
Paper ID #18536

Enhancing Student Success by Combining Pre-enrollment Risk Prediction
with Academic Analytics Data

Dr. D. Raj Raman, Iowa State University

Raj Raman is Professor in the Agricultural and Biosystems Engineering (ABE) Department at Iowa State
University, where he is also University Education Program Director and Testbed Champion for the NSF
Engineering Research Center for Biorenewable Chemicals (CBiRC), Director of Graduate Education for
the Interdepartmental Graduate Minor in Biorenewable Chemicals, and Education Programs Co-Leader
for the USDA-AFRI project CenUSA Sustainable Production and Distribution of Biofuels for the Cen-
tral USA. He is a licensed Professional Engineer who earned his BS in Electrical Engineering from the
Rochester Institute of Technology and his PhD in Agricultural and Biological Engineering from Cornell
University. Prior to coming to Iowa State in 2006, he was a faculty member at the University of Tennessee
for over twelve years.

Raman enjoys teaching and has taught courses including freshmen engineering (mechanics and computer
programming – to classes ranging in size from 20 to 500+), sophomore and junior level courses on mass
and energy balance applications to biological systems engineering, numerical methods, electric power and
electronics for technology students, senior design, as well as a long-standing residential/online graduate
course on the fundamentals of biorenewable resources and technology. He has leveraged this interest into
over $10M in teaching-related grant funding over his career and has contributed broadly to the literature
in areas of curriculum, student risk characterization, and mentoring. He believes well trained, curious,
thoughtful people are crucial to a university’s research effort, and similarly to the function and survival of
society. For this reason, the overarching goal of his teaching is to impart the core content needed by the
students, and to do so while encouraging inquisition and higher levels of thought. He has secured com-
petitive funds to support his teaching efforts – from university, industry, and federal sources – and for his
efforts has received departmental, college, and national teaching honors including the Farrall Young Edu-
cator Award (2004) and the Massey-Ferguson Gold Medal Teaching Award (2016) given by the American
Society of Agricultural Engineers. He has also been an invited participant in the National Academy of
Engineering’s 2013 Frontiers in Engineering Education Conference.

Raman chairs the ABE Engineering Curriculum Committee and in that role oversaw the successful 2012
ABET accreditation visit for both the Agricultural Engineering (AE) and Biological Systems Engineering
(BSE) degree programs. Upon arriving at ISU in 2006, he led the development of the BSE program,
and this program now enrolls over 100 students. Raman also runs multiple summer research internship
programs through his roles in CBiRC and CenUSA – over 200 students have participated in summer pro-
grams he directed over the past decade. In his role as Pyrone Testbed Champion for CBiRC, Raman and
his students have developed early-stage technoeconomic models of bioprocessing systems. His graduate
students have gone on to faculty positions at peer institutions, and to engineering leadership positions at
companies including Cargill, Nestle, and Merck.

Dr. Amy L. Kaleita, Iowa State University

Amy L. Kaleita is Associate Professor of Agricultural and Biosystems Engineering at Iowa State Univer-
sity, and a licensed professional engineer. She has a B.S. in Agricultural Engineering from Penn State
University, an M.S. in Civil and Environmental Engineering from the University of Illinois at Urbana-
Champaign, from which she also has a PhD in Agricultural Engineering. Her disciplinary research is in
the area of data mining and information technologies for precision soil and water conservation.

c©American Society for Engineering Education, 2017



Enhancing student success by combining pre-enrollment risk 

prediction with academic analytics data 
 

Abstract 

For nearly a decade, our institution has used multiple-linear-regressions models to predict 

student success campus-wide. Over the past three years, we worked to refine the success 

prediction models to the college of engineering (COE) students in particular, and to explore the 

use of classification and regression tree (CART) approaches to doing the prediction (Kaleita et 

al., 2016). In a parallel effort, our institution has contracted with an academic analytics company 

to do a university-wide retrospective analysis of course-level student performance in relation to 

graduation rates. Here, we report on recent work we have done to make synergistic use of the 

results from the COE CART model and the academic analytics. Specifically, we have been able 

to examine student performance (i.e., grades) in core “success marker” courses as a function of 

the risk-grouping into which the CART model places them. We are now using this information to 

inform our advising. We provide details on these efforts, and on the opportunities and challenges 

provided by data-driven approaches to enhancing student success. 

 

Introduction 

The academic success of students who enroll in engineering degree programs is critical to both 

the individual student due to the impact on earning potential (Carnevale et al. 2014), and to 

society. While it is recognized that a constellation of factors lead to attrition from engineering 

degree programs (Geisinger and Raman, 2013), encouraging students to take up a course of study 

for which they are not prepared is unethical, as we have argued elsewhere (Kaleita et al., 2016).  

 

In prior work (Kaleita et al., 2016), we examined approaches to predicting the success of 

students in a large engineering degree program, based upon readily accessible pre-enrollment 

data. We showed that a classification and regression tree (CART) approach could correctly 

identify “at risk” (i.e., below 2.0 first-term GPA) students slightly more reliably than multiple 

linear regression. We also found that high school GPA was the strongest predictor of success, 

with standardized test (ACT) scores also highly ranked in predictive ability. Furthermore, 

although the model was built using 1st-term GPA as the objective function, we showed that 

applying the model to an incoming class from several years prior, and examining actual 

graduation rates, confirmed that the various risk categories had significantly different graduation 

rates, both within and outside engineering. 

 

In a parallel and unpublished effort, our institution contracted with an academic analytics firm 

(EAB, a subdivision of The Advisory Board Company, Washington, DC) to undertake a 

longitudinal analysis of student success at our institution, with a focus on how examining grades 

in courses reflect graduation rates by university, college, or major. The results from the EAB 

effort allowed individual degree programs to evaluate the linkages between course grades and 

student graduation rates. Furthermore, it allowed establishment of success thresholds in key 

classes based upon a desired graduation rate. 

 

The motivation for the work reported herein was to combine our risk-prediction efforts – which 

allowed grouping students into multiple risk categories based upon a small set of pre-enrollment 

data – with our insights into key success predictor courses. Specifically: What grades, on 



average, do different risk category students earn, in each of our key success prediction courses? 

A related question was as follows: To what degree are students in each risk category achieving 

the success threshold grade in the key courses? We believed that answering these questions 

might help us better support at-risk students in multiple ways, including (1) providing data-based 

advice on which courses to focus on; (2) providing insight into how course scheduling might 

impact performance (by comparing first vs. second semester performance in key courses); (3) 

helping advisers identify students who were missing success thresholds in key courses. 

Ultimately, we hoped that we could improve student success by these efforts. 

 

Materials and Methods 

As we have previously summarized (Kaleita et al., 2016), classification and regression tree 

approaches use machine-learning to build a rule set which predicts the output class based on a 

range of input variables (e.g., Margineantu and Dietterich, 1999). There are several advantages 

of CART models over regression models include that at-risk identification is inherently a 

classification problem, in which any student is predicted to be either at-risk or not. In addition, 

CART approaches are better suited to handling nonlinearities (including categorical variables), 

non-monotonic responses of the independent variable to changes in dependent variables, and 

variable-to-variable interactions.  

 

Furthermore, CART has the ability to account for different costs or values of Type I (false 

positive) and Type II (false negative) errors, through a user-specified “loss matrix” that accounts 

for this asymmetric misclassification cost ratios (Margineantu and Dietterich, 1999; Bradford et 

al., 1998). In a linear regression approach, the costs associated with Type I and II errors are 

implicitly equal. Regarding this last point, we believe the cost associated with a false negative 

(failing to identify an at-risk student) is higher than that associated with a false positive. The cost 

of not providing intervention to students that might benefit from it is difficult to quantify 

(Veenstra, 2009) and, to our knowledge, has not been investigated. In prior work (Kaleita et al., 

2016), we explored cost ratios ranging from 1:1 (i.e., equal cost) to 10:1 using data from the 

classes of 2010 – 2012. Unsurprisingly, the 1:1 CART model produced results similar to those 

from the linear-regression approach. For the work described herein, an updated 5:1 CART model 

was generated by the Iowa State University Enrollment Research Team (ISU ERT), based upon 

data from the 2015 incoming class. This CART5 analysis resulted in seven risk groupings, as 

summarized in Table 1 (following page). 

 

The new CART5 analysis contained one particular grouping (Risk Group 2, or R2), which 

represented a small (3%) segment of the population on the basis of a self-identified metric, 

namely their “intent to participate in extracurricular activities.” We considered R2 to be an 

artifact of us not having specified that the model only use direct measures, and we excluded this 

group from subsequent analyses, and do not present it in Table 1 either. 

  



Table 1: Criterion leading to six key risk groupings, as well as distribution of students amongst 

groupings. HS GPA = High School Grade Point Average; COE = College of Engineering; ACT 

El. Alg. = ACT Elementary Algebra sub-score; R1 = Risk Group 1, R2 = Risk Group 2, etc.  

• HS GPA > 3.7 

• R1 (49% COE population, 96% > 2.0 first semester) 

• HS 3.3 < GPA < 3.7 

• ACT Math > 22, ACT El. Alg. > Average 

• R3 (4% COE population, 94% > 2.0 first semester) 

• 1.5x more likely < 2.0 than R1 

• ACT Math > 22, ACT El. Alg. < Average, Accepted early admission 

• R4 (12% COE population, 87% > 2.0 first semester) 

• 3x more likely < 2.0 than R1 

• ACT Math > 22, ACT El. Alg. < Average, Accepted admission not early 

• R5 (8% COE population, 77% > 2.0 first semester) 

• 6x more likely < 2.0 than R1 

• ACT Math < 22 

• R6 (3% COE population, 64% > 2.0 first semester) 

• 9x more likely < 2.0 than R1 

• HS GPA < 3.3 

• R7 (22% COE population, 58% > 2.0 first semester) 

• 10x more likely < 2.0 than R1 

 

We used the following criteria to select “core courses” for study: (1) math, science, and COE-

designated courses common to all of the 10+ curricula in the COE; (2) departmental courses 

equivalent to COE-offered courses (e.g., with a high degree of commonality with either a central 

course or multiple other departmental courses), plus (3) courses identified by the ISU ERT as 

being taken by a large fraction of COE freshmen. On this basis, a group of 26 core courses were 

selected and provided to the ISU ERT. 

 

To protect student privacy, student names were replaced with non-traceable subject identification 

numbers by the ISU ERT. The ISU ERT then provided spreadsheets with raw data showing 

grades in courses by subject identification number, as well as risk categorization for each subject 

identification number. These files were shared via secure file storage systems. 

 

With the raw, de-identified data in hand, we computed average course grade point earned (CGP) 

for each risk category (based on both fall and spring grades). When we did this, some 

unsurprising trends in average grade structure appeared – that is, expected “easy” courses had 

high grades for virtually all risk groups, compared to well-known “hard” or “weed out” classes 

that did not. It appeared illustrative to rank order the courses in way that would reflect CGP of all 

groups. To do this, we fit a straight line to the CGP vs. Risk Group data, and computed the 

predicted CGP of a mid-risk student. We then rank-ordered the courses from highest to lowest 

predicted grade for a mid-risk student. 

 

Once the 26 courses had been rank ordered from easy to difficult, we wondered if the ranking 

might somehow be used to create a strength-of-schedule score for a particular student. That is, 

might we characterize a given grouping of courses as “hard” or “easy” along some quantitative 



axis? We elected to take the following approach to compute such a metric: First, assign each 

course a strength rating (si represents strength of course i), according to the inverse of the CGP 

earned by risk-category 4 students. Now, compute strength-of-schedule as follows: 

 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = ∑ 𝑠𝑖𝑎𝑖 + (𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑔 𝐶𝑟𝑒𝑑𝑖𝑡𝑠 − ∑ 𝑎𝑖) 𝑠𝑚𝑖𝑛 

 

Where ai = the credit hours associated with the ith course, and where the term right of the plus 

sign effectively corrects for the credits taken in non-classified courses (using an assumption that 

they are relatively easier). After creating this method of assigning a strength-of-schedule for each 

anonymous student represented in the data, we were able to examine the distribution of GPA as a 

function of strength-of-schedule by risk grouping. 

 

A recent longitudinal analysis of student success at our institution insight into graduation rates 

(from specific major, or college, or university) by grade cohort in any class. An example of the 

results of this analysis is shown in Figure 1, with the major and course removed for privacy 

reasons. 

 

Figure 1: Sample data from external analysis of our program. This de-identified chart shows the 

graduation rate vs. grade earned in one particular program, for one particular class. 

 
 

The data shown in Figure 1 was available for the core courses we selected. Furthermore, our own 

department (not the entire college) reviewed our core courses (a subset of those used in the 

overall work), and established “success marker” thresholds based upon a target 50% graduation 

rate. This provided a unique opportunity to further contextualize the grades earned by various 

risk groups, to see how various risk groups achieved, or missed, the success marker thresholds. 

We conducted and report on that portion of the analysis strictly for our own degree program. 

 

Results and Discussion 

When the student performance was examined by risk group and core course (Table 2), the core 

courses were found to have total enrollments (over both semesters) ranging from 49 to over 

2700, with a mean of 740 and a median of 400. The performance of students in the various risk 



categories varied greatly across and within the 26 courses, as is easily seen in Table 2. For 

example, several core departmental engineering courses near the top of the table had midpoint 

students (R4) earning 3.4 CGPs, while these same risk-group students earned a full grade lower 

on average in science, engineering, and math courses near the bottom of the table. Similarly, 

differences between R1 (least at-risk) and R7 (most at-risk) grades varied from slightly over 1.4 

grade points (more than the difference between a B- and an A at our institution), to essentially 

zero for a large science course that enrolls many non-engineering students. It seems noteworthy 

that even some of the “easier” courses found on the upper half of the listing have fairly 

significant gaps between the grades earned by R1 and R7 students. 

 

Table 2: Average course grade point earned (CGP) and standard deviation (4 point scale) by risk 

groupings for 26 core courses. Ordered by highest to lowest projected grade earned by R4 

grouping. Color: yel = core eng course; blu = core sci.; grn = core math course; brn = other 

course; lt red < 2.50. 

Course ID n R1 R3 R4 R5 R6 R7 

ENGD 1xx 158 3.72±0.33 4.00±0.00 3.43±0.86 3.31±1.01 3.56±0.32 2.98±1.07 

SCI 1xx 71 3.43±0.59 4.00±0.00 3.53±0.53 3.20±0.27 3.33±0.47 2.75±0.86 

ENGD 1xx 182 3.75±0.51 3.79±0.48 3.72±0.57 3.21±0.83 2.22±1.6 3.53±0.75 

ENGD 1xx 218 3.81±0.62 4.00±0.00 3.48±0.85 3.45±0.96 2.59±0.98 2.84±1.21 

ENGD 1xx 808 3.64±0.55 3.08±0.96 3.44±0.58 3.22±0.93 3.18±0.77 2.91±0.98 

SCI 1xx 504 3.09±1.00 2.77±0.76 3.20±0.82 3.10±0.94 3.44±0.35 3.16±1.02 

OTH 1xx 776 3.26±0.62 3.25±0.62 3.05±0.72 3.03±0.66 2.95±0.85 2.64±0.97 

SCI 2xx 49 3.72±0.57  3.26±0.13 1.84±0.17  3.06±0.71 

MATH 1xx 119 3.31±0.52 4.00±0.00 2.75±0.84 3.29±0.6 2.53±1.11 2.17±1.21 

ENGD 1xx 782 3.43±0.68 3.00±1.04 3.04±0.79 2.78±1.11 2.67±1.24 2.32±1.13 

ENGD 1xx 413 3.53±0.68 2.88±0.97 3.35±0.65 2.72±1.14 2.29±1.23 2.44±1.26 

ENGD 1xx 335 3.41±0.85 3.13±0.99 3.00±0.89 2.51±1.04 2.50±0.50 2.53±1.27 

OTH 1xx 1822 3.41±0.78 3.13±0.8 2.97±0.89 2.85±0.93 2.28±0.84 2.40±1.12 

ENGD 1xx 309 3.39±0.90 3.41±0.97 3.13±1.03 2.46±1.31 2.17±1.27 2.13±1.27 

ENGD 1xx 569 3.27±1.01 3.37±0.88 2.89±0.99 2.75±1.17 1.77±1.11 2.17±0.71 

ENGD 1xx 152 3.19±0.82 3.00±0.00 2.98±0.91 3.00±0.71 1.86±0.61 1.92±1.09 

MATH 1xx 2114 3.06±0.91 2.61±1.12 2.46±1.04 2.60±0.99 2.37±0.97 2.17±1.21 

MATH 1xx 393 3.00±0.68 3.56±0.42 2.34±0.9 2.60±0.90 1.88±0.81 2.08±0.97 

ENGD 1xx 168 3.11±0.79 3.44±0.42 2.52±1.01 2.22±0.96 2.09±1.21 2.06±1.16 

SCI 1xx 2408 3.14±0.77 3.07±0.81 2.54±0.89 2.59±0.95 1.76±0.96 2.18±1.01 

SCI 1xx 1160 3.17±0.82 3.14±0.74 2.49±0.84 2.34±1.05 1.64±1.04 1.87±1.19 

ENGD 1xx 623 3.26±0.89 3.04±1.01 2.46±1.10 2.26±1.20 1.33±0.00 2.23±1.23 

SCI 2xx 81 3.00±0.94  2.70±0.83 1.96±1.07 2.33±0.47 1.57±1.21 

ENGD 1xx 309 3.00±0.90 2.47±0.96 2.24±1.00 1.90±1.06 2.67±0.72 1.59±1.09 

MATH 1xx 2745 2.98±0.96 2.75±0.92 2.35±1.05 2.33±1.16 1.47±1.05 1.88±1.14 

SCI 2xx 1939 2.86±1.03 2.49±1.14 2.22±1.09 2.26±1.14 1.60±1.02 1.92±1.23 

 



Using the analytics data, we identified six success marker courses: two core science classes 

(physics I and chemistry); two core engineering courses (engineering problem solving; 

engineering graphics and introductory design), one key math class along with a proxy for less 

prepared students – with a different threshold level (calculus I or pre-calculus) ; and one “other” 

category humanities class (composition). When we overlaid the success marker thresholds for 

our program on the results shown in Table 2, we found that risk groups 1 and 3 (the two lowest 

risk groups), were on average achieving all six thresholds. Risk groups 4 and 5 were achieving 

five of six thresholds, with a notable gap in one of the core engineering courses. But the two 

highest risk groups – R6 and R7 – were on average achieving only one or zero of the markers. 

Seeing this result is making us think carefully about how best to guide the freshmen in that 

category, who make up a quarter of the incoming class at our institution. 

 

The impact of strength-of-schedule on student GPA was found to be negligible, despite our 

multiple attempts to examine the data in slightly different ways. Figure 2 (following page) is an 

example of the results for risk groups 1 and 3 (the two lowest risk categories) – but the 

scattershot nature of the plots were the same for higher risk groups, although the range of grades 

shifted as expected. In short, easier schedules were not observed to result in better average GPAs 

for fall or spring, for any risk group. 

 

Figure 2: Strength of schedule data for R1 and R3 combined, illustrating the mild positive 

influence of strength of schedule on grades. Note the near zero correlation coefficient. 

 
 

We examined differences in fall and spring grade distributions by class and risk group (data not 

shown), and discovered that there is an almost universal sag in GPA during the second semester. 

We had expected that perhaps some of the higher risk groups would do better in harder classes 

when taken in the second semester, but no quantitative evidence for this expectation was found. 

 

Conclusions 

Categorizing the at-risk status of students in a large college of engineering provides a unique lens 

through which to examine student performance in subsequent classes. Some of our expectations 

– for example regarding the value of delaying a difficult required class, or of taking a light 

schedule – are not supported by such analysis. But overlaying a knowledge of key success 



marker thresholds on this approach shows that some risk categories are predicted to 

systematically miss these markers. Multiple approaches to operationalizing these data – ranging 

from asking advisers to check on mid-semester performance of high-risk students in success 

marker classes, or by offering additional instructional support for success marker classes and 

doing targeted advertising to high-risk students, or to changing admission thresholds to exclude 

the highest risk students from a program where they are unlikely to succeed – are conceivable. 

We have taken small steps in this regard – sharing with students the nature of our work and 

providing guidance on success strategies, sharing with administration our findings and doing 

follow-on work aimed at understanding the risk-categorizations of our recent graduates – but 

more work is needed to help increase the graduation rates of all students entering our program. 
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