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is usually close to the saturated water content of 
the compacted soil. The landfill site may be pre
pared several months in advance of filling. During 
this open period, high temperatures may occur 
on the surface of the plastic and on the soil sur
face directly beneath the plastic. A concern arises 
that drying and cracking of the compacted-soil 
liner could occur because of moisture movement 
beneath the plastic liner caused by large temper
ature gradients. Basnett and Brungard (1992) ob
served cracks in a clay liner in a landfill site and 
hypothesized that the cracks were formed by 
water evaporating from the clay liner and con
densing on the under surface of the plastic liner 
where it migrated down slope. Another mecha
nism for water movement may be from water 
vapor movement and/ or changes in the water 
potential and hydraulic conductivity as a result of 
temperature gradients within the clay liner. In ei
ther case, any cracks formed in the compacted
soil liner lessen the effectiveness of the liner by 
providing pathways for leachate movement out 
of the landfill site. 

Water movement can be caused by thermal 
gradients within the soil, both by water vapor 
movement from the warmer to cooler soil zones 
and by temperature effects on the physical prop
erties of water (Philip and de Vri es 1957; de Vries 
l 958; Milly 1982; Chung and Horton 1987; 
Scanlon and Milly 1994). Generally, the vapor 
movement of water from potential gradients and 
the temperature effects on liquid water move
ment are ignored for water flux calculations. As 
shown by Milly (1984a), however, water vapor 
movement becomes relatively more important 
fo r dry soils with extremely low liquid-water 
conductivities. The temperature affects the water 
vapor flux through changes in the isothermal 
water vapor conductivity and thermal water 
vapor diffusivity. T he water vapor conductivity 
and diffusivity are described, respectively, as: 

and 

Drv = 8.,QD, Tl I p L (hdp., I dT - gpv \jf I R T 2
) (2) 

where K,,,v is the isothermal water vapor conduc
tivity, (m / s), Drv is the thermal water vapor diffu
sivity, (m2/s K), 8, is the air-filled porosity 
(m3 / m3), n is the tortuosity factor, PL is the den
sity of liquid water (kg/ m3),g is the gravitational 
constant (m/ s2

) , Dais the molecular diffusion co
efficient of water vapor in air (m2/ s), p ,, is the 

water vapor density in the air phase (kg/ m3
), R is 

the universal gas constant Q/ kg K), Tis tempera
ture (K), rt is a correction factor to account for 
enhancements of vapor flow attributable to tem
perature gradients in the air phase (Philip and de 
Vries 1957), h is the relative humidity, p ,, is the 
saturated vapor density (kg/m3

), and \jf is liquid 
water matric potential (m). 

Milly (1984a) also showed that the tempera
ture effects on the physical properties of water 
should not be ignored for the calculation of water 
transport in wet soils with large temperature gra
dients. Temperature affects liquid flow by chang
ing the physical properties of water. Milly (1982) 
discusses temperature effects on matric potential 
through changes in water surface tension and 
density. H e gives a matric potential correction as: 

'l'1"' .11 = 'l'cr(T;,)pdT) /(cr(T)pi(T;,)) (3) 

where cr is the surface tension Q/ m 2
), and T,, is 

the reference temperature (K). Thermal effects on 
unsaturated hydraulic conductivity, K, occur 
through effects on kinematic viscosity, V, by: 

K = K(8, T ) = K(8,'J: ) v(T.,) l v(T) (4) 

where K(8, T,,) is the unsaturated hydraulic con
ductivity at water content e (m3/m3

) and refer
ence temperature T0 (C), and V is kinematic vis
cosity of water (m2/ s). 

The objective of this study is to investigate 
experimentally and numerically the movement of 
water in compacted soil beneath a plastic liner 
subjected to large and small temperature gradi
ents. Both constant and periodic temperature 
gradients are investigated. 

MATERIALS AND METHODS 

Two types of studies are achieved in the pre
sent work . The first represents physical experi
ments for water distributions under natural radi
ation and elevated radiation. The second 
experiment represents numerical studies based 
upon a coupled heat and water transfer model. 

Physical Experiments 

The first part of this study made use of a clay 
soil material. A Clarinda clay (44% clay, 21 sand, 
35 silt) (AASHTO classification A-7, Unified 
classification CH) was collected by excavation, air 
dried, and ground to pass a 2-mm sieve. The soil 
has an electrical conductivity of0.57 dS/ m at sat
uration condition.The small electrical conductiv-
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ity results from low concentration of soluble salt. 
The effect of solute on water flow under the con
dition of the present study should be insignificant. 
Two soil batches were moistened using distilled 
water. The first batch was wetted to 0.281 kg/kg 
(0.407 m3 /m3

) water content (optimum water 
content = 0.27 kg/ kg) , and the second batch was 
wetted to 0.27 kg/kg (0.392 m3/m3

) water con
tent. Both soil batches were stored at 20°C for 
more than 4 days . The soil was packed and com
pacted into 0.075-m-diam. X 0.30-m-long PVC 
plastic columns using an Instron Model 112S 
controlled hydraulic press, to a 1.4S Mg/m3 bulk 
density. Six identical columns were prepared from 
each batch. After packing, each soil column was 
sealed at the top with a 0.0015-m thick black 
plastic disc and closed at the bottom end with a 
plexiglas disc. Copper-constantan thermocouples 
were placed at 0.00- (surface of a soil column), 
0.02-, O.OS- , 0.10-, 0.1 S- , 0.20- , 0.2S-, and 0.30-
m (bottom of a soil column) depths in each col
umn. The thermocouples were located longitudi
nally at the center of soil columns. The soil 
columns were buried in a soil pit in a greenhouse, 
with the top of the column level with the surface 
of the soil in the pit. The surrounding soil in the 
pit was covered with the same plastic material 
used to seal the tops of the columns.Two temper
ature regimes were imposed on the soil columns. 
The first temperature regime used natural solar 
radiation and ambient greenhouse temperatures 
to create a temperature gradient for soil columns 
wetted at 0.407 m3/ m3 water content. Surface 
temperature amplitudes ranged from 1 to 11°C 
during the experiment. A second temperature 
regime used 3SO-W heat lamps, placed 0.2S m 
above the soil surface, to provide additional radia
tion for 12 h during the day time. In the latter 
regime, the soil columns wetted to moisture con
tent of0.392 m3/m3 were used.The surface tem
perature amplitude with the supplemental heat 
was 1 S to 16 °C. Periodic temperature boundaries 
were achieved in both temperature regimes. Ex
amples of surface and 0.3-m-depth temperature 
distributions during the day for each temperature 
regime are shown in Fig. 1. Three soil columns 
were removed at 9 and at SS days after the start of 
the natural radiation treatment and at 12 and at 54 
days after the start of the supplemental radiation 
treatment. When the soil columns were removed, 
there were no cracks observed in the soil column. 
For determination of water content distribution, 
each column was cut into 0.01 -m sections for the 
top O.OS-m depth and then into 0.02-m sections 
for the rest of soil column. The gravimetric water 

60 

50 

§: 40 

E 
" ~ 30 

" 0.. 
E 
" 20 .... 

10 

0 
0 

Surface 

/ ' / 

'--o.3 m 

- -'\ - -
0.3 m 

- Supplemental Radiation 
Natural Radiation 

6 12 18 

Hour 

24 

Fig. 1 . Daily temperature distributions for the surface 
and 0.3-m depth for the buried soil columns. 

content of the soil in each section was deter
mined by drying at 1 OS°C for 24 h. 

Numerical Experiment 

Governing Equations 

The theory developed by Milly (1982) for 
heat and water transfer is used in the one-dimen
sional form for the present analysis. The theory 
considers that water (vapor and liquid phases) 
transfers under gradients of temperature, matric 
pressure head, and gravity head and that heat 
transfers by conductive, latent heat, and sensible 
heat. The following balance equations describe 
temporal and spatial variations of soil tempera
ture and water content in vertical soil columns. 
Assuming one-dimensional transfer in the z di
rection, the nonsteady-state energy balance equa
tion may be written as 

aT ae _ aq 
K, at + K 2 at = dz (5) 

where the net heat flux, q, is given in terms of 
conductive, latent heat, and sensible heat fluxes, 
respectively, by 

where t is time (s), K, is effective thermal con
ductivity of soil (\!\/Im K) and m,,, is net water 
flux (kg/m2 s). 
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The coefficients K 1 and K2 of the storage 
terms in Eq. (5) are given by: 

the case of closed soil. T hese conditions have to 
describe different time-dependent temperature 
functions with no flow of water at both ends of 

(7) the column. The temperature boundary condi
tions at both ends can be described by 

K 2 = [L,, + Cl'(T- 7;, )]9, ~p .. ~: + C1.pr(T-T.,) 
'I' (8) 

-p,W - C1,p, (T- '(,) - L"p" 

The air-filled porosity, 0 .. , is the difference be
tween the total soil porosity, P, and the volumet
ric water content 0. The latent heat of vaporiza
tion, L, and the volumetric heat capacity of the 
wetted soil, C_., are given, respectively, by 

L = L" - (CL - Cp)(T - "(.) (9) 

where Cd is volumetric heat capacity of dry soil 
(J/kg) , CL is specific heat of liquid water (J / kg), 
cl' is specific heat capacity of water vapor (J / kg), 
L" is latent heat of vaporization at a reference 
temperature, T.,, (J/kg), and Wis differential heat 
of wetting (J / kg). 

T he nonsteady-state mass balance equation 
for the water flow may be written as 

(l _ .ei:. + ~ ap ,. a'I') a9 + 
PL p, a'I' a9 ar (1 t ) 

(9" ()?") ()T = _ 0(111,,, I pd 
PL r dt dz 

where the net mass flux of water, nr 11,, is given by 

m.,. = -pL[(K + K,,,,.) ~~ + 

oT 
(Dn + Dn) ()z - Kkj 

(12) 

where Dn is the thermal liquid water diffusivity 
(m2 Is K) and k is a unit vector. The thermal liq
uid flu x was ignored by Milly (1982) because the 
value of Dn is small in comparison to the other 
water transport coefficient in dry soil. 

T he initi al conditions associated with the en
ergy and mass balance equations, Eqs. (5), and 
(11) are given by 

T(z,O) = T,, 0(z,O) = 0,, (0 < z <I) (13) 

where I is soil column length (m). The corre
sponding boundary conditions are formulated for 

"J"(O,t) = ·1;,, +I A,, cos(11(J)t - <j>,,) t > () (14) 
I 

" 
T(l,t) = T,,, +I, A,, cos(11COt - <j>,,) t > 0 (15) 

A suitable value of n was found to be 3. n is 
number of harmonic, T,,, is the mean tempera
ture at either end of soil column, A,, is the tem
perature amplitude of the harmonic wave, w is 
the angular frequency, and $,, is the phase shift of 
the temperature wave harmonic. The boundary 
conditions for water are given in terms of net 
mass fluxes by 

111,,,(0, t) = 0, t > 0 (16) 

111.,.(/,1) = 0, r > 0 ( 17) 

Soil Transport Properties and Parameters 

The solution of the energy and m ass balance 
equations, Egs. (5) and (11) , requires exact knowl
edge of several transport properties and parame
ters of the soil. The fun ctional relationships, \j/ (0), 
between the soil water content,0 , and the matric 
pressure head \jl and the corresponding functi on 
K(0, T.,) are usually obtained empirically (Camp
bell 1974) . The following functions are used to 
describe these relationships: 

'I' = '¥, (9 1 6_r1
• (1 S) 

K(9, T,,) = KJ8!0.j2,,+> (19) 

where b and \j/,. are fitting parameters, and 0 _, is 
saturated volumetric water content. Eq. (18) was 
fitted to the measured 0 for determining b and 
\jf,.. Table 1 shows values for the fitting parameters 
and K, of the Clarinda compacted soil. The en
hancement factor was calculated using the fol
lowing form (Cass et al. 1984) : 

T] =I;+ ~8 - (/; - l)exp(-[(1 + p l-v'a)8]Y ) (20) 

where ~' ~' p, and y are empirical coeffi cients, and 
a is clay fraction in the soil. Values of these em-



VOL. 161 ~No. 8 THERMAL WATEll MOVEMENT IN UNIFORM CLAYEY SOIL 475 

TAllLE I 

The values of parameters of Egs. (18), (19) and (20) for compacted Clarinda soil 

E>JS. (1 8) ~ (19) b 
20.049 

Eq. (201 ~ 

H.5 

pirical coefficients, which were used in the pre
sent study, are given in Table 1. The values of these 
coefficients depend on soil texture and are given 
in C ass et al. (1984). Increasing or decreasing the 
enhancement factor can lead to increasing or de
creasing the thermal vapor fluxes, respectively . .A 
small range of 10.3 to 10. 9 for this factor was 
used in the present study. The effective thermal 
conductivity of the soil, K.., the volumetric heat 
capacity of dry soil, Cd, and the differential heat of 
wetting, W , are generally functions of soil particle 
size distribution, soil water content, soil bulk den
sity, and soil constituents. Expressions for these 
fon ctions are given by Milly (1984b). 

J\'11merical Model Development 

An implicit finite difference numerical 
scheme (Smith 1978) was used to discretize and 
solve the two partial differential equations (PDE), 
Eqs. (5), and (11), using backward difference for
mula for the time derivative.With this scheme the 
value of any variable (T, or 0) at a given time t+L\t 
is not just a function of the values of the variables 
at the preceding time, t, but also involves the val
ues of all variables at the same time, t+L\t. This is 
attributable to the nonlinearity of the PDE pro
duced by the dependence of most coefficients on 
the two variables themselves. However, a simple 
linearized finite difference form of the PDE was 
obtained by including coefficients simply esti
mated as the arithmetic mean of their values ei
ther at the two adjacent nodes or at the two con
sequent time instants. The resulting system of 
finite difference equations with 2N unknowns 
was solved simultaneously for each time step, 
where N is the number of nodes along the soil 
column axis . .An iteration method was used when 
solving these equations after arranging them in 
matrix form. The 2N by 2N coefficient matrix 
was block-tridiagonal and was efficiently solved 
by using Gaussian elimination method with 
backsubstitution. The Gaussian elimination re
duces a matrix not all the way to the identity ma
trix, but only halfway, to a matrix whose compo-

~Jml. ll.,Jm' I 111°} .K;(m/s) 
(J.029 0.47 1 3.1X10-" 

s 'Y p 

6.0 4.0 2.6 

nents on the diagonal and above remain non
trivial. For a given time instant of order j + 1, the 
values of matrix coefficients were first taken as 
those for the preceding time of order j. Then a 
first approximation of values of the 2N variables 
for the given time instant was obtained. These 
values were introduced to improve the matrix co
efficients and then to obtain new values of the 
variables. Proceeding in a similar manner, a final 
solution could be obtained for the given time in
stant of order j+l with an arbitrarily chosen ac
curacy of each variable. 

Simulations 

The numerical model was used to investigate 
two liner conditions: periodic heating and cool
ing, and constant heating. The periodic heating 
and cooling condition represents a liner exposed 
to natural radiation. The constant heating repre
sents a buried liner in contact with heat generat
ing decomposing waste. For periodic conditions 
the numerical model was used to predict water 
content distributions in the compacted Clarinda 
clay soil and to calculate the isothermal/thermal 
water flux ratio at 0.04-m depth from the top of 
soil columns. The predicted values were com
pared to the measured water content distributions 
from the physical experiments. For constant heat
ing conditions the model was used to simulate ef
fects of constant boundary temperatures on water 
movement under plastic liners. The simulation 
was performed using the soil properties of com
pacted Clarinda soil along with temperatures of 
20 and 50°C at the cold and hot ends, respec
tively. The initial water content and simulation 
time were 0.392 m3/ m3 and 54 days, respectively. 
.A mass balance for the water of soil columns was 
calculated from the measured and predicted water 
content distributions. The mass balance was cal
culated for the small and large temperature am
plitudes at the final days. The measured and cal
culated mass balances for small temperature 
amplitudes were 0.11447 and 0.11427 m, respec
tively, and for the large temperature amplitude 
were 0.10998 and 0.10988 m, respectively. 
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Fig. 2. Measured and predicted water-content distributions for the buried soil columns, low temperature (a) and 
high temperature amplitudes (b). 

RESULTS AND DISCUSSION 

The isothermal water vapor conductivity 
(K111v) and thermal water vapor diffusivity (DTv), 
and the correction factors for matric potential 
and hydraulic conductivity, are shown in Table 2. 
Although K111v is three to four orders of magni
tude smaller than DT., the contribution of the 
isothermal wa ter vapor conductivity to the 
isothermal water Rux also depends upon the ma
tric potential gradient. K111v is about 4 orders of 
magnitude smaller than the saturated hydraulic 
conductivity for the compacted Clarinda soil (3 
10-9 mi s), but it should not be ignored for the 
calculation of water movement under plastic lin
ers. Vapor diffusion may be more important for 
soils with lower liquid-water hydrauli c conduc
tivity, such as those used by Horton et al. (1987). 
The effect of temperature on hydraulic conduc
tivity, through effects on viscosity, is greater than 

the effects of tempera ture on matric potential, 
through effects on surface tension. The hydraulic 
conductivity more than doubles with a change of 
ten1perature from 20 to 60°C, whereas the 
change of matric potential is only about 8%. 

The measured and predicted water-content 
distributions under natural radiation conditio ns 
(Fig. 2a) showed little net wa ter movement 
caused by thermal gradients. For the supplemen
tal radiation treatment, water content of the sur
face, warm end of the soil column, was about 
0.07 m3/ m3 less than the buried, cooler end of 
the soil column (Fig. 2b). For the natural radia
tion treatment the difference in the water content 
for the corresponding ends was 0 .03 m3/ m3.The 
model also predicted a drier soil near the surface 
of the warm end of the soil fo r the supplemental 
radiation. Both the measurements and the model 
showed the drying to be limited to the top 20 

TABLE 2 

Isothermal water vapor conductivity, K,,,, (mi s), and thermal water vapor diffusivity, ()TV (m2/ s C ), 
for compacted Clarinda soil at 0 of0.407 m3/ nr1

; and temperature correction fa ctors for matri c potential, 
CJ (T 0) p, (T) I (CJ (T) p, (T.,))", and hydraulic conductivity, V (T 0) I V (T)". 

Temperature (°C ) 

5 2ll 35 50 

Kll1V 6.8 10- 17 1.8 10-l h 4.4 10- 1(, 1.2 10- " 

Dw 4.7 10- 13 1.8 10- 12 3.3 10- 12 6.4 10- 11 

CJ (T 0) PL (T) I CJ (T) PL (T.,) 0.97 l.00 1.03 108 
v (T0 ) I v (T) 0.65 1.00 1.40 2. 18 

•Temperature effects on surface tension, density and viscosity of liquid water are for pure, free water. 
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and 70 mm, respectively, for low and high tem
perature amplitudes. The thermal vapor flux is 
large for the high temperature columns com
pared with the low temperature soil columns.The 
thermal vapor flux increases as the thermal water 
vapor diffusivity increases (Table 2) and as the 
thermal gradients increase. The results in this 
study are in agreement with results provided by 
Vielhaber et al. (1994). They reported that water 
movement in soil liners is primarily caused by 
variation in both temperature and temperature 
gradients. To minimize the possibility of drying 
and cracking of the soil underlying the plastic 
liner, the liner should not be exposed to large sur
face radiation for extended periods of time. The 
liner should be shaded after being placed. 

Predicted water redistribution in response to 
constant boundary temperatures is shown in Fig. 
3 for two different periods (12 and 54 days). The 
water migrated from the hot end (high tempera
ture boundary) toward the cold end (low tem
perature boundary) during the two periods. The 
amount of migrated water increased as time in
creased. The net water transfer with the constant 
boundary temperatures was great compared with 
the net water transfer with the natural and ele
vated radiation (Figs . 2a and b). Buried waste that 
generates heat as a result of chemical decomposi
tion or radiative decay can provide heat flux over 
a long period of time.This can result in a constant 
thermal gradient.The water vapor moves contin
uously from hotter to cooler soil. The water vapor 
condenses at the cooler region of soil producing 
a matric potential gradient that circulates liquid 
water back upward. The solar radiation heating 
and cooling is not a constant. During part of the 
day, the temperature gradient decreases down
ward, and during coolin g it reverses direction. 
Water moves downward and then back up again 
in a cyclic manner. 

Figure 4 shows the absolute isothermal/ther
mal water flux ratio as a function of time for pe
riodic large temperature amplitude. The ratio is 
calculated at times of 8 a.m. and 2 p.m. on con
secutive days for the 0.04-rn depth. The ratio re
veals that isothermal water flux increases with 
time. The increase is due to an increase of the ma
tric potential gradient as time increases . The ratio 
is less than unity indicating that net water trans
fer was always toward the bottom end of the soil 
column. The isothermal flux during the first 6 
days was negligible but it was close to unity dur
ing the last 6 days. Because the temperature gra
dient is smaller at 8 a.m. than at 2 p.111. , this results 
in a greater ratio at 8 a.m. than at 2 p.m. The dif-
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Fig. 3. Predicted water-content distributions for com
pacted Clarinda soil under constant boundary temper
atures. 

forences in the ratio between times 8 a.m. and 2 
p.m. increase as time increases. The values of the 
ratio for Day 52 were 0.852 and 0.243 at 8 a.m. 
and 2 p.m. , respectively. 

Figure 5 shows predicted water distribution 
for small and large periodic boundary tempera
tures, and constant boundary temperatures. The 
initial water content for the three temperature 
boundaries was the same (0.392 m 3/ m 3

) . In all 
cases the lower depths showed increases in water 
content, reflecting the drying of the near surface 
zones. The soil surface dried relatively quickly in 
the constant boundary temperature, from a soil 
water content of 0.392 to a water content of 
0.340 m3/ m3 in only about 7 days. In the case of 
large amplitude periodic temperature boundary, 
the soil surface dried from 0.392 to 0.365 111

3 
/ml 

in approximately 15 days. In the case of small am-

time, dcy 

Fig. 4. Predicted ratio of absolute isothermal/thermal 
water flux at depth of 0.04 m. The ratio is graphed at 
times of 8:00 a.m. and 2:00 p .m. on consecutive days. 
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Fig. 5. Predicted water-contents through time at se
lected depths for soil under low and high boundary 
temperatures, and constant boundary temperatures. 

plitude periodic temperature boundary, the sur
face water content decreased from 0.392 to 0.38 
in 15 days. For constant boundary temperatures, 
soil drying extended to deeper depths than oc
curred with either small or large amplitude peri
odic temperature boundaries. For example, water 
initially at a depth of 40 mm did move down to
ward the cold end under the constant temperature 
boundaries, but it did not indicate movement for 
either the small or large amplitude periodic tem
perature conditions. With a constant thermal gra
dient, water transfers, mostly in vapor phase, in one 
direction toward the cold end of soil column; after 
condensation some water moves back in liquid 
form toward the warm end of soil column. In the 
presence of a periodi c temperature gradient, water 
moves toward the bottom end of a soil column 
during the day and moves back toward the soil 
column surface at night.Values of water content at 
zero depth reveal that steady-state water flux oc
curred after 35 and 45 days for small and large 
temperature amplitudes , respectively. However, 
under constant temperature, the surface layer con
tinues to lose water even at day 55. It can be con
cluded that the net water transfer under periodic 
temperature gradients must be less than under 
constant temperature gradients. This study shows 

that the compacted so il under a plastic landfill 
liner may dry slowly because of periodic thermal 
gradients caused by solar radiation, but enhanced 
drying is shown for constant th ermal gradients 
when the liner is exposed to heat generated from 
buried chemical or radiative wastes. The results of 
periodic temperature reveal that exposing a flat 
clay liner covered with plastic to natural radiation 
may not cause severe drying for the liner. H ow
ever, for a sloping liner covered with plastic, water 
vapor may condense on the bottom of the plastic 
cover enabling water seepage to occur on the un
derside of th e plastic. For this condition severe 
desiccation and cracking of the clay liner may 
cause a problem in the liner management (Basnett 
:ind Brungard, 1992). 

NOTATION 

A11 temperature amplitude l°C, K] 
b fitting coefficient defined in Eqs. (18)and (19) 
Cd volumetric heat capacity of dry soil lJ m - 3 

K - 11 
C 1. specific heat of liquid water lJ kg - i K- 1 J 
cl' specific heat of water vapor Jt constant pres
sure lJ kg- 1 K- 11 
C, volumetric heat capacity of wetted soil IJ m -.> 

K - 1] 

K11 ,v isothermal water vapor conductivity [m s- 11 
DTL thermal liquid water diffusivity [ 111

2 s- 1 K - 1 J 
DTV thermal water vapor diffusivity I 111

2 s - 1 K- 1 I 
g gravitational acceleration f m s - 2

] 

K unsaturated hydraulic conductivity [m s- 11 
K(S,Tn) unsaturated hydraulic conductivity mea
sured at water content 8 ant reference tempera
ture T 0 Im s- 1 I 
K, saturated hydraulic conductivity [m s- 1

] 

k unit vector opposite gravity 
K" effective thermal conductivity of the soil (W 
m - 1 K - 11 

L latent heat of vaporization lJ kg- 1
] 

L0 latent heat of vaporization at reference tem
perature (J kg- 1

] 

1 soil column height Im] 
mw net mass flux of water [kg m - 2 s- 11 
q net heat flux IW m - 2J 
P total soil porosity 
R universal gas constant (J kg - l K- 1

] 

T soil temperature 1°C, Kl 
T; initial soil temperature [°C, K] 
T 11 , mean temperature defined in Eqs. (14 and 15) 
[°C,K) 
T 0 reference temperature f°C, K) 
t time f s] 
W differential heat of wetting IJ kg -i I 
z vertical ordinate in the downward direction [m) 
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GREEK SYMUOLS 
a clay fraction in soil 
e volumetric water content in the liquid phase 
e .. air-fi lled porosity inr1

/ 111
11 

e, initial volumetric water content in the liquid 
phase 
e, saturated volumetric water content in the liq
uid phase V dynamic viscosity of water [ m 2 s- 1 j 
T) enhancement fac tor for thermal vapor flu x 
Pi density of liquid water !kg m - 1

1 

p, water vapor density [kg 111 - .i j 
~ empirical coefficient in Eq. (20) 
~ empirical coefficient in Eq. (20) 
y empirical coeffi cient in Eq. (20) 
p empirical coefficient in Eq. (20) 
<jl,, phase shift of the temperature wave harmonic 
[rad] 
\jl matric pressure head measured at reference 
temperature [ m] 
\jl matric pressure head as a fimcrion ofT and 8 
[ m] 
\jf, air entry matric pressure head [m] 
(J) angular frequency I rad s - i I 
a su rface tension I j/11121 
Q tortuosity factor 
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