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ABSTRACT 

Calibration optimization in near infrared spectroscopy (NIRS) is a complex process, 

requiring long-term database maintenance and model update by including new variations. A 

sample selection procedure was introduced to identify the number and choice of samples 

required in a NIRS calibration model. The example case is the determinations of moisture, 

protein and oil contents in whole soybeans. The original large database is composed of 

soybean NIR transmittance spectra (n>8,000) across crop years (2001-2011), varieties and 

locations. Uniform random, Kennard-Stone and D-optimal algorithms were compared for 

calibration sample selection. The optimal models based on calibration set selected by 

uniform random method outperformed the benchmark calibrations using the original dataset 

with less than 7% of the original dataset for moisture, and less than 30% for protein and oil 

contents. This procedure was applied to a network of four instruments from two vendors 

(Foss Infratecs and Bruins OmegAnalyzerGs) to examine the effect of calibration set on 

calibration transfer. Calibration models of protein and oil contents based on the smallest and 

optimal number of representative datasets (about 10% and 35% for protein and oil, 

respectively) were transferred across instrument units of the same brand. Results showed the 

effectiveness of post-regression slope and bias correction on standardizing predicted values 

by models built on calibration subsets. Calibrations (n ≈ 120) built on the selected master 

instruments were used to evaluate their robustness against temperature fluctuation as an 

external perturbation. Different temperature compensation approaches were applied to 

incorporate information of five well-selected perturbed samples. The extended global model 

and difference augmentation method successfully removed the temperature effect and 
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reduced SEPs on both Bruins (SEPs=0.60% and 0.47% for protein and oil, respectively) and 

Infratec (SEPs=0.57% and 0.46%, respectively) instruments. Improvements on the 

predictions of regular samples from crop year 2011 have also been examined with SEPs of 

0.51% and 0.34% for protein and oil, respectively on Bruins instrument, and SEPs of 0.52% 

and 0.34%, respectively on Infratec instrument. Only one or two more PCs were used in the 

compensated models.  
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CHAPTER 1.  GENERAL INTRODUCTION 

1.1 Introduction 

In the quality measurement system, the application of near infrared spectroscopy 

(NIRS) has provided rapid, non-destructive and accurate control in the field of agriculture, 

pharmaceuticals and food industry. In grain industry, NIRS has a long history in postharvest 

quality control and real-time quality monitoring during handling and processing (Shenk and 

Westerhaus 1985; Williams and Norris 1987; Singh, Paliwal et al. 2006). NIRS has been 

successfully applied in both quantitative analyses as chemical composition determinations 

and qualitative analyses (discriminant analysis). 

NIR has been widely applied in quality control (QC) within grain industry for a very 

long time. It enables qualitative and quantitative assessment of different types of grains via 

spectral information and multivariate calibration models. Those models were usually used to 

determine grain constituents such as moisture, protein and oil. NIR has been approved and 

used in the Official Inspection System for wheat protein and soybean protein and oil 

determinations since 1994 (Pierce, Funk et al. 1996). This technique provides fast prediction 

values of major contents in grain products and reduces time and cost at all stages of 

production, storage and transport (Osborne 2000). It has been proved that NIR is able to 

monitor changes occurring in the grain seed during storage according to the spectral 

difference (Cassells, Reuss et al. 2007). NIR provides a more cost effective and rapid way to 

measure the quality conditions to adjust the storage management in advance to preserve grain 

quality and market value.  
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The application of NIRS is based on a calibration model, which built a mathematical 

relationship between the absorption spectra and the factor of interest. The process of 

searching for the best chemometric approaches (linear or non-linear) to interpret the spectra 

and improve the predictive ability on future samples is called calibration optimization. The 

motivation of chemometrics is to analyze data to provide chemical knowledge of product 

contents. Calibration model requires spectra measurements of samples from a population that 

includes all variances in future prediction. A population is the set of all measurements that 

covers the characteristics of samples. In agricultural products, the variances could come from 

the differences of component concentrations, variety, locations, crop years and other external 

perturbations. Variances from sources rather than the factor of interest could disturb the 

calibration process and reduce the prediction accuracy. The goal of calibration optimization 

is to eliminate these effects to a minimum. For agricultural products with complex 

compositions, it is difficult or sometimes impossible to obtain data points that match with 

experimental design. On the other hand, a multivariate calibration model is intended to be 

used for a period of time. However, the changes in sample variations that attribute to 

different crop years could lead to inaccurate prediction if the new variation is not modeled. 

The most important things about sample assembly for NIRS work are 1) identify the sources 

of variance likely to affect the spectra, and 2) assemble samples that contribute this variance, 

ideally replicated at least 4 times (i.e. 10 different samples that provide the most important 

sources of variance and fewer samples that offer other forms of variance. The calibration set 

that is sufficient to develop and evaluate a calibration model should provide all of the likely 

sources of variance. Quality of grain products is affected by environmental conditions such 
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as climate changes, drought or frost and can vary significantly from year-to-year. 

Consequently, a procedure of calibration maintenance and updating should be developed. 

This procedure is to optimize the calibration model with the justification of the number and 

choice of samples required to calibration an NIRS instrument, and then applied to a multi-

model network of NIRS analyzers to meet the standards with one calibration constructed on 

the master instrument. 

In this study, a large population of soybean samples of different varieties is 

accumulated from crop years 1996-2011 from all over the world and analyzed in Grain 

Quality Laboratory (Ames, Iowa, USA). This large database provides valuable source of all 

kinds of variations and ingredient quality factors. However, a large dataset is not 

computationally effective and would cause problems when using the routine calibration 

methods for regression. With the inclusion of significantly large number of calibration 

samples, the risk of involving noise also increases, which might lead to inadequate models 

(Sáiz-Abajo, Mevik et al. 2005). In order to get robust model and reasonable prediction, a 

representative subset could be selected to cover the original range of interest components and 

be balance in the calibration space. By selecting representative, well-distributed data for 

calibration set from abundant training data, fewer samples are needed in the calibration set 

without losing the prediction accuracy. The chemical analysis with the traditional methods, 

which is often more expensive and not operating efficient, can be done only to the selected 

samples. Then, the life cycle cost of NIRS instrument and calibrations could be reduced. 

In practical application, multiple copies of instrument of the same or similar model 

are distributed in different locations. These instruments form networks in a measurement 
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system and are able to share the same calibration model. In this case, a calibration model is 

constructed on a selected master instrument and applied to other secondary instruments. The 

calibration model needs to be adjusted due to the instrumental differences and varying 

measurement conditions. This process is called calibration transfer or instrument 

standardization. A network of four instruments from two vendors was formed in this research 

to examine the effect of different calibration sets on calibration transfer.   

Most calibration efforts have been limited to laboratory conditions, while in reality 

(for example, during the grain handling process), the measurement conditions vary 

considerably and affect the spectral data with respect to all kinds of external perturbations. In 

this research, temperature fluctuation was examined as a common environmental factor that 

possesses variations to NIR spectra. The objective is to develop low-cost and simple 

temperature compensation methods and build robust calibration models against temperature 

changes. 

1.2 Purpose of Research 

The research will develop a procedure based on the correct use of various tools and 

methods now published for NIR calibration into a workable methodology for routine 

industrial use, with which users of various skill levels can work. For this purpose, all the 

environmental and external conditions need to be taken into account, as well as the errors 

from sampling. With the procedure developed, the financial officer would be able to estimate 

the life cycle of the cost of applying NIR to a given problem. 
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The objectives of this research are 1) to determine if the calibration model built on the 

subset selected from the whole sample set as calibration set has equal or even better 

prediction ability as using the entire dataset; 2) to identify the optimal sample size and 

sample selection procedure to construct robust calibration models from calibration subsets; 3) 

identify the effect of sample size on calibration transfer procedure; 4) enhance the robustness 

of calibration against external perturbations. 

1.3 Organization of Dissertation 

This research addressed some important issues in the application of NIR technology 

in agriculture – robust calibration, accurate prediction and affordable expense. The following 

chapters will present approaches to optimize calibration models on the prediction of whole 

soybean grain for moisture, protein and oil contents. The first chapter will introduce and 

review current chemometric methods on calibration optimization of near infrared models. In 

the second chapter, sample selection methods will be applied to identify proper numbers and 

samples in calibration set to construct a robust model. The third chapter applies the sample 

selection procedure developed in chapter two on the calibration transfer among NIR 

networks. The fourth chapter deals with the temperature effect on NIR spectra and 

calibration, which could be corrected by temperature compensation methods. The fifth 

chapter gives economic analysis on the reduced cost of using less calibration samples with 

improved prediction performance. The methodologies applied and internal relationships 

among chapters are shown in Figure 1. 
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Figure 1. Flow chart depicting the applied methodologies 

1.4 Literature Review 

1.4.1 Regression methods 

Regression methods build mathematic relationship to link the spectrum to 

quantifiable properties of the samples. The Beer-Lamber’s law is the fundamental principle 

and simplest way of constructing a regression line. Several commonly used regression 

methods are described briefly in this section. The proper regression approach for multivariate 

calibration should be selected depending on the data structure on a rational basis. 
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1.4.1.1 Classical least squares (CLS) 

The objective of least squares regression methods is to model and estimate the 

relationship between a scalar dependent variable y and a vector X of explanatory variables. 

In spectroscopy, the classical least squares (CLS) calibration assumes that a measured 

spectrum is a sum of individual pure constituent spectra weighted by the concentration of the 

analytes. It requires quantitative knowledge of active individual component in sample, which 

is only suitable to simple measurement system (Martens and Naes 1992). The CLS model 

can be written as: 

 AA = CK +E   (0.1) 

where A is the spectral matrix ( n p×  ) for n samples and p variables, C is the matrix of 

concentration values of factor of interest, K represents the matrix of pure component spectra 

at unit concentration and an error term AE . The least-square solution of K is calculated as: 

 ( )
^ -1

T T +
K = C C C A = C A   (0.2) 

where +
C  is the pseudoinverse of C (Haaland and Melgaard 2000).  

This method is optimal when the errors are normally distributed. However, CLS is 

extremely sensitive to outliers that are observations do not yield to the linear pattern formed 

by the majority of the data. Moreover, the impact of noise could make this method unstable. 

1.4.1.2 Multiple linear regression (MLR) 

The multiple linear regression (MLR) models assume that in addition to the p 

independent x-variables, a response variable y is measured, which can be explained as a 
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linear combination of the x-variables. The prediction of the factor of interest yj can be 

described as:  

 0 ,
1

k

j i i i j

i

y b b x e
=

= + +∑   (0.3) 

where i
b  is the computed coefficient, i

x  represents the absorbance at each wavelength and 

,i j
e  is the error. MLR has been successfully applied to discrete situations in terms of 

wavelength (Mittermayr, Tan et al. 2001).With proper variable selection method, MLR 

analysis of a few well-selected variables was able to construct robust equations in low 

dimensions. The selection is based on the predictive ability of the wavelength. 

When MLR is used to construct a predictive model based on spectral data as input 

and a concentration of factor of interest as output, the method is referred to the inverse least 

squares (ILS). It uses the inverse form of Beer-Lamber’s law. In an inverse calibration, y is 

predicted by fitting the model 

 Y = XB + E   (0.4) 

The regression coefficients can be computed in the form 

 
^

T -1 TB = (X X) X Y   (0.5) 

Then, the concentration of an unknown sample could be calculated from the spectral data x 

 
^ ^

Ty = x B   (0.6) 
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1.4.1.3 Principal component regression (PCR) 

PCR and PLS models are both based on the spectra of n calibration samples with p 

variables (wavelengths) from the matrix ( )X
n p×  and the vector ( )1c

n×  of the concentration of 

the factor of interest (Ferre, Brown et al. 2001).  

The first step is to perform principal component analysis (PCA) on the spectral data ( )X
n p×

(Næs and Martens 1988). Then, the model coefficients ( )1b
p×  for A regression latent variables 

could be calculated as:  

  
+

A
b = R c  (0.7) 

The predicted concentration of the factor of interest in a sample whose spectrum is ( )1r
p×  

could be presented as:  

 r bT

A
c =   (0.8) 

PCA has its advantages on decreasing the dimensions of spectral data and suppressing the 

spectral colinearity. The problem of PCR is that the principal components describing the 

spectral data best may not be the optimal PCs for predicting the factor of interest of the 

unknown samples. 

1.4.1.4 Partial least squares regression (PLS) 

Partial Least Square (PLS) regression method is the most commonly used regression 

algorithm in the field of chemometrics in spectroscopy (Burns and Ciurczak 2007). In 

addition to the first PCA step of determining latent variables, PLS establishes a linear 

relationship between the spectral data X and reference values y that maximize their 
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covariance. In PLS, the X matrix is transformed to new variables as scores (T), loadings (P), 

and vectors called weights (W). The scores are orthogonal and estimated as linear 

combinations of the original variables with the coefficients –weights. Weights are calculated 

from X matrix directly and used to compute T by formula: 

 ( )
-1

* 'W = W P W   (0.9) 

 *
T = XW   (0.10) 

Then, X could be summarized as 

 'X = TP + E   (0.11) 

where E represents the X-residuals. Compared with PCR, PLS takes the reference values in 

to account to model the information in X matrix that describes the factor of interest best. 

More details about the theoretical explanations of PCR and PLS can be found in reference 

(Wold, Sjöström et al. 2001). The main advantage of PLS over PCR is to reduce the 

complexity of the models by using less principal components that contains more related 

information. This technique was first successfully applied to NIR data in 1982 (Martens and 

Jensen 1982). In agriculture, it was applied to grain samples by Shenk (Shenk 1991) and to 

determine milk constituents (Šašic and Ozaki 2001). 

1.4.1.5 Artificial neural networks (ANNs) 

The term artificial neural networks (ANNs) or simply neural networks (NNs) 

encompass a family of nonlinear computational methods that were inspired by the 

functioning of human brain (Marini 2009). NNs have been used as a computational tool for 

modeling extremely complex functions. It constructs the relationship between a set of inputs 
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and a corresponding set of outputs. Attempted to capture and imitate the biological features 

of human brain, it could be simply represented by a black-box that receives multiple inputs 

(x) and produces multiple outputs (y).  This black-box provides a nonlinear relationship 

between an x and a y vector. With regards to its functionality, since it is developed to mimic 

the computational properties of the brain, ANN poses the characteristics such as adaptivity, 

noise (data), and fault (neurons and connections lost) tolerance (Basheer and Hajmeer 2000). 

ANN is composed of an input layer, a hidden layer in the case of supposed non-linear 

relations and one output layer of neurons. The input layer consists of the input variables 

which usually come from the observable variables such as spectral intensities of the training 

samples. The output layer would usually be a chemical content value, comprises a layer of 

artificial neurons. The hidden layer lies in between represents the modeling (training) process 

allowing output values to be obtained from the input layer of neurons. Within this 

framework, the data are automatically learnt from an associated set of values by means of 

chosen training functions. During this training process, a set of parameters known as weights 

was tuned. In the case study of spectroscopy, the input variables are spectra, the principal 

component of the spectra or any other forms of data compression, while properties of 

chemical compounds and multicomponent mixtures for the outputs.  A schematic diagram of 

typical structure of ANNs is shown in Figure 2. 
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Figure 2. Typical structure of a neural net with three input, one hidden layer and two output layers  

Activation function sums the product of the output from each unit and the weight with 

which it is connected to the current unit (Swingler 1996). 

 
1

m

j ji i

i

o f w o
=

 
=  

 
∑  (0.12) 

where m denotes the number of units in the current layer, oj denotes the output from unit j, wji 

denotes the strength of the weight from unit i to unit j on the next layer. ( )f •  is the network 

activation function (or called transfer function). The most used transfer function is the 

logistic function: 

 

1

( ) 1
x

f x e θ

−
 

− 
 

 
= + 
  

 (0.13) 

where x is the weighted summation of input signals, θ refers to the gain (Burns and Ciurczak 

2007). In this function, x is squashed into the range from zero to one and the derivate makes 

very small changes at either end of the range and larger changes in the middle. Both the 
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logistic and the tanh functions are commonly used in NIRS, which could be called as 

sigmoidal functions. However, sine and simple linear functions are also widely used. In 

NIRS analysis, PCA or PLS scores are always used as input variables in ANN models. The 

optimal number of layers for network and that of neurons for each layer vary in the case 

studies. By using the PC scores as input, the robustness of the ANN calibrations could be 

improved and computation is reduced. Study (Janik, Cozzolino et al. 2007) also proved that 

prediction using ANN with PLS scores as input improved the capability of modeling non-

linear relationships. Nevertheless, the number of input nodes needs to be optimized if the 

PCA scores are used as input in order to avoid including excessive irrelevant scores and 

redundant data, which leads to over-fitting. This value is typically higher than the number of 

PCs used in linear models. Inputs are transferred to neurons in the next layer with their 

respective randomly assigned weights. The net summation of all weighted signals is 

calculated:  

 
j ij i j

i

Net w x θ= +∑  (0.14) 

i
x denotes the different inputs for a neuron j, 

ij
w refers the weight of the connection through 

which signal i
x enters neuron j. Then, 

j
Net is related to the neuron output values through a 

transfer function. In a three layer network, outputs of the hidden layer are multiplied by a 

weight and sent to the output layer where they are summed and applied to the transfer 

function to obtain predictions. These predictions are compared with reference values and a 

calibration error is determined. If the value is greater than a threshold predetermined by the 

user, an optimization process such as back-propagation (BP) learning rule (Sun 2009) could 
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be applied to adapt the weights and reduce the calibration error. The scheme of the BP 

algorithm is update the weights iteratively until the error criterion reaches a minimum. 

During the ANN training iteration, a set of parameters need to be defined, such as the 

weighted randomization range and seed, regulate the speed and the stability of error 

convergence. The choice of the initial values of the connection weights has an important 

impact on the convergence properties of the network (Marini 2009). It was suggested to 

initialize the weights using a uniform distribution that has zero mean and a variance that is 

equal to the reciprocal of the number of connection to the units. Another vital problem is to 

set the stopping criterion. The training error is supposed to decrease with the increasing 

number of training epochs and reaches an asymptotic value. However, the network might 

learn a relevant part of noise together with the systematic information during the iteration. 

Then, the corresponding model is said to lack of generalizing ability if an unknown sample is 

presented to the network. Thereby, a validation procedure could be applied by using an 

external set to obtain the optimal number of iterations. The training will stop when the lowest 

value of the generalization error is reached.  

With regarding to select the best architecture, for practical purposes, it may not be 

possible to derive the optimal number of hidden layers only based on the theory. In practice, 

the risk of over-fitting is a crucial issue that should be eliminated. This could also be 

accomplished by test a series of numbers of hidden layer on an external validation set.  

With respect to target error (Swingler 1996), the number of samples in the training set 

(n) could be approximated by: 
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w

n
ε

 
≥  
 

 (0.15) 

if 0 1/ 8ε< ≤ , where w denotes the number of weights, ε  the low error limit. With large 

enough data set, then  

 w nε≈  (0.16) 

The number of samples needed when there are sufficient samples would be discussed in more 

depth in the following section.  

1.4.2  Calibration set selection 

There is no rule of thumb to determine the optimum number of selected samples. This 

number depends on the complexity of the corrections (wavelength shift, intensity offset) and 

on the algorithms used. Research showed that a sample set has a ratio of samples to variables 

larger than four was considered as large (Naes, Irgens et al. 1986). Different subset sizes 

should be selected and assessed for its effect on calibration robustness. 

Sample selection involves identification of all sources of variance likely to be 

encountered in future analysis including sample source (growing location and season) and the 

range of composition  in constituents or parameters to be tested. Selection of sample with 

normal distribution will cause the results of subsequent analysis to regress toward the mean. 

Sample selection usually depends on sample information, variable selection, X-Y relation 

outliers, Y-representative and sample residual in the model. Sample information includes the 

refractive index of liquids changes with concentration and inter-correlation between 

components (moisture content/particle size with components of interest). The distribution of 

sample component concentration (y values) should be as evenly as possible. 
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Adding/eliminating more wavelengths (variables) to the spectrum is analogous to 

adding/eliminating samples to the training set. As the samples in training set, if the 

wavelengths are exact duplicates or there are large numbers of wavelengths which are 

similar, wavelengths do not expand the dimension of S, nor help S span V (Hildrum 1992).  

1.4.2.1 Sample Selection Algorithms 

A handful samples will probably not carry enough weight. The fundamental principle 

of sampling states that each sample is representative of the total material (population) from 

which it is taken (Haswell 1992). All units present in the population should have an equal 

probability of existing in the representative sample. Several sample selection methods are 

available in literature.  

1) Uniform random selection 

Random selection is the simplest way to choose samples from a large population. 

However, this would lead to another normal distribution of reference values in calibration 

set. This distribution has more samples around the means, and less extreme values. For better 

prediction, the distribution of the calibration samples should be as uniform as possible. In this 

case, we use the method of uniform random selection. The total range of reference values are 

divided into several intervals. In each interval, we randomly select certain amount of 

samples. Then combine them together, we should get a relatively evenly distributed 

calibration set. 

2) Selecting the samples with the highest orthogonal leverage values  

This function of this algorithm (Wang, Veltkamp et al. 1991)  was designed to select 

subsets of spectra for use in instrument standardization transform development based on 
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sample multivariate leverage. Leverage is an observation concept which concerns the 

position of the observation’s “independent variables” relative to the others. High leverage 

samples have strong effect on x and y loadings. Thus outliers must be detected prior to the 

subset selection; else they would be selected in the high leverage subset. The information 

contained in the selected samples is then removed from the rest of the samples by a linear 

transformation so that they are all orthogonal to this selected sample. This procedure stops 

when the desired number of samples has obtained. The algorithm steps are as follow: 

i. Calculate the hat matrix H for calibration set, of which the diagonal elements are the 

leverages that describes the influence each observation has on the fitting value of that 

same observation. For linear models, the hat matrix 

 ' -1 'H = X(X X) X   (0.17) 

ii. Select the sample with the highest leverage value (maximum hii), and orthogonalize 

the row selected against every other row of sample spectra to obtain a new X, i.e., 

calculate the linear transformation 

 '

j i jx x xα β= +  for j i≠  (0.18) 

subject to  0'

j ix x• =  

iii. Repeat the previous two steps until the number of selected samples reach the number 

desired. 

3) Shenk-Westerhaus method  

This is also known as the patent method (Shenk 1991; Shenk 1991). The selecting 

function of WinISI software (Infrasoft International, State College, PA) was designed to 

choose samples that maximize the global and neighborhood standardized distances (global 

and neighborhood H) on a PCA using Mahalanobis distance. The H limits are parameters that 

must be carefully set. For example, in a forage and grain analysis, a standardized H value of 
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3.0 was used to exclude outliers and a minimum H value of 0.6 determined the neighbor 

samples. The final population is even and symmetric, with fewer samples at the edge. 

4) Kennard-Stone method  

The Kennard-Stone algorithm (Kennard and Stone 1969) is designed to select 

samples sequentially which are uniformly distributed over the object space by choosing the 

samples that maximize the Euclidean distances between each other (designed for surface 

response experimental plans). The distances are computed between the sample characteristics 

(e.g., y-values or spectra). The first two farthest samples are selected. Then, the third sample 

is selected as the one farthest from the first two samples. Keep choosing samples one by one 

from the remaining subset, which is the farthest from all the previously selected till reach the 

designed number of training set. Supposing that k objects have already been selected (k<n, n 

is the number of samples), the (k+1)th object in the calibration set is chosen using the 

criterion 

  
( )( )2 2 2

1 , 2 ,...max min
r r kr

k r n
d d d

< ≤  (0.19) 

where  

 ( )
2

1

k

jr j r j r

j

d x x x x
=

= − = −∑   (0.20) 

It denotes the Eucidean distance from a candidate object r, not yet in the 

representative set, to the jth already selected object. This algorithm chooses the sample that 

presents the largest minimum distance with respect to any sample already selected at each 

successive iteration.  
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An improved method based on Kennard-Stone algorithm was proposed for dividing a 

data set into calibration and validation subsets(Galvao, Araujo et al. 2005). This method 

defined the Eucidean distances of both spectral data and reference data. By dividing dx and 

by their maximum values in the data set, equal importance was assigned to x and y spaces. A 

normalized xy distance dxy was used instead of dx alone in KS algorithm. 

5) Duplex method  

The Duplex algorithm (Snee 1977) was first designed to split the data into calibration 

and prediction sets, which cover approximately the same region and have similar distribution. 

It is a modification of KS algorithm to achieve randomization in sample selection. Similar to 

KS algorithm, the two points that are furthest away from each other are selected in the 

calibration set at first. Then, the sample that is furthest away in the remaining dataset is 

assigned to the validation set. In the third step, point furthest away from the selected 

calibration samples is included in the calibration set. This procedure repeats till 

representative samples in calibration and validation set reach an equal size. 

6) Cluster analysis  

The first step of this method is to perform a PCA on all the spectral data in the entire 

data set and choose the number of principal components.  Then, divide samples into several 

clusters based on the similarity (eg. Euclidian distance) of their PCA score values. The 

number of clusters is set according to the expected number of samples in the calibration set. 

Select one sample from each cluster using complete linkage (farthest points define the inter-

cluster distance) (Næs 1987; Isaksson and Næs 1990). 
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7) Puchwein method  

Sort samples according to Mahalanobis distance to the center of the set. Select the 

extreme point. Exclude points that are closer to the selected point by a limiting distance. The 

sample that is most extreme among the remaining points is selected. Then repeat the 

procedure until there is no data point left. The limiting distance is the factor that controls the 

number of samples being selected (Puchwein 1988). 

8) D-optimal method  

D-optimal designs (de Aguiar, Bourguignon et al. 1995; Ferre and Rius 1997) are 

used for experimental design when the experimental region does not have a regular shape. Its 

principle is to maximize the determinant of the variance-covariance matrix |X’X|, where X is 

the training set matrix (p selected samples, m wavelengths). This determinant is maximal 

when the selected samples span the space of the whole data set. This algorithm starts with a 

large data set and chooses samples iteratively that create a maximum increase in the 

variance-covariance matrix |X’X|, and stops when choosing a sample no longer increase the 

variance-covariance matrix |X’X|. We run this algorithm several times to avoid getting a 

local optimal subset. 

In this research, the procedure of selecting calibration set is depicted in Figure 3. For 

comparison purpose, calibration based on the whole dataset was used as benchmark method. 

Calibration subsets with increasing numbers of samples were used to build models for an 

external validation set from the latest crop year.  
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Figure 3. Flowchart of calibration sample selection procedure 

1.4.3 Variable selection 

As another important aspect of calibration optimization, variable selection has the 

same goal as sample selection with respect to reduce the complexity of the calibration model. 

A great deal of studies have shown that the construction of calibration model on selected 

relevant predictors from the overall variables improves the robustness of calibration against 

to uninformative wavelength regions (Westad and Marten 2000; Höskuldsson 2001; 

Abrahamsson, Johansson et al. 2003). The inclusion of all variables could affect the 

prediction properties and lead to suboptimal models in the presence of highly correlated 

variables. It is necessary to select appropriate variable to develop a calibration model that 

gives an adequate and representative description for use in prediction (Gemperline 2006). To 
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evaluate the variable subsets on the regression results, a validation set is usually used based 

on minimizing the prediction-error.  

Various variable selection methods have been proposed to identify informative 

wavelength regions such as interval PLS (iPLS) (Norgaard, Saudland et al. 2000), genetic 

algorithm (GA) (Lucasius, Beckers et al. 1994; Smith and Gemperline 2000), uninformative 

variable elimination (UVE-PLS) (KOSHOUBU, IWATA et al. 2001; Cai, Li et al. 2008) and 

Monte Carlo uninformative variable elimination (MC-UVE) (Li, Liang et al. 2009). iPLS 

searches for the combination of relevant information in different spectral subdivisions. GA is 

based on the principle of genetics and natural selection. It also provides a way for data 

compression to select input variables for ANN (Despagne and Massart 1998; Chalus, Walter 

et al. 2007).  

Variable selection will not be the main focus in this research compared to calibration 

sample selection. Due to the characteristics of grain products and condensed wavelength 

region (shortwave) of transmittance instruments utilized in this paper, eliminating the number 

of samples takes the first priority in optimization. 

1.4.4 Outlier identification 

Outlier detection techniques can be used to predict the “uniqueness” of a sample 

using H statistic, also known as the Mahalanobis distance. Residuals plots are important in 

multivariate regression. Leverage corrections of the residuals are plotted as “influence”. 

Samples with high residual and high leverage are considered as outliers. Leverage and 

residuals are the most important values for detecting outliers. 
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In this study, PLS is first carried out (leave-one-out cross validation) on spectra 

collected on individual instrument within each crop year in order to clean outliers and visual 

inspection. For those years having few samples, samples were joined to the ones from the 

next year. The basic tools for outlier detection in these models are based on the influence plot 

in Unscrambler 9.8 (Camo Software, Woodbridge, NJ) with leverage as x-axis and y-residual 

as y-axis. 

The criteria for deleting outliers in this study were 1) samples with residuals higher 

than 2; 2) samples with large leverage: Samples with leverage higher than 3 times the 

average leverage, where the average leverage is calculated as: 

H=1/n + number of principal components/n     (n is the number of samples)  (Faber 

1999; Faber 1999)   

1.4.5  Calibration model selection 

After acquiring a series of calibration models based on different sample sizes 

(increasing numbers of samples), the selection of the optimal calibration model becomes a 

critical step in optimization procedure. In a multivariate calibration, sample size has a 

substantial impact in achieving statistical significance, both in small and large sample sizes 

(Anderson, Hair et al. 2006). For calibration set with less samples included, the complexity 

of the multivariate technique may easily result in either (1) too little statistical power for the 

test to realistically identify significant results or (2) too easily “over-fitting” the data such 

that the results are artificially good because they fit the sample yet provide no 
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generalizability. On the other hand, for large sample size, the statistical test becomes 

sensitive in terms of the significance of results. 

It has been demonstrated the use of experimental design could help choose the 

optimal calibration model (Flaten and Walmsley 2003; Flåten and Walmsley 2004). The 

experimental design approach was used to choose all parameter setting including 

pretreatment methods (categorical variables), the number of components, calibration subset 

and variable subset selection.  

To compare estimates of prediction error of the optimal calibration set and the whole 

sample set, one single validation set of Np samples with known x and y is used to predict y 

from x using each of the calibration models. Since the true y is known, this gives a set of Np 

prediction errors ( ŷ y− ) for each method. 

 ( )
2

ˆ
ij ij i j ij ij

y y eµ α β αβ− = + + + +  (0.21) 
Simply without interaction, 

 ( )
2

ˆ
ij ij i j ij

y y eµ α β− = + + +  (0.22) 
Multiple comparisons are made among different calibration models with respect to 

prediction of external spectral samples. For unknown samples, the prediction error can be 

determined as root mean square error of prediction (RMSEP): 
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  (0.23) 

where n is the number of unknown samples in the validation. While RMSEP measures the 

accuracy of a prediction, the square error of prediction (SEP) measures precision and can be 

calculated as: 
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where Bias is calculated as  

 

^

1

n

i

y y

Bias
n

=

 
− 

 =
∑

  (0.25) 

Then, the relationship among SEP, Bias and RMSEP is depicted as: 

 2 2 2RMSEP SEP Bias≈ +   (0.26) 

The predictive ability of the calibration model often reaches a minimum RMSEP at the 

optimum number of factors and begins to increase thereafter. As shown in Figure 4, when 

evaluating the bias of the model with respect to prediction error, there is a trade-off of 

variance for prediction estimates with respect to bias. This means, with the increasing 

complexity of calibration model, the bias decreases at a sacrifice of a variance increase. 

 

 
Figure 4. A generic situation for model determination showing the bias/variance trade-off with 

selection of metaparameter (Gemperline 2006) 

Tukey’s method (Indahl and Naes 1998) for multiple comparisons can be used for 

this purpose, which is a conservative test that compares all differences between pairs of 
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methods with the same critical rules. There are two assumptions of Tukey's test needs to be 

met: 1) the observations being tested are independent; 2) there is equal variation across 

observations (homoscedasticity). The difference can be expressed as the absolute residual:   

 ( )ˆ ˆ,d y y y y= −  (0.27) 

Multiple-way fixed effects ANOVA without interactions can be used to test differences 

among the performances of calibration models. It is also necessary to exam whether the 

residuals of the ANOVA are normally distributed. 

For comparison of two SEPs, the appropriate methodology to test their differences is 

as below  

 ( )
2 2

2 ,0.0252(1 )
1

2
PN

P

r t

N
κ

−
−

= +
−

 (0.28) 

where r is the correlation coefficient between the two sets of prediction errors, ( )2 ,0.025PN
t

−  is 

the upper 2.5% percentile of a t-distribution with Np-2 degrees of freedom. Then, find  

 2( 1)L κ κ = + −
 

 (0.29) 

Now   

 1 1

2 2

1SEP SEP
and L

SEP L SEP
× ×  (0.30) 

Give the lower and upper limits of a 95% confidence interval for the ratio of the true 

standard deviations. If the interval includes 1, the standard deviations (SEPs) are not 

significantly different at the 5% level. 
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1.4.6  Calibration transfer and instrument standardization 

The aim of instrument standardization is to build robust models of calibration and 

prediction. Calibration transfer enables robust models to be employed on a class of 

instruments in filed or in-line. The problems are the existence of instrument-to-instrument 

variations and their small differences in wavelength resolution and detector sensitivity. 

Moreover, it gets more complicated when time-dependent instrumental drift occurs. Due to 

all these reasons, instrument standardization is needed in application. 

Multivariate calibration has become routine for extracting chemical information from 

spectroscopic signals (Brown 2009). The most commonly used multivariate methods for 

chemical analysis are partial least squares (PLS) regression (Zhang, Small et al. 2002) and 

principal component regression (PCR). A robust calibration model is supposed to be used for 

extended periods of time. In this case, samples to be predicted in the future would be 

measured under a different environmental condition from samples in the calibration set. 

However, with a new condition of spectra collection, the changes of variations in the spectra 

could lead to invalid prediction results. There are three situations that could induce model 

inconsequent (Feudale, Woody et al. 2002) : 1) changes in the physical and/or chemical 

constitution of the samples; 2) changes in the instrumental response function; 3) changes in 

the environment factor over time. For agricultural products, these changes would occur when 

there are fluctuations of temperature or humidity during the storage and spectra collection.  

Previous studies have developed various standardization and preprocessing methods 

for calibration transfer between different systems. While this paper focused on the transfer of 

near infrared data, standardization methods could also be applied to UV-visible 
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spectrophotometry, fluorescence spectroscopy, Raman spectroscopy and electrochemistry. 

Usually the instrument where the calibration models was originally made is defined to be the 

master instrument, while the calibration is to be transferred to as the secondary instrument 

(Næs, Isaksson et al. 2002). 

1.4.6.1 Global models 

To build a global model, spectra scanned from more than one instrument are included 

in the calibration set. By incorporate samples covered a wide range of experimental 

conditions, expected variations are implemented in the calibration model. The only problem 

is the source of variation in the future prediction samples need to be strictly controlled. Study 

(Igne and Hurburgh 2008) showed models built on samples scanned in two instruments of the 

same brand and two instruments of different brands gave equal or better results than when 

each instrument was calibrated on its own calibration set. 

1.4.6.2 Model updating 

To build a new model that contains the new variations could be time-consuming and 

may be expensive. After model development, calibration needs to be maintained and updated 

at some point of time. An alternative way is to only add more samples selected from the new 

incoming set. This would also involve the sample selection process as to add representative 

samples account for the new source of variances as well as possible. With the additional 

samples in the calibration set, the model could be more robust to the new measurement 

conditions and lead to better prediction results. Due to the small number of the new samples, 

their weight might be too low compared to the existing data set. A possibility would be to 
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give the additional samples more weight to increase their contribution to the model. 

However, research (Capron, Walczak et al. 2005) showed that the number of new samples 

included had a larger impact on the performance of the updated models. Moreover, sample 

selection strategies are preferred to select incoming samples different than existing data set. 

Another approach was developed by combining PCA and PLS to examine the 

similarity of a new unknown sample to the samples had been already defined in the 

calibration set by Setarehdan et al. (Setarehdan, Soraghan et al. 2002). The entire procedure 

was depicted in Figure 5.  

 
Figure 5. The overall block diagram of the calibration update algorithm (Setarehdan, Soraghan et al. 

2002) 
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This strategy requires the reference values of the first n samples in the calibration set. 

Q and T2 statistics were used to determine whether a new input spectrum should be added 

into the calibration set. Q is the sum of squares of each row of the residual matrix. It 

describes the amount of the variation in each sample that is not captured by the principal 

components retained in the model and can be calculated as: 

 T

i i iQ = e e   (0.31) 

The sum of normalized squared scores, known as Hotelling’s T2 statistics is a measure of the 

variation of the samples “within” the PCA model, which can be defined as: 

 2 -1 T

i i iT = t λ t   (0.32) 

where it  refers to the matrix of score vectors from PCA model, and 1λ −  is the diagonal 

matrix containing the inverse of the eigenvalues associated with principal components 

retained in the model. The results of this study demonstrated an invariant prediction ability of 

the calibration model built on the initial number of selected samples. This provided the 

feasibility of building robust calibration on a small, representative calibration set and 

reduction on the cost and energy of calibration efforts. 

1.4.6.3 Instrument standardization methods 

Great deals of studies have attempted to propose strategies to deal with variations in 

the instruments, sometimes even between instruments with different optical configurations 

(Puigdomènech, Tauler et al. 1997; Wang, Su et al. 2002). Most of the methods standardize 

the instrument by mathematically manipulating the regression coefficients in the calibration 
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model, the spectral responses or the prediction values. This section states several common 

standardization methods that are widely applied. 

1) Shenk and Westerhaus standardization 

This approach was first proposed by Shenk et al. and patented (Shenk, Westerhaus et 

al. 1985; Shenk and Westerhaus 1989). This is the simplest way to correct the changes in 

spectral responses between the master and secondary instruments directly. This method was 

originally designed for the standardization of similar monochromator NIR reflectance 

instruments with a wavelength alignment. The advanced version of this method allows 

transfer between NIR reflectance instruments with equal resolution. With the measurement of 

standardization set on both instruments, it consists of two separate steps: 1) wavelength index 

correction; 2) spectral intensity correction. In the first step, the wavelength scale is corrected 

by correlating the measurements at wavelength i on the master instrument with those located 

in a small window around i on the secondary instrument. For each wavelength i in master 

instrument, a spectral window of neighboring wavelengths on the secondary instrument is 

chosen to calculate the relationships. A second-order polynomial is fitted to the correlation 

coefficients, yielding a continuous function across the channels in the processing window. 

The wavelength corresponding to the maximum of the quadratic function is then selected as 

the corresponding wavelength of the master instrument. In the second step, the intensity at 

each wavelength i is correlated by simple linear regression: 

 
i,1 j,2

x x
i i

a b= +  (0.33) 

Where i
a and i

b are the offset and slope, respectively, estimated from the standardization 

samples measured on both instruments. 
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Only linear intensity differences can be corrected by this method. The disadvantage 

of this method is that complex interactions between wavelength shifts and intensity changes 

cannot be transferred since it assumes that no relationship exists between neighboring 

correction models. Thus, it only applies to similar instruments and the drift correction within 

one instrument. Another requirement of this method is a standardization sample set measured 

on both instruments. Research (Bouveresse, Massart et al. 1994) was conducted to examine 

the effect of different standardization samples of agricultural products by using this method. 

Three different kinds of standardization sample sets were tested including samples similar to 

the agricultural samples, generic standards and pure organic and inorganic chemicals. It 

stated that difference between spectra obtained on two different instruments depend probably 

on the optical density range. The standardization samples used to correct differences between 

the two instruments should be similar to the samples of the prediction set. This research also 

provided some possible strategies to select standardization samples. 

2) Slope and bias correction 

Another widely used method for correcting predicted values is the simple univariate 

slope and bias correction (SBC). In this method, it assumes a linear relationship between the 

prediction values for spectra measured on the secondary instrument and the prediction values 

that the obtained by calibration built on the master instrument. The properties of the 

standardization samples (y-values) were firstly predicted by the original model developed on 

the master instrument.  

 
1,1 X

s
y b=  (0.34) 

 ,2 2X
s

y b=  (0.35) 
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A linear regression equation is obtained by plotting spectra collected in the calibration 

step against those collected in the prediction step using either ordinary least squares or 

orthogonal least squares. Then the predicted values for the new samples are corrected for the 

bias (intercept) and slope of the regression line: 

 2, 2y
corrected

y bias slope= +  (0.36) 
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Figure 6.  Linear relationship of the prediction values on the standardization samples between two 

similar instruments 

Figure 6 shows an example of the prediction values of the standardization samples 

collected on two similar instruments. Acquiring the slope and bias values, the prediction on 

the secondary instrument could be corrected by using calibration model built on the master 

instrument. 

This standardization approach is most often applied between instruments having the 

same dispersion device. When more complex instrumental differences exist, other 

standardization methods need to be used. A procedure was proposed to diagnose whether the 
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simple slop/bias correction can be successfully applied based on a statistical F-test 

(Bouveresse, Hartmann et al. 1996). 

Osborne and Fearn (Osborne and Fearn 1983; Osborne and Fearn 1983) utilized this 

method to transfer calibration equations built for the determination of proteins and moisture 

in wheat flour. Nine instruments of the same model located in different laboratories were 

used to collect one sample set and a second sample set in two month later to adjust the bias 

for a specific component. The results indicated reasonable accuracy of NIR as well as 

precision. Another collaborative research conducted by Delwiche, Pierce et al. (Delwiche, 

Pierce et al. 1998) assessed accuracy, repeatability and reproducibility of NIR method for 

determine crude protein content in whole grain products. In this research, four types of 

commercialized NIR instruments with various combinations of wavelength region, mode of 

energy capture, dispersion and treatment of spectral data were used. Twenty two 

standardization samples and a test set of twelve unknown samples were used for all 

collaborators. For standardization, bias correction, slope and intercept correction and 

recalibration with inclusion of standardization sample spectra were examined. The results 

demonstrated for within-laboratory and between-laboratory variations of the NIR method 

were equivalent to values reported for the combustion method (AOAC 1995) for wheat. 

Furthermore, Osborne, Kotwal et al. reported a method using the single sample to correct for 

bias (Osborne, Kotwal et al. 1999) on reflectance monochromator instruments. This was 

considered as a simplified procedure of Shenk-Westhaus method (Shenk, Westerhaus et al. 

1985) for whole grain samples. In comparison to the set of thirty samples, using single 

ground wheat confirmed the standardization worked equivalently. The experiment described 
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using one single sample to correct sufficiently for the purpose of combining spectral data sets 

from different instruments. The only consideration of the single sample standardization is the 

accuracy of the wavelength axis without the correction by the standardization procedures. 

The results indicated that the wavelength accuracy of the instruments employed was not a 

significant factor during standardization. 

3) Direct standardization of instrumental response 

To directly relate the response of a sample measured with one instrument to its 

response obtained on another instrument, Wang et al. (Wang, Veltkamp et al. 1991) proposed 

direct standardization by means of a transformation matrix. The linear relationship is stated 

by the transformation matrix F according to: 

 1 2X = X F E+  (0.37) 

where 1S and 2S are the response matrices of the standardization samples obtained from the 

master and secondary instruments, respectively. E represents the residual matrix. The 

transformation matrix F is a square matrix and determined by multiplying the generalized 

inverse of the standardization set obtained in the prediction step by the standardization set 

obtained in the calibration step: 

 +

2 1
F = X X  (0.38) 

where +

2
X  is the generalized inverse of 2X . Once F is calculated, the response vector of a 

new sample x is projected to the original measurement space so that its property values can 

be predicted with the original model: 

 ˆT T
x = x F  (0.39) 
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The computation of F assumes that change in response values is caused by the 

change in the instrument function. However, any variation in the chemical composition of the 

samples will also be incorporated into the model. Another problem is the number of standard 

samples has to be at least as large as the rank of AX , in order to represent all relevant 

dimensions. Otherwise, it is usually underdetermined with respect to estimating F . When 

compared with other standardization schemes, DS showed large SEP  when the number of 

subset samples selected as standardization samples is smaller than the rank of AX  (Wang, 

Veltkamp et al. 1991). It does not require the master and secondary instruments have the 

same number of wavelength points. When the number of variables is much larger than the 

number of standardization samples, there is a high risk of overfitting of the matrix F . 

Therefore, F is typically estimated by means of PCR and PLS regression to obtain a least 

squares solution. Another alternative approach to overcome this problem is to reduce the 

number of channels involved in the regression, which gives rise to piecewise direct 

standardization. 

4) Piecewise direct standardization  

Piecewise direct standardization (PDS) (Wang, Veltkamp et al. 1991) is one of the 

most widely used transfer methods. In DS, each wavelength of the master spectra is related to 

all wavelengths of the secondary spectra. When one instrument is shifted along the x-axis 

with respect to the other instruments, the spectral correlations are usually limited to specific 

and smaller regions. Thus, PDS is a local alternative approach. In PDS, the response r of the 

standardization samples measured at wavelength j on the master instrument is related to the 

wavelengths located in a small window around j measured on the secondary instrument: 
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j j j

r = R b  (0.40) 

where 
j

R is the localized response matrix of the transfer samples and 
j

b is the vector of 

transformation coefficients for the jth wavelength. The regression vectors calculated for each 

window in the data are then assembled to form a banded diagonal matrix F according to: 

 ( )T T T T

1 2 j kF b ,b , ...,b , ...,bdiag=  (0.41) 

where k is the number of spectral channel (wavelength). For any unknown sample, the 

spectral response could be standardized using the equation (0.42) as described in DS method. 

When there is not sufficient data to form a complete window, edge effects would occur due 

to the operation of a moving window. The ends of the spectra are either removed or 

estimated by extrapolation under these circumstances. The two major advantages of PDS are 

the use of a small amount of samples in a secondary instrument due to the smaller local rank 

of moving windows than the whole matrix and its multivariate nature enabling a noise-

filtering effect. Non-linearities are better explained by several local multivariate models than 

a single global local multivariate model. 

Wang et al. (Wang, Veltkamp et al. 1991) compared five standardization methods 

included standardization with the classical calibration model, standardization with the inverse 

calibration model, DS, PDS and the patented method by Shenk and Westerhaus (Shenk and 

Westerhaus 1989). 100 mixtures were simulated by a full experiment design (10 by 10) with 

the first 10 subset samples selected as standardization samples. PDS gave the best results 

among these different procedures and obtained the smallest SEP with only three subset 

samples. Results similar to subset recalibration were obtained when the number of subset 

increased to 6, which was sufficient to obtain a correction for the nonlinear response change. 
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The effect of window size associated with the number of subset samples on standardization 

was examined as well. The results indicated that over-fitting may occur with the inclusion of 

too many non-relevant channels, which was the major problem of direct standardization 

where the full spectral region is included. In their following research, Wang et al. (Wang, 

Lysaght et al. 1992) were able to improve the calibration through standardization if an 

instrument with higher quality in terms of signal-to-noise ratio is standardized. The results 

demonstrated better SEPs than that of the whole set recalibration due to the utilization of a 

better calibration through standardization.  

PDS also has been applied to situations of standardization with nonlinear external 

influence as temperature (Wang and Kowalski 1993). A modified version called Continuous 

Piecewise Direct Standardization (CPDS) (Wulfert, Kok et al. 2000) was proposed to correct 

the continuous temperature effect. In this method, a CPDS model is built to standardize 

spectra between calibration sample temperature and various discrete temperatures. Then a 

polynomial regression is fitted for the values at each position against the temperature 

difference. Estimation of transformation matrices were obtained for all temperature 

differences lie in the standardization range. 

PDS is commonly used as a reference method to be compared with other novel 

standardization techniques (Swierenga, Haanstra et al. 1998; Zhang, Small et al. 2002; 

Honorato, Galvão et al. 2005; Watari and Ozaki 2006; Guenard, Wehlburg et al. 2007; Sohn, 

Barton et al. 2007; Igne and Hurburgh 2008; Igne, Roger et al. 2009; Shi, Han et al. 2010; Du, 

Chen et al. 2011; Abdelkader, Cooper et al. 2012). It worked successfully in most of the 

cases. However, in practice, the parameters like the window size and the optimal rank of the 
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local multivariate regression need to be optimized carefully. Problems occur when PDS 

estimates the rank of the local PCR/PLS models developed on the windowed data. Bad local 

rank estimations could create artifacts in the transferred spectra. A procedure was proposed 

to detect and reduce PDS artifacts by examining the spectrum of an independent sample 

before and after standardization (Bouveresse and Massart 1996). Preprocessing before 

standardization has been proved beneficial to reduce noise. Data decomposition as PCA also 

helps to reduce these PCs dominated by noise effect to filter noise before standardization by 

PDS. Moreover, PDS is not a preferable method to be employed for process monitoring and 

control, since a different calibration model for the same constituent at each incidence of 

maintenance.  

5) Wavelet Transformation before standardization 

Standardization can also be applied to model differences between spectra transformed 

to another domain. Wavelet transform (WT) enables the time-frequency representation of the 

instrumental signals. A wavelet ψ is a function of zero average: 

 ( ) 0t dtψ
+∞

−∞
=∫  (0.43) 

which is dilated with a scale parameter s, and translated by u: 
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1
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 (0.44) 

The wavelet transform of f at the scale s and position u is computed by correlating f 

with a wavelet atom. Wavelet coefficients can be expressed as follow: 
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Wavelet coefficients have information on both frequency and position, while Fourier 

coefficients only refer to the frequency. 

The original signal is passed through a low-pass filter (known as scaling filter, H) and 

a high-pass filter (called wavelet filter, G). These filters are orthogonal. WT analysis 

decomposes a signal function (for example, a spectrum of a sample) into a set of outputs as 

approximations (low-frequency components) and details (high-frequency components) at 

different scales (levels) and positions. The outputs of both filters at level 1 are composed of a 

set of N/2 coefficients of approximations and N/2 coefficients of details, where N is the 

length of the signal. The decomposition is an iterative process on the low frequency 

components only and continues till the set consists of a single unit. This process is known as 

Mallat’s pyramid algorithm (Mallat 2009) and completely recursive. The main advantages of 

WT are associated with signal compression and denoising. Application of  WT-related 

methods have been studied extensively in spectroscopic signal processing and plays an 

important role in both NIR and IR spectroscopy (Chau, Liang et al. 2004). Compared with 

Fourier transform, the conventional analyzing tool in signal process, wavelet transform are 

more efficient than Fourier at compressing near infrared spectra (Fearn and Davies 2003). 

Wavelet analysis could also be applied to correct constant or non-constant background (Tan 

and Brown 2002). Compared with other baseline correction methods such as first derivative, 

multiplicative signal correction (MSC), orthogonal signal correction (OSC) and the 

polynomial background approximation method, it was demonstrated to be an efficient 

method for removing the non-constant background variation automatically for both simulated 

and real NIR data. Igne et al. applied wavelet and Fourier transform to soybean protein and 
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oil calibrations for comparison (Igne and Hurburgh 2010). Both intra-brand and inter-brand 

standardization were examined by different frequency filtering methods. The results showed 

the possibility of calibration transfer by modifying the signal before calibration to avoid the 

use of standardization methods. 

Walczak et al. first proposed a method for comparing the performance between two 

NIR instruments in the wavelet domain (Walczak, Bouveresse et al. 1997). They applied WT 

to the spectra of a subset of standardization samples obtained on both master and secondary 

instruments. Then relate the WT coefficients of the NIR spectra obtained from the two 

different instruments utilizing univariate linear models. This model was set up to determine 

the standardization parameters between the two sets of NIR spectra. Once these parameters 

were computed, the inverse wavelet transform was performed with filter n applied to the 

transferred wavelet coefficients and obtain standardized NIR spectra. The signal (spectral 

variation) is compressed by discrete wavelet transform, which enables greater stability in the 

transfer. In this research, the results of soy samples indicated that when there was a global 

nature in the spectral differences between the master and secondary instruments, advanced 

standardization methods like PDS or SWD do not perform better than the simple slope/bias 

correction method. However, both PDS and SWD were applied to a small amount of 

standardization samples. The results showed RMSEP reduced significantly when the number 

of standardization samples was greater than 5. The wavelet transform could also be 

performed on scores or factors in principal component analysis and partial least squares, 

which was proposed as indirect standardization method (Park, Ko et al. 2001). In this method, 

only a few transfer coefficients were taken with similar performance to the spectrum transfer 
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case. Those two methods both utilized univariate standardization models, which limited the 

information of calibration transfer. By using univariate models instead of PDS for 

standardization in the wavelet domain, it lost partially the benefits from conventional PDS. 

Moreover, although WT has noise-filter effect, it still did not achieve full robustness to 

spectral noise.  

A modified standardization method called wavelet hybrid direct standardization 

(WHDS) was proposed by Tan et al. (Tan and Brown 2001). There are two main differences 

between WHDS and standardization in wavelet domain (SWD). First, the reconstruction is 

made before the standardization in WHDS. In this new wavelet reconstruction algorithm, 

approximation and detail spectra are reconstructed separately. Second, piecewise direct 

standardization (PDS) and direct standardization (DS) were used to correct the differences of 

original spectra by transforming the reconstructed approximation and detail spectra, 

respectively, rather than a simple linear regression in SWD. This method was proved to be 

useful to remove baseline structure that varies between the calibration and test sets. In this 

research, the proposed method was applied to NIR data, and its performance was compared 

with that using conventional methods. The results indicated that combining PDS and DS with 

the wavelet multi-resolution technique, WHDS algorithm allows a more robust and reliable 

means for standardization as its robustness to high-frequency noise. The effect of the number 

of standardization sample sets was also discussed in this research, which would be the 

subject of chapter 3 in this dissertation. 

Wavelet packet transform (WPT) derives from WT (Walczak and Massart 1997). 

WPT allows a full multi-resolution analysis and dj (reflects the high-frequency information 
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contained in the original data set at the jth level) is also involved at the same time to produce 

the scale and wavelet coefficients at the next resolution level. The discrete WT (DWT) is 

generalized in the WPT procedure to provide a more flexible tool for analytical data analysis. 

6) Neural Network (NN) 

Nowadays, ANN is commonly known as a non-linear multivariate calibration 

method, although satisfactory results could also be obtained if the unknown relationship is 

actually linear. It has been applied to many situations that involve problems of prediction, 

classification or control. ANN has great ability to construct a relationship between two sets 

of variables as spectra collected from two spectrometers. ANN possesses the flexibility due 

to the distribution of information among multiple weighted connections and nonlinear 

processing units of the network. On the other hand, this flexibility can become a weakness if 

these parameters are not optimized. ANN is particularly subject to over-fitting depends on 

the setting of parameters. Therefore, the error goal of the training of neural networks should 

be carefully chosen to avoid both under and over training.  

When it comes to instrument standardization, the task is to model output variables 

from input variables in order to correct spectral differences. The problem of using ANN for 

standardization is the number of standardization samples is usually not large enough to 

estimate the parameters in ANN modes, which leads to over-fitting problems.  

Without enough samples in training set, Duponchel et al. (Duponchel, Ruckebusch et 

al. 1999) tried to use ANN for standardization by containing as many input neurons as 

wavelengths on the secondary instrument spectra and as many output neurons as wavelengths 

on the master instrument spectra. To solve this problem, the number of links was reduced and 



44 

 

 

 

a moving window based method was created to relate to a window on the secondary 

instrument. In this study, a multilayer perceptron, with forward propagation of activation and 

back propagation of error was implemented for the correction of the spectral data. Compared 

with other conventional standardization methods as the patented Shenk algorithm, DS and 

PDS, ANN gave slightly better results than PDS and showed the smallest SEPs. Although, 

the small differences in SEP between ANN and PDS may not be significant, ANN showed its 

correction ability by comparing the difference spectra before and after the correction. 

However, with this method, ANN models were built as many as the spectral window and 

many parameters to be optimized through the experimental design. It is worth to note the 

importance of the optimization of adjustable parameters. Neural network behaviors are very 

sensitive to the error defined to stop the training and avoid over-fitting. 

In order to resolve the inharmonious facts between the requirement of a large number 

of training set and a low number of standardization samples, Despagne et al. (Despagne, 

Walczak et al. 1998) proposed to truncate spectra in finite-size windows and assess a position 

index to each window. With the similar window based concept, each spectral window was 

considered as a separate standardization sample and one global model was built for all 

spectral windows. The procedure to avoid local over-fitting was to determine the number of 

epochs by an independent monitoring set, which can be built with all spectral windows of a 

representative sample. New external samples collected on the secondary instrument were 

corrected by the connection weight of the monitoring set. No additional background 

correction was needed in contrast to PDS due to the ability of model different types of 

baselines in NNs. Six different secondary instruments were used in this study for 
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standardization using both NN and PDS for comparison. The effect of the subset selection by 

five different methods was also examined, which indicated that the NN approach is 

extremely sensitive to the standardization samples selected. This would be further discussed 

in the section of standardization samples below. In this study, calibration results on 

transferred spectra (RMSEP) were suggested to be an evaluation of the quality of 

standardization instead of the transfer residuals. The reason was that the authors illustrated 

the possibility of the amplitude of differences between two instruments caused by 

background noise (stray light) rather than the differences on a calibration models. The 

calibration results displayed better performance of NNs than PDS. However, the authors 

claimed both NNs and PDS had their merits, while NNs performs better when there are stray 

light, cell path-length and wavelength changes. 

Moreover, studies were conducted to combine WT and ANN (Aminian and Aminian 

2000; Chalus, Walter et al. 2007) for a data compression purpose. The wavelet coefficients 

obtained by decomposition were used as input variables for constructing ANN models with 

limited numbers. Another incorporation is a feed forward neural network based on wavelet 

transform called wavelet neural network (WNN) (Balabin, Safieva et al. 2008). WNN uses 

wavelet functions instead of the traditional sigmoid function as its transfer function in each 

neuron. Therefore, this network poses the advantages of both the wavelet transform in de-

noising, background reduction and recovery of characteristic information and the flexibility 

of neural network. 

7) Orthogonal Signal Correction (OSC) 
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Originally developed as a method for spectral preprocessing, it was proposed by 

Wold et al. (Wold, Antti et al. 1998) to remove systematic noise such as baseline shift and 

multiplicative scatter effects without eliminating any information related to Y matrix 

(reference information). The objective of this method is to calculate a weight vector w that 

satisfies  

 t = Xw   (0.46) 

to be orthogonal to Y, where t refers the PC scores. The corrected score matrix T is then used 

to construct the PLS models. Compared with other preprocessing methods such as MSC, 

SNV, OSC tends to use less PLS components and complexity in calibrations (Blanco, Coello 

et al. 2001).  

An alternative algorithm was proposed  (Fearn 2000) to substract from X factors that 

gives rise to increase the correlations between the scores and Y. When applied to the training 

data set, the first f factors are removed from X: 

 
1

f
T

i i

i=

= −∑0
X X t p  (0.47) 

where ( )T T

i i i ip = X t / t t  denotes the vectors of loadings. The loading weights are applied to 

0X  not X, so the scores will be more strongly correlated with Y due to the removal of the 

unrelated information.  

OSC has also been applied to calibration transfer between instruments (Sjöblom, 

Svensson et al. 1998). For standardization, OSC is aimed to exclude unrelated vectors to the 

factor of interest y vector. After preprocessed by OSC, spectra could be more transferable 

due to the removal of the instrument signatures and less dependent on instrumental 
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variations. In this algorithm, PC score vector t was first centered and then orthogonalized to 

y: 

 
'

'

y t
t = t - y

y y
⊥  (0.48) 

Then add the average t: 

 *

^t = t + tt  (0.49) 

 The loading vector w is calculated by 

 *' *' *w = t X / (t t )  (0.50) 

Then scale it to the unit length: 

 'w = w / w w  (0.51) 

The last step is to create a new t vector from vector w  using equation (2.29). It is notable 

that the slight difference between this algorithm and the one in the previous research (Wold, 

Antti et al. 1998) is this is an iterative procedure for finding a vector of scores t . Calculation 

repeats until *
t becomes stable. New spectra were corrected by removing the OSC-

component by using the loading p  

 '

OSCX = X - tp  (0.52) 

In comparison with other signal correction methods before calibration, OSC modeled with 

nearly 100% variance in the first component. By including corrected spectra of training set 

obtained on both instruments, a PLS model was built to predict corrected spectra of 

prediction set collected on both instruments. The results showed lower RMSEP. This might 

be because that by including samples from both instruments, the PLS-model tends to 

compensate for the instrumental variations. The problem here is that samples need to be 
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measured on both instruments. Another factor of effect that is worth to note is the number of 

OSC components. In this research, two OSC-components were required to make a difference 

from the MSC treated model. However, excessive use of the OSC components would lead to 

identical spectra and over-fitting. 

Orthogonal projections to latent structures (O-PLS) was proposed as a preprocessing 

method to remove variations from X that are uncorrelated to Y , which is the same goal of 

OSC (Trygg and Wold 2002). Instead of removing the orthogonal signal from the PC score 

matrix (t) prior to calibration development, the O-PLS method removes the orthogonal 

information from the PCs calculated by PLS. Then develop a calibration model on the 

reconstructed X matrix. O-PLS should have some advantages over OSC such as the 

improvement on outlier detection and calculation efficiency due to no time-consuming 

internal iteration process. The results of the comparison between an original PLS model and 

PLS model built on O-PLS matrix showed better interpretation of PLS models, less 

complexity and prediction performances. As an effective preprocessing method, O-PLS was 

proposed to be combined with ANN (Wang, Liu et al. 2009) for input dataset. O-PLS treated 

data was used as input variables for ANN models instead of the original data set. Compared 

with first and second derivative spectra, O-PLS pretreated spectra lead to calibration models 

with the best prediction performance and more efficient in calculation. 

Based on the theory of OSC, a series of related versions were developed for spectral 

correction before standardization. In the area of calibration transfer, a method called transfer 

by orthogonal projection (TOP) was proposed for deriving robust and transferable 

calibrations for various instruments (Andrew and Fearn 2004). The scheme of this method is 
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to orthogonalize the spectra to directions that are most related to instrumental variations. It is 

the information on between-instrument variations that was used to remove this variation from 

the spectral data. A small number of standardization samples were scanned on each 

instrument. Then average over samples to obtain a matrix R and PCA was performed on this 

matrix to get the directions of instrumental variations.  Orthogonalize X to the PC score 

matrix and the projection of X is calculated by: 

 TX = X - XPP%  (0.53) 

where P is the matrix of orthonormal eigenvectors of R. Then, X% was used to construct the 

calibration models. Compared with the application of OSC on calibration transfer, TOP uses 

the extra information (instrumental variations) from standardization set to remove exactly 

those dimensions that interfere with the transfer. TOP requires a standardization set of 

samples measured on multiple instruments, which may not be realistic in practice. With the 

same approach applied on eliminating variations caused by temperature, external parameter 

othogonalisation of PLS (EPO-PLS) (Roger, Chauchard et al. 2003) was suggested to cope 

with cases with immeasurable variations like on-line analysis. This research gave a broader 

scope of this method for many other applications such as making calibrations robust to 

humidity or path-length variations. 

Thereby, a new method called dynamic orthogonal projection (DOP) (Zeaiter, Roger 

et al. 2006) was developed to improve the robustness of NIR calibration for on-line 

applications. Since there are so many unknown influence factors (most are unexpected) 

during the on-line process, it was expected to compute an orthogonal correction on the 

original spectral data of some virtual standards created by a kernel function. In calibration 
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transfer, virtual standards spectra were created by estimating Xτ as a linear combination of 

0X : 

 0
ˆ ( )
τ 0X = AX ij i jwith a Fy yτ=  (0.54) 

where i
Fyτ is a kernel function centered on i

yτ . Then a difference matrix ˆD X Xτ τ= − was 

calculated, which was used to estimate an orthogonal basis P (similar to TOP). The 

reconstructed X was calculated by equation (0.55) and used for calibration. In this case, this 

method should be able to handle different kinds of perturbations. DOP does not require 

standardization samples to be scanned on multiple instruments and gave rise to more 

flexibility for on-line applications. 

Among these orthogonal projection methods, OSC and O-PLS are the first kind of 

approaches that remove factors unrelated to Y matrix from X matrix. Loadings of these 

factors are substracted from the X matrix before calibration. Every standardization sample 

need to be scanned on multiple instruments and orthogonalized. The other kind of orthogonal 

method includes TOP, EPO-PLS and DOP, which estimate the external parameters and 

removes them from the X matrix. In this case, only a set of standards are needed to estimate 

the differences caused by external factors.  

These orthogonal methods as well as their modifications and extensions were 

compared for their performance of standardization in a case study of whole soybean protein 

and oil models (Igne, Roger et al. 2009). A network of four instruments from two brands was 

tested for inter- and intra-brand calibration transfer by using orthogonal projection 

techniques. Whole soybean samples collected from four crop years were used as calibration 
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set, and two distinctive validation sets included 20 samples selected over years and 40 

samples from the latest year. A set of 20 standardization samples was created by randomly 

selected from the calibration set just to check the concentration range that covered the 

remaining samples. PDS, slope and bias and exhaustive calibration models (included spectral 

data from two different brands of instruments) were used to compare with the transfer 

performance of these orthogonal methods. Calibration models built on spectral data of its 

own were used as benchmark for comparison.  As the results for intra-brand transfer, there 

were no significant differences among the results obtained by different methods. Many of 

them reached better precision than their original models. The improved performance on the 

secondary instruments demonstrated the benefits of removing unrelated information of the 

instrument variations. As for the inter-brand transfer, the performance between the two 

master instruments showed no significant results on validation set 1. TOP and EROS 

provided similar results to the original model with other methods significantly less precise. In 

comparison with these classical standardization methods for intra-brand calibration transfer, 

the best performance obtained by orthogonal method was OSC, which is comparable to the 

exhaustive calibration models and simple slope and bias correction. As the authors state, the 

choice of transfer samples might be responsible for the present situation. Thereby, the best 

option might be choosing standardization samples that optimize orthogonal methods.  

1.4.7 Selection of standardization samples 

Most multivariate calibration methods for standardization require a set of 

standardization samples to be measured on multiple instruments. In order to establish the 
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transfer parameters for standardization, the standardization samples need to be representative 

to the entire experimental domain and stable enough between the situations in which the 

standardization is performed. (Burns and Ciurczak 2007). The two main approaches for 

selecting standardization samples are selection of a representative subset of standardization 

samples from the original pool and the use of independent standardization samples. For 

unstable samples, independent standardization samples are needed for standardization (Park, 

Ko et al. 2001). Selected representative subsets were used for calibration transfer in this 

research given the characteristics of the NIR network and agricultural samples we worked on. 

 Approaches for sample selection have been reviewed in the previous section. These 

approaches are mostly discussed on how to partition the training and test sets (Ferré and Rius 

1996; Daszykowski, Walczak et al. 2002; Galvao, Araujo et al. 2005). However, little 

attention has been paid to select the proper standardization samples for calibration transfer. 

As the set of standardization samples does impact on the performance of calibration transfer, 

the choice of standardization set need to be studied associated with the standardization 

methods applied. Unlike dividing samples into training and test set, the essence of 

standardization samples is to represent the instrumental variations, while other source of 

differences caused by external factors should be minimized. Thereby, in order to be scanned 

on multiple instruments, samples need to be stable and less subject to variation and error 

which are not interest within the calibration model. With these constrains, different kinds of 

samples could be used for standardization. If samples are considered to be stable under 

regular conditions over a period of time, then the standardization set could be selected from 



53 

 

 

 

the original data pool. For those samples that are hard to be stored, generic standards or 

resembled chemicals are options for standardization set.  

To test the effects of different standardization samples on calibration transfer, 

Bouveresse et al. (Bouveresse, Massart et al. 1994) conducted experiment on three different 

sets of samples: samples in calibration set which were similar to agricultural samples, generic 

standards and the mixture of pure organic and inorganic chemicals. Sample spectra measured 

on the secondary instrument was transferred to the primary system using classic Shenk’s 

patent method (Shenk and Westerhaus 1989). The first set of 30 agronomic samples showed 

the best results of standardization. Even the second and the third sets had larger optical 

density than the first set, they did not perform better than the first one. The shift of the mean 

spectra between different instruments of the first set showed its smaller instrumental 

differences than other sample sets. This attracted our attention to the presence of systematic 

bias that proved the importance of the selection of standardization samples. The systematic 

bias (constant shift) is independent to the wavelength and could be removed by the derivative 

spectra. Several hypotheses were proposed to explain the presence of the bias, which were all 

related to external variations such as the change of products over time, contributions of the 

cells and the temperature fluctuation. This research indicated that the standardization samples 

should be of the same nature as the prediction set, and be measured under the same condition 

including sample presentation, temperature and simultaneousness as much as possible. 

Two different types of standardization samples could be either selected from the 

calibration set or prediction set. Selecting samples from the calibration process, 

standardization samples would have the same nature as the calibration samples. Different 
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sample selection approaches are applied in this step during calibration transfer process. 

Choosing samples with the highest leverage (Wang, Veltkamp et al. 1991) was employed to 

select standardization samples when the authors firstly proposed piecewise direct 

standardization. Moreover, Kennard-Stone algorithm(Kennard and Stone 1969) is a 

commonly used selection method for selecting standardization samples. 

The criterion for a successful standardization is for the average RMS(C) for the test 

samples between each pair of instruments to be equal to or less than that between re-packs on 

the same instrument (Dardenne and Biston 1991). It was demonstrated improvements were 

obtained with less selected representative samples in the subset using PDS (Bouveresse and 

Massart 1996). In this research, the influence of the subset size and three selection methods 

were examined. The results showed better performance of the subsets with representative 

samples that covered the entire experimental space. Better standardizations were achieved 

with increasing number of standardization samples regardless of the selection methods. 

To select the most representative subset for calibration standardization, several 

algorithms were compared along with specific calibration transfer methods. Siano et al. used 

three algorithms (Kennard- Stone, Leverage and OptiSim (Clark 1997)) to select 

representative subsets for standardization  (Siano and Goicoechea 2007). RMSEP decreased 

first then increased with increasing numbers of selected samples. The subset with 20 samples 

selected by OptiSim obtained the lowest RMSEP for calibration transfer using PDS. This 

study also compared the transfer performance of three different standardization methods: 

direct standardization (DS), piecewise direct standardization (PDS) and wavelet hybrid direct 
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standardization (WHDS). Using the optimal subset selected by OptiSim, WHDS improved 

the secondary spectra after standardization significantly. 

With the purpose of reducing the number of samples, the comparative analysis using 

restructured near infrared and constituent data (CARNAC) was applied for quantitative 

analysis of biscuit dough (Davies and Fearn 2006). In this method, it is assumed samples 

with the same spectra should have the same composition. The assumption stands when the 

database is large and possibly contains all variations of prediction samples. By a selection 

procedure, samples that are similar to the prediction samples are selected from the database. 

Data compression and modification are required to stress the factor of interest. The best 

RMSEP was obtained by the optimized program. The limitation of this type of selection 

methods referred as “local” method including CARNAC, LWR and LOCAL (Pérez-Marín, 

Garrido-Varo et al. 2005), is the original database need to be large enough to accumulate 

variations over time and space, which is not always possible in practice.  

Roussel et al. (Roussel, Hardy et al. 2001) used different calibration sets for 

calibration transfer of genetically modified grains (GMO). With a larger database (8180 

scans), the accuracy of classification was improved by at least 10 percentage points for PLS 

models and 6 percentage points for ANN models. The results showed no improvement of 

accuracy reached by SNV or PDS, which indicated more inclusive standardization set would 

be needed. 

Even using the same Kennard- Stone algorithm for sample selection, different subsets 

could be obtained by whether starting the first point from the center of the experimental 

space. Compared to PDS, neural networks (NNs) is extremely sensitive to the selection of 
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standardization sets (Despagne, Walczak et al. 1998). For standardization with NNs, it is 

suggested to identify and include the central point first, then add each new sample to 

maximize the Euclidean distance when using KS. 

Selecting samples from the prediction set extends the representativity of the 

standardization set with new source of variability from the prediction set (Bouveresse and 

Massart 1996). However, this approach would only apply to the situation when the prediction 

samples are available before building the calibration models. Because standardization 

samples are needed to be measured under the same condition as the calibration samples. 

Thereby, it could not be applied to calibration update. 

A diagnostic tool (Jouan-Rimbaud, Massart et al. 1997) was developed for 

determination of representatives of standardization and calibration data. Two statistical 

methods were proposed. One is to compare the variance-covariance matrices to determine 

whether the two data sets have similar volumes both in magnitude and direction; the other is 

to compare the data set centroids by computing the Mahalanobis distance between the means 

of each data set. Another simple and straight way could be examine the direction of PC 

scores. 

Agricultural products are very complicated substances with oil, protein, moisture and 

carbohydrates present in various combinations. They are not perfectly stable over several 

years, but they can be used as standardization samples due to their stability over the space of 

a certain amount of time under a proper storage conditions (Burns and Ciurczak 2007). 

Thereby, the main focus of this study is selection of subset samples from a large population 

accumulated over the past ten years. 
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1.4.8  Number of standardization samples 

There is no criterion to define the exact number of standardization samples needed to 

perform a calibration transfer successfully. The optimal number of standardization samples 

varies case by case in practice. However, the set of standardization samples does make a 

difference during the calibration transfer process.  

In a more recent study, a calibration transfer method called spectral regression (SR) 

was proposed (Peng, Peng et al. 2011). With comparison to the classic standardization 

method PDS, spectral regression method created the subspace variables to associate with the 

transformation matrix. The effect of the number of subset samples on different calibration 

transfer methods was also evaluated by examining subsets selected using KS algorithm. 

While the performance of PDS was less sensitive to the change of numbers in standardization 

sets, SR gave better result when standardization samples were sufficient.  

1.4.9  Temperature standardization 

In agricultural and food products, water is an essential content, which has an 

important impact on the NIR spectra due to its absorptions. Also, the NIR spectrum of water 

is very sensitive to temperature. This is because the weak forces influence the molecular 

bonds such as hydrogen bonding, which could be mostly affected by the change of 

temperature. Moreover, the overlapping bands at 1450 and 1930 nm of water bands only 

make the changes more complicated. Details on the spectral changes and hydrogen bonds 

could be found in reference (Maeda, Ozaki et al. 1995). The effects of hydrogen bond and 

sample temperature were examined for the reliability of NIRS results (Büning-Pfaue 2003). 
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In NIR spectra, a temperature raise will increase the probability of molecules transfer 

to a high energy level, which means more radiation is absorbed and less is reflected. The 

increased sample temperature raises the vibration energy between the molecules so that 

molecular bonds, especially the hydrogen bonds break. Accordingly, the clusters of the water 

molecules become smaller and the absorbance of the free hydrogen bonds increases. In 

correspondence, the reflectance decreases, while the absorbance increases with increasing 

temperature. In Figure 7, soybean spectra scanned at three different temperatures (5, 22 and 

45°C) were plotted. Increasing absorbance at the water peak at 970-980 nm wavelength 

regions was observed with higher temperature. 

Spectra at different temperatures
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Figure 7. Soybean spectra taken at different temperatures  

It has been found in the early 1980s that the effects of temperature on NIR protein are 

responsible for the differences discovered between Federal Grain Inspection Service (USDA-

FGIS) Laboratories. Williams et al. (Williams, Norris et al. 1982) developed a method to 

correct the temperature of grounded wheat samples to room temperature. The calibration 
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model was built on samples from all temperature ranges. The authors indicated that the 

temperature effect was not associated with significant slope change of the calibration 

equations. Thus, it could be corrected by means of intercept adjustment. An inverse 

relationship was found between temperatures of ground samples and their corresponding 

apparent protein contents.  Several methods were suggested to compensate for the differences 

caused by temperature fluctuation. One method is to select temperature – independent 

wavelengths that are least sensitive to temperature fluctuations (Wulfert, Kok et al. 2000). A 

second approach is to analyze samples at the same temperature at which the calibration was 

developed. This is hard to implement in reality when samples are not scanned at the same 

time. The third suggestion is to develop a temperature compensation factor using a 

correlation chart (Kawano, Abe et al. 1995). An approach called K-method was developed 

based on a sample combination to reduce the bias caused by changes of temperature with 

calibration equation. The applicability and universality were demonstrated on chemical 

components of sucrose, fructose and glucose (Abe, Iyo et al. 2000). Selected wavelengths 

were used to estimate the effect of the deviation of sample temperature on the bias. Bias 

could be reduced by selecting adequate wavelengths for calibration, which could not always 

achieved by MLR. This study gave mathematical and theoretical analysis of K-method and 

proved its applicability. However, the situation of spectra change due to temperature 

fluctuation in real agricultural products is more complex than pure or mixture of chemical 

solution, which needs further study.  

Temperature compensation techniques are mainly discussed in this study. NIR 

calibration procedure involves developing a base calibration followed by the addition of 
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samples to the base calibration for instrument stabilization and temperature stabilization.  

The same procedure could be used to validate the stability of existing calibrations to 

differences in sample temperature.  Instrument temperature is usually controlled by heating 

and cooling circuitry within an instrument. The goal is to stabilize sample temperature effects 

in new NIRS calibrations and/or to test the stability of calibrations to sample temperature. 

The effect of temperature on spectral information could be visualized in the PC scores plot 

(Figure 8). Same temperature samples were scanned at different temperatures. Cold and 

warm samples tend to have its own clusters, whereas cold samples on the right with positive 

scores on PC 1 and warm samples have negative ones. 

 
Figure 8. Principal component score plot on preprocessed soybean spectra (second derivative, SNV 

and DT) scanned at different temperatures 

Wang et al. (Wang and Kowalski 1993) demonstrated that with some modification of 

PDS, it is possible to standardize between discrete responses like temperature. The 
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differences of corn spectra collected under different temperatures were compensated after 

standardization, which was far large than the sample-to-sample variations without 

standardization. Moreover, with more standardization samples (9 compared to 4) included, 

the differences among spectra were further reduced. Significant improvement was found in 

SEP of content B due to information recovers by temperature correction. However, for grain 

products, there are possibilities of experiencing cold and hot temperature depends on the 

weather during handling process in North America. The cold condition, sometimes frozen 

samples need to be examined too. 

It was observed that the effect of temperature fluctuation on NIR reflectance spectrum 

is non-linear (Smith and Gemperline 2000). Peirs et al. (Peirs, Scheerlinck et al. 2003) 

studied the temperature effect on spectral data and calibration models were examined on 

apple fruit soluble solids contents. The experiments showed the temperature have influences 

on the pattern of the spectra, which was useful for predicting the temperature of an individual 

samples. Two kinds of models were built: temperature dedicated models (built on samples 

collected at each temperature separately; global temperature models (include samples 

collected at all different temperatures. As for the effect of temperature-induced spectral 

variations, prediction performance of calibration models was assessed. Dedicated 

temperature calibration models were sensitive to sample temperature deviations. It is less 

accurate to validate a calibration model at a different temperature as it was developed than 

interpolated results. On the other hand, the global temperature models yielded more accurate 

results, which were even better than the calibration models developed at the same 

temperature of the validation set. Building one global temperature model is more practical, 



62 

 

 

 

which treats temperature as an unknown variable. This enables the global model robust to 

temperature changes and certain measurement deviations for future prediction. Another 

advantage of the global model is it is not necessary to know the exact values of the 

temperature, which is the case in most common case. The only problem is the unknown 

deviation of prediction temperature from the calibration temperature. There would be no 

universal solution, but only case by case studies on sample properties, handling conditions 

and any other environmental factors.  

The global robust temperature calibration model was also built on protein and fat 

contents for a complex food model system (Zhang, Chang et al. 2010). This study focused on 

the optical mechanism of temperature effect on spectral measurement and its adverse effect 

on calibration models. In terms of optical properties, no distinct variation on absorption 

coefficient was observed, while scattering coefficient decreased with increasing temperatures 

in the whole spectral region. This is due to the decrease in diameter and volume fraction of 

fat globules that reduced the scattering. Also, with a wide melting range, fat fully melted at 

40 ℃. Thus, the state of fat changed that lead to a significant decrease on scattering 

coefficient as the temperature gets near to the melting point. To correct the temperature 

effects on optical measurement, the authors conducted an experimental design associate with 

the fat and protein concentrations of raw milk to ensure the uniform distribution with a wide 

coverage and independence between fat and protein constituents. This was achieved by 

adding whey protein concentrate and protein powder and oil mixture to adjust their 

proportions. The global temperature models were established on spectra obtained at different 

temperature and compared to four local models built at one specific temperature. The local 
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temperature models were demonstrated to be sensitive to temperature changes in terms of 

higher RMSEP compared to the global temperature models. When the exhaustive calibration 

sample set covers all the variations both of the response of interest but also of sample 

temperature, a global temperature model is suggested to improve the calibration robustness to 

temperature fluctuation. The difficulty for its application is that design of experiment is not 

always possible for agricultural products.  

External Parameter Orthogonalisation of PLS (EPO-PLS) was introduced as an 

standardization method in previous section (Roger, Chauchard et al. 2003). EPO was 

presented as a preprocessing method that removes the information in spectra that are mostly 

influenced by the external parameter variations as temperature of products or spectrometer. 

Meanwhile, it also reduces the space dimensionality with regard to external parameters. 

There are two ways that could serve this purpose; one is to find the subspace that orthogonal 

to Y, the other is to find the subspace in which the influence of external factors occurs. EPO 

belongs to the second way. Experiment was conducted on measurement of sugar content of 

apple. Results of prediction bias obtained by model developed at 25 ℃ were linearly varied 

with temperature levels without any correction. EPO preprocessing reduced RMSEP 

significantly with optimal parameters selected for the algorithm. The advantages of this 

method are only a small set of appropriate samples are required to be measured at different 

temperature levels and its feasible application to any existing calibrations. 

Various paper described temperature compensation methods and their application on 

different samples and systems. However, the effect of temperature on the accuracy of protein 
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and oil measurements of grains bases on NIR transmittance spectroscopy has not been 

addressed so far. 

1.4.10  Noise robustness 

Differences among replicate measurements of the same sample spectra reflect the 

within sample variability sources of the NIR spectra. This could be ascribed to a high-

frequency component usually known as the instrumental noise and a low-frequency 

component due to the differences in the specific nature of samples (Foca, Ferrari et al. 2011). 

Several papers in the literature suggest different strategies for denoising of NIR spectra in 

terms of instrumental noise, there is no previous knowledge regarding the low-frequency 

component of variance signals associated with sample properties.  

Many researches have been conducted to minimize instrumental noise and its effect 

on calibration models. Several spectral preprocessing techniques are developed to serve this 

purpose. Study shows that standard normal variate (SNV) preprocessing was very efficient in 

improving robustness for certain types of noise (Roussel, Igne et al. 2011). SNV eliminated 

multiplicative and baseline shift noise as well as wavelength shifts and improved model 

robustness for all calibrations developed by different regression methods. 

To build a calibration model against noise, strategies were developed by adding noise 

simulation to spectral data (Sáiz-Abajo, Mevik et al. 2005). Spectral noise could be attributed 

to external perturbations such as temperature fluctuation that may cause a systematic error 

and instrumental difference collected at different session that lead to random errors. Six 

different noise simulations were applied to spectra of wine samples. The proposed ensemble 
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method and data augmentation process improved the predictive ability of model significantly 

with reduced number of samples included. Similar data augmentation method was applied in 

pharmaceutical research for active ingredient prediction (Pieters, Saeys et al. 2013). In 

practical application, a large amount of variations come from various batches that do not 

correspond to the factor of interest. Artificial noise augmentation was obtained by adding the 

mean-centred spectra of unknown chemical variation to n repetitions of the original 

calibration spectra. Prediction performance was improved with reduced variability in 

calibration set.  

1.4.11  Robust calibration models 

Building a global robust model has been a common approach to incorporate external 

variations that are not the factor of interests in the calibration model. In recent years, 

compared to building a global robust model, techniques based on variable selection are also 

proposed to develop robust calibration models with the presence of external variations. The 

essence is to select spectral variables that are insensitive to external variations, which has 

already been applied to deal with temperature fluctuations. In this case, spectral regions that 

are related to factor of interest but highly involved with external influence, not linearly or 

indirectly related to factor of interest are excluded before calibration procedure. Various 

variable selection methods are developed to serve this purpose, such as simulated annealing 

(SA) (Kalivas, Roberts et al. 1989), genetic algorithm (GA) (Lucasius, Beckers et al. 1994), 

interval partial least squares (iPLS) (Norgaard, Saudland et al. 2000), uninformative variable 

elimination (UVE-PLS) (Cai, Li et al. 2008), and newly proposed method for key wavelength 
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selection using competitive adaptive reweighted sampling technique (CARS) (Li, Liang et al. 

2009). It is worth to note that since the number of variables is significantly reduced after 

selection, the risk of over-fitting should be avoid due to degree of freedom lost in the 

selection. 

Basic concepts of robust techniques were reviewed in Ref. (Daszykowski, Kaczmarek 

et al. 2007). Those fundamental concepts of robust statistics help one to optimize the 

calibration procedures including outlier detection, examination of covariance and correlation 

matrices and leverage and Mahalanobis distance, all of which enhance the understanding of 

the experimental data before calibration models are actually constructed. 

Research (Swierenga, Wülfert et al. 2000) using simulated annealing (SA) for 

variable selection was conducted to compare this technique with global models in the 

presence of continuous temperature change. Separate models were built using calibration 

samples measured at various temperatures. With only 10 and 25 wavelength points selected 

by SA for the mixture of chemical samples and density of high oil products respectively, 

RMSEP were comparable or even better than the global models using the whole region of 

200 data points. Results of using SA were also compared with that of UVE-PLS, eliminates 

variables from PLS models by judging a criterion based on regression vector. SA variable 

selection model performed significantly better than the UVE-PLS model with respect to the 

prediction error at different temperatures. The disadvantage of SA is that it requires special 

expertise to tune parameters as PLS factors, the number of variables selected and length of 

Markov chain to obtain optimal prediction, which could be less accessible than global models 

for commercial application. NIR calibration robustness was examined on the internal quality 
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attributes of mandarin fruit as its total soluble solids (TSS) and dry matter (DM) (Guthrie, 

Reid et al. 2005). Robustness was tested across changes in terms of season, locations and 

time.  

Zeaiter et al. (Zeaiter, Roger et al. 2004) reviewed different definitions of the concept 

of robustness and methods that are applied for evaluation, especially with the application of 

NIR in industry. The authors adopted the definition of robustness of a multivariate calibration 

model as “the stability of its predictive capacity against perturbations centered on standard 

conditions”. In the literatures, robustness is often associated with terms as accuracy, 

precision and uncertainty. The accuracy of the test of NIRS calibration is composed of the 

total variance defined by SEP: 

 2 2 2 2
r NIR e

SEP S S S= + +   (0.56) 

Where Sr is the repeatability of the reference method, SNIR the repeatability of the NIRS 

method and Se is the lack of fit of the calibration model. True accuracy is unreachable, which 

requires removal of error in reference method, usually wet chemistry method in NIR models. 

But it could be estimated by a bias value observed from long term operations. The term of 

precision describes random errors and usually is expressed as variance and standard 

deviation. It is indicated that good precision does not assure good accuracy in the presence of 

significant systematic errors. Uncertainty is related to accuracy that also describes the 

closeness of the values of experimental means to the true values. Uncertainty focuses on the 

range of the values evaluated from the statistical distribution of the results, but is not able to 

be used for correction of the results as errors.  
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Strategies for robustness assessment involve the use of a robustness test, which is 

defined as “An experimental study in which one evaluates the influence of small changes in 

the operating or environmental conditions on measured or calibrated responses”. The changes 

include different external conditions and instruments. Major steps of the robustness test 

(Swierenga, de Weijer et al. 1999) are selection of a representative subset of samples, 

external factors, factor levels, and experimental designs, prediction of the desired sample 

parameters and computation of the effects of the external factors on the model prediction 

error. Aimed at minimizing the objective function of prediction error, robust indices are used 

for robustness assessment, which include signal-to-noise ratio (SNR), response surface 

methodology, the robustness coefficient (RC) and root mean square error of prediction 

(RMSEP).  

It has been mentioned that preprocessing techniques provide improvement on 

calibration robustness by removing spectral variation not due to the parameter of interest as 

well as enhancing the wavelength selection for the parameter of interest. The robustness of 

multivariate calibration models could be increasing rapidly if the proper preprocessing 

methods are applied (de Noord 1994). Sometimes it may not necessarily improve the 

predictive ability, but the parsimonious of the model. The author applied multiplicative signal 

correction (MSC) to the second derivative spectra of heavy oil products. The results 

demonstrated decreasing in model complexity and increasing in variance modeled. The 

model was expected to exhibit more robustness. 

Ergon et al. studied on model choice and squared prediction errors (SPE) in PLS 

regression concerning residual and prediction consistency (Ergon, Halstensen et al. 2011). 
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One of the examples was to determine protein content in corn using NIR spectra with 

additional correction of prediction errors. Aimed at applying NIR spectroscopy to process 

monitoring systems, SPE caused by spectral process faults were added as y errors, which are 

persistent in industrial cases. The alternative non-orthogonalized PLS, bidiagonalization 

algorithms and re-formulation of the NIPALS algorithm were recommended instead of 

conventional PLS.   

In agricultural industry, NIR is also widely applied on animal feed for industrial 

quality control purpose with on-line measurements. Research was conducted to study robust 

preprocessing methods and model selection for spectral data of animal feed samples 

(Verboven, Hubert et al. 2012). The authors proposed robust versions of the most well-

known preprocessing methods such as standardization, first and second derivatives, MSC, 

SNV, detrending and smoothing techniques. A desirability index (DI) was created to evaluate 

the robust RMSEP, which is a one-number summary of a range of scores on different 

dimensions. Then, identify the robust model with the lowest RMSEP and the optimal number 

of latent variables. These parameters help to perform the model selection procedure in an 

automatic way and develop for routine use. It allows saving time and cost by simplifying the 

model development process in industry. 

1.4.12  Economic analysis 

NIR is an indirect technique that requires calibration based on the reference values 

from wet chemistry analysis, which is a considerable cost to users and calibration labs. The 

development of calibration on small datasets, maintenance and updating calibration only with 
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new samples that bring in variations provides a way to reduce the cost and energy on 

calibration efforts instead of recalibration. For quality assurance purpose, the total cost in the 

NIR measurement system should be considered without sacrificing analytical accuracy in 

real application. In the grain industry, sampling and sample evaluation enables the feed 

manufacturers to make interference about the quality of incoming grain and decision of 

purchase. Statistical and economic analysis should be applied to a quality program to 

determine sampling and evaluation performance in NIR system. 
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Abstract 

Near Infrared (NIR) calibration models for composition of biological materials are 

typically built from hundreds or thousands of samples over many years. To a point, a greater 

number of samples in the calibration provide more complete information. However, an 

extreme increase in the calibration set can lead to inadequate models. A large number of 

samples in Partial Least Squares (PLS)-based NIR models can reduce the prediction accuracy 

due to the over-inclusion of noise.  Collecting large numbers of reference values by chemical 

methods is expensive. The development of a pre-selection routine for representative samples 

in a calibration is required to improve cost efficiency whiling maintaining robustness. Our 

goal for this paper was to identify samples contributing useful information to the calibration 

model, while eliminating redundant samples. Our case study is the calibration of soybean 

moisture, protein and oil, using a long term database (2001 crop through 2010 crop) 

containing more than 8,000 spectra plus references for moisture and 1,300 spectra plus 

reference for both protein and oil. We compared uniform random, Kennard-Stone algorithm 

and D-optimal method for selecting calibration samples for a PLS model. We made the 
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assumption that non-linear modeling was not necessary in this case. It was identified that 

reliable NIR calibration can be obtained based on few representative samples (n ≈ 100) by 

significantly reducing more than 98% of the original moisture data set and 90% of the protein 

and oil calibration set. Sample selection methods achieved the optimal subsets with about 

400 spectra (7%, 32% and 40% of the original data for moisture, protein and oil, 

respectively), which were then used for calibration. All the samples from 2010 were used as 

the independent validation. Models built on the selected subsets provided equal or lower 

standard error of predictions (SEPs) of 0.14%, 0.53% and 0.54% for moisture, protein and 

oil, respectively when compared with the prediction results of models using the complete sets 

of calibration samples. 

Keywords: sample selection; calibration optimization; near infrared spectroscopy 

Introduction 

The optimization of multivariate calibration models for near infrared spectroscopy 

(NIRS) is an iterative process searching for an optimal matrix with the most informative 

variables and samples for modeling with least additional noise. Variable selection studies 

have excluded irrelevant wavelength ranges of spectral data for partial least squares (PLS) 

regression. Methods that have improved the prediction performance of calibration models 

include the regression coefficients [1], interval-PLS [2], multi-objective genetic algorithm 

(GA) [3] and uninformative variable elimination (UVE) [4]. Few studies have reported on 

selection of calibration subsets from a larger data pool. The number of samples that could be 

used in calibration has increased steadily over time with reference of sample acquisition and 
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data analysis. However, along with the development of the technique of instrumentation and 

the accumulation of the database of samples, the complexity of calibration has increased. 

Increasing spectral resolution increases the number of data points, which are not all directly 

relevant to the factor of interest. In the past decades, the meaning of “large data” has changed 

substantially in terms of both the number of observations (n) and variables (k). Large 

volumes of data (n>500, k>200) demonstrate inadequacies of multivariate calibration 

methods in both efficiency and interpretability [5]. When dealing with a large data set, it may 

be undesirable to include the whole data set in the calibration. Although more samples may 

provide more information that can reduce over fitting the model, redundant samples also 

increase the risk of adding more noise than information. When the number of samples is 

considered to be large (n>6k) compared to the number of variables, sample selection can help 

identify the most representative samples with diverse properties capable of creating a robust 

model. A smaller but more representative sample set would also increase the cost efficiency 

of the calibration model. Going forward, if the properties most responsible for making a 

sample “representative” can be identified in advance, costly reference chemistry can be 

saved. Ideally, only representative samples should be sent for reference chemical 

measurement.  

Currently, three criteria are used for sample selection [6]. These include: (1) samples 

selected for calibration must contain all of the y and x variance expected in future prediction 

analysis. This means the range of variation in the concentration should be at least as wide as 

future prediction samples; (2) the samples must have uniform distribution of chemical 

components over their total range; and (3) a sufficient number of samples should be selected 
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to statistically define the relationships between the spectral variables and the component 

concentrations or properties to be modeled. This ensures that the future analyses involve 

interpolation or extrapolation of the model. For some simple mixture products, it may be 

possible to prepare calibration samples to meet these criteria. For complex and natural 

products, it is difficult if not impossible to obtain a statistically ideal calibration set by 

controlling the compositions of samples in advance. Although these problems pose 

restrictions on the successful selection of a calibration sample set, they have received less 

attention than the topic of variable selection in the literature.  

Previous studies have examined numerous feature selection methods for a 

representative calibration sample subset, but no generally accepted approach exists [7, 8]. 

Furthermore, these studies were based on small data sets of less than 1,000 original samples. 

Incorrectly, the rest of the samples after selection were used as validation sets. After selecting 

influential samples into calibration set, the remaining sample set represents a narrower range 

of variation and is no longer representative. Samples held from a larger pool automatically 

have variance correlated with the larger pool. Using such a validation set may result in 

optimistic prediction and optimization. Although larger databases have become available in 

the last several years, a common sample pool of sufficient size to validate the models has 

been lacking. Currently, there is no procedure to estimate the number of samples that should 

be included in calibration sets for the best possible future prediction.  

The goal of this paper is to (1) choose the representative samples that cover the whole 

experimental region; (2) identify the optimal number of calibration samples and sample 

selection procedure to construct robust calibration models; (3) compare three sample 
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selection algorithms in order to remain or improve the precision of calibration models built 

on data subsets from NIR transmittance measurements on whole soybean samples. In the 

present study, three approaches (uniform random selection, Kennard-Stone algorithm [9] and 

D-optimal method [10] ), all based on multivariate statistics, were compared to select 

representative samples and to identify the optimal calibration set size for soybean sample 

spectra collected over the past ten years. With uniform designs, samples are selected 

uniformly distributed over the data space. The Kennard-Stone algorithm is commonly used in 

many applications. We investigated the effect of the number of samples in calibration sets on 

the prediction performance of calibration models. D-optimal criterion is based on the 

multivariate regression and experimental design. These methods were evaluated on their 

ability to optimize calibration models for soybean moisture, protein and oil contents in a near 

infrared transmittance instrument. A completely independent validation set of samples from 

the 2010 crop year was utilized to validate the calibration models.  

Calibration Sample Selection 

To develop a robust calibration model, calibration samples need to provide examples 

of all chemical components which are expected to be present in the future. The range of the 

variation in the concentrations of chemical components needs to exceed the range of 

variation expected for samples. Also, the concentration of chemical components of 

calibration samples should be uniformly distributed over their total range of variation [6].  
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Sample selection 

For each calibration model, the original sample set was first sorted by their chemical 

reference values of each chemical component. Then, divide samples into subsets with 

increments of one percentage point of chemical reference values. Samples that had extremely 

low or high reference values were automatically kept in the calibration set. The three sample 

selection methods were applied to the remaining samples within each interval to generate 

different sizes of subsets. In each interval, we selected progressive numbers of samples. A 

total of 10 subsets were created for each component by one specific method. Table 1 

describes the number of samples included in each interval for the three components. When 

the number of samples in the interval is smaller than the target number, include them all and 

no selection procedure need to be applied.  Then, calibration sets with increasing sample 

numbers were obtained. The number of PCs was determined by cross validation. For each 

component, the same number of factors was applied to the series of models with increasing 

numbers of samples in each calibration set. This selection procedure enables a relatively 

uniform distribution of samples in terms of the content of chemical components. As the 

number of samples in each increment increased, the overall distribution approached that of 

the data pool. 

Uniform random selection 

Random selection is the simplest way to choose samples from a large population. 

However, this would lead to a normal distribution of reference values in the calibration set, 

more samples around the mean, and fewer extreme values as that of the original data pool. 

With uniform random selection, the total range of reference values was divided into several 
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intervals. Within each interval, a certain amount of samples were randomly selected. When 

combined, the calibration set should have a relatively even distribution. 

Kennard-Stone method 

The Kennard-Stone algorithm (Kennard and Stone 1969) is designed to select 

samples sequentially and uniformly distributed over the object space by choosing samples 

that maximize the Euclidean distances between each other. Designed for surface response 

experimental plans, the distances are computed between the sample characteristics such as 

spectra. First, the two farthest samples are selected. Then, the sample farthest from the first 

two samples is selected as the third sample. Samples are then chosen one by one from the 

remaining subset, which is the farthest from all the previously selected until the desired size 

of the training set is reached. Assuming that k objects have already been selected (k<n, n is 

the number of samples), the (k+1)th object in the calibration set is chosen using the criterion 
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djr denotes the Euclidean distance from a candidate object r, not yet in the 

representative set, to the jth already selected object. This algorithm chooses the sample that 

presents the largest minimum distance with respect to any sample already selected at each 

successive iteration.  

A modification of the Kennard-Stone algorithm has been proposed for dividing a data 

set into calibration and validation subsets [11]. This method defined the Euclidean distances of 
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both spectral data and reference data. By dividing dx by their maximum values in the data 

set, equal importance was assigned to x and y spaces. A normalized xy  distance xyd  was 

used instead of dx, which is used alone in Kennard-Stone algorithm. 

However, samples selected by Kennard-Stone algorithm have a tendency to focus on 

the median ranges of concentration with a lower possibility of selecting samples with 

extreme concentrations [12]. Therefore, in this study, the Kennard-Stone algorithm was 

performed on each interval of samples as divided by their reference (y) values only.  

D-optimal method  

D-optimal designs are used for experimental design when the experimental region 

does not have a regular shape. Its principal objective is to maximize the determinant of the 

variance-covariance matrix |X’X|, where X is the training set matrix (p selected samples, m 

wavelengths) [10, 13]. This determinant is maximal when the selected samples span the space 

of the entire data set. The algorithm starts with a large data set and chooses samples 

iteratively which creates a maximum increase in the variance-covariance matrix '
X X , and 

stops when chosen samples no longer increase the variance-covariance matrix '
X X . To 

avoid getting a local optimal subset, the D-optimal algorithm must be run multiple times.  

Materials and Methods 

Materials 

The original calibration set included approximately 9,000 whole soybean samples 

with references value for moisture, 1360 with protein and oil references. Samples were 
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scanned at the Grain Quality Laboratory, Ames, IA, USA, during the crop years 2001-2009. 

Soybean samples from the crop year 2010 were used as validation set with 876 reference 

values for moisture, and 136 for protein and oil contents. 

Spectra Acquisition 

Soybean samples were scanned by one Bruins OmegAnalyzerG (serial 

number106110) (Bruins Instruments, Puchheim, Germany), a transmittance instrument with a 

spectra range from 730 to 1100 nm and an increment of 0.5 nm. The spectral range was 

reduced to from 850 to 1048 nm with a 2nm increment by a software option. A path length of 

30mm was used. Samples were run at room temperature (22 ± 2 °C).  

Reference chemical analyses 

Moisture content was determined by the air oven method (AOCS Ac 2-41) [14] at 

Grain Quality Lab, Ames, Iowa State University. Protein content was determined by the 

combustion method (AOAC 990.03) [15] and oil content was determined by ether extract 

(AOCS Ac3-44) (AOCS 1998), both by Eurofins Scientific, Inc., Des Moines, Iowa, USA. 

Concentration values for protein and oil were converted to a 13% moisture basis. The 

reproducibility of the samples of these methods, as measured by blend replicates over the 

time period was 0.45 and 0.10 for protein and oil, respectively. Summary statistics for the 

calibration and validation sets are presented in Table 2. 

Calibration procedure 

Spectral pretreatment and outlier detection 
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Spectra were automatically mean centered when exported from the instrument. 

Second derivative was performed to remove constant and linear background by Savitzky-

Golay algorithm (15-point window and third-order polynomial) including a smoothing step at 

the same time [16]. Standard normal variate (SNV) was applied following second derivative as 

a method for scatter correction to reduce the physical variability such as particle size between 

samples and adjust for baseline shift over the long period of data collection [16, 17]. The 

instrument had not been repaired on a significant way over the period. In order to detect 

outliers, PLS (leave-one-out cross validation) was carried out for each individual year to 

identify outliers and to check each year’s chemistry. For years having few samples, samples 

were joined to the ones from the next year. 

Leverage and residuals are the most important values for detecting outliers [18]. 

Leverage is a term to identify those observations that are far away from corresponding 

average predictor values. The basic tools for outlier detection in this model are based on the 

influence plot in Unscrambler 9.8 (Camo Software, Woodbridge, NJ) with leverage as x-axis 

and PCA residual as y-axis. The criteria for deleting outliers were: (1) Samples with PCA 

residuals higher than 2; (2) Samples with leverage greater than 3 times the average leverage. 

The average leverage (H) is calculated as: 

H = (1 + number of principal components)/n     (n is the number of samples) [19, 20]   

Model development 

PLS regression was used to develop all prediction models. In PLS, the original matrix 

is compressed into latent variables (LVs) that maximize the covariance between the reference 

values and all possible linear functions of the spectral data. PLS is a classical analytical 



94 

 

 

 

technique to handle the multivariate nature of agricultural products and the highly collinear 

NIR spectroscopic data [5]. 

Programs 

Calculations were performed with MATLAB R2011a (The MathWorks, Natick, MA) 

installed with the PLS_Toolbox v.6.2.1 (Eigenvector Research, Wenatchee, WA). All three 

sample selection methods including uniform random, Kennard-Stone and D-optimal were 

calculated in a custom-created Matlab program. 

Validation procedure 

An ideal validation set sample set should contain samples of all chemical components 

covers the range of variation in the concentration. Previous research indicated the impact of 

the variability of the next year’s samples on the calibration process [21]. To maintain an 

independent and representative validation set, soybean samples from crop year 2010 were 

used as validation set. No outlier detection process was applied to the validation set. Thus, 

the validation set may comprise outlier samples and can be used to test the effectiveness of 

any outlier detection included in the calibration. The validation can also give an indication of 

the type and response if an outlier was inadvertently included in future results. 

Calibration performance was be evaluated in terms of precision, accuracy, and model 

fit. The standard error of prediction (SEP) or standard deviation of differences and the 

relative predictive determinant (RPD) will be used to evaluate the precision [22]. The accuracy 

will be determined by the bias (average of differences). Bias is a good indicator of similarity 

between validation samples and the calibration set [23].  
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Uniformity of calibration set 

The two-sided one-sample Kolmogorov-Smirnov test [24] was applied to determine 

whether the reference values of specific calibration sets differ significantly from a theoretical 

uniform distribution sets. Each calibration set was tested against the uniform distribution at 

level of α=0.05. They were based on the null hypothesis of no significant difference between 

the sample distribution and the theoretical distribution. The Kolmogorov-Smirnov test was 

performed in R (http://www.r-project.org/). 

Results and Discussion 

Description of initial models 

Initial benchmark models were built using all the samples in the data pool. The 

predictive abilities of these models are summarized in the last row of Table 3.  The results of 

these models for three contents are precise and accurate. This may owe to the coverage of the 

large calibration sets that lead to a calibration model with high variability and robust to 

variations in the new crop year. However, when the original dataset is too large, it is not 

computational efficient to include them all into calibration set. From the aspect of model 

updating and maintenance, it is not practical to keep adding all the new samples to the data 

pool. Thereby, an objective selection of the optimum combination of samples that contain the 

greatest variation could facilitate the development of a robust calibration model. Statistics of 

these initial models were used to evaluate statistics of subsets and selection methods.  
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Calibration sample selection 

After examining the structure of the moisture content of the validation set, we found 

there were too many unusual samples in the original pool with extremely high moisture 

contents. Most of these samples came from crop year 2009, which was an unusually wet 

year. Therefore, only samples with a more typical moisture content ranging from 4% to 18% 

were used as the original pool for sample selection. The same number (9) PCs was used in all 

models for moisture. Theoretically, as more samples were included, additional PLS factors 

could be revealed due to new sources of variance. However, this was not the case for all three 

components derived from the prediction results. Models with different sample sizes for each 

component used the same number of PLS factors. 

Comparing SEP and RPD values for the models of moisture content (Table 3(a).), 

models with calibration sets selected by uniform random method and D-optimal had slightly 

different prediction abilities.  With the least number of samples, D-optimal gives the lowest 

SEP value. Except KS, uniform random and D-optimal showed lower SEP value with 

increasing number of samples in the calibration set. The SEPs approached the benchmark 

results and then outperformed with around four hundreds samples included. Calibration set 

selected by KS showed similar trend, but without satisfying results. This means the number 

of samples is independent on selection method. Unlike KS and D-optimal, the subset selected 

by uniform random is not unique because of the random procedure. It is required to run this 

algorithm several times to obtain stable results. In terms of computational efficiency, D-

optimal is recommended to choose the calibration subset when the data set it selects from is 

large. 
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For protein content, staring with the original set of 1349 samples, uniform random 

method selected a series of calibration sets which lead to models with equal or better 

predictive performances than the original sample set. A number of 12 PCs was utilized for all 

the PLS models. SEP and RPD values for the series of calibration models of protein content 

were shown in Table 3(b). Models built on sample sets selected by Kennard-Stone method 

and D-optimal method demonstrated similar prediction properties, close to the performance 

of the benchmark.  

The SEP and RPD values of oil content in Table 3(c), showed that no models built on 

the selected subsets outperformed the benchmark. SEPs of models built on subsets selected 

by uniform random and D-optimal methods decreased with an increasing of sample numbers 

and approached the optimal SEP obtained by the original set. Nine PCs were used to build all 

PLS models. 

Representative properties of selected samples 

By selecting spectra which display the maximum variance, these subsets represent 

samples in the domain of the original pool. For moisture, protein and oil, the first two PCs 

explained 95.15%, 93.75% and 93.99% of the total variance, respectively. Thereby, the first 

two PCs scores of selected and eliminated samples were depicted in Figure 1 for 

visualization. These samples were selected by D-optimal, uniform random and Kennard-

Stone for moisture, protein and oil, respectively. PCA score plots of all the sample spectra 

showed no clear clusters according to harvest years. Selected samples spread out in the 

spectral domain in the first two PCs. Figure 1 gives the smallest subset size examples for 
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each of the three methods. This demonstrated that the original domain of all the spectra was 

well covered by selected subsets even with the least number of samples included. 

Figure 2, 3 and 4 give an example of the histograms of reference values for the three 

components of all the available samples (a) and the selected smallest subsets (b). Figures 

(2(a), 3(a) and 4(a)) of the original data pool all showed bell shapes, which suggested normal 

distributions. This finding is reasonable due to the nature of agriculture products. Samples 

tended to have content values accumulate near the mean. Fewer samples naturally showed up 

with extreme contents.  

Figure 2(b) provides the histogram of soybean moisture content for 140 samples 

selected by D-optimal algorithm. This subset displayed a flat distribution on the chemical 

measurements and representative on the y space (reference values). For moisture content, all 

the distribution of subsets in the calibration models were not significantly different from the 

uniform distribution at level of α=0.05. This may due to the large number of available 

samples in the original pool. 

The distribution of protein content of 113 samples selected by uniform random 

method shown in Figure 3(b) is flat. This subset were not significantly different from the 

uniform distribution at level of α=0.05. For oil content, Kennard-Stone algorithm selected a 

subset of 129 samples with a uniform distribution (at level of α=0.05, Figure 4(b)) on 

reference values. When the number of samples in the extreme intervals (low or high 

reference values) becomes smaller than the target number, increasing sample size only 

increased samples close to the mean. Then, the distribution of the rest subsets lost their 

uniformity.  
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The results of Kolmogorov-Smirnov test indicated that the smallest subsets selected 

by these three approaches obtained uniform distributions of the chemical measurements. 

They are considered to be representative in terms of both X (spectra) and Y (reference 

values) domain. By eliminating most samples with reference values close to the mean, more 

robust models could be achieved on calibration subsets by avoiding subsequent analysis to 

regress toward the mean.  

Identification of sample size in calibration set 

Patterns of SEPs observed in Figure 5 suggested that further extension of the 

calibration subsets give less improvement on SEP. It became stable when an optimal amount 

of samples were included. With additional similar samples, unrelated information reduced 

the robustness of calibration models and reduced the accuracy of prediction in the validation 

set. 

With only around 100 samples included in calibration sets, comparable results were 

obtained for all three components. This is only 2%, 10% and 17% of the total number of 

samples with moisture, protein and oil contents, respectively. The optimal number of samples 

was about 400 to 500, with which moisture and protein models outperformed the benchmark. 

Beyond this point, no significant improvement of SEP was observed. From a practical point 

of view, if the goal is to choose a subset of samples that could be reliably used for model 

construction without any compromise in its predictive ability, it is recommended to include 

the optimal number of samples. Nevertheless, calibration on about 100 representative 

samples is the most cost-efficient approach. 
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Comparison of calibration models 

Since all the calibration models were tested on the same validation set, errors from 

the lab measurements for the validation set contribute to all the sets of prediction errors [25]. 

In terms of SEP, there were slight differences among the prediction performance based on 

the series of calibration models built on subsets selected by the three sample methods. 

Adequate calibration models were built on subsets reduced from 8462 to 140 samples for 

moisture, from 1349 to 113 samples for protein, and from 1339 to 129 samples for oil. For 

moisture and protein contents, models built on subsets with optimal number of samples 

improved the prediction performance significantly (α=0.05). For oil content, models with a 

SEP of 0.56 was not statistically different from the benchmark of 0.53 (α=0.05).  

When comparing results of the three sample selection approaches, uniform random 

and D-optimal are recommended. Uniform random method has an advantage due to its 

random procedure, which enables more flexibility, while D-optimal is more computational 

efficient. Kennard-Stone algorithm did significant worse than the other two approaches for 

moisture content. When there was too many samples in each interval as for moisture samples, 

samples selected by KS may not be representative enough to the whole region. It selected 

new sample based on its distance to the selected ones, without considering the rest samples as 

a whole. It is clear that consideration of both X and Y information will obtain a more 

reasonable result of sample selection for a multivariate calibration. 
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Model accuracy 

Model accuracy (bias) is an important factor to evaluate calibration models. The 

series of biases obtained for each factor illustrated error from the lab measurements. Based 

on long term quality control data from the Grain Quality Lab at Iowa State University, the 

bias of the reference measurements for soybean samples from the chemistry lab is 0.45% and 

0.10% lower than the average values of several replicates for protein and oil, respectively. 

This part of error comes from the performance of the chemistry lab, which is consistent with 

the bias obtained in the calibration models. NIR models built on subsets demonstrated their 

abilities to calibrate time (crop year) as a variable with improved robustness and less 

samples. 

Conclusions 

Representative sample subsets were selected to spread over both the range of 

reference and spectral data domain. Calibration models based on these subsets were able to 

obtain similar or even better performance on prediction. The least number of samples 

required for a robust calibration is 100.  

The optimal numbers of calibration samples were identified. For moisture content, 

490 samples selected by uniform random constructed the best model with a SEP of 0.15%, 

comparing to 0.20% and 0.17% by KS and D-optimal, respectively. For protein content, 

uniform random selected 429 samples to obtain SEP of 0.53%, while the optimal results in 

KS and D-optimal are 0.55% (n=571) and 0.56% (n=503), respectively. As for oil content 

with 388 samples, SEPs for uniform random, KS and D-optimal were 0.54%, 0.55% and 
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0.55%. Numbers of samples in calibration sets were significantly reduced to 6% of the 

original 8,462 for moisture and 30% of the original 1,300 for protein and oil contents, which 

may save substantial expense for reference analysis. 

Uniform random, Kennard-Stone and D-optimal methods showed similar results in 

selecting representative calibration sets. No model significantly outperformed the others in 

terms of predictive ability from a practical aspect. SEPs became stable after reaching an 

optimum in the prediction of every constituent. This illustrates the feasibility of constructing 

model on small calibration sets without compromising on robustness. The uniform random 

method gave slightly smaller SEPs with the same number of samples in calibration set.  

Overall, the importance of uniformity in the calibration set was confirmed. The 

selection of representative samples helps avoid similar samples and redundant calculations, 

to achieve robust calibration models. There is no universal optimal number of samples for 

calibration set. The initial sample set drawn from the calibration set must be large and 

representative.  
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Table 1. Numbers of samples included in each interval of reference values 

Subsets Moisture Protein Oil 
1 5 5 5 
2 10 10 10 
3 15 15 20 
4 20 20 30 
5 25 25 40 
6 30 30 50 
7 35 35 60 
8 40 40 70 
9 45 50 80 

10 50 60 90 

 
  



106 

 

 

 

Table 2. Summary statistics of the calibration and validation sets  

Constitutes Model N Mean (%) Range (%) 
Standard 
deviation  
(% pts) 

Moisture 
Calibration a 8462 9.73 4.09-18.00 3.11 

Validation b 876 8.05 4.01-17.63 2.60 

Protein (13% 
moisture 

basis) 

Calibration a 1349 36.37 24.72-46.89 3.63 

Validation b 138 35.73 28.81-45.67 4.02 

Oil (13% 
moisture 

basis) 

Calibration a 1339 18.30 11.85-24.64 1.97 

Validation b 136 18.38 12.88-22.06 1.98 

 

a 2001-2009 crop years 

b 2010 crop year only 
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Table 3. Validation results of soybean moisture (a), protein (b) and oil (c) calibration models by sample set siz 

(a) 

Na 
Uniform Random Kennard-Stone method D-optimal 

SEPb 

(% pts) 
Biasc 

(% pts) 
RPDd 

SEP  
(% pts) 

Bias  
(% pts) 

RPD 
SEP  

(% pts) 
Bias  

(% pts) 
RPD 

140 0.23 0.18 11.14 0.35 0.19 7.46 0.17 0.14 15.00 
210 0.21 0.19 12.42 0.29 0.17 9.10 0.22 0.14 11.58 
280 0.20 0.18 13.20 0.29 0.21 8.87 0.21 0.14 12.64 
350 0.20 0.17 13.14 0.25 0.20 10.25 0.17 0.16 15.14 
420 0.16 0.18 16.41 0.23 0.19 11.53 0.17 0.16 15.06 
490 0.15 0.19 16.90 0.20 0.18 12.68 0.17 0.15 15.18 
560 0.16 0.18 16.66 0.19 0.15 13.46 0.16 0.13 16.55 
630 0.14 0.17 18.14 0.20 0.16 13.30 0.16 0.14 15.89 
700 0.16 0.15 16.68 0.19 0.17 13.60 0.16 0.15 16.71 
770 0.16 0.15 16.31 0.19 0.17 13.71 0.16 0.16 16.34 

8462(All) 0.17 0.21 15.68 0.17 0.21 15.68 0.17 0.21 15.68 
a Number of samples in calibration set 

b Standard error of prediction 

c SEP and Bias are expressed in % pt 

d Relative predictive determinant 

(b) 

N 
Uniform Random Kennard-Stone method D-optimal 

SEP  
(% pts) 

Bias  
(% pts) 

RPD 
SEP  

(% pts) 
Bias  

(% pts) 
RPD 

SEP  
(% pts) 

Bias  
(% pts) 

RPD 

113 0.54 0.21 7.38 0.63 0.08 6.37 0.60 0.19 6.63 
203 0.55 0.31 7.28 0.63 0.21 6.38 0.60 0.19 6.64 
279 0.57 0.30 7.06 0.61 0.28 6.56 0.61 0.30 6.54 
353 0.58 0.34 6.91 0.59 0.29 6.73 0.57 0.32 7.05 
429 0.53 0.35 7.53 0.58 0.32 6.91 0.58 0.31 6.85 
503 0.59 0.37 6.71 0.57 0.34 7.05 0.56 0.34 7.07 
571 0.57 0.35 6.98 0.55 0.36 7.21 0.58 0.33 6.91 
624 0.54 0.31 7.43 0.55 0.35 7.28 0.56 0.33 7.08 
719 0.55 0.34 7.20 0.56 0.35 7.13 0.58 0.37 6.90 
799 0.53 0.34 7.52 0.56 0.37 7.14 0.58 0.39 6.94 

1349(All) 0.56 0.42 7.13 0.56 0.42 7.13 0.56 0.42 7.13 
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(c) 

N 
Uniform Random Kennard-Stone method D-optimal 

SEP  
(% pts) 

Bias  
(% pts) 

RPD 
SEP  

(% pts) 
Bias  

(% pts) 
RPD 

SEP  
(% pts) 

Bias  
(% pts) 

RPD 

129 0.58 0.14 3.41 0.56 0.05 3.55 0.58 0.14 3.53 
228 0.55 0.02 3.60 0.59 0.09 3.40 0.56 0.07 3.57 
308 0.55 0.04 3.60 0.57 0.05 3.49 0.56 0.06 3.57 
388 0.54 0.05 3.70 0.55 0.05 3.61 0.55 0.07 3.62 
468 0.55 0.04 3.63 0.55 0.07 3.62 0.55 0.06 3.65 
542 0.53 0.04 3.72 0.55 0.06 3.61 0.55 0.06 3.63 
604 0.53 0.03 3.74 0.55 0.06 3.62 0.55 0.06 3.65 
664 0.54 0.03 3.70 0.55 0.06 3.64 0.55 0.06 3.66 
724 0.54 0.02 3.70 0.54 0.04 3.68 0.54 0.04 3.69 
776 0.53 0.00 3.76 0.54 0.05 3.67 0.55 0.05 3.66 

1339(All) 0.53 -0.01 3.75 0.53 -0.01 3.75 0.53 -0.01 3.75 
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(c) 

 

Figure 1. PCA score plot showing the space covered by minimum sample models (a) 140 samples using D-
optimal algorithm for soybean moisture; (b) 113 samples using uniform random method for soybean protein; (c) 
129 samples using Kennard-Stone algorithm for soybean oil 
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Figure 2. Distribution of all samples (n=8462) (a) and selected samples using D-optimal algorithm for chemical 
measurements (n=140) (b) for soybean moisture content  
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Figure 3. Distribution of all samples (n=1349) (a) and selected samples using uniform random method for 
chemical measurements (n=113) (b) for soybean protein content  
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(b)  

129 samples (by KS)
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Figure 4. Distribution of all samples (n=1339) (a) and selected samples using Kennard-Stone algorithm for 
chemical measurements (n=129) (b) for soybean oil content  
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Figure 5. SEPs of soybean moisture (a), protein (b) and oil (c) contents by different calibration sample set sizes.  
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Abstract 

In this study, the feasibility of using calibration subsets for instrument standardization 

was demonstrated. Whole soybean samples from crop year 2001 to 2011 were used as the 

original pool. Calibration samples were selected by D-optimal method to obtain 

representative subsets. Three levels of calibration subsets were created for comparison. 

Calibration models were transferred from one instrument to another in a network of 

four transmittance instruments provided by two vendors. We compared three standardization 

methods for calibration transfer (no standardization, robust model and slope and bias 

correction). Soybean protein and oil were used for analysis. The prediction results showed it 

is possible to obtain comparable transferability performance with well-selected small data 

subsets (about 10% and 35% of the original numbers of samples) as using the entire dataset. 

The optimal calibration subset (n ≈ 400) had similar or better performance in terms of 

calibration transfer compared with benchmark model. A simple slope and bias correction was 

recommended for standardization between similar instruments. This method provided the 

lowest SEPs of 0.48% and 0.34% for protein and oil, respectively on Bruins, 0.55% and 
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0.35%, respectively on Infratec. Representative calibration subsets (n ≈ 120 and 400) reduced 

the complexity of the transferability of calibration model. Simplified calibration maintenance 

and model update procedure save cost of reference analyses and spectral measurements on 

multiple instruments, both of which are user limitations in practical application. 

Keywords: Calibration transfer; Sample subsets; Calibration optimization 

Introduction 

In recent years, calibration transfer among instruments has become indispensable for 

the application of near infrared (NIR) spectroscopy calibration models. Calibration transfer 

enables NIR calibration models to be applied on multiple instruments at different locations 

working in union on common calibration equations. It would save calibration work if the 

database of agricultural products could be shared and provide quality specifications 

efficiently. Multivariate calibration models are intended to be used for an extended period of 

time. For agricultural products (grains, meals and flours), samples from the next crop year 

always add new variations to the calibration pool. Variations come from climate, variety, 

locations and other external factors. These factors add uncertainty to prediction process. To 

incorporate new variations into calibration models, two common approaches are available: 

create new calibration models or update existing calibration models by including samples 

with new variations to the original database. Compared to recalibration, model updating 

minimizes calibration effort, improves robustness and variability. Effective calibration 

transfer enables database sharing and is improved by samples collected across crop years, 

locations and varieties. Long-term maintenance of near infrared (NIR) calibration models 
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keep pace with technology advancement and new sources of sample variations is a costly 

process. Using effective and appropriate calibration transfer methods to solve this long-

standing problem is an opportunity for both researchers and industry workers searching for a 

competitive advantage. 

Various published works [1-9] on calibration transfer focus on the methods of 

calibration transfer among copies of instruments. This is also called instrument 

standardization. The functions of standardization methods are to estimate the spectral 

differences among different instruments on varying measurement situations, therefore to 

correct the estimated differences with valid standardization parameters. Based on different 

types of instruments and standardization problems in a particular network, it is of great 

importance to apply appropriate standardization methods. For very similar instruments, 

standardizing the spectral response is mathematically more complex than standardizing the 

calibration models but provides better results as it accommodates slight spectral differences 

that could be corrected via simple calculations. When the differences among instruments are 

small, post-regression slop and bias correction (SBC) [1] could obtain reliable results of 

prediction. SBC is a simple and practical standardization method, which only requires a 

univariate correction. It corrects the predicted values based on the univariate linear model, 

yielding standardized predictions. For multivariate methods, commonly employed techniques 

are direct standardization (DS) and piecewise direct standardization (PDS) [4, 5, 10, 11]. In 

PDS, a moving window of neighboring wavelengths is used instead of the entire spectral 

range to correct differences between spectra (X-space).  
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Another approach to correct spectral differences is using signal preprocessing in order 

to improve robustness of resulting model. Preprocessing techniques such as multiplicative 

signal correction (MSC) [12], standardized normal variate (SNV) [13] can be used to remove 

systematic noise like baseline shift and scattering effects caused by different particle sizes. 

Orthogonal signal correction (OSC) [14] and its modified versions were developed to avoid 

information loss and retain information regarding the factor of interest (y values).  

To compute valid standardization parameters of any form, standardization samples 

need to be well-chosen, stable and representative of both the calibration and prediction 

samples. They are scanned on multiple instruments and used to compute the standardization 

parameters. The selection of standardization samples is associated with standardization 

methods applied and different practical reasons such as sample properties. Standardization 

samples could be a subset of calibration set, prediction set or generic standards of a similar 

nature [15]. Sample selection methods such as Kennard and Stone algorithm [16] and D-

optimal [17] provide a good and representative subset for the PDS procedure.  

However, little research has been conducted to examine the effect of calibration set 

on instrument standardization aiming at a robust calibration. The robustness criterion of 

multivariate models is “the stability of its predictive capacity against perturbations centered 

on standard conditions” [18]. This means the calibration models should incorporate all 

possible variables of both calibration and prediction steps including external differences. For 

instrument recalibration, an alternative way to standardization is to construct a new 

calibration model by using only a small subset of the original training set. The most 

informative objects from the original pool were selected as calibration set. Sample selection 
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plays an important role in calibration transfer for the purpose of model updating. Using a 

small subset of samples reduces the cost involved in the repetition of the analyses at the 

secondary instrument. The goal of calibration maintenance is to add in samples represent new 

variations and improve the robustness. To achieve the goal, the transfer sample set needs to 

be representative of the spectra and reference relationships in the data that must be captured 

by the multivariate calibration model. Especially in a large-scale spectral database, proper 

spectral management and database sharing could provide rapid analysis for complex 

mixtures, even as complex as agricultural products [19]. 

The objective of this study was to determine the relationship between the number of 

samples in a calibration set and subsequent calibration transfer performance. The optimal 

calibration set should model the parameters of interest comprehensively and accommodate 

instrumental variations with the fewest possible number of samples included. Protein and oil 

contents in soybeans were the test cases in  a network using four NIR transmittance analyzers 

supplied by two vendors. 

Materials and Methods 

Materials 

The original calibration set included approximately 1,100 whole soybean samples 

with reference values of protein and oil from one chemistry laboratory. Samples were 

scanned at Grain Quality Laboratory, Ames, IA, USA, during crop years 2001-2011. 

Soybean samples from crop year 2011 (n ≈ 150) were used as the validation set. 
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Instrumentation 

Soybean samples were scanned by Bruins OmegAnalyzerGs (serial numbers: 106110 

and 106118, respectively) (Bruins Instruments, Puchheim, Germany) and two Foss Infratec 

Grain Analyzers (1229 and 1241, serial numbers 553075 and 12410350 respectively) (FOSS 

North America, Eden Prairie, MN, USA). They are transmittance instruments with effective 

spectra range from 850 to 1048 nm in 2nm increments. A path length of 30mm was used for 

both models. Samples were run at room temperature (22 ± 2 °C).  

Calibration subsets 

Calibration set includes samples are used to build a calibration model on the “master” 

instrument. Three levels of subsets were selected by D-optimal method [17] to reduce 

redundancy. D-optimal designs are used for experimental design when the experimental 

region does not have a regular shape. Its principal objective is to maximize the determinant 

of the variance-covariance matrix |X’X|, where X is the training set matrix (p selected 

samples, m wavelengths) [17, 20]. This determinant is maximal when the selected samples 

span the space of the entire data set. The algorithm starts with a large data set and chooses 

samples iteratively which creates a maximum increase in the variance-covariance matrix 

|X’X| and stops when chosen samples no longer increase the variance-covariance matrix 

|X’X|. With this principle, this algorithm selects the subset of sample spectra that generate 

the largest space. For a two-dimensional space, it tends to select extreme samples on the edge 

of the data space. Different sample selection methods were compared in the previous study.  
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Model validation 

An ideal validation set sample set should contain samples of all chemical components 

covering the range of variation in the concentration. Previous research indicated the impact 

of the variability of the next year’s samples on the calibration process [21]. To maintain an 

independent and representative validation set, soybean samples from crop year 2011 were 

used as validation set. No outlier detection process was applied to the validation set. Thus, 

the validation set may comprise outlier samples and can be used to test the effectiveness of 

any outlier detection included in the calibration. Samples from the prediction set are 

measured in the secondary instrument, and the spectra are transferred to be equivalent to the 

master instrument with the standardization parameters computed with the standardization set. 

Calibration performance was evaluated in terms of precision, accuracy, and model fit. 

The standard error of prediction (SEP) or standard deviation of differences and the relative 

predictive determinant (RPD) were used to evaluate the precision [22]. The accuracy will be 

determined by the bias (average of differences). Bias is a good indicator of similarity 

between validation samples and the calibration set [23]. 

Calibration transfer set 

The calibration transfer samples are required to cover the variability of the data in a 

representative manner. There are usually two ways to obtain calibration transfer set: (1) 

select the best subset samples from the set to be predicted; (2) use samples not coming from 

the prediction set, but of similar nature. In this study, 20 whole soybean samples selected 

from crop years 1996 - 2010 by the Grain Quality Laboratory, Ames, IA, USA were used as 
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standardization set. These samples have multiple (75) reference measurements for each 

constituent and were not included in the calibration set. This standardization set is updated 

annually and has proven to be a good predictor over many years. They are used for post-

regression slope and bias correction of instrument standardization, which is the only method 

the current instrument software allows. The other methods in this study were applied to the 

spectra downloaded to Matlab (The MathWorks, Natick, MA). Samples from the 

standardization set are measured on the two instruments to compute the standardization 

parameters. 

Reference chemical analyses 

Protein content was determined by the combustion method (AOAC 990.03) [24] and 

oil content was determined by ether extract (AOCS Ac3-44) [25], both by Eurofins 

Scientific, Inc., Des Moines, Iowa, USA. Concentration values for protein and oil were 

converted to a 13% moisture basis. Summary statistics for the calibration and validation sets 

are presented in Table 1. 

Combined Preprocessing techniques 

As a preprocessing technique, standardized normal variate (SNV) can improve scan 

repeatability as well as instrument similarity. It normalizes each spectrum to reduce 

scattering effects due to packing heterogeneity or path-length variations [26]. It is also known 

to improve the inter-instrument transferability. We considered the combination of SNV 

followed by detrending (DT). Detrending spectra account for the variation in baseline shift 

and linearity of spectra by using a second-degree polynomial to correct each spectrum [13]. 
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Model construction and optimization 

PLS regression was used to develop all prediction models. In PLS, the original matrix 

is compressed into latent variables (LVs) that maximize the covariance between the reference 

values and possible linear functions of the spectral data. PLS has been a classical analytical 

technique to handle the multivariate natures of the agriculture products and the highly 

collinear NIR spectroscopic data. 

Standardization procedures 

No standardization 

In this approach, no standardization method was applied to the calibration model 

developed on the master instrument. Spectra scanned on the secondary instrument were 

directly transferred for prediction. The results this approach were compared with those of the 

original model and of the other standardization methods. 

Robust models 

To build a global robust model, the calibration should include all the external 

variations as well as the parameters of interest. In this case, the instrumental variations were 

calibrated into the model as a variable by combining measurements on both instruments.  

This corporates all relevant sources of variation in the calibration design in order to 

develop a more or less universal calibration model [27].When spectral variation caused by 

factors different from the parameter to be predicted such as external environmental factors 

are present in calibration data, a common approach is to include this variation in the 

calibration model. For this purpose, the calibration sample spectra measured under standard 
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conditions; the spectra of a smaller set measured under changed conditions are combined into 

one dataset global calibration model is constructed. With this principle, spectra collected on 

both master and secondary instruments were combined to incorporate instrumental 

differences. 

Slope and bias correction (SBC) 

This standardization method is a simple correction on predicted y-values for the 

standardization set with the calibration model. In this post regression method, it assumes a 

linear relationship between the prediction values for spectra measured on the secondary 

instrument and the prediction values that the obtained by calibration built on the master 

instrument. The properties of the standardization samples (y-values) were firstly predicted by 

the original model developed on the master instrument.  

 X
master master

y b=  (59) 

 sec secX
ondary ondary

y b=  (60) 

A linear regression equation is obtained by plotting predicted values collected in the 

calibration step against those collected in the prediction step using either ordinary least 

squares or orthogonal least squares. Then the predicted values for the new samples are 

corrected for the bias (intercept) and slope of the regression line: 

 secy
corrected ondary

y bias slope= +  (61) 

This standardization approach is most often applied between instruments having the 

same dispersion device, which applies to our case of two inter-brand instruments. When 

more complex instrumental differences exist, other standardization methods need to be used. 

Complexity of calibration transfer process increases user cost very rapidly. 
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Software 

Calculations were performed with MATLAB R2011a (The MathWorks, Natick, MA) 

with the PLS_Toolbox v.6.2.1 (Eigenvector Research, Wenatchee, WA). D-optimal sample 

selection method was computed in a custom-created Matlab program. 

Experimental procedure 

The four instruments in this network share the same original data pool of soybean 

samples from crop year 2001 to 2010. Each instrument was calibrated to its original 

calibration set with three different levels of numbers of samples. Then these calibration 

models were validated on the validation set. The robust models were developed by 

combining measurements on both instruments within brand. Samples in the standardization 

set were used to transfer the instrumental variances, while the robustness of transfer models 

were assessed by the independent validation set from crop year 2011. 

Results and Discussion 

This section shows comparisons among three standardization methods and three 

levels of calibration samples. These comparisons are made based on SEP and RPD values 

obtained by a series of calibration models. Tables 2 and 3 display the prediction results on 

the same validation set using calibrations built on four instruments of protein and oil 

contents, respectively. According to the prediction performance on each instrument of its 

own, OmegaAnalyzerG 106110 and Infratec Grain Analyzer 1241(0350) were assigned as 

master instruments. 
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Spectral responses 

The averaged raw and preprocessed spectra of all available samples for 

OmegaAnalyzerG network did not show visible spectral differences, as shown in Fig. 1(a). 

Baseline shift (Fig. 2(a)) between the averaged spectra of two instruments in Infratec network 

was examined. After preprocessing, the averaged spectra of the same brand overlapped 

heavily in Fig. 1(b) and Fig. 2(b). Second derivative and SNV effectively eliminated the 

effects of baseline shift, scaling and scattering in Infratec instruments. 

Calibration subsets 

Based on an earlier study, three levels of calibration sets with increasing numbers of 

samples were used for comparison. For this particular study, the D-optimal method was 

applied for the selection of calibration subsets due to its ability choosing representative 

samples and computational effectiveness. Selected sample subsets possessed a wide range of 

reference values and uniform distribution. They were also well spread out in PCA score plot 

of spectral analysis that illustrated the spectral differences.  

The first level contained the fewest samples (n≈120) selected from the original pool 

that demonstrated similar performance to the benchmark model (the entire dataset). Although 

for some calibrations compromises need to be made for lower RPD, the accuracy is 

acceptable for practical quantitative applications. The use of standardization methods always 

improved the results for calibrations built on the least number of samples as compared to the 

direct application of the calibrations built on the master instruments. The number of 100 
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calibration samples was the minimum in the master calibration necessary to cover the 

variability of the data in a representative manner. 

The second level referred to the optimal numbers of samples that outperformed the 

benchmark. About 400 samples are included in this level. For OmegAnalyzerGs, the original 

models on the master instrument, both protein and oil models reached comparable results as 

the benchmark model. For standardization, the protein content at this level obtained better 

RPD than the benchmark model with SBC. Calibration for neither protein nor oil models on 

Infratec grain analyzers outperformed the benchmark models. However, after 

standardization, the differences among different numbers of calibration sets were minimized. 

Especially for protein content, RPDs were significantly improved compared to the original 

models on the secondary instruments themselves. 

The third level included all available samples. This was the benchmark model. It 

contains about 1,100 samples for each constituent. Calibration models built on this level 

remained the best results in most cases. This was more obvious without standardization. 

However, after standardization, these SEPs were not statistically different from the ones 

obtained on the optimal number of samples. This means samples in the second level were 

representative enough to convey information of spectral and instrumental differences. More 

samples in the calibration models would not improve the performance of its transferability 

and prediction ability. Moreover, large dataset leads to less efficiency on calculation. This 

also applied to robust models when included spectra measured on both master and secondary 

instruments, which doubled the number of samples. 
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Standardization procedures 

Figures 3 and 4 showed the RPD values for comparison of three standardization 

methods as well as the original calibrations on each instruments on their own for protein and 

oil content, respectively. In Figure 3, OmegAnalyzerGs showed better transfer ability than 

Infratec grain analyzers with all three standardization methods in terms of protein content. 

Comparable results were obtained by the two brands for oil content. 

No standardization 

Without applying any standardization method, calibrations developed on the two 

master instruments were directly used to predict spectra collected on the secondary 

instruments. Due to the similarity of the master and secondary instruments, there was no 

obvious wavelength drift. This approach received acceptable or even better results than the 

prediction performance of the calibration models built on the secondary instruments with 

some calibration subsets. Moreover, samples were collected under very close environmental 

situations. Thus, with a more robust calibration model built on the master instrument, it is 

possible to achieve better prediction. It is worth noting that calibration model for oil content 

in Bruins OmegAnalyzerG was not sensitive to the numbers of calibration samples. Small 

calibration sets worked as well as large ones. 

The primary condition when samples measured on the master instruments was similar 

to the operating circumstances of the secondary instruments. Moreover, the prediction 

samples were measured in a similar instrumental and environmental state. 

Robust models 
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A global model was created by combining spectra collected on both instruments of 

the same brand at all three levels of calibration subsets. For protein content, robust models 

improved the transfer ability of OmegAnalyzerGs, while not significantly on Infratec grain 

analyzers. For oil content, both brands obtained slightly increasing but non-significant RPD 

values. This indicates that with the same original pool in this network, there is no need to 

scan same samples on two similar instruments with the purpose of standardization. 

Post-regression slope and bias correction (SBC) 

The prediction values on the secondary instrument were corrected to match with the 

master instrument by using the 20 standardization samples. The linear relationship of the 20 

standardization samples was plotted in Figures. Then, predicted values on secondary units 

were corrected by the slope and bias. SEPs were obtained between the corrected values and 

reference values. This approach is suitable for transfers between instruments using the same 

dispersion device. 

The key consideration is that the RPD values of the calibrations built on sample 

subsets increased significantly after slope and bias correction for protein content on both 

brands. For oil content, calibration subsets achieved comparable transferability with the 

original pool on OmegAnalyzerGs. These results illustrated the potential of the transferability 

of the two levels of calibration subsets. Without obvious instrumental difference between the 

master and secondary unites, SBC is a simple and effective standardization method in 

practice. Its weaknesses are the need to retest the standard samples in each instrument copy if 

the calibration is updated, and the need for complete representativeness in the set. 
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Discussion 

Overall, all the standardization methods applied in this study provided adequate 

calibration transfer from the master instrument to the secondary instrument, compared with 

its own calibration. For different numbers of calibration sets, the first level with about 100 

samples provided the minimum necessary variability to cover the original pool. With 

sufficient samples, around 400 representative samples were able to obtain comparable results 

to the benchmark models. In terms of spectral difference, SNV and DT were able to remove 

baseline shift and scattering effect of the raw spectra and reduce the spectral differences 

between instruments.   

For standardization methods, SBC improved the results of calibration model with the 

least number of calibration samples. For the optimal and original datasets, SBC was slightly 

better than no standardization and robust models. The advantage of slope and bias correction 

is it only requires a number of calibration transfer samples with known reference values to be 

scanned on the secondary instruments. This could save time and energy on scanning future 

samples in the prediction set.  

Calibration maintenance and model update is an important procedure. The results 

demonstrated the possibility of accomplishing this task by updating calibrations on the 

master instruments with a representative calibration subset which could be transferred to 

secondary instruments.  
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Conclusions 

This study examined the effect of numbers of calibration samples on calibration 

transfer (standardization). The prediction results after standardization demonstrated the 

feasibility of using subset samples for calibration transfer between similar instruments. The 

use of calibration transfer brought the prediction errors down to values comparable to those 

obtained with complete recalibration of the secondary instrument. The lowest SEPs of 0.48% 

and 0.34% for protein and oil, respectively on Bruins, 0.55% and 0.35%, respectively on 

Infratec were obtained by slope and bias correction. 

This study illustrates the use of calibration subsets via three different standardization 

methods. Different levels of representative sample subsets allow the reduction in complexity 

of the transferability of calibration model. With fewer samples (n≈120 and 400) included in 

calibration, comparable transferable performances were achieved on both protein and oil 

contents. The optimal calibration subsets (n ≈ 400) showed better prediction values 

(RPD>6.0 and 5.5 for protein and oil, respectively) than the benchmark calibration in all 

cases. 

Even though all methods in certain circumstances provided precision improvements 

in standardization, slope and bias correction is a simple and effective method to improve the 

transferable performance of calibration model based on calibration subsets (n≈120 and 400). 

In this network, we recommend using simple slope and bias correction standardization 

method to transfer calibrations when the instrumental difference is simple. This method has 

the advantage over robust model of not requiring samples to be measured on both master and 
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secondary instruments, which saves time and cost substantially and is more practical for 

routine use. 
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Table 1. Summary statistics of the calibration and validation sets 

Parameter 
Instrument 

(serial) 
N Mean (%) Range (%) 

Standard 
deviation 
 (% pts) 

Protein (13% 
moisture basis) 

Infratec 1229 (553075) 
1101 36.27 24.72-46.50 3.42 

Infrated 1241 (0350) 
OmegAnalyzerG 106110 

1100 36.25 24.72-46.89 3.41 
OmegAnalyzerG 106118 

Validation set  154 34.92 28.93-43.87 3.48 
Standardization set 20 36.38 24.21-45.38 4.65 

Oil (13% 
moisture basis) 

Infratec 1229 (553075) 
1123 18.37 12.48-24.64 1.91 

Infrated 1241 (0350) 
OmegAnalyzerG 106110 

1118 18.30 11.85-24.64 1.92 
OmegAnalyzerG 106118 

Validation set  155 18.51 13.43-22.95 2.00 
Standardization set 20 18.57 15.33-21.70 1.76 
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Table 2. Validation results of soybean protein calibration models of Bruins OmegAnalyzerGs (a) and Infratec 
Grain Analyzers (b) 

(a) 

Method Nc
a Nv

b SEPc 

(% pts) 
RPDd Biase 

(% pts) 
LVf Calibration Validation 

Original 
(106110) 

122 154 0.53 6.55 -0.12 5 106110 106110 
403 154 0.47 7.38 0.07 5 106110 106110 

1100 154 0.47 7.39 0.18 9 106110 106110 

Original 
(106118) 

124 154 0.51 6.86 -0.63 3 106118 106118 
403 154 0.50 6.93 -0.07 4 106118 106118 

1100 154 0.49 7.11 0.07 4 106118 106118 

No 
Standardization 

122 154 0.58 6.00 -0.43 5 106110 106118 
403 154 0.52 6.75 -0.28 5 106110 106118 

1100 154 0.47 7.45 -0.32 5 106110 106118 

Robust model 
246 154 0.51 6.79 -0.62 4 6110+6118 106118 
806 154 0.50 6.95 -0.13 4 6110+6118 106118 

2200 154 0.47 7.34 -0.10 4 6110+6118 106118 

Slope/Bias 
Correction 

122 154 0.54 6.40 -0.43 5 106110 106118 
403 154 0.48 7.20 -0.11 5 106110 106118 

1100 154 0.50 7.02 -0.40 4 106110 106118 

Standardization 
Set (106110) 

122 20 0.57 8.17 -0.01 5 106110 STDg 

403 20 0.52 8.95 0.18 9 106110 STD 
1100 20 0.57 8.11 0.21 8 106110 STD 

Standardization 
Set (106118) 

124 19 0.55 8.43 -0.35 9 106118 STD 

403 19 0.61 7.81 -0.22 11 106118 STD 
1100 19 0.67 7.13 -0.05 12 106118 STD 

a Number of samples in calibration set 

b Number of samples in validation set 

c Standard error of prediction 

d SEP and Bias are expressed in % pts 

e Relative predictive determinant 

f  Latent variable 

g Standardization set 
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(b) 

Method 
Nc

a Nv
b SEPc 

(% pts) 
RPDd Biase 

(% pts) 
LV Calibration Validation 

Original 
(1241(0350)) 

123 154 0.54 6.39 0.00 9 1241 1241 
405 154 0.51 6.83 0.13 9 1241 1241 

1101 154 0.47 7.46 0.19 10 1241 1241 

Original (1229 
(553075)) 

126 154 0.71 4.89 0.20 5 1229 1229 
405 154 0.62 5.59 0.22 10 1229 1229 

1101 154 0.55 6.29 0.32 7 1229 1229 

No 
Standardization 

123 154 0.61 5.73 0.01 9 1241 1229 
405 154 0.61 5.71 0.21 12 1241 1229 

1101 154 0.58 6.05 0.34 9 1241 1229 

Robust model 
249 154 0.62 5.58 0.06 3 1241+1229 1229 
810 154 0.57 6.16 0.27 3 1241+1229 1229 

2202 154 0.55 6.33 0.39 4 1241+1229 1229 

Slope/Bias 
Correction 

123 154 0.59 5.85 0.11 6 1241 1229 
405 154 0.55 6.32 0.33 3 1241 1229 

1101 154 0.54 6.42 0.35 4 1241 1229 

Standardization 
Set (1241(0350)) 

123 20 0.20 21.85 -0.01 4 1241 STD 
405 20 0.20 22.51 -0.09 7 1241 STD 

1101 20 0.21 20.60 0.01 7 1241 STD 
Standardization 

Set (1229 
(553075)) 

126 20 0.23 19.37 -0.07 7 1229 STD 
405 20 0.18 24.22 -0.10 8 1229 STD 

1101 20 0.17 25.92 0.05 7 1229 STD 
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Table 3. Validation results of soybean oil calibration models of Bruins OmegAnalyzerGs (a) and Infratec Grain 
Analyzer (b) 

(a) 

Method 
Nc

a Nv
b SEPc 

(% pts) 
RPDd Biase 

(% pts) 
LV Calibration Validation 

Original 
(106110) 

117 155 0.39 5.17 -0.29 6 106110 106110 
372 155 0.37 5.47 -0.32 9 106110 106110 

1118 155 0.37 5.44 -0.39 5 106110 106110 

Original 
(106118) 

117 155 0.36 5.52 0.01 6 106118 106118 
372 155 0.36 5.63 -0.13 7 106118 106118 

1118 155 0.34 5.97 -0.12 7 106118 106118 

No 
Standardization 

117 155 0.36 5.52 0.01 6 106110 106118 
372 155 0.36 5.63 -0.13 7 106110 106118 

1118 155 0.34 5.97 -0.12 7 106110 106118 

Robust model 
234 155 0.35 5.76 -0.13 6 6110+6118 106118 
744 155 0.35 5.77 -0.09 6 6110+6118 106118 

2236 155 0.34 5.91 -0.10 6 6110+6118 106118 

Slope/Bias 
Correction 

117 155 0.34 5.88 -0.49 6 106110 106118 
372 155 0.34 5.83 -0.48 7 106110 106118 

1118 155 0.34 5.94 -0.43 7 106110 106118 

Standardization 
Set (106110) 

117 20 0.22 8.12 -0.27 5 106110 STD 
372 20 0.21 8.42 -0.22 8 106110 STD 

1118 20 0.21 8.23 -0.22 7 106110 STD 

Standardization 
Set (106118) 

117 19 0.18 9.97 0.07 7 106118 STD 
372 19 0.18 9.83 0.01 6 106118 STD 

1118 19 0.18 9.96 -0.01 5 106118 STD 
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(b) 

Method Nc
a Nv

b SEPc 

(% pts) 
RPDd Biase 

(% pts) 
LV Calibration Validation 

Original 
(1241(0350)) 

116 155 0.35 5.68 -0.30 8 1241 1241 
373 155 0.34 5.81 -0.40 9 1241 1241 

1123 155 0.33 6.07 -0.48 12 1241 1241 

Original (1229 
(553075)) 

116 155 0.36 5.49 -0.25 8 1229 1229 
373 155 0.34 5.81 -0.18 7 1229 1229 

1123 155 0.33 6.10 -0.25 7 1229 1229 

No 
Standardization 

116 155 0.38 5.21 -0.41 6 1241 1229 
373 155 0.36 5.56 -0.48 6 1241 1229 

1123 155 `0.35 5.65 -0.56 5 1241 1229 

Robust model 
232 155 0.36 5.60 -0.30 6 1241+1229 1229 
746 155 0.35 5.79 -0.39 6 1241+1229 1229 

2236 155 0.34 5.97 -0.47 8 1241+1229 1229 

Slope/Bias 
Correction 

116 155 0.36 5.55 -0.76 6 1241 1229 
373 155 0.35 5.65 -0.72 5 1241 1229 

1123 155 0.34 5.91 -0.89 5 1241 1229 

Standardization 
Set (1241(0350)) 

116 20 0.23 5.72 -0.51 9 1241 STD 
373 20 0.21 7.75 -0.55 10 1241 STD 

1123 20 0.20 8.43 -0.45 10 1241 STD 
Standardization 

Set (1229 
(553075)) 

116 20 0.18 9.35 -0.18 11 1229 STD 
373 20 0.19 8.89 -0.13 10 1229 STD 

1123 20 0.19 8.89 -0.13 10 1229 STD 
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(a) 

 

(b) 

 

Figure 1. Averaged raw spectra of all calibration samples (a), preprocessed spectra with second derivative, 
SNV and detrending (b) of Bruins OmegAnalyzerGs   
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(a) 

 

(b) 

 

Figure 2. Averaged raw spectra of all calibration samples (a), preprocessed spectra with second derivative, 
SNV and detrending (b) of Infratec Grain Analyzers   
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Figure 3. Validation results for soybean protein with different calibration subsets and standardization methods 
on Bruins OmegAnalyzerGs (a) and Infratec Grain Analyzers (b) 
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Figure 4. Validation results for soybean oil with different calibration subsets and standardization 

methods on Bruins OmegAnalyzerGs (a) and Infratec Grain Analyzers (b) 
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CHAPTER 4. ROBUST TEMPERATURE COMPENSATION 

FOR NEAR-INFRARED TRANSMITTANCE CALIBRATION 

OF PROTEIN AND OIL IN SOYBEANS 

A paper to be submitted to the Journal of Agricultural and Food Chemistry 

Nanning Caoa, Charles R. Hurburgha 

a Iowa State University, Agricultural and Biosystems Engineering, Ames, Iowa 50010, USA. 

Abstract 

Near infrared (NIR) technology has been applied widely to provide fast analysis on 

grain quality. In practical application, temperature fluctuation occurs during grain handling 

process after harvest, due to the changes of weather and storage conditions. This paper 

assessed the effect of soybean sample temperature on the prediction performance of NIR 

calibrations and the temperature compensation methods. Three types of models (extended 

global model, simulated global model and difference augmentation) with samples scanned at 

different temperatures (5, 22 and 45 °C) were constructed. Extended global model directly 

included five temperature samples into calibration set. Simulated global model was built on 

spectra simulated from room temperature samples and 10 difference spectra. Difference 

augmentation method added the generated difference temperature spectra as a noise 

simulation to the original spectra. These models were compared with a local model built on 

samples collected at room temperature (22 °C). These compensated models aim at decreasing 

the prediction errors of protein and oil contents in soybeans. A small number of samples (n ≈

120) in addition to five representative temperature samples were used in calibration set. The 
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extended global model and difference augmentation method gave similar results on the 

predictions of temperature set with decreased SEPs of 0.60% and 0.47% for protein and oil, 

respectively, and 0.58% and 0.46%, respectively on Infratec. With temperature compensated 

models, the prediction errors on regular samples measured at room temperature were also 

reduced from 0.53% to 0.51% for protein and from 0.39% to 0.34% for oil on Bruins, and 

from 0.54% to 0.52% for protein and from 0.35% to 0.34% for oil on Infratec as small 

fluctuations in temperature were corrected. 

KEYWORDS: Temperature compensation; Robust calibration; Near-infrared spectroscopy; 

Soybean 

Introduction 

Near-Infrared spectroscopy (NIRS) has been successfully utilized in grain quality 

measurement for quality assurance1-3. It provides real time rapid testing of samples. Soybean 

[Glycine max] is a major source of plant protein and oil. Several characteristics of soybean 

and its derived foods are attributable to soybean protein and oil contents. In NIRS analysis, 

robust calibration is critical for accurate chemical determinations. In order to obtain an 

effective calibration, the calibration data need to be comprehensive and cover all types of 

variations that attract the factor of interest. In the real-world application of calibration, there 

are still problems that make it difficult in long-term practical use. One such problem is the 

environmental and instrumental temperature fluctuation during measurements. The ambient 

temperature is an environmental factor that has a considerable influence on NIR spectra.  
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Agricultural and food products are complex materials made up of carbohydrate, 

protein, fibrous components and water. Water has an important impact on the NIR spectra 

due to its strong absorption. The NIR spectrum of water is very sensitive to temperature. This 

is because the weak forces that influence the molecular bonding are easily affected by the 

change of temperature.  

There are several approaches to deal with temperature effect in agricultural products. 

In the early 1980s, temperature was proven responsible for the differences discovered 

between Federal Grain Inspection Service (USDA-FGIS) laboratories. Williams et al. 

examined the influence of temperature on protein and moisture in wheat4. A method was 

developed to correct the temperature of ground wheat samples to room temperature. The 

calibration model included samples with a range of temperatures. The temperature effect was 

not associated with significant slope change of the calibration equations. Thus, an intercept 

adjustment could be used. An inverse relationship was found between temperature of ground 

samples and their corresponding apparent protein contents. Currently, global model built 

with spectra collected at different temperatures was the most commonly used method5-7. The 

advantage of this method is easy operation, with no temperature information needed for 

prediction. Another approach is temperature compensation firstly proposed by Kawano et 

al.8. A temperature compensation factor was suggested by using a correlation chart to correct 

prediction of Brix values in peaches. Similar techniques were applied to build a universal 

calibration that was robust against temperature effect9. Selected wavelengths were used to 

estimate the effect of the sample temperature on bias. Bias could be reduced by selecting 

adequate wavelengths for calibration, which could not always achieved by MLR. This study 
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gave mathematical and theoretical analysis of K-method and proved its applicability. The 

third method is to correct temperature shifts by calibration transfer method10, 11. With 

modified piecewise direct standardization (PDS), temperature variation was regarded as a 

special type of instrumental variation at different temperatures. Another example is a 

generalized PDS method proposed as continuous piecewise direct standardization (CPDS) 

were developed to deal with temperature as a discrete variable12. The fourth method is to 

remove temperature effect from spectral data by a preprocessing method. The external 

parameter orthogonalisation (EPO) was proposed to remove the information in spectra that 

are mostly influenced by external parameter variation13, in this case temperature.  

However, there are few studies on the compensation of temperature effect on 

calibration for the composition of soybean. The current whole grain transmission calibration 

procedure involves developing a base calibration followed by the addition of samples to the 

base calibration for instrument stabilization and temperature stabilization. Instrument 

temperature is usually controlled by heating and cooling circuitry within an instrument. Even 

with a temperature control module, small temperature fluctuation exists in practical 

condition. A robust calibration is able to provide precise predictions and not vulnerable to 

different perturbation factors and measurement noise in the control system14. In this case, it is 

necessary to stabilize sample temperature effects in NIRS calibrations and/or to test the 

stability of calibrations to sample temperature. 

The objective was to create robust models against temperature perturbation with the 

least experimental effort and the lowest cost associated with data acquisition. This study 

assessed the influence of temperature on NIR transmittance spectra of soybeans and 
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compared three strategies (extended global model, simulated global model and difference 

augmentation) for temperature compensation. For comparison, a local model built on spectra 

collected at room temperature only was used a benchmark.  

Theory 

Temperature effect on spectral data 

In NIR spectra, a sample temperature rise will increase the probability of molecules 

transfer to a high energy level, which means more radiation is absorbed and less is reflected. 

The increased sample temperature raises the vibration energy between the molecules so that 

molecular bonds, especially the hydrogen bonds break. Accordingly, the clusters of the water 

molecules become smaller and the absorbance of the free hydrogen bonds increases. 

Likewise, the reflectance decreases with increasing temperature. The change in the 

temperature could be connected with the changes in the hydrogen bonding of water15. The 

band near 1449 nm is the temperature-dependent region of water. 

The influence of sample temperature on its NIR spectra has been investigated in 

several kinds of food and agricultural products6, 16. With the fundamental knowledge of water 

spectra, it is known that large spectral variations of water caused by temperature change can 

attribute to changes of the hydrogen-bonded water structure. However, in complex mixtures 

like food and agricultural products, the temperature perturbation is likely to be more complex 

especially in high moisture content products. Thus, it is hard to summarize in one variable.  

Sometimes, temperature changes may even lead to phase change, which is more complex 

than changes within the same phase. In grain products, NIR spectra are highly responding to 



150 

 

 

 

moisture content17. In this study, moisture content of soybean samples differs from 4% to 

18%. In order to eliminate the effect of different moisture contents, reference values of both 

protein and oil were converted into a constant moisture basis (13%). 

Temperature effect on calibration 

External perturbation like temperature has a nonlinear impact on the spectral shape. 

The influence of temperature on calibration has been examined 18 by comparing the local 

model with no temperature variation and global model included samples at different 

temperatures. Global models were proved to perform equally well as local models calibrated 

at a specific temperature. Experimental design is usually applied to span the concentration 

variations with the least number of representative samples. However, this is not always 

possible on agricultural products. In some cases, it was achieved by adding artificial 

ingredients into the mixtures to create samples that match with experimental design points. 

Milk samples were simulated by adding whey protein and oil mixtures to form different 

concentrations of protein and fat 19. This could not be applied to grain products like whole 

soybean sample. To solve this problem, the original calibration set contains representative 

samples of all concentration levels that were deliberately selected from a large population for 

both protein and oil contents. 

Materials and Methods 

Samples 

Calibration dataset  
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The original calibration set included approximately 120 whole soybean samples with 

reference values of protein and oil collected and was scanned at Grain Quality Laboratory, 

Ames, IA, USA, during crop years 2001-2010. This calibration subset was selected from an 

original pool with more than 1,000 soybean samples. Samples in this set were run at room 

temperature (22 ± 2 °C). 

Temperature dataset 

Twenty samples selected from crop year 1994 to 2012 were included in the 

temperature set. Samples in this set were tested the National Type Evaluation Program 

(NTEP) process, which requires samples to be measured under room temperature (22 ± 2 °C), 

cold (5 ± 2 °C), room temperature (22 ± 2 °C), warm (45 ± 2 °C) and room temperature (22 ± 2 

°C) conditions. For every temperature change, samples were equilibrated to the target 

temperature under room temperature, cooler or oven for 24 hours. Each sample was scanned 

five times. Sample temperature was measured in the hopper before scanning using the non-

contact infrared thermometer.  

Five representative samples spanning the reference variation were selected from the 

temperature set by Kennard-Stone algorithm20 to generate temperature information for 

calibration set in global model and difference augmentation methods. The remaining fifteen 

samples were used for validation.  

Validation datasets 

Two datasets were used validation sets to test the performance of temperature 

correction. Validation set 1 was composed of 15 temperature samples scanned through NTEP 

process with 5 spectra for each sample at temperature 5, 22 and 45°C. 
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Soybean samples from crop year 2011 were used as an external validation set 2. This 

set was completely independent and was indicative of future prediction samples. No outlier 

detection process was applied to entire validation set. Samples in this set were all scanned at 

room temperature at 22 °C. This set was applied to test the robustness of calibration models 

after temperature correction under normal condition.  

Calibration performance was evaluated in terms of precision, accuracy, and model fit. 

The standard error of prediction (SEP) on the validation sets or standard deviation of 

differences were used to evaluate the precision. SEP estimates the typical difference between 

prediction and reference values. The accuracy will be determined by the bias (average of 

differences). Bias is a good indicator of similarity between validation samples and the 

calibration set 21. Root mean square error of prediction (RMSEP) is the total error and is 

equal to the quadrature addition of SEP and bias.  

Reference chemical analyses 

Protein content was determined by Eurofins (Eurofins Scientific, Inc., Des Moines, 

Iowa, USA) using the combustion method (AOAC 990.03)22 and oil content using ether 

extract (AOCS Ac3-44)23. Eurofins did both analyses. Concentrations for protein and oil 

were converted to a 13% moisture basis. Summary statistics for the calibration, temperature 

set and validation sets are presented in Table 1. 

Instrumentation 

Soybean samples were scanned by a Bruins OmegAnalyzerG (serial number: 106110) 

(Bruins Instruments, Puchheim, Germany) and a Foss Infratec Grain Analyzer 1241 (serial 
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number: 12410350) (FOSS North America, Eden Prairie, MN, USA). Both are transmittance 

instruments with effective spectral range from 850 to 1048 nm with a 2nm increment. A path 

length of 30 mm was used.  

Data Analysis 

The spectral data are analyzed on the region 850-1048 nm. Second derivative was 

applied to the raw spectra first. Then, we considered standard normal variate (SNV) followed 

by detrending (DT). As a preprocessing technique, SNV corrects for the linear baseline shift 

and signal intensity variations. It normalizes each spectrum to reduce scattering effects due to 

packing heterogeneity or path-length variations24. Detrending can be used after SNV to 

account for the variation in baseline shift and linearity of spectra by using a second-degree 

polynomial to correct each spectrum25. 

PLS regression was used to develop all prediction models. In PLS, the original matrix 

is compressed into latent variables (LVs) that maximize the covariance between the reference 

values and all possible linear functions of the spectral data. PLS has been a classical 

analytical technique to handle the multivariate natures of the agriculture products and the 

highly collinear NIR spectroscopic data. The number of PLS components for each model was 

selected by cross-validation.  

Calculations were performed with MATLAB R2011a (The MathWorks, Natick, MA) 

installed with the PLS_Toolbox v.6.2.1 (Eigenvector Research, Wenatchee, WA). Kennard-

Stone method was computed in a custom-created Matlab program. 
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Local models 

The benchmark calibration models were constructed on spectra collected at room 

temperature (22 °C), then were used to predict samples (validation set 1) collected at 

different temperatures (5, 22 and 45 °C). The robustness of these calibration models were test 

in previous study. These were the benchmark model that was used to compare with 

temperature compensation methods. The prediction results of validation set 2 (samples 

scanned at room temperature) were also computed to test the predictive ability of the 

calibration models (benchmark and temperature controlled) on normal or unperturbed 

samples.  

Global models 

In this approach, calibration model was constructed on a dataset that contained 

spectra collected at different temperatures. This is a commonly used solution to model the 

effects of temperature. It only requires the inclusion of temperature samples in calibration 

set. The model is trained empirically to handle temperature as an unknown interference6. 

With one global model for samples analyzed at varying temperatures, it is not necessary to 

know the temperature of new prediction samples, nor the calibration set. A new calibration 

model is not needed for each temperature. The problem of this method is the large number of 

temperature samples in the calibration process, which increases the expense and effort of 

experiments, and its empirical (sample set dependent) nature. 

In this study, two types of global models were created. The first one included only 

five well-chosen samples taken at all three temperatures in addition to the original calibration 
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set. This is called the extended global model. Compared to the traditional global model with 

the inclusion of all the samples collected at all the temperatures, this kept the calibration 

model less complex and computational efficient. 

The second one is called the simulated global model. In this approach, spectra 

collected at room temperature were simulated to spectra of cold and warm samples. The 

average values of difference spectra were used for simulation. The difference spectra were 

calculated as follow: 

 w 0

0 c

x - x
d =

x - x
and





  (62) 

Spectra of cold ( cx ) and warm ( wx ) samples were simulated by 

 c 0 c

w 0 w

x = x - d

x = x + d





  (63) 

where w cx ,x represent spectra analyzed at warm and cold conditions, respectively. 

Then, the simulated spectral matrix simX  and response vector ( simy ) would be: 
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Difference augmentation method 

Segtnan et al. proposed the difference augmentation method to simulate the effect of 

temperature on spectra 5, 26. This is an ensemble method that based on the difference spectra 
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for temperature correction. The purpose is to augment the temperature effect in the spectral 

variation in calibration set in order to handle the drift expected in future samples.  

A subset of 5 representative samples was selected from the temperature set that were 

run at three levels of temperatures (5, 22, 45 °C). For grain quality measurement, the middle 

temperature (25 °C) is the expected normal condition in future analysis. In this case, spectra 

scanned at room temperature (25 °C) was used as basis and defined as 0x . The difference 

spectra were calculated in equation (1).  

In this study, five well-chosen representative samples collected at three different 

temperatures (5, 22, 45 °C) were used as temperature samples to generate 10 difference 

spectra. With each difference spectra, original calibration samples were simulated to 

perturbed spectra: 

 
0aug

x = x + dr   (64) 

where r represents n (number of samples in calibration set) independent Gaussian random 

numbers with standard deviation 0.5. Then, 10 matrices were generated to form the simulated 

augmentation calibration set. The final matrix used for calibration was composed by stacking 

these 10 matrices. The corresponding y values were stacked by 10 copies of the original 

reference values. Details of this method are described in reference5.  

Results and Discussion 

Local models 

Local models were used as benchmark calibration models for comparison with the 

temperature compensation methods. Local models were used to predict protein content in 
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soybean samples analyzed at 5 °C (cold) and 45 °C (warm). The regression results were 

plotted in Figure 3 for Bruins 106110 (a) and Infratec 1241 (b). Local calibration models 

tended to overestimate warm samples and underestimate cold samples on Bruins 106110. For 

both protein and oil contents, local models gave the largest SEPs and bias. Large bias 

indicated uncontrolled variables in prediction samples. In this case, uncontrolled temperature 

variable affects the predictive ability of calibration models when samples taken at 

temperatures present. It was considered water was an important factor causing a bias due to a 

variation of temperature because the water absorption was easily affected by it 8. The reason 

of converting to 13% moisture basis is that temperature compensation method worked better 

with constant moisture content. By contrast, Infratec 1241 models were less sensitive to 

temperature perturbation in sample spectra in terms of both protein and oil contents. They 

gave reasonable SEPs for both protein and oil. However, the bias of protein local model was 

relatively large.  

Extended global models 

In addition to the original calibration set, five temperature samples were also included 

in the extended global model. For Bruins 106110 models, both SEPs and bias for protein and 

oil were decreased on validation set 1 and 2. This implies that with only five representative 

samples, extended global models included the temperature information to give better 

prediction and improved the robustness of calibration models. For Infratec 1241, extended 

global models improved the prediction performance on validation set 1 and gave similar or 

slightly better results on validation set 2.  
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Simulated global models 

This approach is a simulation of the full global model. To visualize the temperature 

effects in the soybean spectra, plots in Figure 1 gave an example on the similarity of the 

simulated temperature spectra and the ones taken at the real temperatures (a). The simulated 

spectra were plotted in Figure 1(b). By adding the difference spectra to spectra scanned at 

room temperature, the simulated cold and warm spectra were assemble the real spectra. This 

indicated the use of simulation based on five temperature samples artificially created spectra 

resembling ones taken at varying temperatures. Compared to the local models, this method 

successfully decreased SEPs in prediction on both validation sets by involving temperature 

information. However, the problem of this approach is that the bias tends to be relatively 

large compared to other compensation methods. The reason is probably that in order to 

simulate a full global model, the average difference spectrum needs to be representative, 

which is very hard for complex mixtures as agricultural products. The effect of temperature 

on individual components in soybean may interfere with each other, which makes the 

simulation difficult. 

Difference augmentation  

The difference augmentation method worked well and obtained the lowest SEPs in 

most cases. By adding each difference spectrum as simulated temperature information on 

each spectrum in calibration set, the final augmentation matrix modeled temperature as an 

external perturbation factor. Consequently, difference augmentation method provided 
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calibrations computed on a small calibration set and only five representative temperature 

samples to save the cost on acquirement of spectra and reference values. 

Discussion 

Room temperature (22 ± 2 °C) was used as a basis for comparison between the 

different methods investigated. The performance of these four methods is summarized Table 

2 for both protein and oil contents. Validation set 1includes spectra of 15 spectra, each of 

which was scanned 5 times at three different temperatures. The prediction results show that 

the three compensation methods improved the prediction performance while taking the 

temperature effects into account. Moreover, these temperature models maintained or even 

improved their predictive ability on validation set 2, which was not perturbed by temperature 

changes. This may be because that the room temperature is not always constant during each 

run. On the other hand, the instrument temperature may fluctuate even with a temperature 

control function. The greater temperature variations of the compensated models are likely to 

give more stable temperature correction than the small and uncontrolled temperature 

variation of spectra taken at the room temperature. Temperature compensation improves the 

robustness of the calibration models, even under “normal” conditions, in which temperature 

is not controlled.  

Figure 1(a) shows real spectra collected at different temperature. It is obvious that the 

absorbance at water peak around 980 nm increased with higher temperature. Wavelength 980 

nm corresponds to the second overtone of O-H bond. Increased vibration energy among the 

molecules over elevated temperatures created higher absorbance of the free hydrogen bonds. 
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Peak shifts were observed in Figure 1(a). For this specific sample, the water peak 986 nm at 

room temperature shifted to 992 nm at 5 °C and 984nm at 45 °C. As temperature rises, the 

water peak shifts a few nanometer to shorter wavelength (lower frequency) with 

strengthening hydrogen bonding due to shifts from low density water (increasing expanded 

structure) to high density water (increasing collapsed structure). Temperature changes may 

also induce the overlapping of spectra of individual components in the complex mixture. 

Principal component analysis (PCA) was conducted on spectra measured in Bruins 

106110 and the loading plot of factor is shown in Figure 2 (a). Principal components (PCs) 

express the main variations of the spectra, while PC 1 explained 78.17% of the total variation 

in this case. The positive peak frequency in the loading plot at 968 nm corresponds to the 

absorption band of hydrogen bond. Difference spectra of soybean sample calculated by 

subtracting the spectrum at 22 °C were plotted in Figure 2 (b). Peaks appeared at 974 nm and 

976 nm and become stronger with higher temperature, very close to the peak position in the 

loading plot. When the noise and baseline change are small on Bruins 106110, the 

temperature effect on water spectra is very regular15. This is reasonable since the broad water 

peak dominates in the region of 960-990 nm and is very sensitive to temperature changes. 

Loading plot of spectra collected on Infratec 1241 was not displayed due to the presence of 

obvious baseline shift. 

The prediction residuals of protein content on temperature validation set were plotted 

in Figure 4.  For Bruins 106110 (left column), the residuals of local model were scattered. 

Warm samples had positive residuals because local model overestimated protein contents for 

samples with higher temperatures. Residuals significantly decreased and no systematic bias 
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remained after temperature compensation methods were applied to calibration models in all 

cases. For Infratec 1241 (right column), changes in residual distributions are not significant 

due to the robustness of its local model. 

Calibration models with temperature compensation methods used one or two more 

latent variables than the local model. This is reasonable since the impact of temperature on 

spectra is not linear. Consequently, a linear regression method like PLS tends to use more 

regression factors. It also indicates these methods did not increase the complexity of 

calibration models significantly. 

Conclusions 

In this study, it has been shown that regarding the temperature effect on NIR 

transmittance spectroscopy, the robustness of calibration model could be improved by 

temperature compensation methods. Extended global model directly included five 

temperature samples into calibration set. Simulated global model was built on spectra 

simulated from room temperature samples and 10 difference spectra. Difference 

augmentation method added the generated difference temperature spectra as a noise 

simulation to the original spectra. All three temperature compensation methods provided 

improvements on the precision of prediction on both temperature set and regular validation 

set. Difference augmentation method reached the lowest SEPs in temperature set for both 

instruments. Bruins models were more sensitive to temperature effect. With difference 

augmentation method, SEPs of temperature sample set were reduced from 0.78% to 0.60% 

for protein and from 0.52% to 0.47% for oil on Bruins, and from 0.60% to 0.58% for protein 
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and from 0.50% to 0.46% for oil on Infratec. Regarding regular validation samples scanned 

at room temperature, SEPs were also reduced from 0.53% to 0.51% for protein and from 

0.39% to 0.34% for oil on Bruins, and from 0.54% to 0.52% for protein and from 0.35% to 

0.34% for oil on Infratec. 

In addition to the original calibration samples (n ≈ 120), five well-selected samples 

run at three different temperatures provided sufficient information in calibration. Smaller 

number of calibration and temperature samples significantly reduced the cost of spectral 

measurements and the complexity of model. With a few more PCs, the complexity of model 

did not increase significantly due to the inclusion of temperature information. No 

temperature information is required for prediction samples, which provides huge advantage 

on future application.  
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Table 1.  Summary statistics of the calibration, temperature and validation sets 

Parameter 
Instrument 

(serial) 
N Mean (%) Range (%) 

Standard 
deviation  
(% pts) 

Protein (13% 
moisture basis) 

Infrated 1241 (0350) 123 36.08 24.72-46.50 6.02 

OmegAnalyzerG 106110 122 36.25 24.72-46.89 6.17 

Temperature set 20 36.03 32.57-42.16 2.73 

Validation set 2 154 34.92 28.93-43.87 3.48 

Oil (13% 
moisture basis) 

Infrated 1241 (0350) 116 18.60 12.48-24.64 3.31 

OmegAnalyzerG 106110 117 18.56 11.85-24.64 3.38 

Temperature set 20 18.63 14.77-21.47 1.45 

Validation set 2 155 18.51 13.43-22.95 2.00 
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Table 2. Validation results of soybean calibration models of Bruins OmegAnalyzerG 106110 (a) and Infratec 
Grain Analyzer 1241 (b) 

(a) 

Constituent Method Nc
a 

Validation set 1 
(Temperature set) 

Validation set 2 

SEPb

(% 
pts) 

Biasc 
(% 
pts) 

RMSEPd 
(% pts) 

LVe 
SEP 
(% 
pts) 

Bias 
(% 
pts) 

RMSEP 
(% pts) 

LV 

Protein 
(13% 

moisture 
basis) 

Local 122 0.78 -0.21 0.81 6 0.53 -0.12 0.54 5 

Extended 
global 

147 0.62 -0.07 0.62 8 0.51 -0.02 0.51 5 

Simulated 
global 

122*3 0.60 -0.40 0.72 7 0.53 -0.27 0.59 6 

Difference 
Augmentation 

122+5 0.60 -0.28 0.66 7 0.51 -0.09 0.52 6 

Oil (13% 
moisture 

basis) 

Local 117 0.52 -0.13 0.53 5 0.39 -0.29 0.49 6 

Extended 
global 

142 0.47 -0.05 0.47 8 0.35 -0.01 0.35 7 

Simulated 
global 

117*3 0.47 -0.20 0.51 7 0.36 -0.12 0.38 7 

Difference 
Augmentation 

117+5 0.47 -0.07 0.48 6 0.34 -0.03 0.34 7 

a Number of samples in calibration set 

b Standard error of prediction 

c SEP and Bias are expressed in % pts 

d Root mean square error of prediction 

e Latent variable 
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(b) 

Constituent Method Nc 

Validation set 1 
(Temperature set) 

Validation set 2 

SEP 
(% 
pts) 

Bias 
(% 
pts) 

RMSEP 
(% pts) 

LV 
SEP 
(% 
pts) 

Bias 
(% 
pts) 

RMSEP 
(% pts) 

LV 

Protein 
(13% 

moisture 
basis) 

Local 123 0.60 -0.31 0.67 6 0.54 0.00 0.54 9 

Extended 
global 

148 0.59 -0.19 0.62  8 0.55 -0.02 0.55 5 

Simulated 
global 

123*3 0.57 -0.38 0.69 8 0.52 -0.08 0.52 5 

Difference 
Augmentation 

123+5 0.58 -0.29 0.65 8 0.52 -0.12 0.53 5 

Oil (13% 
moisture 

basis) 

Local 116 0.50 0.02 0.50 5 0.35 -0.30 0.46 8 

Extended 
global 

141 0.47 0.03 0.47 8 0.34 -0.09 0.36 6 

Simulated 
global 

116*3 0.47 -0.11 0.49 7 0.34 -0.33 0.48 7 

Difference 
Augmentation 

116+5 0.46 -0.08 0.47 8 0.35 -0.28 0.45 7 
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Figure 1. Spectra of soybean scanned at different temperatures (a) and simulated spectra (b) from spectra 
collected at room temperature on Bruins OmegAnalyzerG 106110  
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Figure 2. Difference spectra of soybean (a) by subtracting the spectrum at 22°C and PCA loading plot (b) of 
factor 1 for the model based on spectra measured at three temperatures on Bruins 106110 
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Figure 3. Prediction of the protein content of soybean samples scanned at 5°C (cold) and 45°C (warm) using a 
model built on samples scanned at 22°C (room temperature) on Bruins OmegAnalyzerG 106110 (a) and 
Infratec Grain Analyzer 1241 (b) 
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Figure 4. Temperature set prediction residuals grouped by samples temperature vs. protein content for Bruins 
OmegAnalyzerG 106110 (left) and Infratec Grain Analyzer 1241 (right) with different temperature 
compensation methods 
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CHAPTER 5. GENERAL CONCLUSION 

General Review of Conclusions 

In this study, the possibility of calibration optimization of moisture, protein and oil 

models was evaluated in terms of calibration sample selection, calibration transfer and 

temperature compensation.  

Calibration model based on a representative sample set is able to obtain similar or 

even better performance on prediction. The sample selection procedure achieved choosing 

representative calibration set that covers the variations over the population. The sample 

selection methods showed that adequate NIR calibration can be obtained based on few 

representative samples (n ≈ 100) by significantly reducing more than 98% of the original 

moisture data set and 90% of the protein and oil calibration set. A comparison among 

uniform random, Kennard-Stone and D-optimal methods gave approximately similar results 

with slightly better SEPs for uniform random method. The optimal calibration models were 

reached with SEPs of 0.14% (n=630), 0.53% (n=429) and 0.54% (n=388) for moisture, 

protein and oil models, respectively. These optimal models showed better performance 

compared to the benchmark models built on the entire dataset. This indicates that sample 

selection procedure not only allows reductions on the initially large set of samples and the 

complexity of calibration model but also select the subset that represents the initial 

calibration set well and improves the robustness of calibration.  

The transferability of model built on calibration subset could be enhanced by a simple 

slope and bias correction. Calibration models based on small representative dataset were 
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transferable across units within brand. Models built on master instruments outperformed the 

local model built on the secondary instruments. Post regression slope and bias correction 

provides a simple and effective way for calibration transfer for both brands. Calibration 

transfer based on fewer samples in calibration set cuts down on the number of measurements 

needed on multiple instruments. Using as few as 20 transfer samples, predictive ability of the 

calibration model was maintained or improved across multiple instruments and major 

instrument maintenance. 

Calibration robustness could be improved with the inclusion of external perturbations, 

such as temperature. Near infrared transmittance spectra of soybeans were affected by 

sample temperature in a non-linear way, mainly due to the absorption changes of the OH-

overtones of water. Different temperature compensation techniques were applied to examine 

the temperature dependence of calibration models for the protein and oil contents of 

soybeans. Two approaches were found to work well: extended global model with the 

inclusion of five representative samples scanned at different temperatures in addition to 

spectra scanned at room temperature; and difference augmentation method that added the 

generated difference temperature spectra as a noise simulation to the original spectra. The 

temperature compensation methods did not increase the complexity of model significantly. It 

is suggested that both the calibration set and the incorporated temperature sample set should 

cover a representative variation with respect to spectral and chemical information.  

In summary, the general conclusions from this research address several aspects of 

calibration optimization in near infrared spectroscopy.  The feasibility of building calibration 

models with few representative samples has been demonstrated. This provides a means for 
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transferring robust calibration across instrument units and maintaining long-term database, 

which enhances the efficiency of NIR calibration efforts and saves cost on reference analysis. 

The predictive ability and robustness of calibration model have been improved by modeling 

few selected perturbed samples into the selected calibration sets. 

Recommendations for Future Work 

This research was the first to examine the optimal number of calibration samples to 

assure a robust NIR calibration model in determining the chemical compositions of grain 

products. We regard the initial findings as the foundation to attain a reliable useful 

calibration that can be put to use in industry, which provides a procedure for sample 

selection. It is useful information to identify calibration samples for people working at 

industrial-scale calibrations.  

Several aspects can be addressed on further research include: 1) the development of 

an engineering economic analysis helps estimate the life cycle cost of NIR calibration model; 

2) the identification of the best samples in advance by the spectra only. Calibration model 

with analytical accuracy and efficiency is the key to the application of near infrared 

technology. 

 


