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ABSTRACT 

 

The need for chemical free food is increasing and so is the demand for a larger supply 

to feed the growing global population. An autonomous weeding system should be capable of 

differentiating crop plants and weeds to avoid contaminating crops with herbicide or 

damaging them with mechanical tools. For the plant genetics industry, automated high-

throughput phenotyping technology is critical to profiling seedlings at a large scale to 

facilitate genomic research. This research applied 2D and 3D imaging techniques to develop 

an innovative crop plant recognition system and a 3D holographic plant phenotyping system. 

A 3D time-of-flight (ToF) camera was used to develop a crop plant recognition 

system for broccoli and soybean plants. The developed system overcame the previously 

unsolved problems caused by occluded canopy and illumination variation. Both 2D and 3D 

features were extracted and utilized for the plant recognition task. Broccoli and soybean 

recognition algorithms were developed based on the characteristics of the plants. At field 

experiments, detection rates of over 88.3% and 91.2% were achieved for broccoli and 

soybean plants, respectively. The detection algorithm also reached a speed over 30 frame per 

second (fps), making it applicable for robotic weeding operations. 

Apart from applying 3D vision for plant recognition, a 3D reconstruction based 

phenotyping system was also developed for holographic 3D reconstruction and physical trait 

parameter estimation for corn plants. In this application, precise alignment of multiple 3D 

views is critical to the 3D reconstruction of a plant. Previously published research 

highlighted the need for high-throughput, high-accuracy, and low-cost 3D phenotyping 

systems capable of holographic plant reconstruction and plant morphology related trait 



xv 

 

characterization. This research contributed to the realization of such a system by integrating a 

low-cost 2D camera, a low-cost 3D ToF camera, and a chessboard-pattern beacon array to 

track the 3D camera’s position and attitude, thus accomplishing precise 3D point cloud 

registration from multiple views. Specifically, algorithms of beacon target detection, camera 

pose tracking, and spatial relationship calibration between 2D and 3D cameras were 

developed. The phenotypic data obtained by this novel 3D reconstruction based phenotyping 

system were validated by the experimental data generated by the instrument and manual 

measurements, showing that the system has achieved measurement accuracy of more than 

90% for most cases under an average of less than five seconds processing time per plant. 
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CHAPTER 1. GENERAL INTRODUCTION 

 

1.1 Introduction 

 Cereal production must be increased by 70% before 2050 to meet the demand of 

increasing global population, whereas the rice supply has already become insufficient 

(Furbank et al., 2009). Additionally, the demand for biofuels will increase in the next decade 

(Sticklen, 2007), and the competition for the limited arable land between food and biofuel 

crop plants makes food security challenges even worse. Moreover, the abiotic stress resulting 

from climate change on temperature and rainfall patterns may lead to yield reduction 

(Sticklen, 2007). A phenotyping system that helps scientists explore the linkage between 

plant genotype and phenotype could equip humans to meet the challenges in the future. 

Despite the potential future challenges in food production, the public currently calls 

for healthy food products that are free of chemicals and pollution. Various chemicals, 

including herbicides and pesticides, are widely used in modern agriculture production 

systems. These chemicals contribute to low-cost pest and weed control approaches, and they 

are indispensable in ensuring sufficient yield of food production. For example, in 2010, 

Earthbound Farms, the largest producer of organic products in North America, reported costs 

of up to $1,000 per acre for weed control, mainly due to the labor cost of manual weeding. In 

contrast, conventional farmers spend only about $50 per acre on herbicides (EFO). Because 

of the low cost and high efficacy of chemical weed control, herbicides are widely adopted to 

replace manual operation. Additionally, labor regulations also make manual work 

impractical. One example is the ban on manual weeding by the California Industry Safety 

Board in 2004. Even though chemical based weed control can reduce cost and increase food 
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yield, there are rising concerns about herbicide resistant weeds, pesticide resistant pests, the 

environmental impact of chemical runoff, and potential health issues caused by chemicals.  

Currently there is no clean, effective, and affordable alternative approach to replace 

the usage of chemicals without losing yield. Research to address these problems is thus 

greatly needed. 

 

1.2 Plant Phenotype and Phenotyping  

1.2.1 Background 

A plant’s phenotype is the result of the dynamic interaction of its genotype and 

environment (Dhondt et al., 2013). Phenotypic parameters, such as leaf size, crop height, 

cereal yield, photosynthesize rate, nutrient intake rate, resistance to disease and drought, etc. 

are important for breeders (Foundation and Mcb, 2011). Understanding the linkage between a 

particular genotype and a specific phenotypic parameter is a core goal of modern biology. 

However, it is generally difficult due to the large number of genes and the interaction with 

complex and changeable environmental influences (Foundation and Mcb, 2011). 

The fast development of technology has enabled rapid genome sequencing at a 

steadily declining cost, at rapidly increasing speed. The next generation sequencing method 

will capture the complete genotype information of a many representatives of a population 

(Foundation and Mcb, 2011). Scientists have collected abundant information of plant 

genotype due to the recent revolution of genomic technologies. The genomic information 

could not be fully capitalized without correct linkage between genotype and phenotype 

(Cobb et al., 2013; Foundation and Mcb, 2011; Furbank and Tester, 2011). Sophisticated 

phenotyping system could serve as the bridge (Furbank and Tester, 2011). 
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Phenomics is the science of large-scale phenotypic data collection and analysis 

(Foundation and Mcb, 2011). It typically employs large numbers of genetic variants for 

sampling variation in genetic diversity, and each genotype is assayed for a large number of 

traits to maximize the accuracy. The experiment condition is well monitored and controlled. 

In addition, the phenotypic data and metadata description of experiment conditions are well 

captured for the data analysis to reveal the relationship between the phenotypic feature and 

the genotype (Allen et al., 2010; Heffner et al., 2011; Lu et al., 2011; Nichols et al., 2011; 

Speliotes et al., 2010; Winzeler et al., 1999). 

Challenges to extracting and quantifying sophisticated phenotypic features on a large 

scale are the “phenotyping bottleneck” to being able to interpret the relationship between 

genotype and phenotype masterfully (Foundation and Mcb, 2011). Traditional phenotyping is 

labor intensive, expensive, and destructive (Furbank and Tester, 2011).  

Adapting advanced imaging techniques is clearing the phenotyping bottleneck (Cobb 

et al., 2013; Fiorani and Schurr, 2013; Foundation and Mcb, 2011; Furbank and Tester, 

2011). Imaging technique, such as 2D color imaging, chlorophyll fluorescence imaging, 

thermography, etc. have been successful in enabling remote and noninvasive methods for 

capturing not only the morphological phenotype data but also the physiological status for 

plants with relatively simple canopy structures. However, the problems associated with the 

automated phenotyping of complex plant architecture still require great efforts to solve 

(Furbank and Tester, 2011). 

Phenotyping in three dimensions has the potential for better comprehension of 

phenotype (Dhondt et al., 2013). Sensors such as stereo cameras, laser range sensors, time-
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of-flight (ToF) cameras, and 3D light field cameras have been applied to improve the 

usability of the automatic phenotyping system.  

How to process the images captured by the above mentioned techniques is also 

important in phenotyping. Lack of algorithms that extract, quantify, and summarize plant 

phenotypes could significantly hinder the application of image techniques in phenotyping 

(Foundation and Mcb, 2011). Image processing algorithms also play remarkable part in 

providing standardized digital data that facilitates the data storage, data transaction, and data 

analysis in a phenotyping system (Foundation and Mcb, 2011).  

 

1.2.2 Ideal Phenotyping System 

Plant phenomics is of great importance for trait based physiological breeding. The 

genotype is the genetic constitution of an organism, and the phenotype is the composite of an 

organism’s observable traits. The study of the genotype–phenotype relationship through the 

use of genomic data and the analysis of multigenic functions is called phenomics (Schilling et 

al., 1999). The main idea of physiological breeding is to identify superior crop varieties with 

important traits, and, consequently, to identify the corresponding genetic traits by looking for 

those candidates commonly encountered in the superior group. The discovery of superior 

genes can benefit superior plant species by transplanting desired genes to them. Plant 

phenomics requires precise, comprehensive, and quantitative analysis tools to facilitate the 

process of discovering the genes contributing to the traits. 

The agricultural application of plant phenomics still has great challenges. First, the 

linkage between plant genotype and phenotype is often illusive (Miyao et al., 2007). In a real 

world environment, the linkage of a specific gene to the phenotype must be examined 
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carefully and comprehensively. Second, the capacity to extract a specific subtle phenotypic 

effect with the influence of other factors and measurement error is still low. The breeding 

industry is calling for systematic high-throughput phenotyping capacity to mine candidate 

germplasm for genes with agricultural importance. Plant phenotyping is the assessment of 

plant’s traits, such as plant height, projected leaf area, leaf length and rolling, color, yield, 

resistance to biotic and abiotic stress, etc.  

The desired agricultural traits of plants are high yield, good quality, and high biotic 

and abiotic stress tolerance across multiple environments. Screening plants with valuable 

traits and replicating the trials to phenotype a large population is laborious and time 

consuming. There are three main problems related to plant phenotyping that need to be 

solved for crop breeding. 

First, the current commonly used phenotyping tools require destructive harvest at 

particular phenotyping stages, which is slow and costly. In addition, it is almost impossible to 

monitor and track the phenotype changes of a specific plant during its whole life cycle. 

Under the constraint of labor and cost, crop breeding programs using conventional 

phenotyping methods only measure the final yield for replicated trials over different 

environments and multiple seasons. These conventional methods are problematic, as yield 

itself is a poorly inherited trait for crop breeding (Richards et al., 2010).  

Second, human factors may lead to measurement errors in phenotyping. A subtle trait 

improvement may indicate a promising plant candidate in crop breeding. Nevertheless, subtle 

trait improvement benefited by a gene is very sensitive to measurement variation and error. 

Currently, under most circumstances, the plant’s physical characteristics are measured 

manually. The measurements conducted by different experts lead to measurement variation. 
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In particular, the harsh in field environment conditions, such as high temperature, strong sun 

light, and long working hours, would exhaust people’s energy and thus decrease the accuracy 

and objectivity of the measurement. Manually measured plant candidates may be 

undervalued or overvalued. In other words, human factors may hurt the confidence of the 

measurement results and eliminate a superior candidate.  

Third, a precise and automated phenotyping system will enable development of a 

searchable database that links gene sequences to plant structure, development, composition, 

and performance for genetic research. To establish such a database, all phenotyping 

measurements should be accurate and objective; all the measurement results should be 

digitalized and recorded in a searchable format. For example, the information of experiment 

design, plant material, and growth condition need to be saved in a standardized metadata 

format, so that complete and objective information can be provided. A fast, precise, and cost 

effective phenotyping system is indispensable to collecting trait information of numerous 

genes for crop breeding.  

To solve the three problems, a desirable system with the following characteristics 

should be established:  

(1) High-throughput capacity 

(2) Noninvasive or nondestructive, so that complete lifecycle measurements are 

possible 

(3) Adequate accuracy for subtle trait improvement detection 

(4) Low-cost to promote large-scale implementation, and 

(5) Controllable environment facilities to eliminate nongenomic factors that lead to 

phenotyping improvement. 
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1.2.3 Imaging Based Phenotyping 

In the past decade, scientists have made great efforts to achieve such an ideal 

phenotyping system. Different imaging sensors, image processing techniques, robotics, and 

high performance computing have been applied for this ultimate goal.  

 

1.2.3.1 2D Imaging Based Phenotyping 

2D imaging based phenotyping systems were most widely used in research and 

commercial products, such as LemnaTec Scanalyser (LemnaTec GmbH, Germany).  

2D color imaging can extract some relatively simple features of plants for crop 

breeding. For example, using 2D color images features, such as projected leaf area, can be 

extracted and used to estimate the growth rate and drought tolerance for rosette plants such as 

Arabidopsis (Granier et al., 2006; Walter et al., 2007). Some other relatively simple 

morphological information, such as plant height and canopy’s diameter, roundness, 

circumference, and eccentricity, can also be estimated based on top view or side view 2D 

images (LemnaTec Scanalyser, LemnaTec GmbH, Germany). 

An advanced 2D imaging system, called modulated chlorophyll fluorescence 

imaging, has been developed for phenotyping. It is a promising tool to score the resistance 

performance of plants under both abiotic and biotic stresses. This system estimates the 

photosynthetic response by analyzing the 2D chlorophyll fluorescence image stimulated by a 

modulated light source. It has been applied in the studies of photosynthetic responses in 

various conditions such as drought stress, cold, heat, and ultraviolet light (Jansen et al., 

2009). Modulated chlorophyll fluorescence imaging has also been used to detect pathogen 
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infections that affect photosynthesis of a plant. For example, it successfully detected the 

infection symptom of the foliar and stem fungal pathogens that reduce plant photosynthesis 

by damaging transpiration (Chaerle et al., 2009; Scholes and Rolfe, 2009; Swarbrick et al., 

2006).  

Another advanced 2D imaging technique, thermography, has also been developed. 

Thermography could distinguish leaf surfaces from the backgrounds by detecting the 

temperature difference between leaf and backgrounds caused by transpiration. For example, 

it has been used to phenotype plant traits and disease related transpiration such as root fungal 

pathogen infection (Sirault et al., 2009). 

The above mentioned 2D imaging techniques can provide projected images of objects 

instead of complete 3D plant structural information. Therefore, they can only obtain proxies 

for relatively simple shape and texture properties. Their inherent limitations make 2D 

imaging based phenotyping systems less useful and accurate for studying plants that have 

complicated and self-occluded canopies.  

 

1.2.3.2 3D Imaging Based Phenotyping 

Based on 2D imaging methods, quasi 3D systems have been developed. Being 

different from real 3D systems, quasi 3D systems still apply 2D imaging sensors instead of 

3D sensors. They do not have the plant’s 3D architecture information. Instead, they estimate 

the properties of a plant by analyzing multiple 2D images acquired at different viewing 

angles based on the relationship between the projections at different viewpoints. Normally, 

one top view and two side view images would be used for a quasi 3D system 

(www.plantphenomics.com). For example, a quasi 3D system based on 2D color images has 
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been applied to estimate biomass and leaf area (Rajendran et al., 2009). Another quasi 3D 

system based on the mathematical relationship of multiple views of chlorophyll fluorescence 

images has been used to study plant photosynthetic response (Konishi et al., 2009). These 

quasi 3D systems have high measurement accuracy when the target plants are at early growth 

stages; the accuracy would decrease as the target plants enter more advanced growth stages 

to form complex vegetative structures. Overall, quasi 3D systems function well only when 

the plants’ vegetative structures do not have occlusions (Furbank and Tester, 2011).  

Real 3D imaging techniques based on a 3D imaging sensor have started to show 

advantages in building a phenotyping system that has more desirable characteristics. These 

techniques aim at providing the in-depth 3D information of the plant. Phenotyping systems 

based on 3D imaging techniques may enable the development of 3D reconstruction and 3D 

architecture measurement throughout the growing cycle of the plant. These 3D models could 

be used to extract more detailed and more specific information, even for the life history of 

each leaf or each tiller. Moreover, compositing 2D information, including texture, color, 

chlorophyll fluorescence image, and thermography, to a 3D model of the plant will enable 

researchers to study the illness, pathogen infection and tolerance, transpiration, and 

photosynthetic response of any specific part of the plant (Furbank and Tester, 2011). Ideally, 

a 3D phenotyping system could automatically quantify the properties of particular interest 

and empower breeders to improve the corresponding plant traits.  

An advanced 3D imaging sensor is key to the realization of 3D model reconstruction 

for in-depth phenotyping. There are four types of 3D imaging sensors that could be used for 

phenotyping, including stereo cameras, laser range sensors, ToF cameras, and 3D light field 

cameras. In the next section, each type of sensor is discussed in detail. 
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There are two types of stereo vision: passive and active type (Chen and Zheng, 1995). 

Passive stereo vision senses the same object by two or more 2D cameras that are placed at 

distinct locations. Passive stereo vision estimates the depth information by searching the 

correspondence between the images taken by the cameras and then doing triangulation. 

Researchers have applied this technique to analyze the transplant variables of sweet potatoes 

(He et al., 2003) and to reconstruct a 3D model of the corn plant canopy for phenotyping 

(Ivanov et al., 1995; Ivanov et al., 1994). Different from passive stereo vision, active stereo 

vision projects structured light, such as parallel lines and grids, on the object surface. The 

structured light is distorted by the object 3D geometry, and it forms new distorted patterns. 

An object’s 3D shape can be recovered by analyzing the images of the distorted light pattern. 

Veeken et al. (2006) reported about a corn plant sensing system that estimated the 3D 

structure of a corn plant by projecting parallel lines onto it. The major challenge of applying 

passive stereo vision to agriculture is the mismatch or unavailability of correspondence due 

to the plant’s lack of texture on leaves, the complexity of its canopy structure, and the 

occlusion problem. Additionally, changing lighting conditions, which is common for outdoor 

agricultural applications, can influence passive stereo vision performance (Omasa et al., 

2007; Weiss et al., 2010). Active stereo cameras have been used to achieve great success for 

indoor applications recently. The David structured light scanner (David Structured Light 

Scanner SLS-2, David Vision System GmbH, Germany) can generate high-quality 3D 

images with precision up to 0.1% of the scan size (down to 0.06 mm). However, they are 

vulnerable to strong ambient light, and can hardly work outdoors except in the evening. 

Light detection and ranging (Lidar) is a more powerful direct, 3D measurement 

sensor based on a laser. As it is an active sensor with a powerful laser light source, it is not 
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susceptible to ambient sunlight and can work reliably outdoors. Some researchers have 

positioned the Lidar several meters away from relatively large-scale sensing objects to 

estimate the height (Hopkinson et al., 2004; Hosoi et al., 2005) and canopy structure (Hosoi 

and Omasa, 2006; Van der Zande et al., 2006) of trees and the carbon stock of forest. The 

structural parameters of trees and forest, including tree height, stem count, biomass 

estimation, material distribution, etc., are provided by these systems. Based on the 3D points’ 

density distribution of multiple image views captured by Lidar sensors, the dry weight of the 

stem, leaves, and ears of a corn field could also be estimated (Hosoi and Omasa, 2009). The 

recent Lidar technology development has enabled a high-resolution 3D sensor based on the 

optical-probe method with a range accuracy of 0.5mm at a distance of 3.5m. Omasa et al. 

(2007) reported attaining high-density and clean 3D data of aubergine (Solanum melongena 

L.) and sunflowers using this type of sensor, and have demonstrated the 3D point cloud 

composited with textures such as natural color, chlorophyll fluorescence, and leaf 

temperature information. One limitation of Lidar system is that it does not capture the 3D 

points of one frame simultaneously, and, therefore, it requires that the sensor and the plant be 

kept relatively still during the process, making the system difficult to deploy on a mobile 

platform or when conducting in-field phenotyping tasks on windy days.  

A ToF 3D sensor is a good alternative technology for 3D reconstruction. It measures 

an environment’s depth information based on the ToF of emitted modulated light reflected by 

the objects in the field of view. Two commonly used ToF cameras, PMD Camcube (PDM 

Tec, Germany) and IFM Efector 3D (IFM, USA), were reported to have a depth resolution of 

around 1 cm and to be usable with an autonomous phenotyping robot if there is no heavy 

dust (Klose et al., 2009). 3D plant modeling research was reported by combining a 2D color 
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camera and a 3D ToF camera, whose position and attitude was controlled and measured 

using a robotic arm (Alenya et al., 2011). In their research, instead of segmenting the plant 

from the background in 3D space, they combined 3D spatial data with 2D color information 

and performed segmentation based on color in 2D space. Their segmentation program, which 

relied on a fused depth/color image, took approximately 1 minute to run. This approach may 

get high accuracy and reliability if the robotic arm is of high positioning accuracy and 

precision, but the equipment cost is high. On the contrary, Rusu et al. (2008) developed a 

robust multiple-viewpoint cloud alignment approach based on 3D feature histograms. Their 

algorithm calculated the feature histogram of each point of every view and looked for the key 

feature points whose feature histogram is significantly different than others. By searching for 

the correspondence of key feature points between different views, the relationship between 

different views can be found and used for alignment. The advantage of this approach is that it 

is purely based on 3D image processing, and it does not depend on any other device such as 

high-precision robot arms, which lowers the system cost. However, it is calculation intensive 

and thus requires a long processing time. 

A 3D light field camera is another newly available 3D sensor (Raytrix, Germany). It 

has a micro-lens array, and each micro-lens captures a tiny image. Therefore, the resulting 

raw image is a composition of tiny images. Software is used to extract the depth information 

based on the correspondence of these images. This technique features high spatial resolution 

and accuracy, and it can work reliably outdoors under sunlight. However, its depth 

calculation cannot be done in real-time and therefore is post processed. Additionally, its price 

is significantly higher than that of the ToF camera.  



13 

 

The 3D imaging sensor based phenotyping system is still at its infancy stage (Furbank 

and Tester, 2011). Although the development of advanced 3D sensors, including active 

stereo vision (Lidar and 3D ToF camera), makes 3D spatial data available with relatively 

reasonable resolution, accuracy, and noise, 3D reconstruction algorithms for crop plant 

phenotyping are still primitive. This method for 3D reconstruction of plants does not achieve 

adequate accuracy with real-time processing speed or a more affordable system cost. The 3D 

features extracted are still limited to those simple ones that are primarily based on the 

statistics of point cloud distribution. Efforts still need to be made to achieve a phenotyping 

system that can perform 3D reconstruction and extract in-depth 3D structural features with 

the accuracy, processing speed, and reliability desired by plant genomics researchers and the 

plant genetics industry. 

 

1.3 Machine Vision System for Automated Precision Weed Control 

1.3.1 Background 

An alternative weed control approach to herbicide weed control that is clean, 

effective, and affordable is important to reduce the chemical usage for agricultural 

production systems, as it will alleviate the concerns of herbicide-resistant weeds, 

environmental pollution, and human health issues.  

Manual weeding becomes impractical because of labor costs and regulation. In 

contrast, automated weeding systems have great potential for reducing the economic and 

environmental cost while providing high-level weed control (Thompson et al., 1991). There 

are two research areas for robotic weed control, including weed removal mechanism for 

robotic actuation and the control of robotic actuator. Four weed control mechanisms, 
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including a mechanical system, a precision chemical spraying system, a thermal method, and 

a high-voltage electrical discharge method, have been reported, and the first three of them 

have been developed into successful commercial products (Slaughter et al., 2008a).  

There are three methods to guide and control a weed actuator. First, guidance systems 

were developed to locate the crop row and accordingly control tractor steering and weeding 

actuator position. Machine vision based (Åstrand and Baerveldt, 2005; Kise et al., 2005; 

Søgaard and Olsen, 2003) and real-time kinematic global positioning system (RTK GPS)–

based guidance systems were developed, and both types of systems have shown centimeter-

level accuracy (Jørgensen et al., 2002; Nagasaka et al., 2004). Although the guidance system 

knows the crop row path, it is limited to identify and locate the crop plant, even for the 

machine vision based system. Therefore, it is good for interrow (between crop rows) weeding 

but poor at intrarow (within or close to crop rows) weed control (Slaughter et al., 2008a). 

Second, GPS mapping systems have been applied for weed control. Some researchers 

equipped planters with RTK GPS to generate the crop seed map during planting. With this 

method, the plant detected at places other than those of the recorded crop seed planting 

position were recognized as weed. Ehsani et al. (2004) tested this kind of system for maize 

seed mapping, and reported that the average error between seed map and actual plant position 

after germination was about 34 mm. The error resulted from a RTK GPS’s error, the motion 

of the planting device related to GPS antenna, seed bounce in the furrows, and different soil 

conditions (Griepentrog et al., 2005). 

Third, the machine vision based plant species identification system is another 

approach to localize the crop plant and weed for weed actuator control. Although guidance 

systems and GPS mapping systems have been developed and have achieved some 
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commercial success for nonrobotic weeding, the realization of a practical plant species 

identification system with reliable performance still has not been achieved (Slaughter et al., 

2008b). Further efforts to address the roadblocks to machine vision based plant identification 

system are needed. 

 

1.3.2 Machine Vision Based Plant Species Identification System 

For plant species recognition, 2D cameras and corresponding image processing 

algorithms were applied. A number of plant identification studies have extracted and 

analyzed morphological features of a leaf or a whole plant, such as length, width, perimeter 

dimensions, roundness, circularity, convexity, moment, etc. Slaughter et al. (2008a) reviewed 

these types of systems and concluded that they generally demonstrated high recognition 

accuracy under ideal condition when there was no occlusion problem to leaf or plant and the 

leaf was undamaged. However, they are not robust to the occlusion problem caused by visual 

defects of the plant caused by insect damage or wind twist, which are common in the field.  

Spectral imaging was reported to be effective in segmenting vegetation from soil 

(Kumar et al., 2002; Noh et al., 2005) and discriminating crop plants from weed (Vrindts and 

Baerdemaeker, 1997). Zwiggelaar (1998) reviewed several studies that applied spectral 

features to discriminate crop plants from weeds. He found that although using spectral 

features to discriminate certain set of weed and crop plants is effective, the spectral 

wavebands selected for classification are frequently different for different weed and crop 

pairs. In an actual field, there are various weed species, leading to complexity of wavebands 

selection and algorithm design to discriminate crop plants from different weed species. 

Moreover, as a passive sensor that is susceptible to environmental factors, including variation 
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of sunlight, it is not believed to be reliable for plant species classification (Du et al., 2007; 

Furbank and Tester, 2011; Jones and Vaughan, 2010). 

Stereo vision was reported to be applied for corn plant recognition (Jin and Tang, 

2009) and structure analysis (Veeken et al., 2006). The major challenge in using stereo vision 

for practical agricultural systems is the correspondence searching problems caused by the 

lack of leaf texture, the complexity of the canopy structure, occlusion, and variation in 

sunlight conditions (Weiss et al., 2010).  

As active 3D imaging sensors, Lidar and ToF cameras are less susceptible to ambient 

sunlight than passive sensing systems are. Although they can provide 3D spatial data with 

reasonable resolution and accuracy, the current 3D image processing algorithms for plant 

recognition reported in the literature are still primitive. Weiss et al. (2010) reported nearly 

99% accuracy in classifying six plant species using Lidar in laboratory experiments. They 

used basic extracted 3D features, and their experiment design included the factors 

encountered in real field conditions, such as surrounding weed and plant occlusion. In some 

other research, a corn plant spacing system based on a ToF camera was developed (Nakarmi 

and Tang, 2012). It achieved a 98% detection rate of corn plants, where crop plants were 

significantly taller than weeds and other objects. However, this system was not developed 

and tested for the conditions where crop plants and weeds are of comparable heights. In 

addition, its processing speed was not fast enough to meet the speed requirements of an 

automated weeding system. 
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1.4 Research Objective 

The overall objective of this research was to develop 3D machine vision technologies 

for high-throughput plant phenotyping and robotic weed control.  

To address the ultimate goal of this research, the major work could be divided into 

three main objectives:  

(1) To develop a 3D machine vision based crop plant recognition system for 

automated precision weed control. 

(2) To develop a machine vision based motion and attitude estimation system. 3D 

reconstruction is used as the foundation to develop a sophisticated 3D plant phenotyping 

system to extract the complex 3D features of plants. Its main challenge is to track precisely 

the posture of a 3D camera with high accuracy in order to align different 3D image views 

together into a complete 3D model.  

(3) To develop a 3D machine vision based plant phenotyping system for plant 

phenomics research. 

 

1.5 Dissertation Overview 

This dissertation contains three main parts: a 3D imaging based crop plant recognition 

system (chapter 2), a 2D imaging based motion and attitude estimation system (chapter 3), 

and a 3D reconstruction based phenotyping system (chapter 4).  

In chapter 2, a 3D imaging based crop plant recognition system is introduced, and 

broccoli and soybean plants were used as the study objects. The sparse noise filtering 

algorithm of 3D point cloud data is introduced first. Then, the fast speed 3D geometry feature 
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estimation algorithm is discussed. Further, based on the extracted 3D features, the crop plant 

segmentation algorithm is proposed along with the experimental results listed at last.  

In chapter 3, a 2D camera and chessboard pattern beacon based motion and attitude 

estimation system is introduced. This part of the research presents a real-time approach to 

measure the position and attitude of a 2D camera in relation to stationary beacons. The work 

in this chapter is the foundation of the 3D reconstruction system presented in chapter 3, in 

which the relationship of different 3D point cloud view data for alignment is indirectly given 

by a 2D camera and beacons. At first, a beacon detection algorithm is introduced. Then, the 

theory of the motion and attitude calculation of a 2D camera based on the detected beacon 

images is described. The experimental results of the beacon detection algorithm and the 

motion and attitude measurement accuracy are provided. 

In chapter 4, a 3D reconstruction based plant phenotyping system using a 2D camera, 

a 3D ToF camera, and chessboard pattern beacons is introduced. Specifically, algorithms for 

camera calibration, noise filtering, 3D reconstruction are presented and discussed. Then, 

based on the reconstructed 3D models, plant trait features in 3D space are extracted, and the 

performance of the system is evaluated.  

Chapter 5 contains general conclusions drawn from the research as well as 

suggestions for future work. 
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CHAPTER 2. 3D IMAGING BASED CROP PLANT AND WEED RECOGNITION 
SYSTEM 

 

2.1 Abstract 

A 3D time-of-flight (ToF) camera was applied to develop a crop plant recognition 

system for broccoli and soybean plants. The developed system overcame the previously 

unsolved problems caused by occluded canopy and illumination variation. An efficient noise 

filter was developed to filter the sparse noise points in 3D space. Both 2D and 3D features, 

including gradient of amplitude and depth image, surface curvature, amplitude percentile 

index (API), normal direction, and neighbor point count in 3D space, were extracted and 

found effective for recognizing these two types of plants. According to the 3D geometry and 

2D amplitude characteristics of broccoli and soybean, one segmentation algorithm was 

developed for each of them. For the experimental condition in which the crop plants were 

heavily surrounded with various types of weed plants, detection rates over 88.3% and 91.2% 

were achieved for broccoli plant and soybean leaves, respectively. Additionally, the crop 

plants were segmented out with relatively complete shape. Moreover, the program is 

optimized, and over 30 fps image processing speed was achieved by this system. 

 

2.2 Introduction 

An alternative approach to herbicide weed control that is clean and effective at an 

affordable cost is important to reduce the chemical usage for agricultural production systems, 

as it will alleviate the concerns of herbicide-resistant weeds, environmental pollution, and 

human health issues.  
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Manual weeding becomes impractical because of labor costs and regulation. In 

contrast, automated weeding systems have great potential for reducing the economic and 

environmental cost while providing high-level weed control (Thompson et al., 1991). There 

are two research areas for robotic weed control, including weed removal mechanisms for 

robotic actuation and the control of the robotic actuator. Four weed control mechanisms, 

including a mechanical system, a precision chemical spraying system, a thermal method, and 

a high-voltage electrical discharge system, have been reported, and the first three of them 

have been developed into successful commercial products (Slaughter et al., 2008a).  

There are three methods to guide and control weed actuator. First, guidance systems 

were developed to locate the crop row and accordingly control tractor steering and the 

weeding actuators’ position. Guidance systems based on machine vision (Åstrand and 

Baerveldt, 2005; Kise et al., 2005; Søgaard and Olsen, 2003) and real-time kinematic global 

positioning system (RTK GPS) were developed, and both types of systems have shown 

centimeter-level accuracy (Jørgensen et al., 2002; Nagasaka et al., 2004). Although the 

guidance system knows the crop row path, it is limited in its ability to identify the crop plant, 

even for a machine vision based system. Therefore, it is good for interrow (between crop 

rows) weeding but poor at intrarow (within or close to crop rows) weed control (Slaughter et 

al., 2008a). 

Second, GPS mapping systems were applied for weed control. Some researchers have 

equipped planters with RTK GPS to generate crop seed maps during planting. With this 

method, the plant detected at the places other than those of the recorded crop seed planting 

position were recognized as weeds. Ehsani et al. (2004) tested this kind of system for maize 

seed mapping, and reported that the average error between the seed map and the actual plant 
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position after germination is about 34 mm. The error resulted from the RTK GPS’s error, the 

motion of the planting device related to GPS antenna, seed bounce in the furrows, and 

different soil conditions (Griepentrog et al., 2005). 

Third, the machine vision based plant species identification system is an important 

approach to localize the crop plant for robotic weeding. Whereas guidance systems and GPS 

mapping systems have achieved development and some commercial success for non-robotic 

weeding, practical plant species identification system with reliable performance have still not 

been achieved yet (Slaughter et al., 2008b). The effort to address the roadblock of machine 

vision based plant identification system is desired. 

For plant species recognition, two dimensional (2D) cameras and corresponding 

image processing algorithms were applied. A number of plant identification researchers have 

extracted and analyzed morphological features of a leaf or a whole plant, such as length, 

width, perimeter dimensions, roundness, circularity, convexity, moment, etc. Slaughter et al. 

(2008a) reviewed these types of systems and concluded that they generally demonstrate high 

recognition accuracy under ideal conditions, when there is no occlusion problem to the leaf 

or plant and the leaf is undamaged. However, they are not robust to the occlusion problem, 

and the visual defects of a plant caused by insect damage and wind twist are common in the 

field.  

Spectral imaging was reported to be effective in segmenting vegetation from soil 

(Kumar et al., 2002; Noh et al., 2005) as well as discriminating crop plants from weed 

(Vrindts and Baerdemaeker, 1997). Zwiggelaar (1998) reviewed several studies that applied 

spectral features to discriminate crop plants from weeds. He found that although spectral 

features are effective to discriminate certain sets of weed and crop plants, the spectral 
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wavebands selected for classification are frequently different for different weed and crop 

pairs. In the practical field, there are various weed species, leading to complexity of 

wavebands selection and algorithm design to discriminate crop plants from different weed 

species. Moreover, as a passive sensor, which is susceptible to environment factors including 

variation of sunlight, it is not believed to be reliable for plant species classification (Du et al., 

2007; Furbank and Tester, 2011; Jones and Vaughan, 2010). 

Stereo vision was reported to be applied for corn plant recognition (Jin and Tang, 

2009) and structural analysis (Veeken et al., 2006). The major challenge in using stereo 

vision for practical agricultural systems is the correspondence searching problems caused by 

the lack of leaf texture, the complexity of the canopy structure, occlusion, and variation in 

sunlight conditions (Weiss et al., 2010).  

As active 3D imaging sensors, Lidar and ToF cameras are less susceptible to ambient 

sunlight than passive sensing systems are. Although they can provide 3D spatial data with 

reasonable resolution and accuracy, the current 3D image processing algorithms for plant 

recognition reported in the literature are still primitive. Weiss et al. (2010) reported nearly 

99% accuracy in classifying six plant species using Lidar in laboratory experiments. They 

used basic extracted 3D features, and their experiment design included the factors 

encountered in real field conditions, such as surrounding weed and plant occlusion. In some 

other research, a corn plant spacing system based on a ToF camera was developed (Nakarmi 

and Tang, 2012). It achieved more than 98% corn plant detection accuracy with about 2–3 

cm root mean square error (RMSE) plant stem localization error based on morphological 

analysis of 2D intensity and 3D spatial data, where crop plants were significantly taller than 

weed and other objects were. However, running the algorithm on an i7 quad core 2.8 Hz 



29 

 

CPU, it could only achieve a processing speed that was equivalent to 0.8 km/h travel speed, 

when acquiring sequential images along a crop row, which is too slow for use in an 

automated weeding system. 

This research aims to apply a 3D imaging sensor and develop a corresponding 

machine vision algorithm to discriminate crop plants from weed plants that can work in 

practical field conditions. Ultimately, this research aims to provide a machine vision solution 

with satisfactory accuracy, reliability, and fast processing speed for fully automated robotic 

weeding operation. 

 

2.3 Sensor and Data Collection System 

A 3D ToF camera (Swissranger SR4000, MESA Imaging AG, Zurich, Switzerland) 

was applied as the sensor in this study. It has an illumination source, and it measures the 

distance of objects based on the ToF of the reflected light. Thanks to the powerful light 

source, this active 3D sensor has a degree of robustness to ambient sunlight, and it can work 

outdoors when the sunlight is not too strong. Otherwise, a cover or umbrella can be adopted 

to make this camera work by reducing the sunlight intensity. This camera can estimate x, y, z 

coordinate locations for each pixel relative to its sensor based coordinate system. It also can 

capture the amplitude image, which represents the intensity of the reflected signal emitted 

from its light source, as Figure 2.5 shows. Its resolution is 144 × 176 pixels.  

Figure 2.1 shows the SR4000 sensor. A data collection system was built by mounting 

the 3D sensor and a laptop on a modified golf cart, as Figure 2.2 (a) indicates, to collect the 

top view image of vegetation. The 3D sensor is marked by a red rectangle in Figure 2.2 (a). 

Figure 2.2 (b) shows the 3D camera installation on the data collection system. The height of 
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the 3D camera was around 95 cm, and the angle between its view direction and vertical 

direction was around 18˚. In this case, the distance between camera and plant canopy was 

about 90 cm, and the camera’s spatial resolution was around 3.8 mm × 3.8 mm per pixel. By 

pushing the golf cart and running the data capturing program, the continuous amplitude 

image and point cloud data with x, y, z value were collected and stored for the crop plant 

recognition study.  

 

 

Figure 2.1. Swissranger SR4000 
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(a) 

 

(b) 

Figure 2.2. (a) Picture of data collection system and (b) drawing of 3D ToF camera setup 
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2.4 Experiment Design 

The study objects of this crop plant recognition research were broccoli and soybean 

plants in the field with complex field conditions. Image data were collected in the broccoli 

and soybean fields shown by Figure 2.3 and Figure 2.4, respectively. It is clear to see that the 

broccoli field was full of various types of weeds that are common in Iowa, including brome 

grass (Bromus inermis Leyss), Waterhemp (Amaranthus rudis), pigweed (Amaranthus), 

lambsquaters (Chenopodium album), cockspur grass (Echinochloa crus-galli), purslane 

(Portulaca oleracea), bindweed (Convolvulus arvensis), and clover (Trifolium). The broccoli 

plants were heavily infested by weeds with similar height. The soybean field was also full of 

weeds, mainly including brome grass (Bromus inermis Leyss), purslane (Portulaca oleracea), 

waterhemp (Amaranthus rudis), cockspur (Echinochloa crus-galli), and bindweed 

(Convolvulus arvensis). The majority of weeds plants were brome grass plants. Some weed 

plants were higher than the soybean plants, and they partially occluded the soybean canopies 

(Figure 2.4).  

The image data were collected between 5 and 8 p.m. on sunny days (June 26, July 6, 

and July 18, 2012). The 3D ToF camera works the best when ambient light is weak or when 

sun light is diffused. During the image acquisition process, we used an umbrella to block 

direct sunlight from getting into the field of view of the camera.  

In this study, the data collection system was pushed through the path between the 

crop rows at the speed of around 0.2 m/s, to collect consecutive 3D images and amplitude 

images of 206 broccoli plants and three rows of soybean plants. The length of one row of 

soybean plant was about 20 m. The interrow distance of both the broccoli and the soybean 

field is around 30 cm. The intrarow distance of the broccoli field was approximately 46 cm. 



33 

 

In total, 48,179 and 18,793 image sets were collected for broccoli and soybean plants, 

respectively, over the three data collection times. Each plant has around 200 images, which 

were captured at different viewpoints when the system was pushed to pass by during the data 

collection process. Moreover, this approach allowed a more comprehensive testing for the 

crop plant recognition at different viewpoints. 

Table 2.1 gives the heights of broccoli plants and soybean plants corresponding to 

each data collection date. There was little maturity difference observed in either the broccoli 

plants between June 26th and July 5th or the soybean plants between June 26 and July 5, 

which was probably because of the competition between weeds and crop plants. 

 

Table 2.1. Height of crop plant corresponding to each image capturing date 

Data collection 
date 

Height of broccoli 
plant (cm) 

Height of soybean 
plant (cm) 

June 26, 2012 18–23  Approx. 20 
July 6, 2012 18–23 Approx. 28 

July 18, 2012 18–30 N/A 
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Figure 2.3. Broccoli field of this study 
 

 

Figure 2.4. Soybean field of this study 
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2.5 Algorithm Design 

The ToF camera used in this research collected 2D amplitude images and 3D 

information. This crop plant recognition research developed 2D and 3D image processing 

algorithms to process the amplitude and 3D images. 

 

2.5.1 Initial Noise Filtering 

Because of the strong ambient sunlight, some points of the data collected by the ToF 

camera did not have correct amplitude and 3D coordinate information. Therefore, it was 

important to clear those noise points to start.  

The amplitude signal provided by the sensor is 16 bits wide with the range between 0 

and 65,535, and a typical noise point has significant big amplitude value, shown as the white 

area marked by a red rectangle at the bottom left corner of Figure 2.5. In this study, it was 

effective to recognize the point with the amplitude value above 2000 as noise data, based on 

experience and observation. Additionally, the pixels of the 3D image with a depth value over 

1.5 m were also judged as noise because the distance between the 3D sensor and the ground 

was less than approximately 1 m in this study. These two criteria were applied for initial 

noise clearance. Relatively clean data were achieved for later feature estimation, based on 

which a more advanced noise clearance algorithm would be adopted. 
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Figure 2.5. Amplitude image of broccoli with noise at left corner 
 

2.5.2 Neighbor Points Table Development 

Searching for the neighbor points of each point is the foundation of 3D image 

processing. Due to measurement error, the 3D image has some outliers, namely sparse point 

noise, shown as the areas marked by red circles in Figure 2.7 (b). Those outliers had 

relatively big distance from other points and were filtered out by analyzing each point’s 

neighborhood pixels. The crop plant recognition study estimated the local 3D geometry 

feature, including the curvature and normal direction of the point cloud. Both tasks were 

based on the analysis of each point and its neighbors. 

A neighbor point search algorithm calculation is intensive for nonorganized 3D point 

cloud data. Its efficiency and speed are critical for the processing speed of the whole system. 

To develop fast searching algorithms, various data structures, such as Octree, kd-tree, and 

bd-tree (Arya et al., 1998) have been shown to organize the 3D point cloud data. Even 

though these algorithms greatly improved the speed, the CPU cost to search for the neighbor 

points of every point of a 3D image is still a heavy burden for practical application.  
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The 3D point cloud data from the 3D ToF camera is organized information, which is 

stored inside a 144 × 176 (camera’s resolution) buffer array like 2D images. In this research, 

the point stored in the ith row and the jth column is represented as ��,�. For each pixel in the 

buffer, only the pixels stored in its neighbor columns and rows in the buffer are the neighbor 

point candidates in 3D space, because only those points have similar x and y values. 

Therefore, for point	��,�, only the points � ∈ ��	,
�� − � ≤ � ≤ � + �, � − � ≤ � ≤ � + �} 
in the square window whose side was 2w + 1 were taken, to calculate their distance to the 

query point ��,� for neighbor points judgment. This research concerned the neighborhood 

within only 10 mm for each 3D data point, and the spatial resolution of the image was 

approximately 4 × 4 mm2; a window with four sides, each nine pixels long, was big enough, 

according to the observation. Therefore, w was chosen to be four in this research.  

There are two ways to define the neighbor point set, which is represented by ��, of a 

query point ��, including: 

1) The closest k neighbors of the query point 

2) All of the k neighbors whose distance to the query point is not bigger than a 

specific radius r.  

This study adopted the second method because of the nature of this application and 

data. The neighbor points of the query data were collected to estimate the local surface 

geometry and clear the sparse noise. As the 3D image of this study contained crop plants, 

weed plants, and soil residue, the discontinuity of 3D geometry and occlusion happened all 

over the image. In this condition, the point cloud of some places was dense, whereas that of 

other areas was relatively sparse in 3D space. While the goal of the neighbor points searching 

algorithm was to find all of the local data for 3D geometry analysis, and the first 
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neighborhood definition, i.e. 1), may mistakenly select the points far away from the query 

point for the place where the point intensity is low. Therefore, the second definition, i.e. 2), is 

more appropriate for local geometry analysis. In this study, if the distance between two 

points was not bigger than 10 mm, they were recognized as neighbor points in 3D space, and 

they were referred to as being connected in 3D space. The selection of 10 mm for the radius 

of the neighborhood is discussed in section 2.5.3.  

Instead of calculating the distance d between two points for neighbor points judgment 

in 3D space, the distance square �� was calculated by comparing with the threshold 100 mm2 

in order to avoid time consuming square root calculation. 

�� = (�� − �)� + (�� − �)� + (�� − �)�   (2.1) 

For every 3D data point, its k neighbors in 3D space was found and stored for later 

image processing, and they are represented with ���� . Its number of neighbors was also stored 

inside of the neighbor count image, NC, which is shown by Figure 2.6 (d). The maximum NC 

value of Figure 2.6 (d) is 32, and that of the whole data set collected in this research is 40. As 

NC indicates, the pixels of broccoli and soybean leaves have significantly higher number of 

neighbor points in 3D space than most pixels of soil and weed background because of their 

relatively smooth 3D geometry. This observation was helpful for this crop plant recognition 

study. 

 

2.5.3 Curvature and Normal Estimation of Surface 

Curvature and normal direction are important local features that capture the 3D 

geometry of the local surface around a query point �� . These features are critical for this 

plant recognition study. One example is that a query point ��  and its neighbor points 
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belonging to the same soybean or broccoli leaf should have similar normal direction and 

small curvature because the local surface of the plant leaves is relatively smooth and 

continuous.  

To estimate the curvature and normal direction of the local surface around a query 

point ��, the first step is to search all of its neighbor points within a specific distance, and the 

selection of the radius for the neighborhood definition is important and application 

dependent. While the smaller maximum distance value will reduce the number of neighbor 

points and make the calculation result more susceptible to the noise of the 3D image, a larger 

value is more likely to mistakenly select the points of other objects’ surfaces as the neighbor 

points to do surface normal and curvature estimation, leading to calculation error. In this 

study, the maximum distance of neighbor points for the local surface feature analysis was set 

as 10 mm, for several reasons: 

1) Because the ToF camera was less than 0.9 m away for the plants, the point cloud was 

so dense that the distance between two closest points on a smooth surface was around 

4 mm. Therefore, inside the sphere with a radius of 10 mm and centered at the query 

point ��, normally over 10 neighbor points can be found. The number of points was 

enough to perform principal component analysis (PCA) to process the 3D coordinates 

of the neighborhood. 

2) As the size of soybean leaves was small and the broccoli leaves were not flat, a small 

radius would make the local surface estimation algorithm more accurate and would 

help to avoid taking the relatively far away points for analysis.  
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3) The leaves of the crop plant and the weeds were close to each other, and occlusion of 

the canopy was common. A smaller radius can help to avoid taking the points of other 

leaves for local surface analysis. 

4) The standard deviation of the 3D measurements of SR4000 used is around 4 mm, 

according to the datasheet. If the reflectance of the object is small, the standard 

deviation of measurement further increases. In this case, if the neighborhood 

definition radius is too small, the 3D measurement error can greatly affect the normal 

and curvature estimation accuracy of the local surface.  

 

Considering the problems, the radius of 10 mm for neighbor points searching was 

chosen for the local surface feature estimation, based on the experiment. In addition, the 

corresponding neighbor points set ����  of each point was achieved by the previous step as 

introduced previously. 

To estimate the normal direction of the local surface around a query point �� , there 

are many methods to process the query point ��  and its neighbor points ���� . Klasing et al. 

(2009) introduced and compared seven surface normal estimation methods, including 

PlaneSVD, PlanePCA, VectorSVD, QuadSVD, QuadTransSVD, AreaWeighted, and 

AngleWeighted. Although the performance of these methods on agriculture applications have 

not been reported, these studies concluded that while the choice of best algorithm depends 

mostly on the 3D graph structure, PlanePCA has better performance in terms of both quality 

and speed for all cases, compared to the others.  

PlanePCA stands for principal component analysis–based normal–estimation method, 

and the calculation process is introduced by Equation 2.2-2.6. 
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For the normal estimation of a query point, the set that contains it and its neighbor 

points ����  is represented using �, as Equation 2.2 shows. Moreover, set P has a total of k+1 

elements. 

� = �� ∪ �10#     (2.2) 

The ith element of P is represented by ��, which is a 3D feature vector consisting of 

the x, y, and z coordinate value of the point in the sensor’s coordinate system, as Equation 

2.3 indicates. 

�� = [�� , �� , ��]&    (2.3) 

The mean vector �̅ and covariance matrix of P can be calculated using Equation 2.4 

and 2.5, respectively.  

�̅ = ∑ �)*+,)-,�.�     (2.4) 

/ = ��∑ (�� − �̅)(�� − �̅)&�.��0�    (2.5) 

The covariance matrix C has three eigenvalue and eigenvector sets, which can be 

achieved by solving Equation 2.6. 123334, and 5�  represents the jth eigenvector and the 

corresponding eigenvalue, respectively. 

/123334 = 5�123334,      � ∈ {1, 2, 3}     (2.6) 

For PlanePCA based normal estimation method, the eigenvector corresponding to the 

lowest eigenvalue represents the normal direction at the query point. 

In addition to normal calculation of local surface, PCA was also used for surface 

curvature estimation (Pauly et al., 2002). As Equation 2.7 shows, this study applied their 

method to represent surface curvature value 9 with the ratio of the minimum eigenvalue to 

the sum of three eigenvalues achieved by Equation 2.6. The curvature value 9 is positively 



42 

 

related to surface curvature. The bigger 9 indicates big curvature, and the maximum possible 

value of 9 is 1/3. If 9 is equal to zero, it means that all the points are on a plane.  

9 = :;<	(=>)=,.=?.=@,     � ∈ {1, 2, 3}     (2.7) 

Moreover, 9 is not only related to curvature, it is also related to the noise level around 

the query point. The larger the noise level is, the higher 9 becomes. 

Figure 2.6 (e) is the curvature image. Figure 2.6 (f) is the color-coded image of 

normal direction. In Figure 2.6 (f), the normalized normal direction [u, v, w] is represented 

by encoded color [R, G, B], which was calculated as [255(u+1), 255(v+1), 255(w+1)]. The 

black area of Figure 2.6 (f) represents the unavailability of a data point there because of noise 

filtering. Figure 2.6 also provides the corresponding depth image, amplitude image, and the 

color image captured by the 2D camera. As Figure 2.6 (e) indicates, the flat surface of 

scenery has low 9 value, whereas the weeds and soil have relatively high 9 value because of 

the discontinuity caused by the narrowness of the weed leaf and the roughness of earth 

surface. This indicates that 9 value may be an effective feature to differentiate the crop plant 

from soil and weeds. Figure 2.6 (f) uses color to represent the different normal direction of 

the surface. It shows that the normal direction around every point of a soybean leaf is almost 

consistent because of its 3D geometry characteristics, whereas the different leaves have 

different color because of their various normal directions. The weed and soil area is a mix of 

different colors because of the inconsistent normal direction caused by the discontinuity of 

their 3D geometry. 
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(a) 

     

       (b)        (c) 

    

     (d)       (e) 
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Figure 2.6 continued 

 

(f) 

Figure 2.6. Normal and curvature estimation of soybean: (a) 2D color image, (b) amplitude 
image from ToF camera, (c) depth image, (d) neighbor count image Nc, (e) curvature 

estimation result, and (f) normal direction represented by color image 
 

2.5.4 Advanced Noise Clearance Algorithm 

Section 2.5.1 introduced the simple noise clearance method based on the amplitude 

intensity value and simple depth threshold. However, it is far from sufficient and can only be 

used as a preprocessing step. As Figure 2.7 indicates, even though the front view of 3D data 

after the initial noise seems clear, its side view indicates that it still has sparse point noise, as 

the area marked by a red circle in Figure 2.7 (b) shows. 

After the neighbor points table, normal direction, and curvature values are achieved 

for the 3D point cloud data, further noise cleaning was conducted based on these results.  

The first step of this advanced noise clearance algorithm was to organize all of the 

data points into different regions in 3D space based on neighborhood analysis. If the distance 

of two points was no bigger than 10 mm and the angle between their normal directions was 
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smaller than 15°, they were recognized as connected and placed inside the same region. To 

accomplish the task, the system analyzed every point of the 3D point cloud data except for 

the noise excluded at an earlier step as query point �� . For each query point �� , the angle θ 

between its normal direction and that of all the neighbor points within 10 mm, which is ���� , 
achieved in previous step, was examined to check whether it is over the threshold. 

Equation 2.8 gives the equation to calculate the angle between the normal directions 

of the query point ��  and the neighbor point. 

A = 	BCDE F GH33333I∙GK33333I|GH33333I||GK33333I|M ,     (2.8) 

where N�3333I is the normal direction at query point ��, and the NG3333I is that of the neighbor 

point �G. Our system is only interested to know whether the angle between these two points 

is smaller than 15°, instead of the exact angle value; therefore, the problem can be simplified 

to check whether Equation 2.9 is satisfied in order to accelerate the program speed. Because 

cos	(15°) in Equation 2.9 is a constant value (the equation avoids the time consuming inverse 

cosine function) the efficiency is improved further, as compared to Equation 2.8. 

N�3333I ∙ NG3333I >= |N�3333I||NG3333I|cos	(15°)    (2.9) 

If Equation 2.9 was satisfied, the query point ��  and that specific neighbor point 

within 10 mm were classified into the same region as connected points. Moreover, this was 

iterated to process every point of the 3D point cloud data as the query point to check the 

relationship between it and each of its neighbor points. Based on that, it could be decided 

whether there was a link of neighbor points satisfying Equation 2.9 to connect any two points 

of the 3D image in 3D space. If so, these two points and the points of their link were 

classified into the same region in 3D space. Otherwise, these two points were split into 

different regions. In this way, all points were grouped into different regions in 3D space. 
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Then, points in the regions with a member count less than four are removed as sparse point 

noise.  

 

(a) 

 

(b) 

Figure 2.7. 3D point cloud data after initial noise clearance: (a) front view of 3D point cloud 
data and (b) side view with sparse point noise marked by red circle 
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(a) 

 

(b) 

Figure 2.8. 3D point cloud data after advanced noise clearance: (a) front view of 3D point 
cloud data and (b) side view 

 

The advanced noise clearance result of the data shown in Figure 2.7 is given by 

Figure 2.8. By comparing Figure 2.7 (a) and Figure 2.8 (a), many points were removed by 

the advanced noise filter. These filtered points were sparse point noise; most of them were 

weed plants and soil residue.  
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2.5.5 Gradient of Amplitude and Depth Image 

The gradient of amplitude image and depth image are important features for this plant 

recognition research. The Sobel operator was used to calculate the gradient for both images, 

and it applies two 3 × 3 kernels to convolve with the original image to calculate the 

horizontal and vertical derivatives. For the original image represented with A, and the images 

of the horizontal and vertical derivatives represented with Gx and Gy, respectively, their 

relationship was expressed by Equation2.10 and 2.11. In addition, the approximate 

derivatives value was calculated by summing the absolute value of the vertical and horizontal 

derivatives as Equation 12 indicates. 

U	 =	 V1 0 −12 0 −21 0 −1W ∗ Y    (2.10) 

U
 =	 V 1 2 10 0 0−1 −2 −1W ∗ Y    (2.11) 

U = |U	| + �U
�    (2.12) 

By using Equation 2.10–2.12 to process the amplitude image and depth image from 

the ToF camera, their gradient images were calculated respectively as Figure 2.9 shows. The 

depth gradient image and amplitude gradient image are represented using GZ and GI, 

respectively, in this study. 



49 

 

  

                                  (a)                                                                   (b) 

   

                                   (c)                                                                 (d)     

Figure 2.9. Gradient images: (a) amplitude image, (b) gradient of amplitude image, (c) depth 
image, and (d) gradient of depth image 

 

As Figure 2.9 indicates, the amplitude and depth gradient is big for the place where 

the change of amplitude value is high and the discontinuity of 3D geometry happens 

respectively. They are critical features for the segmentation task of this research. 

2.5.6 Percentile Index of Amplitude Image  

As Figure 2.10 indicates, the broccoli plant has significantly higher intensity value 

than the weeds and soil in the amplitude image due to its higher reflectance for the 850 nm 
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wavelength light emitted from the ToF camera. Figure 2.10 (a) is a broccoli amplitude image, 

and Figure 2.10 (b) is the broccoli area segmented out from the background. Figure 2.10 (d) 

and (e), which are the histograms of the background area and the broccoli area of amplitude 

image, respectively, indicate that the amplitude range of broccoli is significantly higher than 

the soil and weed background. For this data set, whereas the majority of the background’s 

amplitude value is smaller than 150, the major range of broccoli’s amplitude value is 

between 125 and 255. Therefore, the difference of their amplitude range can contribute to 

differentiating broccoli from the background. 

However, the previous histogram based threshold algorithm did not work well to 

segment the broccoli out from the amplitude image. Although the histograms of the 

background and the broccoli have significantly different ranges and peak values, the 

histogram of the whole amplitude image does not have two obvious peaks separated by a 

trough, as Figure 10 (c) shows. Because of this problem, the previous histogram based 

thresholding algorithms including the 2D maximum entropy thresholding algorithm (Kapur 

et al., 1985), minimum error thresholding algorithm (Kittler and Illingworth, 1986), and 

Otsu’s method (Otsu, 1975) mistakenly recognized the whole image as a single area and 

therefore could not differentiate the broccoli from the background in the test conducted in 

this study.  
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                                           (a)                                                  (b) 

 

(c) 
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Figure 2.10 continued 

 

(d) 

 

(e) 

Figure 2.10. Broccoli amplitude image and histograms: (a) broccoli amplitude image, (b) 
broccoli segmented from amplitude image, (c) histogram of whole amplitude image, (d) 

histogram of background, and (e) histogram of broccoli 
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To take the advantage of the fact that broccoli has a higher amplitude value than  that 

of the soil and the weed background for crop plant recognition, this research created a feature 

called the API. While the data collection system was pushed through the field, the broccoli 

and soybean plants came into view from the right boarder, moved to the left side, and 

disappeared from the left side of view. Depending on the position of the crop plant, it 

partially or fully appeared in the image view. Therefore, the crop plant can occupy different 

area sizes in the image, and it can greatly influence the histogram of the amplitude image. In 

order to solve this problem, for the amplitude image with a dimension of 144 × 176 pixels, 

each column was analyzed separately. The amplitude values of every column were ranked 

from low to high, and the percentile of each pixel within its corresponding column was its 

API value, which was stored in an API image. In this case, the API value of a pixel of 

broccoli and soybean was only related to its column, and was not susceptible to their position 

no matter whether the crop plant partially appeared at the left or the right boarder of the 

image or fully appeared in the center. Figure 2.11 is the API image of the amplitude image 

shown by Figure 2.10 (a). It is clear that the pixels of broccoli have significantly higher API 

value compared to the background pixels in the same column in the image.  

 

Figure 2.11. Amplitude percentile image of broccoli 
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The API feature extraction method was also applied to process the soybean’s 

amplitude image. Even though the soybean’s amplitude value was not significantly higher 

than that of the weeds in this study, API also can help to clear the soil from the image. Figure 

2.12 shows the API calculation result of the soybean amplitude image given by Figure 2.9 

(a). In Figure 2.12, the soil area has a low API value and therefore is dark, whereas the weeds 

and soybean leaves do not show significant difference. 

 

Figure 2.12. Amplitude percentile image of soybean 
 

 

2.5.7 Statistics of Extracted Features 

To develop a crop plant segmentation algorithm based on extracted 2D and 3D 

features, statistics analysis was done to investigate the distribution of each feature for 

broccoli, soybean, and background. Five randomly selected image sets of broccoli and 

soybean were used respectively for feature distribution analysis, and they were processed 

with manual segmentation to specify the area of crop plant and background. Figure 2.13 and 

2.14 show one example set of depth and amplitude image, manual segmentation image, and 

five extracted features used for statistics analysis for soybean and broccoli, respectively.  

For broccoli and soybean plants, histogram and cumulative histogram of each 

extracted feature were generated at the crop plant and background areas of five sample image 
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sets, respectively, as Figure2.15 and 2.16 show. As Figure 2.15 (d) and 2.16 (d) indicate, the 

maximum cumulative histogram value of curvature feature is smaller than 1, this is because 

part of the crop plant and background area does not have effective curvature value because it 

does not have enough neighbor points for curvature estimation. For soybean image sets, 80% 

of the broccoli and only 22.41% of the background area had valid curvature value. For 

broccoli image sets, 85.85% of the soybean area and only 36.25% of the background had 

valid curvature value. Therefore, this is helpful to differentiate crop plant and background. 

As the histogram and cumulative histogram indicate, the API and neighbor count 

features of broccoli and soybean leaves are mainly distributed in the higher value range, 

compared to the background, and the amplitude and depth gradient and curvature of these 

two crop plants are relatively smaller than the soil and weed background. Based on the 

feature distribution, this research carefully picked the threshold value for each feature in 

order to effectively remove the background area while keeping most of the crop plant area. 

The picked threshold and percentage of crop plant and background area within the range are 

given in Table 2.2 and 2.3. As these two tables indicate, the picked threshold values are 

effective to keep most broccoli and soybean areas and remove some background area. An 

example is the selected curvature threshold value 0.25, which can keep 79.54% of the 

broccoli area while removing 77.61% of the background. The combination of the threshold 

of all features is powerful to segment the inner area of the broccoli and soybean leaves, 

which is introduced in section 2.5.8. 
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                        (a)                                         (b)                                          (c) 

     

                        (d)                                         (e)                                          (f) 

   

                                              (g)                                          (h) 

Figure 2.13. Sample image sets of soybean for feature distribution analysis: (a) depth image, 
(b) amplitude image, (c) manual segmentation image of soybean leaves, (d) API image, (e) 
curvature image, (f–g) depth and amplitude gradient images, and (h) neighbor count image 
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                        (a)                                         (b)                                          (c) 

     

                        (d)                                         (e)                                          (f) 

   

                                              (g)                                        (h) 

 

Figure 2.14. Sample image sets of broccoli for feature distribution analysis: (a) depth image, 
(b) amplitude image, (c) manual segmentation image of soybean leaves, (d) API image, (e) 
curvature image, (f–g) depth and amplitude gradient images, and (h) neighbor count image 
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(a) 

 

 
(b) 
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Figure 2.15 continued 

 
(c) 

 

 
(d) 
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Figure 2.15 continued 

 
(e) 

 

 
(f) 
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Figure 2.15 continued 

 
(g) 

 

 
(h) 
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Figure 2.15 continued 

 
(i) 

 

 
(j) 

Figure 2.15. Histograms and cumulative histograms of various features of soybean and 
background: (a–b) histogram and cumulative histogram of API feature of soybean and 

background; (c–d) histogram and cumulative histogram of curvature feature of soybean and 
background, (e–f) histogram and cumulative histogram of depth gradient of soybean and 

background, (g–h) histogram and cumulative histogram of intensity gradient of soybean and 
background, and (i–j) histogram and cumulative histogram of neighbor count feature of 

soybean and background 
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(a) 

 

 
(b) 
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Figure 2.16 continued 

 

(c) 

 

 
(d) 
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Figure 2.16 continued 

 
(e) 

 

 
(f) 
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Figure 2.16 continued 

 
(g) 

 

 
(h) 
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Figure 2.16 continued 

 
(i) 

 

 
(j) 

Figure 2.16. Histograms and cumulative histograms of various features of broccoli and 
background: (a–b) histogram and cumulative histogram of API feature of broccoli and 

background, (c–d) histogram and cumulative histogram of curvature feature of broccoli and 
background, (e–f) histogram and cumulative histogram of depth gradient of broccoli and 

background, (g–h) histogram and cumulative histogram of intensity gradient of broccoli and 
background, and (i–j) histogram and cumulative histogram of neighbor count feature of 

broccoli and background  
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Table 2.2. Feature distribution table for soybean 

 
Feature 
Range 

Percentage Feature 
Range 

Percentage 
Soybean  Background Soybean  Background 

API ≥ 0.3 0.979 0.5683    
Curvature ≤ 0.25 0.7954 0.2239 ≤ 0.3 0.8 0.2241 

Depth 
gradient 

≤ 80 0.5767 0.1483 ≤ 100 0.6499 0.2002 

Amplitude 
gradient 

≤ 25 0.6718 0.2417 ≤ 36 0.7999 0.3807 

Neighbor 
count ≥ 5 0.6756 0.095 ≥ 7 0.5564 0.0423 

 

Table 2.3. Feature distribution table for broccoli 

 
Feature 
Range 

Percentage Feature 
Range 

Percentage 
Broccoli  Background Broccoli Background 

API ≥ 0.65 0.7742 0.2565 0.6 0.83 0.3035 
Depth 

gradient 
≤ 150 0.8134 0.4147 ≤ 220 0.8848 0.5743 

Amplitude 
gradient ≤ 65 0.9396 0.6750    

Neighbor 
count ≥ 5 0.7581 0.1621    

 

 

2.5.8 Crop Plant Segmentation Algorithm 

After the noise clearance and feature extraction, the crop plant recognition algorithm 

segments the crop plants. The recognition algorithms of the broccoli and soybean plant share 

great similarity, but some differences exist because of their differences in 2D and 3D features 

described below. 

 

2.5.8.1 Soybean Segmentation Algorithm 

The raw soybean images used to introduce the soybean segmentation algorithm in this 

section are given by Figure 2.17 (a-b). This algorithm is based on various feature information 

calculated by the previously described steps, including curvature δ, neighbor count image NC, 
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amplitude and depth gradient image GI and GZ, and amplitude percentile image API; all of 

them are also provided in Figure 2.17 (c–g). 

The soybean segmentation algorithm consists of multiple steps, which are introduced 

below. 

1) By applying the feature images achieved in the previous step, two intermediate 

images, S1 and S2, were constructed based on the Equation 2.13 and 2.14, 

respectively. The threshold values of these two equations were picked based on 

the feature distribution discussion in section 2.5.7. The main idea of this step was 

to apply these features to extract the soybean candidates areas based on several 

observations. First, the 3D geometry of soybean leaf was relatively flat and 

smooth. Therefore, the depth gradient value GZ and curvature δ were small. 

Second, the amplitude value of a soybean leaf was nearly uniform, so its 

amplitude gradient was small. Third, the API value of soybean was not too small 

because its amplitude value is at least higher than soil and some weed 

background. Fourth, the points of the soybean leaf in the 3D point cloud data were 

relatively intense because of their flat 3D geometry; therefore the neighbor point 

count value Nc was relatively high for the soybean points. Based on these criteria, 

image S1 and S2 are achieved as Figure 2.17 (h) and (i) indicate.  

Z1 = [ 1				�ℎ]N	U^ ≤ 80, U` ≤ 25, ab ≥ 7, 9 ≤ 0.25, Y�f ≥ 0.3	0				]gE]																																																																																																					(2.13)	
Z2 = [ 1				�ℎ]N	U^ ≤ 100, U` ≤ 35,ab ≥ 5, 9 ≤ 0.3, Y�f ≥ 0.3	0				]gE]																																																																																																					(2.14)	

2) The white pixels of the intermediate result image S1 and S2 can be separated into 

different regions in 2D space. In this study, the regions of size less than 10 and 8 

pixels were considered as noise and were removed in image S1 and S2, 
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respectively. Because the amplitude image of a soybean leaf was smooth, the 

average amplitude gradient was small. Therefore, the regions with average 

amplitude gradient over 25 were also removed as background. The resulting 

images of S1 and S2 after this step are represented with S11 and S21, respectively, 

which are shown by Figure 2.17 (j) and (k). 

3) Next, image S11 was dilated and processed in 3D space. Each pixel of S11 was 

checked to determine whether there was neighbor point in 3D space that was 

removed in S11 but not in S21 image. If there was a neighbor point, the qualified 

neighbor point was added into image S11. In addition, this operation was iterated 

to process new S11 until there was no longer any new point to be added. After 

that, all of the points of the new S11 image were separated into different regions 

in 3D space. For the region separation in 3D space, if the distance between two 

points was no bigger than 10 mm, they were considered as connected points, 

belonging to the same region. It also means that between any two points in the 

same region, there is a link consisting of neighbor points in 3D space. Each region 

was a soybean leaf candidate. The regions with size smaller than 13 were 

removed because they were too small to be a soybean leaf. The final result of this 

step is represented with S12, as Figure 2.17 (l) shows. 

4) As Figure 2.17 (l) indicates, the pixels extracted by the intermediate result image 

S12 are only from the inner part of the soybean leaves instead of the complete 

results. Because the boundary area of the leaf has relatively high gradient value 

for both depth and amplitude, they were filtered out by the three steps mentioned 

above. In order to recover the boundary area of the soybean leaves, the 
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intermediate image S12 was expanded in 3D space. All of the removed neighbor 

points in 3D space of any point in image S12 were added to create a new S12 

image. In addition, this process was iterated five times to update image S12, so 

that the boundary points, which are close to the extracted inner part of soybean 

leaf, could be recovered, as Figure 2.17 (m) shows. The resulting image of this 

step is S13. 

5) The intermediate result image S13 still cannot fully recover the boundary part of 

the soybean leaves for some cases, so another algorithm was adopted to solve this 

problem. If a removed point q was a neighbor point of a valid point p in S13 in 3D 

space, and it satisfied Equation 2.15–2.17, the removed point q was added to 

create a new S13 image, and this process was iterated five times. 

�i� − i�� ≤ 7	jj,   (2.15) 

where i� and i� are the Z value of the 3D coordinates of point q and p, 

respectively. Equation 2.15 specifies that only the point p whose depth is similar 

to that of point q can be added, in order to ensure the newly added points and the 

existing points are at a single smooth surface. 

U^� ≤ 130		 (2.16)	
U`� ≤ 70,	 	 	(2.17)	
where U^� and U`� represent the depth gradient value and amplitude gradient 

value of point q. Equation 2.16 and 2.17 specify the upper limit of the 

corresponding gradient value for candidate soybean leaf boundary points to be 

recovered, and they are designed to avoid adding the points where the 3D 

geometry and amplitude image are not smooth. The threshold values in these two 
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equations are higher than those in Equation 2.13 and 2.14 because of the nature 

differences between the inner part and the boundary area of the soybean leaves for 

both the 3D geometry and the 2D amplitude image. The resulting image of this 

step is the final soybean segmentation result, which is shown in Figure 2.17 (n). 

 

 

   

                                  (a)                                                                  (b) 

   

                                  (c)                                                                  (d) 
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Figure 2.17 continued 

   

                                  (e)                                                                  (f) 

   

                                  (g)                                                                  (h) 

   

                                  (i)                                                                  (j) 
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Figure 2.17 continued 

   

                                  (k)                                                                  (l) 

     

                                  (m)                                                                  (n) 

Figure 2.17. Images of the soybean segmentation procedure: (a) amplitude image, (b) depth 
image, (c) amplitude gradient image GI, (d) depth gradient image Gz, (e) neighbor count 
image Nc, (f) curvature image δ, (g) amplitude percentile image API, (h–i) intermediate 
image S1 and S2, (j–k) image S11 and S21, (l) image S12, (m) Image S13, and (n) final 

soybean segmentation result image 
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2.5.8.2 Broccoli Segmentation Algorithm 

The broccoli segmentation algorithms shares great similarity with that of the soybean 

plant, but they still have some differences because of their various features. The detailed 

steps are introduced below: 

1) Being similar to the first step of soybean segmentation, intermediate images S1 

and S2 were constructed based on Equation 2.18 and Equation 2.19. The threshold 

values of these two equations were picked based on the feature distribution 

discussion in section 2.5.7. Compared to the first step of soybean segmentation, 

these two equations set a higher gradient threshold for both depth and amplitude, 

and they do not have any limitation in terms of the curvature of the 3D surface 

because of the inherent characteristics of the broccoli plant. As Figure 2.18 (a–g) 

indicates, the 3D geometry of broccoli leaves is relatively complicated, instead of 

being simply flat, and this means that some broccoli area has high depth gradient 

and curvature value. Figure 2.18 (c) also shows that the amplitude gradient of 

some parts of broccoli is relatively high compared to that of soybean leaves. 

Additionally, high API threshold value, which are 0.65 and 0.6 for generating S1 

and S2, respectively, were applied in Equation 2.18 and 2.19 for broccoli 

segmentation. This is because the relatively high API value resulted from the 

intensity of the broccoli plant’s amplitude image, which is higher than that of the 

weeds and soil background. The resulting images S1 and S2 are shown in Figure 

2.18 (h) and (i), respectively. 

Z1 = [1,				�ℎ]N	U^ ≤ 150, ab ≥ 5, Y�f ≥ 0.65	Dl	0						]gE]																																																																																									(2.18)	
Z2 = [1,				�ℎ]N	U^ ≤ 220, U` ≤ 65, Yab ≥ 5, �f ≥ 0.6	Dl0					]gE]																																																																																												(2.19)	
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2) As Figure 2.18 (h) and (i) show, the intermediate result images S1 and S2 have 

many small regions, which are noise after threshold. In order to get rid of the 

noise of S1, the opening operation, a 2D morphological processing method, was 

applied. The structuring element of the opening operator was a 3 × 3 square 

element. The result image of S1 after the opening operation is represented with 

S11, which is shown by Figure 2.18 (j). The figure indicates that the small regions 

are successfully removed. The intermediate image S11 can be separated into 

different regions in 2D space; regions with sizes smaller than 20 pixels were 

removed. The result image S12 is shown by Figure 2.18 (k). 

3) The intermediate result image S12 did not contain a full broccoli plant. Most 

likely, the broccoli area extracted was only the inner part of a broccoli leaf. To 

recover the boundary area of the broccoli leaf and to get a more complete broccoli 

plant image, a method similar to the third step of the soybean segmentation 

algorithm was adopted. Each pixel of S12 was checked to determine its neighbor 

point in 3D space, which was removed in S12 but not in the S2 image. If true, 

these qualified neighbor points were added into image S12. This operation was 

iterated to process new S12 until there were no new points to be added. After this 

process, all of the points of the final S12 image were separated into different 

regions in 3D space. Regions smaller than 30 points were removed because they 

were too small to be considered as parts of a broccoli leaves. The final result of 

this step is represented with S13, as Figure 2.18 (l) shows. 

4) A method similar to the fourth step of the soybean segmentation algorithm was 

applied to further recover the boundary area of broccoli. Any background point 
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with a distance to any foreground point of image S13 that was smaller than 10 

mm was added to generate a new S13 image. This operation was iterated twice, 

and the final result is called image S14, which is shown in Figure 2.18 (m). 

5) As Figure 2.18 (m) shows, the broccoli image extracted in intermediate image S14 

is broken into unconnected pieces. This problem made it hard to analyze the 

broken pieces together as a whole plant. To solve this problem, 2D dilation with a 

structural kernel of 3 × 3 square element was applied to process image S14. Being 

different from normal 2D dilation, only the pixels with API value over than 0.3 

were added in this process. This is because the area with API value smaller than 

0.3 is very likely to be soil and weed background, as discussed previously. This 

dilation process was iterated five times, and the result image is called S15. As 

Figure 2.18 (n) indicates, the broken pieces of broccoli are merged together as a 

whole part. This procedure also took undesired soil or weed areas as part of the 

extracted broccoli image. The problem was solved in next step. 

6) This study developed a method inspired by the flood fill algorithm to process 

intermediate image S15 to remove the undesired background area from the 

extracted broccoli image. It is based on observation of the 3D geometry structure 

of the broccoli plant. First, the outer area of the broccoli plant is normally higher 

than the weeds and soil around it, this makes the boundary area of broccoli like a 

“dam” that can prevent the “water” from flooding the inner part of broccoli for the 

flood fill algorithm. Second, the inner leaves are on top of the outer ones, and this 

means that there are several levels of “dam” from the outside to the inside area to 

protect the island (broccoli). Therefore, even if the outer leaves are covered by the 
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“flood,” the inner leaves on top still have multiple chances to block the water. 

Because of the 3D structure of broccoli, the “flood” can easily cover the soil and 

weed background, but the broccoli image is more or less safe from “flood.” The 

difference between the algorithm in this study and the normal flood algorithm is 

that the “water” in this study flows to the neighbor pixel only when the height of 

the neighbor pixel is not more than 15 mm higher than that of the pixel where 

water it is. Moreover, the water continues to flood new areas unless the neighbor 

area is over 15 mm than where it is. In this study, all of the background pixels at 

the boarder of image S14 were used as the start point, in which “water” was added 

at the beginning. The recursive algorithm will make the “water” continuously 

flood the new background area until it is blocked by the “dam,” which is the 

boundary of broccoli or other objects which are significantly higher than neighbor 

area. After this flood fill algorithm, broccoli and some other objects which were 

significantly higher than neighbor area were kept. By removing the point cloud 

region in 3D space whose size was smaller than 100 points, the objects other than 

broccoli can be reliably cleaned as Figure 2.18(o) shows. In Figure 2.18(o), the 

white pixels represent the area covered by “flood,” and the black part is the 

extracted broccoli area, which is safe from “water.” By rendering the amplitude 

value to the black area of Figure 2.18 (o), the final broccoli segmentation result is 

achieved as Figure 2.18 (p) shows. 
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                                  (a)                                                                  (b) 

   

                                  (c)                                                                  (d) 

   

                                  (e)                                                                  (f) 
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Figure 2.18 continued 

   

                                  (g)                                                                  (h) 

   

                                  (i)                                                                  (j) 

   

                                  (k)                                                                  (l) 
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Figure 2.18 continued 

   

                                  (m)                                                                  (n) 

   

                                  (o)                                                                  (p) 

Figure 2.18. Images of broccoli segmentation procedure: (a) amplitude image, (b) depth 
image, (c) amplitude gradient image GI, (d) depth gradient image Gz, (e) neighbor count 
image Nc, (f) curvature image δ, (g) amplitude percentile image API, (h–i) intermediate 

images S1 and S2, (j) image S11, (k) image S12, (l) image S13, (m) image S14, (n) image 
S15, (o) result image of flood fill, and (p) final broccoli segmentation result image 
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2.6 Results & Discussion 

As introduced in the experiment design section, in this research, data from 206 

broccoli plants and 3 rows of soybean plants were collected during June and July. The data 

consisted of a total of 49,179 and 18,793 sequential image sets captured for broccoli and 

soybean plants, respectively. As it was impractical to manually check the processing result of 

all of these large size image sets, part of the data set was randomly selected to test and 

evaluate the system performance. 

 

2.6.1 Broccoli Recognition Result 

For each of the 206 broccoli plants, of each of three data capturing dates, three image 

sets were randomly selected to evaluate the recognition performance of this system for the 

broccoli plant at different growing stages. For each data capturing date, the broccoli plant 

recognition accuracy of the 718 randomly selected images was collected. Additionally, for 

practical applications, when the mobile platform moved through the field, the platform had 

multiple chances to detect a crop plant by capturing and analyzing multiple sequential images 

of the plant. Therefore, the rate of recognizing a broccoli plant accurately from at least one of 

its three image sets was also evaluated. The false detection rate, which mistakenly recognized 

the background areas as a broccoli plant, was also collected.  

The statistical results are given in Table 2.4. As it indicates, from one image, the 

broccoli plant detection rate is over 84.3%, and the rate of the broccoli plant being 

recognized from at least one of its three images is over 88.3%. The false detection rate is less 

than 1.5%. As Table 2.4 shows, the recognition accuracy of the later image sets is slightly 
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higher than those of earlier image sets, which indicates that broccoli plants at a higher growth 

stage are relatively easy for this system to recognize. 

The major reasons for the broccoli plants being missed by this system were the 

plants’ small size and the low resolution of the ToF camera. The diameter of all of the missed 

plants was less than 12 cm. As the resolution of the ToF camera used in this research was 

only 144 × 176 pixels, and the camera was over 0.6 m away from the top of the plants, the 

missed plants appeared too small in the captured image, as Figure 2.20 shows. The occlusion 

problem caused by weeds also led to miss detection. 

The broccoli plants were extracted with relatively accurate shape. Table 2.5 provides 

20 sets of randomly selected original input images and the broccoli segmentation result. Each 

image set belongs to a different broccoli plant. As the images indicate, the broccoli plant can 

be segmented out with relatively precise and complete shape. Because of the small resolution 

of input images and occlusion caused by weeds, some small parts of broccoli plant may be 

missed by this system. However, the major areas of the broccoli plant were accurately kept in 

the segmentation result for all samples, as Table 2.5 shows. Additionally, the segmentation 

result was clean, and in only approximately 1% of the 3090 randomly selected images was 

the background mistakenly recognized as a broccoli plant.  
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Table 2.4. Broccoli plant recognition accuracy rate 

Data collection 

date 

Height of 

broccoli plant 

(cm) 

Broccoli 

recognition rate 

from one image 

Detection rate 

of one plant 

from 3 images 

False detection 

rate 

June 26, 2012 18–23  84.3% 88.3% 1.45% 
July 6, 2012 18–23 86.1% 90.3% 0.65% 
July 18, 2012 18–30 88.0% 92.7% 0.97% 

 

 

(a) 

   

                                 (b)                                                                (c) 

Figure 2.19. Broccoli segmentation result: (a) 2D color image, (b) amplitude image from ToF 
camera, and (c) broccoli segmentation result 
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                                  (a)                                                               (b) 

Figure 2.20. Small plant missed by system: (a) amplitude image captured by ToF camera and 
(b) 2D color image 
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Table 2.5. Broccoli segmentation result 

ID Depth Image Amplitude Image Segmentation Result 

1 

   

2 

   

3 

   

4 

   

5 
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Table 2.5 continued 

ID Depth Image Amplitude Image Segmentation Result 
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8 
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10 
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Table 2.5 continued 

ID Depth Image Amplitude Image Segmentation Result 
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13 

   

14 

   

15 
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Table 2.5 continued 

ID Depth Image Amplitude Image Segmentation Result 

16 

   

17 

   

18 

   

19 

   

20 
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2.6.2 Soybean Recognition Result 

Soybean images were collected on June 26 and July 5, 2012. Because of the high 

competition between weeds and grass, there was little maturity difference in the soybean 

between the two data capture dates. The soybean data collected on July 5, 2012 was 

representative enough to be used to evaluate the soybean recognition accuracy of the system. 

Among the total 6967 image sets of three rows of soybean plant, 100 image sets were 

randomly selected to evaluate the soybean detection and segmentation accuracy. For the 100 

images, there were about 3938 soybean leaves according to the manual counting result, and 

3593 soybean leaves were accurately detected by the system. Therefore, the detection rate of 

soybean leaves is 91.2%. Most of the leaves missed by the system were either too small or 

occluded. The main idea of the soybean detection algorithm is to search for the flat surface 

with relatively uniform amplitude value. Small or partially occluded leaves did not have 

enough pixels in the low resolution images captured by the ToF camera and can hardly be 

recognized as flat surface in this system; therefore, they were missed. Moreover, there was 

no weed or soil area recognized as soybean leaves for all of these 100 images. 

The soybean leaves were extracted with relatively accurate shape by the segmentation 

algorithm of this research. Table 2.6 provides 20 randomly selected soybean input data and 

the corresponding segmentation result. It shows that the big soybean leaves that are not 

occluded by weeds can always be extracted without significant loss of area. However, for the 

small soybean leaves or the ones occluded, if they are not missed, their loss of fragment is 

more obvious in the segmentation result. 
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Table 2.6. Soybean segmentation result 

ID Depth Image Amplitude Image Segmentation Result 

1 

   

2 

   

3 

   

4 

   

5 
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Table 2.6 continued 

ID Depth Image Amplitude Image Segmentation Result 
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Table 2.6 continued 

ID Depth Image Amplitude Image Segmentation Result 
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Table 2.6 continued 

ID Depth Image Amplitude Image Segmentation Result 

16 

   

17 

   

18 

   

19 

   

20 
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2.6.3 Processing Speed 

Automated weeding application requires satisfactory processing speed for the crop 

plant detection task. The algorithm of this research is highly optimized. To test the 

processing speed of the system, it was run on a 3.4 GHz Intel Xeon CPU to process 1091 

broccoli images and 2184 soybean images. According to the experiment result, the 

processing time range of one broccoli image was between 16.82 ms and 48.53 ms; the mean 

value was 26.82 ms; and the standard deviation was 6.6 ms. For soybean data, the processing 

time of one image ranged from 24.11 ms to 59.01 ms; the mean value was 32.68 ms; and the 

standard deviation was 5.34 ms. The average processing speed for broccoli and soybean were 

37.29 and 30.60 frames per second (fps), respectively. 

 

2.7 Conclusions 

This research developed a soybean and broccoli detection system based on the use of 

a 3D ToF camera for automated weeding application. From the result of the research, it can 

be concluded that the 3D imaging based crop plant and weed recognition exhibited promising 

potential for automated robotic weeding application. First, the sparse noise filter of this 

research was effective and efficient. Second, the 2D and 3D features, including gradient of 

amplitude and depth, surface curvature, API, normal direction, and neighbor point count in 

3D space, were effective to discriminate broccoli and soybean from weeds and soil. Third, 

according to the 3D geometry and 2D amplitude characteristics of broccoli and soybean 

plants, one segmentation algorithm was developed for each crop plant. The detection rate of 

this system reached 88.3% and 91.2% for broccoli and soybean, respectively. Crop plants 

that were not too small sized in the images were extracted and recovered with relatively 
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complete shape. Fourth, both the 2D and 3D machine vision algorithms were highly 

optimized, and the image processing speed of this system was over 30 Hz for both types of 

plants. 

It was found that using a low spatial resolution ToF camera is a limitation to achieve 

better crop plant detection and segmentation accuracy. This problem makes the small size 

broccoli plant and soybean leaves do not have enough pixels to accurately analyze their 2D 

characteristics and 3D geometry, leading them more likely to be missed. The resolution of 

other 3D ToF cameras is comparable to that of the one used in this study. A better camera 

with higher resolution could be used in the future to help resolve this problem. 

 

 

2.8 Reference 

Arya, S., D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. 1998. An optimal 
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of 
the ACM (JACM) 45(6):891-923. 

Åstrand, B., and A.-J. Baerveldt. 2005. A vision based row-following system for agricultural 
field machinery. Mechatronics 15(2):251-269. 

Du, J.-X., X.-F. Wang, and G.-J. Zhang. 2007. Leaf shape based plant species recognition. 
Applied Mathematics and Computation 185(2):883-893. 

Ehsani, M., S. K. Upadhyaya, and M. L. Mattson. 2004. Seed location mapping using RTK 
GPS. Transactions of the ASAE 47(3):909-914. 

Furbank, R. T., and M. Tester. 2011. Phenomics - technologies to relieve the phenotyping 
bottleneck. Trends in Plant Science 16(12):635-644. 

Griepentrog, H.-W., M. Nørremark, H. Nielsen, and B. Blackmore. 2005. Seed mapping of 
sugar beet. Precision Agriculture 6(2):157-165. 



97 

 

Jin, J., and L. Tang. 2009. Corn Plant Sensing Using Real-Time Stereo Vision. Journal of 
Field Robotics 26(6-7):591-608. 

Jones, H. G., and R. A. Vaughan. 2010. Remote sensing of vegetation: principles, techniques, 
and applications. Oxford University Press, Oxford, UK. 

Jørgensen, M., H. T. Søgaard, and P. S. Nielsen. 2002. Præcision ved automatisk styring af 
radsensere. Grøn Viden-Markbrug(268). 

Kapur, J., P. K. Sahoo, and A. Wong. 1985. A new method for gray-level picture 
thresholding using the entropy of the histogram. Computer Vision, Graphics, and 
Image Processing 29(3):273-285. 

Kise, M., Q. Zhang, and F. Rovira Más. 2005. A stereovision-based crop row detection 
method for tractor-automated guidance. Biosystems Engineering 90(4):357-367. 

Kittler, J., and J. Illingworth. 1986. Minimum error thresholding. Pattern recognition 
19(1):41-47. 

Klasing, K., D. Althoff, D. Wollherr, and M. Buss. 2009. Comparison of surface normal 
estimation methods for range sensing applications. In Robotics and Automation, 
2009. ICRA'09. IEEE International Conference on. IEEE. 

Kumar, L., K. Schmidt, S. Dury, and A. Skidmore. 2002. Imaging spectrometry and 
vegetation science. In Imaging spectrometry, 111-155. Springer. 

Nagasaka, Y., N. Umeda, Y. Kanetai, K. Taniwaki, and Y. Sasaki. 2004. Autonomous 
guidance for rice transplanting using global positioning and gyroscopes. Computers 
and Electronics in Agriculture 43(3):223-234. 

Nakarmi, A. D., and L. Tang. 2012. Automatic inter-plant spacing sensing at early growth 
stages using a 3D vision sensor. Computers and Electronics in Agriculture 82:23-31. 

Noh, H., Q. Zhang, S. Han, B. Shin, and D. Reum. 2005. Dynamic calibration and image 
segmentation methods for multispectral imaging crop nitrogen deficiency sensors. 
Transactions of the ASAE 48(1):393-401. 



98 

 

Otsu, N. 1975. A threshold selection method from gray-level histograms. Automatica 
11(285-296):23-27. 

Pauly, M., M. Gross, and L. P. Kobbelt. 2002. Efficient simplification of point-sampled 
surfaces. In Proceedings of the conference on Visualization'02. IEEE Computer 
Society. 

Slaughter, D., D. Giles, and D. Downey. 2008a. Autonomous robotic weed control systems: 
A review. Computers and electronics in agriculture 61(1):63-78. 

Slaughter, D. C., D. K. Giles, and D. Downey. 2008b. Autonomous robotic weed control 
systems: A review. Computers and Electronics in Agriculture 61(1):63-78. 

Søgaard, H. T., and H. J. Olsen. 2003. Determination of crop rows by image analysis without 
segmentation. Computers and electronics in agriculture 38(2):141-158. 

Thompson, J., J. Stafford, and P. Miller. 1991. Potential for automatic weed detection and 
selective herbicide application. Crop protection 10(4):254-259. 

Veeken, M. v. d., L. Tang, and J. W. Hofstee. 2006. Automated corn plant spacing 
measurement at early growth stages using active computer vision. In ASABE 2006 
Annual International Meeting. Portland. 

Vrindts, E., and J. d. Baerdemaeker. 1997. Optical discrimination of crop, weed and soil for 
on-line weed detection. Precision agriculture '97. Volume II. Technology, IT and 
management. Papers presented at the First European Conference on Precision 
Agriculture, Warwick University, UK, 7-10 September 1997. 

Weiss, U., P. Biber, S. Laible, K. Bohlmann, and A. Zell. 2010. Plant species classification 
using a 3d lidar sensor and machine learning. In Ninth International Conference on 
Machine Learning and Applications (ICMLA). IEEE. 

Zwiggelaar, R. 1998. A review of spectral properties of plants and their potential use for 
crop/weed discrimination in row-crops. Crop Protection 17(3):189-206. 



99 

 

CHAPTER 3. MACHINE VISION BASED REAL-TIME MOTION AND ATTITUDE 
ESTIMATION 

 

3.1 Abstract 

For the development of a 3D imaging based plant phenotyping system to extract 

complex 3D phenotypic features of plants, a methodology for 3D plant reconstruction is the 

foundation. When using a vision sensor to capture images from multiple views, the main 

challenge for a complete 3D reconstruction of the entire plant (holographic 3D 

reconstruction) is to precisely track the posture of the image sensor with a high accuracy so 

that those images of different views can be registered correctly in a 3D space. In this 

research, a real-time target (chessboard pattern) detection machine vision algorithm was 

developed and then utilized for the motion and attitude estimation for a 2D camera and its 

carrier. Compared to previously reported chessboard pattern detection algorithms, the speed 

of our new algorithm was greatly improved through effective elimination of the background 

image. The consistent high-response speed of the target detection algorithm with over 

97.49% detection accuracy was achieved, regardless of the existence of the target in the 

camera view under both indoor and outdoor lighting conditions. Centimeter-level positioning 

accuracy of the vision sensor was obtained within a 4.27 × 7.27 m testing area in front of one 

beacon by analyzing the target’s appearance in the image. The objects with known position 

relative to the target can be precisely derived from the target location detected by the 

algorithm. In addition, the attitude of the 2D camera and its carrier, including pitch, roll, and 

yaw rotational angles, can also be estimated with an error rate less than 1˚. Moreover, the 

usability of the proposed positioning system was demonstrated by the reliability of the target 

detection algorithm in identifying different targets, implying that a large number of targets 
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can be deployed to construct a beacon infrastructure to cover a large area, where the posture 

of the camera and its carrier can be tracked. 

 

3.2 Introduction 

The foundation for the development of a sophisticated phenotyping system that can 

characterize complex plant morphological traits in a complete 3D space (holographic 3D 

space) is 3D reconstruction. To do this, the main technical challenge is to develop a reliable 

and accurate 3D registration method that can precisely align different image views of a plant 

together to form its 3D model.  

Tracking the camera’s position and attitude and estimating the spatial relationship 

between different views is critical to 3D registration. Alenya et al. (2011) applied a robotic 

arm to control and measure imaging sensors’ position and attitude for a 3D reconstruction 

based phenotyping task. Their approach achieved high accuracy and reliability if the robotic 

arm is of high positioning accuracy and precision, which however will lead to high 

equipment cost. On the contrary, Rusu et al. (2008) developed a robust multiple-view point 

cloud alignment approach based on 3D feature histograms. Their algorithm calculated the 

feature histogram of each point of every view and looked for the key feature point whose 

feature histogram is significantly different than others. By searching for the correspondence 

of key feature points between different views, the relationship between different views can be 

found and used for alignment. The advantage of this approach is that it is purely based on 3D 

image processing and does not depend on any other devices such as high-precision robotic 

arms, thus benefiting system cost. However, its calculation is heavy, and thus it requires long 

processing time. 
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Additionally, a posture estimation system of an imaging sensor can also be used in 

other applications; an example is to mount the camera on a robot to provide a localization 

solution for the robot itself.  

Many research efforts were found that developed various positioning systems. 

Ultrasound was applied for position measurement. For example, Addlesee et al. (2001) 

developed a system called the active bat positioning system. It installed over 900 receivers 

inside a building, which sensed the short pulse of ultrasound signals sent by tags to estimate 

the position of tags based on triangulation calculations. Their system could provide the 

position measurement inside the building with an approximately 3 cm error. Another 

advanced acoustic local positioning system called 3D-LOCUS (Prieto et al., 2009) was 

reported to have a positioning accuracy at the sub-centimeter level. An ultrasound based 

indoor positioning study (Cho et al., 2012) achieved approximately centimeter-level 

accuracy. However, these systems are vulnerable to the reflected sound, and they cannot 

provide accurate attitude information for 3D registration.  

Radio frequency (RF) technologies, including radio frequency identification (RFID) 

(Ni et al., 2004); WLAN (Ladd et al., 2004); and Bluetooth (Munoz-Organero et al., 2012), 

have been applied for indoor positioning application. However, they suffer from a multipath 

problem, and their accuracy is not better than meter level. The ultrawideband (UWB) is 

based on sending ultra-short pulse RF signal for less than 1 ns, which allows researchers to 

solve the multipath problem by filtering the reflected signal. A complete system level 

evaluation of a UWB based communication and location system was presented (Choliz et al., 

2011). The accuracy of the RF based location system could hardly reach the centimeter level. 
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The machine vision based position and attitude estimation system is promising. 

Zhang (2000) presented a camera calibration method by observing a planar pattern from a 

few different orientations. This research also provided the method to calculate the extrinsic 

parameters, which are the rotation and translation parameters that relate the world coordinate 

system defined by the planar pattern to the camera coordinates system. Once the camera 

intrinsic parameter calibration is done, which needs to be done only once for each camera, 

the pose of the target, including the position and attitude (pitch, yaw, and roll rotational 

angles), related to the camera coordinates system can be precisely calculated when the target 

image from the camera is analyzed. In this way, the motion and attitude of the camera and its 

carrier can be precisely evaluated by calculating the relationship between the 2D camera 

mounted on a carrier and the planar target serving as the beacon. Though this approach has 

great potential for motion and attitude estimation, it will not become practically useful until 

the challenge of accurate and rapid target detection under unpredictable image background 

conditions is resolved. 

 Among the planer patterns mentioned, the chessboard pattern was widely used for 

camera calibration. A target detection algorithm was proposed based on the characteristics of 

local intensity and the grid-line architecture of the planar checkerboard pattern image (Wang 

et al., 2007). However, this algorithm needed around nine seconds to process an image with a 

resolution of only 640 × 480. Another inner corner detection based algorithm was reported 

(Ha, 2009), but no information about its speed was provided. Another interesting target 

localization approach was to localize the target through detecting the double-triangle feature 

of inner corners of a chessboard pattern using a template (Yu and Peng, 2006), but it failed to 

reach a satisfactory speed. The Hough transform was applied for chessboard pattern detection 
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by extracting the straight lines of the target image (de la Escalera and Maria Armingol, 

2010). However, it can fail when the chessboard appears small in the image. OpenCV 

achieved a robust target detection algorithm. However, its processing speed is still too low 

for real-time processing requirements. In all, because of the problems of previous chessboard 

target detection algorithms, they were mostly applied to camera calibration, which has 

relatively low speed requirements; and none of them were applied or suitable for real-time 

motion and attitude estimation. 

Although satisfactory accuracy, robustness, high update rate, and low cost are 

important for motion and attitude estimation systems, the literature review revealed that 

previous local positioning systems have limitations to meeting these requirements both 

indoors and outdoors. The objective of this research is to greatly improve the chessboard 

pattern target detection speed so that the detected target can be used as the beacon for a 

machine vision based sensor motion and attitude estimation system, which is used for a 3D 

reconstruction system. Additionally, a precise object tracking system based on the reference 

of beacon target images can be used to help a mobile robot to localize itself and manipulate 

objects, such as buttons, knobs, handles, and many other devices, enabling the robot to 

automatically manage facilities, for instance. 
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3.3 Sensor 

The camera is critical for the precision of the motion and attitude sensing system 

based on machine vision technique. To achieve precise measurement results, the camera 

should satisfy following requirements. 

1) The lens of camera must be fixed. The system proposed by this research calculates 

the pose of the target by analyzing its captured image, which is related to the optical 

system. The information about the camera model, such as focal length and distortion 

efficiency, must be known before it can be applied as positioning sensor. Therefore, it 

is better to fix the optical system of the camera so that the camera can be applied to 

precision measurement after its model is calibrated once. 

2) As the focal length of the camera must be fixed, the camera must have a wide focus 

range to capture the target board either close or far away. 

3) The high pixel resolution of the camera benefits bigger image size of the target, 

which helps to increase the detection distance of the target as well as the target pose 

measurement precision. 

4) Even though the distortion effect of the camera can be measured through calibration, 

and its negative impact for target pose calculation can be compensated for to some 

degree, having a well-designed camera optical system with low distortion effect is 

helpful for system precision. 

For these reasons, the Logitech HD Webcam C310 was selected for this research. It 

features wide focus range, a fixed focal length of 4.4 mm, 60˚ field of view, and 1280 × 720 

pixel resolution. In addition, it has the satisfactory distortion effect defined for this study.  
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3.4 Target Detection Algorithm 

3.4.1 Challenges of Target Detection 

The inner corners of the chessboard pattern target image should be extracted to 

calculate the camera extrinsic parameters, which describe the translation and rotation 

relationship between the target and camera. As OpenCV function cvFindChessboardCorners, 

which detect the chessboard pattern target and locate its inner corners, shows great 

robustness but it does not have enough speed for real-time processing, and the corresponding 

algorithm of this research was developed based on it in order to greatly improve the speed 

while keeping its robustness. The main steps of the target detection algorithm of OpenCV 

are: 

1) Image normalization, which is carried out first to equalize the input image histogram, 

so that the contrast between the black and white areas of the target is visible. 

2) Adaptive threshold is applied to convert the grayscale image to the binary image, so 

that the black and white squares of the chessboard target can be distinguished. 

3) Dilation is applied with some iteration times. 

4) The algorithm searches for the quadrangles that are square-like and big enough, and 

their corners are also retrieved. The black squares of the chessboard target should be 

contained by the achieved quadrangles candidates.  

5) The neighbor quadrangles are organized and ordered into groups. Further analysis is 

conducted to search for the quadrangle group, which forms the chessboard target 

pattern. 

For each input image, the OpenCV function iterates steps two to five and tries 

different window size and other parameters of the adaptive threshold of step two and 
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different dilation iteration times in step three to search for target patterns until it succeeds or 

reaches the maximum iteration time. Therefore, while it is relatively faster to localize the 

target when one is available in the image, much more time is required for this function to 

determine that no target is available because the function must try all of the different 

parameters before it finishes. The localization system of the mobile vehicle requires real-time 

response speed of the beacon detection algorithm, no matter whether there is target available 

in the image captured or not. According to the performance of the OpenCV, the speed of the 

chessboard detection algorithm should be very high, especially in cases when no target is 

available in the image. 

This research makes two contributions to significantly increase the target detection 

speed. First, a pre-analysis algorithm was developed to effectively identify most parts of the 

background area in the image. The target searching area in the steps described in the steps 

previously was greatly reduced. Second, as the adaptive threshold of step two of the target 

detection function is time consuming and it may be called multiple times during the target 

searching process, a new implementation was proposed to accelerate it. 

 

3.4.2 Background Identification Algorithm for Target Detection Acceleration 

A key to increasing the target detection speed is to effectively identify as much 

background image area as possible in advance, with low calculation cost, in order to save the 

further target detection time cost by reducing the searching area. This research developed an 

algorithm that is capable of doing so with low calculation cost before calling the target 

searching algorithm mentioned previously. Based on that, the edges of all of the squares of 

the target were connected together as a frame, and the squares were enclosed inside and 
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separated as neighbors with similar properties. The main idea was to detect the edge first, and 

then remove the edges that cannot belong to a target based on some criteria. After that, the 

images were divided into separated areas by the edges. Finally, the properties of all of the 

areas and the similarity between neighboring ones were analyzed, and the ones that did not 

satisfy the criteria proposed were regarded as the background. The details are illustrated 

below. 

 

3.4.2.1 Grayscale Down-Sampled Image 

A down-sampled grayscale image A was created from the original input color image 

captured by the camera using Equation 3.1.  

Y(�, �) = n(�	,�
).o(�	,�
).p(�	,�
)q                  (3.1) 

where R, G, and B are the red, green, and blue color component of the input color image, 

respectively. The width and height of the down-sampled image were 640 and 360, 

respectively, which were half of those of the input image. There were two benefits of down-

sampling actions. First, the decreased image size helped to increase the image processing 

speed. Second, it made the edge detection robust to the fuzzy edges of target, which were 

caused by the movement of camera or target. Down sampling also helped to avoid the 

missing detection of fuzzy edges of the solid black squares of the target. 

 

3.4.2.2 Edge Detection 

To do the edge detection, the Sobel operator was used to process gray image A to 

calculate the approximate gradient magnitude image D, as expressed by Equation 3.2-3.4. 

r	 = V−1 0 1−2 0 2−1 0 1W ∗ Y            (3.2) 
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r
 = V−1 −2 −10 0 01 2 1 W ∗ Y       (3.3) 
r = |r	| + �r
�                       (3.4) 

The two matrixes in Equation 3.2 and 3.3 are Sobel convolution kernels, and they 

were applied to input gray image A to generate the horizontal and vertical derivative images 

r	 and r
, respectively. In addition, the approximate gradient magnitude image D is the sum 

of their absolute value, as Equation 3.4 indicates. 

A constant threshold 170 was applied for edge detection. The pixels above 170 were 

regarded as edges. Figure 3.2 shows one edge detection result. 

 

3.4.2.3 Edge Screening 

To judge whether the edges achieved in the previous step were possibly to be those of 

the chessboard target, each detected edge was analyzed using the criteria represented by 

Equation 3.5-3.8.  

� ≥ 30, where � = stu	 − st�G + 1                   (3.5) 

ℎ ≥ 30, where ℎ = vtu	 − vt�G + 1                     (3.6) 

N���]g > 250                                                         (3.7) 

N���]g < ��ℎ, where � = min {0.6, �|}.�|~}~ �,       (3.8) 

where Xmax, Xmin, Ymax, and Ymin are the maximum and minimum value of the X and Y 

coordinates of all of the pixels belonging to the corresponding edge, respectively, and nPixel 

is the total number of its pixels. The edge of the chessboard target should be a frame, whose 

width, height, and total number of pixels has their minimum threshold, respectively, as 

illustrated by Equation 3.5–3.7. Since the edge of the target image should have some blank 
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area inside rather to being solid as Figure 3.2 shows, Equation 3.8 was used to check this 

criteria. 

Only the edges that satisfied all of Equation 3.5–3.8 were kept for further analysis. 

The white lines in Figure 3.3 are the edge selection result of Figure 3.2. 

 

3.4.2.4 Area Analysis 

After the edges were screened, the image was divided into different disconnected 

areas. The areas with a number of pixels that was equal or smaller than 150 were kept for the 

future target detection algorithm, without any further inspection in this step.  These areas 

were so small that their shapes could deviate from the original ones after the edge detection. 

For the rest of the areas with sizes of more than 150 pixels, Equation 3.9–3.10 were applied 

to preliminarily screen the target squares candidates based on the fact that the squares of the 

chessboard target should be enclosed by the target edge detected with the rectangular or 

square-like shape in the image.  

5ℎ ≥ � ≥ 0.2ℎ, where ℎ = vtu	 − vt�G + 1, and � = stu	 − st�G + 1    (3.9) N���]g > 0.4�ℎ,     (3.10) 

where Xmax, Xmin, Ymax, and Ymin are the maximum and minimum value of the X and Y 

coordinates of all the pixels of the corresponding area, respectively, and nPixel is the total 

number of its pixels. Equation 3.9 defines a range between 0.2 and 5 for the ratio between the 

width and height of a candidate area. Equation 3.10 could screen out areas whose shapes are 

not rectangular or square. 

The relatively big areas that passed Equation 3.9–3.10 were further inspected. 

Observing the chessboard target, the inner squares have more than four neighboring squares 



110 

 

with similar width, length, and number of pixels. Equation 3.11–3.13 were applied to check 

whether neighbor areas had similar shapes. 

0.75�s��_tu	 − s��_t�G� < s�_tu	 − s�_t�G < 1.33(s��_tu	 − s��_t�G)    (3.11) 

0.75�v��_tu	 − v��_t�G� < v�_tu	 − v�_t�G < 1.33(v��_tu	 − v��_t�G)      (3.12) 

0.75 × N���]g�� < N���]g� < 1.33 × N���]g�� ,          (3.13) 

where Xi_max, Xi_min, Yi_max, and Yi_min are the maximum and minimum value of the X and Y 

coordinates of ith area, respectively, and nPixeli is its size. Xij_max, Xij_min, Yij_max, Yij_min, and 

nPixelij are the parameters of the jth neighbor area. For the areas with at least four neighbors, 

which satisfied Equation 3.11–3.13, these areas and their similar neighbors were kept as the 

final candidate area for target detection. The rest were regarded as not belonging to the target. 

Figure 3.3 shows the result of area analysis. The gray part is the area identified as 

background, which was eliminated for later target searching. The white lines are the edges 

kept by the edge selection step, and the color areas are those kept for later target searching. 

 

Figure 3.1. Raw sample image captured from camera 
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Figure 3.2. Edge extraction result 
 

 

Figure 3.3. Result of area analysis: The gray part is the area eliminated for later target 
searching; the white lines are the edges kept by the edge selection algorithm; and the color 

areas are kept for later target searching 
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Figure 3.4. Target detection result 
 

 

3.4.2.5 Summary of Background Identification Algorithm 

The four steps detailed in the previous section were developed to identify most parts 

of the background image area. Low CPU time cost was achieved because of the simplicity of 

this algorithm. Edge and area screening criteria represented by Equation 3.5–3.13 alone were 

simple, but their combination showed great power to robustly and effectively reduce the 

target searching candidate area and thus significantly reduced the detection time. 

 

3.4.3 Optimization of Adaptive Threshold 

After the pre-analysis algorithm for identifying the background image area, a similar 

target detection process with the OpenCV function cvFindChessboardCorners illustrated 

earlier was called. During the iterations of the target detection process, adaptive threshold 

was called repeatedly to try different window size w, which was an odd integer, and 
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parameter p, to accurately extract the squares of the chessboard pattern. The process 

compared the intensity value of each pixel of the gray image with the mean value of w × w 

pixel neighborhood minus parameter p to determine the threshold result as shown by 

Equation 3.14 and 3.15. 

�E�(�, �) = �1,   �� ElC(�, �) > �(�, �)0,   D�ℎ]l��E]                    ,              (3.14) 

where 

�(�, �) = ∑ ∑ ��b(	,
)�+��,?>-����,?
�+��,?)-����,? }? −  �  and             (3.15) 

where src is the input grayscale image and dst is the output binary image of the threshold 

action. According to Equation 3.15, for each image with 1280 × 720 pixels, the mean value 

of the corresponding neighborhood needs to be calculated to determine the threshold value. It 

is time consuming to sum the intensity value of w2 neighbor pixels. If all of these 

calculations were processed every time during the multiple iterations of the target detection, 

it would create a bottleneck to speed. 

To speed up the adaptive threshold algorithm, an image C was proposed to be created 

in advance before target detection. It had the same dimensions as the grayscale input image 

src, which was 1280 × 720 pixels, and it was generated using Equation 3.16.  

                          /(�, �) = ∑ ∑ ElC(�, �)
�0�	�0�       (3.16) 

The C(x,y) is the sum of the rectangle areas with corners (1, 1), (x, 1), (1, y), and (x, y) 

of input image src. Having the image C, Equation 3.15 could be replaced with Equation 3.17 

for iterations of adaptive threshold. 

�(�, �) = �{	.��,? ,
.��,? ���{	.��,? ,
��+,? ���{	��+,? ,
.��,? �.�{	��+,? ,
��+,? �}? −  �  

(3.17) 
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Therefore, the heavy-load calculation of Equation 3.15 was greatly reduced by 

Equation 3.17, which required few operations and thus saved much CPU time. Figure 3.4 

shows the target found by the accelerated detection algorithm, whose inner corners are 

marked by the connected color circles. 

 

3.5 Position and Attitude Estimation  

3.5.1 Positioning Theory 

Having the chessboard pattern target detected, the translation and rotation relationship 

between camera and beacon target can be calculated. For example, the size of the target 

image decreases when their distance increases. In addition, another example is that the image 

of the square of the target deforms to a trapezoid or other shape when it is not parallel to the 

imager. Knowing the dimensions of the target and the camera model, which describes the 

relationship between the object and its projection on the imager, the target’s rotation and 

translation related to the camera can be calculated based on its captured image. Therefore, 

calibrating the camera model in advance is indispensable for the positioning system based on 

the machine vision technique proposed. 

The simplest model of a camera is a pinhole model. Equation 3.18 summarizes the 

projection of the points in the physical world into the camera.  

� = E��b , where � = ���1�, � = V�	 0 C	0 �
 C
0 0 1 W, �b = VsbvbibW,           (3.18) 
where M is the camera intrinsic matrix, (Cx, Cy) is the principal point, fx and fy are the focal 

lengths related to two directions expressed in pixel related units, and Qc (Xc, Yc, Zc) is the 

coordinate value of a physical point in the camera coordinate system. 
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The simple pinhole camera model is not accurate enough to use for precise 

measurement. The distortion of the lens cannot be ignored. In practice, no camera is perfect 

because of its nonideal lens and assembly, which lead to radial and tangential distortions. To 

correct the error caused by the lens distortion, a 5 × 1 distortion vector to describe these two 

kinds of distortions needs to be calculated. 

Camera calibration was done to calculate the camera intrinsic matrix and distortion 

vector using the OpenCV function cvCalibrateCamera2 by inputting the inner corners of the 

chessboard pattern target image captured at different viewpoints. In practice, there is 

difference between the lens shape and assembly of different cameras, even for those of same 

model, so the camera individuals’ intrinsic and distortion parameters are not exactly the same. 

Thus every camera needs to be calibrated before being applied for positioning measurement 

in advance. 

The mapping relationship between the viewed physical point Q and the point q on the 

imager to which Q is mapped can be expressed in terms of matrix multiplication. If it is 

defined that: 

�� = $s v i 1%&        (3.19) 

�� = $�� �� 1%&  ,              (3.20) 

where (X, Y, Z) of Q¡ represents the world coordinates of one physical point, and (��, ��) of �� 

is the coordinates of the mapped point on the image after correction for lens distortion. 

�� = E�¢�� , where ¢ = $£ | �%         (3.21) 
Then, the mapping between Q¡ and q� can be represented by Equation 3.21. W is a 

matrix of extrinsic parameters, which is the combination of rotation matrix R and translation 

vector t, for describing the relationship between the world coordinate system and the camera 
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coordinates system. In this research, if not mentioned, the world coordinate system is the 

coordinate system defined by the target; the target on the plane follows the equation Z = 0; 

and the origin is the bottom-left inner corner, as Figure 3.5 indicates. Figure 3.5 also shows 

the camera coordinate system. 

 

Figure 3.5. The world coordinate system defined by the target and camera coordinate system 
 

The mapping relationship between the world coordinate system and camera 

coordinate system can be expressed by Equation 3.22. 

�b = ¢�� = $£ | �%��              (3.22) 
Equation 22 equals another form represented by Equation 3.23, which expresses how 

to calculate the world coordinate value of a physical point based on its position related to the 

camera coordinate system. It is useful to evaluate the motion of the camera’s carrier, as the 

world coordinate value of a physical point that has a fixed position related to the mounted 

camera can be applied as the position of carrier. In this research, Qc of this reference point 

was $0, 0, 0%&. 
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VsviW = £��(�b − �)                 (3.23) 

After the chessboard target was detected, its inner corners were extracted and inputted 

to the function cvFindExtrinsicCameraParams2 of the OpenCV to calculate the rotation 

matrix R and the translation vector t related to the camera coordinate system and the world 

coordinate system in Equation 3.22 and 3.23. By substituting Qc in Equation 3.23 with a 

reference point $0, 0, 0%&, the camera/carrier position can be calculated as Equation 3.24 

expresses: 

VsviW = −£���         (3.24) 

The image point q of the objects should be located and tracked. The distortion 

corrected image point �� of the point q in the original image related to a physical point with a 

known world coordinate value Q can be calculated by solving Equation 3.21. For this 

equation, the matrix W can be achieved after the target has been detected and the camera’s 

intrinsic matrix has been obtained using the calibration process in advance; it still has three 

unknown variables, which are s, ��, and ��. These can be solved by Equation 3.25-3.27. 

E = �¥¦                                (3.25) 

�� = E(�	sb + C	ib)         (3.26) 

�� = E��
vb + C
ib�         (3.27) 

where Qc (Xc, Yc, Zc) can be calculated using Equation 3.23. After the distortion corrected 

image point (��, ��) is achieved, the OpenCV function can be applied to calculate the 

corresponding point before distortion correction in the original image. 
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3.5.2 Attitude Evaluation 

The attitude of the camera can be evaluated by measuring the rotation relationship 

between the coordinate system of camera mounted and that of the target, which is expressed 

by Equation 3.22, whose rotation matrix R and translation vector t can be achieved using the 

OpenCV after the target has been detected. Using the cvRodrigues2 function of the OpenCV, 

the rotation matrix R can be translated to pitch, yaw, and roll rotation angles from the target 

coordinate system to the camera coordinate system. 

 

3.6 Target Identification 

To identify different chessboard pattern targets, up to ten black rectangles are 

proposed to encode a 10 bit binary ID, as the top part of the two targets of Figure 6 indicates. 

The existence and absence of a black rectangle represents one and zero at the corresponding 

bit, respectively. Therefore, the ID of the left and right target of Figure 3.6 is 1023 and 813, 

respectively. 

 

 

Figure 3.6. Two target samples 
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As the ID’s physical position related to the chessboard pattern is known when making 

the target, the corners of each square can be precisely located on the original image captured 

by the camera using Equation 3.25–3.27 and relative to the earlier discussion when the target 

is detected, as the red circles on the top of the target of Figure 3.4 shows. Therefore, it is 

straightforward to decode the ID through identifying the existence of the rectangle for every 

bit. 

 

3.7 Experiments and Results 

A set of experiments were done to evaluate the performance of the target detection 

algorithm, position and rotation measurement, ID recognition, and object tracking on the 

image proposed. The chessboard pattern of the target used in this research had four rows and 

five columns squares, and the side of every square was 82.9 mm. Moreover, in order to 

prevent the target from appearing glossy under sunlight, matte finish paint was applied to the 

target to ensure that it could be reliably detected outdoors. 

 

3.7.1 Target Detection and ID Recognition Performance Experiment and Result 

To apply the chessboard pattern target as the beacon of the positioning solution, the 

speed and reliability of its detection algorithm are crucial. There are four criteria to evaluate 

the target detection speed. First, the algorithm should respond quickly when the target 

available in the view. Second, the positioning algorithm needs to be acknowledged as soon as 

possible if no beacon is available in the captured image. Third, the detection speed is better 

when it is consistently fast enough to ensure that it does not drop significantly at any time for 

some condition to impact the operation of the application. Fourth, the detection algorithm 

needs to work reliably in both indoor and outdoor conditions. 
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For this system, it could not detect the target when it was too far or moving too 

quickly. When the target distance was so far that the side of the square of the chessboard 

target was less than 8 pixels in the image, the target could not be detected, and its ID could 

not be recognized by this system, as it was filtered by the design of this algorithm. For the 

target size and Logitech HD Webcam C310 used in this research, this condition typically 

happened when the target was over approximately 10 m from the camera. Further, if the 

target moving speed is too fast, the edge of the beacon becomes fuzzy in the image, thus 

failing this target detection system by breaking its edge detection algorithm. The maximum 

target moving speed allowed by this system was relative to the camera exposure time, and 

thus was related to the camera’s light sensitivity and environment illumination condition. For 

all of the following target detection and target ID recognition experiments, the distance 

between the target and the camera was within 7 m and the target moving speed was less than 

0.7 m/s if the target was available in the view.  

The target detection performance was examined by comparing the algorithms of this 

research and OpenCV. Four videos were applied to test the speed and reliability performance 

of the target detection and ID recognition algorithm. To test the performance when the target 

was in the view, three videos were captured indoors and outdoors. One of them was captured 

indoors, as Figure 3.7 shows, and it has 1952 frames. The other two were captured outdoors. 

The first outdoor video has 2987 frames, and the camera direction is about 135° to the sun, 

which means the sunlight was on the rear right of camera, as Figure 3.8 (a) shows. The 

second outdoor video has 2709 frames, and the camera direction is about 45° to sun, which 

means the sun light was on the front right of the camera, as Figure 3.8 (b) shows.  
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Moreover, in order to test the performance of the target detection algorithm when 

there is no target in view, two videos were captured, indoors and outdoors, respectively for 

no target condition, as Figure 3.9 and 3.10 show. For both videos, the camera was rotated 

360° around the vertical axis to test the system performance for different images. The video 

captured indoors has 1596 frames, and the other one has 1954 frames.  

For all five videos, each frame was processed 20 times by the algorithms of OpenCV 

and this research, respectively, and the mean time cost of every frame of each method was 

recorded for the performance analysis. 

 

Figure 3.7. Video frame of moving target captured indoors 
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(a) 

 

(b) 

Figure 3.8. Frames of the videos of a moving target captured outdoors: (a) a frame of the 
video whose camera direction is around 135˚ to the sun and (b) a frame of the video whose 

camera direction is around 45˚ to the sun 
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Figure 3.9. A frame of the video without a target in view, captured indoors 
 

 

Figure 3.10. A frame of the video without a target in view captured outdoors 
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For the experiment with the target in view, both OpenCV and this research reported 

100% accuracy in locating the target with the indoor video and the outdoor video that were 

made with the camera direction at about 135° to the sun. For the outdoor video made with the 

camera direction at about 45° to the sun, the target detection rate of the OpenCV and this 

research is around 97.2% and 97.49%, respectively. The target detection time cost of both 

algorithms to process the indoor and outdoor videos is given by the boxplot shown by Figure 

3.11, and Table 3.1 also provides the relative statistics. Table 3.1 indicates that the mean time 

cost to locate the target available by this research is 24.84 ms for the indoor video and 29.75 

ms for the two outdoor videos, and those of OpenCV were 36.29 ms and 99.23 ms. The mean 

speed of this research is 1.46 and 3.34 times of that of OpenCV to process the videos 

captured indoors and outdoors, respectively. The interquartile range, which is the difference 

between the 25% and 75% percentile, of the detection time cost of this research is 13.49% 

and 14.59% of that of OpenCV for the indoor and outdoor video, respectively, supporting 

that it has more consistent high target detection speed with less variation. Further, the 

maximum target detection time cost of the videos, captured indoors and outdoors by this 

research, was 39.92 ms and 71.37 ms, respectively, and they were much smaller than those of 

the OpenCV, which were 72.88 ms and 412.7 ms, respectively. For all of the videos 

captured, both indoors and outdoors with a moving target in the view, the target ID was 

100% accurately recognized by the proposed method when the target was detected in these 

target detection experiments. 
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Figure 3.11. Target detection time cost when target is available 
 

For the two videos without a target in the view that captured images indoors and 

outdoors, no false positive detection result were reported by this research. Comparatively, 

OpenCV algorithm made one false positive detection when processing the 1954 frames of 

one video captured outdoors. The target detection time cost of these two videos by two 

algorithms is provided in the Figure 3.12 and Table 3.1. The mean response time for the 

condition that no target is available in the view of this research is 39.33 ms and 62.61 ms for 

the indoor and outdoor video, respectively, and those of OpenCV were 664.4 ms and 1104.5 

ms. The mean speed of this research is 16.89 and 17.64 times of that of the OpenCV to 

process the indoor and outdoor videos respectively. The interquartile range of the response 

time cost of this research is 11.43% and 21.05% of that of the OpenCV for the indoor and 

outdoor video respectively, showing its consistent higher processing speed with less variation. 

Further, the maximum response time cost of the videos, captured indoors and outdoors in this 
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research, was 74.06 ms and 169.74 ms, respectively, and they were much smaller than those 

of OpenCV, which were 846.3 ms and 1791.5 ms, respectively. The result shows that the 

target detection algorithm of OpenCV is slow when no target is available in the image, and it 

is a bottleneck to applying this machine vision based technique as a real-time positioning 

solution for 3D reconstruction or autonomous robot. The greatly improved speed of this 

research solved the limitation. 

The variation of processing time was mainly the result of the difference of 

background image. The complexity image led to longer response time, especially for 

OpenCV algorithm. The experiment result indicated that this research reduced the influence 

of background complexity and helped to achieve consistent high performance.  
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Figure 3.12. Response time of target detection algorithm when no target is available 
 

 

Figure 3.13. Percentage of image areas eliminated for the later target searching 
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Table 3.1. Response time cost of different target detection algorithm 

Algorithm Condition Target 
Time cost percentile (ms) 

Min 25% median Mean 75% 95% Max 

This research Outdoor 

Yes 

17.11 25.55 29.04 29.75 32.76 37.26 71.37 

OpenCV Outdoor 36.66 66.68 102.30 99.23 116.10 134.71 412.7 

This Research Indoor 19.84 22.69 23.46 24.84 27.01 30.72 39.92 

OpenCV Indoor 16.67 18.94 45.7 36.29 50.97 57 72.88 

This Research Outdoor 

No 

33.52 41.6 56.87 62.61 75.3 117.09 169.74 

OpenCV Outdoor 765.9 1025.7 1124.7 1104.5 1185.8 1266 1791.5 

This Research Indoor 31.4 32.71 35.42 39.33 42.13 60.38 74.06 

OpenCV Indoor 515.1 623.9 659.8 664.4 706.3 759.5 846.3 
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In summary, the target detection speed was greatly improved by this research for all 

cases. Especially when no target was available in view, the response speed was increased to 

over 16 times that of OpenCV algorithm. According to the best and worst processing speed 

cost record of 5 videos by this research, the processing speed between 14 and 58.4 fps (frame 

per second) was achieved when there was a target in view, and speed between 5.9 and 31.8 

fps was achieved when there was no target available in the image. Considering the slowest 

speed record was only a few outliers, based on the 95th percentile time cost record of each 

experiment, it can be found that the processing speed of 95% of the frames of the videos with 

target captured indoors and outdoors was above or equal 32.6 and 26.8 fps, respectively, and 

the 95% speed records of the videos without target captured indoors and outdoors were equal 

or above 16.6 and 8.5 fps, respectively. The statistics about the reliability performance and 

the improved speed supports that the target detection algorithm of this research satisfies the 

requirement of a real-time positioning system. The improved speed was benefited from the 

pre-analysis algorithm proposed, which showed strong power to effectively eliminate great 

percentage of image areas as background for later target searching task. As indicated by the 

boxplot of Figure 3.13, over 84% image area was removed as background for most 

conditions.  

 

3.7.2 Localization Experiment and Result 

An experiment was set up to evaluate the position measurement accuracy of proposed 

method as Figure 3.14 indicates. There were two targets. The left one in the picture served as 

the beacon for position calculation, and it was hang on a frame to make sure it was vertical to 

the ground. The right target served as the object to be located on the image based on its 

known world coordinates using Equation 3.25-3.27 in order to evaluate the accuracy of 
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proposed object tracking method. The inner corners’ world coordinates related to the beacon 

target were calculated based on a single picture which contains both of their images. If the 

two targets are captured by a camera simultaneously, the relationship between two coordinate 

values of a physical point corresponding to two targets is expressed by Equation 3.28. 

Vs�v�i�W = £���£� §Vs�v�i�W + ��¨ − ��               (3.28) 

Where the subscript represents which target’s coordinate system it relates to. X, Y, Z 

are the coordinate value. R and t are the rotation matrix and translation vector related to the 

coordinate system of camera and corresponding target. As the position of the inner corners 

related to their own target is known, its coordinates related to the other target appears on a 

same image simultaneously can be calculated by Equation 3.28. 

Having the right target’s inner corners’ position related to the beacon, the program of 

this research calculated their pixels in the image indirectly through analyzing the pose of the 

beacon in the view by Equation 3.25-3.27, and the result was compared with the those 

achieved by the inner corners directly extracted by the target pattern detection algorithm to 

determine the accuracy. 



131 

 

 

Figure 3.14. The setup of localization experiment 
 

The bottom of the beacon target was around 1.5 m above the ground, and the camera 

was mounted on a tripod with the height of around 0.5 m. Square grids with side length of  

two feet (60.96 cm) were defined on the ground. And 88 testing points, which were the 

corners of the grid, were picked in the 4.27×7.27 m area in front of the beacon target to place 

the camera for location measurement experiment. For each testing point, 20 images were 

captured to provide 20 position measurements of camera related to the beacon. The 

localization error was achieved by calculating the difference between the average positioning 

solution and the true value at each testing point, and the result is shown in Table 3.2, in 

which the X and Z values are the camera’s true position related to the world coordinate 
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system defined by the beacon target. For better visual illustration, Figure 3.15 was created to 

show the localization error changes versus the camera position related to beacon.  

The error increases when the camera is farther from the beacon because the lower 

resolution of target resulted from its smaller image size. When the Z coordinate of camera 

was smaller than three meters, the error was less than 17 mm. For the Z value over six 

meters, there is an obvious tendency of increased error. And the maximum positioning error 

was 65 mm, which was gotten where the camera was 727 cm away from the target at the Z 

direction. 

Table 3.3 and Figure 3.16 provide the standard deviation of the position measurement 

result at each testing point. The tendency that the standard deviation increased along with the 

Z coordinate of camera can be observed. For the Z value less than or equal to 544 cm, the 

standard deviation was smaller than 20mm. The maximum standard deviation, 61.8 mm, was 

gotten at the last row, whose Z coordinate was 727 cm. 
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Table 3.2. Localization error (mm) 
X (mm) 

Z (mm) -1839 -1230 -620 -10 599 1209 1819 2428 

1169 4 2 3 8 8 9 3 5 

1779 8 1 4 10 11 9 10 8 

2388 8 2 4 13 11 16 13 10 

2998 15 16 5 16 16 8 17 14 

3608 7 16 11 9 5 24 16 24 

4217 23 22 20 14 30 29 20 13 

4827 25 34 11 5 40 25 7 13 

5436 4 31 52 27 62 20 34 10 

6046 37 44 17 9 46 30 38 33 

6656 32 22 44 3 26 41 37 60 

7265 23 16 32 65 65 64 61 30 
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Figure 3.15. Location error map 
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Table 3.3. Standard deviation of localization result (mm) 
X (mm) 

Z (mm) 
-1839 -1230 -620 -10 599 1209 1819 2428 

1169 0.9 0.5 0.5 0.5 0.6 0.8 1.4 1.3 

1779 1 1.1 1.3 0.9 1 1.1 1.2 1.2 

2388 1.5 1.5 1.6 1.7 2.2 2.4 1.7 2 

2998 2.7 2.9 2.9 2.5 2.2 3.4 3.2 2.8 

3608 3.5 3.8 4.3 4.4 6.3 3.9 3.6 3.3 

4217 4.5 4.9 6.6 7.3 7 4.9 4.1 3.8 

4827 6.6 11.2 8.5 10.3 12.5 9.3 6.8 5.5 

5436 7.1 10.7 15.1 13.4 19.1 14 6.4 10.7 

6046 11.8 12.9 16.5 17.9 23.1 17.7 14.4 12.4 

6656 9.9 15.1 25.3 29.7 22.1 21.3 12.7 18.8 

7265 15.6 14.7 35 52.7 61.8 41.4 36.1 29.2 
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Figure 3.16. Standard deviation of positioning result 
 

Table 3.4 gives the error result of locating the corners of the target other than beacon 

with known world coordinates in the image based on Equation 3.25-3.27. It is the mean 

difference between the corners’ pixels calculated based on the world coordinates and those 

directly extracted by target detection algorithm at each testing point. The error was smaller 

than one pixel at most testing points, and maximum error was 3.8 pixels. The maximum 

standard deviation of the error at all testing point was 0.938 pixels. This experiment result 

shows that the objects with known position related to the beacon target can be reliably and 

precisely found in the image based on the proposed method. It is promising to store the 

button, handle, and other operable objects in the database and guide the robot to locate them 

in the image using this technique. 
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Table 3.4. Corner positioning error (pixel) 

X (mm) 
Z (mm) 

-1839 -1230 -620 -10 599 1209 1819 2428 

1169 0.777 0.895 N/A N/A 3.751 2.109 1.555 0.578 

1779 0.527 0.713 0.821 0.776 1.852 1.235 0.95 0.829 

2388 0.624 0.436 0.41 0.23 0.987 0.733 0.611 0.709 

2998 0.488 0.458 0.343 0.323 0.857 0.744 0.528 0.415 

3608 0.393 0.61 0.574 0.373 0.541 0.707 0.528 0.436 

4217 0.5 0.288 0.399 0.401 0.6 0.297 0.264 0.334 

4827 0.415 0.374 0.309 0.337 0.78 0.659 0.345 0.399 

5436 0.553 0.393 0.241 0.992 0.585 0.431 0.328 0.3 

6046 0.61 0.294 0.599 0.318 0.622 0.264 0.38 0.468 

6656 0.719 0.222 0.348 0.254 0.564 0.293 0.29 0.597 

7265 0.226 0.207 0.301 0.664 1.15 0.408 0.265 0.385 
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3.7.3 Attitude Estimation Experiment and Result 

To examine the rotation measurement accuracy of this research, the X3M multi-axis 

absolute MEMS (micro electro-mechanical system) inclinometer (US Digital, Vancouver, 

Washington, USA) was applied as the reference rotation measurement sensor. Figure 17 

shows the sensor and its three axes. With Axis 2 or Axis 0 parallel to gravity, the other two 

axes will give the rotation angles about them, and the one parallel to gravity will be invalid. 

The angular error is ±1.2°. 

 

 

Figure 3.17. X3M multi-axis absolute MEMS inclinometer and its three axis 
 

The inclinometer was mounted on the target with axis 0 and axis1 parallel to axis X 

and Y of the target, respectively as shown by Figure 3.18. This research defined the rotation 

angle around X, Y, and Z axis of the target as α, β, and γ respectively. With the Z axis 

parallel to gravity, which means the target is placed horizontally, as Figure 3.19 shows, the 

X3M inclinometer can provide rotation related to its axis 0 and axis 1 as reference to evaluate 

the measurement of angle α and β calculated by this research. 
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Figure 3.18. Method for mounting the inclinometer on the target 
 

 

Figure 3.19. The setup of the angle measurement experiment with the Z axis of the target 
parallel to gravity 
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When placing the target on the horizontal ground, the reading of angle α and β from 

the inclinometer was zero. The rotation matrix related the target and camera at this moment, 

which was called time zero and was stored as R0. Then the target was moved and rotated, and 

the rotation matrix related target and camera at time t was named Rt. As the camera was 

stationary for this experiment, the rotation matrix from the target coordinate system at time 

zero to the one at time t was Rt
-1 R0, from which the three rotation angles α, β, and γ can be 

extracted.  The rotation angles α and β were compared with the corresponding valid results 

from the X3M inclinometer. Figure 3.20 shows the rotation trajectories achieved by the two 

methods. The two trajectories match well. The maximum difference between two trajectories 

calculated by Equation 3.29 was 2.744°. 

� = |©b − ©�| + |ªb − ª�|,            (3.29) 

where the subscript c stands for the angle measured by the camera, and subscript i means the 

angle reading from the inclinometer. 
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Figure 3.20. The angle measurement trajectory of two methods when the Z axis of the target 
is parallel to gravity 

 

 

Moreover, with the X axis of the target coordinate system parallel to gravity as Figure 

3.21 shows, the X3M inclinometer can provide a valid reading about angle β and γ to 

compare the result based on the camera. Similar to the above mentioned experiment, when 

placing the target vertically with its X axis parallel to gravity, the reading of angle β and γ 

from the inclinometer was zero, and the rotation matrix of the target at that moment, which 

was called time zero, was stored as R0. Then the target was moved and rotated, and the angle 

β and γ were calculated using the same method of previous experiment and compared with 

the readings from the X3M inclinometer. Figure 3.21 shows their rotation trajectories, which 
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match well. The maximum difference between two trajectories calculated by Equation 3.30 

was 3.941°. 

� = |ªb − ª�| + |«b − «�|        (3.30) 

 

Figure 3.21. The setup of the angle measurement experiment with the X axis of the target 
parallel to gravity 

 

Considering the angular error of the inclinometer is ±1.2°, the angle measurement 

difference between the two methods in these two experiments is reasonable. 
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Figure 3.22. The angle measurement trajectory of two methods when the X axis of the target 
is parallel to gravity 

 

3.8 Conclusions 

This research developed a real-time detection algorithm of a chessboard pattern 

target, and proposed a motion and attitude estimation system based on analyzing the target 

image. From the result of this research, it can be concluded that this system has promising 

potential for indoor and outdoor position and attitude estimation application. First, the target 

detection algorithm of this research was effective in identifying most of the background 

image areas, and therefore greatly reduced the target search area. This significantly helped to 

decrease the target detection time regardless of whether there was a target in the image view 

for both indoor and outdoor conditions. Second, the target detection algorithm achieved over 

97.49% accuracy for both indoor and outdoor experiments, showing the great reliability and 

robustness to different illumination conditions. Third, the system demonstrated centimeter-
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level accuracy for position estimation within a 4.27 × 7.27 m testing area in front of the 

beacon, and it achieved subdegree level accuracy for attitude estimation. Fourth, the 

proposed positioning system shows great scalability. The proposed ID was effective to 

identify different targets, and the manufacturing cost of the target is low. Therefore, it is 

feasible to deploy a large number of beacons to provide position and attitude estimation 

service in large areas.  

The high performance of this position and attitude estimation solution enable tracking 

the 3D camera with high accuracy for the 3D reconstruction based phenotyping system 

introduced in the next chapter, and it helps to align different 3D image views precisely for 

the 3D reconstruction of a plant. 
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CHAPTER 4. DEVELOPMENT OF A 3D RECONSTRUCTION BASED PLANT 
PHENOTYPING SYSTEM 

 

4.1 Abstract 

A holographic three-dimensional (3D) plant phenotyping system was developed for 

plant 3D reconstruction and morphological traits characterization. Corn plant seedlings were 

used as research objects for algorithm development and validation.  In this application, 

precise alignment of multiple 3D views generated by a 3D time-of-flight (ToF) sensor is 

critical to the holographic 3D reconstruction of a plant. Previous research indicated that there 

is a strong need for high-throughput, high-accuracy, and low-cost 3D plant reconstruction 

and trait characterization phenotyping systems. This research contributed a 3D reconstruction 

system of a plant by innovatively integrating a low-cost 2D camera, a low-cost 3D ToF 

camera, and a chessboard pattern beacon array to track the position and attitude of the 3D 

ToF sensor and thus accomplished precise 3D point cloud registration over multiple views. 

Specifically, beacon target detection, camera pose tracking, and spatial relationship 

calibration between 2D and 3D cameras algorithms were developed as a low-cost but high-

performance 3D reconstruction solution. A plant analysis algorithm in a holographic 3D 

space was developed to extract the morphological trait parameters of the plants by analyzing 

its 3D reconstruction. The phenotypical data obtained by this novel holographic 3D 

reconstruction based phenotyping system were validated by the experimental data generated 

by instrument and manual measurement; and the results demonstrated that the developed 

phenotyping system has achieved satisfactory measurement accuracy with a processing time 

of less than 5 seconds per plant on average. 
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4.2 Introduction 

A plant’s phenotype is the result of the dynamic interaction of the plants’ genotype 

and environment. Phenotypic parameters, such as leaf size, crop height, cereal yield, 

photosynthesize rate, nutrient intake rate, resistance to disease and drought, etc. are important 

for breeders (Foundation and Mcb, 2011). Understanding the linkage between a particular 

genotype and a specific phenotypic parameter is a core goal of modern biology; however, it 

is generally difficult due to the large number of genes and the interaction with complex and 

changeable environmental influences (Foundation and Mcb, 2011). 

The fast development technology enables rapid genomes sequencing at steadily 

declining costs and rapidly increasing speed. Scientists have collected abundant information 

of plant genotype due to the recent revolution of genomic technologies (Foundation and Mcb, 

2011). The genomic information could not be fully capitalized without correct linkage 

between genotype and phenotype (Cobb et al., 2013; Foundation and Mcb, 2011; Furbank 

and Tester, 2011). 

Phenomics is the science of large-scale phenotypic data collection and analysis to 

reveal the relationship between phenotypic feature and genotype (Allen et al., 2010; 

Foundation and Mcb, 2011; Heffner et al., 2011; Lu et al., 2011; Nichols et al., 2011; 

Speliotes et al., 2010; Winzeler et al., 1999). To extract and quantify sophisticated 

phenotypic features on a large scale is challenging. Traditional phenotyping is labor 

intensive, expensive, and destructive (Furbank and Tester, 2011). Imaging based systems 

provide a remote and noninvasive method to capture not only the morphological phenotype 

data but also the physiological status for the plant (Foundation and Mcb, 2011). 
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A 2D imaging based phenotyping system has achieved a degree of development and 

commercial success. Researchers have reported extracting the projected leaf area from 2D 

color images to estimate the growth rate and drought tolerance for rosette plants such as 

Arabidopsis (Granier et al., 2006; Walter et al., 2007). LemnaTec Scanalyser (LemnaTec 

GmbH, Germany) is a commercial product that can estimate the morphological features of a 

plant, such as plant height and canopy’s diameter, roundness, circumference, etc., based on 

top view or side view 2D images. Chlorophyll fluorescence is another 2D imaging technique. 

It is effective to estimate photosynthetic responses in various conditions such as drought 

stress, cold, heat, and ultraviolet light (Jansen et al., 2009), and it also successfully detected 

pathogen infections that affect photosynthesis of a plant (Chaerle et al., 2009; Scholes and 

Rolfe, 2009; Swarbrick et al., 2006). Moreover, thermography could estimate the 

transpiration of a plant by distinguishing by measure the temperature difference between leaf 

and backgrounds, and it has been used to phenotype plant traits and disease related 

transpiration such as root fungal pathogen infection (Sirault et al., 2009). 

Because of the inherent limitation of the above mentioned 2D imaging technique, 

their applications are mostly limited to plants with a simple canopy, and their performance 

drops greatly for plants with a complex canopy when occlusion becomes problematic 

(Furbank and Tester, 2011). Moreover, this problem calls for the use of a 3D reconstruction 

of the plant (Bellasio et al., 2012; Fiorani et al., 2012; Furbank and Tester, 2011). 

Although the development of advanced 3D sensors, including active stereo vision, 

Lidar, and 3D ToF cameras, makes high-quality 3D spatial data available, 3D reconstruction 

algorithms for crop plants phenotyping are still primitive because 3D reconstruction requires 

aligning different 3D data views of the plant precisely into a complete 3D model of the plant. 
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The alignment of 3D data views is called 3D registration. Alenya et al. (2011) reported a 

system that applied an expensive robotic arm to control and track the position and attitude of 

a 3D camera for 3D registration. This system had high accuracy and reliability for 3D 

registration by a high-quality robotic arm, which however lead to high equipment cost. On 

the contrary, Rusu et al. (2008) developed a software based 3D registration method. Their 

algorithm estimated the 3D feature histogram of each point of every 3D view and looked for 

the key points whose feature histogram is unique. By searching for the correspondence of 

key points between different views, the relationship between different views can be found for 

3D registration. This software based approach has a low system cost. However, it is 

calculation intensive and thus requires a long processing time, making it less favorable for 

large-scale phenotyping applications. 

This research aims to apply a 3D ToF camera to capture multiview images of the 

maize plant, and to derive algorithms for a 3D model reconstruction, leaf and stem 

segmentation, as well as leaf phenotypic parameters quantification. Ultimately, this research 

aims to provide new imaging and an image processing system as tools to build a low-cost, 

accurate, robust maize phenotyping system.     

 

4.3 Experimental Design 

This study developed a 3D reconstruction based phenotyping system. It is able to 

reconstruct the 3D model of the plant and measure some of its physical characteristics. 

Three corn plants were used to test the 3D reconstruction based phenotyping system 

in this research. They were at growth stage V5 and were about 0.5 m high (Figure 4.1). Their 

3D models were reconstructed by this system. The corn plants’ physical parameters, 
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including height, width, length, and area of each leaf, are automatically estimated by 

analyzing their 3D models. The leaf height in this study is the height of its collar related to 

the soil surface of its pot. 

In order to evaluate the accuracy of this 3D reconstruction based phenotyping system, 

the collar height, length, and width of each leaf of the corn plant were measured manually as 

the ground true value. The area of each leaf was measured using Leaf Area Meter (LI-3100C 

Area Meter, LI-COR Corporate, Lincoln, Nebraska, USA). 
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Figure 4.1. Corn plant used in this phenotyping research 
 

4.4 Sensors 

The key goal of this 3D reconstruction based phenotyping research is 3D plant 

reconstruction. In order to get the complete 3D model, 3D point cloud data views of the plant 

should be captured and aligned precisely, for three reasons. First, because of the occlusion of 

the canopy, the 3D camera could hardly observe every part of the plant at a single viewpoint. 

Second, in order to get a high-quality 3D data view of the leaf, the imaging sensor should 
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observe the leaf surface along its normal direction. As different parts of different leaves have 

different surface direction, the viewpoint of the 3D camera should be adjusted to get the good 

quality 3D data correspondingly. Third, the resolution of the ToF camera is only 120 × 165 

pixels. It is too low to capture the details of the whole plant in a single view. Therefore, it is 

necessary to capture the 3D dense point cloud of different parts of the plant at a close 

viewpoint and to align them together to reconstruct a complete 3D model.  

This research applied both 2D and 3D imaging sensors to develop a 3D 

reconstruction based phenotyping system. As Figure 4.2 (a) indicates, two 2D web cameras 

were mounted beside a 3D ToF camera as the data collection system. However, one of the 

web cameras (web camera 2 in Figure 4.2) was not used for this research yet; the 2D camera 

mentioned in this research only means web camera 1. As Figure 4.5 shows, the 3D imaging 

sensor was used to capture the point cloud data of different parts of the corn plant, and the 

2D web camera was used to capture the image of chessboard pattern targets array 

simultaneously. By analyzing the 2D images of the chessboard pattern beacon, the 2D 

camera’s pose related to the beacon can be estimated as discussed in chapter 3. The position 

and attitude of the 3D sensor can be derived from the calibrated pose relationship between 

the 2D camera and the 3D camera. Based on the 3D sensor’s pose corresponding to each 

point cloud data view, different views can be aligned precisely to reconstruct the complete 

3D model. Therefore, the relationship between the 2D and 3D camera is critical for this 

research. Figure 4.2 (b) provides the manual measurement result of the translation 

relationship between the imaging sensors. Because it was difficult to find the exact origin of 

each camera’s coordinate system, the manual measurement could only get the approximate 

range of each parameter. 
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The 3D camera used in this study is the PMD Camboard nano (Pmdtechnologies, 

Germany), which is a ToF camera, as Figure 4.2 (a) shows. Its resolution is 120×165 pixels, 

and its depth measurement receptivity is 5 mm. Its standard depth measurement range is 0 to 

2 m, according to the datasheet; however, our experiment indicated the best working distance 

between the object and sensor was between 0.2 and 0.5 m in this research. Because the 3D 

camera can be placed as close as around 0.20 m to the observed object, it can provide dense 

point cloud data with detailed information for parts of plant at close viewpoint despite its low 

resolution. Dense point cloud data views were available to reconstruct the complete 3D 

model with detailed information. 

The 2D camera used to track the 3D camera’s pose is the Logitech HD Webcam 

C310. The working principal to estimate the pose of the camera is similar to that described in 

chapter 3. The model of the 2D camera used here is the same as that used chapter 3. It 

features a wide focus range, fixed focal length of 4.4 mm, 60° field of view, and 1280 x 720 

pixel resolution. The distortion effect is satisfactory according to the previous study. All of 

these features indicate it is a good sensor for the 2D imaging based position and attitude 

system. Before the 2D camera was used in the experiment, it was calibrated to get its intrinsic 

matrix and distortion vector using the method introduced in chapter 3. 
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(a) 

80 – 85 mm  

85 – 90 mm

38 – 42 mm

23 – 27 mm

Web Cam 1

Web Cam 2

3D ToF Camera

 
(b) 

Figure 4.2. Data collection system built for this 3D reconstruction based phenotyping 
research: (a) picture of system and (b) translation relationship between sensors 
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4.5 Camera Posture Tracking Infrastructure 

A chessboard pattern array was designed to be used as the infrastructure to track the 

position and attitude of the 2D and 3D cameras. As chapter 3 discussed, the 2D camera could 

estimate its pose as long as it captured a chessboard pattern beacon. However, a single 

chessboard beacon was not enough for this research. To capture the 3D point cloud of the 

plant at different viewpoints, the pose of the imaging sensors changes. To ensure at least one 

beacon was visible to the 2D camera at different viewpoints, a beacon array, which contained 

seven rows by five columns of chessboard pattern beacons, was designed as the infrastructure 

of the pose estimation system, as Figure 4.3 shows. Figure 3.1 shows a sample beacon unit. 

By placing the corn plant pot about 0.7 m above the center of the beacon array and holding 

the data collection system as Figure 4.4 indicates. The 2D camera can capture at least one 

chessboard pattern beacon of the target array when the 3D imaging sensors are observing the 

corn plant at different viewpoints. 

The chessboard beacon target defined the world coordinate system of the research 

platform. As Figure 4.3 shows, the origin of the world coordinate system is the bottom-left 

inner corner of the bottom-left beacon in the target array, and its X and Y axis are parallel to 

the up and right direction of the target array, respectively. In addition, the direction of the Z 

axis is vertically going inside the target array. In this study, the position and attitude 

estimation result of the 2D and 3D cameras was related to the world coordinate system. 

All of the beacons in the target array have identical chessboard pattern design, and 

everyone consists of 5 × 4 squares, as Figure 4.3 shows. The side of each square was 52.36 

mm. The translation relationship between two neighbor beacons at the same row was 
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[292.72, 0, 0]T mm, and that between the two neighbor beacons at the same column was [0, 

303.43, 0]T mm. 

Each chessboard pattern beacon had a column of small rectangles on the right, as 

Figure 4.3 shows. The rectangles were the ID of the beacon; IDs were used to inform the 

system which beacon was captured by the 2D camera. By applying IDs, the system can 

assign the right world coordinate value to each inner corner of the detected beacon based on 

its position in the beacon array according to the ID, and then the system could calculate the 

position and attitude of the 2D camera related to the world coordinate system using the 

techniques introduced in chapter 3. 
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Figure 4.3. World coordinate system and chessboard pattern array used as the camera’s pose 
estimation infrastructure 
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Figure 4.4. Infrastructure setup 
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4.6 Position and Attitude Estimation of 3D Camera 

To reconstruct the complete 3D model of the corn plant, the position and attitude of 

the 3D camera corresponding to every point cloud data view is required. The pose of the 3D 

camera was derived from the pose of the 2D camera plus the position and attitude 

relationship between the two cameras. Therefore, the pose estimation of the 2D camera and 

the calibration of the relationship between the 2D and 3D cameras are critical. 

 

4.6.1 Position and Attitude Estimation of 2D Camera 

When the 3D ToF camera was collecting the point cloud data of the corn plant, the 

2D imaging sensor beside it captured the image of the beacon targets simultaneously. Using 

the techniques introduced in chapter 3, the beacons were detected from the 2D image, and 

their IDs were recognized, as Fig 4.5 (a) shows. Based on the ID information and pre-

knowledge of the chessboard pattern array, the system achieved the world coordinates of the 

inner corners of the detected beacons, and applied the coordinates to calculate the position 

and attitude of the 2D camera related to the world coordinate system by using the method 

introduced in chapter 3. 

The 2D camera can capture one or more beacons during the data collection process 

depending on the viewpoint. Although one beacon is enough to estimate the 2D camera’s 

position and attitude, more beacons can improve the measurement accuracy.  



  

 

160 

              
                                                                                    (a)                                                                                                      (c) 

Figure 4.5. Images collected by 2D and 3D camera: (a) chessboard pattern beacon detected by 2D camera, (b) depth image collected 
by 3D ToF camera, and (c) intensity image captured by 3D ToF camera 

 

 

(b) 
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4.6.2 Calibration between 2D and 3D Cameras 

To calibrate the relationship between the 2D and 3D cameras, two chessboard pattern 

targets were used. The design of the data collection system made it impossible for the 2D 

camera and the 3D camera to observe the same chessboard target simultaneously. To solve 

this problem, two chessboard targets were used and assembled side by side, as Figure 4.6 (a) 

indicates. The calibration procedure is discussed next. 

First, the relationship between the two chessboard targets was calibrated. The data 

collection system was moved to a relatively farther viewpoint A, and the 2D camera captured 

an image that contains two targets, as Figure 4.6 (a) shows. The system detected two targets 

and estimated the relationship between the coordinate system of the 2D camera and each 

target separately, based on the method introduced in chapter 3. The rotation matrix and 

translation vector of the 2D camera’s coordinate system related to the left target are 

represented with £¬­ and �¬­, respectively, and those related to the right target are 

represented with £n­ and �n­. ��® is the coordinate vector $�, �, �%& of a point related to the 

2D camera’s coordinate system, and �¬̄ and �n̄ are the coordinate vector of a point related to 

the coordinate system defined by the left target and right target, respectively.  The 

relationship between ��®, �¬̄ and �n̄ of a same point can be expressed by Equation 4.1 and 

4.2. In addition, the relationship between the coordinates systems defined by two targets can 

be expressed by Equation 4.3. 

��® = £¬­�¬̄ + �¬­                                  (4.1) 
��® = £n­�n̄ + �n­                                 (4.2) 
�n̄ = £n­��(£¬­�¬̄ + �¬­ − �n­)         (4.3) 
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Based on Equation 4.3, the rotation matrix £¬�n and the translation vector �¬�n of left 

target related to right target is expressed by Equation 4.4 and 4.5. 

£¬�n = £n­��£¬­                                     (4.4) 
�¬�n = £n­��(�¬­ − �n­)                         (4.5) 
Then Equation 4.3 can be written with other format as Equation 4.6 indicates. 

�n̄ = £¬�n�¬̄ + �¬�n                                 (4.6) 
 

Second, the data collection system was moved closer to two targets, and the position 

of the data collection system at this time was viewpoint B. At viewpoint B, the 2D camera 

can only capture the image of the right target as Figure 4.6 (b) shows, while the 3D ToF 

camera gets the intensity image and 3D data of the left target as Figure 4.6 (c) and (d) show. 

By extracting the right chessboard target from the color image captured by the 2D camera as 

Figure 4.6 (b) indicates, the rotation matrix £np and the translation vector �np of the 2D 

camera at viewpoint B related to right target can be achieved. Moreover, the rotation matrix 

£¬��® and the translation vector �¬��® of the left target related to the 2D camera at viewpoint 

B can be derived based on Equation 4.3–4.6, £np, and �np. The derivation results are 

expressed by Equation 4.7 and 4.8. 

£°22r = £np£¬�n = £np£n­��£¬­                                                                 (4.7) 
�°22r = £np£¬�n�¬�n + �£± = £np£n­��(�¬­ − �n­) + �£±                       (4.8) 
 
Third, the relationship between the left target and the 3D camera at viewpoint B was 

estimated. The point cloud data of the chessboard target from the 3D camera was processed 

by linear regression algorithm to estimate the plane of the target board; and then the original 



163 

 

point cloud data were replaced with their projection points on the plane to reduce the 

measurement error of the 3D data. Additionally, the inner corners of the left chessboard 

target were extracted from the intensity image captured by the 3D camera, as Figure 4.6 (c) 

shows, to get the inner corners’ coordinate value related to the 3D camera. The relationship 

between the coordinate systems of the left target and the 3D camera can be estimated based 

on two steps, as follows: 

1) The target plane in the 3D camera’s coordinate system was achieved in the plane 

regression calculation, and the target plane in its own coordinate system is Z = 0. 

The rotation matrix £� between the target plane in the 3D camera’s coordinate 

system and the plane Z = 0 was estimated first. The normal direction of the target 

plane related to the coordinate system of the target is [0, 0, 1]T , and the normal 

direction of the target plane related to the 3D camera’s coordinate system is unit 

vector [a, b, c] T. The value of [a, b, c] T was achieved in the target plane 

regression step. The rotation matrix for the rotation from [0, 0, 1]T to [a, b, c] T is 

£�. The corresponding rotation axis L is perpendicular to both [0, 0, 1]T and [a, b, 

c] T; therefore, L is the cross product of two vectors, as Equation 4.9 indicates, and 

the rotation angle is expressed by Equation 4.10. 

L = V001W × �abc� = V−ba0 W                                            (4.9) 

 θ = arccos µ V���W∙�¶·̧�
√¶?.·?.¸?º = arccos (c)                  (4.10) 
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The rotation matrix £� can be derived by applying the Rodrigues’ rotation 

formula with rotation axis L, and the rotation angle θ; the result is described by 

Equation 4.11. 

R� = ¼ b� + a�cos	(θ) ba(cos(θ) − 1) sin	(θ)aba(cos(θ) − 1) a� + b�cos	(θ) sin	(θ)b−sin	(θ)a −sin	(θ)b (b� + a�)cos	(θ)½             (4.11) 

2) By applying the rotation matrix £� to the 3D camera’s coordinate system /q¾, a 

new coordinate system /q¾¿  was achieved. The Z axis of /q¾¿  and the Z axis of the 

coordinate system of the left target /¬ are parallel.  Therefore, by rotating the 

coordinate system /q¾¿  around its Z axis with an angle β, the X, Y, Z axis of the 

new coordinate system /q¾¿¿  is parallel to the X, Y, Z axis of coordinate system /¬. 

Figure 4.7 shows the coordinate system /¬ defined by the left target. Point P1 and 

P2 in Figure 4.8 are two inner corners of the target. P1 is the origin point of the 

coordinate system /¬, and P2 is on the X axis of /¬. The original XYZ coordinate 

of P1 and P2 provided by the 3D ToF camera are represented by vector V1 and V2, 

respectively, and the cos(β) and sin(β) can be calculated by Equation 4.12–4.14. 

À = £�(À� − À�)                              (4.12) 

where vector V can be presented with [u, w, 0]T. 

cos(ª) = Á∙V���W
|Á| = Â√Â?.}?           	                                                  (4.13) 

sin(ª) = Á×V���W|Á| = �}√Â?.}?                                                             (4.14) 
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(a) 

 

(b) 
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                                             (c)                                            (d) 

 

(e) 

Figure 4.6. 2D and 3D camera calibration images: (a) images of two chessboard targets 
captured by 2D camera at a farther viewpoint A, (b) image of right chessboard target 

captured by 2D camera at close viewpoint B, (c–e) intensity and depth image and point cloud 
data of left chessboard target captured by 3D camera at close viewpoint B 
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Figure 4.7. Coordinate system CL defined by left target board 
 

 

Figure 4.8. Inner corner points P1 and P2 on the X axis of the coordinate system defined by 
the left target board 
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The rotation matrix R2 from coordinate system /q¾¿¿  to /¬ is expressed with 

Equation 4.15. 

£� = Vcos	(ª) −sin	(ª) 0sin	(ª) cos	(ª) 00 0 1W = Ã
Â√Â?.}? }√Â?.}? 0�}√Â?.}? Â√Â?.}? 00 0 1Ä            (4.15) 

Having rotation matrix £� and £�, the rotation matrix £q®�¬ of coordinate system 

/q¾ related to the coordinate system of left target /¬ can be achieved as Equation 

4.16 expresses. 

£q®�¬ = £�£�                                                        (4.16) 

Finally, the translation vector �q®�¬ of coordinate system /q¾ related to the 

coordinate system of left target /¬ can be achieved as Equation 4.17 expresses. 

�q®�¬ = −£q®�¬�� = −£�£���                             (4.17) 

Fourth, the rotation matrix £q®��® and the translation vector �q®��® from the 

coordinate system of 3D camera /q¾ to the coordinate system of 2D camera /�¾ can be 

expressed by Equation 4.18 and 4.19. 

£3r22r = £°22r£3r2°																																																									(4.18)	
�3r22r = £°22r�3r2° + �°22r																																													(4.19)	
For a point, if its coordinates in the coordinate system of the 3D camera and the 2D 

camera are represented using �q® and ��®, respectively, �q® and ��® satisfy Equation 4. 20. 

��® = £q®��®�q® + �q®��®                                        (4.20) 

For the data collection system of this research, the value of £q®��® and �q®��® is 

given by Equation 4.21 and 4.22. The distance between the 2D and 3D cameras is |�q®��®|, 
which is 86.75 mm according to the value of �q®��®. Their actual horizontal and vertical 

distances are 82.769 and 25.394 mm. Figure 4.9 provides the translation relationship between 
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the cameras of the data collection system using the calibration result �q®��®. It matches the 

manual measurement result given by Figure 4.2 (b). 

£q®��® = V 0.961945772 0.02478376 −0.272113949−0.0630362481 0.989143193 −0.1327486780.265869647 0.14485009 0.953064382 W           (4.21) 

�q®��® = V−82.768646225.39446265.52676392 W,    where unit is mm.                                         (4.22) 

 

 
Figure 4.9. Translation relationship between cameras of the data collection system with 

calibration result 
 

4.7 3D Reconstruction 

The 3D camera collects the 3D point cloud data view of different parts of the corn 

plant, and the 2D camera beside the 3D camera captures the images of beacons 

simultaneously for pose estimation of the 3D camera corresponding to each point cloud view, 

as Figure 4.5 indicates. The 3D reconstruction recovered the complete 3D model of the corn 

plant through 3D registration, which aligned different point cloud data views together 

according to the position and attitude of corresponding viewpoints estimated by the 2D 
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camera. In this research, a corn plant has around 20 point cloud data views to be aligned for 

3D reconstruction. 

 

4.7.1 Preprocessing 

Before 3D registration, the preprocessing to clean the noise point of each point cloud 

data view should be accomplished. Points that qualify any of the following criteria were 

recognized as noise and were removed. 

1) The point which is identified as noise by the corresponding flag provided by the 

PMD camera. 

2) The point with depth over 0.7 m, because the interested object is always within 

0.7 m in front of the 3D camera. 

3) In the 3D space, the sparse point in the region whose size is smaller than 12 

points. The radius used to search for neighbor points in 3D space is 10 mm in this 

study. For the ToF camera, at the edge of the object, sparse point noise is 

common. If sparse noise clearance processing was not accomplished, the final 3D 

model would be noisy, as Figure 4.10 (a) indicates. By applying this processing, 

the reconstructed 3D model is as clean as Figure 4.10 (b) shows. 

 

After the noise clearance, each point cloud data view was ready for 3D registration. 
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(a) 

 

(b) 

Figure 4.10. (a)  The 3D model’s achievement without sparse point noise clearance and (b) 
the 3D model’s achievement with sparse noise clearance 

 

4.7.2 3D Registration 

As Figure 4.5 shows, the 2D camera of the data collection system captures the 2D 

images of chessboard targets simultaneously when the 3D camera collects the point cloud 

view. As discussed previously, with the world coordinate value of the inner corners of 
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detected targets, the system estimates the rotation matrix £�® and the translation vector ��® 

of the 2D camera related to the world coordinate system defined by target array based on the 

approach introduced in chapter 3. For a point in 3D space, its 3D coordinate vector ��® 

related to the 2D camera and its coordinate related to target array �} should satisfy Equation 

4.23. 

��® = £�®�} + ��®                                                   (4.23) 

Based on the relationship between the 2D and 3D cameras, the 3D coordinate vector 

�q® of the point cloud data view from the 3D camera can be converted to the coordinate 

values related to the world coordinate system as Equation 4.24 describes based on Equation 

4.20 and 4.23. 

�} = £�®��(£q®��®�q® + �q®��® − ��®)                     (4.24) 

For each 3D point cloud view, the position and attitude of the 3D camera vary. 

However, the world coordinate system defined by the target array is consistent because the 

plant and target array keep static during the data collection process. By applying Equation 

4.24 to convert the original 3D information of different point cloud data views from the ToF 

camera to those related to the consistent world coordinate system, the 3D registration is done. 

Figure 4.11 (a) and (b) shows the side view and top view of a 3D model reconstruction of a 

corn plant. It was obtained by aligning 23 point cloud data views together. Among all of the 

23 data views, one is shown with green color points in Figure 4.11 (a) and (b), and its 

intensity and depth image are provided by Figure 4.11 (c) and (d).  
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(a) 

 

(b) 

     

                                               (c)                                         (d) 

Figure 4.11. Complete 3D model of corn plant achieved through 3D registration: (a) side 
view and (b) top view of 3D model, (c) the intensity and (d) depth image of the point cloud 

data view corresponding to the green points in (a) and (b) 
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4.8 Leaf and Stem Segmentation 

After obtaining the 3D model of the corn plant, this research separated leaves and 

stem in order to measure their physical parameters.  

 

4.8.1 Stem Segmentation 

Stem segmentation was carried out first by generating six 2D side view images of a 

corn plant based on the 3D model as Figure 4.12 shows. Suppose the range of x, y, and z 

coordinate value of the 3D model are [x0, x1], [y0, y1], and [z0, z1], the width and height of 

the 2D side view image are W and H. The �Å~ side view image is achieved by setting its point 

(u, v) and corresponding every point of the 3D model to white, and the relationship between 

(u, v) of the side view image and the point (x, y, z) of the 3D model is expressed by Equation 

4.25–4.27. 

Æ = � ∗ 60, �ℎ]l]	� ∈ {0, 1, 2, 3, 4, 5}                                              (4.25) 

Ç = 0.4 È{� − 	�.	�� � sin(Æ) + {� − 
�.
�� � cos(Æ)É + Ê�                 (4.26) 

1 = 0.4 {� − ^�.^�� � + Ë�                                                                       (4.26) 

For each side view image, this system searched for the straight lines with the length 

over 50 pixels and the angle range from -5˚ to +5° around the vertical direction. Pixels on 

these detected straight lines are displayed with red color in the side view images provided in 

Figure 4.12. The points of the 3D model whose corresponding points in all 2D side view 

image that were on the detected straight lines were recognized as the stem of the corn plant. 
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                                 (a)                                                                     (b) 

   

(c)                                                                     (d) 
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Figure 4.12 continued 

   

                                 (e)                                                                     (f) 

Figure 4.12. The stem detected in different side views at different viewpoints 
 

4.8.2 Leaf Segmentation 

The stem segmentation achieved in the previous section separated the 3D model into 

several regions in 3D space, and each big region is one leaf. As the point cloud data of the 

reconstructed 3D model was not organized, and separating the data into regions in 3D space 

is time consuming. To solve this problem, a 2D image processing based algorithm was 

developed to process multiple side views and top view images for region separation in 3D 

space. 

Figure 4.12 shows an example of side view images, and Figure 4.13 is the top view 

image. The detected stem is displayed with red color in these images. It is clear that the 

leaves were successfully separated into different parts by the stem in these 2D images. 

Although some leaves may fuse together for some image view, this occlusion problem can be 

solved by other image views. 
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Figure 4.13. The top view image of the point cloud of the 3D model; the stem is marked with 
red color 

 

The region separation algorithm started from separating the white points of the first 

image view into regions in 2D space, and points of the 3D reconstruction model were 

organized into different groups accordingly. Then the system repeated this method to process 

the next image to check whether the points grouped previously should be separated into 

different regions. This procedure was iterated until all the image views were processed. For 

the final regions, those whose sizes were smaller than 40 points were removed as noise data, 

and each of the remaining regions was recognized as a leaf. The stem and leaves of the 3D 

reconstruction model of the corn plant are well segmented by this approach, as Figure 4.14 

indicates. 
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Figure 4.14. Leaves and stem segmentation result 
 

 

4.9 Leaf Parameter Estimation 

After the points of the stem and every leaf of 3D reconstruction model were 

determined, this system was ready to estimate the physical parameters of the corn plant. This 

research developed the algorithm to estimate the collar height as well as the width, length, 

and area of leaves. 

 

4.9.1 Leaf Points Regression 

To begin the physical parameter estimation of leaves, this research employed 

Equation 4.27 and 4.28 to describe the curve of the skeleton of each leaf. In these two 

equations, x, y, and z are the known world coordinate value of the skeleton point of the 

corresponding leaf. Variables φ, a, b, c, d, and e of these two equations are unknown, and 

they are solved by applying singular value decomposition (SVD) regression method to 

process the 3D information of all points of the corresponding leaf. 
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�� = � sin(Æ) + � cos(Æ)                              (4.27) 

� = B��Ì + Í��q + C��� + ��� + ]                   (4.28) 

 

4.9.2 Leaf Parameter Estimation 

Having Æ solved, Equation 4.27 was applied to calculate �� value of every point of the 

corresponding leaf. The white pixels of Figure 4.15 show the transformation result of leaf 3 

in Figure 4.14. For Figure 4.15, the horizontal direction linearly related to �� value of the 

point, and vertical direction related to its z value. The red curved line shows the linear 

regression result represented by Equation 4.28. Moreover, Equation 4.29 was used to 

calculate �� value of all of the point of the corresponding leaf. 

�� = � cos(Æ) − � sin(Æ)                              (4.29) 

 

Figure 4.15. Regression result of leaf 3 of plant 1 
 

Based on the leaf skeleton curve described by the solved Equation 4.28, the leaf 

length and area was estimated. The range of �� value of a leaf is represented with 

[��t�G, ��tu	]. To estimate the length and area of the leaf, the leaf was divided into 50 
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fractions along the direction parallel to the �� axis. In addition, the ith fraction, which is 

represented with Fi in this research, contains all of the points whose �� is within the range 

between v���� and v��, where v�� is represented by Equation 4.30. 

v�� = �×(
�ÎÏ��
�Î)K)|� 													� ∈ {0, 1, 2, …… , 50}	                       (4.30) 

Then by applying �� = v�� to Equation 4.28, the corresponding result value � is 

represented with i��. 
Then the leaf length is achieved using Equation 4.31. 

°]NÑ�ℎ = ∑ Ò(v�� − v����)� + (i�� − i����)�|��0�                                              (4.31)	
Additionally, if the minimum and maximum �� value of the points of Fi are 

represented with ���t�G and ���tu	, their difference is the width of fraction Fi. In addition, the 

area and width of the leaf can be achieved as shown in Equation 4.32 and 4.33: 

Bl]B = ∑ ÈÒ(v�� − v����)� + (i�� − i����)� × (���tu	 − ���t�G)É|��0�               (4.32)	
����ℎ = max(���tu	 − ���t�G) 														� ∈ {0, 1, 2, …… , 50}.                     (4.33)	
The leaf collar height was also estimated. As the coordinate of the point cloud of the 

3D reconstruction model is related to the world coordinate system defined by the target array 

on the ground, the Z coordinate of a point actually is its height from the ground. The leaf 

collar was achieved by finding the conjunction point between the stem and the leaf skeleton, 

which is expressed by the solved Equation 4.27 and 4.28. In addition, the leaf collar height is 

the difference between the Z coordinate of the conjunction point and the height measurement 

result of the soil surface of the pot related to the ground. 
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4.10 Results and Discussion 

Three corn plants at vegetative stage V5 were used to test this system. The plants 

were around half a meter and they had seven leaves.  

Figure 4.16–4.18 are the 2D color pictures and the corresponding 3D reconstruction 

results of the three corn plants. As they indicate, this system achieved a relatively clean and 

complete 3D model of the corn plant. Visually, the 2D color images and 3D reconstruction 

result match well together. However, the 3D reconstruction images show that the bottom one 

or two leaves of corn plants were either missed or incomplete in the reconstruction. Noisy 3D 

information of the bottom leaves caused by their small sizes led to the incomplete 

reconstruction. Additionally, the reflectance of the soil surface of the pot to the light source 

of the 3D camera was very low, which resulted in noisy 3D data. The noisy 3D data of the 

soil surface fused with the point cloud of the bottom leaves, making it difficult to extract 

bottom leaves. Therefore, the bottom leaves were removed as noise. 

Figure 4.19 provides the leaf and stem separation result of the 3D reconstruction of 

three corn plants. The leaves and stem are accurately separated, and they are displayed with 

different color in the result images. The IDs of different leaves are also given by Figure 4.19. 

To quantitatively evaluate the accuracy of the 3D model, this system estimated the 

parameters of each leaf of every plant, including width, length, area, and collar height, which 

were compared with the reference measurement results. The leaves’ area measurement result 

provided by LI-3100C Leaf Area Meter was used as the ground true value, and the other 

three parameters were measured manually. The parameters measured by this system and by 

the reference methods are listed in Table 4.1–4.3. The corresponding error rate is also listed. 
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For the bottom one or two leaves of corn plants, the measurement results of this system are 

not available because they were missed in their 3D reconstruction model.  

Statistics were done to analyze the measurement error rate, and the result was given 

by Table 4.4. As it indicates, the median value of each parameter’s error rate is smaller than 

7.18%. The average measurement error rate of a leaf’s area, length, width, and collar height 

are 10.46%, 10.42%, 11.10%, and 8.18%, respectively. The third quartile value of these 

measurement errors are 11.14%, 11.75%, 13.48%, and 6.88%. It means that the error rate of 

75% of the corresponding measurements is smaller above the third quartile values. Therefore, 

a big part of the measurement has relatively good accuracy. However, there are some big 

outliers for each parameter’s measurement. For example, the error rate of width and area 

measurement of leaf 1 of plant 2 is 41.2% and 31.13%, respectively. Another example is that 

the area and length measurements of leaf 5 of plant 2 are 61.87% and 27.55% smaller than 

the reference value, which is because this leaf is too small for the ToF camera, thus causing 

incomplete reconstruction. 

When running on a 3.4 GHz Intel Xeon CPU, the system’s average processing time 

cost for 3D reconstruction and leaf parameter estimation of a corn plant was 4.73 second. 

The processing time cost for a corn plant was less or at least comparable to the time needed 

to move the imaging sensor to around 20 viewpoints to collect different point cloud data 

views. Therefore, the image data processing and collection can be processed simultaneously.  
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(a) 

 

(b) 

Figure 4.16. Corn plant 1 and its 3D reconstruction result: (a) 2D color picture and (b) 3D 
reconstruction result 
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(a) 

 

(b) 

Figure 4.17. Corn plant 2 and its 3D reconstruction result: (a) 2D color picture and (b) 3D 
reconstruction result 

  



185 

 

 

(a) 

 

(b) 

Figure 4.18. Corn plant 3 and its 3D reconstruction result: (a) 2D color picture and (b) 3D 
reconstruction result 
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(a)                                                                     (b) 

 

 

(c) 

Figure 4.19. Leaf and stem segmentation result: (a) plant 1, (b) plant 2, and (c) plant 3 
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Table 4.1. Measurement result of corn plant 1 

Leaf 

Reference Measurement Result Estimation Result of This System Error Rate % 

Area 
(mm2) 

Length 
(mm) 

Width 
(mm) 

Collar 
Height 
(mm) 

Area 
(mm2) 

Length 
(mm) 

Width 
(mm) 

Collar 
Height 
(mm) 

Area Length Width Collar 
Height 

1 4364 210 40 254.0 4114.3 222.9 38.3 269.3 5.72 6.14 4.25 6.03 

2 13436 435 40 254.0 12080.4 417.1 37.7 240.3 10.09 4.11 5.75 5.39 

3 11659 490 32 163.9 11393.0 469.3 30.1 170.3 2.28 4.22 5.94 3.92 

4 5716 370 24 140.76 6083.8 363.3 23.8 132.1 6.43 1.81 0.83 6.14 

5 2386 227 15 87.13 2089.4 236.6 16.7 87.7 12.43 4.23 11.33 0.67 

6 858 110 10 44.76 N/A N/A N/A N/A N/A N/A N/A N/A 

7 423 50 12 21.48 N/A N/A N/A N/A N/A N/A N/A N/A 
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Table 4.2. Measurement result of corn plant 2 

Leaf 

Reference Measurement Result Estimation Result of This System Error Rate % 

Area 
(mm2) 

Length 
(mm) 

Width 
(mm) 

Collar 
Height 
(mm) 

Area 
(mm2) 

Length 
(mm) 

Width 
(mm) 

Collar 
Height 
(mm) 

Area Length Width Collar 
Height 

1 13186 430 50 265.88 9081.2 367.3 29.4 259.51 31.13 14.58 41.20 2.40 

2 17653 590 40 210.06 16360.4 520.7 37.5 224.51 7.32 11.75 6.25 6.88 

3 11364 480 32 159.22 11481.2 430.2 35.4 153.21 1.03 10.38 10.63 3.77 

4 5771 350 23 128.92 5635.3 323.1 26.1 121.71 2.35 7.69 13.48 5.59 

5 2401 220 15 78.99 915.5 159.4 12.7 99.21 61.87 27.55 15.33 25.60 

6 891 110 11 39.8 916.4 102.1 10.9 24.71 2.85 7.18 0.91 37.91 

7 371 45 12 9.99 N/A N/A N/A N/A N/A N/A N/A N/A 
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Table 4.3. Measurement result of corn plant 3 

Leaf 

Reference Measurement Result Estimation Result of This System Error Rate % 

Area 
(mm2) 

Length 
(mm) 

Width 
(mm) 

Collar 
Height 
(mm) 

Area 
(mm2) 

Length 
(mm) 

Width 
(mm) 

Collar 
Height 
(mm) 

Area Length Width Collar 
Height 

1 6012 250 43 273.06 6325.6 234.5 38.5 264.22 5.22 6.20 10.47 3.24 

2 15161 680 44 273.06 14956.4 528.1 35.4 259.42 1.35 22.34 19.55 4.99 

3 12598 450 37 155.54 13169.9 469.4 37.5 162.02 4.54 4.31 1.35 4.17 

4 6797 390 26 122.98 6893.3 362.8 24.4 127.52 1.42 6.97 6.15 3.69 

5 2789 248 19 82 2351.5 177.3 20 88.52 15.69 28.51 5.26 7.95 

6 1036 119 12 46.19 920.6 108.1 15.6 51.12 11.14 9.16 30.00 10.68 

7 412 48 13 8.95 N/A N/A N/A N/A N/A N/A N/A N/A 
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Table 4.4. Statistics of leaf parameter’s measurement error rate 

Measurement Min 
1st 

Quartile Mean Median 
3rd 

Quartile Max 

Area 1.03% 2.35% 10.76% 5.72% 11.14% 61.87% 

Length 1.81% 4.31% 10.42% 7.18% 11.75% 28.51% 

Width 0.83% 5.26% 11.10% 6.25% 13.48% 41.42% 

Collar Height 0.67% 3.77% 8.18% 5.39% 6.88% 37.91% 

 

4.11 Conclusions 

In this research, a 3D reconstruction based phenotyping system of plant was 

developed. From the results of this research, we can conclude that this system exhibited 

promising potential for developing a maize phenotyping system.  

The 3D reconstruction approach is effective. The chessboard pattern target array can 

provide precise position and attitude estimation of the 2D camera. Moreover, the proposed 

calibration method was proven effective in getting the spatial relationship between the 2D 

and 3D cameras, which were installed side by side as the data capturing system of this study, 

and therefore enabled deriving the pose of the 3D camera based on that of the 2D camera. 

According to the position and attitude of the 3D camera related to each 3D image view, 

different views were aligned precisely into a complete 3D reconstruction of a corn plant. 

It also can be concluded that this processing algorithm of the reconstructed 3D model 

of the corn plant is promising. The segmentation algorithm was effective to extract the stem 

and each leaf from the 3D model of the corn plant. Leaf points regression and leaf parameter 

estimation algorithms automatically quantified the leaf phenotypic parameters, such as leaf 

width, leaf length, leaf area, and collar height. The measurement of the leaf parameter is 

relatively accurate, while big outliers still exist. 
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Especially, the fast processing speed, high accuracy, low cost, and nondestructive 

nature of this phenotyping system may benefit the high-throughput, large-scale phenotyping 

system that can collect and process data throughout the life cycle of the maize plant. 
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CHAPTER 5. GENERAL CONCLUSIONS 

 

5.1 Conclusions 

5.1.1 3D Imaging Based Crop Plant and Weed Recognition System 

Crop and weed differentiation is key for an automated weeding system, and a 

practical solution has not yet been achieved. This research developed a soybean and broccoli 

detection system based on processing the point cloud data generated by a 3D ToF camera, 

which exhibited promising potential for automated robotic weeding application. First, the 3D 

ToF camera in this study was proven to work well when direct sunlight is blocked from 

shinning onto plants. It is less susceptible to the change of ambient light due to seasonal or 

weather variation compared to color camera and spectral imaging. Second, the sparse point 

noise filter was developed to process the 3D image, and it was proven effective and efficient. 

Third, several 3D and 2D features, including gradient of amplitude and depth, surface 

curvature, API, normal direction, and neighbor point count in 3D space, were found to 

discriminate effectively broccoli and soybean plants from weeds and soil, and their optimized 

calculation algorithms were contributed. Fourth, according to the 3D geometry and 2D 

amplitude image characteristics of broccoli and soybean plants, one segmentation algorithm 

was developed for each. Moreover, this system showed robustness in outdoor field 

conditions. When tested in the field where weed plants were dense and had comparable 

height with crop plants, this system reached the detection rate of 88.3% and 91.2% for 

broccoli and soybean plants, respectively. The crop plants that were not too small in the 

images were extracted and recovered with relatively complete shape. Fifth, the 2D and 3D 

machine vision algorithm was highly optimized, and the image processing speed of this 

system was over 30 Hz for both types of plants. 
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5.1.2 3D Reconstruction Based Plant Phenotyping System 

A 3D reconstruction based plant phenotyping system was developed, and it exhibited 

promising potential when it was tested on maize plants. The main contribution of this system 

was the 3D reconstruction method. The chessboard target array provided real-time and 

precise position and attitude estimation of a 2D camera. In addition, the proposed calibration 

method proved effective in getting the spatial relationship between the 2D and 3D cameras, 

which were installed side by side as the data capturing system of this study, and therefore 

enabled deriving the pose of the 3D camera based on that of the 2D camera. According to the 

position and attitude of the 3D camera related to each 3D image view, different views were 

aligned precisely into a complete 3D reconstruction of a corn plant. 

Moreover, this phenotyping system contributed the algorithm to further process the 

3D reconstruction of the corn plant. The segmentation algorithm was effective to extract the 

stem and each leaf from the 3D model of the corn plant. Leaf points regression and leaf 

parameter estimation algorithms automatically quantified the leaf phenotypic parameters, 

including leaf width, leaf length, leaf area, and collar height. The measurement of the leaf 

parameter is relatively accurate, although big outliers still exist. The average time cost for 3D 

reconstruction and phenotypic data estimation was less than 5 seconds per plant. 

In particular, the fast processing speed, high accuracy, low cost, and nondestructive 

nature of this phenotyping system may benefit the high-throughput, large-scale phenotyping 

system that can collect and process data through the life cycle of the maize plant. 
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5.2 Recommendations 

There are multiple ways to further improve the crop plant recognition system in 

future research: 

1. The low resolution of the 3D ToF camera is the main limitation to recognizing 

small broccoli plants and soybean leaves. Some alternative 3D imaging sensors 

such as the active stereo camera features significantly higher spatial resolution 

and measurement accuracy with lower noise level, making them more favorable 

to the algorithm proposed in this research. Although they cannot work outdoors 

during day time, they may be applied to develop the fully automated weeding 

system that works in the evening only. 

2. Further study is needed to systematically test the proposed algorithm with various 

crop plant species at different growth stages.  

3. Current work mainly focuses on the local geometry features instead of that of 

whole plant. For future research, the crop plant recognition algorithm could be 

improved by analyzing the 3D geometry of the whole plant. 

4. The system could be improved by combining it with a GPS mapping system that 

records the precise position of crop plants during the planting or transplanting 

process. The preknowledge of the crop plant map from the GPS mapping system 

can help to reduce the searching area of the crop plant recognition system, 

therefore increasing the processing speed and recognition accuracy. 

The 2D imaging based position and attitude estimation system could be improved by 

the following approaches: 
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1. A 2D camera with higher resolution, better optical properties, and short exposure 

time would improve the system performance. Higher resolution can introduce 

better measurement accuracy and longer pose tracking range. In addition, short 

exposure time will enable the system to work well with higher camera moving 

speed and will benefit better measurement accuracy. 

2. Hardware acceleration techniques such as GPU and FPGA (field programmable 

field array) can be used to increase the target detection rate for bigger resolution 

images. 

There are multiple ways to further improve the 3D reconstruction based phenotyping 

system in future research: 

1. A better 3D camera can help to capture the small leaves for 3D reconstruction, 

can reduce the noise level of the final 3D reconstruction of the plant, and get 

better physical parameter measurement accuracy. Alternative 3D imaging sensors, 

such as the active stereo camera, features significant higher spatial resolution and 

accuracy with less noise, making it more favorable to the indoor phenotyping 

application. 

2. The 3D reconstruction of this research is purely based on the 2D camera’s pose 

estimation system. In order to improve the 3D reconstruction accuracy, the 

algorithm to evaluate the misalignment of the 3D image views would need to be 

developed to adjust the 3D registration accordingly. 

3. A meshing algorithm to construct plant surfaces from the point cloud is needed. 
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4. In order to meet the need of phenomics to collect diverse phenotypic features, it is 

necessary to extend the phenotypic feature estimation algorithms to collect other 

data, such as plant volume, stem diameter, etc.  

5. To expand the power of the 3D reconstruction based phenotyping system, in 

future research, the 3D reconstruction of the plant could be combined with other 

texture, such as color, chlorophyll fluorescence image, and thermography, to 

study pathogen infection and tolerance, transpiration, and photosynthetic response 

corresponding to a specific part of the plant. 

 


