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Abstract

The empirical likelihood method is a powerful tool for incorporating moment conditions in 

statistical inference. We propose a novel application of the empirical likelihood for handling item 

nonresponse in survey sampling. The proposed method takes the form of fractional imputation 

(Kim, 2011) but it does not require parametric model assumptions. Instead, only the first moment 

condition based on a regression model is assumed and the empirical likelihood method is applied 

to the observed residuals to get the fractional weights. The resulting semiparametric fractional 

imputation provides -consistent estimates for various parameters. Variance estimation is 

implemented using a jackknife method. Two limited simulation studies are presented to compare 

several imputation estimators.

Keywords

Item nonresponse; missing data; quantile estimation; robust estimation

1 Introduction

Missing data are frequently encountered in many areas, such as survey sampling, 

epidemiology and other fields. Simply ignoring missing values can potentially lead to biased 

estimation (Little and Rubin 2002, Kim and Shao 2013). Two statistical approaches for 

handling missing data have been used in practice: propensity score weighting and 

imputation. Propensity score weighting is used mainly to correct for unit non-response, 

while imputation is mainly used to handle item nonresponse. Haziza (2009) provides a 

comprehensive overview of the imputation methods in survey sampling.

Multiple imputation (MI), proposed by Rubin (1987), is a popular approach of imputation 

for general-purpose estimation due to its practical simplicity. However, the Rubin’s variance 

estimator may be biased under certain situation (Fay 1992; Wang and Robins 1998; Kim, et. 

al. 2006; Yang and Kim, 2016) and its validity requires the congeniality condition of Meng 

(1994), which may not hold for general-purpose estimation.

Fractional imputation (FI), first proposed by Kalton and Kish (1984), provides an alternative 

method for handling item nonresponse. Fay (1996), Kim and Fuller (2004), Fuller and Kim 

(2005), Durrant (2005), and Durrant and Skinner (2006) discussed fractional hot deck 

imputation. Kim (2011) and Kim and Yang (2014) discussed a fully parametric approach to 

fractional imputation. The parametric fractional imputation provides a powerful tool for 

handling missing data for various situations. However, it relies on a strong parametric model 
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assumption and making such an assumption is not usually preferred in survey sampling. 

Balanced random imputation of Chauvet et al (2011) is also an attractive imputation 

technique, but it still requires parametric model assumptions for multipurpose estimation.

The empirical likelihood (EL) method, considered by Owen (2001) and Qin and Lawless 

(1994), is a useful tool for semiparametric inference in statistics. It involves a likelihood-

based inference without making a parametric distributional assumption about the observed 

data. Qin (1993) addressed the missing survey data problem by using a biased sampling 

argument of Vardi (1985). Wang and Rao (2002) brought regression-type imputation 

approaches to empirical likelihood inference. Wang and Chen (2009) used a nonparametric 

regression imputation approach to handle missing data in the empirical likelihood inference. 

Müller (2009) considered a novel application of empirical likelihood method to handle 

missing data under a regression model assumption. In Müller (2009), the moment condition 

of the error term in the regression model is used to construct a fully imputed estimator.

In this paper, motivated by the fully imputed estimator of Müller (2009), we propose a 

semiparametric fractional imputation (SFI) method using empirical likelihood that can be 

used to handle item nonresponse in survey sampling. Because the proposed SFI uses only 

moment conditions in the semiparametric regression model, it is more robust than the PFI 

method or parametric MI method. By using a regression model assumptions, the proposed 

SFI method is more efficient than the nonparametric regression imputation method of Wang 

and Chen (2009). The proposed method takes the form of fractional imputation, so the actual 

implementation is very attractive in practice. The proposed SFI method can be used to 

estimate various parameters, including nonsmooth parameters such as population quantiles.

The paper is organized as follows. The basic setup is introduced and the proposed method is 

presented in Section 2. The asymptotic properties of the SFI estimators are presented in 

Section 3. Extensions to non-smooth statistics as well as random imputations are covered in 

Section 4. In Section 5, variance estimation is discussed. Some numerical results are given in 

Section 6. Some concluding remarks are made in Section 7.

2 Basic Setup

Consider a finite population ℱN = {(xi, yi);i = 1, 2, …, N}, where xi is the vector of 

auxiliary variables that are always observed and yi is the study variable that is subject to 

missingness. We assume (xi, yi) are realizations from a regression model

(1)

where m(X; β0) is assumed to be known with unknown parameter β0 and ε satisfies E(ε|X) 

= 0. No parametric distributional assumption on X is made.

Let δi be the response indicator such that δi = 1 if yi is observed and δi = 0 otherwise. We 

assume missing at random (MAR) in the sense that
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(2)

Even though we observe δi only in the sample, we can conceptually assume that δi’s are 

defined throughout the population. Such extended definition of δi has been adopted in Fay 

(1992), Shao and Steel (1999), Kim, Navarro, and Fuller (2006).

Given the finite population, suppose that sample A of size n is selected from the finite 

population by a probability sampling mechanism. Let πi,i = 1, 2,…, N, be the first order 

inclusion probability of unit i in the population. We are interested in estimating η0, defined 

as a solution to the estimating equation E {U(η; x, y)} = 0 where U(η; x, y) is a known 

function with parameter η. To avoid unnecessary details, we assume that the solution to E 
{U(η; x, y)} = 0 is unique and the dimensions of η and U(η; x, y) are r. Thus, the parameter 

η is just-identified Under complete response, a consistent estimator of η0 is obtained by 

solving

for η. If some of yi are missing, under the MAR assumption, a consistent estimator of η0 can 

be obtained by solving the following expected estimating equation

(3)

for η. The conditional expectation in (3) is with respect to f(y | x), which is unknown as we 

only assume (1).

In fractional imputation, our goal is to approximate the conditional expectation in (3) by the 

weighted mean of the fractionally imputed estimating functions. That is, we wish to achieve

(4)

as closely as possible for some  satisfying , where ’s are desired 

fractional weights and ’s are m imputed values for subject i. Kim (2011) and Kim and 

Yang (2014) developed a fractional imputation satisfying (4) using a parametric model 

assumption on f(y | x).

In our proposed method, we use the empirical likelihood approach to achieve the 

approximation in (4). To explain the idea, assume for now that the true parameter β0 in (1) is 
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known. In this case, εi = yi − m(xi; β0) are available among δi = 1. Because E(ε | x) = 0 

holds, we can compute

where fε(ε | x) is the (unknown) conditional density of ε given x. To apply the empirical 

likelihood method, we assume that the conditional distribution of ε given x can be 

approximated by

(5)

such that wi ≥ 0 with Σδiwi = 1 are the point mass assigned to the observed εi by assuming 

that the support of εi is equal to the set of observed εi. Using the approximation in (5), we 

can obtain

which can be written in the fractional imputation form in (4). To determine wj uniquely, we 

can use the idea of pseudo empirical likelihood method of Wu and Rao (2006) to maximize

(6)

subject to

(7)

In practice, we do not know β0 and, hence, we do not observe εi = yi − m(xi; β0). We can use 

-consistent estimator of β0 to obtain  and apply the above empirical 

likelihood method to the observed residuals. In general, one can use

(8)

to obtain a -consistent estimator of β, where h(xi; β) is an arbitrary function that enables 

the above equation to have a solution. If the variance function V(y|x) = σ2q(xi; β0) for a 

known function q, then one can choose h(xi; β) = ṁ(xi; β)/q(xi; β), where ṁ(xi; β) = ∂m(xi; 

β)/∂β. This choice is motivated by the quasilikelihood euations for generalized linear models 

(McCullagh and Nelder, 1989, Ch. 9). The solution to (8) can be called complete-case (CC) 
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method. The CC estimator is not efficient in general, but it is efficient for estimating β under 

MAR. Thus, the resulting SFI estimator can be constructed as follows:

[Step 1] Obtain -consistent estimator of β0 and compute  among 

the respondents.

[Step 2] Find ŵi that maximizes (6) subject to

(9)

The solution can be written as

(10)

where  is obtained by solving the second constraint of (9).

[Step 3] Use ŵj in Step 2 to approximate

where  and .

[Step 4] The SFI estimator  of η is computed by solving

(11)

for η.

Instead of (11), one can also consider a fully imputed estimating equation based on

which was considered by Müller (2009) under the independently and identically distributed 

(I.I.D.) setup. The fully imputed estimating equation may lead to a more efficient estimator 

of η (Matloff, 1981) but such over-imputation does not appeal to survey practice since we 

usually do not want to replace the true values of respondents with some imputed values. In 

the following section, we present the asymptotic properties of  under complex survey 

designs.
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3 Asymptotic Properties

To discuss the asymptotic properties of the proposed SFI estimator of η, we first assume a 

sequence of finite populations and samples with finite fourth moments as in Fuller (2009, 

Ch.1). The following theorem presents the asymptotic normality of the proposed SFI 

estimator. The sketched proof of Theorem 1 is provided in Appendix A.

Theorem 1

Under the regularity conditions (C1)–(C13) in Appendix A, the SFI estimator defined in (11) 

is a -consistent estimator of η0, that is

where , and

(12)

and

with , and .

Remark 1

In (12), ζi can be written as the sum of four terms. The first two terms is the conditional 

expectation of U(η; x, y), the third term is the additional term due to approximating f(y | x) 

by the empirical likelihood method, and the fourth term is the additional term due to 

estimating β.

According to Theorem 1, a consistent variance estimator of  can be written as
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(13)

where

with  and

(14)

where  and  is a plug-in estimator of ζi in (12). One can use

with
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When nN−1 = o(1), the second term of (14) is of smaller order and can be safely ignored.

4 Extensions

In this section, we discuss two extensions of the proposed method. In Section 4.1, our 

proposed method is extended to handle non-smooth statistics including distribution functions 

and percentiles. In Section 4.2, an extension to stochastic imputation is discussed.

4.1 Inference for non-smooth statistics

Suppose that we are interested in estimating parameter η0, the solution of E {U(η; x, y)} = 0 

with non-smooth function U(η; x, y), where the non-smoothness can be with respect to 

either η or y. For generality, we assume the non-smoothness is with respect to both η and y. 

Wang and Opsomer (2011) discussed asymptotic results for nondifferentiable survey 

estimators. Define  Let  and 

, where

Denote  as the solution of estimating equation Ũn(θ) = 0. To discuss asymptotic 

properties, we replace regularity conditions (C7)–(C10) in Appendix A with the regularity 

conditions (C14)–(C17) in Appendix B. The following theorem presents the asymptotic 

expansion of  under this scenario and the sketched proof is presented in Appendix B.

Theorem 2—Under regularity conditions (C1)–(C3), and (C11)–(C17) in Appendix A and 

Appendix B,  has the following asymptotic expansion
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where

where

and

evaluated at β0 and other terms are the same as those in Theorem 1.

By Theorem 2, we can obtain

where B = [E {∂U(η; x, y)/∂η}]−1 and . If we are interested in 

estimating the cumulative density function of y, which is Pr(y < t), then we can choose U(η; 

x, y) = I(y < t) − η and

where p(x) = Pr(δ = 1|x). Therefore, we have 

A consistent estimators of D* can be written as
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with

where Kx and Ky are kernel functions for x and y with bandwidth hx and hy. Thus, a 

consistent variance estimator of  here can be obtained similarly to (13).

If the parameter of interest is the τ-th percentile of Y, given by , the SFI estimator 

 of η can be obtained by solving the estimating equation (11) with U(η; x, y) = I(y < η) 

− τ. Since E {I(Y < η)} = FY(η), it can be shown that  has the asymptotic expansion in 

Theorem 2 with

where fy is the density function for y. A consistent estimator of ∂E {U(η0; x, y)} /∂η can be 

written as

and a consistent estimator of D* can be written as

with .

4.2 Stochastic imputation

For a multi-purpose survey, stochastic imputation is often preferred to deterministic 

imputation since it can preserve distributional relationships better. In stochastic imputation, 

imputed values are generated from a stochastic imputation mechanism and with additional 

variability due to the imputation. For simplicity, we only consider the case where 

 is a smooth function of η and β. The results can be naturally extended to non-

smooth statistics. The stochastic imputation estimator  can be obtained by solving the 

following estimating equation
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where  are randomly selected from  with the selection probability, 

 where  are the fractional weights in (11). Since

where the conditional expectation is with respect to the stochastic imputation mechanism, 

we have

Thus, using an argument similar to Theorem 1, we can obtain

(15)

where  Therefore, a consistent variance estimator can be written as

where

(16)

and  can be obtained similarly to (13) and

The second term of (16) estimates the additional variance due to stochastic imputation. If M 
is large, the second term is negligible.
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5 Replication variance estimation

Estimating the variance of the estimator  can be done through the linearization formulas 

presented in Section 3 for smooth statistics and the formulas in Section 4 for non-smooth 

statistics, respectively. However, it requires tedious algebra to compute all the terms. In this 

section, we consider an alternative approach using replication methods. Shao and Tu (1995) 

considered the theoretical aspects of replication methods such as Jackknife and Bootstrap. 

Wolter (2007) gives a comprehensive overview of replication variance estimation methods in 

survey sampling.

Suppose we are interested in estimating . Define the design weight as . 

The design unbiased estimator of T is  and the consistent replication variance 

estimator of  is given by

where there are L replication weights, ck is the replication factor associated with the k-th 

replication and  with  being the k-th replicate of di. For example, ck = 

(L − 1)/L for deleting one group jackknife method. For details of corresponding ck with 

different variance estimation approaches, see Wolter (2007).

To obtain replication variance estimator of our proposed SFI estimator, we apply the same 

SFI method to each of the replicates. In the first step, we obtain the k-th replicate of  by 

solving

In the second step, the replicated EL weights are computed by maximizing

subject to constraints

Chen and Kim Page 12

Stat Theory Relat Fields. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with . In the final step, the replicated SFI estimator is computed using 

the replicated EL weights. For smooth statistics, the k-th replicate of , denoted by , is 

obtained by the solution to the following estimating equation

where  and . The final replication 

variance estimator of  is given by

For non-smooth statistics, our estimator is similar to that of Wang and Opsomer (2011). 

Define

where Ê{εŪm(ε)} and  are defined in Section 4.1,  is defined in (11) with 

design weight replaced by replication weight  and fractional weights replaced by 

replication fractional weights . Then the replication variance estimator can be written 

as:

with ∂Ê{U(η; x, y)} /∂η defined in Section 4.1.

6 Simulation studies

In this Section, we conduct two limited simulation studies. The first one is generated from 

an artificial data set and the second one is based on the real data treated as a finite 

population.

6.1 Simulation One

We repeatedly generate B = 2, 000 finite populations of (xi, yi, δi) of size N =10, 000 from a 

super-population model
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with xi ~ exp(1) and E(εi | xi) = 0. Two error distributions are considered: (E1) εi ~ N(0, 1) 

and (E2) ε ~ {χ2(2) − 2} /2. Given (x, y), the response indicator δ has a Bernoulli 

distribution with Pr(δ = 1|x) = {1 + exp(1 − x)}−1. The overall response rate is about 50%. 

Given each finite population (x, y, δ), we draw a sample by using a Poisson sampling design 

with the first-order inclusion probability , where n = 200 and zi = max{0.5yi 

+ 2, 1} + ui, with ui ~ χ2(1) and χ2(1) corresponding to the chi-squared distribution with 

degrees of freedom equal to one. In this simulation, we are interested in estimating three 

parameters:

1.
, the population mean of y.

2.
, the proportion of y less than 1.

3. θ3 = F−1(0.5), the population median of y.

From each sample, we compute the following four estimators:

1. The complete-case (CC) estimator only based on the complete cases only. The 

CC estimator is the solution to , where U(η; x, y) is the 

corresponding estimating equation for each parameter.

2. Full sample estimator based on the original sampling without missing data and 

pseudo empirical likelihood method (Full). Specifically, we maximize 

, subject to the following constraints

where  and  is obtained by solving the following 

estimating equation:

The full sample estimator serves as a benchmark for comparison.

3. The parametric fractional imputation (PFI) estimator of Kim (2011) assuming yi | 

xi ~ N(β0 + β1xi, σ2) with imputation size M = 100.

4. The nonparametric fractional imputation (NFI) estimator that uses the following 

nonparametric fractional weights:
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for each unit i ∈ A with δi = 0 and j ∈ A with δj = 1. We use the reference 

bandwidth  with 

 and 

. A Gaussian kernel density function Kx(t) = (2π)−1/2 exp(−t2/2) 

has also been used.

5. The stochastic regression imputation (SRI) estimator assuming the following 

model: yi = β0 + β1xi + εi with E(εi) = 0 and V(εi) = σ2.

6. The proposed semiparametric fractional imputation (SFI) estimator .

From the Monte Carlo sample of size B = 2,000, Monte Carlo bias, standard error and root 

mean squared error are computed for each point estimator. The results are presented in Table 

1. Under (E1) and (E2), the CC estimators perform worst since the response mechanism is 

not missing completely at random (MCAR). Unless the response mechanism is MCAR, the 

CC estimator is biased. The FULL estimators always perform best since they assume no 

missing values and use moment condition (1). Under distribution (E1), the SFI and PFI 

estimators have similar performances. Among the three imputation estimators, the NFI and 

SFI estimator performs worst in terms of RMSE for all scenarios since they used less 

information.

Under model (E2), the SFI estimator shows negligible bias for all parameters, but the PFI 

estimator has non-negligible bias for estimating proportion and quantile which is due to the 

misspecification of the error distribution. The NFI and SRI estimators are not as efficient as 

the SFI estimator in terms of bias and variance. The SFI estimator outperforms PFI, NFI and 

SRI estimators in terms of RMSE. The overall results indicate the robustness of SFI. For 

variance estimation, we computed the relative bias based on the Taylor linearization and 

replication methods, respectively. All the relative bias are below 7%. In addition, we 

calculate the Monte Carlo coverage rate for the 95% confidence intervals. Under model 

(E1), the coverage rates are 94.8%, 93.4% and 95.0% for estimating mean, proportion and 

quantile by using Taylor method and 94.9%, 93.6% and 95.1% by using Replication method. 

The results under model (E2) are similar and the coverage rates are close to the nominal rate.

6.2 Simulation Two

In the second simulation study, we use 2013–2014 U.S. National Health Examination and 

Nutrition Survey (NHANES) data as a pseudo finite population. Suppose the study variable 

is Systolic blood pressure (BPXSY1) and the covariate variable is body mass index 

(BMXBMI). Keeping only the cases where both BPXSY1 and BMXBMI are greater than 

zero, the pseudo finite population eventually contains 7104 cases. The scatter plot of 

BPXSY1 versus BMXBMI is presented in Figure 1. We assume BPXSY1 is roughly linear 

with respect to BMXBMI. After performing linear regression of BPXSY1 versus BMXBMI, 

the QQ plot of residuals and residuals vs fitted values plot are presented in Figure 2. The 

residual plots suggest deviation from normality. The p-value from Anderson-Darling test for 
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normality is less than 2.2 × 10−16. We first generate response indicators δi, i = 1, 2,…., 7104 

from the following logistic regression model:

The response rate is around 60%. Then given (BPXSY1i, BMXBMI, δi), B = 2000 Monte 

Carlo samples are generated from simple random sampling with sample size n = 200. 

Assume the parameters of interest are:

(Mean). Finite population mean of BPXSY1, which is θm = 118.056.

(Prop1). Finite population proportion one of BPXSY1:

(Prop2). Finite population proportion two of BPXSY1:

(Prop3). Finite population proportion three of BPXSY1:

We consider the same PFI, NFI, SRI and SFI estimators as discussed in Simulation One. The 

Monte Carlo Bias, Standard Error and Root Mean Squared Error (RMSE) are presented in 

Table 2. For the population mean, PFI and SFI performs similarly and the NFI estimator has 

slightly larger bias and standard error. SRI has comparable bias as PFI and SFI, but it has 

larger SE, as expected. For population proportions, the PFI estimator has substantially larger 

bias than NFI, SRI and SFI which may be due to the misspecification of error distributions. 

The NFI and SRI estimators have larger standard errors than PFI and SFI estimators since 

the nonparametric methods are not as efficient as parametric or semiparametric methods and 

stochastic imputation will produce larger variance. Overall, SFI estimator performs the best 

in terms of both bias and variance.

7 Conclusions

Regression imputation is often used to handle item nonresponse in survey sampling. Unlike 

the usual regression imputation, the proposed semiparametric fractional imputation offers 

valid inference for a wide set of parameters such as population proportions and quantiles. 

Besides, only the first moment assumption is needed to obtain a consistent SFI estimator of 

the parameter, which leads to robust parameter estimation. The proposed SFI method shows 

good performances in the limited simulation studies.
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The proposed method has several possible future research topics. First, instead of assuming 

ignorable response mechanism, we can consider an extension to nonignorable nonresponse 

(Kim and Yu, 2011) using an exponential tilting response model. Also, extension of the SFI 

for handling multivariate missing data will be an important future research topic.

Appendix

A: Proof of Theorem 1

We first assume the following regularity conditions:

(C1) The finite population is a random sample from the semiparametric regression 

model in (1). The regression function m(x; β) in (1) has a continuous first 

derivative ∂m(x; β)/∂β in the neighborhood of the true value β0 and E {m2(x; 

β)} and E {∂m(x; β)/∂β} are bounded in this neighborhood.

(C2) Function h(x; β) in the estimating function Ûβ(β) in (8) has continuous first 

derivative ∂h(x; β)/∂β in the neighborhood of the true value β0 and ‖h(x; β)‖2 

and ‖∂h(x; β)/∂β‖ are bounded by some integrable function G1(x) in the 

neighborhood.

(C3) The model error term in (1) satisfies E(ε2) < ∞ and max {‖εi‖: i ∈ A} = op(n1/2).

(C4) Let Uβ(β) = E[δ{y − m (x; β)} h (x; β)], assume Ûβ(β) converges to Uβ(β) in 

probability uniformly in the neighborhood of the true value β0. For every a > 0, 

.

(C5) ∂Ûβ(β) /∂β converges to continuous nonsingular derivative ∂Ûβ(β) /∂β in 

probability uniformly in the neighborhood of the true value β0.

(C6)
, as n, N → ∞, where  denotes 

the design model variance, the variance under the joint distribution of the 

superpopulation model and the sampling mechanism.

(C7) Function U(η; x, y) has continuous partial derivatives ∂U(η; x, y)/∂η and ∂U(η; 

x, y)/∂y in the neighborhood of the true value η0 and ‖U(η; x, y)‖2, ‖∂U(η; x, y)/

∂η‖ and ‖∂U(η; x, y)/∂y‖ are bounded by some integrable function G2(x, y) in 

the neighborhood.

(C8)
Let  and U(η) = E{U(η; xi, yi}, then Ûn(η) 

converges to U(η) in probability uniformly in the neighborhood of the true value 

η0. For every a > 0, 

(C9) ∂Ûn (η) /δη converges to continuous nonsingular derivative ∂U (η) /∂η in 

probability uniformly in the neighborhood of the true value η0.

(C10)
, as n, N → ∞, where  denotes 

the design model variance.
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(C11) The first order inclusion probabilities satisfy KL ≤ Nn−1πi ≤ KU for all i, where 

KL and KU are positive constants.

(C12)  for any i, j = 1, 2,…, N and i ≠ j, where πij are the 

second order inclusion probability of unit i and unit j in the population.

(C13) The response probability satisfies (2) and a < Pr(δi = 1|xi) ≤ 1 for i = 1, 2,…, N 
for some fixed a > 0

Conditions (C1)–(C2) are the model assumptions about the finite population. Condition (C3) 

is used to control the asymptotic order of  in (10). Chen and Sitter (1999, Appendix 2) 

argued that (C3) holds for common unequal probability sampling designs. Conditions (C4) 

and (C8) ensure the consistency of  and , respectively. Conditions (C5), (C6), (C9) and 

(C10) are the regularity conditions that ensure asymptotic normality of  and . Van der 

Vaart (1998, Ch. 5) used similar regularity conditions. Specifically, Conditions (C6) and 

(C10) have been used in many existing literature such as Wu and Rao (2006), Wang and 

Opsomer (2011), among others. Hajek (1960, 1964) established the asymptotic normality 

condition under simple random sampling and rejective sampling with unequal selection 

probabilities. Visek (1979) established the asymptotic normality for the Horvitz-Thompson 

estimator under Rao-Sampford sampling designs. Condition (C7) controls the smoothness 

and asymptotic behavior of estimating function U(η; x, y). Conditions (C11) and (C12) are 

the standard assumptions for the sampling designs. Similar conditions have been used in 

Isaki and Fuller (1982) and Wang and Opsomer (2011). Condition (C13) controls the 

behavior of the individual response probability. According to assumption (C3) and by using 

similar techniques as Wu and Rao (2006), we can show that . Assumption (C4) 

and Taylor linearization can establish

Therefore,

(A.1)

We know that  is the solution of the following estimating equation
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In addition, we have

(A.2)

and

(A.3)

Based on (A.2), (A.3), by using Taylor linearization, we have

(A.4)

According to (A.1)–(A.4) and after some algebra, it can be shown that

(A.5)

where σ2 is the variance for the residuals. With condition (C6), it can be shown that 

. In addition, we have

(A.6)
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(A.7)

and

(A.8)

where Ūm(ε) = E{(1 − δ) U(η0; x, y)|ε} and

with l(ε) = −f′(ε)/−1(ε). Define

then by using Taylor linearization,
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with E(S) = E{(1 − δ)U(η0; x, y)} and . According to the Hoeffding 

decomposition,

Therefore,

(A.9)

According to Taylor linearization, we have

(A.10)

By (A.1),(A.5)–(A.10), after some algebra, we can show that

where ζi is defined in (12) of Theorem 1.

B: Proof of Theorem 2

We replace regularity conditions (C7)–(C10) in Appendix A with the following regularity 

conditions (C14)–(C17):

(C14) Ũn(θ) converges to Ũ(θ) in probability uniformly in the neighborhood of the 

true value θ0. For every a > 0. 
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(C15) There exists a measurable function L(δ, x, y) with E {L2(δ, x, y)} < ∞ and for 

every θ1 and θ2 in the neighborhood of the true value θ0, ‖Ũ (θρ δ, x, y) − 

Ũ(θ2; δ, x, y) ‖ ≤ L(δ, x, y)‖θ1 − θ2‖.

(C16)
Assume that  and  has continuous and 

invertible first derivatives with respect to θ and the corresponding first 

derivatives are bounded by some integrable function in the neighborhood of the 

true value θ0.

(C17)
, as n, N → ∞, where  denotes 

the design model variance.

Similar as conditions (C4) and (C8), condition (C14) ensures the consistency of proposed 

estimator. Conditions (C15) and (C16) are required to derive asymptotic expansion of 

proposed estimator. See Van der Vaart (1998, Ch. 5) for more details for those conditions. 

Similar as conditions (C6) and (C10), Condition (C17) is used to derive the central limit 

theory.

The proof of the consistency of  and  is similar to the relevant proof in Theorem 1. 

According to the regularity conditions (C10), (C11), (C12) and by using similar techniques 

as that of Theorem 19.26 of Van der Vaart (1998), we can show that

(B.1)

In addition, we have

(B.2)

and

(B.3)
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where D* is defined in Theorem 2. According to (A.1), (A.5), (A.6), (A.9), (B.1)–(B.3), we 

have

where ζi is defined in Theorem 2.
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Figure 1. 
Scatter plot of BPXSY1 vs BMXBMI
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Figure 2. 
QQ plot (left panel) and Residual vs fitted value plot (right panel)
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Table 2

The Monte Carlo Bias (×10−2), Standard Error (SE) (×10−2) and Root Mean Squared Error (RMSE) (×10−2) 

for four different methods and four parameters.

Par Method Bias SE RMSE

Mean

COM −2.9 124.8 124.9

PFI −2.3 153.2 153.2

NFI −5.0 153.5 153.6

SRI 1.4 169.7 169.7

SFI −2.2 153.3 153.3

Prop1

COM 0.0 0.2 0.2

PFI 0.5 0.3 0.6

NFI 0.0 0.3 0.3

SRI 0.1 0.3 0.3

SFI 0.0 0.2 0.2

Prop2

COM 0.0 3.4 3.4

PFI −2.2 3.8 4.4

NFI −0.5 4.2 4.3

SRI 0.5 4.2 4.3

SFI 0.2 3.9 3.9

Prop3

COM 0.0 1.2 1.2

PFI 0.7 1.1 1.3

NFI 0.2 1.4 1.4

SRI −0.3 1.6 1.6

SFI 0.1 1.4 1.4

Stat Theory Relat Fields. Author manuscript; available in PMC 2018 June 01.


	Abstract
	1 Introduction
	2 Basic Setup
	3 Asymptotic Properties
	Theorem 1
	Remark 1

	4 Extensions
	4.1 Inference for non-smooth statistics
	Theorem 2

	4.2 Stochastic imputation

	5 Replication variance estimation
	6 Simulation studies
	6.1 Simulation One
	6.2 Simulation Two

	7 Conclusions
	Appendix
	References
	Figure 1
	Figure 2
	Table 1
	Table 2

