.06 .3692\)
RETURN
\(C\)
C JOMINY STATION B.
\(C\)
\(20 \quad Y=1.583563-0.859657 * X\) SIGMA \(=0.300554\) GO TO 200
c
C JOMINY STATION 12.
\(c\)
\(30 \quad Y=1.51616 \%-0.650661 * X\)
SIGMA \(=0.1\) © 0353
GO TO 200
\(C\)
C JOMINY STATIDN \(16 \%\)

Table A2 (Continued)
```

C
40 Y=1.471133-0.544410*X
SIGMA =0.161444
GO TO 200
c
c JOMINY STATION 20.
C
50 Y=1.461690-0.481393*X
SIGMA =0.159499
GO TO 200
C JOMINY STATION 24.
C
60 Y=1.411127-0.419207*X
SI GMA =0.159686
GO TO 200
C JOMINY STATION 28.
C
70 Y=1.302659-0.379767*X
SIGMA =0.152950
GO TO 200
C
c JOMINY STATION 3a..
C
80 Y=1.3725s)8-0.357773*X
SIGMA =0.1.52883
c
C MEAN OF FIATIO IHIOH.
200 T=SIGMA*SIGMA
T1=Y+T/2.0
R=EXP(T1)+1.0
C
C STANDARD DEVIATION OF RATIDIH/DH.

```

Table A2 (Continued)
c
T1=EXP(T)-1.0
\(T 2=2 \cdot 0 x: Y+T\)
T \(\hat{\text { に }}=\) EXP(T2)
SIGR=T1*T2
SIGR=S(IRT(SIGR)
RETURN
END
```

Table A3. Subroutine DIDEAL

```
```

        SUGROUTINE DIDEAL.(I,C,DK,SIGDI)
    C THIS SUBFRCUTINE DETERMIPNES THE IDEAL CRITICAL DIAMETER OF A STEEL
FROM ITS CARBON CODTENT AND GRAIN SIZE.
SIGMA =0.140223*C
GOTO (10.20,30,40,50).1

```

```

    10 Y=1.5502131*C
        GO TO 60
    C
****\&》GRA!N SIIEE 5\#れれれれれ
20 Y=1.309604*C
GO TO 60
C

```

```

C
30 Y=1.1114.38*C
GO TO 60
C
C
40 Y=0.055099*C
GO TO 60
C
C *****GRAIN SIIEE \&**れ辛*
~
50 Y=0.323942*C
MEAN OF IDEAL CRXTICAL DIAMETER.

```

Table A3 (Continued)
\(60 \mathrm{DI}=\operatorname{SORT}(Y) *(1.0-0.125 * S) G M A * S I G M A /(Y * Y))\)
\(c\)
C
STANDARD DEVIATION OF IIEAL CRITICAL DIAMETER•
c
SIGDI \(=\mathrm{Y}-\mathrm{DI} \mathrm{I}\) *DI
SIGDI = SORT(SIGDI)
RETURN
END

\section*{Table A4. Subroutine RANDOM}
SUGROUTINE RANDOM ..... 0001
RETURN ..... 0002
END ..... 0003
```

c
REAL FUNCTION MEANI(XBAR,SIGMAX,YBAR,SIGMAY,P)
0005
0005
GO TO 10
5 MEANI = XBAR+YBAR
RETURN
0006
0007
000?
C
..... Protecrion .....
O IFERR=0
IF(SIGMAX)100.11,11
11 XF(SIGMAY)100,12,12
12 IFF(P.LT.-1..OR.P.GT.1.)GO TO 110
IF(IFERR)5,5,14
100 1FERR=1
WRITE(6.101)SIGMAX,SIGMAY
101 FORMAT(*****ERROR MESSAGE FUNCTION MEAN1******./.6X.'A2=0.G15.7.
16X.'A4=',G15.7./.6X." THESE VARIABLES MUST BE POSITIVE.")
GO TO 12
1:0 IFERR=1
WRITE(6,111)P 0023
111 FORMAT('*****ERROR MESSAGE FUNCTION MEAN1******../.6X.'AS=.,G15.7.
1/.6X. 'THIS VARIABLE MUST NOT BE LESS THAN -1. OR GREATER THAN 1.")
14 RETURN
END
FUNCTION SIGMAI(XBAR,SIGMAX,YBAR,SIGMAY,P)
GO TO 10
5 SIGMAI=SQRT(SIGMAX*SIGMAX +SIGMAY*SIGMAY +2.*P*SIGMAX*SIGMAY)
RETURN
c
..... PROTECTION ......
O IFERR=0
0034
0035

```

Table A4 (Continued)
```

            IF(SIGMAX)1.00.11.11
                0036
    11 IF:(SIGMAY)|00,12,1%
                0037
        0
    12 IF(P.LT.-1..OR.P.GY.1.)GO TO 110
        IF:(IFERR)505,14
        0038
        0039
    100 IFERQ=1
        0040
        WRITE(G,10X)SIGMAXuSIGMAY
        0041
    ```

```

        1.6X,'A4=.,G15.7./.6X,"THESSE VARIABLES MUST BE POSITIVE.") 0043
        GO TO 12
        0044
    110 IFERR=1
        WRITE(6.11:)P
        0045
        0046
    111 FORMAT^'*妋*&ERROR MESSAGE FUNCTION SIGMA1*****',/,6X,'A5=',G15.7 0, 0047
        I./.6X.'THI!S VARIABI.E MUST NOT GE LESS THAN -1. OR GREATER THAN 1.. 004 
        2)
    14 RETURN
        END
        REAL FUNCTION MEANZ(XEAAR,SIGMAX,YBAR,SIGMAY,P)
        GO TO 10
        5 MEAN2 = XBAR--YGAR
        RETURN
    C
C
..... PROTECTION ......
10 1FERR=0
IF(SIGMAX)100.11.11
11 IF(SIGMAY) 100,12,12
12 IFF(P.LT.-1..OR\&P.GY.1.)GO TO 110
IF(IFERR) 5,5.14
100 IFERR=1
WRITE (6,10:1)SIGMAX,SIGMAY

```

```

        16X.'A4=',G!5.7./.6K.'Y:HESE VARIABLES MUST BE POSITIVE!') 0067
        G0 TO 12
    0063
    110 1FFERQ = 1
0069
WRITE(G.11%)P 0070

```
```

    111 FORMAT(' :*****ERROR MESSAGE FUNCTION MEAN2*****'./.6X,'A5=.,G15.7. 0071
        1/.6X.'THIS VARIABILE MUST NOT BE LESS THAN - 1. GR GREATER THAN 1..') 0072
        14 RETURN
            END
            FUNCTION SIGMAZ(XBAR,SIGIMAX,YBAR,SIGMAY,P) 0075
            GIM
    5 SIGMA2=SQRT(SIGMAX*SIGMAK+SIGMAY*SIGMAY-2.*P*SIGMAX*SIGMAY) 0077
            RETUQN
                                    0078
    ..... PROTECTION .....
                0079
    c
0080
10 IFERO=0
0082
IF(SIGMAX)100,11,11
0083
0083
11 IF(SIGMAY)100,12,12
12 IF(P.LT.-1..OR.P.GT.1.)GOTO 110 0085
IF(IFERR) 5,5,14
100 : FERR =1
0084
0086
008?
WRITE(G.101)SIGMAX,SIGMAY 0088
101 FORMAT(" *\#\#\#\#ERROR MESSAGE FUNCTION SIGMA2******,/.6X,"A2=.,G15.7 00@9
1.6X,'A4=',G15.7./.6X,.'THESE VARIABLES MUST BE POSITIVE.') 0090
GO TO 12
0001
0092
110 IFERR=1
WRITE(G.111)P 0093
111 FORMAT(" \#****ERROR MESSAGE FUNCTION SIGMA2******,/.6X,'A5=0.G15.7 0094
1./.6X."THIS VARIABLE MUST NOT BE LESS THAN - 1. OR GREATER THAN 1." 0095
2) 2)
0096
14 RETURN 0097
END 0093
REAL FUNCTION MEAN3(XBAR,SIGMAX,YRAR,SIGMAY,P) 0099
GO TO 10 0100
5 MEANZ =XBAR*YSAR+P*SIGMAX*SIGMAY 0101
RETURN
0102
C 0103
C

```
10 IFERR \(=0\) 0106IF(SIGMAX) 100 .11.1101071 IF(SIGMAY) \(100,12,12\)0108
12 IF (P.LT.-3..OR。P. (ST.1.)GC TO 110 ..... 0109
IF (IFERR) \(5,5.14\) ..... 0110
100 IFERR \(=1\) ..... 0111
WRITE (6,101)SIGMAX, SIGMAY ..... 0112
 ..... 0113
 ..... 0114
GO TO 12 ..... 011501160116
VRITE(6,1:11)P ..... 0117
 ..... 0118
1/. \(6 \times\), 'THIS VARIABLE MUST NOT BE LESS THAN - 1 . GR GREATER THAN 1..) ..... 011914 RETURN0120
END ..... 0121
FUNCTION SIGMA3(XBAR,SIGM,AX,YBAR,SIGMAY,P) ..... 0122
GO TO 100123
5 T1=XGAR*YEAR ..... 0124
T2 2 SIGMAX, \({ }^{\prime}\) XGAR ..... 0125
\(13=\) SI GMAY,IYBAR ..... 0126
\(\mathrm{r} 4=\mathrm{T} \geq * \mathrm{~T} 3\) ..... 0127
\(T 5=T 2 * T 2+T 3 * T 3+T 4\) rT \(4+2\) * *F \(F T 4+P * P * T 4 * T 4\) ..... 0128
SIGMA 3=XBAR*YBAP* (1ヵtP*T4) *SQRT(T5) ..... 0129
REE TURN ..... 0130
C
C ..... PROTECTION .... ..... 0131 ..... 0132
\(c\) ..... 0133
10 IFERR \(=0\) ..... 0134
IF(SIGMAX) \(100,11,11\) ..... 0135
11 IF(SIGMAY)100,12,12 ..... 0136
12 IF (P.LT.-I..OR.P.GT.I.) GU TO 110 ..... 0137
14 RF (X3AR)1!5,120,15 ..... A0138
\(15 \mathrm{IF}(\mathrm{YBAR}) 15,120,16\) ..... B0139
16 IF(IFERR) 5.5 .17 ..... CO140
```

    100 IFERR=1 0141
    WRITE(6.1OI)SIGMAX,SIGMAY}0142,
    ```

```

        1,6X,'A4=`.G15.7./.6X,'THESE VARIABLES MUST BE POSITIVE.') OI44
        GO TO 12 (%)
        IF
        WRITE(6.111)P
    111FORMATC******ERROR MESSAGE FUNCTION SIGMA3***秋**./.6X.'A5=1.G15.7
        1./.6X."THIS VARIABLE MUST NOT EE LESS THAN - I. OR GREATER THAN 1."
        2)
        GO TO 14
    120 WRITE(6,121) XBAR,YBAR
    ```

```

        1.6X, A3=",G15.7./.6X."THESE VARIABLES MUST NOT BE ZERO.")
    17 RETURN
        END
        REAL FUNCTION MEAN4(XBAR,SIGMAX,YBAR,SIGMAY,P)
        GO TO 10
        5 T1=SIGMAX/XBAR
        T2=SIGMAY/YBAR
        MEAN4=(XBAR/YBAR)*(1.+T2*(T2-P*T1)*(1*+3**(r2*T2)))
        RETURN
    C
C *.. PROTECTION**
10 IFERR=0
IF(SIGMAX)100.11.11
11 IF(SIGMAY)100.12.12
12IF(P.LT.T.1.0OR.P.GT.1.)GO TO 110
14 IF(X3AR)15,120,15
15 IF(YJAR)16.120.16
16 IF(IFERR)5.5.17
100 IFERQ=1
WRTTE(6.101)SIGMAX,SIGMAY 0174

```


Table A4 (Continued)
```

        I6X,*A4=`,G15.7./.6X."THESE VARIABLES MUST BE POSITIVE."J OI76
        GO TO 12
    0177
    110 IFERQ=1
        0178
        WRITE(6.111)P
        0179
    ```

```

        1/.6X, THIS VARIABLE MUST NOT EE LESS THAN - 1. OR GREATER THAN 1. M
        GO TO 14
    0181
    0182
    120 WRITE(6,121)XBAR,YBAR
    0183
    ```

```

        16X."A 3=`.G15.7./.6X."THESE VARIABLES MUST NOT BE ZERO.") OIRS
    17 RETURN
        END
        FUNCTION SIGMA4(XGAR,SIGMAX,YBAR,SIGMAY,P)
        GO TO 10
    5 TI=SI GMAX/XGAR
        T2=SIGMAY/YEAR
        T3=T2*T2+T1*T1-2.*P*T1*T2+{1**T2*T2*T2处T2-16.*P*T2*T **T 2*T1+3**T1*T
    ```

```

            SIGMA4=(XSAR/YGAR)*SQRT(ABS(T3))}019
            RETURN
    C
C
10 IFERRR=0
IF(SIGMAX)1000,11,11
IF(SIGMAX)100,11,11 0200
11 IF(SIGMAY)100.12.12
0201
12 IF(P.LT.-1.,OR.P.GT.1.)GO TO 110, O2O2
0203
*
15 IF(YSAR)16,120,16 0204
16 IF(IFERR) 5,5.17
0 2 0 5
100 IFERR=1 0206
WRITE(6,1O1)SIGMAX.SIGMAY
FORMAT(* *****ERROR MESSAGE FUNCTION SIGMA4******./.6X.*A2=*.G15.77 0208
1,6X*"A4=*,G15.7./.6X, "THI:SE VARIABLES MUST BE PDSITIVE.')
0209
GO TO 12
0210

```
```

    110 IFERR=1}021
    WRITE(G.111.)P
    0212
    ```

```

        1./.6X."THIS VARIABLEE MUST NOT BE LESS THAN -1. OR GREATER THAN 1.. ' OLI4
        2)
        0215
        GO TO 14
        0216
    120 WRITE(6,12I)XSAR,YESAR 0217
    ```

```

        1.6X,'A3=`.(;15.7./.fX.'THES汭VARIABLES MUST NOT BE ZERO.') O219
    17 RETURN
        0220
        RETURN 022O
    ```

```

        0222
        REAL N
        0223
        GO TO 10
    5 IF(N EEQ. (1.) GO TO 1
        IF(N .EQ. 1.) GO TO 2
        0224
        0225
        MEANS = (1. +0. 5#N*(N-1.) *(SIGMAX/XBAR) *(SIGMAX/XBAR)) * XBAR* *N
        RETURN
        0226
        0227
        1 MEAN5 =1.
        0228
        ME AN5 = 
        0229
    2 MEAN5 = XBAR
        RETURN
        0235
    C
....PROTECTION*...
0233
10 IFERRR=0
IF(SIGMAX)110,12,12
0234
0235
0236
0237
12IF(XBAR)120,120,14 023 O

```

```

110 IFERQ=1
0239
0240
WRITE(6,111)SIGMAX 0241
111 FORMAT(* *****ERROR MESSAGE: FUNCTION MEANS*****../.6X.*A2=.,G15.7. (%)
1/.6X,.THIS VARIABLE MUST BE: POSITIVE.') 0243
GO TO i2IS VARIABLE MUST BE. POSITIVE.O)
0 2 4 4
120 WRITE(6.121)XBAR 0245

```

```

        1/,6X. THIS VARIABLE MUST BE GREATER THAN ZERO.*) O247
    15 RETURN 0248
            N
            FUNCTION SIGMAS(XGAR,SIGMAX,N) 025O
            REAL N
            GO TO 10
                            251
                    0253
            5 IF(N FQ. 0.) GO TO 1.0253
            IF(N .EO. 1.) GO TO 2 0254
    ```

```

            1 XBAR))* (BAR**(N-1.)}025
            RE:YURN
            1 SIGMA 5=0.
            RETURN
            2 SIGMA 5=SIGMAX
            RETURN
    C
···... FROTECTION.....
10 IFERR=0
IF(SIGMAX)110,12.12
12IF(XSAR)120,120.14.
14 IF(IFERR)5,5,15
110 IFERR=i
WRITE(6.111)SIGMAX

```

```

    1./.6X, "THIS VARIAEILE MUST BE POSITIVE.")
        GO TO 12 0273
    0272
    120 WRITE(6.12:1)XBAR 0274
121 FORMAT(" \&****ERRIIR MESSAGE FUNCTION SIGMA5******./.6X,*A1=.,G15。7 0275
1.\prime.6X, THIS VARIAEILE MUST EE GREATER THAN ZERO.')}027
15 RETURN 0277
END
0278

```
```


[^0]:    ${ }^{1}$ Steel composition, grain size and measured Jominy hardness were cited from Table I and II of (2).

[^1]:    ${ }^{1}$ Steel composition, grain size and measured Jominy hardness were cited from Tables I and II of (2).

[^2]:    $1_{\text {Steel }}$ composition and devised hardenability band were cited from Chart 24 of (23).

[^3]:    $l_{\text {Steel }}$ composition and devised hardenability band (cited from Chart 37 of (23)).

[^4]:    ${ }^{1}$ Steel composition and devised hardenability band (cited from Chart 13 of (23)).

[^5]:    ${ }^{1}$ Steel composition and hardenability band (cited from Chart 9 of (23)).

