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ABSTRACT 

To study the effects of glucagon on early-lactation dairy cows that have fatty livers 

and are susceptible to ketosis, glucagon was continuously infused via intravenous 

jugular catheters into dairy cattle in various physiological states. In preliminary 

dosage response studies, glucagon was infused into eight spayed Holstein heifers, 

four midlactation Holstein cows, and four early-lactation Brown Swiss cows in cross

over design trials at dosages of 20 mg/d or less for 48 h. Plasma glucose 

concentrations were increased by glucagon in a dose-dependent manner. Plasma 

nonesterified fatty acid and ketone body concentrations were not increased by 

glucagon at 5 mg/d or less, were increased in heifers at 10 mg/d, and increased in 

cows at 20 mg/d compared with preinfusion concentrations. Glucagon at 10 mg/d 

was the largest dosage tested in lactating cows that did not elicit a lipolytic or 

ketogenic response. Glucagon at 10 mg/d or vehicle was then infused for 14 d 

during a protocol to induce ketosis in 20 early-lactation Holstein cows already 

having fatty livers. Plasma glucose concentrations were increased by 42% 

compared with glucose concentrations in control cows. Plasma insulin 

concentrations increased during the first 4 h of glucagon infusion, thereafter they 

were not different than concentrations in plasma of control cows. Concentrations of 

nonesterified fatty acids and ketone bodies in plasma were decreased over time by 

glucagon compared with concentrations in plasma of control cows. In livers of cows 

treated with glucagon, concentrations of triacylglycerols rapidly and dramatically 

declined . At the end of glucagon treatment, triacylglycerol concentrations in livers 

of glucagon treated cows had been decreased by 71% compared with livers of 

control cows. Glucagon caused liver glycogen concentrations to transiently 

decrease and ultimately increase to 231% of the glycogen concentrations in livers 

of control cows. Production of milk and milk protein was decreased during glucagon 

treatment, but rapidly increased to levels of production by control cows after 
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treatment. No adverse effects of glucagon were observed on the health of the 

cows. Glucagon can be used as an effective treatment for fatty liver and increasing 

the resistance of early-lactation cows to ketosis. 



1 

GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation is presented as two papers, each of which is in a form 

suitable for submission to the Journal of Dairy Science. These papers have been 

prepared from research performed to partly fulfill the requirements for a Ph.D. 

degree. Each paper is complete in itself, including an abstract, introduction, 

materials and methods, results, discussion, conclusions, and references. The first 

paper represents preliminary dosage response work upon which the dissertation 

research was established. The second describes the main body of research 

conducted for completion of the dissertation. The papers are preceded by a 

literature review and followed by a general discussion. 

Literature Review 

Fatty liver and ketosis are related metabolic disorders that occur with 

discouraging frequency in early-lactation dairy cows. Cows that have the greatest 

potential for milk production are also the most susceptible to these disorders. Often 

associated with this disease complex are; 

• decreased milk production, both acutely and chronically. 

• depressed immune function, leading to increases in infectious disorders. 

• calving related disorders: dystocia, retained placenta, and metritis. 

• decreased reproductive efficiency: delayed estrus and failure to conceive. 
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• post-calving metabolic aberrations: milk fever, "downer cow syndrome", and 

displaced abomasums. 

• a general state of malaise: "She just won't eat, Doc." 

• and in extreme fatty liver liver necrosis and loss of the cow along with her 

genetic potential. 

Admittedly, this list is very general and seemingly any postparturient disorder could 

be attributed to fatty liver and ketosis, but the list serves to illustrate the complexity 

of the syndrome. 

Because diagnosis of fatty liver is difficult, if not impossible without collection 

of a liver sample for quantification of triacylglycerol (TAG) content, fatty liver is 

sometimes referred to as a "hidden" disorder. Attempts to treat cows for the above 

postparturient problems, by necessity, focus on treatment of the immediate 

symptoms rather than on fatty liver itself, because no efficacious treatment has 

been found for fatty liver. Liver function may be badly impaired by fatty infiltration. 

Associated with fatty liver is a loss of endoplasmic reticulum and decreased 

numbers of mitochondria within the hepatocytes resulting in decreased synthetic 

and energetic functions by the liver (Baird, 1982). In the event of advanced fatty 

infiltration of the liver, the prognosis is poor, and the herdsman is usually advised to 

"put her on the truck" while the cow is still ambulatory. 

Thus, economic losses attributable to fatty liver and ketosis can be 

substantial within individual herds. Various estimates have been made of the cost 

of fatty liver and ketosis to dairy farmers, but most estimates consider only the direct 
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costs of treatment for ketosis and milk production lost during clinical ketosis. The 

costs for treatment of related disorders such as surgical correction of a left 

displacement of the abomasum can be substantial. The true costs of the syndrome 

also should include treatments for these related disorders and decreased milk 

production related to a chronic condition of fatty liver and subclinical ketosis, a 

shortened productive life, costs of replacement animals, and a decrease in the rate 

of genetic improvement. 

Efforts to elucidate the causes and etiology of fatty liver and ketosis have 

been numerous over the past 30 years, and many journal and popular press articles 

address this topic. The general consensus of published material is that ketosis is a 

result of an aberration in carbohydrate metabolism at a time when energy demands 

of the lactating dairy cow are at a zenith, and the resulting low concentrations of 

glucose are a primal factor in the etiology of ketosis and fatty liver. Therefore, the 

goal of this research was to remedy the hypoglycemic condition of ketotic cows 

having fatty livers through administration of the hormone that is directly responsible 

for glucose sufficiency, i.e., glucagon. What follows is an overview of significant 

recent gains in the understanding of the "fatty liver syndrome" and ketosis and a 

description of work that, hopefully, contributes meaningfully to this body of 

knowledge. 
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Hormones of Carbohydrate and Lipid Metabolism 

To discuss the derangements that occur during the development of fatty liver 

and ketosis, a brief review is warranted of the two major regulators of carbohydrate 

and lipid metabolism, insulin and glucagon. Insulin and glucagon have opposing 

and counter-balancing actions. Generally speaking, insulin is responsible for 

nutrient uptake by tissues and opposes gluconeogenesis and lipolysis. Glucagon 

promotes mobilization of nutrients by stimulating lipolysis, ketogenesis, and net 

glucose export from the liver via glycogenolysis and gluconeogenesis (Holtenius, 

1993; Shade and Eaton, 1975). The effects of the two hormones may vary widely 

when comparisons are made across species, and the discussion that follows is an 

overview of commonly accepted activities and relationships of these hormones. 

Whenever species specific effects are pertinent, an effort has been made to 

elaborate in the discussion that follows. Throughout the discussions, it is important 

to keep in mind that insulin and glucagon are considered to be counterregulatory, 

and changes in the molar ratio of insulin to glucagon are considered to be important 

predictors of metabolic status. 

Insulin. Insulin is synthesized in the endoplasmic reticulum of the U-cells in 

the pancreatic islets of Langerhans. The secretion of insulin is increased in 

response to increases in concentrations of blood glucose entering the (i-cells via 

GLUT-2 transporters, which are not insulin sensitive (Ganong, 1991). The (i-cells 

also contain glucagon receptors, and glucagon is able to stimulate an increase in 

blood Insulin concentrations (Ahren et al., 1987). Other compounds that stimulate 
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insulin secretion include mannose, amino acids, S-keto acids, acetylcholine, 

intestinal hormones, and phosphodiesterase inhibitors such as theophylline. Insulin 

secretion is inhibited by somatostatin, epinephrine, norepinephrine, and insulin itself 

(Ganong, 1991). 

The stimulatory effects of the above agents can be attributed to their effects 

on cellular Ca** concentrations. An increase in cytosolic Ca^ stimulates insulin 

secretion. Cytosolic Ca"^ is increased by glucose activation of ATP-sensitive \C 

channels, glucagon, U-adrenergic agents, and phosphodiesterase inhibitors. 

Acetylcholine will increase cytosolic Ca^ by activating phospholipase C and 

generating inositol triphosphate (Voet and Voet, 1990). 

Upon binding to receptors, insulin is internalized rapidly and degraded within 

cellular endosomes. Thus, the half-life of insulin in humans is only about 5 min. 

Insulin increases the uptake of glucose in most tissues, in particular muscle and 

adipose tissue, by increasing the number of glucose receptors on cell surfaces. 

Insulin also increases transport of amino acids and K* into insulin-sensitive tissues. 

Protein synthesis is increased and degradation is decreased by insulin. Insulin 

increases nutrient uptake by virtually all tissues, but, in ruminant animals, the 

insulin-induced uptake of nutrients is slower than in nonruminant animals 

(Brockman and Manns, 1978). Additionally, insulin is not able to stimulate glucose 

transport into the mammary gland of dairy cows, and glucose transport is a passive 

process controlled by the relative concentrations of glucose in blood and utilization 

of glucose in mammaty tissue. 
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Within the liver, insulin increases the activity of glycogen synthase and 

glycolytic enzymes and decreases the activity of phosphorylase and gluconeogenic 

enzymes. In ruminant animals, insulin is able to inhibit hepatic glucose production 

by only about 15%, and the inhibition seems to be limited to glycogenolysis rather 

than to gluconeogenesis (Brockman, 1978). 

In adipose tissue as well as liver, insulin increases messenger RNA for 

lipogenic enzymes, stimulating lipogenesis. In vivo studies in sheep showed that 

insulin administration was associated with decreases in net output of glycerol and 

nonesterified fatty acids (NEFA) from adipose tissue, and the uptake of acetate by 

peripheral tissue was restored in alloxan-diabetic sheep (Brockman, 1978). Insulin 

is also responsible for increasing the uptake of ketone bodies in peripheral tissues 

(Robinson and Williamson, 1980). 

A general summation of the effects of insulin on specific tissues follow 

(Ganong, 1991): 

• Adipose tissue 

Increased glucose and fC uptake. 

Increased fatty acid synthesis, glycerol phosphate synthesis, and TAG 

deposition. 

Activation of lipoprotein lipase. 

Inhibition of hormone-sensitive lipase. 

• Muscle 

Increased glucose, ketone body, and amino acid uptake. 
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Increased glycogen and protein synthesis. 

Decreased protein catabolism and release of gluconeogenic amino acids. 

• Liver 

Decreased ketogenesis. 

Decreased glucose export by decreasing gluconeogenesis and increasing 

glycogen synthesis. 

Increased protein and lipid synthesis. 

The activity of insulin is directed primarily to extrahepatic tissues where it 

promotes nutrient uptake. In the absence of insulin, synthetic activity of tissues is 

decreased, and a net movement of metabolites toward the liver occurs (Brockman et 

al., 1978). 

Glucagon. Glucagon, similarly to insulin, also is produced in the pancreas. 

The a-cells of the islet of Langerhans are responsible for synthesis and secretion of 

glucagon. Partly because of the proximity of the S-cells, insulin is a major factor 

regulating glucagon secretion and inhibits glucagon gene expression in vivo and in 

vitro (Philippe, 1996). Declining production of insulin by the S-cells of the pancreas 

removes chronic inhibition of the a-cells (Cryer, 1996). Norepinephrine, 

epinephrine, growth hormone, and Cortisol also will stimulate glucagon production 

(Cryer, 1996). Similar to insulin, glucagon production also is stimulated by 

increases in intracellular Ca"^. The glucagon gene contains a cAMP response 

element that activates transcription when stimulated by Ca** and protein kinase A 
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(Philippe, 1996). Thus, the S-adrenergic agents will stimulate secretion and a-

adrenergic agents inhibit secretion of glucagon. 

Nutritional stimulation of glucagon secretion is caused by declining 

concentrations of blood glucose (Cryer, 1996). Glucagon secretion is stimulated 

after ingestion of protein or infusion of gluconeogenic amino acids and during 

starvation. The decreasing glucose concentrations also stimulate the autonomic 

nervous system, which act further on the a-cells both neuronally and homnonally 

(Cryer, 1996). Accordingly, glucagon is secreted via the sympathetic nervous 

system in response to stress, exercise, and infection. Glucagon, similar to insulin, 

is secreted also in response to acetylcholine and phosphodiesterase inhibitors. In a 

counterregulatory fashion, glucagon stimulates the secretion of insulin, 

somatotropin, and somatostatin. Inhibition of glucagon secretion Is caused by 

increasing concentrations of glucose, ketone bodies, and NEFA. Hormonal 

inhibitors of glucagon secretion include insulin and somatostatin. 

The half-life of glucagon in blood of dairy cows is about 5 min (deBoer et al., 

1986). Because glucagon is secreted into the portal vein, the liver is responsible for 

most of the removal of glucagon from circulation and concentrations in peripheral 

blood are low except in cases of cirrhosis (Ganong, 1993). Glucagon receptors 

have been identified also in white and brown adipose tissue, kidney, pancreatic 

islets, brain, heart, and intestinal tract tissues (Iwanij, 1996). The glucagon receptor 

is involved in the activation of adenylate cyclase, which is regulated by the 

guanosine triphosphate (GTP)-binding heterotrimeric G-protein complex (Iwanij, 
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1996). Therefore, much of the activity of glucagon can be attributed to the action of 

cAMP (Brockman, 1978). 

Glucagon generally is considered to be gluconeogenic, glycogenolytic, 

lipolytic, and ketogenic (Brockman, 1978; Ganong, 1993); although, the ketogenic 

capacity of glucagon in ruminant livers has not been consistently observed 

(Cadomiga-Valir^o et al., 1997). Glucagon does, however, consistently increase 

rates of gluconeogenesis. In addition to increasing the rate of gluconeogenesis, 

glucagon also will decrease the rate of glycolysis. This stimulation is accomplished 

by a glucagon-induced activation of protein kinase A via the action of adenylate 

cyclase and cAMP. Protein kinase A inhibits glycolysis at two sites; the conversion 

of phosphoenolpyruvate to pyruvate by phosphorylation of pyruvate kinase and the 

conversion of fructose-6-phosphate to fructose-1,6-bisphophate by decreasing 

concentrations of fructose-2,6-bisphosphate. Glucagon also activates a cyclic-

GMP-inhibited phosphodiesterase, increasing the dynamics of the cAMP-dependent 

systems by inducing rapid changes in protein kinase A activation and deactivation 

(Pecker and Pavoine, 1996). 

Glucagon increases hepatic glucose production, primarily by stimulation of 

hepatic glucogenic enzymes (Cryer, 1996). The enhanced gluconeogenic activity of 

glucagon in sheep was associated with increased activity of pyruvate carboxylase 

(Brockman, 1978). Glucagon also stimulates extraction of gluconeogenic 

precursors from plasma, including pyruvate, lactate, alanine, and glutamate but not 

glycerol (Brockman, 1978; Cryer, 1996; Flakoll etal., 1994). Furthermore, glucagon 
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does not seem to increase mobilization of these precursors from peripheral tissues 

(Cryer, 1996; Flakoll, 1994). 

Glycogenolytic effects of glucagon are caused by stimulation of glycogen 

phosphorylase and Inhibition of glycogen synthase (Cryer, 1996). Glucagon 

stimulation of hepatic glycogenolysis is by Ca^ elevation as well as stimulation of 

cAMP (Pecker and Pavoine, 1996). Glucagon causes breakdown of 

phosphatidylinositol-4,5-bisphosphate to inositol triphosphate that, in turn, 

stimulates cytosolic calcium uptake (Iwanij, 1996). The true effector of the action of 

glucagon on Ca** mobilization may be mini-glucagon (Pecker and Pavoine, 1996). 

Mini-glucagon is derived from processing of glucagon by an endopeptidase, and 

glycogenolytic activity is enhanced in the presence and diminished in the absence 

of mini-glucagon (Pecker and Pavoine, 1996). Glucagon and mini-glucagon also 

affect Ca"^ translocation by potentiating the effects of calcium-mobilizing agonists 

such as vasopressin, phenylphrenine, and angiotensin (Pecker and Pavoine, 1996). 

Adipose tissue responds to glucagon stimulation by an increase in lipolysis 

with a concomitant release of glycerol and NEFA (Iwanij, 1996). The lipolytic effects 

of glucagon in adipose tissue of ruminants is questionable at physiological 

concentrations, however. Etherton et al. (1977) failed to observe in vivo lipolytic 

responses to glucagon in adipose tissue from sheep and dairy steers. It is also 

possible that lipolytic effects can be attributed to a decrease in lipogenic activity 

induced by glucagon. The activity of the lipogenic enzyme, acetyl-CoA carboxylase. 
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is decreased with cAMP-stimuiated phosphorylation that is promoted by glucagon 

(Foster and McGarry, 1992). 

The effects of glucagon are directed mainly to the liver, where it promotes 

uptake of gluconeogenic substrate and increases hepatic output of glucose by 

glycogenolysis and gluconeogenesis (Brockman, 1978). A summation of the 

generally acknowledged effects of glucagon follows; 

• Adipose tissue 

Increased lipolysis. 

Activation of hormone-sensitive lipase. 

• Muscle 

No direct effects. 

Decreased protein synthesis via decreased plasma amino acid 

concentrations. 

• Liver 

Increase glucose export. 

Increased gluconeogenesis. 

Increasing glycogen degradation. 

Increased amino acid uptake. 

Increased ketogenesis. 

The effects of glucagon in other tissues do not necessarily directly involve nutrient 

metabolism, but they are supportive of the role of glucagon as a regulator of energy 
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substrate. In the heart, glucagon has positive ionotropic and chronotropic effects 

and activates L-type CA** channels, increasing the strength and duration of 

contractions (Iwanij, 1996). In the gastrointestinal tract, glucagon quiets contraction 

and relaxation of smooth muscle cells and inhibits gastric acid secretion; 

consequently, glucagon also has quieting effects on gastric motility (Iwanij, 1996). 

Development of Fatty Liver 

Prepartal nutrition. Nutrition of the dairy cow during the prepartal period 

seems to be a determinant of the postpartal development of fatty liver. Cows that 

are obese at parturition have a propensity for fatty liver. For this reason, fatty liver 

is often considered a component of "fat cow syndrome" (Morrow, 1976). Indeed, 

fatty liver may be the "gateway" disorder that leads to development of the peripartal 

diseases mentioned earlier. 

A contributory factor for the postpartal development of fatty liver is the plane 

of energy intake during the early portion of the dry period. Van den Top et al. 

(1996) have shown that cows allowed ad libitum access to feed during the dry 

period developed severely fatty livers postpartum compared with cows that had 

limited access to feed during the dry period. 

The nature of the feed, as well as the quantity, offered during the dry period 

also seems to have an effect on development of fatty liver. It has been 

hypothesized that increasing carbohydrates in the prepartal diet would increase 

insulin concentrations and inhibit mobilization of fatty acids from adipose tissue, 



13 

thereby preventing the development of fatty liver. This hypothesis is based partly 

upon research in which prepartal cows received an oral drench of propylene glycol 

daily (Studer et al., 1992). Cows in that experiment had decreased concentrations 

of liver TAG compared with that in control cows. Other researchers have observed 

that an increase in the ratio of concentrates to forage in the prepartal diet leads to 

increased insulin resistance typical of that observed in cows with fatty liver 

(Holtenius and Traven, 1990). They have concluded that overfeeding concentrate 

during late lactation and the dry period results in fat cows that are predisposed to 

postparturient diseases because of fatty infiltration of livers (Holtenius, 1993). In 

fact, cows fed 65% concentrate diets during the dry period did indeed have 

increased concentrations of insulin in plasma prepartum, but by 3 wk postpartum, 

insulin concentrations were decreased and concentrations of ketone bodies were 

increased in plasma compared with cows fed 50% concentrate during the prepartum 

period (Holtenius, 1993). On the basis of his research and that of others, Holtenius 

concluded that high levels of insulin-stimulating feedstuffs prepartum increases risk 

for postpartal insulin resistance, fatty liver, and ketosis. 

Excessive energy concentration in the diet as early as midway through the 

previous lactation may be a factor also in the development of postpartal fatty liver 

and ketosis. Holstein cows fed diets containing 1.7 versus 1.6 Mcal/kg during the 

last 200 d of lactation had increased concentrations of plasma ketones and liver 

TAG during the first 28 d of the following lactation (Vazquez-Anon et al., 1997). 

Two high-energy diets were fed during that study, one with high concentrate levels 
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and one with supplemental tallow. The high-grain diet was responsible for an 

increase in plasma ketone body concentrations and both diets contributed to 

increases in liver TAG. 

The addition of fat to the prepartal diet seems to hold promise for prevention 

of fatty liver by increasing energy intake of the cow immediately prepartum (Grum et 

al., 1996). Theoretically, the addition of fat in the form of TAG would provide 

glycerol for gluconeogenesis, but because dietary fat will increase concentration of 

NEFA in plasma, the benefit of the small amount of gluconeogenic substrate could 

be offset by increasing quantities of lipid that would have to be processed by the 

liver (Schultz, 1971). As early as 1956, it was observed that cows fed high-fat, low-

protein diets prepartum were hypoglycemic after parturition but did not develop 

ketosis (Schultz, 1971). More recently, cows fed high-fat diets during the dry period 

had decreased liver TAG and plasma NEFA concentrations and increased hepatic 

capacity to oxidize fatty acids postpartum (Grum et al., 1996). But once again, 

results of prepartal fat feeding have been variable. Skaar et al. (1989) fed tallow 

during the dry period and observed slight increases in postpartal concentrations of 

TAG in livers of cows. Perhaps both timing of fat supplementation and the nature of 

the dietary fat affects the outcome of prepartal fat feeding. Feeding diets high in 

unsaturated fatty acids to preruminating calves resulted in hepatic secretion of very-

low-density lipoproteins (VLDL) enriched in cholesteryl esters at the expense of 

TAG, which accumulated in the liver (Hermier et al., 1991; Leplaiz-Charlat et al., 

1996). Even though bacterial biohydrogenation in the rumen limits such effects in 
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mature cows, the degree of unsaturation of dietary fats may have implications when 

protected fat supplements and diets high in com grain are fed. 

Lipid metabolism in adipose tissue. The high-producing dairy cow is 

usually in a state of negative energy balance during the periparturient period 

(Coppock et al., 1974). Feed intake during this period is not adequate to keep pace 

with the energy demands of calving and lactation. Prevention of the dry matter 

intake (DMI) depression commonly observed during the peripartal period can 

alleviate the severity of fatty liver. When dietary refusals were collected and placed 

into rumens of fistulated cows, accumulation of TAG in liver was decreased during 

the postpartal period (Bertics et al., 1992). 

An estimated 20 to 25% of the energy required for lactation must be met by 

mobilization of energy stores from adipose tissue (Holtenius, 1993). Control of the 

release of fatty acids from adipose tissue is under honnonal influence. Insulin is 

considered to be the predominant hormone controlling flux of fatty acids into and out 

of adipose tissue (Brockman, 1976). The role of insulin in adipose metabolism is to 

inhibit lipolysis and stimulate lipogenesis (Robinson and Williamson, 1980). Forms 

of insulin resistance are common, however, in obese animals and people 

(Kolterman et al., 1980; McCann and Reimers, 1986). In adipose tissue from ewes 

in eariy lactation, insulin failed to stimulate uptake of acetate in support of 

lipogenesis (Vernon and Taylor, 1988). Other researchers have noticed heightened 

responses of insulin to glucose tolerance tests in obese ewes, but glucose removal 

was not enhanced indicating peripheral insulin resistance (McNeill et al., 1997). 
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Similarly, during the early postparturient period, adipose tissue from dairy 

cows is adapted to increased rates of lipolysis to support milk production and is less 

susceptible to the effects of insulin (McNamara and Millers, 1986). Therefore, the 

importance of insulin in inhibiting lipolysis during early lactation in ruminant animals 

is questionable because concentration and activity of insulin receptors on 

adipocytes are low at that time and rates of lipogenesis are negligible (Vernon and 

Taylor, 1988). Accordingly, in early lactation and particularly in obese cows and 

cows with fatty liver, an insulin resistance exists that prevents the insulin-induced 

inhibition of lipolysis, and the release of NEFA from adipose tissue is unrestrained 

(Holtenius, 1993: Holtenius and Traven, 1990). Concurrent with the insulin 

resistance of adipose tissue during the postpartum period, lipolysis in adipose 

tissue of ewes is more responsive to the stimulatory effects of noradrenaline 

(Vernon and Finley, 1985). This increased sensitivity to noradrenaline is enhanced 

as adipocyte size is increased. Though this is a desirable adaptive mechanism 

relative to the nutritional requirements of the ewe; the same characteristic in an 

obese dairy cow would contribute to increases in postpartal plasma NEFA 

concentrations. 

Glucagon generally is considered to be a lipolytic hormone, and it will 

stimulate release of fatty acids from adipose tissue of rats and poultry. In ruminants 

and dogs, which are species dependent on gluconeogenesis for supplying blood 

glucose, glucagon does not seem to stimulate release of fatty acids from adipose 

tissue if the normal ratio of insulin to glucagon is maintained (Brockman, 1978 and 
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Flakoll, 1994). In vivo infusions of glucagon have been observed to increase 

plasma fatty acids and glycerol, however, if insulin concentrations are not allowed to 

increase (Bassett et al., 1971; Brockman, 1976). Other In vivo studies, however, 

have not necessarily been able to confinm the lipolytic role of glucagon (Bauman, 

1976). 

In dairy cows, glucagon was observed to be unchanged between 3 wk before 

to 3 d after parturition, a time when fatty acid mobilization is increasing (Holtenius, 

1993). Glucagon concentrations did increase in the cows by 3 wk after parturition, 

but no clear relationship of glucagon to plasma NEFA concentrations was shown. 

Other hormones have varying degrees of effects on fatty acid mobilization from 

adipose tissue (Ganong, 1993). Glucocorticoids have minimal lipolytic effects. 

Epinephrine, which is increased by the stress of parturition on the other hand, will 

activate hormone-sensitive lipase via the adenylate cyclase system and stimulate 

lipolysis. 

The efflux of NEFA from adipose tissue supplies energy to peripheral tissues 

such as the mammary gland where it also supports milk fat synthesis. Fatty acids 

not removed from circulation by peripheral tissues are assimilated by the liver. The 

liver will esterify NEFA with glycerol to form TAG that are stored temporarily in 

cytosolic vacuoles. 

Lipid metabolism in liver. The metabolism of NEFA in the liver is controlled 

by the bi-hormonal insulin and glucagon system (Brockman, 1976; McGarry et al., 

1975). Insulin will stimulate the synthesis of TAG in the liver. In primary cultures of 
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hepatocytes from nonruminating calves, insulin increased the proportion of fatty 

acids esterified to TAG, but it did not increase uptake of fatty acids (Cadomiga-

Valirio et al., 1997). This synthesis, however, requires a supply of both NEFA and 

glycerol, which are decreased by insulin (Holtenius, 1993). Because of the insulin 

resistance that occurs in cows during early lactation, NEFA are released continually 

from adipose tissue. If there is a concomitant increase in catecholamines or 

glucagon, hepatic gluconeogenesis will supply glucose for glycerol, and TAG 

synthesis will proceed (Figure 1; Holtenius, 1993). Once fatty acids have 

accumulated within the hepatocytes as 'i AG, they can either be metabolized by 

oxidation or exported within lipoprotein particles (Holtenius, 1993). Because 

adipose tissue, and not liver, is the primary site of fatty acid synthesis in dairy cows, 

the liver of the cow has limited ability to export lipid. An inability of the liver to keep 

pace with the influx of NEFA by oxidation or exportation in lipoproteins is 

considered to be the primary cause of fatty liver (also known as hepatic lipidosis or 

hepatic steatosis). 

Triacylglycerol synthesis in hepatocytes begins with esterification of an 

activated fatty acid to glycerol-3-phosphate (Figure 1; Gruffat et al., 1996). The 

resulting acyl-glycerol-3-phosphate is transported to the smooth endoplasmic 

reticulum by a fatty acid binding protein, where a second acylation occurs to 

produce phosphatidic acid. Phosphatidic acid phosphatase then hydrolyzes the 

phosphate ester bond and creates diacylglycerol. The three preceding reactions 

are common also to the synthesis of phospholipids, a vital component for lipoprotein 
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Figure 1. Schematic representation of the different processes involved in the 
synthesis and secretion of very-low-density lipoproteins (VLDL) in animal livers. 
apoB, apolipoprotein B; CPTI, carnitine palmitoyltranseferase I; FABP, fatty acid 
binding protein; FFA, free fatty acids; MTP, microsomal transfer protein; NEFA, 
nonesterified fatty acids; RER, rough endoplasmic reticulum; SER, smooth 
endoplasmic reticulum; VFA, volatile fatty acids. Adapted from Gruffat et al., 1996. 
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synthesis. The final reaction for the synthesis of TAG is the acylation of 

diacylglycerol by microsomal diacylglycerol acyltransferase. Activities of 

diacylglycerol acy[transferase have been shown to be increased in livers of cows 

during the first week postpartum in response to increasing concentrations of plasma 

NEFA, thereby increasing the rate of TAG formation (Van den Top et al., 1995). 

Time course studies conducted with sheep livers in vivo suggest that the newly 

synthesized TAG are not immediately incorporated into lipoprotein particles but are 

transferred to a temporary cytosolic pool instead (Pullen et al., 1988). 

When TAG are exported from the liver, they are packaged as VLDL. 

Disturbances in lipoprotein metabolism and the subsequent production of VLDL are 

common causes of excessive TAG accumulation within hepatocytes and results in 

fatty liver (Herdt, 1988; Holtenius, 1989; Uchida et al., 1992). Concentrations of 

plasma lipids in the form of VLDL are decreased during the first week postpartum in 

dairy cows (Van den Top et al., 1995). Synthesis of VLDL is dependent upon an 

adequate supply of the appropriate amino acids for apoprotein synthesis, synthesis 

of phospholipids and cholesterol, mobilization of fatty acids from cytosolic TAG, 

reesterification of fatty acids to TAG in microsomes, and transport and assembly of 

all components into VLDL (Figure 1). These process also are regulated by the 

hormonal controls of insulin and possibly by glucagon. 

The accumulated cytosolic TAG are not likely to be transported intact to 

microsomes for incorporation into lipoprotein particles, but instead, they must first 

be hydrolyzed to glycerol and fatty acids and then reesterified within the 
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microsomes (Figure 1; Mooney and Lane, 1981; Wiggins and Gibbons, 1992). The 

exact processes and agents involved in the hydrolysis and reesterification scheme 

have not been elucidated, but data do not support the involvement of lysosomal 

acid lipase, hormone-sensitive lipase, or lipoprotein lipase within the liver (Gruffat et 

al., 1996). 

Phosphatidyl choline is the major phospholipid component of VLDL. 

Synthesis of this phospholipid requires an adequate supply of choline. Choline 

deficiency limits VLDL secretion in hepatocytes from rats (Yao and Vance, 1988). 

Choline deficiency has been implicated also in the development of fatty liver in 

many species, and choline supplementation often is used as a remedy for fatty liver 

(Gruffat et al., 1996). Results of choline supplementation in lactating dairy cow 

diets, however, have been inconsistent. Likewise, methionine can restore impaired 

VLDL synthesis by promoting phosphatidyl choline synthesis (Robinson et al., 

1989). Research involving methionine supplementation of the diet of peripartal 

dairy cows has been conducted, but no consistent results have been reported to 

date. On the other hand, intravenous infusion of L-methionine has been successful 

in stimulating VLDL secretion in cows (Durand et al., 1992; Juslin et al., 1965). 

The principal protein necessary for VLDL synthesis is apolipoprotein B-100 

(apoB-100). ApoB-100 messenger RNA has a half-life of 16 h and evidently is not 

subject to acute regulation (Pullinger et al., 1989). Hepatic apoB-100 secretion by 

rat hepatocytes in vitro is modulated by insulin and NEFA (Dashti et al., 1989; 

Kaptein et al., 1991; Pullinger et al., 1989). Newly synthesized apoB-100 is subject 
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to rapid degradation depending on pH, high temperatures, and ATP. This 

catabolism of apoB-100 is stimulated by insulin (Sparks and Sparks, 1991) and 

decreased by oleate (Dixon et al., 1991; Furukawa et al., 1992). In fact, the addition 

of oleate to HepG2 or McArdle-RH777 cell medium is highly stimulatory to apoB-

100 secretion (Sakata et al., 1993; White et al., 1992). 

Lipids are transported to newly synthesized apoB-100 by microsomal TAG 

transport protein (MTP; Atzel and Wetterau, 1994). Microsomal TAG transport 

protein catalyzes the transport of TAG, cholesteryl esters, and phospholipids from 

the endoplasmic reticulum to the site of \/LDL synthesis (Figure 1; Gruffat et al., 

1996). The role of MTP in lipoprotein assembly is supported by the observation that 

synthesis of MTP is stimulated by high fat diets in hamsters (Lin et al., 1994). 

Synthesis of MTP is decreased by up to 80%, however, by increasing insulin 

concentrations in HepG2 ceils (Lin et al., 1995). The activity of MTP in HepG2 cells 

was not affected by insulin, probably because of the long half-life (4.5 d) of MTP 

protein (Lin et al., 1995). 

Overproduction of VLDL is often a problem in humans with a form of 

noninsulin-dependent diabetes (Grufatt et al., 1996). Metabolic deviations 

associated with the overproduction of VLDL in this disorder are elevated plasma 

NEFA, hyperglycemia, and hyperglucagonemia (Howard, 1987). More closely 

related to disorders associated with fatty liver is the hyposecretion of VLDL. Gruffat 

et al. (1996) listed the possible mechanisms for lipoprotein abnormalities that lead 

to the development of fatty liver in humans (Table 1). 
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Table 1. Possible mechanisms involved in the development of liver steatosisV 
i. Increased supply of NEFA^ to the liver resulting from; 

- higher NEFA mobilization from adipose tissue 
- higher NEFA synthesis in the liver 
- lower NEFA oxidation In the liver 

ii. Impaired TAG^ incogaoration into VLDL^ through: 
- inhibition of apoB or MTP® synthesis 
- production of an inadequate supply of apoB or MTP molecules 
- higher intracellular degradation of apoB 
- competition with cholesteryl esters 

iii. Defects in one or several steps in VLDL transport and secretion through; 
- alterations of VLDL transport from ER^ to Golgi apparatus 
- Impairment of final apoB glycosylation in Golgi apparatus 
- lower rate of secretory vesicle formation 
- impaired migration of secretory vesicles from Golgi apparatus to cell 

membranes 
'Taken from Gruffat et al., 1996. 
^NEFA = long-chain fatty acids. 
^AG = triacylglycerol. 
VLDL = very-low-density lipoproteins. 
®apoB = apolipoprotein B 
®MTP = microsomal triacylglycerol transport protein. 
^ER = endoplasmic reticulum. 

Obviously, there are a multitude of derangements that can occur within 

lipoprotein metabolism that would lead to the development of fatty livers within dairy 

cows as well as in other species. In dairy cows, a decrease in apoB-100 

concentrations in plasma were correlated with increasing TAG content of livers 

(Marcos et al., 1990). Similarly, when ethionine, an inhibitor of protein synthesis, 

was administered to dairy cows, fatty liver was induced, suggesting that 

apolipoprotein synthesis is a limiting step to VLDL secretion (Uchida et al., 1992). 

During the first week of lactation, correlations of hepatic concentrations of apoB, 

apoB messenger RNA, and TAG showed a negative relationship between apoB-100 

gene expression and the development of fatty liver (Gruffat et al., 1994). More 
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recently, cows having liver TAG concentrations of 4 to 10% wet weight were found 

to have lower concentrations of apoB-100 in liver tissue than cows with normal 

livers (Gruffat et al., 1997). Because concentrations of messenger RNA were not 

different, the authors postulated that there is a posttranslational down-regulation of 

apoB-100 in fatty livers. This would indicate involvement of MTP in the etiology of a 

lipoprotein disturbance during fatty liver. 

In early-lactation cows (2 wk postpartum) a general decrease in plasma 

lipoprotein concentrations was noted, but the decrease was predominately in low-

and high-density lipoprotein fractions, not VLDL (Mazur et al., 1988). These effects 

were also relative to severity of fatty liver; cows with greater liver lipid 

concentrations had greater decreases in low- and high-density lipoproteins. The 

lack of significantly lower concentrations of VLDL may be attributable to the fact that 

VLDL concentrations in all cows were too small for detectable differences. 

One form of fatty liver, with possible associations to fatty liver observed in 

dairy cows, is that which occurs in humans during parenteral nutrition (Fisher, 

1989). The development of fatty liver is dependent upon the amount of intravenous 

glucose that the patient receives. Increasing amounts of infused glucose lead to 

hyperinsulinemia and inhibited VLDL secretion. Explanations for the development 

of fatty liver in these instances include increased peripheral lipolysis, decreased 

hepatic fatty acid oxidation, greater hepatic fatty acid synthesis, and greater apoB-

100 degradation. The syndrome also has been related to inadequate intake of 

protein relative to carbohydrates. Infusion of lipids along with glucose decreased 



25 

insulin concentrations and also the molar ratio of insulin to glucagon and led to a 

decrease of lipid infiltration into the livers of rats (Nusbaum et al, 1992). Lastly, 

continual daily administration of glucagon at 33 |jg/100 g of body weight to rats, 

along with parenteral nutrition, drastically decreased fatty infiltration of the livers as 

well as molar ratios of insulin to glucagon (Li et al., 1988). 

Ketogenesis 

Fatty acids that are not exported from liver TAG as lipoproteins also can be 

removed by oxidation. Complete oxidation of fatty acids to CO2 would supply 

energy to the liver for metabolic process and be an apparently efficient means of 

elimination of cytosolic TAG. The rate at which this occurs is insufficient, however. 

In the etiology of fatty liver and ketosis. One of the roles of the liver as an altruistic 

organ is to supply readily oxidizable metabolites to other tissues. Much of the fatty 

acids are, therefore, only partly oxidized to the ketone bodies; acetoacetate 

(ACAC), B-hydroxybutyrate (BHBA), and acetone, providing metabolic fuels for 

other tissues (Figure 2). This process is at its peak activity in dairy cows during the 

first 30 d of lactation (Aeillo et al., 1984). The resulting excess of ketone bodies is 

detectable in urine, milk, and plasma of ketotic cows. One of the obvious symptoms 

of ketosis is the readily detectable odor of acetone in the breath of affected cows 

because acetone is volatile and expired through respiration. 
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Figure 2. The synthesis of the ketone bodies; acetoacetate, S-hydroxybutyrate, and 
acetone from fatty acids in the bovine liver. 
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Ketone bodies also serve as metabolic regulators affecting transfer and 

utilization of other nutrients. Infusion of BHBA was found to decrease 

concentrations of alanine, the chief gluconeogenic amino acid, in plasma and 

urinary excretion of nitrogen in humans (Holtenius and Holtenius, 1996b). Negative 

correlations were observed also in concentrations of BHBA and alanine in phlorizin-

treated lactating ewes and lactating cows (Holtenius and Holtenius, 1996b). Ketone 

bodies are capable also of sparing glucose from utilization by peripheral tissues 

during periods of negative energy balance in dogs (Umpleby et al., 1995). Most 

importantly, ketone bodies are capable of somewhat regulating their own production 

by decreasing rates of lipolysis and delivery of NEFA to the liver (Holtenius and 

Holtenius, 1996b). 

For formation of ketone bodies to occur, fatty acids must be transported into 

mitochondria and undergo li-oxidation (Figure 2). During S-oxidation, fatty acids are 

degraded sequentially to a two carbon coenzyme A (CoA) derivative, acetyl-CoA. 

As acetyi-CoA accumulates, two acetyl-CoA molecules are condensed by acetyl-

CoA thiolase to form acetoacetyl-CoA. Condensation of a third acetyl-CoA 

molecule to acetoacetyl-CoA by S-hydroxy-B-methylglutary-CoA synthase produces 

(3-hydroxy-B-methylglutaryl-CoA. Finally, the action of (3-hydroxy-(l-methylglutary-

CoA lyase will remove the terminal acetyl-CoA molecule and form the four carbon 

molecule, ACAC. Acetoacetate can be readily and reversibly reduced to BHBA by 

the action of U-hydroxybutyrate dehydrogenase or it can decompose irreversibly to 

CO2 and acetone. The conversion of ACAC to BHBA by (3-hydroxybutyrate 
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dehydrogenase is an NADH-dependent reaction. Because the reaction is 

reversible, the ratio of ACAC to BHBA is considered to be a measure of the 

mitochondrial redox potential and reflects relative concentrations of NADH and 

NAD* within mitochondria. Reflecting possible involvement of changes in 

mitochondrial redox capacity is the decrease in oxidative capacity of hepatocytes 

from ketotic cows. Rates of CO2 production from propionate, lactate, alanine, 

aspartate, and glutamate have been observed to be decreased in liver slices from 

cows with an experimentally-induced ketosis (Mills et al., 1986b). 

An aberration in fatty acid metabolism that has been proposed as a part of 

the etiology of ketosis is a carnitine insufficiency (Baird, 1982; McGarry et al., 1975, 

1977, and 1980). Carnitine palmitoyi transferase I (CPT1) is an enzyme of the outer 

mitochondrial membrane that is responsible for transport of long-chain fatty acids 

across the mitochondrial membrane. A deficiency of CPT1 would prevent the (J-

oxidation of long-chain fatty acids to acetyl-CoA. The activity of CPT1 is inhibited 

by fatty acid synthetase and malonyl-CoA, another coenzyme A derivative formed 

by the action of acetyl-CoA carboxylase on acetyl-CoA (Brindle et al., 1985). 

Acetyl-CoA carboxylase is responsible for the first step in the synthesis of fatty 

acids from acetyl-CoA and, along with fatty acid synthetase, is stimulated by insulin. 

Logically, inhibition of fJ-oxidation prevents futile cycling of fatty acids during fatty 

acid synthesis. Fatty acid synthesis would not be expected to be great in 

hepatocytes of a fatty liver, but bovine malonyl-CoA has been shown to be a 

particularly potent inhibitor of CPT 1. Propionate, a product of rumen fermentation 
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and the primary glucogenic precursor, is also thought to be an inhibitor of CPT1 

through conversion to methylmalonyl-CoA (Grummer, 1993); however, Drackley et 

al. (1991) showed that propionate-induced decreases in fatty acid oxidation are 

greater than can be accounted for by inhibition of CPT1 alone. Even though a 

carnitine deficiency would not contribute directly to the ketotic state, it would 

decrease the ability of the liver to oxidize the fatty acids responsible for TAG 

accumulation. 

Ketosis results from the excessive accumulation of acetyl-CoA and 

subsequent formation of ketone bodies. The excessive accumulation of acetyl-CoA 

has been hypothesized to be caused by an insufficiency of oxaloacetate (OAA), an 

intermediate in the citric acid cycle with which acetyl-CoA must condense before 

complete oxidation can occur (Baird et al.. 1982; Krebs, 1966). The inability of all of 

the acetyl-CoA to condense with OAA will divert acetyl-CoA to ketone body 

formation as described already. 

Gluconeogenesis 

Oxaloacetate also is an intermediate in the gluconeogenic process. It has 

been estimated that 47% of OAA is used for gluconeogenesis and the remainder 

enters the citric acid cycle (Young, 1977). Gluconeogenesis serves as the primary 

source of glucose for use by peripheral tissues in ruminants because little glucose 

is available for absorption after bacterial degradation of dietary carbohydrate in the 

rumen. A primary sign of lactation ketosis is hypoglycemia brought about by the 
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combination of poor DMI and increasing glucose demands to support milk lactose 

synthesis. Therefore, the drive to produce glucose may deplete the mitochondrial 

supply of OAA in support of gluconeogenesis. 

Pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase 

(PEPCK) are the first of four gluconeogenic enzymes required to bypass the 

irreversible reactions of glycolysis (Figure 3). These two enzymes reverse the 

action of pyruvate kinase by first converting pyruvate to OAA via PC and then 

converting OAA to phosphoenolpyruvate via PEPCK. Accordingly, increases in the 

activity of PC will increase the quantity of OAA, and increases in the activity of 

PEPCK will decrease concentrations of OAA. Hormonal regulations at this point of 

the gluconeogenic pathway include activation of the transcription of messenger 

RNA for PEPCK by glucagon and glucocorticoids and a strong inhibition of the 

PEPCK message by insulin (Granner and Pilkis, 1990). The increased rate of 

gluconeogenesis stimulated by glucagon has been attributed to increased activities 

of PC in sheep (Brockman, 1978). 

Glucagon also stimulates hepatic extraction of pyruvate, lactate, alanine, 

and glutamate but not glycerol from blood (Brockman, 1978; Cryer, 1996; Flakoll et 

al., 1994). Compounds such as lactate and the amino acids that enter the 

gluconeogenic pathway via pyruvate require the activity of both PC and PEPCK and 

provide sources of OAA to the mitochondrial pool. Additionally, the presence of 

alanine or glucagon via cAMP phosphorylation will inhibit the opposing glycolytic 

enzyme, pymvate kinase, thereby decreasing the rate of glycolysis, and insulin 
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will remove the glucagon induced inhibition (Pilkis and Granner, 1992). The 

conversion of other gluconeogenic amino acids and propionate, which is from 

rumen fermentation and is the primary gluconeogenic compound for ruminant 

animals, require only the activity of PEPCK to be converted to glucose and will 

contribute to depletion of the mitochondrial pool of OAA. The net uptake of 

propionate and conversion of propionate to glucose also are increased in sheep 

livers by treatment with glucagon (Ali and Jois, 1997). The role of glucagon in the 

metabolism of propionate to glucose is questionable, however. In vivo, glucagon 

failed to increase gluconeogenesis in sheep (Danfaer et al., 1995). 

In summary, during the hypoglycemic condition that accompanies ketosis, 

hepatic mitochondrial OAA is depleted for restoration of blood glucose 

concentrations. The lack of glucose further decreases the supply of pyruvate 

available for conversion to OAA, which initiates a vicious cycle that limits not only 

gluconeogenesis but also oxidation of fatty acids. Acetyl-CoA, the entry compound 

for oxidation of fatty acids in the citric acid cycle, is a powerful allosteric activator of 

PC; in fact, activity of PC is low without bound acetyl-CoA (Voet and Voet, 1990). 

The accumulation of acetyl-CoA, therefore, provides a signal that more OAA is 

needed for oxidation. Likewise, fatty acids converted to fatty acyl-CoA will activate 

PC. Alternatively, gluconeogenesis from dihydroxyacetone and fructose, "above" 

the level of PC in the gluconeogenic pathway, are unaffected by fatty acid 

concentrations in vitro, and the conversion of propionate to glucose also is inhibited 

by oleate (Brocks et al., 1980). 
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Fructose bisphophatase (FBPase) is responsible for the conversion of 

fructose-1,6-bisphophate to fructose-6-phosphate (Figure 3; Voet and Voet, 1991). 

Glucagon stimulates and insulin inhibits transcription of messenger RNA for 

FBPase. The regulation of FBPase activity by glucagon occurs also by control of 

concentrations of fructose-2, 6-bisphosphate (Pilkis and Granner, 1992). When 

blood glucose concentrations are low, activation of FBPase occurs through 

glucagon-mediated phosphorylation of FBPase-2, which allosterically activates 

FBPase. Fructose bisphosphatase-2 is inhibited by the presence of fructose-6-

phosphate and activated by glyceraldehyde-3-phosphate, a downstream 

intermediate of the glycolytic pathway. Alternatively, the opposing glycolytic 

reaction by phosphofructokinase is activated allosterically by fructose-2,6-

bisphosphate and inhibited by an excess of citrate from the citric acid cycle (Pilkis 

and Granner, 1992). Finally, glucose-6-phosphatase is responsible for the 

conversion of glucose-6-phosphate to glucose for export through the cytosolic 

membrane and is present only in gluconeogenic tissues. Glucose not exported from 

hepatocytes can be stored within the cytosol as glycogen. 

All three of the described enzymes system could be deficient during the 

onset of clinical ketosis. Hepatic gluconeogenic capacity from propionate, lactate, 

alanine, aspartate, and glutamate has been shown to be decreased at the onset of 

an experimentally-induced clinical ketosis (Mills et al., 1986b). 
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Glycogen Metabolism 

Glycogen Is synthesized from glucose by glycogen synthase after glucose is 

converted to uridine diphosphate glucose via glucose-6-phosphate (Voet and Voet, 

1991). Glycogen synthesis is stimulated by ATP and the presence of glucose-6-

phosphate. In hepatocytes from rats, the activity of glycogen synthase has been 

shown to be stimulated also by NEFA in the presence of glucose, and amino acids 

independently of glucose (Morand et al., 1992). The activity of glycogen synthase 

can be decreased by the actions of cAMP-dependent protein kinase, protein kinase 

C, and phosphorylase kinase activity when accompanied by increases in cytosolic 

concentrations of Ca"^. 

The degradation of glycogen occurs through a bicyclic cascade controlling 

the activity of glycogen phosphorylase. Phosphorylase kinase activates glycogen 

phosphorylase in the presence of Ca** after being activated by cAMP-dependent 

protein kinase (Pecker and Pavoine, 1996). Phosphoprotein phosphorylase will 

deactivate both glycogen phosphorylase and phosphorylase kinase. Glucose itself 

also is a strong inhibitor of glycogen phosphorylase (Salway, 1994). Additionally, 

the inhibitory effects of glucose on glycogen phosphorylase are enhanced in the 

presence of NEFA and amino acids in hepatocytes from rats (Morand et al., 1992). 

Glucagon is considered to be the primary regulatory hormone of glycogen 

synthesis and degradation. The action of glucagon is directed through the 

adenylate cyclase system, which increases concentrations of cAMP, thereby 
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increasing tine activity of glycogen phosphorylase and decreasing the activity of 

glycogen synthase (Pecker and Pavoine, 1996). 

Low concentrations of glycogen in the liver seem to be a critical component 

in the development of ketosis. Cows having liver glycogen concentrations of more 

than one to each two parts TAG on a weight basis have not been susceptible to an 

experimental ketosis (Smith et al., 1997). 

Relationships of Insulin and Glucagon During Fatty Liver and Ketosis 

Ketonemic cows have lower concentrations of plasma insulin than do normal 

cows, and insulin responses to glucose are diminished in ketotic cows compared 

with those in normal cows (Hove, 1978; Sakai et al., 1993). Because increases of 

plasma glucose in ketotic cows failed to elicit an insulin response, it is possible that 

the metabolism of glucose by pancreatic S-cells may be impaired ( Newgard and 

McGarry, 1995). Accompanying the low insulin concentrations observed in 

ketonemic cows, glucagon concentrations are often elevated during ketosis 

(Holtenius et al., 1993; Sakai et al., 1993). The low insulin to glucagon ratio caused 

by decreased insulin concentrations is suspected of stimulating lipolysis in adipose 

tissue and ketogenesis in liver (Holtenius and Holtenius, 1996b). This relationship 

exists from a few weeks prepartum to about one month postpartum. 

A similar hypoinsulinemia has been observed in lactating rats (Snell, 1991). 

Concurrent with the hypoinsulinemia was a diminished response of hepatic 

adenylate cyclase activation by glucagon, leading the author to speculate that 
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during lactation-associated hypoinsulinemia there exists either decreased numbers 

of glucagon receptors or attenuation of receptor coupling to adenylate cyclase. 

Therefore, glucagon resistance as well as diminished insulin responsiveness may 

be a significant part of the etiology of lactation ketosis and the development of fatty 

liver. 

Poor insulin responses also were observed when glucagon was injected into 

ketonemic cows (Holtenius, 1993). Their cows also had a diminished response of 

glucose to glucagon. On the basis of those observations, Holtenius divided ketotic 

cows into two groups. One group consisted of hypoglycemic and hypoinsulinemic 

cows that had weak reactions to glucagon. Because this group seemed to have a 

limited gluconeogenic capacity, he referred to this group as Type I or a primary 

ketosis. The second group of ketotic cows responded to glucagon injection with 

increases of both glucose and insulin. He referred to these cows as Type II 

because of similarities to Type II diabetes in humans. The assumption used by 

Holtenius was that Type II ketosis is a form of insulin resistance that is associated 

with fatty liver and is often secondary to other disorders such as displaced 

abomasums. 

Similar observations were made by other researchers (deBoer et al., 1985). 

At the onset of lactation, concentrations of ketone bodies and glucagon were 

increased compared with prepartal concentrations and concentrations of glucose 

and insulin were decreased. As cows became ketonemic from feed restriction, 

concentrations of glucagon and insulin decreased. Because the decrease in 
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insulin was more severe, the molar ratio of insulin to glucagon also decreased. In 

contrast to the ketonemic cows observed by Holtenius (1993), responses to glucose 

injections (500 ml of 50% dextrose) during the ketonemic periods caused by feed 

restriction were characterized by increased concentrations of insulin and decreased 

concentrations of BHBA (deBoer et al., 1985). Glucagon concentrations, however, 

decreased only slightly after injection of glucose. 

Treatments and Preventatives for Lactation Ketosis 

Therapies for ketosis target the carbohydrate insufficiency by increasing 

blood glucose either by direct augmentation or stimulation of glucogenic pathways. 

Overall effects of these treatments are to increase concentrations of blood glucose 

and insulin and liver glycogen while simultaneously ameliorating ketogenesis 

(Baird, 1982). 

Glucose. In thin, undernourished cows, glucose administered intravenously 

provides for replacement of inadequate carbohydrate. An injection of glucose will 

promptly increase blood glucose concentrations, but the effect is short-lived and 

repeated treatment is usually necessary. Hepatic production of glucose Is actually 

decreased by treatment with glucose (Baird, 1982). Therefore, after the initial 

increases, blood glucose declines to concentrations that may be higher than before 

treatment but are still below normal. The administration of glucose is usually in 

conjunction with other therapeutic measures such as oral propylene glycol or the 

use of glucocorticoids (Merck, 1986). 
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Duodenal infusion of glucose during a ketosis induction protocol prevented 

increases of NEFA and BHBA that normally accompanied the ketotic state 

(Veenhuizen et al., 1991). Cows receiving glucose also were resistant to the 

development of fatty liver exhibited by other cows receiving the induction protocol. 

When administered Intravenously for 6 d, glucose decreased concentrations of 

ketone bodies, NEFA, and glucagon in ketotic cows (Sakai et al., 1993). 

Simultaneous infusion of Insulin with glucose resulted in sustained glucose 

concentrations after treatment, greater decreases in NEFA and ketone bodies, and 

more rapid restoration of appetite than glucose alone. 

Propylene glycol. Response of ketotic cows to oral propylene glycol is 

slower than response to glucose and provides the best therapy when administered 

as supportive therapy to glucose or glucocorticoids (Merck, 1986). Propylene glycol 

administered to heifers as an oral drench increased glucose and insulin and 

decreased BHBA and NEFA in blood in a linear fashion respective to dosage 

(Grummer et al., 1994). Propylene glycol seems to have beneficial effects whether 

administered as a drench or as a portion of concentrate fed once daily (Christiansen 

et al., 1997). During feed restriction in heifers, propylene glycol administered by 

either method increased plasma insulin and decreased NEFA concentrations. 

Administration as part of a total mixed ration, however, failed to deliver desired 

effects. 

Following drenching with propylene glycol, there was a decrease in the 

ruminal acetate to propionate ratio, indicating conversion of the propylene glycol to 
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propionate within the rumen (Studer et al., 1993). Most propylene glycol, however, 

is absorbed intact through the rumen epithelium and subsequently converted to 

glucose by sequential conversion to lactate, pyruvate, and OAA (Schultz, 1971). 

Providing propionate or pyruvate to the liver is stimulatory towards 

gluconeogenesis; thus effects of propylene glycol are sustained over a greater 

periods of time than the effects of glucose. 

Propylene glycol also may provide a preventative for the development of fatty 

liver if administered to dairy cows during the prepartal period (Studer et al., 1993). 

Drenching cows with 1 L of propylene glycol for 10 d prepartum, decreased 

concentrations of TAG in livers of cows at both 1 and 21 d postpartum. Associated 

with the decreased liver TAG concentrations were decreases in concentrations of 

NEFA and BHBA and increases in concentrations of glucose and insulin in blood 

during the prepartal period. 

Glucocorticoids. An adrenal insufficiency has been postulated as a 

causative factor for ketosis (Baird, 1982). It has been observed that administration 

of adrenocorticotropin to ketotic cows elicits a normal response and also that steroid 

excretion is similar in normal and ketotic cows (Shultz, 1975). Glucocorticoids 

increase the release of glucose from the liver by stimulating gluconeogenesis and 

glycogenolysis. Glucocorticoids can directly stimulate gluconeogenesis by 

activating transcription of PEPCK and stabilizing PEPCK messenger RNA from 

degradation (Granner and Pilkis, 1990). Additionally, there is evidence that 

glucocorticoids have a stimulatory effect on PC (Jones et al., 1993), thereby 
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increasing the flux of pyruvate toward phosphoenoipyruvate. Glucocorticoids also 

inhibit the insulin-stimulated uptake of glucose by peripheral tissues. Similarly, 

inhibition of insulin-stimulated protein synthesis and increased protein catabolism in 

muscles by glucocorticoids serves to increase the supply of amino acids available to 

liver for gluconeogenesis (Holtenius and Holtenius, 1996a). Glucocorticoids also 

are ketogenic in the absence of insulin in monogastric species. Studies in sheep 

that used a somatostatin analogue to inhibit insulin release, however, have 

indicated that this ketogenic behavior may not be present in ruminants (Holtenius 

and Holtenius, 1996a). 

Intramuscular injection of glucocorticoids will return blood glucose 

concentrations to normal within 8 to 10 h and may increase glucose to above 

normal concentrations within 24 h. Ketone body concentrations in plasma will 

decrease to normal by 3 to 5 d after glucocorticoid administration (Merck, 1986). 

Induction of Ketosis 

A protocol to induce early-lactation cows into a ketotic state that resembles 

on-farm lactation ketosis has been described by others (Smith et al., 1997). Briefly, 

the protocol consists of the following: feed intakes are monitored during the first 2 

wk of lactation; starting at 14 DIM, feed intake is restricted to 80% (DM basis) of 

previous daily consumption and 1,3-butanediol (BD) is introduced into the diet 

concurrent with feed restriction; increasing amounts of BD are added to the diet until 

a maximal amount of approximately 1 L is fed daily; and feed restriction and BD 
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supplementation continue until cows develop clinical ketosis, which usually occurs 

at 42 DIM on average (Smith et al., 1997). 

Characteristics of cows during the feed restriction and BD supplementation 

protocol are listed in Table 2. Feed restriction alone is unable to induce cows into a 

ketosis that metabolically resembles the spontaneous ketosis observed in early-

lactation cows. During progressive feed restriction starting 21 d postpartum, cows 

became transiently ketonemic but not clinically ketotic (deBoer et al., 1985). The 

addition of BD to the diet provides substrate for formation of ketone bodies. The 

metabolism of BD to ketone bodies has been described in detail by Smith (1993). 

1,3-Butanediol is metabolized to BHBA by the sequential actions of alcohol and 

aldehyde dehydrogenases in the liver (Drackley et al., 1991). Physiological effects 

of dietary supplementation with BD resemble those of ketosis (Smith, 1993). These 

effects include increases in ketone bodies in plasma and urine, increased 

concentrations of NEFA and acetate in plasma, and decreased concentrations of 

plasma insulin. In cows, BD increased concentrations of lipid and decreased 

concentrations of glycogen in liver (Smith et al., 1997; Veenhuizen et al., 1991). 

Calves receiving supplementation with BD exhibited behavior similar to ketosis, 

displaying hyperexcitability, nervousness, and incoordination. Most importantly, the 

feed restriction, BD protocol increases concentrations of acetate in blood along with 

ketonemia. During starvational ketosis, acetate concentrations in blood are 

decreased by lesser rates of rumen fermentation (Smith, 1993). Increases in 

plasma acetate concentrations are a reflection of insulin insufficiency because 
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Table 2. History of ketosis induction at Iowa State University. 
Publication Parameter Response 
de Boeret al., 1985 

Mills etai., 1986 

Veenhuizen et al., 1991 

Drackley et al., 1992 

Smith et al., 1997 

Preconditioning None 
FR' Method 
None 
FR' 

# of cows ketotic O o f  6  
Plasma NEFA NC^ 

BHBA NC 
Glucose NC 
Insulin Decreased 
Glucagon Decreased 

Preconditioning Overfed dry period 
Method FR-BD^ 
# of cows ketotic 4 of 5 
Plasma NEFA Increased 

BHBA Increased 
Glucose Decreased 
Insulin NC 

Liver TAG Increased 
Glycogen Decreased 

Preconditioning None 
Method FR-BD 
# of cows ketotic 5 of 6 
Plasma NEFA Increased 

BHBA Increased 
Acetate Increased 
Glucose Decreased 
Insulin Decreased 

Liver TAG Increased 
Glycogen Decreased 

Preconditioning None 
Method FR-BD 
# of cows ketotic 1  o f ?  
Plasma NEFA Increased 

BHBA Increased 
Glucose NC 
Insulin NC 
Glucagon NC 

Liver TAG Increased 
Glycogen Increased 

Preconditioning Overfed late lactation 
Method FR-BD 
# of cows ketotic 6 of 10 
Plasma NEFA Increased 

BHBA Increased 
Glucose Decreased 
Insulin Decreased 
Glucagon NC 

Liver TAG NC 
Glycogen Decreased 

FR = feed restriction. 
^ NC = not changed. 
^ BD = 1,3-butanediol. 
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insulin is responsible for metabolism of acetate (Baird, 1982). Therefore, BD 

supplementation of the diet, along with feed restriction, produces a physiological 

condition that resembles on-farm lactation ketosis rather than the starvational 

ketonemia of feed restriction alone. 

Development of a model of the etiology of ketosis through the use of the feed 

restriction and BD protocol has shown that the development of fatty liver precedes 

the occurrence of ketosis (Drackley et al., 1992; Smith et al., 1997; Veenhuizen et 

al., 1991). In fact, fatty liver seems to be a prerequisite for ketosis to occur. Cows 

made ketotic by use of the protocol had liver TAG to glycogen ratios greater than 

1.8 to 1 on a weight basis (Drackley et al., 1992; Smith et al., 1997). Cows with 

livers having TAG to glycogen ratios less than 1.5 to were resistant to the onset of 

ketosis during this protocol. 

Susceptibility to the development of fatty liver and ketosis during the ketosis 

induction protocol seems to be related to prepartal nutrition also. Cows that were 

not fed to a condition of obesity prior to parturition were generally resistant to the 

effects of the protocol (Drackley et al., 1992). Cows overfed to become obese 

during the latter part of the previous lactation were less susceptible to ketosis than 

cows that were overfed during the dry period (Mills et al., 1986a; Smith et al., 1997). 

Summation of Literature 

Fatty liver is a "gateway" disorder that occurs in periparturient dairy cows and 

increases the susceptibility of cows to ketosis and other metabolic aberrations 



44 

during the postpartai period. Cows with fatty liver are characterized by obesity, 

inappetance, and insulin resistance. These conditions contribute to mobilization of 

fatty acids from adipose tissue to meet the increasing energy demands of early 

lactation. The efflux of fatty acids from adipose tissue must be metabolized or 

transported by the liver. The inability of the liver to do so increases fatty infiltration 

of the liver and contributes to ketogenesis. The metabolic fuel of the cow changes 

from carbohydrates to lipids during these events, and the cow suffers from an 

insufficiency of blood glucose at the same time that concentrations of ketone bodies 

increase, creating a state of ketoacidosis. 

Glucagon is the primary hormone responsible for maintaining concentrations 

of glucose in blood of dairy cows through the processes of gluconeogenesis and 

glycogenolysis in the liver. If treatment with glucagon were to be able to elevate 

blood glucose concentrations in cows with fatty liver, insulin sensitivity may be 

restored and the cascade of fatty acid mobilization and ketogenesis could be 

reversed. Thus, carbohydrate metabolism in postparturient cows suffering from fatty 

liver could be normalized and lipid infiltration of the liver could be alleviated, 

restoring productivity. 

A protocol to induce an experimental ketosis that resembles lactation ketosis 

observed in dairy cows has been described. This protocol provides a method to 

test the hypothesis that glucagon may be able to reverse the metabolic aberrations 

associated with fatty liver and ketosis under controlled conditions. Because the 

severity of the ketotic state can be manipulated by altering the quantity of BD fed, 
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use of the feed restriction and BD protocol can provide the most severe test for 

evaluation of the efficacy of glucagon as a remedy for fatty liver and lactation 

ketosis. 
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METABOLIC RESPONSES OF DAIRY CATTLE TO VARIOUS 
INTRAVENOUS DOSAGES OF GLUCAGON 

A paper to be submitted to the Journal of Dairy Science 

A. R. Hippen, P. She, J. W. Young, D. C. Beitz, G. L. Lindberg, 
L. F. Richardson, and R. W. Tucker 

Abstract 

To measure the capacity of glucagon to improve carbohydrate status in dairy 

cattle, glucagon was infused intravenously for 48 h into lactating dairy cows and 

nonpregnant heifers in three crossover experiments. During experiment one, 5 and 

20 mg/d were infused into four midlactation Holstein cows. Experiment two 

consisted of infusion of 0, 2.5, 5.0, and 10 mg/d into eight nonpregnant, 

nonlactating, Holstein heifers with each receiving two of the dosages. Experiment 

three was comprised of four early-lactation Brown Swiss cows treated with 5 and 10 

mg/d. Treatment with glucagon increased plasma glucose concentrations in a 

linear, dose-dependent fashion in each experiment for the duration of the 48-h 

treatment periods. Concentrations of insulin were increased in a nondose-

dependent manner by glucagon. Plasma urea nitrogen concentrations were 

increased with glucagon at 5 mg/d during experiment two and tended to be 

decreased by glucagon during experiment three. Concentrations of nonesterified 

fatty acids in plasma were not affected on average; during experiments one and 

two, however, they were increased by 20 and 10 mg/d dosages, respectively. 

Concentrations of B-hydroxybutyrate were increased only by the 20 mg/d dosage. 
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During experiment one, liver glycx)gen concentrations decreased by 2.1% wet wt for 

both dosages, and concentrations of total lipid in livers were increased by 0.6% wet 

wt by 20 mg/d. Milk fat percentage was increased by glucagon, but milk and milk 

protein production was decreased. Glucagon improved carbohydrate status over an 

extended period, and lipolytic effects were evident only at the higher dosages. 

Introduction 

Lactation ketosis is a metabolic disorder that occurs in early-lactation dairy 

cows and is characterized by hypoglycemia and hyperketonemia (Baird, 1982). The 

primary cause of ketosis in a lactating dairy cow is an insufficiency of blood glucose 

to support milk production at a time when feed intake is depressed. This decrease 

in carbohydrate status precipitates a decline in concentrations of plasma insulin, an 

increase in mobilization of fat from adipose tissue, and increased hepatic 

ketogenesis (Baird, 1982). The increase in mobilization of fatty acids leads to fatty 

infiltration of the liver, and this accumulation of fat in the liver is thought to occur 

prior to visible symptoms of ketosis (Veenhuizen et al., 1991). Clinical ketosis 

therefore is characterized by decreases of blood glucose and insulin and increases 

of blood NEFA, BHBA, and ACAC along with the development of fatty liver (Baird, 

1982; Mills et al., 1986; Smith et al., 1997). 

Treatments for ketosis generally address the primary cause of ketosis by 

attempting to restore blood glucose concentrations (Baird, 1982). Intravenous 

administration of glucose, oral administration of propylene glycol, and intramuscular 
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injection of glucocorticoids are commonly used methods for directly increasing 

blood glucose, supplying precursor for glucose synthesis, and stimulating 

gluconeogenesis, respectively. These effects also could be accomplished by 

administration of glucagon to ketotic cows. Glucagon may be able to restore blood 

glucose concentrations both immediately and long-term because it has both 

glycogenolytic and gluconeogenic activities (Cryer, 1996; Williamson et al., 1971). 

Because of the decline in carbohydrate status, it has been postulated that an 

insufficiency of circulating glucagon may be partly responsible for onset of ketosis 

(Baird, 1982; de Boer et al., 1986). This postulate is supported by observations that 

glucagon concentrations are decreased in blood of cows that are obese at calving 

(Smith et al., 1997) and they decline further during periods of ketonemia (de Boer et 

al., 1986). Treatment of early lactation cows with a single injection of either 520 ^ig 

or 2.0 mg of glucagon was able to increase concentrations of glucose and insulin in 

both normal and ketonemic cows (de Boer et al., 1986; Holtenius and Traven, 

1990). Glucagon, however, has a physiological half-life of only 5 min in dairy cattle 

(de Boer et al., 1986); therefore, glucagon therapy must be administered 

continuously for sustained effects. 

Glucagon also is known to increase mobilization of fatty acids from adipose 

tissue in nonruminant animals, and thus it can be ketogenic (Aeillo et al., 1984; 

Iwanji, 1996). Past research has shown that the lipolytic and ketogenic effects of 

glucagon observed in nonruminant animals (Williamson et al., 1971) may not be 

present or, at the least, are blunted in ruminant animals (Baird, 1982; Basset, 1971). 
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Furthermore, lipolytic effects were not present in dogs (Flakoll et al., 1994) or sheep 

(Brockman, 1978) when insulin to glucagon ratios were normalized while the animal 

was in a hyperglucagonemic state. If lipolysis is not stimulated in dairy cows by 

glucagon, this hormone may provide an effective means of increasing glucose 

concentrations, thereby alleviating lactation ketosis. 

Our experiments were designed and conducted as preliminary investigations 

to determine the efficacy of glucagon as a treatment to improve the carbohydrate 

status of dairy cows. For glucagon to be an effective preventative or treatment for 

ketosis, the glucogenic capacity of glucagon must offset potentially harmful 

ketogenic effects. Therefore, the action of glucagon was observed first in 

midlactation cows and mature heifers before an experiment was conducted with 

early lactation cows. 

Materials and Methods 

Experiment One 

Experimental design. Two blocks of two midlactation (177 DIM average) 

Holstein cows from the Iowa State University dairy herd were infused with glucagon 

at 5 and 20 mg/d via jugular vein catheters for 48 h in a crossover design. 

Lyophilized bovine glucagon (donated by Eli Lilly and Co., Indianapolis, IN) was 

dissolved in 0.15 M NaCI (preadjusted to pH 10.25 with NaOH) at concentrations 

that would deliver 5 or 20 mg/d when infused at 30 ml/h. To prevent adherence of 

glucagon, all glassware and tubing to come in contact with the glucagon infusate 
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were rinsed with 2% (wt/voi) BSA in 0.15 M NaCI. Solutions of glucagon were 

prepared and stored for no more than 24 h at 4°C until infusion. All cows were 

handled and treated in accordance with guidelines established by the Iowa State 

University Commitee on Animal Care. 

Samples and analysis. Milk production was recorded, and milk samples 

were collected for quantification of fat, protein, and total solids by midinfrared 

reflectance spectrophotometry (Fossomatic, Swiss Valley Farms, Hopkinton, lA) 2 d 

before, during, and 2 d after infusion of glucagon. Liver samples were collected via 

puncture biopsies about 48 h before infusions began (Smith et al., 1997). Samples 

of livers were blotted free of blood, placed in liquid nitrogen for transport, and 

stored at -80°C until analysis for concentrations of total lipid and triacylglycerol 

(Smith et al., 1997) and glycogen (Mills et al. 1986). 

Bilateral jugular vein catheters for infusion and blood collection were placed 

in cows after the preinfusion liver biopsy. Catheters were kept patent with sodium 

heparin (20 lU/ml in 0.15 M NaCI) until infusions began and between collection of 

blood samples. To establish baseline concentrations of metabolites, blood 

samples were collected at 1-h intervals for 4 h just before glucagon infusions. After 

infusions began, blood samples were collected at 5, 10, 20, 30, 45, 60, 90, 120, 

180, 240, 300, 360 min and every 6 h thereafter until infusions ended at 48 h. After 

each infusion, blood was collected for an additional 12 h at the same intervals as at 

the start; then, a second liver biopsy was taken. Five days after the first replication, 

liver biopsies were collected again, catheters were reinserted, and the previous 
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procedures were repeated for the second replication with the alternate dosage of 

glucagon. 

Blood samples were transferred into three 10-ml culture tubes each 

containing 50 USP of heparin, one of which also contained 75 pi of 4% NaF to 

prevent glycolysis, and placed on ice immediately. Plasma was prepared from 

samples within 1 h and stored at -20°C until analysis for concentrations of glucose 

(kit number 315, Sigma Chemical Co., St. Louis, MO), NEFA (Smith et al., 1997), 

and BHBA (Williamson and Mellanby, 1974). Insulin and glucagon were analyzed 

by radioimmunoassay (Amaral, 1988; Herbein et al., 1985). Plasma samples 

designated to be assayed for glucagon contained 2500 lU/ml aprotinin (Trasylol®; 

Mobay Chemical Corp., FBA Pharmaceuticals, New York, NY). 

Statistical analysis. Repeated measures were summarized as means for 

each cow and period (e.g., preinfusion, infusion, and postinfusion periods) before 

statistical analysis. Measures from samples collected during the preinfusion period 

were compared with measures from samples collected at similar times of the day 

during infusion periods for effects of glucagon and compared with postinfusion 

measures for residual effects. Data were subjected to analysis of variance as a 

design for a split plot in time design by using the general linear models procedure of 

SAS (SAS, 1988). Block, glucagon dosage, order of dosage, and replication within 

block were considered as whole-plot effects and tested against the interaction of 

block, dosage, order of dosage, and replication within block as the error temn. 

Period and dosage x period interaction were subplot effects and were tested 
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against the residual error (Cochran, 1957). Orthogonal contrasts for effects of 

glucagon both during and after treatment (i.e., the preinfusion vs. the infusion period 

and the preinfusion vs. the postinflision periods, respectively) were constructed 

from subplot effects. 

Comparisons of the effects of glucagon at 5 vs. 20 mg of glucagon daily, 

order of dosage, and replication within block were conducted only on measures 

from blood samples collected from 12 to 48 h during infusions. The term for period 

effects was dropped from the model, and residual error was used to test for 

significance. Data from blood samples collected during the first 4 h of infusions 

were used to calculate dose response measures of peak heights, time to peak 

heights, and area under the curves of glucose concentrations, which were all 

compared as already described for dosage effects. Because only four cows were 

used in experiment one, significance was declared at P < 0.10 and trends at P ^ 

0.20. 

Experiment Two 

Experimental design. Eight nonpregnant Holstein heifers at Eli Lilly & Co., 

Greenfield, IN were assigned randomly to either a high concentrate (HC) or low 

concentrate (LC) diet 4 mo earlier with four receiving each diet. Diets were fed to 

supply equal NE for average gains of about 0.35 kg/d for the heifers that weighed 

458 ± 27 kg at the start of the glucagon experiment. Diets consisted of a corn-

soybean meal concentrate, com silage, and alfalfa haylage. Assuming 50% of the 
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com silage as concentrate, the HC diet contained 80% concentrate and the LC diet 

contained 43%. 

The heifers were prepared for infusion of glucagon as described for 

experiment one. Following a 24-h sampling period to establish baseline blood 

measures, treatments of glucagon at 0, 2.5, 5.0, or 10 mg/d were conducted for 48 

h, and blood sampling continued. Blood was collected for another 24 h after 

infusions ended to determine residual effects. At 24 d after the first replication, 

glucagon dosages were reassigned within each diet as the second period of a 4 x 4 

Latin square, and a second replication was performed. Thus, two replications were 

completed for each diet. 

Samples and analysis. Between blood samples collected at less than 30-

min intervals, catheters were kept patent with sodium citrate (5% wt/vol in 0.15 M 

NaCI). For longer durations between samples, sodium heparin was used. After 

collection, blood samples were transferred into 10 ml tubes containing sodium 

EDTA, centrifuged for collection of plasma, and analyzed for concentrations of 

glucose, urea nitrogen (PUN), NEFA, BHBA, and ACAC by using a Microcentifugal 

autoanalyzer (Monarch Plus Instrumentation Laboratories, Lexington, MA) usually 

within 24 h of collection. 

Statistical analysis. Statistical comparisons were conducted as described 

for experiment one. Diet (HC vs. LC) was substituted for block as a main effect and 

additional contrasts were constructed to determine linear and quadratic effects of 
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dosage of glucagon over the 48-h infusion period. Significance was declared at P < 

0.05 and tendencies at P < 0.10. 

Experiment 3 

Experimental design. Two blocks of two early-lactation (35 DIM average) 

Brown Swiss cows from the Iowa State University dairy herd were infused with 

glucagon at 5 and 10 mg/d in a crossover design. Bilateral jugular vein catheters 

for infusion and blood collection were placed in each of the cows 24 h before the 

start of infusions. Catheters were kept patent with sodium heparin until the start of 

the infusions and between blood collections of greater than 30-min intervals. 

Between intervals of less than 30 min, catheters were kept patent with sodium 

citrate. After each cow received the dosage of glucagon assigned for the first 48-h, 

dosages were reversed abruptly, and infusion continued for another 48 h. 

Glucagon infusate was prepared as in experiment one at concentrations that would 

provide 5 and 10 mg/d when infused at 20 ml/h. 

Samples and analysis. To establish baseline concentrations of metabolites, 

blood was collected at 30-min intervals for 2 h just before glucagon infusions. 

Thereafter, samples were collected as in experiment one. Plasma was prepared 

from blood, stored at -20® C until completion of the experiment, packed in dry ice, 

and shipped to Greenfield, IN for analysis of concentrations of glucose, PUN, 

NEFA, BHBA, and ACAC. 
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Statistical analysis. Data were analyzed as described for experiment one 

with the following changes: Repeated measures were summarized as means for 

each cow and period (e.g. preinfusion, first 48-h infusion, second 48-h infusion, and 

postinfusion periods) before statistical analysis. Replication was dropped from the 

model. Block and order of dosage were considered whole-plot effects and tested 

against the interaction of block x order of dosage as the error term. Period and 

order x period interaction were subplot effects and were tested against the residual 

error. For comparison of effects of 5 vs.10 mg of glucagon daily, only the two 48-h 

Infusion periods were used and dose and dose x order interaction were tested 

against residual error. 

Results 

Experiment One 

Plasma immunoreactive glucagon concentrations were increased about 50% 

by glucagon infusions, but, because of great variability, they were not significantly 

different between cows receiving glucagon at 5 vs. 20 mg/d. The primary effect of 

both dosages of glucagon on metabolic responses was an increase (P = 0.01) of 

plasma glucose during the infusion period (Figure 1A). With the initiation of 

glucagon, glucose concentrations increased dramatically, peaked 25 to 30 min after 

infusions began, and decreased during the next 4 to 6 h until elevated 

concentrations stabilized above the preinfusion period. Peak glucose 
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Figure 1. Plasma metabolite and insulin cx)ncentrations in cows in experiment one 
before, during, and after treatment with glucagon at 5 (O) and 20 mg/d (•) for 48 h. 
A. Glucose. Effects in model: before vs. during glucagon (P = 0.002, SEM = 1.23), 
before vs. after glucagon (P = 0.61, SEM = 1.28), and glucagon at 5 vs. 20 mg/d (P 
= 0.10, SEM = 1.03). B. Insulin. Effects in model: before vs. during glucagon (P = 
0.15, SEM = 56.4), before vs. after glucagon (P = 0.13, SEM= 54.3), and glucagon 
at 5 vs. 20 mg/d (P = 0.82, SEM = 111). C. NEFA. Effects in model: before vs. 
during glucagon (P = 0.67, SEM = 18.7), before vs. after glucagon (P = 0.03, SEM 
= 25.4), and glucagon at 5 vs. 20 mg/d (P = 0.44, SEM = 15.5). D. BHBA. Effects in 
model: before vs. during glucagon (P = 0.04, SEM = 0.22), before vs. after 
glucagon (P = 0.01, SEM = 0.20), and glucagon at 5 vs. 20 mg/d (P = 0.11, SEM = 
0.19). 
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concentrations and total response area during the first 4 h of infusion were 

increased 2.5 times by glucagon at 20 compared with 5 mg/d (Table 1). The time to 

peak response did not vary between the two dosages of glucagon but occurred 

sooner (35 vs. 20 min, P = 0.09) during the second replication of glucagon 

treatment, regardless of dosage. Increases of glucose concentrations from baseline 

to peak height in response to glucagon were also greater (53.8 vs 44.8 mg/dl, P = 

0.10) during the first replication of glucagon treatment compared with the second. 

Throughout the remainder of the 48-h infusion period, glucose concentrations 

were higher (P = 0.10) in cows receiving glucagon at 20 compared with 5 mg/d. 

Comparing the preinfusion period to the same time of day during the infusion 

period, glucose concentrations were increased by 7.5 and 10.4 mg/dl for 5 and 20 

mg/d dosages. The order in which the two dosages were administered had no 

effect (P = 0.44) on plasma glucose response; however, glucose concentrations 

tended to be greater (P = 0.16) during the first replication regardless of dosage than 

during the second (84.9 vs. 81.7 mg/dl). After infusions, glucose concentrations 

rapidly declined to preinfusion levels (P = 0.61 for residual effects). 

Plasma insulin concentrations also were increased (P = 0.001) by glucagon 

compared with preinfusion values (Figure 1B); the increases, however, were not 

different (P = 0.82) between dosages. Insulin concentrations were not affected by 

the order of dosage administration. In contrast to glucose concentrations, plasma 

insulin concentrations tended (P =0.13) to be lower during the postinfusion vs. the 

preinfusion period. 
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Table 1. Response of plasma glucose in dairy cattle to glucagon at 0, 2.5, 5, 10, 
and 20 mg/d during the first 4 h of treatment. 

Dosage of Qlucaoon. mq/d 
Item 0 2.5 5.0 10 20 SEM' P> F^ 
Time to peak^, min 

Experiment 1 - - 30 - 25 3.5 0.41 
Experiment 2 - 90 146 20 - 31.8 0.20 
Experiment 3 - - 53 17 - 3.6 0.09 

Peak height"*, mg/dl 
Experiment 1 - - 30 - 68 2.2 0.006 
Experiment 2 11 27 38 54 - 7.2 0.02 
Experiment 3 - - 25 54 - 0.2 0.007 

AUC®, mg/dlxh 
Experiment 1 - - 51 - 138 14.5 0.05 
Experiment 2 14 71 115 113 - 17.0 0.03 
Experiment 3 - - 63 133 - 2.3 0.03 

^ Experiments 1 and 2 , number of cows at each dosage = 4; Experiment 3, 
number of cows at each dosage = 2. 

^ For linear effect of dosage of glucagon on glucose response, 
^ime to peak concentration from the start of glucagon infusion. 
" Peak height above baseline concentrations. 
® AUG = area under the curve minus baseline concentrations. 

Plasma NEFA concentrations were not significantly affected (P = 0.67) by 

glucagon (Figure 1C); however, compared with preinfusion concentrations, they 

were decreased 9 peq/L during infusion of glucagon at 5 mg/d but were increased 

by 33 peq/L during the 20 mg/d infusion. After cessation of glucagon, NEFA 

concentrations increased rapidly for both dosages and remained elevated (P = 0.03 

for preinfusion vs. postinfusion) throughout the remainder of the sampling period. 

Concentrations of BHBA in plasma were greater during both infusion (P = 

0.03) and postinfusion (P = 0.01) periods than during the preinfusion period (Figure 

1D). Glucagon administered at 20 mg/d elevated plasma BHBA concentration to a 

greater (P = 0.10) extent than did 5 mg/d. Contrary to that observed with plasma 
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glucose concentrations, the increase in BHBA concentrations tended (P = 0.11) to 

become greater during the second replication of each infusion. 

Because of an inability to obtain a liver biopsy from one cow, only three cows 

were used to determine the effects of glucagon on liver composition (data not 

shown). Glycogen concentrations in livers were decreased (P = 0.05) from 3.5 to 

1.4% wet wt, on average, by both dosages of glucagon, and the magnitude of 

changes was not affected by dosage. Concentrations of total lipid in livers were 

increased (3.6 vs. 4.2% wet wt) by 20 mg/d of glucagon, but they were slightly 

decreased (3.9 vs. 3.5% wet wt) when 5 mg/d was given. Because of the small 

number of cows, dosage effects were nonsignificant; however, the increase in liver 

lipid concentrations after 20 mg/d of glucagon created a significant period effect (P 

= 0.04). Liver triacylglycerol concentrations in these midlactation cows were very 

low (mean = 0.40 ± 0.03), and no changes were detectable. The effects of glucagon 

on liver lipid content suggest that the optimal dosage of glucagon that will increase 

blood glucose concentrations and yet not adversely affect liver lipid metabolism is 

between 5 and 20 mg/d. 

Data from first milkings immediately after the start and end of infusions were 

dropped from analysis because they represented transitional adjustments to 

treatment. Milk production was decreased (P = 0.09) by both dosages of glucagon 

but returned to preinfusion levels during the postinfusion period (Table 2). 

Percentages of fat in milk were increased both during (P = 0.07) and after (P = 

0.002) infusion. Percentages of protein in milk were decreased also (P = 0.0001) by 
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Table 2. Production and composition of milk from dairy cows before, during, and 
after treatment with glucagon at 5 and 10 mg/d. 

Dosage of Glucagon, mo/d 

Item 
5 20 

SEM^ 
Contrast 1 

Item Before During After Before During After SEM^ GLN Dose RES 
P> F 

Milk, kg/d 31.7 26.2 32.6 29.6 24.4 25.5 3.4 0.09 0.73 0.61 
Fat 

% 3.22 3.32 4.09 3.24 3.31 5.22 0.58 0.07 0.99 0.002 
kg/d 0.84 0.80 1.28 0.98 0.93 1.69 0.06 0.03 0.32 0.03 

Protein 
% 3.27 2.76 3.32 3.00 2.36 3.00 0.13 0.0001 0.10 0.29 
kg/d 1.01 0.68 1.18 0.90 0.64 1.09 0.08 0.08 0.67 0.55 

Solids 
% 12.06 11.92 13.55 11.85 11.64 13.57 0.65 0.01 0.77 0.002 
kg/d 3.51 2.89 4.43 3.52 3.20 4.53 0.22 0.08 0.57 0.23 
^ GLN = effect of glucagon. Dose = effect dosage of glucagon, RES = residual 

effect. 
^ Number of cows at each dosage = 4. 

glucagon, and they were lower (P = 0.10) in milk from cows receiving glucagon at 

20 mg/d than at 5 mg/d. Postinfusion milk protein concentrations were similar to 

preinfusion concentrations indicating short-lived effects of glucagon on milk protein 

secretion. Percentage of total solids in milk was decreased (P = 0.02) during 

infusion and increased (P = 0.002) after infusion (data not shown). 

Experiment Two 

Similarly to the effects of glucagon observed in experiment one, glucose 

concentrations increased dramatically at the start of glucagon treatments in 

experiment two; times to peak glucose concentrations, however, ranged from 20 min 

in heifers receiving glucagon at 10 mg/d to 146 min in heifers receiving 5 mg/d 

(Table 1). Dosage of glucagon did not affect time to peak concentrations of glucose 
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(P = 0.20). Peak concentrations and total response area during the first 4 h of 

infusion were increased linearly (P < 0.03) by dosage of glucagon. Diet had no 

effect on peak times, peak heights, or area under the curves of glucose responses 

to glucagon. Replication did not affect any of the initial responses of blood glucose 

to glucagon. 

During preinfusion and postlnfusion periods, glucose concentrations were 

similar between heifers receiving the HC diet compared with the LC diet. During the 

infusion period, however, plasma glucose concentrations were 3.5 mg/dl higher in 

heifers receiving the LC diet than in heifers receiving the HC diet (Figure 2A). 

Glucagon increased plasma glucose concentrations in a linear fashion (P = 0.006) 

with respect to dosage compared with preinfusion and 0 mg/d of glucagon (Table 1). 

Quadratic effects of glucagon dosages on plasma glucose concentrations were not 

significant (P = 0.20). Plasma glucose concentrations were decreased slightly (5.7 

mg/dl, P = 0.02) during the second replication compared with the first replication. 

After treatments were completed, plasma glucose concentrations were 5 mg/dl 

lower (P = 0.002) than preinfusion concentrations. 

Plasma urea nitrogen concentrations tended to be greater (P = 0.10) in 

heifers receiving the LC diet vs. the HC diet. This effect was amplified by glucagon 

(P= 0.04, Figure 2B). Glucagon increased (P = 0.0001) PUN primarily because of 

the large increase observed in heifers fed the LC diet receiving glucagon at 5 mg/d. 

The effect of glucagon on PUN was neither linear nor quadratic. During the 
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Figure 2. Plasma metabolite concentrations in experiment two with heifers fed low 
concentrate ^C) and high concentrate (HC) diets during 48 h infusions of 
0 (I). 2.5 (B), 5.0 ([] ), and 10 (| ) mg/d. A. Glucose. Effects in model; LC vs. 
HC diets (P = 0.04, SEM = 1.20), glucagon at 2.5, 5.0 and 10 vs. 0 mg/d (P = 
0.006, SEM = 2.39), linear effect of glucagon dosage (P = 0.007, SEM = 2.39), and 
quadratic effect of glucagon dosage (P = 0.20, SEM = 2.39). B. Urea nitrogen (N). 
Effects in model: LC vs. HC diets (P = 0.04, SEM = 0.35), glucagon at 2.5, 5.0 and 
10 vs. 0 mg/d (P = 0.32, SEM = 0.70), linear effect of glucagon dosage (P = 0.40, 
SEM = 0.70), and quadratic effect of glucagon dosage (P = 0.32, SEM = 0.70). 0. 
NEFA. Effects in model: LC vs. HC diets (P = 0.07, SEM = 6.02), glucagon at 2.5, 
5.0 and 10 vs. 0 mg/d (P = 0.27, SEM = 12.0), linear effect of glucagon dosage (P = 
0.07, SEM = 12.0), and quadratic effect of glucagon dosage (P = 0.28, SEM = 
12.0). D. BHBA. Effects in model: LC vs. HC diets (P = 0.38, SEM = 0.13), 
glucagon at 2.5, 5.0 and 10 vs. 0 mg/d (P = 0.29, SEM = 0.26), linear effect of 
glucagon dosage (P = 0.18, SEM = 0.26), and quadratic effect of glucagon dosage 
(P = 0.60, SEM = 0.26). 
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postinfusion period, PUN concentrations were not different (P = 0.78) than during 

the preinfusion period. 

Plasma NEFA concentrations tended to be greater (P = 0.07) during 

infusions in heifers receiving the LC vs. the HC diet (Figure 2C). On average, 

glucagon did not increase NEFA concentrations (P = 0.27), but there was tendency 

(P =0.07) for a positive linear effect of glucagon dosage on NEFA that could be 

attributed to increases of NEFA in heifers receiving 10 mg/d of glucagon. After 

infusion of glucagon, NEFA concentrations were increased an average of 86 ± 14 

[jeq/L for all three doses (P = 0.0001). 

Plasma BHBA concentrations were not affected by diet (P = 0.77) or by 

glucagon (P = 0.29, Figure 2D). During the postinfusion period, concentrations of 

BHBA were increased (P = 0.0001) when compared with preinfusion concentrations; 

however, this seems to be an infusion effect rather than a glucagon effect because 

the increase of 0.64 ±0.1 peq/L was consistent across all treatments, including the 

0 mg/d dosage. Concentrations of ACAC (data not shown) tended to be decreased 

(P =0.10) by all dosages of glucagon when compared with the 0 mg/d control. 

Experiment Three 

The initial response of plasma glucose concentrations to glucagon was 

identical to that in the first two experiments (Table 1). Values for peak increases of 

glucose concentrations and area under the curves during the first 4 h of treatment 
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were similar to those in experiment one and were increased (P < 0.03) by dosage 

(Table 1). Time to peak concentrations occurred more quickly when cows received 

glucagon at 10 rather than at 5 mg/d. During glucagon treatments, plasma glucose 

concentrations increased by 9.2 mg/dl compared with preinfusion baseline 

measures {P - 0.01, Figure 3A). 

Glucagon at 10 mg/d increased glucose concentrations more than did 5 mg/d 

throughout the infusion period (76.4 vs. 70.8 ± 1.3 mg/dl, P = 0.09). Cows receiving 

the 10 mg/d dosage of glucagon during the first 48-h of infusion tended to have a 

greater glucose response to 10 mg/d than did cows receiving 5 mg/d first (P = 0.17 

for dose * order). During the postinfusion period, glucose concentrations were 

decreased (P =0.001) when compared with preinfusion concentrations. The 

postinfusion decrease in plasma glucose concentration were probably short-lived 

effect of the abrupt cessation of glucagon treatment. A more recent experiment 

showed that when the rate of glucagon infusion was decreased gradually over a 10-

h period the deaease in plasma glucose concentrations was not observed (She, P., 

1997). 

Plasma urea nitrogen concentrations tended to be decreased by glucagon (P 

= 0.13, Figure 3B). Dosage of glucagon did not affect PUN (P = 0.26), but 

concentrations were higher in cows receiving 10 mg/d during the first infusion 

period (P = 0.07 for dose x order). The PUN were decreased postinfusion 

compared with preinfusion concentrations (17.6 vs. 20.0 mg/dl, P = 0.04). 
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Figure 3. Plasma metabolite concentrations in cows in experiment three before, 
during, and after treatment with glucagon at 5 (O) and 10 (•) mg/d. Dosages were 
changed from 5 to 10 mg/d (—) and from 10 to 5 mg/d (—) at h 48. A. Glucose. 
Effects in model; before vs. during glucagon (P = 0.01, SEM = 1.34), before vs. 
after glucagon (P = 0.0001, SEM = 1.17), and glucagon at 5 vs. 10 mg/d (P = 0.09, 
SEM = 1.27). B. Urea nitrogen (N). Effects in model: before vs. during glucagon (P 
= 0.13, SEM = 0.85), before vs. after glucagon (P = 0.04, SEM= 0.67), and glucagon 
at 5 vs. 10 mg/d (P = 0.26, SEM = 0.48). C. NEFA. Effects in model: before vs. 
during glucagon (P = 0.007, SEM = 22.7), before vs. after glucagon (P = 0.99, SEM 
= 20.48), and glucagon at 5 vs. 10 mg/d (P = 0.22, SEM = 13.3). D. BHBA. Effects 
in model: before vs. during glucagon (P = 0.77, SEM = 0.51), before vs. after 
glucagon (P = 0.0002, SEM = 0.55), and glucagon at 5 vs. 10 mg/d (P = 0.66, SEM 
= 0.53). 
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Concentrations of plasma NEFA were decreased compared with preinfusion 

by both dosages of glucagon (496 vs. 660 P - 0.007), but dosage of 

glucagon and the order that dosages were administered did not influence NEFA (P 

= 0.22, Figure 3C). Cows receiving glucagon at 5 mg/d the first 48 h, however, had 

increased NEFA compared with cows receiving 10 mg/d first (613 vs. 439 yeq/L, P 

= 0.04 for dose x order). After the infusion, plasma NEFA decreased to 

concentrations similar to preinfusion. 

Neither glucagon or dosage of glucagon had any effect (P > 0.66) on 

concentrations of plasma BHBA (Figure 3D) or ACAC (not shown). During the 

postinfusion period, concentrations of BHBA and ACAC increased dramatically 

through the end of the sampling period (P > 0.01). 

Discussion 

Our experiments were the first to measure effects of chronic, low level 

administration of glucagon into dairy cattle. Previous studies with dairy cows 

consisted of administration of bolus doses of glucagon followed by response 

measures similar to those observed during the first 4 h and after cessation of 

treatment in our experiments (de Boeret al., 1986, Holtenius and Traven, 1990). 

During the first hour of glucagon treatment, glucose concentrations increased 

rapidly, creating a temporary hyperglycemic state (Table 1). The severity and 

duration of the hyperglycemic state was dose dependent in all three experiments. 

All dosages of glucagon tested increased plasma glucose concentrations in a linear, 
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dose-dependent fashion in each experiment throughout the 48-h treatment periods 

(Figures 1A, 2A, and 3A). After glucagon treatment, plasma glucose concentrations 

declined to pretreatment concentrations in midlactation cows but descended below 

pretreatment concentrations in heifers and early lactation cows. 

The initial hyperglycemic conditions occurring during the first hour of 

glucagon treatment were alleviated by corresponding increases in plasma insulin 

concentrations. Insulin response to glucagon was immediate and preceded 

increases in glucose concentrations (Figure 1B). This effect also was observed in 

other experiments (de Boer et al., 1986; Holtenius and Traven, 1990; Williamson et 

al., 1971), indicating a direct action of glucagon on pancreatic U-cells that 

stimulates insulin secretion independently of blood glucose (Cryer, 1996). 

Throughout the remainder of the treatment periods, concentrations of insulin were 

increased relative to basal concentrations in a nondose-dependent manner by 

glucagon. 

Plasma urea nitrogen concentrations were increased variably during 

experiment two and tended to be decreased by glucagon during experiment three 

(Figures 28 and 38). Increases in PUN may be attributable to increased uptake 

and deamination of amino acids as precursors for hepatic glucose production 

(Brockman, 1978; Flakoll et al., 1994). The lack of effect of glucagon on PUN in 

lactating cows in our study does not support the concept of increased use of amino 

acids as gluconeogenic substrates. Similar results were observed when ovine livers 

were perfused with glucagon (Gill et al., 1985). Concentrations of urea in the 
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perfusate actually decreased under the influence of glucagon when livers were 

perfused with propionic acid and threonine. By use of carbon-14 labeling, they 

determined that the use of propionate for glucose synthesis was increased by 

glucagon treatment and there was a sparing effect on threonine. In the presence of 

adequate propionate, as was probably the case for the heifers fed the HC diet and 

the cows receiving lactation diets in our experiments, use of amino acids as 

gluconeogenic substrates was probably minimal. Alternatively, the lack of 

observable changes in PUN concentrations in our cows may result from the capacity 

of lactating cows to remove and recycle urea and transfer PUN into the mammary 

gland at rates greater than hepatic ureagenesis stimulated by the increased 

gluconeogenesis . The possibility of this effect was strengthened by the 

observation that milk protein production was decreased during treatment with 

glucagon (Table 2) possibly because gluconeogenic amino acids normally utilized 

for milk production were diverted to the liver to support increased rates of 

gluconeogenesis. Effects of glucagon on milk urea nitrogen and protein fractions 

warrant further studies. 

Glucagon has been considered to be a powerful lipolytic agent, which is 

supported by results of experiments in which glucagon was administered as a single 

bolus dose (de Boer et al., 1986) or into rats (Williamson et al., 1971). During our 

experiments, concentrations of plasma NEFA were not increased by glucagon 

except by the 20 and 10 mg/d dosages in experiments one and two, respectively 

(Figures 1C and 2C). On the other hand, NEFA increased dramatically after all 
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dosages of glucagon, probably as a result of the removal of lipolytic inhibition by 

falling insulin concentrations. The coordination of insulin along with glucagon 

concentrations is important in controlling peripheral lipolysis because insulin seems 

to have stronger regulatory effects on peripheral metabolism than does glucagon 

(Brockman, 1978). The increase in NEFA concentrations after stopping glucagon 

infusion was reflected by increased milk fat percentages probably as a result of 

increased precursor availability for milk fat synthesis. 

When 520 pg of glucagon was administered as a single bolus injection to 

early lactation and ketonemic cows, small increases of NEFA were observed within 

15 min, but the greatest increases in NEFA concentrations occurred 1.5 to 2 h after 

injection of glucagon, corresponding with times that insulin concentrations were 

lowest after removal of glucagon-stimulated insulin secretion (de Boer et al., 1986). 

In early lactation cows, demands for nutrients for milk synthesis are satisfied by a 

low insulin-to-glucagon ratio (Herbein et al., 1985) and abnormally low 

concentrations of insulin cause this ratio to be decreased further in cows 

susceptible to ketosis (de Boer et al., 1986; Smith et al., 1997). 

Taken together, our results and those of de Boer et al. (1986) and Basset 

(1971) indicate that the insulinotropic action of glucagon may provide a mechanism 

to normalize insulin concentrations in ketonemic cows and to simultaneously 

suppress the lipolytic action of glucagon. Similar results were observed when 

insulin-to-glucagon ratios were held constant during glucagon infusions into dogs 

(Flakoll et al., 1994). In those experiments, there were no increases in 
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cxDncentrations of either NEFA or BHBA in plasma. Additionally, in early lactation, 

ketotic dairy cows, simultaneous administration of glucose and insulin, mimicking 

the effects of glucagon observed in our experiments, decreased concentrations of 

NEFA and BHBA in plasma to a greater extent than treatment with glucose alone 

(Sakai et al., 1993). During our experiments, concentrations of BHBA were 

increased only by the 20 mg/d dosage used in experiment one (Figure 1D). Similar 

to, and probably as a result of, increased NEFA concentrations post-treatment, 

concentrations of ketones were increased by all dosages of glucagon during the 

post-treatment period (Figures 1D and 3D). 

Measures of effects of glucagon on liver composition were only collected 

during experiment one. As anticipated, glucagon caused mobilization of glycogen 

from livers to increase plasma glucose concentrations (Cryer, 1996; Iwani, 1996). 

The quantity of glycogen contained in livers would be inadequate to supply the 

plasma glucose concentrations observed throughout the 48-h infusion periods. 

Hepatic glycogenolysis most likely was responsible for the initial glucose response, 

and the elevated glucose concentrations during the remainder of the treatment 

periods were likely the result of increased and sustained gluconeogenesis (Cryer, 

1996; Williamson et al., 1971). 

Total lipids in livers were increased only by the 20 mg/d treatment. The 

increase in plasma NEFA observed during administration of the 20 mg/d dosage of 

glucagon was probably responsible for this effect. Increases in NEFA 

concentrations caused by lipid mobilization from adipose tissue is considered to be 
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responsible for fatty infiltration of livers of ketotic cows (Baird, 1982; Mills et al., 

1986; Smith et al., 1997). 

Our results suggest that 10 mg/d may be the appropriate maximal dosage of 

glucagon for increasing circulating concentrations of glucose in ketosis susceptible 

lactating dairy cows without having detrimental lipolytic and ketogenic effects. No 

detrimental effects from glucagon were observed in any of the animals involved In 

our experiments neither during nor after infusions. Additionally, one eariy lactation 

Brown Swiss cow showing signs of ketonemia was infused along with the four 

experimental cows during experiment three. Observations on this cow revealed that 

glucagon increased plasma concentrations of glucose from 31.3 to 53.3 mg/dl and 

decreased plasma concentrations of NEFA and BHBA from 777 peg/L and 43.2 

mg/dl to 666 jjeq/L and 34.8 mg/dl, respectively. 

Conclusion 

Continuous treatment of dairy cows and heifers with glucagon is able to 

sustain increased plasma glucose concentrations by both glycogenolytic and 

gluconeogenic activity. Lipolytic effects of glucagon evidently occur only at the 

higher dosages tested and after abrupt cessation of glucagon. Our experiments 

indicate that treatment of early lactation dairy cows with low, chronically 

administered dosages of glucagon may provide a way to improve carbohydrate 

status and decrease lipid flux during periods of fatty liver and susceptibility to 

ketosis. 



72 

References 

Aiello, R. J., T. M. Kenna, and J. H. Herbein. 1984. Hepatic glucxjneogenic and 
ketogenic inten-elationships in the lactating cow. J. Dairy Sci. 67:1707-1715. 

Amaral-Phillips, D. M., A. D. McGilliard, G. L Lindberg, J. J. Veenhuizen, and J. W. 
Young. 1993. Effects of decreased availability of glucose for dairy cows. J. Dairy 
Sci. 76:752-761. 

Baird, G. D. 1982. Primary ketosis in the high-producing dairy cow: Clinical and 
subclinical disorders, treatment, prevention, and outlook. J. Dairy Sci. 65:1-10. 

Basset, J. M. 1971. The effects of glucagon on plasma concentrations of insulin, 
growth hormone, glucose, and free fatty acids in sheep: Comparison with the 
effects of catecholamines. Aust. J. Biol. Sci. 24:311-320. 

Brockman, R. P. 1978. Roles of glucagon and insulin in the regulation of 
metabolism in ruminants. Can. Vet. J. 19:55-62. 

Cochran, W. G. and G. M. Cox. 1957. Experimental Designs. 2nd ed. John Wiley & 
Sons, New York. 

Cryer, P. E. 1996. Glucagon and glucose counterregulation. pp. 150-158 in 
Handbook of Experimental Pharmacology (Vol. 123): Glucagon III. P. J. Lefebve, 
ed. Springer, New York. 

de Boer, G., A. Trenkle, and J. W. Young. 1986. Secretion and clearance rates of 
glucagon in dairy cows. J. Dairy Sci. 69:721-733. 

Flakoll, P. J., M. J. Borel, L. S. Wentzel, P. E. Williams, D. B. Lacy, and N. N. 
Abumrad. 1994. The role of glucagon in the control of protein and amino acid 
metabolism in vivo. Metabolism 43:1509-1516. 

Gill, W., G. E. Mitchell Jr., J. A. Boling, R. E. Tucker, G. T. Schelling, and R. M. 
DeGregorio. 1985. Glucagon influence on gluconeogenesis and oxidation of 
propionic acid and threonine by perfused ovine liver. J. Dairy Sci. 68:2886-2894. 

Herbein, J. H., R. J. Aiello, L. I. Echler, R. E. Pearson, and R. M. Akers. 1985. 
Glucagon, insulin, growth hormone, and glucose concentrations in blood plasma 
of lactating dairy cows. J. Dairy Sci. 68:320-325. 



73 

Holtenius, P., and M. Traven. 1990. Impaired glucose tolerance and heterogeneity 
of insulin responses in cows with abomasal displacement. J. Vet. Med. A 37:445-
451. 

Iwaji, J. 1996. The glucagon receptor gene: organization and tissue distribution, pp. 
53-74 in Handbook of Experimental Pharmacology (Vol. 123): Glucagon III. P. J. 
Lefebve, ed. Springer, New York. 

Mills, S- E., D. C. Beitz, and J. W. Young. 1986. Characterization of metabolic 
changes during a protocol for inducing lactation ketosis in dairy cows. J. Dairy 
Sci. 69:352-361. 

Sakai, T., T. Hayakawa, M. Hamakawa, K. Ogura, and S. Kubo. 1993. Therapeutic 
effects of simultaneous use of glucose and insulin in ketotic dairy cows. J. Dairy 
Sci. 76:109-114. 

SAS® Users Guide, Release 6.03 Edition. 1988. SAS Inst., Inc., Gary, NC. 

Smith, T. R., A. R. Hippen, D. C. Beitz, and J. W. Young. 1997. Metabolic 
characteristics of induced ketosis in normal and obese dairy cows. J. Dairy Sci. 
80:1569-1581. 

Veenhuizen, J. J., J. K. Drackley, M. J. Richard, T. P. Sanderson, L. D. Miller, and J. 
W. Young. 1991. Metabolic changes in blood and liver during development and 
early treatment of experimental fatty liver and ketosis in cows. J. Dairy Sci. 
74:4238-4253. 

Williamson, D. H., and J. Mellanby. 1974. D-(-)-3-hydroxybutyrate. Page 1836 in 
Methods of Enzymatic Analysis. Vol. 4. 2nd ed. H. U. Bergmeyer, ed. Academic 
Press, London, UK. 

Williamson, J. R., R. G. Thurman, and E. T. Browning. 1971. Studies on the mode 
of action of glucagon in rat liver, pp. 129-153 in The Action of Hormones: Genes 
to Population. P. P. Foa, ed. Charies C. Thomas, Springfield, IL 



74 

METABOLIC RESPONSES OF DAIRY COWS WITH FATTY 
LIVERS TO 14-DAY INTRAVENOUS INFUSIONS OF 

GLUCAGON 

A paper to be submitted to the Joun .al of Dairy Science 

A. R. Hippen, P. She, J. W. Young, D. C. Beitz, G. L. Lindberg, 
L. F. Richardson, and R. W. Tucker 

Abstract 

Twenty multiparous Holstein cows were offered additional dietary 

concentrate during the final 30 d prepartum to aeate a postpartum susceptibility to 

fatty liver and ketosis. From 14 to 42 days in milk, all cows were subjected to a 

protocol to induce ketosis. To test the use of glucagon as a treatment for fatty liver, 

either glucagon at 10 mg/d or vehicle was infused continuously via jugular vein 

catheters from 21 to 35 days in milk. All cows became ketonemic and hypoglycemic 

during ketosis induction. Glucagon increased plasma glucose to 142% of 

concentrations in controls throughout the 14-d treatment period. The 

hypoinsulinemia present in these susceptible cows, however, was not affected by 

glucagon. Plasma S-hydroxybutyrate and nonesterified fatty acids were decreased 

over time by glucagon. At 6 days in milk, liver triacylglycerol concentrations 

averaged 12.9% of the wet weight of livers. Compared with controls, glucagon had 

decreased triacylglycerol content of livers by 71% at d 35. Glycogen content of 

livers was 1.0% of the wet weight of livers at 6 days in milk and was decreased by 

glucagon to 0.5%, 2 d after glucagon treatment started. Glycogen then increased 

lineariy in livers of cows treated with glucagon until at 38 days in milk glycogen 
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cxDntent was 3.7% compared with 1.6% in livers of controls. Our results indicate that 

glucagon successfully decreases the degree of fatty liver and improves 

carbohydrate status in early-lactation dairy cows. 

Introduction 

Fatty liver occurs in varying degrees in most dairy cows during the peripartal 

period. Development of fatty liver occurs when fatty acid uptake and TAG synthesis 

by the liver exceeds the liver's capacity to either oxidize fatty acids or to hydrolyze 

and export TAG as VLDL (Grummer, 1993). During the final days prepartum and 

immediately postpartum, feed intakes of dairy cows are depressed and energy 

requirements for parturition and initiation of lactation are greatly increased. The 

resulting negative energy balance overloads the liver with NEFA mobilized from 

adipose tissue, and TAG accumulates in the liver because ruminant liver has a 

relatively limited capacity to synthesize and export VLDL (Grummer, 1993). The 

severity of fatty liver can be decreased by avoiding the peripartal DMI depression 

(Grummer, 1993), but it also can be accentuated by overfeeding during the early 

prepartal period (Mills et al. 1986a; Van den Top et al., 1996). 

Cows having moderate to severe fatty liver are more susceptible to metabolic 

disorders and immunosuppression (Baird, 1980; Franklin et al., 1991). The 

metabolic disorder most commonly associated with fatty liver is lactation ketosis. In 

fact, fatty liver seems to be a prerequisite for development of ketosis. Under an 

experimentally induced ketosis, the development of fatty liver preceded the 
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occurrence of ketosis, and cows without fatty liver were resistant to ketosis (Mills et 

al., 1986a; Smith et al., 1997; Veenhuizen et al., 1991). 

Lactation ketosis is characterized by hypoglycemia and hyperketonemia 

(Baird, 1982). The primary cause of ketosis in a lactating dairy cow is an 

insufficiency of blood glucose to support milk production and fatty acid oxidation. 

This decrease in carbohydrate status causes 1) a decrease in concentrations of 

plasma insulin, 2) an increase in mobilization of fat from adipose tissue, and 3) 

increased hepatic ketogenesis (Baird, 1982; Grummer, 1993). Clinical ketosis, 

therefore, is characterized by decreases of blood glucose and insulin, and 

increases of NEFA, BHBA, ACAC, and severity of fatty liver (Baird, 1982; Grummer, 

1993; Mills et al., 1986a; Smith et al.. 1997). 

The predominant hormones responsible for maintaining glucose homeostasis 

are insulin, and glucagon. Glucagon generally is considered to be counter-

regulatory to insulin and is responsible for increasing blood glucose concentrations 

during hypoglycemia. Glucagon concentrations are decreased in blood of cows that 

are obese at calving, and they decline further during periods of ketonemia (Baird. 

1982; de Boer et al.. 1986; Smith et al.. 1997). Even though glucagon is lipolytic 

and ketogenic in many nonruminant animals (Aiello et al., 1984; Iwanji, 1996; 

Williamson et al.. 1971). these effects may not be present or are blunted in ruminant 

animals (Baird. 1982; Basset. 1971; Brockman, 1978). When insulin to glucagon 

ratios were normalized during glucagon administration, lipolytic effects were not 

present in dogs (Flakoll et al., 1994) or sheep (Brockman, 1978). Additionally, 
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Etherton et al. (1977) failed to observe lipolytic effects of glucagon during in vitro 

studies with adipose tissue from sheep and dairy steers. 

Previous studies involving treatment of early lactation cows with single, bolus 

injections of glucagon have shown that concentrations of glucose and insulin were 

increased by glucagon in both normal and ketonemic cows (de Boer et al., 1986; 

Holtenius and Traven, 1990). Furthermore, this glucogenic activity of glucagon in 

normal early and mid-lactation dairy cows can be sustained for at least 48 h during 

continual intravenous infusions of glucagon (Hippen et al., 1997). Not only were 

blood glucose concentrations increased for the duration of glucagon treatment; 

concentrations of NEFA and BHBA were not increased by dosages of glucagon less 

than 20 mg/d. 

Glucagon has not been considered as a practical treatment for lactation 

ketosis because it has a physiological half-life of only 5 min (de Boer et al., 1986). 

If delivery of exogenous glucagon could be sustained over time, glucagon may be 

able to restore blood glucose concentrations in ketotic cows, both immediately and 

long-term, because it has glycogenolytic and gluconeogenic activities (Cryer, 1996; 

Hendrick et al. 1990; Williamson et al., 1971). 

The purpose of our experiment was to examine the effects of a 14-d 

intravenous infusion of glucagon into early-lactation dairy cows with fatty liver that 

were subjected to an experimentally induced ketosis. The effects of glucagon on 

normal early-lactation cows are reported elsewhere (She et al. 1998), and they will 
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be discussed at the end of this paper relative to effects observed in cows with fatty 

liver. 

Materials and Methods 

Experimental Design 

To create a postpartal fatty liver and susceptibility to lactation ketosis, 20 

multiparous Holstein cows were offered 5 to 6 kg of cracked com daily in addition to 

their regular prepartal diet (Table 1), which was fed to meet recommendations for 

energy (National Research Council, 1988) during the final 30 d prepartum (Van den 

Top, et al. 1996). Cows were selected for overfeeding on the basis of having BCS 

of 3.5 or above or symptoms of ketonemia in an earlier lactation (Edmondson et al., 

1989). Liver samples were collected at 6 d postpartum by puncture biopsy (Smith et 

al., 1997) for determination of concentrations of total lipid, TAG (Mills et al., 1986a), 

and glycogen (Deriling et al., 1987). Cows having ratios of liver TAG to glycogen of 

greater than 2 to 1 were assumed to be susceptible to ketosis (Smith et al., 1997) 

and were assigned alternately as susceptible control cows (SC) or susceptible cows 

treated with glucagon (STG). 

During the first 14 d postpartum, all cows were fed a typical lactation diet 

allowing ad libitum consumption formulated to meet recommendations (National 

Research Council, 1988; Table 1). Feed intakes were recorded from 6 to 49 DIM. 

From 14 to 42 DIM (Figure 1), all cows were subjected to a ketosis induction 

protocol (Mills et al., 1986a; Smith et al., 1997). This protocol consisted of 
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Table 1. Ingredient composition of diets fed to cows during the 30 d prepartal and 
49 d postpartal periods. 

Ingredient 
Diet 

Prepartum Postpartum 
— kg/d — - % of DM -

Com silage 1.75 30.70 
Soy hulls 0.83 14.59 
Com grain 6.20 12.18 
Alfalfa haylage 0.41 7.15 
Alfalfa hay 0.41 7.15 
Soybean meal, 48% 0.38 6.57 
SoyPLUS®' 0.35 6.08 
Com gluten feed 0.32 5.60 
Whole cottonseed 0.29 5.00 
Fish meal 0.10 1.69 
Choice white grease 0.10 1.69 

~g/d — 
Dicalcium phosphate 39.07 0.68 
Potassium chloride 20.00 0.35 
Sodium bicarbonate 10.73 0.19 
Limestone 6.95 0.12 
Salt 5.31 0.09 
Magnesium oxide 5.31 0.09 
X-CEL Ruminant Trace Mineral®^ 3.78 0.07 

Grass hay ad libitum -

^Contains FeS04. 2.5%; CuSo4. 0.5%; MnOj, 10.0%; FeCI, 2.5%; CuOj, 
2.0%; I2EDTA, 0.4%, CoCI, 0.5%; ZnO, 10.0%; MgO, 15.0%. West Central Coop, 
Ralston, lA. 

restricting feed intakes to 80% of NRC recommended intakes for energy and 

supplementation of the diet with 1,3-butanediol. The butanediol was introduced 

gradually into each cow's daily ration, starting at 0.25 L/d at 14 DIM and increasing 

to 1 L/d by 21 DIM. The quantity of butanediol was maintained at 1 L/d from 21 

through 28 DIM. From 28 to 35 DIM, butanediol in the diet was increased again to 

1.4 L/d and remained at that quantity until the end of the ketosis Induction protocol 
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Figure 1. Experimental design. Parturition occurred at d 0. Liver biopsies (LB) were 
conducted on days Indicated. Ketosis induction, consisting of feed restriction and 
diet supplementation with 1,3-butanediol (FRBD), was imposed on all cows during 
weeks 3 through 6 (14 to 42 DIM). Treatment with glucagon or vehicle was 
administered to STG and SC cows, respectively, during weeks 4 and 5 (21 to 35 
DIM). Intensive window sampling of blood (W) occurred at 21 and 35 DIM, the start 
and end of glucagon Infusions. 

at 42 DIM. Butanediol was removed from the diet If a cow became clinically ketotic 

during ketosis Induction, and the cow was treated as necessary to restore feed 

intakes to 80% of NRC recommendations. After appetite was restored, butanediol 

was reintroduced into the diet as before, increasing the quantity to either 1.4 L/d or 

the maximum amount the cow could consume without exhibiting clinical ketosis 

(whichever was lesser) until 42 DIM. Thus, all cows were under metabolic pressure 

to be ketonemic and borderline ketotic. From 42 to 49 DIM, diets were fed for ad 

libitum intakes without butanediol supplementation, and recovery from the ketosis 

induction protocol was monitored. 
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Starting at 21 DIM, glucagon or vehicle was infused intravenously (STG and 

SC groups, respectively) until 35 DIM (Figure 1), and all cows were confined to their 

stalls. Cows were prepared for infusion by bilateral insertion of catheters into 

jugular veins at 20 DIM. Catheters were kept patent with sodium heparin (200 USP 

in 0.15 M NaCI) until infusion. Glucagon was prepared for infusion by dissolving 

lyophilized glucagon (donated by Ely Lilly & Co., Indianapolis, IN) in 0.15 M NaCI 

(preadjusted to pH 10.25) at concentrations that would provide 10 mg/d of glucagon 

when infused at 20 ml/h. To prevent adherence and loss of glucagon, all glassware 

and utensils were rinsed with 1% BSA in 0.15 M NaCI before use. Preliminary 

studies indicated that glucagon was stable in solution for at least 24 h at ambient 

temperatures; therefore, fresh infusate was added to source vessels at 8 h intervals 

throughout the infusion periods. At 35 DIM, infusions were ended by decreasing the 

infusion rate 2 ml/h over a 10 h period. 

Cows were monitored daily for severity of ketosis. Symptoms of ketosis 

included lethargy or nervousness, acetone on breath, and depression of feed 

intakes and milk production. Additionally, plasma collected each day was tested for 

concentrations of ketone bodies by use of strip ketone detectors (Ketostix®, Miles 

Inc., Diagnostics Division, Elkhart, IN). Severity of ketosis was scored as follows; 0 

= no symptoms of ketosis and plasma ketones less than 5 mg/dl, 1 = plasma 

ketones between 5 and 40 mg/dl, 2 = plasma ketones greater than 40 mg/dl, and 3 

= plasma ketones greater than 40 mg/dl and DMI decreased by greater than 30% of 

the assigned amount. Cows were diagnosed as clinically ketotic when their ketosis 
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score was three and symptoms of acetonemia, behavioral changes, and decreased 

milk production were present. Clinically ketotic cows then were examined by the 

herd veterinarian for confirmation of diagnosis and to ensure that ketosis was not 

secondary to a displaced abomasum or other disorder. Upon confirmation of 

clinical ketosis, 1,3-butanediol was removed from the diet to help restore feed 

intakes, and cows were given an oral drench of 454 g of propylene glycol, infused 

intravenously with 50% dextrose, or treated intramuscularly with dexamethasone, 

progressively, until recovery from ketosis as indicated by decreased ketone 

concentrations in plasma and urine and restoration of feed intake and milk 

production. 

Cows were milked three times daily, and milk production was recorded during 

the trial and for 3 wk thereafter. Samples of milk were collected for analysis of fat, 

protein, and lactose (Milk-O-Scan 203, Foss Food Technology, Eden Prairie, MN) at 

12, 13, 19 to 23, 33 to 37, 48, and 49. Body weights were recorded weekly, and 

BCS were evaluated by three individuals at -30, -15, 1, 14, 34, and 49 DIM. All 

cows were treated in accordance with guidelines established by the Iowa State 

University Committee on Animal Care. 

Samples and Analysis 

During the first two of the 10 replications, blood was sampled from a jugular 

vein catheter at 30-min intervals from 0800 to 1500 on 13, 20, 27, 34, 41, and 49 

DIM and daily during the infusion period. During all other replications, the window 
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sampling was discontinued and blood samples were collected daily from 7 to 49 

DIM from the coccygeal vein because this allowed better monitoring of the 

development of ketosis. Samples from the first two replications collected within 1 h 

of the prescribed daily sampling time in later replications were considered 

representative of the daily samples and included in the overall analysis. Window 

sampling of blood from all cows was conducted from jugular catheters at 30-min 

intervals for 4 h before and 5, 10, 20, 30, 45, 60, 90, 120, 180, and 240 min after the 

start of infusions (Figure 1). Blood samples also were collected at 30-min intervals 

for 4 h prior to and throughout the perioo of decreasing infusion rates at the end of 

the treatment period for both SC and STG. 

Blood was collected into 10-ml vacuum tubes containing Naa-EDTA and 

stored on ice until preparation of plasma within 2 h. Aprotinin (Boehringer-

Mannheim, Indianapolis, IN) was added at 500 KIU to one ml of plasma to be 

analyzed for concentrations of glucagon (Diagnostics Product Corporation, Los 

Angeles, CA). Plasma was stored at -20°C until analysis for concentrations of 

glucose, BHBA, ACAC, acetate, NEFA , and urea nitrogen with a microcentrifugal 

autoanalyzer (Monarch Plus Instrumentation Laboratories, Lexington, MA, at Eli Lilly 

& Co., Greenfield, IN), glucagon, and insulin (Coat-a-Count®, Diagnostics Product 

Corporation, Los Angeles, CA). In addition to the initial biopsy at 6 DIM, liver 

samples also were collected at 13, 23, 27,35, 38, 42, and 49 DIM (Figure 1) and 

stored at -80°C until quantification for total lipid, TAG, and glycogen. 
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Statistical Analysis 

Data from daily measures such as plasma metabolites, feed intakes, and milk 

production were summarized as weekly means before statistical analysis. The data 

then were analyzed as a complete randomized block with a split-plot in time by 

using the general linear models of SAS (SAS, 1988). Main effects of replication and 

treatment were tested by using replication x treatment as the error term. Subplot 

effects of time and time x treatment interactions were tested against residual error. 

Additionally, data from periodic samples (i.e., liver and milk composition, BW, and 

BCS) and weekly means of daily samples were compared separately across 

treatments after covariant adjustment by the pretreatment means of the respective 

data. One cow assigned to STG developed an infection around a catheter and was 

removed from the study at 28 DIM. Data collected from the cow until that time were 

used; thus, after 28 DIM, n = 9 and 10 for STG and SC, respectively. Values 

presented in figures are least square means, and significance was declared at P < 

0.05. 

Results 

BW. BCS. and DMI 

Body condition scores of all cows averaged 4.06 ± 0.52 during the prepartal 

period and were not different between SC and STG (Figure 2A). They declined to a 

low of 2.24 ± .53 at 34 DIM (P = 0.0001 for day), but they did not differ between 
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Figure 2. Body condition scores, body weights, and weekly means of feed intakes 
of ketosis susceptible control cows (O) and ketosis susceptible cows treated with 
glucagon (•). A. Body condition score. Effects in model: glucagon (P = 0.42), day 
(P = 0.0001) and glucagon x day (P = 0.27). B. Body weight. Effects in model; 
glucagon (P = 0.98), day (P = 0.0001) and glucagon x day (P = 0.29). C. Dry matter 
intake. Effects in model: glucagon (P = 0.87), day (P = 0.001) and glucagon x day 
(P = 0.0003). 
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treatments (P = 0.40). Body weights of cows responded similarly to BCS (Figure 

2B). Body weights averaged 623 ± 83 kg during wk 1 and declined to 533 ± 81 at 

42 DIM (P = 0.0001 for day). Glucagon did not affect BW (P = 0.98). 

Dry matter intakes averaged 14.5 ± 3.7 kg/d during wk 2 of lactation (Figure 

2C). Feed restriction to 80% of NRC recommendations for NEu did not further limit 

the already depressed intakes. As cows developed clinical ketosis, DMI were 

depressed further between 21 and 35 DIM. After ketosis induction ended, DMI 

increased in both groups. Treatments did not have significant effects on DMI at any 

individual day. Treatment x day interaction, however, was significant (P = 0.0003) 

because STG had lesser intakes during glucagon treatment and a greater rate of 

increasing DMI after treatment. 

Intakes of 1,3-butanediol were less than prescribed in the design because 

they were dependent on the ability of individual cows to resist ketosis (data not 

shown). The average amount of butanediol consumed by individual cows was 0.6 ± 

0.1 L the first week of ketosis induction and increased to 0.8 ± 0.6 for the second 

week. There were no significant differences between groups in butanediol intakes 

at any time (P = 0.52). 

General Health and Ketosis 

Of the 20 cows started on this trial, two SC and two STG cows required 

treatment for milk fever during the first week of lactation (Table 2). Over the course 

of the experiment, eight SC and five STG cows, in addition to the STG cow 
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Table 2. Incidence of metabolic and physiological disorder in ketosis susceptible 
control cows and ketosis susceptible cows treated with glucagon during the first 49 
DIM. 

Ketosis by DIM' 
Treatment^ MF=^ <21 21-27 28-35 >35 

Q
 Metritis Mastitis Infection^ 

SC 2 2 4 1 4 1 1 2 5 
STG 2 4 3 1 0 0 1 0 4 

'incidence of ketosis classified by DIM. Repeated occurrences of ketosis are 
included. 

^Treatments were control cows susceptible to ketosis (SC) and cows susceptible 
to ketosis that were treated with glucagon from 21 to 35 DIM (STG). 

^MF = milk fever. 
"'da = displaced abomasum. 
^Infections include foot rot, winter dysentery and unexplained fevers. 

removed at 28 DIM, exhibited disorders of an infectious nature. Milk fever and 

depressed immune function often are associated with fatty liver syndrome (Goff and 

Horst, 1997; Franklin et al., 1991); therefore, affected cows were retained in the 

study. All cows were checked for displaced abomasums whenever clinical signs of 

ketosis were exhibited. Only one cow, assigned to SC, developed a confirmed 

displaced abomasum that required surgical intervention. Because the displacement 

occurred after ketosis induction was completed at 45 DIM and was not associated 

with clinical ketosis, this cow was considered to have completed the study and all 

data collected from her until d 45 were included. 

All cows in both groups became subclinically ketotic (i.e., appetites were poor 

and the presence of ketones was detectable in plasma and urine) both before and 

during the ketosis induction protocol. The incidence of clinical ketosis is reported in 

Table 2. In total, five STG and eight SC cows became clinically ketotic during the 

experiment and two cows in each group had multiple occurrences. Only one STG 
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cow was diagnosed as ketotic after the first week of glucagon treatment (28 DIM); 

however, four SC cows became ketotic after that time. 

Concentrations of ketones in plasma as estimated daily by Ketostix® were 

slight l y  h i g h e r  i n  S C  t h a n  i n  S T G  d u r i n g  w k  2  o f  l a c t a t i o n  ( 5 . 7  v s .  4 . 5  m g / d l ,  P  =  

0.04, Figure 3A). Ketosis induction increased ketone concentrations in plasma of 

all cows. Even though concentrations of ketones in plasma of SC increased further 

during the wk 4, they did not continue to increase in plasma of STG after glucagon 

treatment was initiated. Thereafter, ketone concentrations declined more rapidly in 

plasma of STG than in SC (P = 0.0001 for treatment x day). 

Ketosis scores (Figure 3B), assigned as described, increased as 

concentrations of plasma ketones increased and reflect the incidence of clinical 

ketosis within groups. Ketosis scores of all cows were increased by ketosis 

induction. After treatment with glucagon began, ketosis scores of STG declined and 

scores of SC remained elevated until ketosis induction ceased {P = 0.0001 for 

treatment x day). 

Milk Production and Composition 

The normal increase in milk production during early lactation was blunted by 

the ketosis induction protocol, which started at 14 DIM (Figure 4A). Milk production 

decreased in both the SC and STG groups as ketosis induction progressed. The 

decline in milk production was greater in STG than in the SC 
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Figure 3. Weekly means of ketones in plasma and ketosis scores of ketosis 
susceptible control cows (O) and ketosis susceptible cows treated with glucagon 
(•). A. Plasma ketones as measured daily by Ketostix®. Effects in model; 
glucagon (P = 0.62), day (P = 0.0001) and glucagon x day (P = 0.27). B. Ketosis 
scores. Effects in model: glucagon (P = 0.24), day (P = 0.0001) and glucagon x day 
(P = 0.0001). Significant differences at individual times are indicated by • P < 0.05. 
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Figure 4. Weekly means of milk production and composition of milk from ketosis 
susceptible control cows (O) and ketosis susceptible cows treated with glucagon 
(•). A. Milk production. Effects in model: glucagon (P = 0.82), day (P = 0.0001) 
and glucagon x day (P = 0.0001). B. Percentage of fat in milk at day indicated. 
Effects in model: glucagon (P = 0.56), day (P = 0.0004) and glucagon x day (P = 
0.08). C. Percentage of protein. Effects in model: glucagon (P = 0.007), day (P = 
0.0001) and glucagon x day (P = 0.0001). Significant differences at individual times 
are indicated by »• P ^ 0.01. 
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group during glucagon treatment (P = 0.0001 for treatment x day), but milk 

production increased rapidly in the STG group after treatment ended. Overall, there 

were no treatment effects of glucagon on milk production (P = 0.56). 

Percentages of fat in milk produced by the STG group tended to increase 

during the last week of glucagon treatment compared with the SC group (P = 0.09 

for treatment x day, Figure 4B) and decreased in milk from both the SC and STG 

groups after ketosis induction ended. Quantities of milk fat produced daily 

decreased along with milk production for both groups (P = 0.0001 for day, data not 

shown) and were actually decreased at 34 DIM from the STG compared with the SC 

group (1.1 vs 1.6 kg/d, P = 0.05). Average production of milk fat was not 

significantly affected by glucagon. 

Protein percentages in milk were decreased immediately by glucagon and 

remained below controls until treatment ended at 35 DIM at which time their 

increase was as rapid as the initial decrease (Figure 4C). During treatment, 

percentages of protein in milk produced were 2.4 ± 0.3% for the STG group 

compared with 3.0 ± 0.2% for the SC group (P = 0.0001 for treatment x day). Milk 

protein production declined proportional to concentrations (data not shown). After 

treatment with glucagon ended, there were no differences in concentrations or 

quantities of protein in milk produced by the SC or STG groups. 

Milk lactose production was not affected overall by either ketosis induction or 

glucagon (P = 0.23 for day, data not shown). Concentrations of lactose, however, 

were increased sharply in milk produced by STG cows during the day glucagon 
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infusions began (4.7 vs 4.9 ± 0.1% for SC and STG, P  = 0.01) and were still slightly, 

but nonsignificantly, elevated 2 d later. 

Plasma Constituents 

Infusion of glucagon at 10 mg/d increased concentrations of plasma 

immunoreactive glucagon (IRG) from 154 to 705 ± 201 pg/ml (Figure 5A). Plasma 

IRG in the STG group declined to concentrations similar to SC cows upon stopping 

glucagon infusion. Concentrations of IRG were unchanged in the SC group until 

after ketosis induction at 42 DIM. During the wk 7 of the experiment, IRG increased 

i n  p l a s m a  o f  b o t h  S C  a n d  S T G ,  b u t  t h e  i n c r e a s e  w a s  g r e a t e r  i n  S T G  t h a n  i n  S C  ( P  <  

0.008). 

Concentrations of insulin were 215 ± 80 pg/ml during wk 2 postpartum 

(Figure 5B). Plasma insulin concentrations increased variably during the first 4 h of 

glucagon infusion, peaking 57 min after the start of glucagon at 672 ± 400 pg/ml 

(Figure 5B insert), and they returned to preinfusion concentrations the following 

day. Glucagon infusion did not affect average weekly plasma insulin concentrations 

(P = 0.53). Plasma insulin concentrations gradually increased in groups throughout 

the trial (P = 0.0001 for day). 

Glucose concentrations in plasma averaged only 47.0 ± 7.0 mg/dl during wk 

2 of lactation and were not different between groups (P = 0.51, Figure 6A). They 

decreased further in both groups during the first week of ketosis induction (39.5 ± 

7.1 mg/dl). In SC, the decline in glucose continued through the second week of 
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Figure 5. Weekly means of concentrations of immunoreactive glucagon and insulin 
in plasma of ketosis susceptible control cows (O) and ketosis susceptible cows 
treated with glucagon (•). A. Immunoreactive glucagon. Effects in model; 
glucagon (P = 0.0001), day (P = 0.0001) and glucagon x day {P = 0.0001). B. 
Immunoreactive insulin. Effects in model; glucagon (P = 0.83), day (P = 0.0001) 
and glucagon x day (P = 0.53). Significant differences at individual times are 
indicated by »* P ^ 0.01. B insert. Response of insulin to glucagon during the first 
4 h of infusion. 
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Figure 6. Weekly means of concentrations of glucose, BHBA, and NEFA in plasma 
of ketosis susceptible control cows (O) and ketosis susceptible cows treated with 
glucagon (•). A. Glucose. Effects in model: glucagon (P = 0.01), day (P = 0.0001) 
and glucagon x day (P = 0.0001). A insert. Effects of glucagon on plasma glucose 
during the first 4 h of infusion. B. BHBA. Effects in model: glucagon (P = 0.33), day 
(P = 0.0001) and glucagon x day (P = 0.0002). C. NEFA. Effects in model: 
glucagon (P = 0.88), day (P = 0.0001) and glucagon x day (P = 0.008). Significant 
differences at individual times are indicated by » P < 0.05 or ** P < 0.01. 
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ketosis induction and then gradually increased throughout the remainder of the trial. 

Glucagon abruptly increased glucose concentrations by 22.7 ± 12.5 mg/dl in the 

STG group within 3 h of the start of infusions, and this average time to peak 

concentrations was 92 ± 57 min. Glucose concentrations in plasma of STG 

averaged 52.5 ± 11.2 mg/dl during the first week of infusion and were maintained 

until the end of glucagon treatment. During the week following infusions, plasma 

glucose in the STG group tended to be greater than in the SC group (47.9 vs 43.1 

mg/dl, P = 0.10). 

Plasma urea nitrcgen concentrations were not different at any time between 

the SC and STG groups (data not shown). Initial concentrations averaged 13.9 ± 

3.7 mg/dl during wk 2 and decreased during the ketosis induction protocol to a 

minimum of 12.0 ± 3.5 mg/dl (P = 0.0001 for wk). After the ketosis Induction 

protocol ended, urea nitrogen concentrations increased in both groups. 

Concentrations of BHBA in plasma averaged 15.5 ± 8.5 mg/dl for all cows at 

the start of the experiment (Figure 6B). Ketosis induction increased BHBA 

concentrations until, during wk 4, concentrations averaged 36.3 and 32.4 for the SC 

and STG groups, respectively (P = 0.32). Thereafter, BHBA concentrations 

declined in both groups through the end of the experiment. The rate of decline was 

greater in STG than in SC (P = 0.0002 for treatment x day), and during wk 7, BHBA 

concentrations were 3.4 mg/dl less in STG than in SC (P =0.07). 

Nonesterified fatty acids in plasma of all cows averaged 1120 ± 505 peq/L 

during wk 2 of lactation for both groups of cows combined (Figure 6C). 
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Concentrations of plasma NEFA declined during wk 3 and then increased under the 

pressure of ketosis induction. There were no significant differences in NEFA 

concentrations between groups during glucagon treatment (P > 0.35). Plasma NEFA 

concentrations, however, declined more rapidly after glucagon treatment in STG 

than in SC {P = 0.008 for treatment x day), and they were lower in STG than in SC 

during the last 2 wk of the experiment (P < 0.05). 

Liver Composition 

Liver TAG content averaged 12.9% of the wet weight of the liver for both the 

S C  a n d  S T G  g r o u p s  a t  6  D I M  a n d  w a s  n o t  d i f f e r e n t  b e t w e e n  t h e  t w o  g r o u p s  { P  <  

0.90, Figure 7A). Concentrations of TAG did not change in either group until the 

start of the glucagon treatment. Glucagon caused an immediate and dramatic 

deaease in concentrations of liver TAG in STG (P = 0.0001 for glucagon x day). 

Two days after starting treatment, TAG concentrations decreased to 8.6% in livers 

of STG and remained unchanged in livers of SC. By the end of the treatment period 

at 35 DIM, liver TAG concentrations in STG were 4.7% compared with 15.5% in SC. 

Triacylglycerol concentrations remained unchanged after glucagon treatment until 

the end of the ketosis induction protocol, at which time TAG in livers of all cows 

declined. 
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Figure 7. Concentrations of triacylglycerol (TAG) and glycogen in livers of ketosis 
susceptible control cows (O) and ketosis susceptible cows treated with glucagon 
( • ) .  A .  T r i a c y l g l y c e r o l  ( T A G ) .  E f f e c t s  i n  m o d e l :  g l u c a g o n  ( P  =  0 . 5 1 ) ,  d a y  { P  =  
0.0001) and glucagon x day (P = 0.0001). B. Glycogen. Effects in model: glucagon 
(P = 0.46), day (P = 0.0001) and glucagon x day (P = 0.0001). C. Ratio of TAG to 
glycogen. Effects in model: glucagon (P = 0.66), day (P = 0.009) and glucagon x 
day (P = 0.25). Significant differences at individual times are indicated by * P ̂  
0.05 or P< 0.01. 
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Liver glycogen content averaged 1.0% of the wet weight of the liver at 6 DIM 

for all cows and glycogen concentrations were not different until the start of 

treatments (Figure 7B). Concentrations of glycogen were unchanged in livers of SC 

until after 39 DIM, at which time glycogen increased gradually through 49 DIM. 

Treatment with glucagon initially caused glycogen concentrations in livers of STG to 

decrease to 0.5% of the wet weight of the liver. Thereafter, glycogen increased in 

livers of STG throughout, and until 3 d after, glucagon treatment. At 38 DIM, 

glycogen concentrations were 3.7% of livers' wet weight in STG compared to 1.6% 

of livers in SC (P = 0.009). At 42 DIM, glycogen concentrations In livers of STG 

dropped to levels similar to those of SC and the groups were not different 

throughout the remainder of the experiment. 

Ratios of liver TAG to glycogen averaged 16.4 to 1 at 6 DIM (Figure 7C). 

The decrease in liver glycogen content induced by glucagon at 23 DIM increased 

the ratio to 47.3 to 1 in livers of STG and the ratio remained unchanged in SC livers. 

As glycogen increased and TAG decreased in STG livers after 23 DIM, the ratio 

declined until at 38 DIM livers of STG had a ratio of 2.0 to 1 compared with 11.4 to 1 

in SC livers (P < 0.02). By 49 DIM ratios of both groups averaged 2.9 to 1 and were 

not different (P < 0.31). 

Discussion 

This experiment was conducted jointly with an experiment to determine the 

effects of 14-d infusions of glucagon on normal, early-lactation Holstein cows (She 
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et ai., 1997). Because the two experiments were conducted concurrently as a 2 x 2 

factorial, the normal cows studied by She et al. (1998) can provide additional 

comparisons for evaluation of the current experiment. Comparisons to nonnal 

control cows (NC) and normal cows treated with glucagon (NTG) that follow were 

detennined by analysis of the combined data as a 2 x 2 factorial with condition 

(normal vs. susceptible cows) and treatment with or without glucagon as main 

effects and time of sampling as a subplot effect. 

Compared with the normal cows (She, 1997), the overall effects of the 

ketosis induction protocol on SC and STG during the first week of induction were 

not dissimilar to those observed by others using this technique (Drackley et al., 

1992; Mills et al., 1986a; Smith et al., 1997; Veenhuizen et al., 1991). 

Concentrations of NEFA and BHBA increased in plasma of the susceptible cows as 

ketosis induction progressed, and, at the onset of clinical ketosis, milk production 

and DMI intakes decreased sharply as in spontaneous on-farm ketosis. In the 

current study however, ketotic cows were not allowed to recover fully, but they were 

pressured to remain in a ketonemic state by continuation of the induction protocol. 

Because cows used for this study had severe fatty liver before the induction 

protocol, further increases in liver TAG were not observed during ketosis induction. 

The severity of the ketosis induction protocol, as used in the current study, allowed 

this model to be an extreme test for studying efficacy of a possible treatment for 

fatty liver and on-farm ketosis. 
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BW, BCS, and DMI 

The BCS of susceptible cx)ws (Figure 2A) were not increased by overfeeding 

during the last 30 d prepartum and were only 0.4 units greater at parturition than 

those of the normal cows used by She et al. (1997). Loss of body condition 

postpartum in susceptible cows was severe, and, by 14 DIM, BCS were similar to 

the normal cows, and they declined further to 2.3 at 34 DIM compared with 2.7 for 

the normal cows. Likewise, susceptible cows (Figure 2B) were 30 kg heavier than 

normal cows at 7 DIM, had similar BW at 14 DIM, but weighed 58 kg less at 42 DIM 

(P = 0.01). The losses of BW and BCS in the susceptible cows are consistent with 

those observed in earlier work with this ketosis induction protocol in which average 

BW losses were 3.1 kg/d (Mills et al., 1986a). 

Dry matter intakes of the susceptible cows (Figure 2C) were 5.2 kg/d less 

than those of the normal cows (She, 1997) during wk 2 postpartum. The 

experimental design originally stipulated that during ketosis induction DMI would be 

restricted to 80% of maximal DMI during wk 2, but, because DMI was already 

depressed In the susceptible cows compared with the normal cows, DMI was 

restricted to 80% of NRC recommendations for energy intake at quantities of milk 

produced during wk 2. Thus, during ketosis induction, DMI of the susceptible cows 

averaged only 56% of that of the normal cows. During the week after stopping feed 

restriction, DMI of the susceptible cows increased to 73% that of the normal cows. 

Glucagon decreased DMI transiently in both the NTG and STG groups, but DMI 

Increased rapidly for both groups as soon as glucagon ended. 
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Milk Production and Composition 

Despite low DM! in susceptible cows during the first 14 DIM, milk production 

of SC and STG during that time (Figure 4A) was not significantly lower than that of 

the nonmal cows {P - 0.07). The ketosis induction protocol, however, blunted the 

normal eariy-lactation increase in milk production of the susceptible cows to only 

71 % that of the normal cows {P = 0.0001). After ketosis induction ended, milk 

production increased rapidly in the susceptible cows (Figure 4A) and was not 

different from the normal cows (She, 1997) by wk 10 of lactation. Similariy to DMI, 

milk production also decreased transiently for both the STG and NTG groups during 

wk 2 of glucagon treatment compared with controls , but they recovered rapidly after 

glucagon ended. During the month after the experiment, milk production in STG 

and NTG was numerically higher by 1.8 kg/d than in SC and NC (P = 0.51). 

Milk fat percentages (Figure 4B) were higher by 1.1% in milk from 

susceptible cows by compared with normal cows (She, 1997) throughout the 

experiment (P = 0.0001), which would be consistent with decreased milk production 

and increased concentrations of NEFA in plasma of the susceptible cows. The 

amount of milk fat produced each day, however, was not different for normal and 

susceptible cows (P = 0.12). 

Milk protein concentrations (Figure 4C) were decreased similariy in both the 

susceptible and normal cows (P = 0.96 for condition x treatment). Daily production 

of milk protein was, on average, 0.3 kg less for susceptible cows than for normal 

cows (P =0.0001). Glucagon decreased milk protein production in both the NTG 
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and STG groups by 0.3 kg/d compared with controls (P = 0.0001). Decreases in 

milk protein secretion may be attributable to a glucagon-mediated increase in 

uptake and deamination of amino acids as precursors for hepatic gluconeogenesis 

(Brockman, 1978; Flakoll et al, 1994). Assuming that two mols of amino acids are 

required to synthesize one mol of glucose, the diversion of milk protein to glucose 

via hepatic gluconeogenesis would have contributed no more than 245 g of glucose 

per day. It is doubtful that this glucose alone would make a significant contribution 

to the 20 mg/dl increase observed in blood glucose concentrations. When glucose 

was infused intravenously at 342 or 737 g/d into lactating dairy cows, blood glucose 

concentrations failed to increase (Amaral et al., 1990). 

Milk lactose concentrations and yields (data not shown) averaged 0.15% and 

0.64 kg/d less in the susceptible cows than in the normal cows (P < 0.009). Lactose 

concentrations in milk increased transiently for STG and NTG groups during the first 

2 d of glucagon treatment (P = 0.002); yields of lactose, however, were not affected 

at any time by glucagon in either normal or susceptible cows. 

Plasma Constituents 

Immunoreactive glucagon concentrations (Figure 5A) in plasma of 

susceptible cows were numerically lower than in plasma of normal cows (145 vs. 

274 pg/ml, P = 0.19). Increases in IRQ during glucagon treatment were similar 

between STG and NTG groups (551 vs. 520 pg/ml, P = 0.79); however, both were 

significantly increased above their respective controls (P = 0.0001 for treatment). 



Insulin concentrations in plasma (Figure 5B) were initially low in the 

susceptible cows compared with the normal cows (215 vs 288 pg/ml, P = 0.006), 

and the susceptible cows remained hypoinsulinemic relative to the normal cows 

(She, 1997) throughout the experiment (220 vs 448 pg/ml, P = 0.0001). Low 

concentrations of plasma insulin are typical of cows during ketosis induction 

(Veenhuizen et al., 1991). Unlike in the susceptible cows, glucagon increased 

concentrations of insulin in the normal cows by 190 ± 73 pg/ml, but the degree of 

response was variable and not all normal cows responded (She, 1997). In previous 

studies (de Boer et al., 1986; Hippen et al., 1997), increases in insulin 

concentrations were consistent with increases in glucose concentrations. The lack 

of response observed in the susceptible cows in the current experiment may be 

attributable to glucose concentrations being below a minimum threshold for 

stimulation of insulin secretion. During glucagon treatment, the average glucose 

concentration in plasma from STG was equal to the basal concentrations of glucose 

in plasma of the cows used by de Boer (1986) and Hippen (1997). Furthermore, an 

immediate increase of insulin concentrations was observed in the STG group during 

the first 4 h of glucagon infusion when glucose concentrations increased by more 

than 22 mg/dl over baseline. Overall, the effects of glucagon on insulin secretion 

are similar to those of Holtenius et al. (1990) who observed heterogeneous 

responses of insulin to glucagon, particularly among cows overfed prepartum or with 

displaced abomasums. 
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Even though plasma glucose concentrations (Figure 6A) in our susceptible 

cows were 12.7 mg/dl less than in normal cows (She, 1997) the week before 

glucagon treatment began, glucose in plasma from this STG group increased to 

concentrations similar to those in plasma from NC throughout glucagon treatment 

(52.5 vs. 52.7 mg/dl) and the magnitude of the increases over the 2 wk treatment 

period were greater in STG than in NTG (14.6 vs 10.2 mg/dl). The time to peak 

heights, area under the curves, and peak concentrations of plasma glucose during 

the first 4 h of glucagon infusion were not different for STG versus NTG; however, 

the responses were delayed and decreased compared with earlier work with 

glucagon infusions in early-lactation cows [44.4 vs 133.3 mg/dlxh"' for area under 

the curves, (Hippen et al., 1997)]. These effects of glucagon on plasma glucose 

suggest that low concentrations of liver glycogen may limit immediate hepatic 

glucose production by glycogenolysis, but they also suggest that gluconeogenic 

capacity is not diminished in fatty livers of dairy cows. These results seem to differ 

from those observed in vitro; i.e., gluconeogenic capacity of bovine liver with 

propionate, lactate, and amino acids as substrates is diminished at the onset of 

ketosis (Mills et al., 1986b; Veenhuizen et al., 1991). The in vitro results; however, 

are a better measure of basal gluconeogenesis than gluconeogenic capacity 

because hormonal stimulation was not present. Also, increases in plasma glucose 

reported in the current study are weekly averages and do not reflect decreased 

glucose concentrations that occurred with the onset of clinical ketosis, even in cows 

treated with glucagon. Mills et al. (1986b) observed no con-elation between In vitro 
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glucx)neogenic capacity and hepatic TAG concentrations. Therefore, ketogenesis 

may have a greater inhibitory effect on hepatic gluconeogenesis than does hepatic 

lipidosis. 

Plasma urea nitrogen concentrations were 15 mg/dl lower in the susceptible 

cows compared with those in the normal cows throughout the experiment (data not 

shown, P = 0.0001). This difference should be expected because protein intakes 

were decreased by over 40% in susceptible cows compared with normal cows. 

Similar to observations in short-term glucagon trials (Hippen et al., 1997), glucagon 

did not affect PUN concentrations in either category of cows. If all the additional 

glucose in plasma was derived from amino acids and clearance rates of glucose 

and urea were similar, the maximal contribution to PUN from ureagenesis and 

subsequent gluconeogenesis would have been 4.7 mg/dl, which is slightly greater 

than the observed standard deviation of PUN. In support of increased utilization of 

amino acids for glucose synthesis, glucagon is a powerful stimulant of hepatic 

ureagenesis in bovine hepatocytes (Zhu et al., 1997). 

Plasma BHBA concentrations (Figure 6A) were 3- to 4-fold greater in 

susceptible cows than in normal cows (She, 1997) from wk 1 through wk 6 of 

lactation. By wk 7, BHBA in STG had decreased to concentrations similar to that in 

the normal cows (4.8 mg/dl, P > 0.48) whereas those in SC remained somewhat 

elevated (8.2 mg/dl P = 0.03). Plasma NEFA concentrations in the susceptible 

cows (Figure 6B) were initially two-fold greater than those in the normal cows. 

Similarly to NEFA in susceptible cows, NEFA concentrations in normal cows 
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declined after wk 2 of lactation. In normal cows, however, NEFA continued to 

decline throughout the trial. During wk 7, even though NEFA had declined greatly 

in the susceptible cows, concentrations were still greater than those in the normal 

cows (412 vs. 184 [Jeq/L, P < 0.05). Neither NEFA or BHBA concentrations in 

plasma of normal cows were affected by glucagon. Our experiment did not show 

any indications of an enhancement of lipolysis from adipose tissue or of a resultant 

ketogenesis in either the NTG or STG groups when glucagon was administered at 

10 mg/d, even though insulin concentrations were unaffected by glucagon in STG. 

Liver Composition 

At 6 DIM, TAG concentrations were 4-fold greater in livers of susceptible 

cows (Figure 7A) than in livers of normal cows (She, 1997). Similarly to results of 

earlier trials using this ketosis induction protocol (Drackley etal., 1992; Mills et al., 

1986a; Smith et al., 1997; Veenhuizen et al., 1991), the TAG content of livers in the 

SC group remained elevated or even increased for individual cows. In normal cows 

and STG, TAG content of livers declined throughout the trial. Because of the 

decline of TAG in livers of NC, effects of glucagon were not obvious in livers of 

NTG. At the end of glucagon treatment, TAG in livers of STG, however, tended to 

be only slightly higher than in livers of the normal cows (5.7 vs 1.1% wet wt, P > 

0.07) where as TAG remained significantly elevated in livers of SC (14.4% wet wt). 

In our opinion, these TAG data are the most important findings in the experiment. 
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Both glucagon and glucose has been demonstrated to be capable of 

preventing the accumulation of TAG in livers in other studies. Administration of 

glucagon at 33 pg/100 g BW/d (approx. 10 times that used in our study) to rats 

receiving total parenteral nutrition prevented the development of hepatic steatosis 

(5.7 vs 20.3% of liver wet wt for glucagon treated vs. controls) that is commonly 

observed under those conditions (Shujun et al., 1988). It should be noted that 

glucose concentrations were not allowed to increase in the parenteral nutrition 

experiment. Similarly, duodenal infusion of glucose at 484 g/d during ketosis 

induction prevented incr3ases in liver TAG content in dairy cows (Veenhuizen et a!., 

1991). The glucagon-induced removal of TAG from liver reported here, however, is 

the first reported occurrence known to us for any species. 

Mechanisms for TAG Removal 

Glucagon and cAMP generally are considered to be inhibitory towards 

lipoprotein synthesis and secretion which has been verified in rat hepatocytes 

(Bjomsson et al. 1992), but discussions of the effects of glucagon on lipoprotein 

assembly and secretion in ruminant livers are scarce. It is known that insulin 

inhibits apoB assembly through inhibitory effects on transcription of microsomal 

triglyceride transfer protein and that fatty acids stimulate transcription of the protein, 

enabling apoB assembly and VLDL secretion (Gruffatt et al., 1996). It also is 

unlikely that TAG from NEFA are incorporated directly in VLDL, but they instead are 

stored temporarily in a cytosolic pool and must be hydrolyzed by a hepatic lipase for 



108 

transfer to microsomes and subsequent incorporation into VLDL (Gruffatt et al., 

1996). Therefore, it is not unreasonable to assume that glucagon may stimulate 

transcription of microsomal triglyceride transfer protein either in a counter-

regulatory fashion to insulin or via hydrolysis of hepatic TAG and increasing cellular 

concentrations of NEFA. Two other explanations for decreases of TAG could be 

either an increased availability of amino acids for lipoprotein synthesis caused by 

glucagon-induced partitioning of plasma amino acids to the liver or an increase in 

rate of oxidation of fatty acids hydrolyzed from cytosolic TAG. 

At 6 DIM, glycogen concentrations in livers of the normal cows (She, 1997) 

were more than two-fold (2.6 ±1.1% wet wt) those in livers of susceptible cows 

(Figure 7B). The effects of glucagon in livers of the NTG group paralleled those 

reported here for the STG group. At 38 DIM, glycogen content of livers in STG was 

greater than in NC (3.6 vs 2.5% wet wt, P = 0.02), and glycogen in livers of NTG 

was greater still (4.0% wet wt). This increase in liver glycogen content could be 

attributable to increased concentrations of glucose which serves as substrate for 

glycogen synthesis in hepatocytes. At 49 DIM, 14 d after glucagon treatment, 

glycogen content in livers of all four groups of cows was not different. Pervious 

research using this ketosis induction protocol has shown that cows having liver TAG 

to glycogen ratios of less than 2 to 1 are resistant to ketosis (Drackley et al., 1992; 

Smith et al., 1997; Veenhuizen et al., 1991). This proved to be the case in the 

current experiment also; no STG became ketotic when the ratio of TAG to glycogen 
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(Figure 4C) decreased to 2 to 1 after 35 DIM. And, the incidence of ketosis was 

greatest in STG during 21 to 27 DIM when the ratio was at its peak. 

Antiketogenic Activities 

Two aberrations in fatty acid oxidation and ketogenesis have been postulated 

as possible contributory factors for lactation ketosis. The first is an insufficiency of 

carnitine palmitoyltransferase. Fatty acid oxidation and ketogenesis are regulated 

by entry of long-chain fatty acids into mitochondria (Aiello et al., 1984), and 

carnitine palmitoyltransferase is responsible for this transfer. The activity of bovine 

carnitine palmitoyltransferase is sensitive to inhibition by concentrations of malonyl-

CoA which, in turn, is increased by the activity of acetyl-CoA carboxylase and fatty 

acid synthetase, which as lipogenic enzymes are both induced by insulin and 

inhibited by glucagon (Grummer, 1991). 

Second, oxaloacetate is necessary for entry of acetyl-CoA into the Krebs 

cycle and its subsequent oxidation to CO2. Sufficiency of oxaloacetate is one factor 

regulating the extent of oxidation of acetyl-CoA to CO2 or formation of ketone 

bodies (Baird, 1982). Mills (1986b) hypothesized that the defect in hepatic 

metabolism affecting gluconeogenic and oxidative functions during ketosis were at 

the level of oxaloacetate because oxidation of fatty acids to BHBA was decreased. 

Oxaloacetate is also an intermediate in glucose synthesis from lactate, 

pyruvate, propionate, and glucogenic amino acids. Therefore, increases in urea 

cycle activity exhibited by glucagon (Zhu, 1997) should serve to increase 
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concentrations of oxaloacetate, and, more importantly, oxaloacetate is formed 

during the conversion of pyruvate to phosphoenolpyruvate by pyruvate carboxylase. 

The activity of pyruvate carboxylase also is stimulated by fatty acyl-CoA and acetyl-

CoA, both of which are increased after hydrolysis of free fatty acids from hepatic 

TAG by the action of a glucagon-stimulated lipase (Williamson et al., 1971). This 

activity is evidenced by the fact that addition of oleate to perfused rat livers 

(Williamson et al., 1971) and to sheep hepatocytes (Chow and Jesse, 1992) 

increased gluconeogenesis from pyruvate, lactate, and alanine but not from 

dihydroxyacetone, which enters the gluconeogenic pathway beyond the level of 

phosphoenolpyruvate. Additionally, glucagon increases conversion of pyruvate to 

phosphoenolpyruvate via pyruvate carboxylase activity and thus increases 

concentrations of oxaloacetate both in rats (Williamson et al., 1971) and in sheep 

(Brockman and Manns, 1973). 

In 1971, Williamson stated, "Gluconeogenesis by glucagon is mediated by 

enhanced oxidation of fatty acids liberated from endogenous triacyiglycerol through 

the activation effect of cyclic AMP on a hepatic lipase." Perhaps his explanation for 

increases in hepatic gluconeogenesis also help to explain the ability of glucagon to 

promote clearance of TAG from fatty livers of dairy cows. 

Conclusion 

Taken together, this work along with that of She (1997) represents the first 

known attempt to examine the use of glucagon as a treatment for metabolic 
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disorders in livestock, specifically fatty livers and ketosis in dairy cows. Glucagon 

administered continuously for 14 d promoted clearance of TAG from severely fatty 

livers in early-lactation cows and simultaneously increased blood glucose 

concentrations. Furthermore, rates of lipolysis from adipose tissue and ketogenesis 

within the liver seem to be decreased over time by glucagon. Therefore, glucagon 

has potential for not only alleviating the hypoglycemic condition of dairy cows that 

have lactation ketosis but also for treatment or prevention of fatty liver, which is the 

gateway disorder for lactation ketosis and several other postpartal metabolic 

aberrations. 
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GENERAL DISCUSSION 

Cows used in this study displayed the highest degree of fatty infiltration of 

the liver observed by researchers using the feed restriction and 1,3-butanediol 

ketosis induction protocol. In preparation for this experiment, cows were offered 

excess energy in the form of carbohydrates during the 30 d immediately preceding 

parturition. Overfeeding during the period immediately preceding parturition 

increased susceptibility to fatty liver and ketosis more than did overfeeding cows in 

late lactation, as had been done in the previous study (Smith et al., 1997). 

Furthermore, this study represents the first time the ketosis induction protocol was 

continued after the onset of clinical ketosis and thus provided an extreme test of the 

efficacy of glucagon as an antiketogenic agent. All cows used in this study were 

ketonemic from the onset of lactation, and the ketosis induction protocol served to 

maintain elevated concentrations of liver TAG and ketonemia in the control cows. 

Cows treated with glucagon, similarly to control cows, were kept in a state of 

ketonemia by the induction protocol, but concentrations of TAG in livers of the 

glucagon-treated cows were decreased dramatically even during the induction 

protocol. The return to normalcy was accelerated in glucagon treated cows after 

stopping the induction protocol. The beneficial effects of glucagon during recovery 

may be attributed largely to the decrease in the severity of fatty liver. Postulated 

mechanisms of beneficial effects of glucagon are illustrated in Figure 1 and 

discussed under the following topic. 
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Figure 1. Proposed mechanisms of glucagon effects on hepatic lipid and glucose 
metabolism. Pathways increased by glucagon are indicated with bold arrows. 
Allosteric or indirect activation of enzymes by metabolites are indicated with narrow 
arrows and + or -. Postulated effects not documented are indicated with ?. 
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Triacyiglycerol Clearance 

Glucagon, in conjunction with insulin therapy, has been postulated to speed 

liver regeneration and has been used in animal models to improve outcome of liver 

failure (Johnson and Zaioga, 1996). In human medicine, elevated concentrations of 

insulin relative to glucagon during parenteral nutrition lead to excessive 

carbohydrate storage, decreased rates of lipid removal, and eventually result in 

hepatic steatosis. Glucagon has been found to ameliorate the development of 

steatosis in rats during parenteral nutrition (Johnson and Zaioga, 1996); however, 

Its use for the prevention of fatty liver has not been explored in clinical situations. 

Glucagon has not been observed to increase lipoprotein synthesis and VLDL 

export in animal models tested thus far. Species differences in regulation of VLDL 

export from liver, however, are known to exist. In fat loaded bovine hepatocytes, 

insulin decreased TAG export by 49% (Cadomiga-Valiino et al., 1997). Therefore, it 

would not be unreasonable to suspect that glucagon would increase lipoprotein 

synthesis and VLDL export as part of its counterregulatory effects toward insulin. 

Hepatic lipolytic activity of glucagon also may have enhanced VLDL export in the 

cows in this experiment. Hydrolysis of TAG would increase cytosolic NEFA 

concentrations, which in turn are known to stimulate synthesis of MTP and apoB-

100, thereby increasing VLDL secretion. Determination of the effects of glucagon 

on lipoprotein metabolism in ruminants remains to be elucidated. The antilipogenic 

effects of glucagon on liver in dairy cows may be easier to explain through a 
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coordinate shift in liver metabolism towards increased lipolysis, fatty acid oxidation, 

and gluconeogenesis. 

Gluconeogenic and Antiketogenic Effects 

The cows in our study exhibited a decreased ability to secrete insulin in 

response to stimulation by both glucose and glucagon. Insulin secretion in humans 

is decreased when glucose concentrations in plasma are less than about 83 mg/dl 

(Cryer, 1996). The threshold concentrations for plasma glucose to induce 

stimulation of insulin secretion in dairy cows is unknown, but it is probably greater 

than the 52 mg/dl observed in our study. Diminished insulin responses to glucose 

and glucagon also were observed in other studies when glucagon was injected into 

ketonemic cows (Holtenius, 1993). 

Cows used by Holtenius (1993) had a diminished glucose response to 

glucagon also, but he only measured glucose concentrations for 40 min after 

injection of 2 mg of glucagon. Peak glucose concentrations in what he referred to 

as Type I ketotic were about 55 mg/dl. Holtenius interpreted this diminished 

glucose response to glucagon as a lack of gluconeogenic capacity. On the basis of 

our observations, what he observed was more likely a reflection of low 

concentrations of glycogen in the livers of the ketotic cows. If glucagon treatment 

had been continued, the increase in glucose concentrations probably would have 

been sustained. A similar response was observed to glucagon injections in humans 

with Type II diabetes (Clore et al., 1992). Glucagon injections elicited a stronger 
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glucose response in the diabetic subjects than in nondiabetic subjects in spite of low 

hepatic glycogen stores. 

In Holtenius' research, ketotic cows that responded to glucagon injection with 

increases of both glucose and insulin (160 mg/dl and 6,000 pg/ml, respectively) 

were referred to as Type (I because of similarities to Type II diabetes in humans. 

Therefore, Holtenius concluded that Type II ketosis is a form of insulin resistance 

that is associated with fatty liver; however, the concentrations of liver TAG, if 

measured, were not reported. Our data would suggest that Type II ketosis is indeed 

secondary to other metabolic disturbances but is not associated with fatty liver. In 

fact, Type II ketonemic cows in the study reported by Holtenius had initial plasma 

glucose concentrations of 59 mg/dl which is similar to that observed in the normal 

cows studied by She (1997), and the responses could be considered typical of a 

healthy, high-producing cow in early lactation. 

Based upon our research, dairy cows with fatty liver evidently have 

gluconeogenic capacity equal to that of normal dairy cows in spite of lower basal 

rates of gluconeogenesis. Cows with fatty liver, however, do not have the glycogen 

reserves necessary to offset the sudden and severe hypoglycemia associated with 

clinical ketosis. Glucagon was able to restore liver glycogen concentrations 

simultaneously with clearance of triacylglycerols from the liver, thereby, decreasing 

the ratio of triacylglycerols to glycogen. A ratio of liver triacylglycerol to glycogen 

greater than 2 to 1 is a primary factor in the development of spontaneous lactation 

ketosis (Smith et al., 1997). The shift in liver composition induced by glucagon 



120 

along with the increase blood glucose concentrations in dairy cows allowed 

resistance to ketosis and increased rates of recovery from ketosis. 

The increases in hepatic glycogen concentrations not only continued 

throughout glucagon treatment but also continued for 2 d beyond the end of 

glucagon treatment. Increases in liver glycogen concentrations probably are 

attributable to increases in hepatic glucose concentrations. The presence of 

glucose in hepatocytes is a strong inhibitor of glycogen phosphorylase (Salway, 

1994). Additionally, the inhibitory effects on glycogen phosphorylase by glucose 

are enhanced by the presence of NEFA and amino acids in hepatocytes from rats 

(Morand et al., 1992). The same study showed that glycogen synthase was 

stimulated by NEFA by the presence of glucose, and that amino acids had 

stimulatory effects on glycogen synthase independent of glucose. Increases in 

concentrations of glucose-6-phosphate as a result of increased hepatic glucose 

concentrations have a stimulatory effect on glycogen synthase also. Therefore, the 

gluconeogenic and lipolytic activity of glucagon along with enhancement of hepatic 

amino acid uptake would drive the synthesis of glycogen as glucose concentrations 

increased and Ca"^ stimulation of phosphorylase waned. Upon stopping glucagon 

treatment, however, the inhibitory effects of glucose and insulin on phosphorylase 

should have declined also. Because alterations in enzyme activity by 

phosphorylation of proteins generally have comparatively rapid effects on enzyme 

activity, it seems as though rates of synthesis of the enzymes regulating glycogen 

metabolism were altered by glucagon treatment also. 
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The net effects of glucagon observed on metabolism in this study were most 

likely driven by both lipolytic and gluconeogenic stimulation (Figure 1). Hydrolysis 

of cytosolic TAG would increase formation of fatty acyl-CoA and acetyl-CoA, 

promoting the activity of PC. Associated with increased activity of PC would be 

increased concentrations of OAA permitting greater rates of oxidation of fatty acids, 

possibly decreasing partial oxidation of fatty acids to ketone bodies. Concentrations 

of OAA also would have been increased by increases in hepatic extraction of amino 

acids from blood and activity of the urea cycle as amino acids are converted to 

gluconeogenic precursors. This diversion of amino acids from milk protein to 

hepatic gluconeogenesis would, therefore, not only increase blood glucose by 

providing gluconeogenic substrate but also increase concentrations of OAA and 

provide greater entry of acetyl-CoA into the citric acid cycle. Simultaneously, the 

activity of glucagon would decrease concentrations of malonyl-CoA, thereby 

removing inhibition of carnitine palmitoyltransferase and increasing entry of fatty 

acids into the mitochondria. Thus, glucagon is able to address the two predominate 

theories of the etiology of lactation ketosis, OAA insufficiency and decreased 

activity of CPTI. 

Glucagon and Insulin Interactions 

One of the concerns raised at the conception of this experiment was that the 

lipolytic and ketogenic effects ascribed to glucagon would worsen the effects of the 

ketosis induction protocol by increasing lipolysis in adipose tissue of the susceptible 
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cows, leading to further increases in plasma NEFA and ketone body concentrations. 

It was postulated that increases in plasma insulin concentrations may be sufficient 

to counteract these potentially harmful lipolytic and ketogenic effects of glucagon. 

The insensitlvity of B-cells to glucose and glucagon observed in STG cows, 

however, prevented the anticipated giucagon-induced increase in plasma insulin 

concentrations. Therefore, the dosage of glucagon used in this experiment may 

have been a critical factor in preventing increases in lipolysis and ketogenesis. The 

dosage chosen was only 1.7 |jg/100 g of BW/d, which is far below concentrations 

that have had ketogenic and lipolytic activities ascribed to glucagon for other 

species. It is also possible that insulin resistance of adipose tissue in early-

lactation cows was sufficient that lipolytic rates could not be further increased by 

any agent. 

Related to the insensitivity of S-cells and hypoinsulinemia observed in cows 

in our experiment and those of other researchers is the occurrence of 

hyperglucagonemia. Cows in our study did not have elevated concentrations of 

glucagon prior to glucagon treatment, but because insulin concentrations were low, 

the molar ratio of insulin to glucagon was such that the cows could be considered 

hyperglucagonemic. Furthermore, glucagon concentrations normally are elevated 

in portal compared with peripheral blood because the liver is primarily responsible 

for extraction of glucagon from blood (Ali and Jois, 1997). Rates of glucagon 

extraction are diminished, however, by necrotic or severely fatty livers. Thus, 

decreased extraction of glucagon by liver in ketotic cows would allow greater 
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concentrations of circulating glucagon, which would create an extrahepatic 

hyperglucagonemia. Additionally, it was postulated by deBoer (1986) that an 

impairment of glucagon uptake by the liver may be partly responsible for the onset 

of lactation ketosis. If deBoer's hypothesis is correct, the supplementation of 

endogenous glucagon by infusions of exogenous glucagon in our study may simply 

have increased glucagon uptake by the liver to a more normal rate. 

Finally, if secretion of insulin by pancreatic R-cells had increased in response 

to glucagon treatment, the outcome of glucagon treatment may not have been 

positive. Increases of insulin concentrations in plasma would have limited 

availability of amino acids for hepatic metabolism, thus decreasing ureagenesis, 

gluconeogenesis, regeneration of hepatic proteins, and possibly lipoprotein 

synthesis. Insulin itself has been shown to inhibit transcription of MTP, which is 

vital for apoB-100 synthesis. Insulin also would serve to limit CPTI activity via 

increasing acetyl-CoA conversion to malonyl-CoA. The increase in hepatic 

lipogenesis also would have increased cytosolic TAG formation. It seems that 

decreased responsiveness of ft-cells for insulin secretion was not so much a 

metabolic aberration in the ketotic cow but instead an appropriate response to fatty 

liver and declining carbohydrate status. 

Summary 

This study has shown that treatment of early-lactation dairy cows with 

glucagon for 14 d was not only able to restore blood glucose concentrations and 
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alleviate the symptoms of ketosis, but glucagon also was able to remove 

accumulated TAG from the livers of cows with severely fatty livers. The discovery of 

the ability of glucagon to treat fatty liver in dairy cows is a major breakthrough in the 

study of fatty-liver syndrome. Glucagon could not only provide therapy for a here

to-fore untreatable condition but also may provide a means with which to prevent 

the development of the disorder in periparturient dairy cows and other livestock 

predisposed to fatty liver. Limited evidence of an antilipogenic effect of glucagon in 

liver is present in the literature, but, until this time, the possibilities for its use in 

commercial livestock production has not been examined. The use of glucagon as a 

metabolic conditioner for high stress periods in dairy cows and other livestock 

species is a prospect that deserves further investigation. 
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APPENDIX. LIVER TRIACYLGLYCEROL MEASURES 

Questions have been raised whether a 5 g sample of liver obtained during a 

single biopsy is representative of the composition of the liver as a whole. In an 

effort to address this question, four livers with varying degrees of fatty infiltration 

were obtained from Holstein cows after slaughter at a meat processor and two livers 

were collected from Holstein cows from the Iowa State University (ISU) dairy farm 

that had died of peripartal complications indicating involvement of fatty livers. Four 

samples of « 5 g each were collected via biopsy cannula from widely dispersed sites 

within the livers collected from the meat processor. Similar samples were collected 

from 10 different sites within the livers of the cows from the ISU dairy farm. 

The livers had average TAG concentrations that ranged from 1.1 to 12.5% of 

the wet weight of the livers. Within the liver having the lowest average TAG 

concentration, TAG ranged from 0.6 to 1.7% wet weight and the coefficient of 

variation was 53%. At the other extreme, the coefficient of variation in the liver with 

the greatest TAG content, 12.5% wet weight, was 34.9% wet weight. This liver had 

large regions of necrotic tissue that, interestingly, did not have the characteristic 

yellow tint of fatty infiltration and had TAG concentrations of approximately 5% 

compared with approximately 20% in the nonnecrotic tissue. The liver having the 

second highest TAG content, 10.8% wet weight, had a coefficient of variation of 

only 4.8% across locations. The average coefficient of variation for the 6 livers was 

28.9% and was not correlated to TAG concentrations (R^ = 0.21, P = 0.36). By 
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observation, if livers are not necrotic, the relative accuracy of determination of TAG 

content improves as TAG concentration of the liver Increases. Analysis of the data 

by ANOVA indicated that location of biopsy did not have a significant effect upon 

the TAG concentration measured (P = Q.12). 

It has also been suggested that quantification of total lipid (TL) provides a 

reasonable estimate of the TAG concentrations In liver. This assumption Is based 

upon the fact that the difference between TL and TAG consists primarily of 

structural lipids that are fairly constant within a range of TL concentrations. During 

the course of the ketosis experiment, 464 liver samples were analyzed for TL and 

TAG concentrations. Linear regressions of TAG concentrations as a function of TL 

were made to determine appropriate prediction equations for estimation of TAG 

concentrations. Over the entire range of TL (3 to 35% wet weight) and TAG, the 

for linear regression was 0.99 and was described by the equation TAG = -2.83 + 

(1.04 X TL) (Figure A1A). It became obvious, however, that this does not 

adequately describe the relationship at TL concentrations of less than 5% wet 

weight (Figure A1B). The linear equation best describing the relationship of TAG to 

TL In that range was TAG = -0.70 + (0.44 x TL) and the was only 0.55 for 181 

observations. For the above reasons, a nonlinear curve fit was employed across 

the entire data set to describe the relationship (Figure A1C). The result of the 

nonlinear fitting derived the equation TAG = -2.88 + (1.05 x TL) + (-3.91 E-4 x TL^) 

and resulted in an R^ of 0.98. 
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Figure A1. Relationships of liver triacylglycerol (TAG) to total lipid (TL) in liver 
samples collected during the course of the described experiment. A. Linear 
regression of TAG as a function of TL in all samples (x). N = 464. = 0.99. 
TAG = -2.83 + (1.04 x TL) (solid line). B. Linear regression TAG as a function of 
TL in samples with less than 5% TL (x). N = 181. R^ = 0.55. TAG = -0.70 + (0.44 
X TL) (dotted line). Solid line is regression from A. C. Nonlinear regression TAG 
as a function of TL in all samples (x, log scale for TL). N = 464. R^ = 0.98. TAG 
= -2.88 + (1.05 X TL) + (3.91 E-4 x TL^) (solid line). 
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Above TL cxDncentrations of 5% wet weight of livers, the prediction equations 

provide a good estimate of TAG concentration. The quantification of TAG involves, 

first the separation of TL and then subsequent enzymatic or chemical quantification. 

The use of equations for estimation of TAG content will decrease greatly the amount 

of time spent on analysis and provide accurate and timely measure of TAG for 

concentrations most critical during the development of fatty liver. 
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