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ABSTRACT 

 

A considerable amount of digital data is being collected by State Highway Agencies 

(SHAs) to aid project-planning activities, support various project level decision-making 

processes, and effectively maintain and operate constructed highway assets. However, the 

highway construction industry has been significantly lagging behind utilizing the growing digital 

data to support business decisions compared to other industry sectors such as health care and 

energy. The significant lack of understanding on the linkage between raw data collected and 

various decisions, proper computational methodologies, and effective guidance is considered as 

major barriers to the full utilization of the digital data. 

This study uses digital datasets that are now commonly available in SHAs, to 

demonstrate the smart utilization of existing digital data to support and enhance decision-making 

processes using data analytics and visualization methods. This study will a) develop an advanced 

computational methodology to generate multidimensional highway construction cost indexes 

(HCCIs) using two new concepts of i) dynamic item basket and ii) multidimensional HCCI, b) 

develop an enhanced framework for collection and utilization of digital Daily work Report 

(DWR) data, c) develop an automated methodology to generate as-built schedules using data 

collected from existing DWR systems, and d) analyze as-built schedules to develop a knowledge 

base of frequent precedence relationships of activities. The study achieves those objectives by 

utilizing three digital datasets: bid data, DWR data, and project characteristics data. Further, two 

standalone prototype systems, namely, Dyna-Mu-HCCI and ABSS are developed to automate 
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computational methodologies for multidimensional HCCI calculation and as-built schedule 

development respectively. 

This study will aid SHAs to utilize currently unused datasets for informed budgeting and 

project control decisions. It demonstrates the importance of data analytics and visualization to 

obtain more value from the investment made in collecting construction data. Overall, this study 

serves as a step in making a transition from experience driven to data driven decision making in 

the construction industry.
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CHAPTER 1  

INTRODUCTION 

Background and Motivation 

The size of digital universe is estimated to increase by 10 times – from 4.4 trillion 

gigabytes in 2013 to 44 trillion in 2020 – which has resulted in a phenomenon called “big 

data” (Turner et al. 2014). The big data is a “paradigm shift from hypothesis-driven to data-

driven discovery” that allows to automatically extract “new knowledge about the physical, 

biological, and cyber world” (Wactlar 2012). Many other industries such as health care, 

energy, and agricultural sectors have utilized their digital data to make reliable business 

decisions and generate significant financial values (Manyika et al. 2011; McKinsey Center 

for Business Technology 2012). 

The construction industry is known for collection, processing, and exchange of a 

large amount of data among project stakeholders (Cox et al. 2002; Hendrickson and Au 

2008). Traditionally, most of the data collections and exchanges are paper-based and require 

manual effort for analysis. Project owners such as state Departments of Transportation 

(DOTs) in the highway industry have started to develop and implement digital systems to 

ease and streamline data collection, storage, and analysis. However, the construction industry 

is still lagging behind compared to other industries on utilizing digital data (Manyika et al. 

2011; McKinsey Center for Business Technology 2012; Woldesenbet et al. 2015). 

The data collected from one stage of a project can be useful resources for making 

decisions in the other stages of the same project as well as for life cycle decision-making for 
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future projects. Despite the potential of using the data to generate meaningful, actionable, and 

hidden insights to support various decisions, state DOTs collect most of the data to meet 

federal and state requirements rather than for their actual analysis and utilization. Possible 

reasons for underutilization of data in state DOTs may include: a) lack of data attributes 

necessary for analysis; b) lack of methodologies to extract, clean, transform, and analyze the 

data; c) lack of resources to analyze the data; d) lack of automation for the analysis; and e) 

lack of visualization techniques to present the insights obtained from the analysis to support 

various decisions (Woldesenbet et al. 2014). 

The concept of big data analytics and visualization can be applied to various datasets 

that are also growing rapidly with the introduction of digital project delivery and various 

digital data collection systems in the highway industry. However, currently, most of the 

decisions in the DOTs are still heavily dependent on engineers’ experience and judgements 

that can be easily biased. This research is to study and demonstrate how emerging big data 

analytics and visualization techniques can be effectively used to generate actionable insights 

and to support and improve the major decision making process of state DOTs. 

Problem Statement 

Construction cost and schedule certainties are vital for successful planning and 

execution of construction projects. State DOTs develop cost estimates and schedules 

throughout the project life cycle. Although the cost estimates developed at various stages of a 

project life cycle are important, the planning level construction estimates are particularly 

important. The estimates become the budget for a project which are presented to the public 



3 

 

 

 

and various agencies at local, regional, state, and federal levels for comments and reviews 

(Wilmot and Cheng 2003). If there are any changes in the costs of a project after its approval, 

state DOT officials usually have to defend the situation publicly or in the state legislature. 

To keep the construction costs low by obtaining lower bids, realistic and optimal 

schedule development and contract time determination are essential (Iowa Department of 

Transportation (IADOT) 2012a). Proper schedules are also required to quantity the 

construction and inspection resources; and reduce road users’ inconvenience, likelihood of 

crashes, and operating & maintenance costs of vehicles (Anastasopoulos et al. 2008; 

Zaniewski et al. 1982). During the construction, as-built schedules need to be developed by 

to document actual construction sequences and durations. This as-built schedule can be 

compared with the original schedule to ensure that construction projects are progressing at 

the desired pace. If not, the information can be used to detect any deviations, identify their 

causes, quantity its impact on overall schedule, identify corrective measures to get the 

schedule back on track, and resolve delay related claims filed by contractors (Alavi and 

Tavares 2009; Joint Federal Government/Industry Cost Predictability Taskforce 2012). 

Despite the importance of cost estimation and scheduling, the cost overruns and 

delays are prevalent in the construction industry. Almost half of the large transportation 

projects in the U.S. overrun their initial budgets and experience delays (Bordat et al. 2004; 

Crossett and Hines 2007; Shane et al. 2009). Lack of a proper cost estimation procedure and, 

in particular, the underestimation of inflation rate is the most important factor resulting in 

inaccurate cost estimates and hence cost overruns overrun (Alavi and Tavares 2009). A 

proper Highway Construction Cost Index (HCCI) should be developed and used to account 
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for the inflation. However, many state DOTs do not have a reliable methodology to calculate 

HCCIs and are looking forward to update their HCCI calculation methodologies (Walters and 

Yeh 2012). 

Although studies have found that factors such as project location and item quantities 

affect the unit costs of construction items, those factors are currently neglected when 

calculating HCCIs (Jain et al. 2015; Rueda 2013). Thus, the estimates developed using such 

HCCIs are likely to be highly inaccurate and far off from the actual project costs. As such, 

the high level budget allocation decision driven based on such HCCIs can be significantly 

misleading and financial obligations expected by state DOTs can be severely different than 

the actual financial obligations. 

A proper schedule development is another vital for successful construction project 

management and execution. Schedule development is a complex process that requires 

knowledge of construction methods, materials, and labor productivity (Bruce et al. 2012). 

Developing a realistic schedule is challenging for inexperienced as well as experienced 

schedulers (Fischer and Aalami 1996; Jeong et al. 2009). Current schedule development 

methods are manual and heavily dependent on schedulers’ experience. Similarly, as-built 

schedules are also developed manually at the end of the project based on the outdated 

information (Hegazy et al. 2005; Kahler 2012). Daily Work Report (DWR) data contain 

valuable information such as activities conducted by date and resources utilized which can be 

used to generate as-built schedules and aid in developing schedules for future projects. 

However, state DOTs lack methodologies for developing the as-built schedules based on 

DWR data which can further be used to aid in developing the original planned schedule. 
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Thus, there is a need to develop methodologies to automate as-built and original schedule 

development. 

Beside the schedule development, there are many other potential applications of 

DWR data such as progress monitoring, production rate estimation, contract time 

determination, contractor payment, dispute resolution, and risk identification. However, 

current systems are not necessarily designed with due consideration for those applications. 

As such, there is a need to develop a framework that can be used to collected DWR data 

properly for their improved utilization for making construction management decisions. This 

will also aid in moving the construction industry forward in terms of the data use and data 

analytics to make informed decisions. Some of the questions this study will aim to answer 

are: 

 How can state DOTs improve current HCCIs to overcome the early cost estimation and 

budgeting issues? 

 How can state DOTs improve the existing DWR data collection and utilization 

framework? 

 How can state DOTs utilize existing DWR data to develop as-built and original 

schedules? 

Research Objectives 

The primary goal of this research is to develop and illustrate the methodologies to 

improve the collection of important data attributes, extract relevant data attributes for various 

analysis, transform and analyze the datasets using various data mining techniques, and 
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visualize the results using advanced visualization techniques to aid in making decisions 

related to construction costs and schedules. The specific objectives of this study are to: 

 Develop a methodology to calculate an advanced Highway Construction Cost Index 

(HCCI) using historical bid data.  

 Develop a framework for better collection and utilization of Daily Work Report (DWR) 

data, 

 Develop a framework to automate the as-built schedule development to improve project 

schedule control and settle claims; 

 Develop a framework to discover precedence relationships of activities to aid in schedule 

development for future project using as-built schedules generated from DWR data; 

Research Scope 

The scope of this study is limited to the three major datasets: project information, 

Daily Work Report (DWR), and project bid data. Project information and bid data will be 

used to overcome early cost estimation issues by developing an advanced Highway 

Construction Cost Index (HCCI). A project information dataset includes data attributes such 

as project location, type, size, length, and total construction costs. A DWR dataset includes 

data attributes about ongoing work activities, equipment usage, labor hours, weather, and site 

conditions. A bid dataset contains bid items, their descriptions, quantities, unit costs, and 

corresponding project IDs. 

The first paper in this study investigates the current practices of HCCI and develops a 

new methodology to calculate multidimensional HCCI using dynamic item basket that takes 
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into account the important project characteristics such as project location, size, and type. The 

latter three papers deal with the development of a framework for improved DWR data 

collection and utilization; automation of as-built schedule development that can be used for 

progress monitoring and claim settlement; and development of precedence relationships of 

activities based on the as-built data using Sequential Pattern Mining (SPM) to aid in schedule 

development. 

Methodology 

The overall methodology for this study is presented in Figure 1. To develop a 

multidimensional HCCI, first, literature review and nationwide questionnaire survey is 

conducted to identify the current practices and processes. A sample bid and project 

information datasets are obtained from Montana Department of Transportation (MDT). The 

data is analyzed to quantify the effect of location, project size, and project type by 

developing a multidimensional Highway Construction Cost Index (HCCI). 

On DWR side, first, existing DWR systems are reviewed. After that, two nationwide 

questionnaire surveys are conducted to understand current practices of collecting and 

utilizing DWR data in detail. Possible benefits, benefiting teams, and importance of various 

DWR data attributes are identified. The data attributes required to obtain those benefits by 

the teams are analyzed to develop to develop an enhanced framework that is later validated 

by DWR experts from the U.S. and sample DWR database. 
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Figure 1 Overall research plan 

An automated as-built schedule development methodology is developed and 

illustrated with an example based on a sample DWR and project information dataset. The 

methodology utilized Structure Query Language (SQL) to extract and Visual C#.NET 

frontend to visualize as-built schedules. The as-builts are further transformed and analyzed 

using SPM to obtain frequent construction activity sequences. The sequences are visualized 

in a precedence diagram, which can be used to aid as-planned schedule development for 

future projects. 

Expected Contribution 

This study utilizes the concept of big data analytics and visualization to the 

underutilized construction datasets, which will aid state DOTs in making data-driven 

decisions that are more reliable, accountable, defensible, and transparent. Specifically, the 
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advanced multidimensional HCCI developed based on an extensive analysis of bid datasets 

will properly reflect the market conditions and aid state DOTs in making more reliable cost 

estimates for budgeting purposes. An enhanced DWR system based on the framework will 

aid state DOTs to improve DWR data collection and their utilization for making construction 

management and project control decisions. The automated method developed to prepare as-

built schedules will help state DOTs in making project control decisions in real-time. The as-

planned schedule development method based on an advanced SPM will enable state DOTs to 

develop reliable as-planned schedules efficiently with confidence and with less effort. The 

DWR framework developed in this study will be vital in developing a new DWR system or 

improving existing ones. Overall, this study will help in transforming the construction 

industry from current experience-based decision-making to the data-driven decision making.  
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CHAPTER 2  

 MULTIDIMENSIONAL HIGHWAY CONSTRUCTION COST INDEXES USING 

DYNAMIC ITEM BASKET 

K. Joseph Shrestha1, H. David Jeong2, and Doug D. Gransberg3 

Abstract 

A Highway Construction Cost Index (HCCI) is an indicator of the purchasing power 

of a highway agency. Thus, it must reflect the actual construction market conditions. 

However, current methods used by most state departments of transportation are not robust 

enough to meet this primary goal due to a) a significantly insufficient sample size of bid 

items used in HCCI calculation and b) inability to address the need to track highway 

construction market conditions in specific sub-market segments in terms of project type, size, 

and location. This study proposes an advanced methodology to overcome these apparent 

limitations using two new concepts: a) dynamic item basket and b) multidimensional HCCIs. 

The dynamic item basket process identifies and utilizes an optimum number of bid item data 

to calculate HCCIs in order to minimize the potential error due to a small sample size, which 

leads to a better reflection of the current market conditions. Multidimensional HCCIs dissect 

the state highway construction market into distinctively smaller sectors of interest and thus, 

                                                 

1 PhD Candidate; Dept. of Civil, Construction & Environmental Engineering, Iowa State University, Ames, IA 

50011; email: shrestha@iastate.edu  
2 Associate Professor; Dept. of Civil, Construction & Environmental Engineering, Iowa State University, Ames, 

IA 50011; Phone: (515) 294-7271; email: djeong@iastate.edu  
3 Professor; Dept. of Civil, Construction & Environmental Engineering, Iowa State University, Ames, IA 

50011; Phone: (515) 294-4148; dgran@iastate.edu  

mailto:shrestha@iastate.edu
mailto:djeong@iastate.edu
mailto:dgran@iastate.edu
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allow state departments of transportation to understand the market conditions with much 

higher granularity. A framework is developed to integrate these two concepts and a 

standalone prototype system, namely, Dyna-Mu-HCCI System is developed to automate the 

data processing part of the framework. 

The historical bid data of the Montana Department of Transportation is used to 

evaluate the performance of the Dyna-Mu-HCCI System and measure the effects of the DIB 

and multidimensional HCCIs. The results show an eight-fold increase in terms of the number 

of bid items used in calculating HCCIs and at least 20% increase in terms of the total cost of 

bid items used. In addition, the multidimensional HCCIs reveal different cost change patterns 

from different highway sectors. For example, the bridge construction market historically 

shows a very different trend compared with the overall highway construction market. 

The new methodology is expected to aid state departments of transportation in 

making more reliable decisions on preparing business plans and budgets with more accurate 

and detailed information about the construction market conditions. Further, the prototype, 

Dyna-Mu-HCCI System is expected to significantly facilitate the HCCI calculation process 

and rapidly implement this new system. 

Keywords: highway-construction-cost-index (HCCI), inflation, dynamic-

construction-item-basket, multidimensional-HCCI, construction-market-basket, construction-

market-conditions, planning-and-budgeting, big-data, data-analytics, visualization, 

automation. 
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Introduction and Background 

A Highway Construction Cost Index (HCCI) is an indicator of the purchasing power 

of a highway agency (Guerrero 2003; Strickland and Beasley 2007; White and Erickson 

2011). It is calculated to shows highway construction cost changes over time as a function of 

unit costs and quantities of various bid items used in highway construction.  

State departments of transportation (DOTs) use it to track changes in highway 

construction costs over time and reasonably estimate future highway funding needs (Erickson 

and White 2011; Guerrero 2003). An HCCI is also used by some DOTs as an inflation factor 

for preliminary and detailed cost estimates and life cycle cost analysis (LCCA) of their 

highway projects (Gransberg and Diekmann 2004; Iowa Department of Transportation 

(IADOT) 2012b; Mack 2012; Slone 2009; Wilmot 1999). HCCIs are also recommended as a 

factor to determine the gas tax rate to generate revenue necessary to properly maintain the 

existing highway infrastructure system (Arkansas Highway and Transportation Department 

(AHTD) 2013; Dodier 2014; Institute on Taxation and Economic Policy 2013). Thus, it is 

very important that HCCIs accurately reflect the actual construction market conditions. 

The Federal Highway Administration (FHWA) pioneered the concept of HCCI in the 

U.S. highway construction industry in 1933 by introducing Bid Price Index (BPI) (White and 

Erickson 2011). Subsequently, some DOTs have adopted FHWA’s methodology to develop 

their state level HCCIs (Luo 2009; Wilmot 1999). In 2011, FHWA introduced an updated 

National HCCI (NHCCI) as the replacement of the BPI (Erickson and White 2011). HCCI 

experts consider this change the most significant update in the national HCCI methodology. 

Among many notable changes such as a wider coverage of projects and electronic bid data 
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collection processes, the switch to an enhanced indexing formula (Fisher index) is considered 

the major change. Currently, at least 21 DOTs compute their state level HCCIs, but most of 

them have not yet updated their methodologies to reflect the changes in the NHCCI 

methodology primarily due to lack of appropriate guidance (Shrestha et al. 2016; Walters and 

Yeh 2012).  

In addition, current HCCI calculation methods adopted by most DOTs are not 

sophisticated enough to assure that an HCCI can be used as a reliable indicator of the 

changing market conditions. One of the reasons is the use of a significantly insufficient 

sample size of bid items in HCCI calculation. Since an HCCI is calculated using the cost 

information of bid items, ideally, the entire bid dataset should be used to truly reflect actual 

market conditions (International Monetary Fund (IMF) 2010). Currently, the coverage of bid 

items ranges from as little as 14% to not more than 50% of the total construction costs 

(Nebraska Department of Roads (NDOR) 2015; West Virginia Division of Highways 

(WVDOH) 2015; Wilmot 1999).  

Another area for improvement in DOT’s HCCI calculation methodology is in the 

current method’s inability to address the need to track highway construction market 

conditions with higher granularity. Current methodologies typically produce only one overall 

HCCI as a representative index to indicate the entire state’s highway construction market 

condition. However, highway construction costs are heavily affected by availability of local 

materials, equipment, and even specialty contractors. In addition, the project size and 

quantity of work significantly affect construction methods and their productivities which are 

directly associated with project costs. Moreover, many DOTs are forced to shift their 
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highway project portfolio from new construction to maintenance and rehabilitation projects 

due to aging roadway systems. These unique characteristics of highway construction and 

changing business environments require DOTs to have customized HCCIs designed to better 

understand specific market conditions and trends based on local regions, project sizes and 

project types. The current system fails to address this issue. 

The goal of this study aims at addressing the two specific issues described above by 

developing an advanced HCCI methodology with new concepts of dynamic item basket and 

multi-dimensional HCCIs. Specifically, this study will: a) develop a methodology to generate 

a Dynamic Item Basket (DIB) with a higher coverage of bid items, b) develop 

multidimensional HCCIs that can show construction market conditions with a higher 

granularity, c) automate the process to reduce efforts required to compute multi-dimensional 

HCCIs, and d) evaluate the performance of the new HCCI methodology. 

Theory of Cost Index 

The calculation of any type of cost index starts with the identification of product 

items that are relevant to and representative of the specific industry sector of interest. The 

collection of those items is called ‘market basket’ or ‘item basket (IB).’ An IB with ‘n’ items 

has two important properties: a cost vector (p) = [p1, p2, p3, ..., pn] and a quantity vector (q) = 

[q1, q2, q3, …, qn] that represent the cost and quantity of each item in the IB. The subscript in 

each element of cost and quantity vectors represents a specific item. Theoretically, a cost 

index measures the movement of the cost vector from one period to another. Oftentimes, the 

quantity vector is used to indicate the importance of items in the IB. Generally, the cost 
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movement in the current period (t) is measured relative to the base period (t=0). The cost 

index for the base period is typically set to 1.00 or 100. Thus, cost and quantity vectors from 

the current period (pt, qt) and base period (p0, q0) must be available to compute a cost index at 

a minimum. 

In the highway construction industry, Laspeyres, Paasche and Fisher indexing 

methods are three most popular formulas among DOTs to compute HCCIs (Shrestha et al. 

2016). Their formulas are presented in equations (1), (2), and (3) respectively as functions of 

cost and quantity vectors from the base period to the current period.  

Laspeyres index is the ratio of the total expenditure in the current period to the total 

expenditure in the base period assuming that the same quantities of items are purchased in 

the current period as in the base period. Paasche, on the other hand, utilizes the quantity 

vector for the current period and assumes it to be the same for the base period. Because those 

two formulas consider the quantity vector from only one period, Laspeyres overestimates the 

impact of cost increases while Paasche underestimates it. Fisher index is calculated as a 

Laspeyres index, 𝐿𝑡,0 (𝑝0, 𝑝𝑡 , 𝑞0, 𝑞𝑡) =  
∑ 𝑝𝑖

𝑡𝑞𝑖
0𝑛

𝑖=1

∑ 𝑝𝑖
0𝑞𝑖

0𝑛
𝑖=1

   (1) 

Paasche index, 𝑃𝑡,0 (𝑝0, 𝑝𝑡, 𝑞0, 𝑞𝑡) =  
∑ 𝑝𝑖

𝑡𝑞𝑖
t𝑛

𝑖=1

∑ 𝑝𝑖
0𝑞𝑖

𝑡𝑛
𝑖=1

 (2) 

Fisher index, 𝐹𝑡,0 (𝑝0, 𝑝𝑡, 𝑞0, 𝑞𝑡) =  √𝐿𝑡,0𝑋𝑃𝑡,0 = √
∑ 𝑝𝑖

𝑡𝑞𝑖
0𝑛

𝑖=1

∑ 𝑝𝑖
0𝑞𝑖

0𝑛
𝑖=1

𝑋
∑ 𝑝𝑖

𝑡𝑞𝑖
𝑡𝑛

𝑖=1

∑ 𝑝𝑖
0𝑞𝑖

𝑡𝑛
𝑖=1

 
(3) 



16 

 

 

 

geometric average of the Laspeyres and Paasche indexes which can theoretically cancel out 

those two biases, (International Labour Organization (ILO) et al. 2004) 

Over time, not only the quantities, but also the IB itself might be outdated because of 

changes in the market resulting in the addition, removal, and substitution of items. This 

results in a sampling error. Thus, the base year and IB are recommended to be updated 

periodically (i.e., every five or ten years). However, it is very possible that the IB and the 

quantity vectors might get outdated before the base year is changed. Thus, a chained cost 

index is recommended to overcome this error by calculating a cost index between two 

consecutive periods. In a chained cost indexing process, the net cost index between two 

periods [say current period (t) and some arbitrary base period (t=0)] is calculated by 

multiplying all consecutive cost indexes (Ik,k-1) between the two periods (equation (4)). 

Thus, the chained Fisher index formula is considered the most ideal method for 

calculating a cost index. This formula is used by FHWA for its NHCCI computation and is 

recommended for DOTs’ HCCI calculation (Erickson and White 2011). 

Current Practices in HCCI Calculation 

Despite the clear advantages of the chained Fisher index, only Colorado, Ohio, and 

South Dakota DOTs currently use the Fisher index and Wisconsin and North Dakota DOTs 

are updating their methodologies to use the chained Fisher index (Shrestha et al.2016).  

Chained index, 𝐶𝐼𝑡,0 = ∏ 𝐼𝑘,𝑘−1

𝑡

𝑘=1

 
(4) 
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Also, state level HCCIs are calculated using IBs with its cost coverage as low as 14%  

and as low as 7% in terms of its bid item coverage (Table 1). The highest IB coverage in 

terms of total costs is 60% for FHWA’s NHCCI. The coverage of 271 bid items in Utah DOT 

may appear to be large, but considering that DOTs typically use more than 2,000 bid items, it 

is quite small. There are several possible reasons for using IBs with such small coverages. 

Table 1 Item basket coverage comparison 

First, lump sum items are typically removed from HCCI calculation, because these 

items are mostly unit-less and their costs do not have consistent relationships with their 

quantities, if there were quantities assigned. Removal of lump sum items such as 

mobilization is likely to reduce the IB coverage in terms of costs substantially due to the 

significant percentage of lump sum items in total project costs.   

Second, DOTs generally remove data from smaller projects and item data with 

smaller quantities. For example, Minnesota, California, and Wisconsin DOTs remove data 

from projects smaller than $100,000 in value (Hanna et al. 2011; Lacho 2015; Minnesota 

DOT 
Item Basket (IB) coverage 

Number of bid items % of total construction costs 

West Virginia 7 14% 

Wisconsin 91 - 

Colorado - 45% 

Nebraska 101 46% 

Ohio - 48% 

Mississippi 116 - 

Iowa 190 - 

Utah 271 -- 

FHWA - 60% 
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Department of Transportation (MnDOT) 2009). Similarly, Iowa DOT removes concrete 

items with quantities less than 125 cubic yards and Colorado DOT removes excavation items 

less than 1,000 cubic yards (Colorado Department of Transportation (CDOT) 2015; Iowa 

Department of Transportation (IADOT) 2013). They also utilize various outlier detection 

techniques to remove items whose unit costs appear to be different than most of the unit 

costs. However, removal of such data may create a sampling error, i.e. the HCCI becomes 

more representative of a specific segment of the market rather than the entire market (Hanna 

et al. 2011; Lacho 2015; Minnesota Department of Transportation (MnDOT) 2009).  

Third, DOTs choose a few important bid items from various work categories such as 

asphalt, concrete, and earthwork with a rationale that those selected items can represent all 

items in the category (Hanna et al. 2011). In this process, most DOTs consider items with 

high unit costs and/or high frequency as the important items with reasonable rationale that 

non-frequent items should be excluded mathematically in HCCI calculation and higher cost 

items may have higher impact on project costs (Shrestha et al. 2016). Such sampling process 

is common in the general inflation calculation such as consumer price index as it requires a 

significant amount of effort to use a larger IB, and it is practically impossible to use an IB of 

the entire product items in general inflation calculation (Bureau of Labor Statistics (BLS) 

n.d.; International Monetary Fund (IMF) 2010). However, for HCCI calculation, the entire 

bid dataset is readily available in an electronic format which provides an opportunity to 

potentially eliminate any sampling error. Next section presents the concept of Dynamic IB 

(DIB) to address this issue by improving the coverage of IB. Then, the concept of 

multidimensional HCCI is also presented. 
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Concept of Dynamic Item basket  

An IB should contain all items used in the market if the costs and quantities of the 

items are available for both base and current periods. If that is not possible, an IB should still 

be a good representor of actual items used in the market to ensure that the cost index is a 

good reflector of the current market conditions (Bureau of Labor Statistics (BLS) 2015; 

International Monetary Fund (IMF) 2010). Since highway project bid data are now available 

in a digital format in DOT’s contracts office, it is practically possible to use the entire 

population of bid items for HCCI calculation.  

In dynamic IB (DIB), the items in the IB, and corresponding cost and quantity vectors 

are updated automatically based on the current purchasing behavior of DOTs. The DIB 

generation process identifies the largest IB that can be generated from the bid data and hence 

increases the coverage of the IB to the maximum possible value. To explain the DIB 

generation process, consider a universal set U consisting of all standard bid items used by 

DOTs (Figure 2).  

 

Figure 2 Dynamic item basket 
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Some of those items will be used in the current period (B), some in the previous 

period (A), and others will not be used in either period (C). The items that are not used in 

either period or the items used for only one of the two periods cannot be mathematically 

included in HCCI calculation. But, all items that were used in both periods (D) can be used in 

HCCI calculation and DIB consists of these items (D).  Using this DIB with those items 

instead of a small-sampled IBs that are currently used by most DOTs, can significantly 

improve the HCCI calculation process with higher accuracy and reliability by removing the 

sampling error. 

Concept of Multidimensional HCCIs 

The concept of multidimensional HCCIs is to develop cost indexes for highway 

construction market sectors defined by project size, project type, and location. Thus, in 

addition to an overall HCCI that is used to indicate the state level market conditions, three-

dimensional sub-HCCIs are developed: project size specific HCCIs (S-HCCI), project type 

specific HCCIs (T-HCCI), and location specific HCCIs (L-HCCI) which are visually 

depicted as HCCI cubes in Figure 3. 
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Figure 3 HCCI cubes 

The size specific sub-HCCIs (S-HCCIs) are necessary because of the effect on costs 

by the economies of scale. The cost of an item is less when purchased in bulk. As such, 

larger projects that would contain larger quantities of items are likely to have a different 

market trend than that of smaller projects. Further, the level of competition for projects of 

different sizes also varies because contractors often need to be prequalified to perform larger 

projects. Similarly, contractors are often specialized to perform a certain type of projects. In 

addition, work items for different types of projects also vary. Those reasons necessitate a 

project type specific HCCI (T-HCCI) (Erickson and White 2011; Rueda and Gransberg 

2015). One may argue that DOTs already calculate item category specific HCCIs (I-HCCIs) 

for different work categories such as structures, pavements, etc. However, a typical highway 

project consists of various work items from different item categories. Thus, T-HCCIs are 

different from I-HCCIs. 
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Existing literature also recognizes the importance of developing location specific sub-

HCCIs (L-HCCIs) (Anderson et al. 2007; Erickson and White 2011; Ghosh and Lynn 2014; 

Gransberg and Diekmann 2004; Shahandashti 2014). The rationale behind L-HCCI can be 

explained with the Tobler (1970)’s First Law of Geography which states that “everything is 

related to everything else, but near things are more related than distant things.” Specifically, 

in highway construction, the availability of resources and their hauling distances to the 

jobsite such as qualified materials, equipment, and labor significantly affect the total 

construction cost and hence the market trend. Also, the market trend is likely to vary 

differently in mountainous areas and plain areas.  

Framework for Multidimensional HCCI with DIB 

The framework to integrate DIB into multidimensional HCCI calculation process is 

illustrated in Figure 4. The framework can be divided into four components: a) database 

development, b) project filtering, c) DIB generation, and d) multidimensional HCCI 

calculation. In the first component, data required for calculating multidimensional HCCIs 

with DIB are collected and systematically compiled in a structured database. Project filtering 

is a process to filter project data in three stages to obtain a list of projects relevant to a 

particular sub-HCCI. In DIB generation, two sets of cost and quantity vectors from 

previously selected projects are extracted. Finally, the Chained Fisher index formula is 

applied in the final component to generate sub-HCCIs. The project-filtering component and 

the following components are repeated to generate various sub-HCCIs (such as small, 

medium, and large sized S-HCCIs). 
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Figure 4 Framework for advanced multidimensional HCCI calculation using DIB 

Database development 

In this component, project characteristics and bid item data that are necessary for 

HCCI calculation are obtained from electronic bid letting systems and compiled into a new 

database for further processing. Currently, 41 DOTs use AASHTOWare Project Expedite 
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System that stores data in a structured database such as Oracle and Microsoft SQL 

(Structured Query Language) Server (American Association of State Highway and 

Transportation Officials (AASHTO) 2015, 2016). SQL queries can be executed in the 

database used by such systems to generate relevant data. Alternately, those databases can be 

used directly as the database for this framework. At minimum, the database should contain 

project characteristics and bid item data. Project characteristics should include project size, 

type, and location. Bid item data should include information such as the item number, 

quantity, and cost for each bid item. These two datasets need to be tied together by a unique 

project ID as shown in Figure 4 so that relevant bid items from a list of projects of our 

interest can be obtained by automated filtering process. 

Project filtering 

In this component, projects relevant to calculating sub-HCCIs are selected in three 

phases: a) removal of non-design-bid-build projects, b) selection of projects from the current 

and previous or base periods, and c) selection of projects of a particular category 

corresponding to the selected sub-HCCI. Figure 5 shows the detailed procedure for project 

filtering. The third phase (c) is required only to generate sub-HCCIs and is skipped for an 

overall HCCI calculation. For an overall HCCI calculation, data from all project sizes, types, 

and locations are used.  
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Figure 5 Project filtering component 

In the first phase, projects that are procured through nonstandard design-bid-build 

procurement method are removed. For example, in ‘indefinite delivery infinite quantity’ 
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contracts, a predetermined inflation rate is used (Rueda and Gransberg 2014) and in ‘design-

build’ contracts, non-standard bid items are used. Thus, those projects need to be eliminated. 

In the second phase, projects let in the current period or previous period are selected. Finally, 

projects relevant to the specific sub-HCCI are shortlisted using one of the three 

subcomponents (S-HCCI Calculation, T-HCCI Calculation, and L-HCCI Calculation) shown 

in Figure 5 for generating DIBs for the sub-HCCI in the next phase. Further, each sub-HCCI 

consists of multiple sub-HCCI values (i.e., S-HCCIs for small sized projects, medium sized 

projects, and large sized projects). The list of projects for each of the sub-HCCI value 

calculation is filtered separately and each list is sent to the DIB generation component one at 

a time. 

DIB generation 

In this component, a DIB and corresponding cost and quantity vectors required to 

calculate sub-HCCIs are generated in three phases: a) extraction of relevant bid data, b) 

splitting the data into current and previous period data, c) generation of initial cost and 

quantity vectors, and d) removal of irrelevant items to generate the final cost and quantity 

vectors. 

First, all bid data corresponding to the projects selected from the project filtering 

component is extracted. This can be achieved by SQL (Structured Query Language) 

command Inner Join (LeCorps 2001). The inner join can be considered as SQL equivalent of 

intersection in the set theory (Jech 1978). In this case, project ID is used for the intersection 

operation (equation (5)). 
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The resulting dataset is split into two groups: one for the current period and another 

for the previous period. As items for all projects are based on a finite list of standard bid 

items used by DOTs, same bid items appear in various construction projects. However, for 

HCCI calculation, data from each unique item needs to be converted into a single line of data 

to generate initial cost and quantity vectors. For that, quantities are generated as a sum of 

quantities of the same items from all the projects (equation (6)) while costs are generated as 

weighted averages of the costs (equation (7)).  

So far, the item lists (ILs) and corresponding cost and quantity vectors are obtained 

for both periods. These ILs are further processed to develop DIB using equation (8). The cost 

and quantity vectors corresponding to this DIB is the final vectors required for the next 

component. First, an item should coexist in both periods to use it for HCCI calculation. Thus, 

an intersection operation is performed between the two ILs.  

Bid data of filtered projects  

=  (Bid data and 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐼𝐷𝑠 of all projects) ∩  (𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝐼𝐷𝑠 of selected projects)  

(5) 

Total quantity of an item (𝑞𝑖)  =  ∑ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 (6) 

Weighted average cost of an item (𝑝𝑖)  

=  
∑(Cost of the item X  Quantity of the item) 

∑ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚
 

(7) 
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Then, this dataset obtained from the intersection operation is cleaned by removing all 

items that are not relevant to measuring the market conditions (ILirrelevant). These items 

include lump sum items and items whose costs do not have a consistent relationship with 

their quantities. For example, costs for mobilization and utility relocation may vary widely 

despite its constant quantity (one unit). Some DOTs also remove seemingly outlier items 

based on cost fluctuation (Collins and Pritchard 2013; Federal Highway Administration 

(FHWA) 2014; Nassereddine et al. 2016). However, HCCIs are meant to measure the cost 

fluctuations and hence the removal of items with high cost fluctuations may not be the best 

approach. Thus, in this framework, those items are also included. 

The items obtained using this process described above is the largest IB that can be 

generated from any given bid and project datasets. Further, the process updates IB 

dynamically based on the project characteristics and bid item data, current period selection, 

and sub-HCCI that is calculated. Thus, this IB can also be called an optimum IB. Unlike 

traditional methods where smaller and/or less frequent items are ignored and only larger and 

more frequent items are used, this method utilizes all items if they are purchased in both the 

current and previous period. This DIB and corresponding final cost and quantity vectors are 

transferred to the next component for multidimensional HCCI calculation. 

𝐷𝐼𝐵𝑡  = 𝐼𝐿𝑡−1 ⋂ 𝐼𝐿𝑡 − 𝐼𝐿𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 
(8) 
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Multidimensional HCCI calculation 

In the final component, single staged chained Fisher index (equation (3)) based sub-

HCCIs are calculated using the cost and quantity vectors generated from the previous 

component. In equation (3), instead of base period (t=0) cost and quantity vectors, previous 

period cost and quantity vectors (t-1) are used. Different chaining intervals can be used 

depending on the DOT’s needs. In quarterly chained HCCIs, the chaining error can occur if 

both cost and quantity vectors of the IB oscillate over time (Nygaard 2010). In case of annual 

HCCIs, such oscillation is less likely to occur which reduces the chaining error. Finally, the 

sub-HCCI can be chained using equation (4). A base year can be selected arbitrarily, for 

which the cost index is set to 1.00 or 100. Generally, the base year is selected when the 

market is in a normal economic condition (e.g. not affected by heavy recession, etc.). 

Prototype Development 

A prototype, namely, Dynamic Multidimensional HCCI Calculation System (Dyna-

Mu-HCCI-System) is developed with MS Access database (Figure 6) and Visual C#.NET 

frontend (Figure 7) to implement the framework. Seven data tables are created using Entity-

Relation Model (ERM) to optimize the database (Stephens 2010). The 

‘m_project_characteristics’ and ‘m_bidtabs_winning’ contain the required project 

characteristics and bid item data. The ‘m_bid_item_specs’ and ‘m_item_type’ contain 

additional information about the standard bid items. 

The Graphical User Interface (GUI) has the menu items on top to calculate various 

sub-HCCIs and perform some additional bid data analysis. The prototype is capable of 
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generating sub-HCCIs using the raw bid data in a single click. Users can select a year as the 

current year to calculate sub-HCCIs for that particular year. Figure 7 shows the item basket 

generated for T-HCCI on the left and six T-HCCI values on the right. Next section discusses 

the analysis of the results regarding the performance of this new methodology generated 

using this prototype. 

 

Figure 6 MS Access database of Dyna-Mu-HCCI-System 

 

Figure 7 Visual C#.NET frontend of Dyna-Mu-HCCI-System 
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Performance Evaluation of Dyna-Mu-HCCI-System 

 Historical bid data from Montana Department of Transportation (MDT) are collected 

and analyzed to evaluate improvements in the IB coverage using the DIB. It further discusses 

the results on the fluctuation of specific segments of the highway construction market using 

the multidimensional HCCI approach by comparing the sub-HCCIs with the overall HCCIs. 

Data collection 

The researchers obtained the historical bid data from MDT in an excel format which 

was imported into the database. The database consists of bid data of 687 projects let from 

2010 to 2014 that represent more than $1.8 billion of construction projects. The dataset 

consists of 33,975 lines of items based on 2,529 standard bid items from MDT’s 

specification. MDT has developed a list of 5,645 unique bid items in its 2006 specification 

manual (Montana Department of Transportation (MDT) 2006). Each bid item represents a 

unique work item. For example, bid item “402020091” represents ASPHALT CEMENT PG 

64-22. All bid items that begin with 402 represent bituminous materials and include the cost 

of “furnishing and applying bituminous materials, on bases and surfacing.” The obtained bid 

data was imported into the Dyna-Mu-HCCI-System.  

Improvements in IB using DIB 

To evaluate the effect of the DIB, overall HCCIs are calculated using DIB (HCCIDIB) 

and the current IB used by MDT (HCCIcurrent IB). MDT’s current item basket includes 71 high 

cost items handpicked by MDT. In the DIB, items are selected automatically using the 
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framework developed in this study. The number of items in the DIB ranges from 610 to 735 

items in various years (2010 – 2014). This indicates that DIB consists of items more than 

eight times the number of items in the original IB. In terms of the cost coverage, the current 

MDT’s item basket represents less than 50% of the total project costs. The DIB improves the 

cost coverage to over 70% of the total project costs indicating at least 20% increase in the 

coverage. The overall HCCI values calculated from year 2011 to 2014 are presented in Table 

2. Year 2010 is assigned as the base year with the base cost index of 100. The difference in 

terms of percentage ranges from 2.34% up to 5.98%. 

Table 2 Comparison of overall HCCI calculated using DIB and current IB 

A correlation coefficient is calculated to compare the trend of the two series. The 

correlation coefficient (r) is a statistical factor used to access the linear relationship between 

two variables (say x and y) (Taylor 1990). Mathematically, the correlation coefficient can be 

calculated as: 

The value of r can vary from -1 to +1. A positive value indicates that both variables 

have similar trends, i.e. increase in one variable is associated with the increase in another 

Current year HCCIDIB HCCIcurrent IB % difference 

2010 100.00 100.00 0% 

2011 110.46 114.37 -3.54% 

2012 111.12 117.77 -5.98% 

2013 113.06 115.70 -2.34% 

2014 115.46 119.92 -3.86% 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑟) =  
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2 ∑(𝑦−𝑦̅)
2
. (9) 
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variable. The higher the value is, the stronger the correlation is. Negative values indicate that 

an increase in one variable is associated with a decrease in the other. The r-value calculated 

for these two HCCIs series is 0.98, which indicates a very similar trend between the two 

series. 

Further, an overall error between the two HCCI series is calculated using Mean 

Absolute Percentage Error (MAPE) (equation (10)). The higher MAPE indicates more 

variation between the two series. Generally, one may expect to have a higher MAPE value 

associated with a lower r-value and vice-versa.  

The results show a MAPE value of 3.93%. While 3.93% may seem to be a small 

error, this is a large error considering that an average inflation itself is recommended as 4% 

by the FHWA (Mack 2012). In addition, the absolute percentage difference between the two 

series is as high as 5.98% in 2012. This implies that the use of the current IB may result in an 

erroneous decision-making on highway construction market evaluation, preliminary 

transportation budgeting and planning, etc. 

Fluctuations of multidimensional HCCIs 

MDT uses several project characteristics to classify their highway projects (Table 3). 

It uses a six-level project type classification system, which is further sub-divided into 41 

types. MDT also divides the state into five administrative and construction districts and five 

𝑀𝐴𝑃𝐸 = ∑

|𝐻𝐶𝐶𝐼𝐷𝐼𝐵,𝑖 − 𝐻𝐶𝐶𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝐵,𝑖|
𝐻𝐶𝐶𝐼𝐷𝐼𝐵,𝑖

∗ 100

𝑛

2014

𝑖=2011

 
(10) 
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financial districts. These two types of districts overlap closely. MDT also uses three different 

bid item classification systems: division, class, and type. However, no project size 

classification is found in the current MDT business practices. For this study, MDT projects 

are classified using a clustering algorithm known as Simple Expectation Maximization that 

resulted into three clusters. Based on the clusters, project sizes are divided into three ranges 

representing small (0 - $3,500,000), medium ($3,500,000 - $10,500,000), large ($10,500,000 

- $50,000,000).  

With those classification systems, 107 series of chained sub-HCCIs can be calculated. 

For chained sub-HCCIs, their continuity over time is very important to utilize them. Sixty-

eight sub-HCCIs have continuous values from 2010 to 2014. Continuous values for other 

sub-HCCIs are not available because of the lack of items in the DIB. Such scenarios can 

occur when projects of a particular category are not let frequently. For example, a type of 

project - ‘facilities’, is not very frequent in MDT and hence very limited data points are 

available. In addition, some item categories such as ‘unknown’ are used for lump sum items. 

Thus, it is not possible to calculate sub-HCCIs for such categories as the Dyna-Mu-HCCI-

System removes all lump sum items. In addition, as the number of classification levels in a 

given category increases, the possibility of generating a non-empty DIB for that specific 

classification level decreases causing a discontinuity in sub-HCCIs. The extended project 

type T-HCCIs (41 levels) and item class IHCCI (31 level) have many non-continuous sub-

HCCIs and are hence not included for further analysis. 
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Table 3 Sub-HCCI calculation parameters and number of sub-HCCIs 

The values of overall HCCIs and all continuous sub-HCCIs are presented in Table 4. 

Correlation coefficients and MAPE values are calculated for the two series to quantify the 

similarities and differences between them. Most of the bituminous pavement and paving sub-

HCCIs have a very high correlation (r = 0.94 and 0.96) with the overall HCCI. However, T-

HCCI for bridges has r-value of -0.04 indicating slightly negative correlation. It might be 

Sub-HCCI type 

Number 

of sub-

HCCIs 

Sub-HCCIs 

Number of 

continuous 

sub-

HCCIs 

P
ro

je
ct

 c
h
ar

ac
te

ri
st

ic
s 

b
as

ed
 

P
ro

je
ct

 T
y

p
e Project Type 

6 Construction; Resurfacing; Bridge; Spot 

Improvement; Miscellaneous; Facilities 

5 

Extended 

Project Type 

41 New Construction; Reconstruction – with 

added capacity; Reconstruction – without 

added capacity; Resurfacing – Crack 

Sealing; New Bridge; Bridge Replacement 

with added capacity; etc. 

13 

P
ro

je
ct

 

L
o
ca

ti
o
n
 

Administrative 

and 

Construction 

District 

5 Glendive; Billings; Great Falls; Missoula; 

Butte 

5 

Financial 

District 

5 Glendive; Billings; Great Falls; Missoula; 

Butte 

5 

Project Size 

3 Small (0 - $3,500,000) 

Medium ($3,500,000 - $10,500,000) 

Large ($10,500,000 - $50,000,000) 

3 

It
em

 c
h
ar

ac
te

ri
st

ic
s 

b
as

ed
 

Item Division 

6 General Provisions; Earthwork; Aggregate 

Surfacing and Base Courses; Bituminous 

Pavements; Rigid Pavement and 

Structures; Miscellaneous Construction 

6 

Item Class 

31 Liquid Asphalt; Base Course; Concrete 

Paving; Crushing; Drainage; Earthwork; 

Removals; Signing; Structures; Surface 

Treatment, etc. 

24 

Item Type 

10 Grading/ Drainage; Paving; Structures/ 

Buildings; Materials; Equipment; Traffic 

Control; Landscaping; Other, misc.; 

Trucking; Unknown 

7 
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because a large portion of bridge costs are associated with concrete and steel but the majority 

of construction projects are asphalt intensive roadway projects. Concrete and steel costs do 

not necessarily follow the cost movement of asphalt items. This weak relationship is also 

visible in structures/buildings HCCI (r = 0.10) and rigid pavement & structures HCCI 

(r=0.02). From L-HCCI perspective, Glendive district has the strongest correlation (r = 0.99 

for both financial district and administrative & construction district) while others have lesser 

correlation but still strong correlation. In terms of project sizes, the overall HCCI was a better 

representative of small and large sized projects rather than medium sized projects. 

MAPE confirms correlation analysis results and provides additional insights. For 

instance, in most cases such as T-HCCI for resurfacing projects and S-HCCI for large 

projects, MAPEs are less than 5%, which is in accordance with the strong correlations 

observed with higher r-values.  The MAPE and r-value for the T-HCCI for spot improvement 

might seem contradictory at first sight. The T-HCCI has the highest MAPE value (68%) as 

well as a high r-value (0.94). This indicates that spot improvement projects do have a similar 

trend to an overall HCCI, but their rates of change (i.e. inflation rates) are very different. 

Specifically, while the overall HCCI increased from 100 in 2010 to only 115.46 in 2014, the 

spot improvement project T-HCCI increased to 207.12 during the same period. 

Finally, project characteristics based sub-HCCIs provide more granular insights than 

the item based sub-HCCIs. For example, while paving HCCI has a strong correlation (r-value 

= 0.96) and small error (MAPE = 2%), construction and resurfacing T-HCCIs shows 

relatively weaker correlations (r-values = 0.91 and 0.89 respectively) and higher errors 

(MAPE = 3% each). Further, construction and resurfacing projects have varying sub-HCCIs: 
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while construction T-HCCI grew from 100 in 2010 to 112.64 in 2014, resurfacing T-HCCI 

grew only to 116.83 during the same period indicating 3.52% MAPE value between the two 

types of paving projects. 

Overall, T-HCCIs have the highest deviations from the overall HCCIs while S-HCCIs 

have the lowest. However, S-HCCI might have varying deviations based on the different 

range of size categories developed. 

Table 4 Overall HCCIs, sub-HCCIs and their correlation coefficients (r) 

Sub-HCCI Type sub-HCCI 2010 2011 2012 2013 2014 r 
MA

PE 

Overall Overall HCCI 100.00 110.46 111.12 113.06 115.46 - - 

P
ro

je
ct

 c
h

ar
ac

te
ri

st
ic

s 
b

as
ed

 

Project Size 

Small (0 - 

$3,500,000) 
100.00 106.76 109.01 107.73 109.15 0.96 4% 

Medium ($3,500,000-

$10,500,000) 
100.00 107.73 115.50 117.29 112.81 0.86 3% 

Large ($10,500,000-

$50,000,000) 
100.00 114.15 113.50 116.87 115.55 0.97 2% 

Project Type 

Construction 100.00 112.03 106.90 109.24 112.64 0.91 3% 

Resurfacing 100.00 106.83 114.12 109.57 116.83 0.89 3% 

Bridge 100.00 104.89 89.94 91.50 105.00 
-

0.04 
13% 

Spot Improvement 100.00 169.33 162.56 219.01 207.12 0.94 
68

% 

Miscellaneous 100.00 91.68 42.72 72.10 70.06 
-

0.60 
39% 

Financial 

District 

Glendive 100.00 114.55 113.11 115.41 121.58 0.99 3% 

Billings 100.00 106.73 104.62 105.42 114.30 0.83 4% 

Great Falls 100.00 107.25 101.06 114.44 119.12 0.77 4% 

Missoula 100.00 118.07 125.21 123.67 113.64 0.76 8% 

Butte 100.00 102.94 117.79 110.81 128.74 0.76 7% 

Primary 

Administrativ

e and 

Construction 

District 

Glendive 100.00 114.98 113.11 116.75 119.19 0.99 3% 

Billings 100.00 106.85 104.20 106.67 112.95 0.88 4% 

Great Falls 100.00 107.61 103.11 122.66 121.28 0.77 6% 

Missoula 100.00 109.97 127.49 125.46 118.39 0.78 7% 

Butte 100.00 101.98 118.29 119.62 130.99 0.81 8% 
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Conclusions 

This study identifies a gap in the knowledge on the current HCCI calculation 

methodology in DOTs and develops an advanced methodology to fill the gap. It develops a 

concept of Dynamic Item Basket (DIB) to improve the coverage of Item Basket (IB) used to 

calculate HCCIs. A concept of multidimensional HCCIs is also developed to enable more 

granular overview of the market conditions. A prototype system is developed to automate the 

framework. The automated system will facilitate the use of advanced concepts and reduce the 

Table 4 continued 

Sub-HCCI Type sub-HCCI 2010 2011 2012 2013 2014 r 
MA

PE 

It
em

 c
h

ar
ac

te
ri

st
ic

s 
b

as
ed

 

Item Division 

General Provisions 100.00 154.91 95.02 144.04 131.14 0.51 24% 

Earthwork 100.00 124.64 106.80 115.40 116.02 0.68 5% 

Aggregate Surfacing 

and Base Courses 
100.00 107.50 103.08 116.36 107.96 0.68 5% 

Bituminous 

Pavements 
100.00 109.83 116.76 118.91 117.80 0.94 3% 

Rigid Pavement and 

Structures 
100.00 109.51 110.47 90.39 103.06 0.02 8% 

Miscellaneous 

Construction 
100.00 104.12 104.04 104.36 113.45 0.79 5% 

Item Type 

Grading/ Drainage 100.00 117.93 100.23 108.21 111.98 0.54 6% 

Paving 100.00 109.69 113.96 116.59 115.62 0.96 2% 

Structures/ 

buildings 
100.00 106.46 112.92 93.69 103.52 0.10 8% 

Materials 100.00 107.44 107.79 110.42 111.11 0.99 3% 

Traffic Control 100.00 117.94 122.83 121.00 119.56 0.92 7% 

Landscaping 100.00 93.25 91.93 106.51 124.36 0.45 12% 

Other, misc. 100.00 99.59 105.05 102.75 121.73 0.61 7% 
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time and effort required to compute HCCIs. The results of this study can serve as a guide to 

DOTs that desire to update their current methodology. 

The study used bid data from Montana Department of Transportation (MDT) to 

validate the new methodology. The new DIB methodology improves the coverage of the bid 

items dramatically more than 8 times higher in terms of the number of bid items used and at 

least 20% higher in terms of the total project costs covered. Multidimensional HCCIs 

revealed high fluctuations in specific construction markets such as bridges compared to the 

overall market conditions. These granular and more accurate HCCIs are expected to aid 

DOTs to assess their market condition accurately and develop more customized business 

plans for different project types and sizes in different locations. 
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CHAPTER 3  

 ENHANCED AUTOMATION FRAMEWORK FOR COLLECTION AND UTILIZATION 

OF DAILY WORK REPORT DATA 

K. Joseph Shrestha4, H. David Jeong5, and Doug D. Gransberg6 

Abstract 

A significant amount of time and effort is invested to collect and analyze DWR data. 

But, their current uses have been very limited mostly to contractor payment, progress 

monitoring, and dispute resolution. This study conducts literature review and two nationwide 

questionnaire surveys to identify current challenges of collecting and utilizing DWR data and 

develops a new framework to improve the scenario. The challenges identified in this study 

include the lack of automation for DWR data analysis, data quality issues, and duplication of 

efforts. A survey result shows that many benefits of DWR data such as production rate 

estimation, activity cost estimation, contractor evaluation, contract time determination, etc. 

are obtained by half or less of the respondents. The limited use of DWR data is statistically 

associated with the limited level of automation for various benefits that can be obtained by 

analyzing DWR data. An enhanced automation framework is developed to improve the 

scenario. It consists of three components a) data model, b) automation of data DWR data 

                                                 

4 PhD Candidate; Dept. of Civil, Construction & Environmental Engineering, Iowa State University, Ames, IA 

50011; email: shrestha@iastate.edu  
5 Associate Professor; Dept. of Civil, Construction & Environmental Engineering, Iowa State University, Ames, 

IA 50011; Phone: (515) 294-7271; email: djeong@iastate.edu  
6 Professor; Dept. of Civil, Construction & Environmental Engineering, Iowa State University, Ames, IA 

50011; Phone: (515) 294-4148; dgran@iastate.edu  

mailto:shrestha@iastate.edu
mailto:djeong@iastate.edu
mailto:dgran@iastate.edu


41 

 

 

 

analysis and reporting, and c) technical aspects. The methods to automate select analysis are 

presented in mathematical form and in the form of Structured Query Language (SQL) 

queries. The framework is validated by DWR experts of the U.S. and a case study. The 

framework can be used to develop a new DWR system or to improve existing systems. It is 

expected to improve the utilization of DWR data for improved construction decision 

makings. 

Key Words: daily-work-report, field-data, construction-data, data-driven-decision-

making, big-data, data-analytics, visualization, automation. 

 

Introduction and Background 

Despite being one of the largest industries in the U.S., the use of the digital 

technologies in the construction industry has been limited. The speed of uptake of newer 

technologies in the construction industry has been much slower compared to the speed in 

other sectors such as healthcare, retail, automotive, and utilities (Holler et al. 2014). A 

significant growth in the volume, velocity, and variety of data being collected has been 

observed in these sectors (Lancy 2001). The collection of a large amount of data has become 

easier and cheaper because of the exponential growth in the processing and storage 

capacities. As per the Moore’s law, the capacities of the electronic circuits have been 

doubling every year (Moore et al. 1999). Meanwhile, the amount of digital information has 

been increasing by 10 times every five years (The Economist 2010). Although slowly, the 
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construction industry has also introduced various technologies to collect data which can be 

used for making data-drive decisions.  

Construction projects are associated with the collection, processing, and exchange of 

large amount of data among project stakeholders (Cox et al. 2002). The Daily Work Report 

(DWR) data collected by inspectors and Resident Construction Engineers (RCEs) at the 

construction sites are the most important data collected by them (Alabama Department of 

Transportation (ALDOT) 2013). Inspectors and RCEs spend as much as 50% of their time in 

collecting the DWR data (McCullouch and Gunn 1993). This DWR data generally consist of 

construction activities, labor hours, equipment hours, material stockpiles, weather data, and 

significant communications with contractors. Traditionally, DWR data was collected and 

stored in paper-based systems (Cox et al. 2002). The paper based systems have their own 

challenges. For example, a four year project may have over 1,000 DWR forms which make it 

challenging to utilize the collected data for any decision making such as claims and dispute 

resolution (ASCE Task Committee on Application of Small Computers in Construction of 

the Construction Division 1985). The paper based DWR systems are also inefficient and time 

consuming (Dowd 2011).  

Even if those data are initially collected in the paper based systems, a considerable 

amount of time can be saved while analyzing and utilizing the data, if those data are 

transferred and stored in a digital system (Cox et al. 2002). Many digital DWR systems are 

developed since 1990s which include the state-specific DWR systems developed by 

Vermont, Utah, Michigan, Kansas, and the AASHTO developed AASHTOWare 

SiteManager (AASHTO 1999; ExeVision 2012; KDOT 1999; MDOT 2005; Rogers 2013). 
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Those digital DWR and contract management systems have enabled state DOTs to save 

millions of dollars. For example, MDOT reported savings of $22 million by automating the 

previously paper-based, error prone, slow, and intensively manual process of DWR data 

collection, material tracking, and contract payment (MDOT 2005). Rogers (2013) also 

documented savings of 20 hours on each time sheet data entry, increased accuracy of data 

collected, improved communication, and reduction in paper works by using Maintaining 

Assets for Transportation System (MATS). McCullouch (1991) estimated possible savings of 

over two million dollars because of reduced paper uses.  

Despite those time and cost savings in data collection observed by various studies and 

despite the growth in DWR data being collected, the use of DWR data is still very limited – 

possibly because of the minimal recognition of the usability of the data, lack of in-house 

resources to analyze the data, insufficient data for any meaningful analysis, non-standard data 

format, and poorly defined procedures and mechanism use to extract, process, and analyze 

the data and generate usable information and knowledge to assist highway project decision 

makers (Woldesenbet et al. 2014). Much of the reported benefits are the result of the ease in 

DWR data access rather than from the better analysis and utilization of the data. There is an 

emerging need to develop a framework for proper DWR data collection and active utilization 

of DWR data. 

Research Methodology 

This study a) reviews the current practices of collecting and utilizing DWR data, b) 

identifies the benefits that can be obtained from DWR data, c) investigates the challenges for 
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better collection and utilization of DWR data, and d) presents an enhanced framework to 

overcome the challenges identified. The study consists of an extensive literature review, 

phone interviews, and two nationwide questionnaire surveys (Figure 8). The literature review 

is focused on the utilization of existing DWR data and the studies to improve current DWR 

systems. 

Literature Reviews Two staged Survey

Phone InterviewsExisting DWR systems

Enhanced DWR 
Framework

Validation

 

Figure 8 Research methodology to develop an enhanced DWR framework 

Phone interviews are conducted to understand the current practices of DWR data 

collection and analysis in Iowa DOT. Two nationwide surveys are conducted to identify the 

national practices of DWR data collection, utilization, level of automation of various 

analysis, and challenges improving the current practices. Pilot surveys are conducted before 

each survey. The first survey is conducted in spring 2014 which received 151 responses out 

of 433 state DOT representatives contacted (34.87% response rate). The respondents 

represent 40 states out of 50 states contacted. It focuses on identifying the current practices of 

collecting DWR data its benefits. The second survey was conducted in fall 2014 and received 

44 responses out of 115 state DOT representatives contacted (38% response rate). The 
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respondents represent 27 states. It focuses on understanding the current level of automation 

of DWR data analysis. Based on the findings of the study, a framework is developed to 

enhance existing DWR systems or develop a new one. The proposed framework is validated 

by seven DWR experts from the U.S. and a case study. 

Prior Studies 

Prior studies about DWR can be broadly classified into a) the studies related to the 

use of DWR data and b) studies conducted to improving existing DWR systems. 

DWR data utilization 

The DWR data can be used for various purposes including progress monitoring, as-

built schedule development, quantifying construction staffing needs, production rate 

estimation, and claim settlement. The start and finish dates of activities from DWR data can 

be used to monitor a construction progress (Chin et al. 2005; Elazouni and Salem 2011; 

Navon and Haskaya 2006). Navon and Haskaya (2006) developed a tool to build as-built 

schedules and track construction progress using DWR data. They argue that DWR data can 

be used for many other purposes such as to get early warnings if construction is not 

progressing as expected, developing a database for better future planning, improve litigation 

process, and monitor various construction resources.  

Colvin (2008) used DWR data from South Carolina DOT’s DWR system 

(AASHTOWare SiteManager) to determine staffing needs for construction inspection. South 

Carolina DOT utilizes internal staff as well as outsource some of the inspection services to 
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consulting firms. The DOT identifies future inspection staffing needs based on historical data 

and shares the results with consulting community so that consultants can plan and adjust their 

business plans accordingly. 

The DWR data is also very important for construction arbitration (ALDOT 2013; 

Iowa DOT 2004; Kangari 1995). Iowa DOT project documentation guideline instructs their 

RCEs to collect sufficiently detailed data so that important events can be reconstructed later 

as they actually occurred. It further recommends collecting any data that may be useful to 

determine appropriate compensation for claims or disputes. Alabama DOT (2013) also 

instructs that sufficient details should be collected in its DWR system so that it can be used 

for legal issues to substantiate a just claim and disprove an unjust one. DWR data must be 

completed every day and should document important conversation with the contractors. If the 

contractor notifies about its intent to claim, more detailed data should be collected about the 

contractor’s labor, equipment, and material usage. Kable (2006) analyzed the equipment 

usage data from Caltrans DWR system to estimate the emissions generated from its highway 

projects. The study notes the possible differences between the actual equipment operation 

hours and equipment hour data recorded in its DWR system. 

Some states have conducted studies to utilize their DWR data to estimate production 

rates of controlling activities and determine contract times for future projects (Jeong and 

Woldesenbet 2010; Taylor et al. 2013). Realistic production rates form a basis for 

determining reasonable contract times. Aziz (2009) concluded that better contract times can 

be obtained by considering the effect of weather on the production rates. Several studies have 

been conducted to utilize the weather data collected in DWR systems to evaluate the effect of 
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weather (e.g. rainfall) in production rates and to develop working day charts for every month 

of a year (El-Rayes and Moselhi 2001; Kenner et al. 1998; Sims et al. 2009). Another study 

noted that despite spending so much time and effort on DWR data collection, historical 

production rates with activity level granularity are not available to state DOTs (Williams et 

al. 2007). 

Improving existing DWR systems 

The findings of various studies related to improving construction data collection and 

visualization can be incorporated to improve existing DWR systems. Those studies reviewed 

here are focused on utilization of various digital technologies such as laser scanning, digital 

photography, mobile systems, teleconferencing. 

In 1993, Russell developed a computerized DWR system as an improvement to the 

existing paper-based DWR system (Russell 1993). At that time, the system was developed to 

ease the retrieval of construction progress data. The system was also expected to improve the 

response time in dealing with problems and claims. Chin et al. (2005) argue that existing 

DWR systems are manual, time consuming, and there is a lack of information structure to 

represent activity information. To overcome the limitations, the study developed a check-list-

based DWR system that can track macro level activities. The system aided in faster 

communication of activities needed to be done among the contractors and subcontractors. 

McCullouch (2008) developed a system for Indiana DOT (INDOT) to record material 

delivery ticket details using bar codes. The system transfers the ticket information 

electronically to the material supplier, trucking company, and INDOT personnel and 
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contractor. The study further discussed the possibility of integrating the system with 

AASHTOWare SiteManager. 

McCullouch (2000) previously recommended the use of teleconferencing, digital 

cameras, internet tools, and additional software programs for field data collection and 

construction project management for Indiana DOT. Those tools were also recommended in 

addition to the DWR module of AASHTOWare SiteManager that is already being used in the 

DOT. Hwang et al. (2003) synthesized existing technologies that can be used for DWR data 

collection. The technologies reviewed include 3D laser scanning, digital close range 

photogrammetry, sensors, mobile computing, wireless communication, video conferencing, 

remote collaboration, and project application service providers for data storage and 

management. The study concluded that the new technologies will improve the efficiency and 

enhance quality in collecting field data. Similarly, Leung et al. (2008) combined the data 

from a long-range wireless network, network cameras, and web-based collaborative platform 

to capture real-time images and videos for progress monitoring. Trimble Navigation Limited 

(2014) developed a contractor oriented DWR system called Trimble Proliance system. It has 

a rich visualization and analytical capabilities to show various construction statistics such as 

construction progress and earned value to date. 

Other studies relevant to this study are focused on the use of non-structured data such 

as construction photographs and semi-structured laser scan data to develop as-built schedules 

for construction project monitoring, productivity analysis, and safety analysis (Golparvar-

Fard et al. 2009; Turkan et al. 2012). 
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Current Practices of DWR Data Collection and Utilization 

The current practices of DWR data collection and utilization are identified from 

literature review, phone interviews, and nationwide surveys. The current practices are 

presented in four sections: a) existing DWR systems, b) DWR data attributes, c) benefits of 

DWR data, and d) use of DWR data among various teams within sate DOTs. Finally, the 

challenges of DWR data collection and utilization is summarized. 

Existing DWR systems 

Although state DOTs are constantly pursuing to utilize more digital systems, many of 

them are still using paper-based systems for DWR data collection. Out of the 40 state DOTs 

that responded, over half of them (23) are using hybrid DWR systems, i.e. both paper-based 

systems and digital systems. Only 14 DOTs are using paper-less digital DWR systems. The 

remaining three DOTs are still completely relying on paper-based DWR systems. Analyzing 

such paper-based data will be very labor-intensive. At the same time, transferring DWR data 

from paper-based to digital system will result in the duplication of efforts. There is much 

room for error when manually transferring the data from paper-based to digital systems – 

resulting in the data quality issues. 

A number of digital DWR systems have been developed over time by state DOTs. 

The AASHTOWare SiteManager is the most popular DWR system and is used by 22 state 

DOTs. The AASHTOWare FieldManager and Maintaining Assets for Transportation 

Systems (MATS) are two other systems developed, maintained, and used by more than one 

state DOTs’ effort. Other state specific DWR systems developed and maintained by single 
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state DOTs include PennDOT CDS NeXtGen, Utah Project Development Business System 

(PDBS) Field Book, Delaware FieldOps, Arizona DOT Pen, south Dakota Construction 

Measurement & Payment System (CM&P), and Kansas Construction Management System 

(KCMS).  

Table 5 compares the capabilities of those DWR systems in terms of structured DWR 

data collection. The data attributes are classified into 9 categories. Most of the current 

systems are capable of collecting the fundamental information about the work quantities, 

contractor’s presence, work suspension status, weather details, work location, and labor and 

equipment details. However, the level of granularity that can be collected about those 

information varies. For example, AASHTOWare SiteManager, AASHTOWare 

FieldManager, CDS NeXtGen, and PDBS Field Book can be used to collect low and high 

temperature of a day. The Delaware Field Data Collection (FDC) is developed to collect the 

temperature by time which enables more granular temperature data collection. However, 

temperature data cannot be collected in structured format in CM&P, Pen, and KCMS. Those 

systems also do not have functionality to collect AM and PM weathers separately.  

The FieldOps and AASHTOWare SiteManager can be used to collect work 

suspension duration data but other systems do not have such functionality. Similarly, while 

AASHTOWare SiteManager, AASHTOWare FieldManager, CDS NeXtGen, PDBS Field 

Book, and FDC have structured fields to collect equipment data, FieldOps, Pen, CM&P, and 

KCMS lack such feature. Overall, the DWR systems developed and maintained by multiple 

state DOTs are relatively more flexible and powerful in terms of data collection and analysis 

capabilities. 
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Table 5 Data attributes that can be collected in DWR systems used by state DOTs  

Attributes 
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General 

Date  X X X X X X X X X X 

Day charging X - X - X - X - - X 

Weather - - X - X X - X - - 

Weather by time - - - - - - - - - - 

AM weather X - - X - - - - - - 

PM weather X - - X - - - - - - 

Low temperature X - X X X - - - - - 

High temperature X - X X X - - - - - 

Temperature by time - - - - - X - - - - 

Sunset  - - X - - - - - - - 

Sunrise  - - X - - - - - - - 

Work status - -  - X - - X - - 

Work suspended from X - - - - - X - - - 

Work suspended to X - - - - - X - - - 

Accident indicator - X - - - - - - - - 

Work activities 

Location  X X X X - X - X X - 

Installation station - - - - - X X - - - 

Installation station from X X X X X - - - - - 

Installation start town - X  - - - - - - - 

Installation station to X X X X X - - - - - 

Installation end town - X - - - - - - - - 

Offset  - X - - - - - - - - 

Route direction  X - X - - - - - - 

Item  X X X X X X X X X X 

Installed item quantity X X X X X X X X X X 

Item measurement 

indicator 

X - - - - - - - - - 

Controlling item indicator X - X - - - X - - - 

Item needs attention flag - - X - - - - - - - 

Item completion status - - X - X - - - - - 

Material stockpile 

Stockpile quantity - - X - - - X X - X 

Material source - - X - - X - X - - 

Material manufacturer - - - - - - - X - - 

Audit/approval status X - - - - - X X - - 

Contractor details 

Contractor X - X X X X - - - - 

Contractor presence X - - - - - - - - - 

Daily staff presence X - - - - - - - - - 

Contractor working status - - X - - - - - - - 

Contractor hours worked - - X X - X X - - - 

Labor details 

Personnel type X - X X X X - X - - 

Personnel number X - X X X - - X - - 

Personnel hours X - X - X - - X - - 
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State DOTs have limited resources available to maintain the DWR systems and some 

DOTs reported that their DWR systems are old, not well maintained, and in in need of an 

update. The lack of sufficient resources is one of the factors that have forced state DOTs to 

use outdated systems. State DOTs have reported that partnering with other state DOTs have 

enabled them to combine their limited resources to develop a DWR system that meets their 

common needs (Fowler 2010). 

Table 5 continued 
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Equipment details 

Equipment type X - X X X X - - - - 

Equipment number - - X X - - - - - - 

Equipment hours X - X - X - - - - - 

Equipment standby hours - - - - X X - - - - 

Utility details 

Utility personnel type - - - - - X - - - - 

Utility equipment type - - - - - X - - - - 

Utility equipment standby 

time 

- - - - - X - - - - 

     - - - - - - 

DOT staff/inspector X X X - - X - - X - 

DOT staff hours - X - - - - - - - - 

DOT staff time from - - - - - X - - - - 

DOT staff time to - - - - - X - - - - 

DOT resources 

Vehicle mileage X - - X - - - - - - 

DOT/Rental equipment - X - X - - - - - - 

DOT/Rental equipment 

hours 

- X - - - - - - - - 

DOT/Rental equipment 

mileage 

- - - X - - - - - - 

Miscellaneous 

Force account details X - - X - - - X - - 

Visitors - - - - X X - - - - 
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DWR data attributes 

In the nationwide survey, respondents are asked about the major DWR data attributes 

being collected, their perceived importance to obtain the benefits of DWR data, and the 

current method to collect those data (paper-based or digital). Irrespective of the importance 

of the data attributes, most of the data attributes are collected by about 150 respondents. 

There is no clear pattern between the average ratings and the data collection methods. It 

might be a better option to collect the more important data attributes in digital systems to 

ease its analysis. For example, the agency’s quality assurance tests are considered to be the 

second most important data, but currently about half of the respondents (74) are collecting it 

in paper-based systems. The crew and equipment details for each day are not considered as 

important, but it is mostly collected in digital systems. The features available in their DWR 

systems and state DOT policies are probably the reason associated with collection of 

important data attributes in the paper-based systems. If appropriate policies and DWR 

systems are implemented, the important data attributes such as traffic control reports, 

contractor’s quality assurance tests, and safety and incident reports can be recorded in digital 

format. 

The link between the activity and equipment/crew is necessary to calculate the 

production rate. But, while many state respondents are collecting the equipment and crew 

details for each day (150 and 145 respondents), fewer respondents are collecting the 

equipment and crew details for each pay-item activity (98 and 98 respondents). This is 

possibly because of the lack of utilization of DWR data for production rate estimation in 

many state DOTs. Based on the survey, only about 25% of additional effort is required to 
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collect resources data linked to the activities compared to the resources data collection 

without the links. 

 

Figure 9 DWR data attribute collection practices 
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Benefits of DWR data 

In the survey, the respondents are asked to rate the importance of various benefits of 

DWR data and the current level of automation to obtained those benefits. The DWR data are 

mostly being used for progress monitoring (92% respondents), dispute resolution (88% 

respondents), and contractor payment (91% respondents) (Figure 10). Those benefits are 

perceived to be very important by the respondents and are rated 4.1 out of 5 for progress 

monitoring, 4.1 for dispute resolution, and 4.6 for contractor payment. The other applications 

such as activity cost estimation, production rate estimation, contractor evaluation, and 

contract time determination are used by only about half or less than half of the respondents. 

The importance of DWR data is realized but the current level of benefits obtained is very 

limited. The dashed orange line shows the average path of the automation ratings and the 

dashed blue line shows the average path of the importance ratings. There are opportunities 

and areas for improvement to obtain more benefits from the DWR data as indicated by the 

gap between those two lines. 

The survey results show that when there is a lower level of automation, the benefits 

are obtained by fewer respondents. On one side, the progress monitoring is rated with the 

highest rating of all (3.3 out of 5 on average) and the benefits of DWR data for progress 

monitoring is obtained by the highest percentage of the respondents (92%). On the other side, 

the automation rating for safety analysis is only 1.7 and such analysis are performed by only 

29% of the respondents.  

A Pearson’s correlation coefficient (r) is calculated using the level of automation of 

various benefits as an independent variable and the percentage of respondents who obtained 
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the corresponding benefits as a dependent variable to understand the relationship between 

those variables. “The Pearson’s correlation coefficient is the product moment correlation 

coefficient, r, a dimensionless index that ranges from -1.0 to 1.0 inclusive and reflects the 

extent of a relationship between two data sets” (Microsoft Corporation n.d.). Mathematically, 

the Pearson’s correlation coefficient can be represented as: 

where x and y are variables under study and x̅ and y̅ are corresponding mean values. 

A positive coefficient indicates that an increase in one variable is associated with an increase 

in another variable. The higher the value of the coefficient, the stronger is the relationship. 

However, a correlation does not necessarily mean a causal relation. 

There is a good correlation (0.59) between the level of automation and the percentage 

of the respondents obtaining the benefits. Thus, if the level of automation of as-built 

information (schedule, cost, etc.) generation is improved, more state DOTs may start to 

generate as-builts from the DWR data. Thus, there is a need to automate the analysis for 

obtaining various benefits using DWR data that is already collected. In other words, a proper 

methodology and algorithms should be developed for those analysis. The authors are 

working on another paper to automate the as-built schedule development using DWR data.  

𝑟 =
∑(𝑥 − 𝑥̅)(𝑦 − 𝑦̅)

√(𝑥 − 𝑥̅)2√(𝑦 − 𝑦̅)2
 (11) 



57 

 

 

 

 

Figure 10 Application benefits of DWR data 
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from DWR data despite its potential benefits. The results indicate that there is a lack of 

awareness about DWR data and/or a lack of automation for various analyses required to 

obtain specific benefits by those teams.  

 

Figure 11 Teams that are possibly- and actually-benefiting from DWR data 
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data is collected in linguistic format which is challenging to analyze. A framework is 

developed to overcome those challenges and improve DWR data collection and utilization 

practices and is presented in the next section. 

Enhanced Framework for Better Collection and Utilization of DWR Data 

An enhanced framework for better collection and utilization of DWR data is 

developed based on the findings from the literature review, survey questionnaires, phone 

interviews, and review of existing systems. It consists of three major components: a) data 

model, b) automation of DWR analysis and reporting, and c) technical aspects. 

Data model 

A data model consists of data attributes, data entities, and the relationships between 

the data entities. The current DWR systems have a varying level of capabilities in terms of 

the data attributes that can be collected using the systems. Much focus is given in collecting 

linguistic data in many of the systems. Those unstructured linguistic data such as remarks 

often contains valuable information but is often not as easy to automate their analysis as 

other structured data. 

Three methods can be used to develop structured fields to substitute or complement 

the unstructured linguistic data fields. The first one is based on text mining the linguistic data 

that is already collected. Text mining can reveal the frequently collected and major values for 

each remark type. For example, if two of the major reasons of change orders are a design 

error and effect of weather based on the analysis of historical remarks, then the linguistic 
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remark field for the cause of change orders can be converted to a structured field with design 

error, weather, and others as choice values. The second option is to identify those major 

values based on the experience of inspectors and RCEs. For example, temperature, humidity, 

rain, snow, and wind might be the major weather factors affecting the productivity. Thus, 

instead of providing the linguistic weather remarks field, numerical fields for temperature 

and nominal fields for weather severities can be developed. Finally, state DOTs can also 

learn from other DWR systems currently being used by other state DOTs. Table 5 presents 

the various DWR data attributes currently recorded in the existing DWR systems. 

Lack of the proper relationship between the data attributes will result in the limited 

usability of the data for detailed analysis. For example, when the labor hours are collected 

without any link to a particular activity, then a realistic estimation of production rates and 

study of effect of various factors on the production rates becomes probabilistic. 

The Entity-Relation (ER) data model can be used to develop a data model for a DWR 

system. It is one of the popular methods to develop database systems. An ER model can 

visually represent data attributes, entities, and the relationships between the entities. An 

entity represents an item about which data is to be stored (Jan L. Harrington 2009). In case of 

a DWR system, equipment can be taken as an example of an entity. The equipment type, 

equipment name, number of equipment, etc. would be the examples of data attributes 

corresponding to the entity. For example, a data attribute – number of equipment – can have 

any integer value and hence its domain is in integer values. 
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Automation of DWR data analysis and reporting 

Figure 12 presents 14 applications or benefits of DWR data that should be automated 

to ensure reduced time and efforts for decision makings. The quantities of work activities and 

the corresponding date cam be used to automatically generate as-built quantity, cost, and 

schedule information. Those as-builts can be compared against as-planned quantity, cost, and 

schedule to monitor construction progress and identify any deviation from a planned cost and 

schedule. The progress information becomes the basis for making contractor payments.  

The deviations identified can be used to identify the possible risks of quantity, cost, 

and schedule overruns. The as-built quantities can also be used to calculate actual production 

rates of various activities. The production rates from historical projects, progress of the 

current project, and deviations from planned schedules can be used to identify the impact of 

the deviation in the overall schedule. This will enable state DOTs to take corrective actions 

before the schedule of the whole project is impacted. The claims for extra works performed 

can be resolved based on the activity costs based on historical projects. The claims related to 

the weather and site conditions related delays can be resolved by analyzing the weather effect 

on the productivity in past projects. Similarly, a delay analysis can also be used to identify 

the types of projects or project activities that are more likely to be delayed than others. In 

other words, the project risks in terms of schedule delay can be analyzed for future projects 

based on historical projects. 

Similarly, a DWR system can be tied to an asset management system for asset 

management decisions such as construction project prioritization. For example, roughness 

index data collected after the completion of a project to check the quality of the pavement is 
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an important data to plot pavement condition degradation curve. It can also be tied to DOT 

resource management systems to estimate the inspection resources required based on the time 

spent by inspectors for various work activity inspections in previous projects. Some activities 

like clearing and grubbing may not require much inspection, but other activities like base 

course installation may require more detailed inspection. 

Further, DWR data can be used to check historical compliance records about 

regarding the civil rights such as minimum wage rate requirements and use of certified 

materials. The timely completion, number and severity of various issues encountered with a 

contractor, cost and schedule overrun/underrun, quality of final pavement, etc. can be used to 

automate the contractor ratings in parts. The cost and schedule overrun/underrun can be 

further used to evaluate the innovative contracting methods. The production rates and 

resources employed can be used as another method to estimate activity costs for future 

project cost estimation. Current practices are largely based on the use of historical bid data 

and per lane mile based parametric method. Finally, ongoing work activities and traffic 

control setup data can be analyzed with work zone crash data to evaluate its effect on work 

zone safety. 

Select applications are presented in detail in the following subsections. Methods to 

automate those analyses are presented as mathematical equations and/or using a Structured 

Query Language (SQL). “SQL is a set-oriented programming language that is designed to 

allow people to query and update tables of information” (IBM 2013). To develop SQL 

queries a DWR table with four DWR data attributes are used. The data attributes, its 

descriptions, and its data type are presented in the Table 6. 
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Table 6 Data attributes in ‘work_activity’ table 

Data attribute Description Data type 

PRJ_NBR Project Number Short Text  

DWR_DT Daily Work Report Date Date/Time 

ITM_CD Item code Short Text 

RPT_QTY Reported Quantity Number 
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Figure 12 Applications of DWR data 
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 As-built information 

As-built information such as as-built quantities are one of the primitive information 

required to obtain many other benefits. Inspectors and RCEs collect work quantities every 

day and each record in the Work-activity entity indicates the quantity of works performed in 

that particular day. To obtain the total quantities of works performed to date, the quantities 

from all previous records corresponding to the project are be added. Mathematically, 

Where ‘t’ is the current date. In terms of SQL, an as-built quantity can be obtained 

using the query presented in Figure 13. 

 

Figure 13 SQL query to extract as-built quantity 

Where ‘pid’ is a unique project identification number for the project under 

consideration, ‘iid’ is a unique id of the item under consideration, and ‘yyyy/mm/dd’ is the 

date up to which the work quantity is to be calculated. Such a query can be executed for all 

the work items used in a project to generate as-built quantities for the whole project. 

As − built quantity (ABQ) = ∑ Quantities of work completed in day i

t

i=1

 (12) 
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 Progress monitoring 

The previous query gives the total as-built quantity of an item at one instance of time. 

To monitor the progress of a project over time, the total cumulative quantities of works 

performed by day can be generated directly using the following SQL query (Figure 14). 

 

Figure 14 SQL query to generate progress monitoring information 

Here, the result of the query will be the dates and cumulative quantities corresponding 

to each date. The output can be plotted to generate an S-curve for visual progress monitoring. 

If the query is executed for all the items in a project, the results can be used to generate an as-

built schedule for the whole project.  

 Contractor payment 

The contractor payment can be calculated using the unit prices and quantities of 

works done to date. If the contract has a retention clause, a percentage of the total cost to date 

should be deducted for retention (equation (13)). 

Contractor Payment (CP) = (1 − r) ∗  ∑ q ∗ u

n

i=1

 
(13) 
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Where r is the retention percentage, q is the quantity of work inspected and approved, 

u is the unit rate of the corresponding item, and I is an index representing items from 1 to n. 

The above is a basic equation to calculate the contractor payment. Additional consideration 

should be given to several contractual terms. For example, consideration should be given to 

the mobilization that is paid in advance and the retention that will be paid at the end of the 

project. Similarly, payments can be made in advance for the purchase of stockpiled materials 

and items. The liquidated damages, if any, should be deducted from the total payment. 

 Daily production rate 

The DWR data collected in the field can also be used to generate daily production 

rates. A daily production rate (PR) can be defined mathematically as: 

A good estimation of production rate is required for better as-planned schedule 

development and contract time determination. While extracting the number of days (d), care 

must be taken to ensure that only days when that particular work is being conducted are 

counted. If more accurate production rates are to be determined, the number of workers 

working and equipment employed to complete the task may also be considered as crews of 

different sizes and equipment of different capacities can have different level of productivity. 

The weather data recorded in a DWR system can also be used to analyze the impact of 

weather on the production rates. The relationship can be then used to justify the contract time 

extension and/or settle claims related to production rates. 

Production Rate (PR) =
Quantity of work (q)

Total number of days (d)
 

(14) 
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 Pattern mining 

The construction data can be analyzed to identify various patterns in the construction 

work performances. For example, the types of projects that are generally associated with 

higher change orders, frequent types of disputes, work items that are often associated with 

the quantity underrun/overrun, contractors with frequent claims and disputes, scheduler 

performance of various contractors, traffic control setups associated with the various levels 

of crash severities, etc. Similarly, the trend of the number of disputes over the years, 

scheduler performance improvements over time, etc. can also be studied using DWR data. 

Such analysis can be performed using various data mining techniques such as association 

mining and time series analysis. 

Figure 15 shows an example of pattern mining using the concept of knowledge 

discovery in databases (KDD). The left side shows the various steps of KDD and the right 

side shows how it can be used to analyze the relationship between the production rates and 

various site conditions. The process of calculating production rate is already presented in a 

previous section. Here, in addition to the dates and pay-item quantities, the resources and site 

conditions are also used as input data for the selection stage. The data is then processed to 

generate cumulative quantities which can be transformed to generate production rates for 

various site conditions. Finally, the pattern analysis techniques can be used to analyze the 

relationship between the site conditions and production rates. 
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Figure 15 Application of knowledge discovery in databases (KDD) for pattern mining  
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Technical aspects 

A DWR system should be technically robust in multiple aspects. It should be 

interoperable, should have an intuitive user interface, and good visualization techniques. 

Automated data collection can be implemented to ease DWR data collection. 

A DWR system should be interoperable with other systems used by the DOT 

including cost estimation, asset management, contract time determination, bidding, 

contractor payment, and traveler’s information. An interoperable system allows a seamless 

exchange of project data with other systems throughout the project development and 

execution. It further enables integrated and in-depth analysis of data and timely exchange of 

information. For example, if a DWR system is interoperable with traveler’s information 

website, a real-time road closure information can be provided to the road users. Similarly, 

weather information of a construction site can be retrieved automatically from weather 

service providers’ websites. 

The system developed should also have intuitive user interface to ease DWR data 

recording and retrieval. A DWR system should have a proper login and access privilege 

system for data security. Existing departmental accounts can be used for the login system. 

The system should suggest default values for various data attributes like DWR data recording 

date. Also, the data entered in the system should be validated for proper format (such as 

numerical value) before recording in the system. A search functionality can be provided to 

ease the retrieval of previously recorded DWR data. The system should support a digital 

signature mechanism to reduce the duplication of effort resulting from the “wet ink” 
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requirement. The system should be scalable to allow the collection of frequent and larger 

amount of data.  

A DWR system developed should also have a good visualization system to present 

the tabular data in intuitive graphs and charts. Some other visualization systems that can be 

connected to a DWR system include Tableau, Pentaho Instaview and Treemap (AEC Big 

Data Inc. 2013; Pentaho Corporation 2013; Tableau Software 2013). A Geographical 

Information System (GIS) is another visualization system that can be connected to a DWR 

system to present various data such as construction progress.  

Once a DWR system is developed, proper hardware such as portable laptops and 

tablets should be provided. Additional automated data collection systems such as Radio 

Frequency Identification (RFID), bar codes, LiDAR, Geographical Information System 

(GIS), equipment sensors, and camera can be used to facilitate DWR data collection. As one 

of the state DOT representative imagined, all DWR data will be collected automatically in 

the future without needing to manually enter the data in computer systems. 

Validation 

The enhanced framework developed in this paper is validated using two approaches. 

First, the framework is also validated by seven DWR experts from the U.S. Second, a case 

study is conducted to show the progress monitoring aspect of the framework. 
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Validation by DWR experts 

In this case, the validation is performed via a questionnaire survey and it focused on 

soliciting expert opinions on an overall advancement provided by the framework over 

existing DWR systems. In the questionnaire, the experts are asked to rate various aspects of 

the framework on the scale of 1 to 10 – 1 being “poor” or “strongly disagree” and 10 being 

“excellent” or “strongly agree.” 

The DWR experts provided overall positive responses along with some constructive 

feedback. The experts commented that the framework is promising to improve existing DWR 

systems. This is also indicated by the average rating of 8.0 out of 10 in question 3 (Table 7). 

They supported the concept of an integrated and web based DWR system provided in the 

framework. 

Table 7 Average ratings of the proposed DWR framework 

S.N. Question Average Rating 

1 This framework proposes some useful advancement over current 

DWR systems. 

7.3 

2 This framework can aid in tackling current challenges (listed 

below) of getting benefits from current DWR systems:  

- 

2.1  Lack of proper data attributes 6.4 

2.2  Resources limitation 6.3 

2.3  Duplication of efforts 7.2 

2.4  Technical limitations 6.8 

2.5  Current business practices 6.3 

3 Current DWR systems can adapt some parts of the framework to 

improve their existing system.  

8.0 

4 The framework can be adapted to develop a DWR system if a 

state DOT does not have one. 

8.3 

5 The framework is comprehensive in terms of its scope. 8.5 

6 The framework is easy to comprehend. 7.7 
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The ratings also show that the framework proposes some useful advancement over 

current DWR systems (7.3 out of 10). The framework is of high level and is comprehensive 

in terms of its scope for that level (8.5 out of 10). It is also easy to comprehend by DWR 

experts (7.7 out of 10). Finally, it is fairly good to overcome existing challenges that were 

identified in this study as indicated by the ratings for items 2.1 through 2.5 (rating of over 6 

out of 10). 

Case study 

A sample Entity-Relation (ER) data model for DWR system is presented in Figure 16. 

It consists of nine entities or tables to represent major data attributes. The lines show between 

the entities show the connection between the entities. For example, the work activity entity is 

connected with the majority of entities including the equipment, labor, and weather. This link 

is missing in the existing DWR systems. 
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Figure 16 ER data model for proposed DWR system 

A sample work activity data for a single project was extracted from a DWR database 

to demonstrate an application automation. The project contains 76 items and was let and 

awarded in 2014. A “class S concrete roadway” item was selected to present the analysis 

results for as-built and progress monitoring. Table 8 shows the results of the SQL queries. 

Each row in the table indicates as-built quantity completed to the date. The date, as-built 
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pairs represents the progress of the concrete roadway work item over time which can also be 

plotted to generate an S-curve. 

Table 8 Progress monitoring using cumulative as-built quantity  

Date Cumulative as-built quantity 

7/17/2014 14 CY 

8/1/2014 27 CY 

8/6/2014 52 CY 

8/13/2014 66 CY 

 

Based on the successful validation results, it can be concluded that the proposed 

framework can be used for development of a new DWR system and/or updating current 

DWR systems that is focused on the automation of various decision making analysis. 

Conclusions 

Although, the importance of DWR data has been widely realized, there are multiple 

challenges faced by state DOTs that limits the current utilization of DWR data. Some of the 

challenges include data quality issues; duplication of efforts; and lack of resources, 

awareness of data being collected, methodologies to analyze data, automation of those 

analysis, and proper hardware. Many existing systems can collect fundamental data such as 

work quantities, contractor’s presence, location, and labor data with limited details. But, 

those systems lack the capability to collect detailed structured data such as temperature, work 

suspension time, equipment usage, incident report, traffic control. Also, the important links 

such as an activity-resource link are not present in those DWR data collection systems. 
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The study also identified a notable gap between the possible and current benefits 

obtained by state DOTS. Many benefits such as production rate estimation, activity cost 

estimation, contractor evaluation, contract time determination, etc. are obtained by half or 

less of the respondents. The benefits are also obtained by fewer teams within state DOTs than 

all teams who can possibly benefit from it. The limited use of DWR data is statistically 

associated with the limited level of automation of the benefits. Thus, DWR analysis should 

be automated to improve the use of DWR data. 

A framework is developed to overcome the challenges identified for DWR data 

collection and utilization. The framework consists of a) data model, b) automation of DWR 

analysis and reporting, and c) technical aspects. Three methods to identify and develop a 

proper data model along with an example data model is presented. Fourteen application 

benefits and examples to automate analysis required for those benefits are presented using 

mathematical form and as Structured Query Language (SQL) queries. Under the technical 

aspects, interoperability, intuitive user interface, visualization, and automated data collection 

techniques are presented. The framework is validated by DWR experts from the U.S. The 

framework can be used to develop a new DWR system or to improve existing systems and is 

expected to aid in data-driven decision makings to manage construction projects. 
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CHAPTER 4  

 COMPUTATIONAL ALGORITHM TO AUTOMATE AS-BUILT SCHEDULE 

DEVELOPMENT USING DIGITAL DAILY WORK REPORTS 

K. Joseph Shrestha7 and H. David Jeong8 

Abstract 

As-built schedules prepared during and after construction are valuable tools for State 

Highway Agencies (SHAs) to monitor construction progress, evaluate contractor’s schedule 

performance, ensure successful execution of a project, and defend against potential legal 

disputes. However, previous studies in this area indicate that current as-built schedule 

development methods are manual and rely on the information scattered in various field 

diaries, meeting minutes, and progress reports. SHAs have started to use digital Daily Work 

Report (DWR) systems to store field activity data in structured format that include sufficient 

data to develop as-built schedules. These valuable data have great potential to automatically 

generate as-built schedules if a proper methodology and its computational algorithm are 

designed and developed. This study directly addresses this issue and develops a complete 

methodology and its computational algorithm that can generate project level and activity 

level as-built schedules during and after construction. A standalone prototype system ‘As-

built Schedule System (ABSS)’ is also developed to automate the entire process and develop 
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visualized as-built schedules. A real highway project’s DWR data was obtained from a state 

highway agency to successfully demonstrate the ability of ABSS in generating As-built 

schedules and provide insights for empowering future project schedulers and project 

managers. The outcomes of this study is expected to significantly aid SHAs in making better 

use of already collected DWR data, facilitate as-built schedule development and 

visualization, monitor construction progress with higher granularity, and utilize as-builts for 

productivity analysis and resolving potential issues causing delays. 

Key Words: as-built-schedule, as-built-to-date schedule, daily-work-report, project 

schedule-monitoring, big-data, data-analytics, visualization, automation. 

 

Introduction 

As-built schedules represent the actual sequences and durations of construction 

activities of a project and take account of the change orders and schedule changes from the 

originally planned schedule (Hegazy et al. 2005; Henschel and Hildreth 2007; Knoke and 

Jentzen 1996; Vandersluis 2013). For highway construction projects, contractors are 

generally required to submit the originally planned schedule before the construction of a 

project starts and update the project progress during the construction. As the owner of a 

highway project, State Highway Agencies (SHAs) also collect and document various work 

progress related information from the construction site on a daily basis to make a monthly 

payment to the contractor and to be prepared for resolving any possible claims.  
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There are different types of as-built schedules in terms of the timing of as-built 

schedule development and the level of details as shown in Figure 17. As-built schedules can 

be categorized into as-built to date schedule and the final as-built schedule. As the terms 

suggest, an as-built to date schedule is developed during construction as a real time check on 

schedule performance. Once the construction is complete, the final as-built schedule can be 

developed, which includes actual sequences and durations of all activities of the project. 

Based on the level of detail, as-built schedules can be categorized into a project level 

as-built schedule and an activity level as-built schedule. A project level as-built schedule can 

be presented as a bar chart and it shows the progression of work activities throughout 

construction. An activity level as-built schedule can be presented as cumulative quantities of 

work over time and hence it can show the progression of a specific work item. Since a typical 

highway project involves a small number of repetitive activities on a long stretch of a 

roadway, an activity level as-built schedule can play a significant role in assessing the 

project’s schedule performance.  
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 Figure 17 Different types of as-built schedules 

A project level as-built schedule to date is an important tool to ensure that a project 

will be completed within the contact time (Knoke and Jentzen 1996). It can be used to verify 

contractors’ progress report on ongoing activities (Obr 2015). Delays can be identified by 

comparing the as-built schedule to date with the planned schedule (Avalon 2014; Knoke and 

Jentzen 1996). If any delay is identified early in the project, corrective actions can be taken to 

bring the project back on track to complete it on time. When, a delay occurs during 

construction, an as-built to date schedule can be used to validate the contractors’ claim for 

delay compensation or the request for time extension. The final as-built schedule is a 

documentation of durations and sequences of all activities. As such, it can also aid new 

schedulers in developing schedules for new projects (Knoke and Jentzen 1996). 
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An activity level as-built schedule enables monitoring of activity level progress and 

quantity underrun/overrun if any. Contractors’ payment can be adjusted based the quantity 

underrun/overrun. It can be used to calculate the observed production rates that can be 

compared with the expected and/or standard production rates to evaluate the contractors’ 

performances. Once the project is completed, the production rate obtained from the project 

can be used as a historical production rate to determine contract time for similar future 

projects (Woldesenbet et al. 2012). 

Despite the importance of as-built schedules, as-built to date schedules are not 

typically developed and maintained throughout the project (Knoke and Jentzen 1996). The 

final as-built schedule is developed at the end of the project based on memory and 

information scattered in various forms and field diaries that may be outdated (Hegazy and 

Ayed 1998). Such methods involves manual efforts and are often inaccurate as some useful 

information may be lost before the end of the project (Elazouni and Salem 2011; Memon et 

al. 2006). Developing and maintaining as-built schedules throughout the project could be a 

cost effective approach as they will enable the project team to resolve any potential delay 

issues as they occur–which can avoid costly claims at the end of the project (Knoke and 

Jentzen 1996). However, there is a lack of a systematic methodology to generate both as-built 

schedule to date and the final as-built schedule (Hegazy et al. 2005). 

Moreover, existing commercial scheduling systems do not allow the collection and 

recording of actual activity progresses over time, but only allow recording of the latest status 

of the project (Kahler 2012; Knoke and Jentzen 1996). As such, current systems are not very 

useful for as-built schedule development.  
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SHAs have recently started to use digital daily work report systems that are 

customized to collect structured site activity data. These systems offer great potential to 

automatically develop as-built schedules when proper data extraction and computational 

methods are employed. Existing studies in this area are focused on either utilizing 

unstructured data to manually develop as-built schedules or developing a new data collection 

system that can be used for developing as-built schedules (Hegazy and Ayed 1998; Knoke 

and Jentzen 1996; Navon 2007). Further, those studies are often focused only on a project 

level as-builts, disregarding the importance of activity level as-builts. 

The overall goal of this study is to develop an automation methodology to develop as-

built schedules for progress monitoring with higher granularity, support project schedule 

control decisions, and aid in resolving claims. The specific objectives are to a) develop a 

systematic methodology to generate project level and activity level as-built schedules during 

and after construction using structured site data already collected by SHAs, and b) develop a 

prototype to automate the computational process and visualize the as-built schedules 

Prior Studies 

Prior studies conducted on developing as-built schedules from site records are 

focused on two areas: a) developing as-builts manually based on available unstructured 

information and b) developing site data collection systems that can be used to collect specific 

data required for an as-built schedule development. The first two studies reviewed here 

including Kahler (2012) and Knoke and Jentzen (1996) relied on unstructured information 

while the next two studies conducted by Hegazy et al. (2005) and Navon and Haskaya (2006) 
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focused on developing Spreadsheet based tools to collect the required data for as-built 

schedule development. 

Kahler (2012) discussed the possibility of developing as-built schedules from site 

data and presented a conceptual methodology of developing various databases and tools to 

achieve the goal. The study claimed that developing as-built schedules from site data would 

not add any significant workload to the site personnel. However, the study failed to realize 

that such data are generally collected in various paper-based documents and are not 

structured. As such, additional effort will be required to extract the data and develop as-built 

schedules. 

Knoke and Jentzen (1996) also discussed the possibility of utilizing scattered site 

records such as daily reports, correspondence, meeting minutes, progress reports, payment 

applications, testing records, submittal logs, material delivery tickets, and change orders to 

manually extract useful information to develop as-built schedules. The relevant information 

that can be manually extracted for as-built schedule includes start and finish dates of 

activities and project milestone dates. The study suggested that if the start date of any activity 

is close to the end date of another activity, those activities might have a finish to start 

relationship that can potentially be used to develop a critical path diagram. However, it is up 

to the scheduler to determine if such relationships are practically valid. The start and finish 

dates of activities are used to develop a bar chart using a commercial scheduling system. The 

study reported that while this method could be useful in defending against delay claims, it 

could be costly and time consuming because of the manual processing of the site records. 
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Hegazy et al. (2005) pointed out the importance of collecting structured site data 

instead of relying on existing site information collected through various site records. They 

developed a spreadsheet based file to collect information about the percentage of various 

work activities completed every day in a format similar to a bar chart (Figure 18).  

 

Figure 18 Spreadsheet based site record collection and as-built schedule  

(Source: Hegazy et al. (2005))  

If a contractor does not perform work in a particular day, a site engineer needs to 

enter a reason for the delay as a remark in the spreadsheet cell. This file can serve as semi-

structured site records as well as an as-built bar chart schedule. The limitation of the study, as 

recognized by them, is that the spreadsheet-based program is not very practical to handle 

large projects and it cannot effectively store and analyze data from multiple projects. Navon 

and Haskaya (2006) conducted a similar study. First, information about the percentage of 

work completed is recorded in a spreadsheet file. Then, this data is exported to Microsoft 
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Project program to develop an as-built bar chart schedule. It used a simple hypothetical 

project consisting of only three activities to demonstrate the process.  

In those previous studies, either information from various existing sources needs to be 

processed manually or relevant data and information need to be collected directly into a 

system to reduce manual efforts. Those studies did not clearly recognize the possibility of 

using already collected information, which might be attributed to field data collection 

practices that their research was based on. This thought is echoed by Elazouni and Salem 

(2011)  and Memon et al. (2006) who reported that even if as-built schedules are possible to 

be developed, current methods are manual, slow, inaccurate, and expensive. Kahler (2012) 

also reported that as-built schedules are prepared mostly based on an outdated information 

and only after construction is completed. Further, current methods are just focused on the 

project level as-built schedules and they are not designed to develop activity level as-built 

schedules.  

With the continuous evolution in digital technologies, SHAs in the U.S. have started 

collecting various site records in a structured system known as a Daily Work Report (DWR) 

system. SHAs started using such systems as early as 1990s. As such, a vast amount of data is 

already collected in those systems and are readily available for developing as-built schedules 

if a proper methodology is developed to utilize them. 

Daily Work Report Data 

SHAs collect a significant amount of data such as ongoing construction activities, 

labor hours, types of equipment used, equipment hours, weather data, and significant 
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communications with contractors in a Daily Work Report (DWR) system (Shrestha et al. 

2015). Site inspectors spend as much as 40% time in collecting those data (McCullouch 

1997). SHAs have developed various electronic DWR systems over time including 

AASHTOWare SiteManager, AASHTOWare FieldManager, MATS, Next Generation, and 

Field Operations (Shrestha et al. 2015). Currently, 37 SHAs are using various electronic 

DWR systems. Figure 19 shows a screenshot of AASHTOWare SiteManager.  

 

Figure 19 AASHTOWare SiteManager (ASM) 

DWR systems have been developed and used with the main objective of making 

correct payment to contractors and documenting field activity records as preparation for 

potential claims and disputes. Moreover, the data attributes recorded in the DWR system 
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have potential to be utilized for other purposes such as as-built schedule development, 

production rate and activity cost estimation, contract time determination, and contractors’ 

performance evaluation (Shrestha et al. 2015). However, most SHAs have not benefited from 

those potential applications possibly because of the lack of knowledge on those potential 

benefits, enabling methodologies, and automation processes. Shrestha et al. (2015) found that 

more users of DWR systems obtain benefits when the level of automation is higher. 

DWR data attributes are typically linked to a work item. In the U.S. highway 

industry, SHAs have developed an extensive list of work items that are primarily developed 

to facilitate the bidding process under unit price contracting mechanism. Those work items 

are also used to develop a project schedule as work activities. SHAs have developed and 

maintained specification manuals that provide detailed specification of each work item. For 

example, an item code ‘01180’ in red circle in Figure 3 indicates a work item “supply and 

installation of a mile marker.” A typical set of data attributes collected in DWR systems can 

be classified into six categories: general information, work activities, weather information, 

equipment, labor, and remarks (Figure 20). 
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Figure 20 Typical data attributes collected in DWR systems 

Among these six categories, it is important to note that the category of work activities 

contains directly relevant and sufficient data needed for developing as-built schedules. 

Mattila and Bowman (2004) used such work activity data to verify the accuracy of 

contractors’ schedule. First, they developed a list of controlling activities by date. Then, they 

compared each date’s actual progress of controlling activities against activities noted in the 

original planned schedule. If the controlling activities between as-built schedule and as-

planned schedule match, it is noted as ‘accurate’, if not it is noted as ‘inaccurate’. The ratio 

of the total number of ‘accurate’ days to the ‘inaccurate’ days is considered the accuracy of 

the contractors’ schedule. The study found that schedule accuracies ranged from very low 

(10%) to high (80%) for 22 projects analyzed. They concluded that contractors consistently 

tended to optimistically estimate durations of controlling activities in those projects. A 
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framework is presented in the next section that can aid SHAs in their decision-makings 

including reducing such erroneous reporting of project progresses.  

Framework for Automatic As-built Schedule Development 

The overall framework to generate and visualize as-built schedules is presented in 

Figure 21. The framework can be divided into five components: a) database development, b) 

project selection, c) data processing, d) project performance evaluation, e) visualization of 

as-built schedules.  

First, a required dataset is obtained from an existing DWR system. Then, a project is 

selected for which as-built schedules are to be developed. The data about quantities and dates 

are extracted for all work items associated with the project. Then, the production rates for 

those work items are calculated based on the quantities and dates. The production rates are 

used to evaluate the contractor’s performance on each activity and calculate time remaining 

to complete a work item. Finally, activity level and project level as-built schedules are 

developed and visualized. 
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Figure 21 Methodology to develop as-built schedule 



90 

 

 

 

Database development 

The framework requires full work activity data that can be obtained from a DWR 

system used by a SHA. At minimum, the dataset should contain project ID, DWR date, work 

item, and quantity of work done on the recorded date. Assume a set of project ID (P) 

containing ‘n’ project IDs defined as: 

𝑃 = {𝑝1, 𝑝2, 𝑝3, … 𝑝𝑛} 
(15) 

An uppercase letter denotes a set while the corresponding lowercase letter denotes its 

elements and the subscripts indicate the element numbers. Assume another set, DWR (D) 

whose elements (di) are vectors of Project ID (P), DWR date (T), work item code (W), and 

quantity (Q) as elements (equations (16) and (17)). This set contains one record for each 

work item for each day. 

𝐷 = {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛} 
(16) 

𝑑𝑖  = (𝑝𝑖, 𝑡𝑖 , 𝑤𝑖, 𝑞𝑖) 
(17) 

Project selection 

In this component, a project of interest is selected (pi). The project can be an ongoing 

project whose progress can be checked and monitored using the as-built schedule to date, or 

it can be an already completed project whose final as-built schedule can be generated. 
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Data processing 

This is the core component of the framework that generates the data required for 

project level and activity level as-built schedule development and production rate calculation. 

First, a subset of the DWR set (S ⊆ D) pertaining to the selected project is generated. This 

can be mathematically expressed as: 

𝑑𝑖 ∈ 𝑆 | 𝑑𝑖(𝑝) = 𝑝𝑖  (18) 

Where, di (p) represents the project ID of the particular DWR element and the symbol 

‘|’ indicates ‘such that’ or ‘conditional’ statement. 

The elements of this new set (S) are divided into several subsets (WSj)–one for each 

work item (equation (19) and (20)). Thus, if there are ‘m’ numbers of work items, there will 

be ‘m’ numbers of subsets. 

𝑆 = 𝑊𝑆1 ∪ 𝑊𝑆2 ∪ 𝑊𝑆3 ∪ … ∪ 𝑊𝑆𝑚  (19) 

𝑠𝑖 ∈ 𝑊𝑆𝑗  | 𝑠𝑖(𝑤) = 𝑤𝑗  
(20) 

The elements of each subset (WS) is sorted by DWR date (t) in ascending order. The 

sorted data is used for two purposes: identification of start and finish date of the current work 

item and generation of cumulative quantity over time (cq). The first and the final DWR 

records in the sorted lists are considered to be the start date (sdj) and finish date (fdj) of that 

particular activity (wj). The work item, start date, finish date vector (wj, sdj, fdj) is used later 
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in the visualization component. From this vector, the days required to complete the work 

item (dt) can be computed using equation (21): 

𝑑𝑡 = 𝑓𝑑𝑗 −  𝑠𝑑𝑗  
(21) 

The cumulative quantity (cqt) for each date (t) can be calculated as 

c𝑞𝑡  =  ∑ 𝑞𝑙
𝑡
𝑙=0    (22) 

Where ql indicates the quantity of that item reported in time ‘l’. From this, (t, cqt) 

pairs can be generated for all values of ‘t’. Such pairs are used in the next two components to 

evaluate the schedule performance of the project and visualize item level as-built schedules. 

Project performance evaluation 

In this component, an activity level performance of the project can be evaluated. First, 

a production rate (PRj) is calculated as the ratio of the final cumulative quantity of the work 

item to the total duration of the work item (23). 

𝑃𝑅𝑗 =  
𝑐𝑞𝑡,𝑗

𝑡
 (23) 

Where cqt,j is the cumulative quantity for work item wj in time ‘t’. If the work item is 

completed, then t = dt. 

This activity level production rate information can be used for several purposes. First, 

in case of delay claims, the fluctuation of the production rate over time can be studied to 

identify the exact times when production rates were lower than expected. Second, this 

production rate can be compared with historical production rates from previous projects to 
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assess the project team’s performance. Third, once the project is completed, this production 

rate may be used in calculating the historical production rate for the work item. Finally, for 

an ongoing work item, this production rate information can be used to realistically predict the 

time required (TRj) to complete the remaining quantity of work (equation (24)). 

Time required to complete the activity =  
𝑄𝑗 − 𝑐𝑞𝑡,𝑗

𝑃𝑅𝑗
 (24) 

Where Qj is the total bid quantity of the item. 

Visualization of as-built schedules 

Project level and activity level as-built schedules are visualized in this component 

using data obtained from the data processing component. First, the work item, start date, 

finish date vector (wj, sdj, fdj) for all work items are sorted in ascending order by start date 

(sdj). If multiple work items have the same start date, the items are further sorted by the 

finish date (fdj) in ascending order so that an activity completed first comes first in the list. A 

project level as-built schedule is developed by plotting this sorted data for all work items in a 

bar chart. For the activity level as-built schedules, the pair of time and cumulative quantity (t, 

cqt) for a specific activity is plotted as a cumulative quantity chart. 

Prototype Development 

A prototype, namely, As-Built Schedule System (ABSS) is developed with MS 

Access database (Figure 22) and a Visual C#.NET frontend (Figure 23) to implement the 

framework and automate the entire computation process. Four data tables are created using 
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Entity-Relations Model (ERM) to optimize the database (Stephens 2010). The table 

‘a_contract’ contains a list of contracts, ‘a_contract_items’ contains the list of work items for 

a given contract, ‘a_itm_master’ contains the standard specification of the work item, and 

‘a_work_items’ contains DWR data for each work item.  

 

Figure 22 MS Access database of ABSS 

Structured Query Language (SQL) commands are used to process the data to generate 

relevant information using a Graphical User Interface (GUI) or the frontend. SQL is a set-

oriented programming language that is designed to allow people to query and update tables 

of information (IBM 2013). Table 9 presents important data attributes and their descriptions. 

The SQL code presented in Figure 23 logically binds data attributes from three data 

tables to generate a dataset required for a project level as-built schedule. This list is generated 

for a particular project with project ID that equals to ‘pid’. The output includes line item 
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number, item code, item description, start date, and finish date, bid quantity, and actual 

reported quantity to date. 

 

Table 9 Descriptions of important data attributes for as-built schedule development 

 

Figure 23 SQL code to extract project level as-built schedule information 

Code Name Description 

prj_nbr Project number A unique identifier for the project. 

ln_itm_nbr Line item 

number 

A unique project specific code that indicates a 

particular work item. 

itm_cd Item code An agency defined universal code used to 

identify a particular work item. 

itm_mstr_shrt_desc Item master 

short description 

Short textual explanation of the work item. 

bid_qty Bid quantity Total quantity of work for the work item 

rpt_qty Reported 

quantity 

Quantity of work completed in a particular date 

dwr_dt DWR date The date the Daily work report was created. 

last_chng_yr Last change year A system-generated key which indicates the last 

time specification was changed. 

spc_yr Specification 

year 

The year of the specification book in which the 

work item appears. 



96 

 

 

 

Figure 24 presents another SQL code to generate quantity of work to date which is 

processed further to generate the pair of time, and cumulative quantity (t, cqt). 

 

Figure 24 SQL code to extract activity level as-built schedule information 

The frontend of ABSS provides a tabular view on the left and a project level as-built 

bar chart schedule on the right (Figure 25). An additional window is displayed to show the 

activity level as-built schedule. The system flow can be explained with four major steps as 

indicated by numbers 1 to 4 in Figure 9. Users can 1) select a year and 2) click the contracts 

and projects from the selected year to load a list of projects on the tabular view. On double 

clicking any of the row in the tabular view, its project ID will be copied to the project ID 

field in the bottom (3). Alternately, a user can directly enter a project ID in the text entry 

field (3). After that, the user can click on the 4) generate as-built schedule button to generate 

and load the as-built information on the left. It also generates a bar chart on the right side in a 

similar fashion as MS Project and Oracle Primavera. Details such as bid item quantity, start 

date, end date, and the production rates of an activity can be observed by placing the cursor 

on top of the desired activity. Finally, double clicking in the desired bar in the chart generates 

an activity level as-built schedule for that work item. 
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Figure 25 Visual C#.NET frontend of ABSS 
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Demonstration of ABSS and Discussions 

A DWR data extracted from AASHTOWare SiteManager is collected from a SHA 

(anonymous) that includes data of 3,017 projects let from 2001 to 2014. It contains 646,488 

DWR records that show the quantities of various activities for completed projects during the 

period. A cable median barrier installation project with a contract value of $3,574,783.47 is 

selected from the obtained database is selected and used to demonstrate ABSS and the as-built 

schedules developed from ABSS. Cable median barriers are safety barriers installed on the 

median to reduce crossover crashes. 

Project level as-built 

The bar chart in Figure 10 shows the as-built schedule successfully developed through 

ABSS using the DWR data for the project. Based on the as-built schedule, aggregate base course 

installation (004) was the most time consuming activity. A portable changeable message (011) 

was installed in the early phase of construction to alert road users about the ongoing construction 

activity. Other work items conducted in the early phase included installation of signs, traffic 

drums, and advance warning arrow panel. In some areas, additional traffic maintenance was 

performed (007). Various work items associated with temporary seeding, water, much cover, etc. 

were performed as closing activities. 
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Figure 26 Project level as-built schedule example 

Item level as-built schedule 

Item number 0012: Concrete ditch paving (Type B) is used to generate an activity level 

as-built schedule and explored in detail (Figure 27). The actual cumulative quantity curve (solid 

line) does not align closely with the constant productivity line (dashed line) which shows that the 

productivity of the item was not consistent throughout the project. Based on this as-built 

schedule, it can be seen that the work was paused for some time from December of 2012 to 

January of 2013 which resulted in the uneven production rates. This is most likely because of the 
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winter holidays. The work was also paused after February 2013 until mid-April 2013 probably 

due to inspection and final approval. If those two pauses are not considered, the production rate 

appears to be relatively steady throughout the project. 

 

Figure 27 Activity level as-built schedule example 

This demonstration shows that the ABSS can successfully develop both project level as-

built schedule and activity level as-built schedule and it provides ideas that these visualized as-

built schedules can empower project schedulers and project managers in the future. These as-

built schedules can serve as an important tool to ensure that a project is progressing in desired 

pace to complete it within the given contracted time and take corrective actions in a timely 

manner. In addition, automatically generated final as-built schedules can serve as evidence to 

defend for possible legal disputes. Inexperienced schedulers can also use final as-built schedules 

of previous projects to understand the sequencing of the activities. An item level as-built 
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schedule can be used to evaluate the performance of contractors over time as well. This study 

utilizes the first and last record date for each activity as its start and finish date. The activity may 

be conducted intermittently between those dates as shown in Figure 11. These gaps are currently 

neglected in the project level as-built schedule. However, the gaps can be observed in the activity 

level as-built schedule. 

Conclusions 

The importance of as-built schedules is widely recognized, but there is a lack of a 

computational methodology to generate as-built schedule information from existing data. This 

study developed a computational algorithm to automatically extract Daily Work Report data and 

visualize project level and activity level as-built schedules. A prototype- ABSS is developed to 

automate the entire computational process of the algorithm and is used to demonstrate its ability 

to generate both project level and activity level as-built schedules. The DWR data of a 

construction project in progress can also be used to generate as-built schedules in real-time (as-

built schedules to date). The as-built schedules can be used to monitor the progress with higher 

granularity, identify schedule deviations such as delays and accelerations, evaluate project 

performance, anticipate the construction completion date, take corrective actions to complete the 

project on time, and aid in settling claims and disputes. Further, inexperienced schedulers can 

learn by studying the historical as-built schedules to learn activity sequences to prepare a 

schedule for a future project with similar characteristics. 

As future studies, the historical as-built schedules can be used as a database of 

construction activity sequencing and productivity analysis. Using a proper sequential pattern 
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mining technique, construction activity sequences can be extracted to be used for as-planned 

schedule generation for future projects.  
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CHAPTER 5  

 DISCOVERING PRECEDENCE RELATIONSHIPS OF ACTIVITIES USING SEQUENTIAL 

PATTERN MINING TO SUPPORT SCHEDULE DEVELOPMENT 

K. Joseph Shrestha1 and H. David Jeong2 

Abstract 

A realistic schedule must be developed before the start of a project to ensure its 

successful execution. The sequencing of construction activities is one of the most important, 

challenging, and complex parts of any project schedule development. It requires a significant 

amount of field experience and knowledge of a scheduler on construction processes, construction 

means and methods, production rates of activities, site logistics, and resource allocation. The 

knowledge of precedence relationships of activities obtained from historical projects would 

empower schedulers in gaining confidence in developing a new project’s schedule and it would 

help an inexperience scheduler develop a schedule with strong evidence. Recently, many project 

owners, such as state highway agencies have started to use digital daily work reports that contain 

data about each activity’s detailed progress throughout the project duration. This rich activity 

level data provides a great potential to discover the precedence relationships of activities when a 

proper data extraction and analysis method is applied. This study builds a computational 

algorithm to extract schedule related data of activities from a digital daily work report system, 
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transform the extracted data into a format suitable for applying a Sequential Pattern Mining 

(SPM) algorithm to generate an extensive list of sequential rules or precedence relationships of 

activities. Those precedence relationships can form a rich reference knowledge base to help 

schedule a new project. The algorithm that was developed in this study was applied to a real 

daily work data obtained from a state highway agency. The daily work system contains over 

2,000 highway projects from 2001 to 2014. The algorithm has successfully discovered 12,643 

precedence relationships 

Key Words: precedence-relation, sequential-pattern-mining, schedule-overrun, daily-

work-report, field-data, activity-sequencing, schedule, big-data, automation, data-analytics, 

visualization. 

 

Introduction 

Schedule development is a vital part of construction planning and delivery (Cherneff et 

al. 1991; Douglas 2009; Echeverry et al. 1991; Fischer and Aalami 1996). Schedules aid in 

communicating and coordinating activities among the construction stakeholders (Cashman and 

Tayam 2010). An optimized schedule enables the contractors and owners to complete a project 

on time with the minimum resources (Cashman and Tayam 2010; Jaśkowski and Sobotka 2006). 

Once construction starts, the project schedule can be used to systematically track construction 

progresses and identify any delays (Cashman and Tayam 2010; Contreras and Van De Werken 

2005). A schedule is also a valuable tool to analyze and quantify the potential impact of delays 

on the overall project schedule (Henschel and Hildreth 2007). 



105 

 

 

 

Developing a realistic schedule is challenging for inexperienced as well as experienced 

schedulers (Fischer and Aalami 1996). It is a complex process and requires knowledge of 

construction methods, materials, and labor productivity (Bruce et al. 2012). An as-planned 

schedule development typically consists of three steps: a) identification of activities through 

work breakdown structure development for the given project, b) determination of the duration of 

each activity, and c) determination of logical and realistic sequence of activities (Clough and 

Sears 1991; Fischer and Aalami 1996). Many academic studies have focused on the first two 

steps; a) identifying construction activities and b) determining activity durations using historical 

and reliable production rates to enhance the accuracy of schedule development (Kim et al. 2013; 

Woldesenbet et al. 2012). However, on determining the sequence of activities, many studies 

pointed out heavy reliance on the experience and knowledge of experienced schedulers as the 

single most important source (Bruce et al. 2012; Jeong et al. 2009). 

In the highway industry sector, specifically, many owners such as state highway agencies 

(SHAs) have developed a set of scheduling templates that store a typical sequence of activities 

for a specific type of project to facilitate their scheduling activities. This approach helps capture 

and take advantage of experience schedulers’ knowledge even after their retirement. However, 

such approach has as least three major limitations. First, it relies heavily on the experience of a 

scheduler to develop such templates. Second, various types of projects may have different 

construction sequences. As such, multiple templates will need to be developed manually—one 

for each project type. Third, construction means and methods may evolve over time and such 

static sequencing templates may become outdated. 
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Thus, in addition to these schedule templates, if there is a systematic approach to 

discovering the knowledge of precedence relationships of activities from historical projects and 

having the knowledge available for schedulers, it would greatly empower schedulers in gaining 

confidence in developing a new project’s schedule and also help an inexperience scheduler to 

develop a schedule with strong evidence. 

More than 37 SHAs have started to use digital DWRs which contain rich project progress 

and performance data at each activity level. This digital dataset can be directly used to discover 

various sequences of construction activities when an appropriate data analytics is employed. This 

study applies a powerful Sequential Pattern Mining (SPM)) algorithm to easily available 

historical Daily Work Report (DWR) data that contains historical project schedule information to 

discover precedence relationships of activities. 

Prior Studies 

Prior studies suggest that schedules are mostly developed manually (Kim et al. 2013). 

Manual inputs are needed especially in activity sequence development. Existing studies on 

generating activity sequences are focused on utilizing the expertise of experienced schedulers or 

logical assumptions about construction activity sequences. For example, Jeong et al. (2009) 

developed 14 different highway scheduling templates based on Oklahoma Department of 

Transportation (DOT) schedulers’ experience. Bruce et al. (2012) utilized a list of controlling 

activities and developed templates based on experts’ inputs for 12 types of road and bridge 

construction projects. They also studied the resident engineers’ project diaries and other project 

documentations to develop the templates. 
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In the vertical construction, some studies are conducted to improve scheduling practices 

that can be conceptually adopted to the horizontal construction. Cherneff et al. (1991) developed 

a systematic approach to generating activity sequences by assigning various component-

constraints. An example of such component constraint is that a door can only exist in a wall. As 

such, wall must be constructed before a door is installed. Echeverry et al. (1991) used the similar 

approach with four types of logical assumptions: a) physical relationships between building 

components, b) interaction of construction trades, c) interference-free path for the movement of 

construction equipment and materials, and d) safety considerations. Fischer and Aalami (1996) 

followed the Echerverry et al.’s  (1991) method by generating component-constrained and 

activity-constrained relations. Component constraints are physical constraints based on the 

construction components whereas activity constraints are based on activity types. In a recent 

study by Kim et al. (2013), identification of construction activities is improved by utilizing 

Building Information Models (BIMs), but, activity sequencing is still based on a set of static 

sequencing templates similar to the previous studies. 

Thus, existing studies have a limitation of being static and being dependent on the 

knowledge of experienced schedulers. The next two sections provide discussions on the DWR 

data and SPM algorithm. 

Daily Work Report Data 

SHAs collect a significant amount of data such as ongoing construction activities, labor 

hours, types of equipment used, equipment hours, weather data, and significant communications 

with contractors in a Daily Work Report (DWR) system (Shrestha et al. 2015). Site inspectors 
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and resident engineers spend as much as 40% time in collecting those data (McCullouch 1997). 

Currently, 37 SHAs in the U.S. are using digital DWR systems. Figure 19 shows a screenshot of 

the AASHTOWare SiteManager which is the most popular DWR system among SHAs.  

 

Figure 28 AASHTOWare SiteManager screenshot 

DWR systems have been developed and used with the main objective of making correct 

payment to contractors and documenting field activity records as preparation for potential claims 

and disputes. Moreover, the data attributes recorded in the DWR system have potential to be 

utilized for other purposes such as analysis of activity sequencing, as-built schedule 

development, production rate and activity cost estimation, contract time determination, and 

contractors’ performance evaluation (Shrestha et al. 2015). However, most SHAs have not 

benefited from those potential applications possibly because of the lack of knowledge on those 

potential benefits, enabling methodologies, and automation processes. 
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DWR data attributes are typically linked to each work item. In the U.S. highway industry, 

SHAs have developed an extensive list of work items that are primarily developed to facilitate 

the bidding process under unit cost contracting mechanism. Those work items are also used to 

develop a project schedule since they are typically independent work activities. SHAs have 

developed and maintained specifications that provide a detailed description of each work item. 

For example, an item code ‘01180’ in Figure 3 indicates a work item “supply and installation of 

a mile marker.”  A typical set of data attributes collected in DWR systems can be classified into 

six categories: general information, work activities, weather information, equipment, labor, and 

remarks (Figure 29).  

Figure 29 Typical data attributes collected in DWR systems 

Among these six categories, it is important to note that the category of work activities 

contains directly relevant and sufficient data needed for this study. The DWR data and work 

activity can be used to extract start dates of each activity. Then, the start dates of various 
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activities can be compared to identify the activity sequences for all historical projects. Those 

activity sequences can be identified using Sequential Pattern Mining (SPM). 

Sequential Pattern Mining 

A SPM identifies the hidden patterns from a set of sequential data that can be used to 

predict sequences for additional datasets (Masseglia et al. 2009). SPM algorithms have been used 

for DNA sequencing, medical treatment, consumer behavior, web access pattern, and stock 

market (Li et al. 2005; Masseglia et al. 2009; Wang 2005). For example, if a consumer buys a 

cell phone on an ecommerce website, a case for the phone can be recommended to the consumer, 

as the consumer is likely to purchase a cellphone case based on the SPM analysis of histories of 

other consumers who bought cell phones. If the available historical dataset gets larger, the 

accuracy of finding useful hidden sequences gets better. 

In identifying the sequences of construction activities, as-built schedules of historical 

projects can be analyzed using a SPM algorithm to help determine the sequences of activities for 

a new project. The Sequential Rules Common to Several Sequences (CMRules) is an open-

source algorithm that will be used for this study (Fournier-Viger et al. 2012). 

Sequential rules common to several sequences 

The CMRules can be used to identify the sequential pattern hidden in a Sequential 

Database (SD). The CMRules algorithm finds the sequential patterns that appear frequently in a 

sequence database and meets a minimum threshold value of confidence and support. 
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Consider a SD = {s1, s2, s3… sn} and a set of items (or work activities) I = {i1, i2, i3…. in} 

where each sequence sx is an ordered list of transactions (or work activities in a given project in 

case of scheduling) sx = {X1, X2, X3…., Xn} such that  

X1, X2, X3…., Xn ⊆ I. (25) 

A sequential rule X⇒Y (X is followed by Y) is a relationship between two item sets X, Y 

such that: 

X, Y ⊆ I and X∩Y = ∅. (26) 

The sequential support of a rule X⇒Y can be defined mathematically as:  

SeqSup(X⇒Y) = Sup(X■Y)/ |SD|. (27) 

The sequential confidence of a rule X⇒Y can be defined mathematically as: 

seqConf(X ⇒ Y) = sup(X■Y) /sup(X). (28) 

Here, sup(X■Y) denotes the number of sequences from a sequence database where all 

items of X appear before all items of Y. |SD| denotes the number of sequences in the SD and 

sup(X) denotes the number of sequences that has X. The minimum support and confidence are 

set in the algorithm to ensure that the sequences identified by the algorithm occur frequently in 

the SD as well as the subset of SD containing the predictor item sets (Xi). 

In the next section, a framework to develop a dynamic list of precedence relationships of 

activities by applying CMRules on DWR data is discussed. 

Framework 

The framework consists of six components: a) database preparation, b) project type 

selection c) data extraction, d) data transformation, e) application of CMRules, and f) 
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visualization of activity precedence relations. First, DWR data is obtained from a current DWR 

system. As different types of projects may have different project sequencing, a desired project 

type and relevant DWR data are selected. From selected projects, start date information of each 

activity is extracted for each project. This data is then transformed to a format suitable for 

applying CMRules algorithm. CMRules identify and generate precedence relationship found in 

the DWR data. The precedence relationships of activities are then visualized to enable extraction 

of activity sequences for a new project. This precedence relations and the diagram becomes a 

knowledge base for extracting activity sequences for new projects. 

Database preparation 

In this component, historical DWR data are obtained from existing DWR systems such as 

AASHTOWare SiteManager, AASHTOWare FieldManager, MATS, Next Generations, and 

Field Operations. At minimum, the database should contain project type, DWR date, and work 

activity conducted in each DWR recording date. 

Consider a DWR dataset (D) consisting of ‘n’ number of elements (equation (29)). An 

uppercase letter denotes a set while the corresponding lowercase letter denotes its elements and 

subscripts indicate the element numbers. Each element of this DWR dataset (di) is a vector of 

project type (yi), project ID (pi), DWR date (ti), and work activity code (wi) (equation (30)). 

𝐷 = {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛} 
(29) 

𝑑𝑖  = (𝑦𝑖, 𝑝𝑖, 𝑡𝑖 , 𝑤𝑖) 
(30) 
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Figure 30 Framework to generate activity precedence knowledge base 

Project type selection 

A project type such as a ‘roadway widening’ is likely to have a different sequence of 

activities from that of other project types such as a ‘new roadway construction’. Thus, DWR data 

of only one project type should be obtained for further process. Mathematically, a subset of 
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DWR data (SS ⊆ D) corresponding to a specific project type (yi) is extracted for further analysis 

and can be represented by equation (31). 

𝑑𝑖 ∈ 𝑆𝑆 | 𝑑𝑖(𝑦) = 𝑦𝑖  (31) 

Where, di (y) represents the project type of a particular DWR record and the vertical bar 

symbol ‘|’ indicates ‘such that’ or ‘conditional’ statement. 

Data extraction 

The elements of this new set (SS) are divided into several subsets (WSj)–one for each 

work activity (equation (32) and (33)). Thus, if there are ‘m’ numbers of work items in a project, 

there will be ‘m’ numbers of subsets. 

𝑆𝑆 = 𝑊𝑆1 ∪ 𝑊𝑆2 ∪ 𝑊𝑆3 ∪ … ∪ 𝑊𝑆𝑚 (32) 

𝑠𝑠𝑖 ∈ 𝑊𝑆𝑗  | 𝑠𝑠𝑖(𝑤) = 𝑤𝑗  
(33) 

Finally, only one element of each WSj that has the earliest DWR date is selected to obtain 

our final extracted dataset (ED). This earliest date is considered the start date of the current work 

activity. 

𝑒𝑑𝑖 = (𝑦𝑖, 𝑝𝑖, 𝑒𝑡𝑖 , 𝑤𝑖) 
(34) 

Where, eti is the earlies date of activity wi in project pi. 
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Data transformation 

To apply CMRules, the final extracted dataset from the previous component must be 

transformed to a sequential database (SD) in which each element represents a sequences of all 

activities in a project. In order to accomplish this data transformation, first, work activities are 

selected and sorted in an ascending order by their start dates for each project. Then, a SD is 

defined as a set containing such sequences from all projects as an element of the SD (equations 

(35) and (36)). 

𝑆𝐷 = {𝑠𝑑1, 𝑠𝑑2, 𝑠𝑑3, … . , 𝑠𝑑𝑝) (35) 

𝑠𝑑𝑖 = (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑞) (36) 

Where ‘p’ is the number of projects of the selected project type. Each elements of the 

sequential database, sdi, represents a sequence of ‘q’ number of activities (w) for a particular 

project. The number of activities (q) varies by the project. 

Application of CMRules 

The CMRules is used to analyze the SD generated from the previous component. The 

CMRules will generate a list of sequential rules with corresponding support and confidence as: 

(𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑒𝑡 (𝑋) ⇒ 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑒𝑡(𝑌)), 𝑆𝑒𝑞𝑆𝑢𝑝 (𝑐𝑜𝑢𝑛𝑡), 𝑠𝑒𝑞𝐶𝑜𝑛𝑓 (%) 

Here, sequential support is expressed only in terms of the count (Sup(X■Y)) as all 

sequences have the same denominator (|SD|) for a given database. The sequential confidence has 
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a different denominator for each rule (sup|X|) depending on the preceding activity set. As such, it 

is expressed as a decimal percentage. 

Sequential rules can consist of one to one rules (e.g. w1⇒w2), one to many (e.g. w1⇒ w2, 

w3), many to one (e.g. w1, w2⇒w3), and many to many (e.g. w1, w2⇒w3, w4). Different threshold 

values of support and confidence can be set to generate a smaller or a larger list of sequential 

rules as desired. The higher the values of confidence or support are, the smaller the list of 

sequential rules is. Moreover, if various projects have diverse activity sequences (e.g. sequences 

of two activities are reversed in different projects), fewer sequential rules will be obtained. Thus, 

to ensure that sufficient sequential rules are obtained that contains all sequential rules required to 

develop activity precedence diagram for a new project, varying level of support and confidence 

need to be experimented with. 

Visualization of activity precedence relations 

One to one sequential rules generated from the previous component can be visualized in a 

chart. Such visualization becomes an easy tool to understand and illustrate activity sequences. 

Prototype 

The framework is semi-automated using a prototype that uses MS Access database, 

Structured Query Language (SQL) queries, MS Excel, SPMF, and Gephi. First, a MS Access 

database consisting of required data attributes is prepared. An Entity Relations (ER) model of the 

database is presented in Figure 31. 
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Figure 31 DWR database for discovering precedence relationships of activities 

Table 10 presents brief descriptions of important data attributes. 

Table 10 Important data attributes to discover activity precedence relationships 

Code Name Description 

cont_id,  Contract ID Primary identifier for a contract 

prj_nbr Project number Unique identifier for a project 

itm_cd Item code An agency defined code used to identify a 

particular work item. 

itm_mstr_shrt_desc Item master short 

description 

Short textual explanation of the work item 

dwr_dt DWR date Daily work report data collection date 

last_chng_yr Last change year A system-generated key that represents the year the 

specification for a particular work item was last 

changed 

spc_yr Specification year The year of the specification book in which the 

work item is based on 
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The project selection and data extraction is performed via a SQL query Figure 32. It 

logically binds four data tables ‘a_itm_master,’ ‘a_work_items,’ ‘a_contract_items,’ and 

‘a_contract’ using data attributes ‘cont_id,’ ‘itm_cd,’ ‘spc_yr,’ and ‘last_chng_yr.’ It produces 

start date of each activity of all projects of project type ’04.’  

 

Figure 32 SQL Query to extract required dataset for CMRules 

This extracted dataset is transformed to a format suitable to apply CMRules using MS 

Excel. Then, the CMRules is applied using SPMF (Fournier-Viger 2014). Finally, the sequential 

rules generated form the CMRules is visualized using Gephi (Bastin et al. 2009). 

Validation 

A DWR database is obtained from a SHA in the MS Access format. The database 

consists of project information of over 2,000 projects let from 2001 to 2014. Table 11 presents 

the top five project work type in terms of the total dollar amount. The project type–widening 
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existing roadway, is the largest work type of all. This work type includes the addition of passing 

lanes to improve traffic flow and road safety conditions. It also has a large number of contracts 

(third largest out of 35 different work types in the database) and is selected for validating the 

framework. 

Table 11 Distribution of contract costs and count by work type 

Work type 

code 
Work type 

Total dollar 

amount 

Number of 

contracts 

04 Widening existing roadway 1,799,474,488 204 

19 Structures and approaches 864,634,085 231 

07 Overlay 806,625,107 1264 

06 Rehabilitation 605,243,188 49 

16 Grading and structures 482,557,003 42 

 

The ‘widening existing roadway’ projects represent about $1.8 billion worth of projects. 

The CMRules algorithm is applied to the SD generated from the DWR data of the selected 

project type. Various values of minimum support and confidence are used to generated a varying 

number of sequential rules (Table 12). 

Table 12 Number of sequences obtained from various settings for CMRules 

 

Support 

Confidence 

0.9 0.8 0.7 

0.6 2 9 9 

0.5 2 220 643 

0.4 290 6,412 12,643 

 

As stated before, the higher values of minimum confidence and support result in fewer 

rules. When very high values are set for the minimum confidence (90%) and minimum support 
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(60%), only two rules are obtained. As the values are decreased to 70% for the confidence and 

40% for the support, 12,643 rules are obtained from the same dataset. This knowledge base of 

12,643 rules can be searched to identify the sequences between various activities and are used for 

the following discussions. In this study, this process of searching relevant activity sequences is 

semi-automated with MS Excel. 

Two of the results obtained from the analysis are presented below–a simple one with two 

items (i.e. one-to-one relation) and a complex one with multiple items (many-to-many relation). 

1. (603001 ⇒ 412001), 117, 0.78 

This sequential rule indicates that out of 204 contracts, the activity 603001 (maintenance 

of traffic) starts before the activity 412001 (cold milling asphalt pavement) in 117 projects 

(support). In the remaining projects, either those activities are not included in the same project, 

or activity 412001 starts at the same time or before the activity 603001. The confidence of 0.78 

shows that in 78% of the projects that include the preceding activity 603001, the succeeding 

activity follows the preceding activity. In the remaining 22% of the projects that include the 

preceding activity, either the succeeding activity is not included or it occurs before the preceding 

activity. Based on this sequential rule, if a new project includes those the two activities, the 

activity 412001 would be recommended to start before the activity 603001. 

2. (210201,303107,604023 ⇒ 624001,719001,719101), 112, 0.78 

This many-to-many relationship includes three preceding activities followed by three 

succeeding activities. The three preceding activities can start any time relative to each other; the 

three succeeding activities can also start anytime relative to each other. The three preceding 

activities are 210201 (unclassified excavation), 303107 (aggregate base course (class 7)), and 
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604023 (traffic drums); the three succeeding activities are 624001 (solid sodding), 719001 

(thermoplastic pavement marking, white-100), and 719101 (thermoplastic pavement marking, 

yellow-100). The three preceding activities occurred before the succeeding activities in 112 

projects. Further, in 78% of the projects with the preceding activities, the succeeding activities 

listed above started after the preceding activities.  

Such many-to-many sequential rules provide additional insights as they group items that 

can occur simultaneously or in varying orders. For example, the rule does not explicitly indicate 

that activity 624001 to start before, after, or at the same time as activity 604023. Unless a one-to-

one sequential rule is identified between those two activities, their sequences may vary 

depending on the project characteristics. For example, in some cases, ‘traffic drums’ may need to 

be installed before ‘soil sodding.’ In other cases, the ‘traffic drums’ may be necessary only near 

the final stretch of the construction and hence are installed after ‘soil sodding.’ 

One-to-one sequences are visualized in a chart that can be used to visually extract the 

activity sequences for a new project (Figure 33). The chart shows the activities as nodes and 

sequences by arrows similar to an activity precedence diagram. For example, the first sequential 

rule discussed above about activity 603001 (maintenance of traffic) and activity 412001 (cold 

milling asphalt pavement) are highlighted in red in the Figure 33. The sequencing of two 

activities is indicated by the arrow connecting them (603001 ⇒ 412001). The widths of the 

arrow lines indicate the confidence of the sequence: the thicker the arrow line is, the higher the 

confidence is. Based on the activities of a new project, relevant portion of this chart can be 

extracted visually to develop activity precedence diagram for the project. Alternately, the 
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knowledge base of precedence relationships of activities can be directly searched to develop 

activity precedence diagram.  

 

Figure 33 Visualization of precedence relationships of activities 

Figure 34 shows construction sequences extracted for a hypothetical sample project 

consisting of seven pay item activities. The percentages in the arrow indicates the confidence 

that the activity on arrow head occurs after the activity on the arrow tail. The diagram presents a 

logical flow of the activities based on the predictive analysis. For example, traffic maintenance 

and unclassified excavation starts only after installation of work zone signs begins. Similarly, 

track coat is should be applied only after grubbing and unclassified excavations are starts. This 
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diagram contains some redundant relationships as well: dashed arrow lines indicate such 

relations. For example, aggregate base course installation starts after unclassified excavation and 

track coat starts installation starts after aggregate base course starts. Thus, it automatically 

indicates that track coat installation starts after unclassified excavation starts. Such redundant 

relationships are removed in Figure 35. 

604003: Signs

719101: Thermoplastic 
pavement marking, 

yellow-100

401011: Track 
coat

303107: Aggregate 
base course (class 7)

90%

603001: 
Maintenance of 
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72%

201111: Grubbing80%
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excavation

88% 91%

78%
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90%
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Figure 34 Preliminary activity precedence diagram including redundant relations 
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Figure 35 Final activity precedence diagram without redundant relations 

Discussions 

This study developed a framework to utilize DWR data to develop a knowledge base of 

precedence relationships of activities that can aid schedulers to develop schedules for future 

projects. The CMRules was applied to develop the knowledge base by using different values of 
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minimum confidence and support. Over 12,000 rules were generated by analyzing the data with 

70% confidence and 40% support. Such rules can answer questions such as, “which of the two 

activities in this new project should start first based on the historical records?” Further, the 

knowledge base will be updated dynamically to reflect the changes in construction methods and 

techniques as project data from new projects are added for the analysis. 

Currently, sequences between every pairs of the activities need to be searched and then 

redundant relationships need to be removed manually. However, such process can be automated 

with C#.NET system. Such system will enable automation of not only the discovery of 

precedence relationships of activities, but also the use of the knowledge base to automatically 

suggest activity precedence diagram for future projects. 

This framework will enable the inexperienced and experienced schedulers to develop 

activity precedence diagram with their limited inputs. It will save time and resources for the 

schedulers and have potential to develop more realistic construction schedules than traditional 

experience based methods as it is based on the historical data. 

Limitations and Future Research Work 

The study developed a methodology to produce activity precedence diagram based on 

DWR data collected by SHAs. The knowledge base of precedence relationships of activities can 

be used to identify which of the two activities of interests should start first. While a scheduler 

can make an assumption based on the activity grouping in the many-to-many sequential rules 

that two activities should start together instead of one after another, it does not confirm such 

relation. Future studies should focus on developing frameworks to enable such relations. 
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Finally, existing measures of certainty of the sequencing rules are not sufficient to 

describe the reliability of such rules for this study. The measure of support and confidence 

computes the certainty of the sequencing rules with respect to all the records and with respect to 

the records containing the precedent activities, respectively. This may result in an erroneous 

interpretation of results, as the values of the support and confidence may be low when measured 

against such parameters (all records). The confidence levels indicates with respect to the number 

of records that has both precedent activity set and succeeding activity set would be a more 

reliable indicator of confidence of the sequential rules. Such indicator of confidence will indicate 

whether an activity ‘X’ starts before an activity ‘Y’ or vice versa. The remaining confidence 

value (100% - confidence of (X■Y) – confidence of (Y■X)) will indicate the confidence that 

those activities starting together. 

Conclusions 

While some industries have heavily utilized their data to obtain data-drive insights, the 

construction industry is lagging behind. This study developed a methodology to discover 

precedence relationships of activities based on daily work report data collected by State Highway 

Agencies (SHAs). Currently, state SHAs and contractors rely completely on engineer’s 

experience to develop activity precedence diagram, which is very time consuming and complex. 

In this study, a novel framework based on the Sequential Pattern Mining (SPM) is developed to 

automate such process. This framework will aid schedulers in quickly identifying precedence 

relationships of activities, which is the most complex part of schedule development. Thus, it 
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provides a guidance to the schedulers based on the historical data, minimizes their inputs, and 

improves their confidence. 

A dataset from a SHA was analyzed to validate the framework. The SPM generated 

12,643 sequential rules that becomes a knowledge base to generate activity precedence diagram 

for new projects. A hypothetical project consisting of seven activities was used to test the 

framework. The framework successfully identified the sequential relationships between various 

activities of the project which are used to develop an activity precedence diagram for the project. 

Overall, the framework will improve the utilization of data collected in the construction 

industry to improve current scheduling practices. 
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CHAPTER 6  

 CONCLUSIONS 

While many industries such as health care, energy, and agriculture have utilized their 

digital data collected from various sources to make data-driven decisions to improve their 

business processes, the construction industry has been significantly lagging behind. This study 

developed and automated methodologies to analyze bid dataset, Daily Work Report (DWR) 

dataset, and project characteristics dataset to aid State Highway Agencies (SHAs) in improving 

existing Highway Construction Cost Index (HCCI) systems and as-built schedule development 

practices. 

The first paper developed a concept of Dynamic Item Basket (DIB) to improve the 

coverage of an Item Basket (IB) used to calculate HCCIs. Then, a concept of multidimensional 

HCCIs was developed to enable more granular overview of the market conditions. A framework 

was developed by integrating those two concepts to generate a multi-level of HCCIs. A 

prototype, the Dyna-Mu-HCCI system was developed to implement and automate the 

framework. The framework and the prototype will serve as a guide and a tool to SHAs that desire 

to update their current methodologies. An analysis of bid data obtained from Montana 

Department of Transportation (MDT) using the Dyna-Mu-HCCI system showed a dramatic 

improvement in terms of item coverage as a result of DIB implementation: more than 8 times 

higher in terms of the number of bid items used and at least 20% higher in terms of the total 

project costs covered. Further, multidimensional HCCIs revealed that specific market segments 

such as bridge construction have a different trend over time compared to the overall market 
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conditions. These granular and more accurate HCCIs are expected to aid SHAs in assessing their 

market conditions accurately and develop more customized business plans for different project 

types and sizes in different locations. 

 The second paper identified that DWR data is one of the largest but highly underutilized 

datasets collected by SHAs. Inspectors and resident engineers spend a significant amount of time 

and efforts to collect DWR data on site, but the use of the DWR data is very limited to contractor 

payment, progress monitoring, and dispute resolution. Other benefits such as as-built schedule 

development, production rate estimation, activity cost estimation, contractor evaluation, and 

contract time determination can be obtained if proper methods are applied, but most SHAs have 

not obtained those benefits. A statistical analysis showed that the limited use of DWR data to 

obtain a specific benefit is associated with the limited level of automation. To resolve this issue, 

an enhanced framework was developed for effective collection and utilization of the DWR data. 

It consists of three components: a) data model, b) automation of DWR data analysis and 

reporting, and c) technical aspects. Potential methods to automate some analysis processes were 

presented in mathematical forms and in the form of Structured Query Language (SQL) queries. 

DWR experts from DOT engineers across the U.S. validated the framework. The framework can 

be used to develop a new DWR system or to improve existing systems. 

The third and fourth papers utilized the DWR data from existing systems to develop and 

analyze as-built schedules. In the third paper, a systematic methodology was developed to extract 

and visualize project level and activity level as-built schedules that can be used to monitor 

construction progress, evaluate contractors’ performances, defend against claims, and ensure 

successful execution of a project. A standalone prototype system, namely, ABSS was developed 
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to automate the process and visualize the as-built schedules. Its performance was tested with 

actual DWR data obtained from a SHA. The methodology and the tool is expected to aid SHAs 

in making better use of already collected DWR data, facilitate as-built schedule development and 

visualization, monitor construction progress with higher granularity, and utilize as-built schedule 

for productivity analysis. 

The fourth paper identified that current schedule development process was highly 

dependent on the experience of a scheduler. There is high potential to reduce such dependency 

by utilizing information obtained from as-built schedules for previous projects and identifying 

the patterns of activity sequences. Sequential Pattern Mining (SPM) algorithm called CMRules 

was used to detect such sequencing patterns from as-built schedules of previous projects. 

Frequent patterns were then visualized in a chart similar to a precedence diagrams. The 

sequencing patterns and the diagrams can serve as a knowledge base to aid inexperienced 

schedulers in developing schedules for future projects as well as providing experienced 

schedulers with confidence in their schedules. A schedule for a project consisting of seven 

activities was developed successfully based on the sequencing patterns to validate the 

framework. 

Overall, this study developed various methodologies to improve SHAs’ practices of 

collecting and utilizing various digital datasets. This study will aid SHAs in transforming into 

data-driven business decisions. 
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