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1. INTRODUCTION 

The field of systems biology in living organisms is emerging as a 
consequence of publicly-available genomic, transcriptomics, proteomics, and 
metabolomics datasets.  These data give us the hope of understanding the 
molecular function of the organism, and being able to predict the 
consequences to the entire system of a perturbation in the environment, or a 
change in expression of a single gene.  In order to understand the 
significance of this data, the functional relationships between the genes, 
proteins, and metabolites must be put into context. This chapter describes an 
iterative approach to exploring the interconnections between biomolecules 
that shape form and function in living organisms.  We focus on the model 
plant system, Arabidopsis. The systems biology approach itself can be used 
as a prototype for exploration of networks in any species.  

The biologist’s information about the function of each RNA and protein 
is limited. Currently, about 50% of Arabidopsis genes are annotated in 
databases (e.g., TAIR1 or TIGR (www.tigr.org)).  In part because the process 
of evolution results in families of genes with similar sequences and related 
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functions, much of the available annotation is not precise, and some 
annotation is inaccurate. Even more limited is our understanding of the 
interactions between these biomolecules. To help bridge this gap, metabolic 
networks are being assembled for Arabidopsis (e.g., AraCyc, KEGG). To 
date, these contain many derived pathways based on other organisms; 
consequently, they have errors and do not capture the subtleties of the 
Arabidopsis (or even plant) biochemistry and molecular biology that are 
necessary for research.  

Considerable high-quality information is buried in the literature. A given 
pathway is known predominantly to those researchers working in the area. 
Such a pathway is not easily generated by curators whom are not experts in 
the particular field. This information is not rapidly accessible to a biologist 
examining large and diverse datasets and investigating changing patterns of 
gene expression over multiple pathways in which she/he may have little 
expertise. Furthermore, the interconnections between the multiple complex 
pathways of a eukaryotic organism cannot be envisioned without 
computational aid. To assist biologists in drawing connections between 
genes, proteins and metabolites, cumulative knowledge of the known and 
hypothesized metabolic and regulatory interactions of Arabidopsis must be 
supported by advanced computing tools integrated with the body of existing 
knowledge.  

2. OVERVIEW 

2.1 Metabolic Pathways 

 Metabolic Pathway Databases There are a few major database projects 
designed to capture pathways: What Is That? (WIT) Project2 
(http://wit.mcs.anl.gov/WIT2/WIT), Kyoto Encyclopedia of Genes and 
Genomes (KEGG http://www.genome.ad.jp/kegg)3, and EcoCyc/MetaCyc 
(http://ecocyc.DoubleTwist.com/ecocyc/)4,5.  WIT and KEGG contain 
databases of metabolic networks, which focus on prokaryotic organisms. The 
WIT2 Project produced static “metabolic reconstructions” for sequenced (or 
partially sequenced) genomes from the Metabolic Pathway Database.  WIT3, 
currently in a pre-alpha stage, focuses on metabolic reconstructions from 
sequence data, however its links are inactive so its current status is unknown. 
KEGG computerizes current knowledge of molecular and cellular biology in 
terms of the information pathways that consist of interacting genes or 
molecules and links individual components of the pathways with the gene 
catalogs being produced by the genome projects. Also, the drawings of 
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individual biochemical pathways in both KEGG and WIT/WIT2 are not 
created dynamically; rather each one is constructed a priori and stored in a 
database. EcoCyc is a pathway/genome database for E. coli that describes its 
enzymes and transport proteins.  It has made significant advances in 
visualizing metabolic pathways using stored layouts, and linking data from 
microarray tests to the pathway layout6,7.  The metabolic-pathway database, 
MetaCyc, describes pathways and enzymes for many different organisms 
(e.g. Arabidopsis thaliana, AraCyc), and combines information from 
sequences. Our prototype, MetNetDB, combines knowledge from experts, 
Aracyc and more specialized pathway sequence data, with experimental data 
from microarrays, proteomics and metabolomics and dynamically displays 
the results in FCModeler8,9.  The database is designed to include information 
about subcellular location, and to handle both enzymatic and regulatory 
interactions.  

Other database designs emphasize data visualization.  Cytoscape 
visualizes existing molecular interaction networks and gene expression 
profiles and other state data using Java10. It has facilities for constructing 
networks and displaying annotations from fixed files. MetNet-FCModeler 
operates on stand-alone computers with well-defined XML file formats that 
allow users to easily import their own data into the model network. 
FCModeler also works with R11 to add a generalized modeling framework.. 
MetNetDB is web-accessible and users can create their own custom-
pathways, that can then be uses in analyses of expression data. 

2.2 Network Modeling and Reconstruction 

2.3 Extracting Biological Interactions from Text 
Corpora 

Introduction. Mining of the biological “literaturome” is an important 
module in a comprehensive creation, representation, display, and simulation 
system of metabolic and regulatory networks. Without it, many biomolecular 
interactions archived in the literature remain accessible in principle but 
underutilized in practice. The two major motivating currents in this work are 
the need to build systems for biologists and the need to better understand the 
science of knowledge extraction from biological texts. Pragmatically, the 
two are “not necessarily convergent” 12,13, although clearly the intent is that 
eventually they will be. Competitions to test the performance of automatic 
annotation such as the BioCreative Workshop 14, the TReC (Text Retrieval 
Conference) genomic track, and the KDD Cup 2002 show encouraging 



4 Chapter #17
 
results, but high rates of error show that the systems are not yet accurate 
enough. None of these competitions directly focused on the problem of 
finding, and combining, evidence from sentences describing biomolecular 
interactions. This is a key need for a biological database system like 
MetNetDB, in which evidence provided by sentences must be rated to 
support ranking in terms of the likelihood that an interaction is described, 
must be combined with evidence provided by other sentences, and must 
support efficient human curation. Furthermore, sentence-based retrieval can 
be useful in and of itself to biologists, who are typically limited to retrieval 
based on larger text units as supported e.g. by PUBMED and Agricola in the 
biological domain and common Web search engines in general.    

Empirical facts about biological texts. A number of workers have 
investigated mining of biomolecular interactions from text15-28. However, 
reporting of empirical facts about interaction descriptions remains quite 
limited. Craven and Kumlien29 provided a list 20 word stems and the 
ability of each to predict that a sentence describes the subcellular location 
of the protein if it contains a stem, a protein name, and a subcellular 
location.  Marcotte et al.17 gave a ranked list of 20 words found useful in 
identifying abstracts describing protein interactions. Results were derived 
from yeast-related abstracts and therefore may be yeast-specific. Ono et 
al.19 quantitatively assessed the abilities of four common interaction-
indicating terms, each associated with a custom set of templates, to 
indicate protein-protein interactions. The quantitative performances of 
the four are hard to interpret because each used a different template set, 
but it is interesting that their ranks in terms of precision were the same 
for both the yeast and the E. coli domains, suggesting domain 
independence for precision. Thomas et al.21 proposed four categories of 
passages using a rule-based scoring strategy, and gave the information 
retrieval (IR) performance of each category. Sekimizu et al.30 measured 
the (IR) performances of 8 interaction-indicating verbs in the context of a 
shallow parser. The IR capabilities of the verbs could be meaningfully 
compared, but whether these results would hold across different parsers 
or other passage analyzers is an open question. In our lab, we have 
obtained results similar in spirit to those anticipated from the proposed 
work. These results concern passages containing two protein names. 
Counting passages describing interactions as hits and others as misses, 
sentences had slightly higher IR effectiveness than phrases despite lower 
precision, and considerably higher IR effectiveness than whole 
abstracts31. Ding et al.32,33 applied an untuned link grammar parser to 
sentences containing protein co-occurrences, finding that using the 
presence of a link path as an additional retrieval criterion raised the IR 
effectiveness by 5 percentage points (i.e. 7%). These works highlight the 
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gap in knowledge of empirical facts about biological texts. In the future, 
one may expect researchers to focus increasing attention on this 
important gap. 

Combining evidence. Combining different items of evidence can result in 
a single composite likelihood that a sentence describes a biomolecular or 
other interaction. This can enable putative interactions in automatically 
generated biomolecular interaction network simulators can be rated, or 
sentences to be ranked for human curation. In the following paragraphs we 
compare two methods for evidence combination. One is the well-known 
Naïve Bayes model. The other is semi-naïve evidence combination. 

Naïve Bayes and semi-naïve evidence combination both have a similar 
scalability advantage over full Bayesian analysis using Bayes Theorem to 
account for whatever dependencies may exist. That scalability is why they 
are useful. However, when used to estimate probabilities that an item (e.g. a 
sentence) is in some category (e.g. describes a biomolecular interaction), 
semi-naïve evidence combination makes fewer assumptions34.  

Evidence combination with the Naïve Bayes model. This standard method 
produces probability estimates that can used for categorization35. The 
formula is: 
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 where h is the probability that a sentence is a “hit” (has a description of 
the expected interaction), and fi is feature i. The approximation provides  a 
computationally tractable way to calculate the desired probability, at the cost 
of providing an estimated due to the assumption that the features occur 
independently of one another. A readable derivation is provided by 
Wikipedia36. 

Semi-naïve evidence combination. This method is scalable in the number 
of features, like Naïve Bayes, but has the advantage of making fewer 
independence assumptions. Unlike the Naïve Bayes model, it does not 
assume that the features are independent regardless of whether sentences are 
hits or not. 

The parsimonious formula for semi-naïve evidence combination is34: 

O(h|f1,...,fn)=O1...On/(O0)n-1  (2) 
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where the odds that a sentence describes an interaction if it has features 
f1,...,fn are O(h|f1,...,fn),  the odds that a sentence with feature k is a hit are Ok, 
and the prior odds (i.e. over all sentences in the test set irrespective of their 
features) that a sentence is a hit are O0. The equation 
O(h|f1,...,fn)=O1...On/(O0)n-1 just given is in terms of odds, which are ratios of 
hits to misses. Thus, for example, the odds of flipping a head are 1/1=1 (1 
expected success per failure), while the odds of rolling a six are 1/5 (one 
success expected per five failures). Odds are easily converted to the more 
familiar probabilities by applying p=O/(O+1). Similarly, O=p/(1-p).  

 
Comparison of the Naïve Bayes and semi-naïve evidence combination 

models. Naïve Bayes is often used for category assignment. The item to be 
classified is put into the category for which Naïve Bayes gives the highest 
likelihood. In the present context there are two categories, one of hits and 
one of non-hits, but in general there can be N categories. In either case, the 
denominator of the Naïve Bayes formula is the same for each category, so it 
can be ignored. However, when the Naïve Bayes formula is used for 
estimating the probability that a sentence is in a particular category, the 
denominator must be evaluated. This is problematic because the assumption 
of unconditional independence is not only unsupported, but most likely 
wrong. The reason is that the features that provide evidence that the sentence 
belongs in a particular category are probably correlated.  

For the problem of estimating the probability that a particular sentence is 
a hit (or, more generally, belongs to a particular category), semi-naïve 
evidence combination appears more suitable because it estimates odds 
(which are easily converted to probabilities) without requiring the 
problematic assumption that features occur unconditionally independently 
(i.e. independently regardless of whether the sentence is a hit or not).  

3. METNET 

3.1 Metabolic Networking Data Base (MetNetDB) 

A critical factor both in establishing an efficient system for mining the 
literaturome and in modeling network interactions is the network database 
itself. MetNetDB is a searchable database with a user-friendly interface for 
creating and searching the Arabidopsis network map 9. MetNetDB contains 
a growing metabolic and regulatory map of Arabidopsis. Entities 
(represented visually as nodes) in the database include metabolites, genes, 
RNAs, polypeptides, protein complexes, and 37 hierachically-organized 
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interaction types, including catalysis, conversion, transport, and various 
types of regulation.  MetNetDB currently contains more than 50,000 entities 
(from KEGG, TAIR and BRENDA), 1000 expert-user-added entity 
definitions, and 2785 expert-user-added interactions, including transport, 
together with associated information fields.  In addition, it contains 
interactions from Arabidopsis Lipid Gene Database, and partially curated 
interactions from AraCyc. Synonyms for each term in MetNetDB are 
obtained from sources including expert users, TAIR, and BRENDA; an 
adequate library of synonyms is particularly important in text mining.  
Database nomenclature is modeled after the Arabidopsis Gene Ontology 
(http://arabidopsis.org/info/ontologies/), for ease of information transfer 
between MetNetDB and other biological databases.  

3.2 FCModeler: Visualizing and Modeling Metabolic 
Networks 

FCModeler is a Java program that dynamically displays complex 
biological networks and analyses their structure using graph theoretic 
methods. Data from experiments (i.e., microarray, proteomics, or 
metabolomics) can be overlayed on the network map. 

Application of graph theoretic methods to analyze complex networks of 
data. Visual methods allow the curator to investigate the pathway one step at 
a time and to compare different proposed pathways. Graph union and 
intersection functions assist curators in highlighting these differences. 
FCModeler uses graph theoretic methods to find cycles and alternative paths 
in the network. Alternative path visualizations will help curators search for 
redundant information in pathways. For example, a sketchy pathway may 
need to be replaced with more details as they become available. Cycles in 
the metabolic network show repeated patterns and will help. These cycles 
range from simple loops, for example, a gene causing a protein to be 
expressed, and accumulation of the protein inhibiting the gene’s 
transcription. More complex cycles encompass entire metabolic pathways. 
The interactions or overlaps between the cycles show how these control 
paths interact. FCModeler searches for elementary cycles in the network. 
Many of the cycles in a pathway map are similar, and several similarity 
measures and pattern recognition models are available for grouping or 
clustering the cycles37,38. FCModeler also searches for alternate paths 
between two entities, to help find out all the ways one part of the graph can 
interact with another. Grouping cycles by similarity metrics may lead to 
simplifying the display of complex graphs 38-41 which states to what degree 
each cycle is contained in another. Cycles that are very similar form a 
“family” of cycles. The difference between the cycles could indicate that two 
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interacting pathways have the same effect or that there are two mechanisms 
for control of a process. The common areas among pathways may reflect 
critical paths in the network iX .  

Network Modeling using Fuzzy Cognitive Maps.  

We are working on model validation using pathways developed by expert 
users 8,42. We have designed an XML file format that accurately encodes the 
network topology information for MetNetDB. Automated checking of 
pathway information using data from expression studies can test the 
accuracy of the predictions and help determine the most predictive pathway 
model. The network modeling uses the R computing environment. 

3.2.1 Multi-Resolution Fuzzy K-Means Clustering 

The analysis and creation of gene regulatory networks involves first 
clustering the data at different levels, then searching for weighted time 
correlations between the cluster center time profiles. The link validity and 
strength is then evaluated using a fuzzy metric based on evidence strength 
and co-occurrence of similar gene functions within a cluster.The Fuzzy K-
means algorithm minimizes the objective function 43: 
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Adding a window function ( )W d  to the membership function limits the 
size of clusters. The modified membership function is: 2
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The window function ( )W d  is centered at jV  and can take any form. 
This work uses truncated Gaussian windows with values outside the range of 
3σ  set to zero: 
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 The window function, ( )W d , insures that genes with distances larger 
than 3σ  will have no effect on the cluster centers.  

3.2.2 Hierarchical Algorithm 
The multi-resolution algorithm is similar to the ISODATA algorithm 

with cluster splitting and merging44,45. There are four parameters: K (initial 
cluster number), σ (scale of the window ( )W d ), splitT  (split threshold), 

combineT (combine threshold). Whenever the genes are further away from the 
cluster center than splitT , the cluster is split and faraway genes form new 
clusters. Also, if two cluster centers are separated by less than combineT , then 
the clusters are combined. Usually combineT ≤ σ  and 2 3splitTσ σ≤ ≤ . The 
algorithm is given in Table 1. 1ε  and 2ε  are small numbers to determine 
whether the clustering converged. If one cluster has elements far away from 
the cluster centers then the cluster is split. The advantage of this algorithm is 
that it dynamically adjusts the number of clusters based on the splitting and 
merging heuristics. 

Table #17-1. HIERARCHICAL FUZZY K-MEANS ALGORITHM 
1 Initialize parameters: K, σ , splitT  and combineT  
2 Iterate using Fuzzy K-means until convergence to a given threshold 1ε  
3 Split process: do split if there are elements farther away from cluster center than 

splitT . 
4 Iterate using Fuzzy K-means until convergence to a given threshold 1ε  
5 Combine Process: combine the clusters whose distance between cluster centers is 

less than combineT . If the cluster after combining has elements far away from 
cluster center (distance larger than 3σ ), stop combining. 

6 Iterate steps 1-5 until converging to a given threshold 2ε . 
 

3.2.3 Effects of window size 

Changing the window size can affect the level of detail captured in the clusters. If 
1σ << , then clusters are individual elements. As σ  increases, the window gets 

larger. The result is a hierarchical tree that shows how the clusters interact at 
different levels of detail. This work uses three level of hierarchical fuzzy K-mean 
clustering (σ = 0.1, 0.2 and 0.3). The initial number of clusters is K = N, the total 
number of data points, combineT σ= , and 3splitT σ= . Clustering results with 

different window sizes provide different levels of information. At σ = 0.1, the 
cluster sizes are very small. These clusters represent very highly correlated profiles 
(correlation coefficients between gene profiles within 1-σ  window size are larger 
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than 0.9) or just the individual gene profiles because many clusters only contain a 
single element. At σ = 0.2, smaller clusters are combined with nearby clusters. 
Highly correlated profiles are detected. The σ = 0.3 level is the coarsest level. 

3.2.4 Construction of gene regulatory networks 

Clustering provides sets of genes with similar RNA profiles. The next 
step is finding the relationships among these coregulated genes. If gene A 
and gene B have similar expression profiles, there are several possible 
relationships: 1. A and B are coregulated by other genes; 2. A regulates B or 
vice versa; 3. There is no causal relationship, just coincidence. Here the 
regulation may be indirect, i.e., interact through intermediates. These cases 
cannot be differentiated solely by clustering. We use cubic spline 
interpolation for simplicity and get equally sampled profiles as in 46.  

The gene regulatory model can be simplified as a linear model47: 

( )A A BA B A
B

x t w x bτ+ = +∑  (6) 

Ax  is the expression level of gene A at time t, Aτ  is the gene regulation 
time delay of gene A, BAw  is the weight indicating the inference of gene B to 
A, Ab  is a bias indicating the default expression level of gene A without 
regulation.  

Standardizing gene expression profiles to 0 mean and 1 standard 
deviation removes the bias term, Ab . The goal is to find out if genes A and B 
have a regulatory relationship so the weight is [ ]0,1ABw =  (0 means no 
regulatory relation, 1 means strongly regulated). The time correlation 
between genes A and B can be expressed in discrete form as 

( ) ( ) ( )AB A B
n

R x n x nτ τ= −∑  (7) 

Where Ax  and Bx  are the standardized (zero mean, standard deviation of 
unity) expression profiles of genes A and B. τ  is the time shift. For the 
periodic time profile, we can use circular time correlation, i.e., the time 
points at the end of the time series will be rewound to the beginning of series 
after time shifting. For multiple data sets, the time correlation results of each 
data set are combined as: 

( ) ( )C k
AB k AB

k
R w Rτ τ=∑  (8) 
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Where ( )C
ABR τ  is the combined time correlation result, ( )k

ABR τ  is the 
time correlation result of the kth data set, kw  is the weight of kth data set that 
depends on the experiment reliability and the length of the expression 
profile. 

The value max | ( ) |C
ABR τ can be used to estimate the time delay 'τ  

between expression profiles of genes A and B. Given a correlation threshold 
RT , if max | ( ) |C

ABR τ  > RT  there is significant regulation between genes or 
clusters. By defining the clusters as nodes and significant links as edges, we 
can get the gene regulation network of these clusters. Assuming that the time 
delays are caused by regulation, we can define four types of regulation: 

( ')C
ABR τ  > 0, ' 0τ ≠ , positive regulation between genes A and B; 

( ')C
ABR τ  < 0, ' 0τ ≠ , negative regulation between genes A and B; 

( ')C
ABR τ  > 0, ' 0τ = , genes A and B are positively coregulated; 

( ')C
ABR τ  < 0, ' 0τ = , genes A and B are negatively coregulated. 

The sign of 'τ  determines the direction of regulation. 'τ  > 0 means gene 
B regulates gene A with time delay 'τ ; 'τ  < 0 means gene A regulates gene 
B with time delay 'τ . 

3.3 Network validation using fuzzy metrics 
The available gene ontology (GO) annotation information can estimate a 

fuzzy measure for the types or functions of genes in a cluster. The GO terms 
in each cluster are weighted according to the strength of the supporting 
evidence information and the distance to cluster center. An additive fuzzy 
system is used to combine this information 48. Every GO annotation indicates 
the type of evidence that support it. Among these types of evidence, several 
are more reliable and several are weaker. This evidence is used to set up a 
bank of fuzzy rules for each annotated data point. Different fuzzy 
membership values are given to each evidence code. For example, evidence 
inferred by direct assays (IDA) or from a traceable author statement (TAS) 
in a refereed journal has a value of one. The least reliable evidence is 
electronic annotation since it is known to have high rates of false positives. 

 

Table #17-2. EVIDENCE CODES AND THEIR WEIGHTS  
Evidence Code Meaning of the Evidence Code Membership Value, wevi 

IDA Inferred from direct assay 1.0 
TAS Traceable author statement  1.0 
IMP Inferred from mutant phenotype  0.9 
IGI Inferred from genetic interaction 0.9 
IPI Inferred from physical interaction  0.9 
IEP Inferred from expression pattern 0.8 
ISS 

Inferred from sequence, structural 
similarity 0.8 
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Evidence Code Meaning of the Evidence Code Membership Value, wevi 

NAS Non-traceable author statement 0.7 
IEA Inferred from electronic annotation 0.6 
 Other 0.5 

 
Each gene in a cluster is weighted by the Gaussian window function in 

equation (5). This term weights the certainty of the gene’s GO annotation 
using product weighting. Each gene and its associated GO term are 
combined to find the possibility distribution for each single GO term that 
occurs in the GO annotations in one cluster. One gene may be annotated by 
several GO terms, and each GO term has one evidence code. Each GO term 
may occur K times in one cluster, but with a different evidence code and in 
different genes. For the nth unique GO term in the jth cluster, the fuzzy 
weight is the sum of the weights for each occurrence of the term: 

,
1

( , ) ( , )
K

GO GO j
i

W j n w i n
=

=∑  (9) 

Where ( ), ( , ) ( , )GO j evi ijw i n w i n W d= ⋅ , wevi is shown in table II, and 
( )ijW d is the same as equation (5). 
This provides a method of pooling uncertain information about gene 

function for a cluster of genes. This gives an additive fuzzy system that 
assesses the credibility of any GO terms associated to a cluster 48. The results 
can be left as a weighted fuzzy set or be defuzzified by selecting the most 
likely annotation. For each cluster, the weight is normalized by the 
maximum weight and the amount of unknown genes. This is the weighted 
percentage of each GO term weightp : 

( , )( , ) *100%
( ) ( )

GO
weight

root unknown

W j np j n
W j W j

=
−

 (10) 

Where ( , )GOW j n  represents the weight of the nth GO term in the jth 
cluster. ( )unknownW j  is the weight of GO term in cluster j: xxx unknown, e.g., 
GO: 0005554 (molecular_function unknown). ( )rootW j  is the weight of root 
in cluster j. GO terms are related using directed acyclic graphs. The root of 
the graph is the most general term. Terms further from the root provide more 
specific detail about the gene function and are more useful for a researcher.  
The weight of each node is computed by summing up the weights of its 
children (summing the weights of each of the N GO terms in a cluster): 
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1
( ) ( , )

N

root GO
n

W j W j n
=

= ∑  (11) 

The higher weighted nodes further from the root are the most interesting 
since those nodes refer to specific biological processes.  

3.4 PathBinderA: Finding Sentences with Biomolecular 
Interactions 

The objective of the PathBinderA component of the system is to mine 
sentences describing biomolecular interactions from the literature. This 
functionality forms a potentially valuable component of a range of systems, 
by supporting systems for automatic network construction, systems for 
annotation of high-throughput experimental results, and systems that 
minimize the high costs of human curation. Such a component should 
typically mine all of MEDLINE, the de facto standard corpus for bioscience 
text mining. For the plant domain, full texts in the plant science domain 
should also be addressed, requiring cooperative agreements with publishers 
in general. The feasibility PathBinder components of varied design is 
illustrated by our systems at www.vrac.iastate.edu/~berleant/MedRep and 
www.plantgenomics.iastate.edu/PathBinderH. For the present system, an 
integrated PathBinder component, called PathBinderA, has been prototyped 
and is undergoing further development.  

 Attaining the desired results requires a well-motivated and tested method 
for processing biological texts. The design includes a two-stage algorithm. 
Each stage is based on probability theory. In stage 1, evidence for interaction 
residing in sentence features is combined to compute the sentence’s 
credibility as an interaction description. In stage 2, the credibilities of the 
“bag” of sentences that mention two given biomolecules are combined to 
rate the likelihood that the literature describes those biomolecules as 
interacting. The practical rationale for this process is that an important 
resource is being created for use by the scientific community, as well as an 
important module of the overall MetNetDB system. This resource is aimed 
at effective curation support, which in turn is aimed at feeding the 
construction of interaction networks. 

 
PathBinder Component Design Issues. There are three major phases of 

a PathBinder component such as the PathBinderA component of METNET.  
The mining process comprises stages 1 and 2, and using the results of the 
mining constitutes the third phase.  
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Text mining, stage 1. This involves assessing the credibility of a 
given sentence as a description of an interaction between two biomolecule 
names in it. To do this the evidence provided by different features of a 
sentence must be combined. Semi-naïve evidence combination, described 
earlier in this chapter, is one such method. The Naïve Bayes model provides 
another possibility. Syntactic parsing to analyze sentences in depth is an 
alternative approach. 

The abilities of various features of sentences to predict whether they 
describe an interaction can be determined empirically in order to enable 
those features to be used as input to a method for assessing sentences. One 
such feature is whether a sentence with two biomolecule names has those 
names in the same phrase or, instead, the names occur in different phrases 
within the sentence. We have investigated this feature using the IEPA corpus 
(Ding et al. 2002). The Table below (rightmost column) shows the results. 
Another feature is whether or not an interaction term intervenes between the 
co-occurring names. An interaction term is a word that can indicate that an 
interaction between biomolecules takes place, like “activates,” “block,” 
“controlled,” etc. Such a term can appear between two co-occurring names, 
can appear in the same sentence or phrase but not between them, or can be 
absent entirely. The table below (middle two columns) shows the data we 
have collected, also using the IEPA corpus. 

Table #17-3. Analysis of the recalls and precisions of co-occurrence categories with respect to 
mining interaction descriptions. 
 Interactor 

intervening 
Interactor elsewhere Interactor anywhere 

Phrase co-
occurrences 

r=0.55      p=0.63   r=0.18   p=0.24 r=0.72      p=0.45 

Sentence co-
occurrences 

r=0.22      p=0.30   r=0.058   p=.09 r=0.28      p=0.21 

All co-occurrences r=0.77      p=0.48   r=0.23     p=0.17 r=1           p=0.34 

 
 Text mining, stage 2. In this stage, the evidence for an interaction 

provided by multiple relevant sentences is combined to get a composite 
probability estimate for the interaction. This becomes possible after stage 1 
has given a probability for each sentence. The basic concept underlying 
stage 2 is that if even one sentence in a “bag” containing two given names 
describes an interaction between them, then the interaction is present in the 
literature (Skounakis and Craven 2003). The need for as little as a single 
example to establish an interaction leads directly to a probability calculation 
for combining the evidence provided by the sentences in a bag. The 
reasoning goes as follows.  
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Let notation p(x) describe the probability of x.  Assume the evidence 
provided by each sentence si in a bag is independent of the evidence 
provided by the other sentences, allowing us to multiply the probabilities of 
independent events to get the probability of their simultaneous occurrence. 

 
p(one or more sentence in bag b describes an interaction between n1 and n2) 
=1–p(zero sentences in bag b describe an interaction between n1 and n2),  
=1–p(s1 does not describe an interaction AND s2 does not describe an 
interaction AND s3...) 
=1–p(s1 does not describe an interaction)·p(s2 does not describe an 
interaction)·p(s3 does not describe… 
=1–[1-p(s1 describes an interaction)]·[1-p(s2 describes an interaction)]· [1-
p(s3 does not describe… 
=1– 1 ( i

i

p s−∏ describes an interaction).  
 
This equation is not only mathematically reasonable but considerably 
simpler than the more complex formulas given by Skounakis and Craven49.  

 Using the mining results, stage 3. While the mining algorithm, stages 
1 and 2, extract biomolecular interactions from the literature, this phase is to 
integrate the extraction capability into the larger MetNetDB system. The 
integration is designed to provide the following functionalities.  

1) Support for curation. Because networks of interactions are built 
from individual interactions, it is important not only to mine 
potential interactions from the literature but to present these to 
curators so that they can be efficiently verified. Curation is a serious 
bottleneck because it requires expert humans, a scarce resource. 
Therefore efficiency support for curation is an important need, both 
in general and for METNET in particular. PathBinderA is designed 
to support curation by presenting mined potential interactions to 
curators starting from the best, most likely interactions. The curators 
are members of the labs of the project team, continuing but making 
more efficient a curation process that has enabled constructing the 
current prototype. Additionally, the design has clickable links from a 
putative interaction to the bag of sentences relevant to it, from which 
sentences are presented starting from the ones with the highest 
likelihood of describing the interaction. Thus, if even one sentence is 
deemed to describe an interaction between a given pair of 
biomolecules by a curator, there is no longer any need for the curator 
to examine other sentences with respect to that pair. This goal of this 
design is to minimize the labor required by the curation process. 

2) Generating interaction hypotheses. When mining the literature 
produces a strong hypothesis of an interaction, that interaction may 
be tentatively added to the interaction database without curation. 
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Interactions whose probabilities are assessed at 90% or better are 
likely to fall into this category, although any such system can easily 
make the threshold adjustable, and should do so. Such likely 
interactions will thus be made available pending curation. 

3) More efficient literature access. High-volume information resources 
can benefit from providing convenient access to the literature 
relevant to particular items of in the resource. Such functionality is 
clearly useful to non-expert users, and even expert users can benefit 
since no individual can be intimately familiar with the full range of 
the literature on biomolecular interactions even in one species. The 
system design provides for integrating literature access with an easy-
to-use community curation functionality. In this design, users 
anywhere can click a button associated with the display of any 
sentence they retrieve from the system. This brings up a form with 
two other buttons. One of these registers an opinion that the sentence 
describes an interaction, and one registers an opinion to the contrary. 
Comments may be typed into an optional comment area. Submitted 
forms will then be used by the official curators. 

A key functionality we plan is to allow users to choose species and other 
taxa to view sentences about. This is feasible, as has been shown at 
www.plantgenomics.iastate.edu/PathBinderH. Users may, for example, 
specify viridiplantae (green plants) to see sentences related to Arabidopsis as 
well as any other green plant species. The current prototype of PathBinderA 
allows users to specify two biomolecules, an interaction-relevant verb, and a 
subcellular location. Sentences with the two biomolecules and the verb 
which are associated with the specified subcellular location can then be 
retrieved (see Figure 1). 
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Figure #17-1. PathBinderA interface, showing four choices a user can make to choose two 
biomolecules, a subcellular location, and an interaction-relevant verb. 

4. BUILDING ON METABOLIC NETWORKS: USING 
METNET 

Regulatory networks from Arabidopsis can be built using a combination 
of expert knowledge from MetNetDB, fuzzy clustering and correlation from 
FCModeler. The constructed networks can be validated using PathBinderA 
to access the literaturome and the weighted GO scores derived in 
FCModeler. 

The tested data set compared Arabidopsis thaliana plants, wild-type (WT) 
and transgenic plants containing antisense ACLA-1 behind the constitutive 
CaMV 35S promoter (referred to as aACLA-1). The microarray type was an 
Affymetrix GeneChip. The data consisted of two replicates; each with eleven 
time points (0, 0.5, 1, 4, 8, 8.5, 9, 12, 14, 16, 20 hours), and changing from 
light (from 0 to 8 hours) to dark (from 8 to 20 hours)50. Only ACLA-1 
seedlings exhibiting features characteristic of the antisense phenotype were 
used. Total RNA was extracted from leaves and used for microarray 
analyses. 

The Affymetrix microarray data were normalized with the Robust 
Multichip Average (RMA) method51. Both replicates of each gene 
expression profile are standardized to zero mean, one standard deviation. 
The data was filtered by comparing the expression values between the WT 
and ACLA1 gene mutated at 1, 8 and 12 hours, differentially expressed 
genes having larger than 2 fold changes at any time point were kept. There 



18 Chapter #17
 
are 484 genes in total after filtering. The gene expression patterns used for 
clustering are the time point measurements for the wild-type plant. 

4.1 Construct the genetic network using time correlation 
These relationships between clusters can be found by constructing the 

regulatory networks based on the cluster center profiles using a correlation 
threshold of RT  = 0.65. The strength of correlation is mapped into three 
categories: [0.65, 0.75), [0.75, 0.85), and [0.85, 1]. In figure 2 three types of 
line thickness from thin to thick to represent the strength of the correlation. 
Black dashed lines represent positive coregulation; green dashed lines 
represent negative coregulation; red solid lines with bar head represent 
negative regulation; blue solid lines with arrowheads represent positive 
regulation. Figure 2 shows that cluster 1 and 5 are highly coregulated (0 time 
delay), cluster 1 and 5 positively regulate cluster 4 with time delay 2.5h and 
3h, and both negatively regulated cluster 3 with time delay 1.5h; cluster 4 is 
negatively regulated by cluster 3 with delay 1h, the correlation between 
cluster 2 and cluster 4, and cluster 1 and 3 is not strong. All of these relations 
are coincident with the cluster center profiles.  

 

Figure #17-2. Gene regulatory networks inferred from the case with sigma equal to 0.2. The 
numbers on each link show the time delay for the interaction on top and the correlation 

coefficient of the interaction on the bottom. 

 
Since the data were unequally sampled with 0.5h as minimum interval, 

we interpolated the gene expression profiles as equally sampled 41 time 
points with 0.5h interval. The time correlation of each replicate is computed 
using equation (7), then combined using equation (8). The time  period is 
limited to the range of [-4h, 4h] because the light period only lasts 8 hours in 
this data set. Figure 3 shows the constructed regulatory networks of the 28 
cluster centers at the σ= 0.1 level. The graph notations are the same as figure 
2. The graph shows that there is one highly connected group of clusters. The 
other clusters at the upper right corner are less connected. The relations 
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between clusters may become complex with a large number of edges. 
Simplification of the networks is necessary when there are many highly 
connected clusters. 

 

Figure #17-3. Regulatory networks among cluster centers at the window size sigma = 0.1 
level. 

Figure 3 shows possible duplicate relationships. This can be analyzed 
using the path search function in FCModeler. From cluster 15 to 19, there 
are two paths: one is directly from cluster 15  19 with time delay 1h and 
correlation coefficient, ρ=-0.85; another path is cluster 15  7 with time 
delay 0.5 h and correlation coefficient, ρ=-0.89, and then from 7  19 with 
time delay 0.5h and ρ=0.81. The total time delays of both paths are the same. 
So it is very possible one of the paths is redundant. Figure 4 shows part of 
the simplified graph.  
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4.2 Cluster and Network Validation  
Cluster validation makes use of the available literature accessible through 

PathBinderA and GO information to find out what kind of functions or 
processes a cluster involves and to search for potential interactions. In figure 
3, the graphs in the upper right corner are less connected. The Gene 
Ontology shows most of the genes clusters are not annotated. This means 
these clusters have no biological evidence of direct relation with the highly 
connected group. It also shows how the fuzzy hierarchical algorithm 
successfully separates those unrelated genes. 

 

Figure #17-4. Simplified regulatory network with redundant edges removed for the window 
size σ = 0.1 level. The number on each link represents the estimated time delay. 
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Figure 4 shows that cluster 3 and 4 are highly coregulated (correlation 
coefficient between cluster centers is 0.91). The cluster is split because the 
combined cluster 3 and 4 has a cluster diameter larger than 3σ . Table III 
shows the fuzzy weights for the GO terms in each cluster. The BP 
(Biological Process) GO annotations show that clusters 3 and 4 involve 
many similar biological processes. For example, both clusters involve 
“Carboxylic acid metabolism”, “Regulation of transcription, DNA-
dependent”, and “Protein amino acid phosphorylation”. Cluster 3 has more 
emphasis on “Regulation of transcription, DNA-dependent” and cluster 4 
emphasizes “Protein amino acid phosphorylation”. Also cluster 3 involves 
“water derivation”, but cluster 4 mainly involves another BP “Response to 
desiccation, hyper osmotic salinity and temperature”.  Clusters 3 and 4 
provide a good example of the overlapping of fuzzy clusters, while the 
separation of two clusters does make sense. 

Clusters 21 and 25 are two highly negatively coregulated clusters. Cluster 
21 involves “Photosynthesis, dark reaction” which is active at night, while 
cluster 25 mainly involves “Carboxylic acid metabolism” and other 
metabolism usually active in the day. Cluster 21 contains genes for 
“Trehalose biosynthesis”. Trehalose plays a role in the regulation of sugar 
metabolism, which has just been identified for Arabidopsis52. Clusters 6 and 
21 involve sugar metabolism (carbohydrate metabolism in GO term). This is 
a significant biological result for understanding regulation in this 
experiment. 

Figures 3 and 4 show that cluster 19 regulates clusters 3, 4, 21, 22, 25 
and 28. After checking the BP GO annotations, we found the annotated 
genes in cluster 19 fall in three categories: “Protein Metabolism” (“N-
terminal protein myristoylation”, and “Protein folding”), “Response to auxin 
stimulus” and “Cell-cell signaling”. “N-terminal protein myristoylation”, and 
“Protein folding” are two major protein regulation mechanisms, while 
“Response to auxin stimulus” and “Cell-cell signaling” involve the processes 
of receiving stimulus or signals from others. Therefore these BP GO 
annotations match our network structures. 

Clusters 23 and 28 have no out-going edges, which implies that they are 
not involved in regulatory activity. Clusters 3, 4, 6, 7, 15, 19 21 22, and 25 
involve one or several of “Regulation of transcription, DNA-dependent”, 
“Protein amino acid phosphorylation” or “N-terminal protein 
myristoylation” biological processes. The later two are two major protein 
regulation mechanisms. Also cluster 21 involves Trehalose regulation as 
shown earlier. The BP annotations for clusters 23 and 28 are “Response to 
stimulus” and “Carbohydrate metabolism” which are non-regulatory. 

Cluster 19 contains the ethylene response gene “ethylene-induced 
esterase”. Cluster 4 contains jasmonic acid response and several jasmonate 
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biosynthesis genes. The search encompassed both these terms together with 
all of the synonyms for these terms in the MetNetDB database.  We used 
“ethylene” and “jasmonate” to search in Pathbinder and retrieved 18 
sentences (Figure 5 shows a subset of these sentences).  Clicking on each 
sentence gives the entire abstract. Many of the sentences provided useful 
connections between these two nodes.  For example, the abstract for the 
highlighted sentence delineates a relationship between the ethylene and 
jasmonate signaling pathways as shown in Figure 6. 

 

Figure #17-5. PathBinderA output for the terms ethylene and jasomonic acid methyl ester. 
The relevant sentences and the Medline identification number are given. 
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Figure #17-6. The complete abstract for the selection shown above gives more details on the 
relationship between the ethylene and jasmonate signaling pathways.  

5. DISCUSSION 
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8. SUGGESTED READINGS 

On Information Retrieval: Modern Information Retrieval, by Ricardo 
Baeza-Yates, Berthier Ribiero-Neto, Berthier Ribeiro-Neto, Addison-Wesley 
Pub Co; 1st edition (May 15, 1999), ISBN: 020139829X. 

9. ON-LINE RESOURCES 

MetNet, (http://www.public.iastate.edu/~mash/MetNet/) contains links to 
the websites for the MetNetDB, FCModeler and PathBinder tools mentioned 
in this chapter.  

PathBinderH (www.plantgenomics.iastate.edu/PathBinderH) is a large 
database of sentences drawn from MEDLINE containing co-occurring terms 
from a large dictionary. It allows queries to be qualified by biological taxa. It 
is provided by the Center for Plant Genomics at Iowa State University. 

 
The Arabidopsis Information Resource, TAIR (www.arabidopsis.org) is a 

central clearinghouse for the model organism Arabidopsis. It contains 
extensive gene information??? 

Aracyc53 (http://www.arabidopsis.org/tools/aracyc) AraCyc is a 
database containing biochemical pathways of Arabidopsis, developed at The 
Arabidopsis Information Resource. The aim of AraCyc is to represent 
Arabidopsis metabolism as completely as possible. It presently features more 
than 170 pathways that include information on compounds, intermediates, 
cofactors, reactions, genes, proteins, and protein subcellular locations. 

KEGG: Kyoto Encyclopedia of Genes and Genomes 
(http://www.genome.jp/kegg/) KEGG is a comprehensive bioinformatics 
resource developed by the Kanehisa Laboratory of Kyoto University 
Bioinformatics Center. It contains information about genes and gene 
products, chemical compounds and pathway information. 
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 Brenda: (http://www.brenda.uni-koeln.de/) is a repository for enzyme 
information. 

R (www.r-project.org) is an Open Source language and environment for 
statistical computing and graphics. R provides a wide variety of statistical 
(linear and nonlinear modelling, classical statistical tests, time-series 
analysis, classification, clustering, ...) and graphical techniques, and is highly 
extensible. 

 Bioconductor (www.bioconductor.org) is an open source and open 
development software project for the analysis and comprehension of 
genomic data. The project was started in the Fall of 2001. The Bioconductor 
core team is based primarily at the Biostatistics Unit of the Dana Farber 
Cancer Institute at the Harvard Medical School/Harvard School of Public 
Health. Other members come from various US and international institutions. 

PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) is a search 
interface provided by the U.S. National Library of Medicine to a large 
database of biological texts, mostly but not exclusively from the MEDLINE 
database. 

Agricola (http://agricola.nal.usda.gov/) is a database of article citations 
and abstracts in the agriculture field, provided by the U.S. National 
Agricultural Library. 

Arrowsmith (kiwi.uchicago.edu) is a system for generating hypotheses 
about interactions from texts in MEDLINE. (The name is from Sinclair 
Lewis' novel Martin Arrowsmith.) Provided by the University of Chicago. 

MedMiner (http://discover.nci.nih.gov/textmining/main.jsp) is a sentence 
retrieval system provided by the U.S. National Library of Medicine. It 
integrates GeneCards and PubMed. 

PreBind (http://www.blueprint.org/products/prebind/prebind_about.html) 
is a database of sentences potentially describing biomolecular interactions. 
Uncurated, it feeds the Bind database, which is curated. Provided in 
affiliation with the University of Toronto. 

10. QUESTIONS FOR DISCUSSION 

Problem 1. Suppose there is a set of 8 sentences, 4 of which are hits and 4 
of which are not. Feature 1 is present in all 4 hits and in 2 non-hits. Feature 2 
also occurs in 4 hits and 2 non-hits. There is 1 non-hit with both features. 
What is the probability estimated by the Naïve Bayes formula that a sentence 
with both features is a hit? What are the odds for this estimated by the 
formula for semi-naïve evidence combination? What is the probability 
implied by these odds? What is the true probability? Repeat this process for 
the non-hit category. Discuss the results. 
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