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I. INTRODUCTION 

Maintaining a reliable and uninterrupted electric 

service is among the primary objectives of the electric 

utility industry. To successfully meet this goal, power 

system planning engineers have devoted a good deal of their 

time and effort to study the transient stability of power 

systems under a variety of probable contingencies. 

Transient stability studies are concerned with the 

stability characteristics of the electric power system under 

large and sudden disturbances. Following such disturbances, 

the terminal voltage, rotor angle, power and frequency of 

most synchronous machines will change, and the study lends 

itself to the determination and analysis of the transient 

behavior of these variables. 

System equations, consisting of a set of non-linear 

differential equations coupled with a set of algebraic 

equations, e.g., the equations defining the network 

constraints, form the mathematical basis for the study. 

Conventionally, answers regarding the stability of the power 

system are postulated based on the time solution of the 

system equations, a tedious and time consuming task which is 

almost always carried out by digital computer simulations. 

The most elementary representation of the multimachine 

interconnected power system, known as classical model, is 
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considered valid for the transient period in the order of 

one second or less. With this model, it is assumed that if 

the synchronous machines maintain synchronism for the first 

swing they will remain in synchronism thereafter. This is 

known in the power literature as "first swing" transient 

stability assessment. 

Modern transient stability computer programs allow the 

use of detailed models for the turbine-generators and their 

controls. Transient stability studies are therefore usually 

carried out for transient periods of several seconds up to 

minutes following the disturbance initiating the 

transient. These elaborate, and costly, studies are now 

performed almost routinely by system planning engineers. 

The number of these studies has grown substantially, and the 

need for them has manifested itself in operating functions 

as well as in system planning functions. 

The continuous growth of the power system both in 

complexity and size has resulted in a large and heavily 

interconnected system. Interconnections have mushroomed in 

the 1950s due to the following reasons: better economy of 

interchange, reduction in reserve power requirements, better 

reliability through support in emergencies, etc. While the 

presence of stronger ties between neighboring utility 

companies has made the power industry more dependent on the 

firm and emergency flow of power, building new transmission 
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facilities has become handicapped by such factors as high 

cost of capital, regulatory delays, right of way disputes, 

etc. In addition, recent fuel conservation policies have 

called for heavy use of energy sources other than costly oil 

and gas. Subsequently, the power network of North America 

has been operating under heavy loading of the transmission 

system and higher power transfers resulting in a more 

stressed and vulnerable transmission network. 

For system planning studies, many more preliminary 

stability studies must be performed more frequently due to 

the added stress on the system, resulting in a net increase 

in the number of simulations. In addition, due to the 

growth of the power system, the computer simulation time has 

also grown rapidly. From the point of view of operation 

planning, where the system operators need to assess the 

robustness of the system for the short term forecasted 

operating conditions and outages, the application of the 

analytical approach is handicapped by the amount of time and 

effort necessary to prepare for detailed time solutions. 

Direct methods of transient stability analysis offer 

alternative methods which are aimed at relaxing the 

technical and economical burdens associated with the 

analytical time solution approach. In addition, direct 

methods provide theoretical and physical interpretation of 

the transient behavior of the synchronous machines. Over 
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the last few decades, this fertile area of research has 

received a good deal of attention by the researchers (See 

the survey paper [11). A brief chronological summary of the 

activities and developments in this area are also presented 

in Chapter II (Section B). The common features of the 

direct methods are; 

1. The construction of a special function by which the 

stability characteristics of the system's post-

disturbance equilibrium is directly examined. 

2. An estimate of the region of stability (or Region 

of Attraction, ROA). 

In this dissertation, the special function adopted is 

the individual machine energy function introduced by Vittal 

[2] and Michel et al. [3]. The key difference between the 

function developed in this work and the one in reference [2] 

is the treatment of the power system loads. In reference 

[2], loads were represented as constant shunt impedances and 

reported results were identical to those obtained by 

analytical time solution technique. This type of load 

representation is a major shortcoming of the above work. 

The importance of the proper load representation in 

power ^stem stability studies has long been recognized. 

Although it is generally acknowledged that the effect of 
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load representation is just as significant as the effect of 

the turbine-generator modeling on system stability, the 

former has received secondary attention. Load modeling, in 

general, is a difficult task basically because each 

electrical load exhibits a unique behavior depending on the 

time of the day, weather, human use patterns and most 

importantly the load composition. 

Historically, constant shunt impedance representation 

of the load has been adopted for the real and reactive 

components of the load during the transient period [4-5]. 

Researchers studying the diract methods of stability 

analysis have also adopted the constant impedance model of 

the load. This linear representation of the load was part 

of the so-called classical model of the power system which 

was suited to simulation of the power system of the day 

(i.e., little interconnection, generation near the load, 

etc.) and the equipment of the day (i.e., slow excitation, 

etc.). This model gave adequate answers for first swing 

transient stability studies. However, in today's highly 

interconnected power system and in the presence of the 

highly sophisticated control devices (e.g., fast exciters, 

etc.) improvements must be made consistently to represent 

the components of the system more realistically. This 

dissertation is an attempt to address this issue in regard 
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to one of the most important components of the power system, 

namely the loads. 

In this dissertation, non-linear voltage dependent 

loads are included as a modification to the classical model 

of the power system. The effect of the newly introduced 

load models now appear as injected currents at the internal 

nodes of the generators. Following the reduced admittance 

matrix formulation, a modified individual machine energy 

function has been derived to accommodate the new non-linear 

load representation. 

Finally, using two test systems, a number of cases have 

been studied and results have been analyzed. It is hoped 

that this modified approach and the results presented in 

this dissertation contribute to the understanding of the 

effect of load representation in the study of first swing 

transient stability analysis using direct methods. 
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II. REVIEW OF LITERATURE 

A. Power System Load Representation 

In studying the dynamic behavior of power systems, much 

attention is devoted to the development and incorporation of 

correct and adequate representation of each component within 

the system. However, improvements regarding the accuracy of 

electrical load representation has received less attention 

compared to that given to those components of the power 

system such as generators and exciters. Lately this 

situation has changed and more attention has been focused on 

the representation of the loads in transient stability 

studies [6-13]. 

It has long been recognized that t;he transient behavior 

of the electrical load is a function of both frequency and 

voltage. Investigation of the frequency dependence of the 

load has revealed that the variation of active load with 

frequency has a direct effect on system damping, while the 

opposite is true for the variation of the reactive component 

of load [131. In general, determination of load-frequency 

characteristics is a difficult task because of the 

difficulty in obtaining field measurements. Most transient 

stability programs have provisions to include frequency 

dependent load models but it is common to ignore the 
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frequency sensitivity of the loads, specially when voltage-

MVA relationships are accounted for. 

Comparatively more work has been done to investigate 

the effects of transient voltage fluctuations on electrical 

loads [4-13]. These studies have either been conducted with 

the effects of frequency changes present or only to study 

the voltage-MVA relationships of the load. References [5-7] 

have emphasized the need for a correct representation of 

electrical loads by reporting load voltage tests performed 

on different systems. References [8-10] have focused on 

load model developments for different load types based on 

collected field tests. Although each study has taken a 

different approach in the development of the load models and 

in the interpretation of the results, the common conclusion 

is that more detailed load models not only improve the 

design criterion but also exhibit significant effects on 

transient stability study results. 

The inherent difficulties associated with determination 

of voltage-MVA characteristics of the loads are: non-

homogeneity of the load composition in various areas of the 

power network, non-uniform patterns of voltage fluctuations 

under different disturbances, and discontinuities due to the 

operation of relays when big changes in system voltages take 

place, etc. Subsequently in every transient stability study 

attention must be paid to the choice of load models used for 
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the choice of load models used for the specific application 

of the study. 

As far as the modeling of the loads for stability 

studies are concerned, the first model used was developed in 

the mid 30s, This model essentially assumes that the real 

and reactive components of the load vary with the square of 

the voltage. This linear model, known as constant impedance 

model, is still being widely used in stability studies. The 

argument in favor of the linear loads is that they are 

easily represented and do not require a simultaneous network 

solution for the period of application. On the other hand, 

their use has been strongly criticized because they do not 

reflect the true voltage-MVA relationship of the load. 

Depending upon the location of the disturbance, constant 

impedance loads could give unrealistically optimistic or 

pessimistic transient stability assessment. 

To represent the voltage dependence of the loads, the 

following non-linear load mcdels are commonly used: constant 

current and constant-MVA loads. Schematic representation 

of these models is shown in Figure 2.1. The constant 

current load is assumed to maintain the magnitude of the 

current drawn by the load to its pre-disturbance value. The 

constant-MVA model, on the other hand, maintains the real 

and reactive scheduled power constant (i.e., the same as the 

pre-disturbance values) regardless of how much voltage drops 

and how much current is drawn. 



Constant - - - Z 

P & Q are , 
Proportional to V 

MVA 

V - Hold MVA at steady 
state MVA 
This requires I 
to increase with V 
decrease. 

Figure 2,1, Load Modeled as constant 
(a) impedance (b) current (c) MVA 
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The constant impedance model of the load is suited for 

a class of loads known as static group. This group exhibits 

a constant near unity power factor (e.g., heating and 

lighting equipment). The constant-MVA model is a good model 

for another class of loads known as the rotating group. 

This group exhibits a constant-MVA and varying power factor 

(e.g., a mixture of synchronous or induction motors). 

Finally, the constant current loads are supposed to be made 

up of 50% constant impedance loads and 50% constant-MVA 

loads. It has been assumed that, in the aggregate, the 

transient response of electrical loads can be represented as 
. . -! 

some combination of constant impedance, constant current and 

constant-MVA loads. 

Other efforts to model the load as a function of 

voltage could be summed up by two rather similar 

techniques. The first one expresses the load composition in 

terms of a quadratic polynomial of the form 

P(v) = KQ+K^V + KgV^ 

Q(V) = MQ + M^V+M^V^ 

where, at rated voltage, the values of KQ, K^, Kg give 

P = scheduled real power, and the values of MQ, M^, MG give 

Q = scheduled reactive power. 
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Equation (2.1) represents the load composition in terms 

of the linear and non-linear load combination disussed 

earlier. The main criticism to this approach is due to the 

fact that the load polynomials do not pass through the 

origin in the voltage-MVA plane [101. 

The other approach states that the voltage dependent 

loads could be modeled as 

(P/PQ) = (V/y )* 
o 

(Q/Qq) = (V/y )" (2.2) 
o 

where subscript ^ indicates the pre-fault condition. In 

this technique, the exponent n signifies the voltage 

sensitivity of the load and its value is believed to vary 

somewhere between zero to three, according to the location 

and the nature of the load. 

B. Direct Methods of Transient Stability Analysis 

in Power Systems 

Direct methods of transient stability analysis in power 

systems are those methods in which transient stability 

assessment is made without obtaining time solution for the 
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system equations. The second (direct) method of Lyapunov 

provides the theoretical origin for these methods. For the 

system of dynamic equations and its post-disturbance stable 

equilibrium point (s.e.p.), a suitable Lyapunov function V 

is constructed. The region of stability around the post 

disturbance s.e.p. is then estimated. At the boundary of 

this region lies the critical value of V. This critical 

value can not be exceeded during the transient period if 

stability is to be maintained. 

Many of the Lyapunov functions used are selected on the 

basis of energy considerations. They are called energy 

functions. 

1. Early work on energy criterion for power system 

stability 

Based on the principle of conservation of energy, Gorev 

in 1930 [14], and Magnusson in 1947 [15] pioneered the 

research activities in the area of direct energy methods in 

power system. Using the lossless (zero transfer 

conductances) classical model of the power system, both 

authors have developed a criterion for transient 

stabiltiy. In 1958, Aylett [16] published his work 
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entitled "The energy-integral criterion of transient 

stabilty limits of power systems," He studied the nature of 

phase-plane trajectories of a multimachines system and 

arrived at the criterion for stability based on the 

comparison of the phase-plane trajectories with a critical 

trajectory which passes through the saddle-point and at 

which kinetic energy is equal to potential energy. 

2, Stability criterion for power systems using Lyapunov's 

direct method 

Several publications aimed at adopting the direct 

(second) method of Lyapunov to the problem of power systems 

transient stabilty followed the early work on energy 

methods. 

The basis for using Lyapunov's direct method to obtain 

stability criterion for a multimachine power system is to 

express the post-disturbance autonomous system of power 

system dynamic equations as 

X = ^(x) (2,3) 

with ̂ (£)= £ as the post-disturbance stable equilibrium 

state. 
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In the system described by (2.3), the elements of the 

state vector x_ represent the rotor angles and the deviations 

in rotor speeds with respect to a synchronously rotating 

reference frame. Based on this system, a suitable scaler 

Lyapunov function V(x_) is constructed. This function and 

its first derivative vCjc) must possess the required sign-

definite properties. The criterion for stability is based 

on the construction of a region of stability (attraction) 

around the origin, or the post-disturbance stable 

equilibrium state. The value of V(_x) at the boundary of 

this region is the critical value V^(x_). To assess 

stability, a simple check is made. At the start of the 

post-disturbance period, the value of the Lyapunov function 

V(jO is compared to Vg(x^), 

if V(x) < V^(3c) system is stable, 

if V(x) > V^(x) system is unstable. 

For critical conditions, e,g,, at critical clearing of 

a fault, V(x) =? V^(x) , 
— c — 

Successful application of the direct method requires 

the following: 
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1, Construction of a valid Lyapunov function V(x_) 

2. Estimate of the region of stability. 

While there are no universal means available for the 

construction of the Lyapunov function, there are certain 

definiteness properties required for V(x_) as well as its 

first derivative V(x). 

3. Direct method of Lyapunov applied to the power system 

problem 

In 1966, Gless [17] introduced Lyapunov's direct method 

in power system stability analysis. He used a single-

machine infinite bus example and matched the results 

obtained by direct method to those obtained using equal area 

criterion. In the same year, El-Abiad and Nagappan [18] 

developed a Lyapunov function for a multimachine power 

system. 

In order to construct a valid Lyapunov function for the 

power system problem, some of the early works had neglected 

the effect of transfer conductances [191. This assumption 

often leads to conservative results and, as shown by 

Kitamura et al. [20], it could result into erroneous measure 

of critical clearing time in heavily loaded systems. 
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In reference [18], conservative estimate of the region 

of stability was obtained based on the assumption that the 

controlling unstable equilibrium point (u.e.p.) is the one 

closest to the stable equilibrium point (s.e.p). In order 

to improve the etimate of the region of stability, 

Prabhakara and El-Abiad [21] and Gupta and El-Abiad [22] 

obtained better region of stability by accounting for the 

fault location in their choice for post-disturbance system's 

u.e.p.1 

The survey papers by Fouad [1] and Ribbens-Pavella [23] 

offer an excellent overview of the research activities 

conducted on the development of stability criterion for 

power systems using Lypaunov's direct method. 

4, Recent work on energy methods 

Within the last decade the following major 

contributions have resulted in the evolution of the direct 

energy methods as a practical tool for power systems 

transient stability analysis. 

^Athay et al. [24,25] have also verified the fact that by 
appropriately accounting for fault location, the region of 
stability could be accurately assessed. 
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Tavora and Smith [26]f along with Lugtu and Pouad 

[27], have shown the significance of the Center of Inertia 

(COI) transformation from a synchronously rotating reference 

frame. This transformation removes that component of the 

transient energy responsible for the acceleration of the 

ficticious COI. 

In 1979, Athay and co-workers published their work 

entitled "A practical method for the direct analysis of 

transient stability" [24,25]. The major accomplishments as 

reported by the authors were; 

1, By appropriately accounting for fault location 

(i.e., by determining the actual faulted 

trajectories) in the transient energy method, the 

stability of a multimachine system can be 

accurately assessed. The significance lies with 

the improved estimate of the region of stability, 

as mentioned earlier by [21,22], 

2. Approximate techniques for incorporating the 

effects of transfer conductances on the power 

system transient behavior. Similiar approximations 

had also been proposed by Uyemura et al. [28]. 
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3. Definition of the Potential Energy Boundary Surface 

(PEBS) which forms the basis for an important 

instability conjecture. This concept had been 

proposed by Rakimoto and co-workers in 1978 [29]. 

The critical clearing time obtained using the PEBS 

concept still resulted in conservative estimates 

for those cases where fault trajectory did not pass 

close to an u.e.p. 

In 1980, Fouad and co-workers [30,31], through 

extensive simulations on a practical power system, shed 

light on the physical aspect of the phenomenon of transient 

stability using direct energy methods. The authors have 

shown how to predict the correct mode of instability and how 

to assess the first swing transient stability using the 

value of the transient energy at the moment of last 

switching, the computed controlling u.e.p. and its energy. 

The authors have also pointed out that only the component of 

the transient kinetic energy associated with the gross 

motion of the critical generators is responsible for 

separation of the critical group from the rest of the 

system. The remaining portion of the transient kinetic 

energy could be identified with the inter-generator motion 

in each of the groups separating from one another. They 

also illustrated how instability could be determined by the 
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gross motion of the critical machines if more than one 

machine tend to lose synchronism. Finally, the authors have 

validated the concept of the controlling u.e.p. for a 

particular system trajectory. 

In 1982r Vittal [2] and Michel et al. [3] developed 

an individual machine energy function in order to identify 

the transient energy pulling a particular machine from the 

rest of the system. The energy function previously used by 

researchers was a system-wide energy function which masks 

the actual nature of the energy interchange in the system 

during the transient period. In this work, it was shown 

that under sustained fault conditions, the potential energy 

of the critical machine goes through a maximum which 

signifies the energy absorbing capacity (critical energy) of 

the critical machine. More importantly, for a given fault 

location and a given post-disturbance condition, this 

critical energy is fairly constant (flat) and its value is 

independent of the fault clearing time. Assessment of the 

first swing transient stability via individual machine 

energy functions was carried out for a series of simulations 

using tjiree test networks. In all cases, t±e mode of 

instability was correctly predicted, even in very complex 

situations. The critical clearing time obtained matched the 
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results obtained by time solutions without any degree of 

conservatism. 

5. Load representation in direct methods 

All the works discussed in the previous section have 

consistently employed the classical model of the power 

system (i.e., generators represented by constant voltage 

behind transient reactances loads represented by constant 

shunt impedance, etc. See Chapter II of [32]). Although 

the classical model is generally considered satisfactory for 

the study of first swing transient stability, its greatest 

weakness lies in the representation of the loads. It is 

felt that improving the load model would substantially 

improve the confidence in first swing transient stability 

assessment results. 

In the past, there have been some efforts to improve 

load representation when applying direct methods. Bergen 

and Hill [33] proposed a method to model frequency dependent 

loads by deriving a "topology preserving model" for the 

power network. Effect of each load was represented at its 

respective bus by a first order differential equation based 

on a load-frequency coefficient depicting the damping effect 

of the load. Athay and Sun [34] incorporated the static 
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non-linear load models in the expression for the system 

energy function. Network dependent variables were 

introduced in the energy function which does not allow the 

Kron reduction of the load buses. Pai et al. [35] modeled 

non-linear loads assuming constant ratio of internal bus 

voltages to load bus voltages corresponding to the pre-

disturbance conditions. Husavi and Narasimhamurthi [36] 

assumed that the real part of the load is fixed while the 

reactive load is a function of the voltage at the load 

bus. Based on this assumption, the authors derived a 

"topological" energy function which brought the network 

dependent variables back in the picture. 

Overall, incorporation of more realistic load models in 

the classical representation of the power system has either 

been accomplished at a substantial increase in the order of 

the system formulation or without an accurate account of the 

transient voltage fluctuations, 

C. Scope of the Work 

This research work has concentrated on developing a 

technique to incorporate a more realistic model of the power 

system loads in the study of first swing transient stability 

analysis using individual machine energy functions. 
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Each electrical load has been represented as a 

combination of constant impedance, constant current and 

constant-MVA loads. The effect of the non-linear loads are 

reflected at the internal nodes of the generators as 

injected currents. The network nodes, including the load 

buses, are all Kron-reduced and the energy functions for the 

individual machines are obtained. 

The validity of this modified model has been tested by 

assessing the transient stability of two test networks. Two 

sets of critical clearing times are obtained for each set of 

system conditions (e.g., fault location, non-linear load 

composition, etc.). One set corresponds to the results 

obtained by the method presented in this dissertation and 

the other one to the results obtained by time solution using 

a conventional transient stability computer program. 

Observations are made based on the comparison of the 

results. It is hoped that the presented results and 

observations would shed more light as well as confidence on 

the issue of load modeling in transient stability studies. 
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III. MULTIMACHINE POWER SYSTEM REPRESENTATION 

A. Classical Model with System Loads as Injected Currents 

For digital simulation of the power system in dynamic 

studies a model is used which is valid for the duration as 

well as the specific purpose(s) of the study. In 

particular, when the simulation is performed to investigate 

the first-swing transient stability characteristics of the 

power network the so-called classical model is considered 

adequate for that purpose. 

The set of assumptions employed in arriving at this 

model are listed below (Also see Chapter II of [32]). 

Constant mechanical power input to each 

generator. 

Transmission network is modeled by the steady 

state equations. 

Synchronous machine represented by constant 

voltage behind direct axis transient reactance. 

Damping is negligible. 
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The rotor angle of a machine coincides with the 

angle of the voltage behind the transient 

reactance. 

Loads are represented by constant shunt 

impedances. 

After a careful review of this list it was felt that 

the assumption regarding the representation of the loads is 

the most suspected one in the classical model. 

Studies have shown that sizeable voltage fluctuations 

follow a major disturbance and at some buses voltages can 

dip to 0.5 per unit, even in stable cases. The transient 

voltage-MVA relationships of the loads are masked by the 

constant impedance model. This is an important issue which 

must not be overlooked in determining the transient behavior 

of the generator rotors. 

It has been reported in the literature that the 

response of nearly all loads to voltage changes can be 

represented by some combination of constant impedance, 

constant current and constant-MVA devices depending on the 

nature and composition of the load [5]. Subsequently, it 

was concluded that, in transient stability studies, 

representation of individual loads by such combination would 
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be more realistic and would improve the results obtained by 

first swing transient stability assessment. 

In the following derivation, the components of the 

power system, except for the loads, are represented by the 

classical model. To incorporate the effect of the non­

linear loads (i.e., the constant current or the constant-MVA 

portion of the load) the nodes within the power network have 

been divided into three groups. The first group includes 

the generators' internal nodes (n); the second one contains 

load buses with "mixed" or non-linear load combination (m); 

and the last group includes the rest of the transmission 

network along with linear load buses (i.e., those buses with 

constant impedance loads only) (r). 

Let I„, I„ and I_ be the vector of node currents at the 
—N —M —R 

internal generator nodes, non-linear buses and the passive 

network nodes respectively. The corresponding node voltages 

are V^, and V^. These node currents and voltages are 

related by the network's admittance matrix which is of the 

order (n+m+r). Partitioning this Y-matrix, the following 

relation could be obtained: 

-N 
Y 
-NN -NM 

•
 

•
 

-M 
= Y 
-MN 

Y 
-MM 

Y 
-MR ÏM 

-R -RN 
Y 
-RM 

i 

ÏR 
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where each submatrix of the Y-matrix (e.g., Y^, -MR' etc.) 

represents the mutual admittances as seen by any pair of 

nodes either within the same group or from two different 

groups. 

Since there are no current injections at the passive 

nodes (i.e., = Q) , these nodes could be eliminated by 

Kron reduction to obtain the following; 

r • 

-N -NN ÏN 

-M 
Y 
-MN 

Y 
-MM ÏM 

» « » A » — 

where the Symbol Y is used for the Y-matrix obtained by the 

reduction procedure. 

The reduced network, described by equation (3.2), is 

schematically shown in Figure 3.1. 



n 

""A 

-o n 

E 

E lAi 

Figure 3.1. 

n+m *-

n+2 #-

n+1 #-

n+m 

• n+2 

n+1 

1 

T 

l1 

I 

Reduced network after elimination 
of passive nodes 



29 

The currents ^n+2'***' ̂  n+m represent the non­

linear load currents. 

Let node j be a non-linear load bus with voltage 

Vj^9j. Let the scheduled real and reactive power at node j 

be P_. and Q... The subscript LI is used to denote the 
L] IjJ 

constant current component of ̂ the load, and the subscript LM 

is used for the constant-MVA component of the load. Thus 

^Lj'^'i^Lj (*LIj* iOLIj) * ^^LMj ^^LMj^ (3.3) 

where 

P__.  :  consta n t  c u r r e n t  r e a l  p o w e r  a t  t h e  j t h  
Li] 

P_„.: constant-MVA real power at the jth node. 
LM] 

Q__.  :  consta n t  c u r r e n t  r e a c t i v e  p o w e r  a t  t h e  j t h  
III] 

Q_„.: constant-MVA reactive power at the jth node. 
LM] 

The total current into the non-linear load node j will 

also be made up of two components corresponding to the 

constant current and constant-MVA portions of the load. 

This current is given by 

node. 

node. 

-Ijâ Cj = Cjj + Cjjj (3.4) 

j = n+1f••• / n+m 
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where 

=Ij = f^LIj - 1 «Llj» / 

and (3.5) 

ji tlx J . _+ 
Sj = i / (Vjl i—X> 

t=0 

where 

C^j: Injected current due to constant current 

portion of the load at the jth node. 

V. I : Magnitude of the pre-fault voltage at 
] t=0~ 

node j. 

V.| : Magnitude of the jth node voltage at the 
] .+ 

t=0 
start of the faulted period. 

8j: jth node angle at the start of the 

faulted period. 

C . : Injected current due to constant-MVA 
Mj 

portion of the load at the jth node. 

Defining ç'' = Cn+m' 

and comparing equation (3.2) and (3.4), it is noted that 

Î M =  -G 

Eliminating from equation (3.2) 
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-N " ̂ -NN ~ -NM -MM -MN^-N ~ -NM -MM -

-NN -N " ̂  

(3.7) 

where 

^NN -NN " -NM -MM -MN (3.8) 

-N -NM -MM -M ^^1 AI'^2 An^ 

Equation (3.7) expresses the generator currents in 

terms of the internal generator node voltages and current 

injections that reflect the effect of the non-linear load 

currents. 

B. Procedure for the Calculation of the Injected 

Load Currents 

In the previous section, the modified model of the 

power system was presented. An important feature of this 

model is the absence of the network dependent variables 

(i.e., load bus voltages and angles) in the generator 

current equations, as shown in equation (3.7). However, 
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from equation (3.5), the non-linear load bus voltages are 

updated at the instant the disturbance (e.g., fault) is 

applied. Therefore, it seems obvious that the non-linear 

load current injections in equation (3,5) must reflect the 

transient variation of complex load bus voltages by a 

reasonable approximation. 

It has been suggested that there are two types of 

voltage dips during most disturbances which threaten 

stability (E. W. Kimbark, discussion in [6]). One is called 

"fault dip" which is caused by a short circuit. Fault dips 

are generally characterized by a short duration and a sudden 

decrease of voltage followed by a sudden increase. The 

second type is called the "swing dip" It can be identified 

by slowly varying voltages and longer duration. Noting that 

the non-linear load models are adopted for the purpose of 

first swing transient stability analysis, the swing dips are 

justifiably ignored. On the other hand, a single network 

solution of the faulted network is all that is necessary to 

approximate the fault dips.^ 

Another important aspect of the non-linear load models 

involves the question of the individual load's power-

factor, Digital simulation programs such as Philadelphia-

^This is a network solution performed at t = 0.00"*", or 
instantly after the disturbance has occurred. 
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Electric Company's (PECO) power system stability program 

maintain the pre-fault scheduled power factor for the entire 

duration of the disturbance [37]. This is true for both 

constant current as well as constant-MVA loads. 

Based on the above arguments, two network solutions are 

performed before non-linear current injections are 

calculated, A network solution immediately after the 

occurence of the disturbance (i.e., at t = 0.00"^) will be 

used to calculate the non-linear load injected currents 

during the disturbance, and another solution reflecting all 

the post-disturbance changes in the network, will assist in 

calculation of the load currents which are valid for the 

post-disturbance period. 
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IV. TRANSIENT STABILITY ANALYSIS USING INDIVIDUAL 

ENERGY FUNCTIONS MODIFIED FOR NON-LINEAR LOADS 

A. System Dynamic Equations In a Multimachine 

Power System 

It was discussed earlier (Section B of Chapter II) that 

a common feature of direct methods is the development of a 

special function from which the stability characteristics of 

the system's post-disturbance equilibrium point is 

examined. The special function developed in this chapter is 

the individual machine energy function, first introduced by 

Vittal [2] and Michel et al. 131, which is being modified to 

represent the effect of the non-linear load models. 

Modification of the individual machine energy function 

has found its origin in equation (3.7), where for each 

generator i, with its internal voltage E^^yk the component 

of the non-linear load injected current is designated by 

From (3.7), the total current drawn at node i is 

given by 

li = ^ îiNÏN-^i (4.1) 
N=1 
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The electrical power of this generator is 

(CijSi" «ii + °ij «»= « 

*i 

-E^K^ COS (6^- T^) 

where 

^ij " Gij + i Bij 

G^j: Transfer conductance between node i and node j 

Transfer susceptance between node i and node j 

°ij " ®i®j®ij 

•=ij = 

The set of system equations are given by 
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n 
P . A Z [C.. Sin S 
ei - 1] 

+i 

where 

Mechanical power of generator i. 

Driving point conductance at node i, 

: Inertia constant of generator i. 

; Generator i rotor speed (w.r.t. a synchronous 

reference frame.) 

Equation (4,3) expresses the motion of the generators 

with respect to an arbitary synchronously rotating reference 

frame. A change of reference to the Center of Inertia (COI) 

coordinates will result in an individual machine energy 

function free of that component of energy responsible for 

the acceleration of the fictitious COI. This formulation 

has the advantage of removing the component of transient 

energy not responsible for pulling the respective machine 

away from the rest of the system. 

The coordinates of the COI are defined by: 
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1 " (I)_ = — Z M. W. (4» 4) 
° "T i=l ^ 1 

where 

n 
M„ = 2 M. 
^ i=l ^ 

The generator angle 6 and in the new coordinates are 

«i-«o 

0) .  =  
"i -

(I), 

(4.5) 

The system dynamic equations, in the COI reference 

frame, now become 

Mi"i = Pi - Pei- M; ̂ COI 

5. = U. (4.6) 
^ ^ i = 1,2,.'',n 

where 

*COI ~ VO 
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n 
S 

i=l 

n-1 n 
2 Z Z 

n 
Cos 8^j+E 

i=l j=i+l i=l 

i = 1,2,' 

E^K^Cos 

,n 
(4.7) 

B, Transient Behavior of the Non-Linear Load Bus Angles 

In a multimachine power system the motion of the center 

of inertia is influenced by the non-linear loads within the 

system, as indicated by the last group of terms in equation 

(4.7), It was also pointed out earlier that by performing a 

network solution at t = 0.00*, the fast and sudden fault 

dips are accounted for. 

In the following, an important assumption is made 

regarding the transient behavior of the non-linear load bus 

angles. This assumption is made due to the reduced 

formulation of equation (4.6), which is independent of the 

network dependent variables ( i.e.. Non-linear load bus 

voltages and angles). 

The assumption states that the motion of a non-linear 

load bus angle is assumed to coincide with the motion of a 

fictitious internal node angle of a generator with zero 

inertia and located at the same bus. Again, it is based on 

this assumption that a single set of K^'s and T^'s are 

satisfactory for each switching in the system. 
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C. Individual Machine Transient Energy Function 

with Non-Linear Loads. 

The individual machine energy function for machine if 

is obtained by carrying out the following steps [2]. 

Rearrange equation (4.6) 

MI^I - P.+PGI + ^ PCOI 

Multiply by 8^ 

(M.S. - Pi + Pgi + ^COI^ ®i 

Integrate with respect to time. The coordinates of 

the post-disturbance stable equilibrium point 

(0®,u® = 0) are used as the lower limit of 

integration. 

o 8. n 
V. =1/2 M.s/-P.(8 -8?) + ; {z [C.. sin 8,.+D, COS 8..] 
X 11 111 0. js2 J J J J 

^ *i 

•®I«I T + R /'I PCOI 
T 

i =1,*••,n 
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Finally, numerical integration of equation (4,8) can be 

performed using the Trapazoidal rule (see section B of 

Chapter IV), 

n 
v.= 1/2 M.S? - P.(8 -eS) + 1 (8 - ef) {z [C..sine +D..cose .] 

X X  X X X  6  X  X  j — 1  

*i 

n s s 
+ z [C.. sin e.. + D.. cos 8..] - E.K. cos (8.-T ) 

J XX XX 

COS (E| - T®)} 

D, Physical Interpertation of Vj^ 

The recent success enjoyed by the direct energy methods 

in transient stability assessment is believed to be due to 

the fact that in this approach the basis for evaluation is a 

tool that properly accounts for the machines' transient 

energy and where it resides during the transient. This 

relatively fresh approach to the problem of transient 

stability analysis not only replaces an analytical approach 

by a mathematical one it also, as predicted over a quarter 

of a century ago, "provides a basis for future theoretical 
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work in a field where empirical methods have hitherto been 

the rule" [16]. 

The physical interpretation for the components of the 

system energy function [27], and later of the individual 

machine energy function [2], form the foundation for the 

evaluation of the method. 

The first term in equation (4.8) represents the 

transient kinetic energy of machine i. The remaining terms 

make up the potential energy (with respect to 9®), the 

components of which are the change in rotor potential energy 

as well as the network's change in potential energy as 

viewed from the internal node of the respective machine. 

Thus, equation (4.8) can be written as 

Examining this equation one must note that the 

transient energy of machine i depends on the post-

disturbance network and the position and speed of machine i 

relative to the other machines in the system. Thus the 

components of transient energy of machine i vary along the 

system trajectories. However, as the machine moves away 

from the rest of the system, its kinetic energy is being 

converted into potential energy. Therefore, it will 
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continue to move away from the system until the kinetic 

energy, possessed at the instant the disturbance was 

removed, is totally absorbed by the network (i.e., converted 

to potential energy). When this tcikes place, the machine 

will move toward the rest of the system and stability is 

maintained. If the kinetic energy is not totally absorbed 

by the network the machine will continue to move away from 

the other machines losing synchronism in the process. 

Based on the foregoing argument and on extensive number 

of simulations, the authors of references [2-3] have arrived 

at the following postulations: 

If the magnitude of the disturbance is increased to 

the point where one (or a group) machine becomes 

critically unstable, the potential energy of the 

critical machine goes through a maximum before 

instability occurs. 

This maximum potential energy signifies the energy 

absorbing capacity of the network, as viewed from 

the critical machine, and is essentially 

independent of the duration of the disturbance or 

the mode of instability. It also defines the 

critical value of the critical machine's energy 

upon which transient stability assessment is made 
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'^critical' 

For stability to be maintained the energy of machine i 

at the instant the disturbance is removed (or at the 

beginning of the post-disturbance period) must be less than 

critical. 

E, Transient Stability Assessment-Criterion and Procedure 

The criterion for transient stability assessment was 

derived based on the comparison between the maximum 

potential energy (i.e., the critical energy) of the critical 

machine and the value of the total energy at the instant the 

disturbance is removed. For example, when the disturbance 

is a fault the energy at fault clearing is of interest. 

Determining v9 as the energy at fault clearing, 

if V? < V. , the system is stable. 
^ ^ critical 

and 

if V? > V. , the system is unstable. 
^ ^critical 

Furthermore, it was proven that the above conditions 

are satisfied for each of the critical machines, and for the 

critical machines as a group [2-3]. 
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In this dissertation the following procedure has been 

used for the assessment of transient stability. 

Step 1: For the post-disturbance network, the stable 

equilibrium point 6® for the generators' 

internal angles (w.r.t. the COI) and the 

short circuit admittance matrix Ygyg ,with 

all the network nodes retained, are 

determined. In much of the results 

presented in this dissertation, the same 

0® obtained for the constant impedance load 

model was used. 

Step 2: The parameters of the non-linear loads, 

equation (3.5), are computed. This step 

requires two network solutions: for the 

faulted and post-fault systems. To maintain 

constant power factor, the angle at the load 

bus is updated. For a constant current 

load, the load bus voltage magnitude is held 

at its pre-fault value. For a constant-MVA 

load, the load bus voltage magnitude is 

updated as well. 
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Step 3: All parameters of equations (4.6) and (4.8) 

are computed 

(e.g., C^j's, DUj's, K^'s, t^'s, etc) 

Step 4: The swing equations (4,3) or (4.6) are , 

integrated for a sustained fault (run long 

enough to reach 

Step 5: For each time interval , Vpg , and 

are computed. The procedure used is 

outlined below: 

Vj(t+At) = V\(t) + AVj. 

where AV^^ | is obtained using trapazoidal 

integration rule. 

Step 6; By examining Vj, and its components, the 

value of critical ~ ̂ PE^(max) 

determined and stored for the given 

disturbance. 

Step 7; For a given disturbance, the values of 

0^ and are obtained at the end of the 

disturbance (e.g., at fault clearing). 
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Based on these informations V.|. is 
^ ^cl 

computed. 

Step 8: Transient stability check. Machine i will 

be stable or unstable depending on whether 

ViI^ is less than or greater than 
cl 

Vi critical' respectively. Note that for a 

group of more than one machine going 

unstable, the above criterion should hold 

for each machine in the group. In addition, 

V for the group should also exceed its value 

of the group V critical' 
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V. RESULTS 

The procedure for the assessment of first swing 

transient stability of a multimachine power system using the 

transient energy of the individual machines was outlined in 

Chapter IV, In this chapter, this procedure is validated by 

digital simulation. For this validation, two systems, a 

small test network and a larger system representing a 

reduced version of the Iowa power system, were selected. 

The description of the two systems is presented below. 

A special computer program has also been developed to 

compute the modified energy functions for the individual 

machines used in the transient stability assessment. A 

description of this program is given in section B, and a 

complete listing is given in the Appendix. 

A. Test Systems 

1. 4-generator, 11-bus system 

This system, shown in figure 5.1, is a modified version 

of the 9-bus, 3-machine, 3-load system widely used in the 

literature (see Chapter II of [32]) and is referred to as 

the WSCC system. The generator data and the initial 

operating conditions, including the internal generator 
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voltagesr are given in table 5.1. Three-phase faults at bus 

no, 10, near generator no, 4, have been studied for 

different load compositions and at the same load level. It 

is to be noted that the electrical load located at station C 

is very close to the fault, making its composition critical 

to the stability study results, 

2, 17-generator, 163-bus modified Iowa system 

This power system, shown in figure 5,2, is a reduced 

version of the principal power network of the state of 

Iowa, The development of the modified Iowa system has been 

described in reference [311, The location of the major 

electrical loads with non-linear composition around the 

Eastern and Western parts of the state are also indicated in 

figure 5,2, The generator data and initial operating 

conditions, including the internal generator voltages, are 

also given in table 5,1, 

The modified Iowa system was simulated in order to 

further investigate the effects of non-linear load 

representation on first swing transient stability 

characteristics. The disturbances investigated were three-

phase faults in the vicinity of four major generation sites, 

located roughly along the western border of the state. 



Table 5.1. Generator data and initial conditions 

Initial Conditions 

Generator Parameters® Internal Voltage 

Generator H *d P ^ mo B 6 
Number (MW/MVA) (pu) (pu) (pu) (degrees) 

4-Generator System 
1 23.64 0.0608 2.269 1.0967 6.95 
2 6.40 0.1198 1.600 1.1019 13.49 
3 3.01 0.1813 1.000 1.1125 8.21 
4 6.40 0.1198 1.600 1.0741 24.90 

17-Generator System 

1 100.00 0.0040 20.000 1.0032 -27.92 
2 34.56 0.0437 7.940 1.1333 -1.37 
3 80.00 0.0100 15.000 1.0301 -16.28 
4 80.00 0.0050 15.000 1.0008 -26.09 
5 16.79 0.0507 4.470 1.0678 -6.24 
6 32.49 0.0206 10.550 1.0505 -4.56 
7 6.65 0.1131 1.309 1.0163 -23.02 
8 2.66 0.3115 0.820 1.1235 -26.95 
9 29.60 0.0535 5.517 1.1195 -12.41 
10 5.00 0.1770 1.310 1.0652 -11.12 
11 11.31 0.1049 1.730 1.0777 -24.30 
12 19.79 0.0297 6.200 1.0609 -10.10 
13 200.00 0.0020 25.709 1.0103 -38.10 
14 200.00 0.0020 23.875 1.0206 -26.76 
15 100.00 0.0040 24.670 1.0182 -21.09 
16 28.60 0.0559 4.550 1.1243 -6.70 
17 20.66 0.0544 5.750 1.1116 -4.35 

=^0n 100-MVA base. 



Major load in the east (50% constant Z, 

Major load in the west (60% constant Z, 

Figure 5.2 17-generator system 

30% constant MVA, 20% constant I) 

20% constant MVA, 20% constant I) 

(Reduced Iowa System) 



52 

Information regarding the nature of the disturbances are 

listed below. 

Raun fault: Bus no. 372, cleared by opening line 372-

193. 

Council Bluffs fault: Bus no. 436, cleared by opening 

line 436-771. 

Ft. Calhoun fault: Bus no. 773, cleared by opening line 

773-779. 

Cooper fault: Bus no. 6, cleared by opening line 6-774. 

B. Computer Program 

A computer program, presented in the Appendix, was 

developed for this dissertation. This program which is 

written in Fortran language, has the following main 

features: 

The program inputs the system data (bus data, line 

data, transformer data, etc.) and computes the 

unreduced admittance matrix Y^^g. 

The Ygyg matrix is reduced to the internal nodes 

twice. This is due to the fact that two sets of 

network parameters (i.e., transfer conductances. 
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transfer susceptances and non-linear load current 

injections) need to be computed. The first set is 

used in the system dynamic equations (swing 

equations) and therefore represents the disturbed 

network. The other set is used to form the 

individual machine energy equations and represents 

the post-disturbance network^. This computation 

involves the inversion of complex matrices (see 

equation (3.8)). The subroutines 'DECOMPOSE' and 

'SOLVE' are written to perform the complex matrix 

inversion. 

Using the parameters of the disturbed network, the 

swing equations are numerically integrated via 

subroutine 'DVERK'. This subroutine was obtained 

from IMSL library, Iowa State University 

Computation Center. 

• The rotor angles and speeds are computed to the 

center of inertia reference frame. Using the 

parameters of the post-disturbance network, the 

individual machine energy functions are then 

computed and stored for each time step. At the end 

^It must be noted that it is the stability of the post-
disturbance stable equilibrium point that is being 
investigated by the individual machine energy functions. 



of each time interval At, individual machines 

kinetic energy V „ (t+At) is directly computed 
i 

(see equation 4.9). The change in individual 

machine's potential energy AV_„ is obtained using 
i 

the trapazoidal integration rule (see equation 

4,9), The potential energy of the individual 

machines at the end of each time interval At is 

then updated. 

(5-1) 

The total energy of the individual machine is 

computed as follows. 

V^(t+At) = V^tt) + (5.2) 

This program is terminated after the potential 

energy of the critical machine has reached its 

peak. Based on the critical energy of the 

individual machines and the criterion of the 

stability discussed in Chapter IV, the shortest 

critical clearing time and the corresponding 

critical machine are directly determined from the 

output of the program. 
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C. Model Accuracy 

By determining the actual fault trajectory and using 

this information in evaluating the individual machine energy 

functions, reference [2] has reported critical clearing 

times that are in excellent agreement with those obtained by 

time solution. 

In this dissertation, however, transient voltage 

fluctuations are approximated in order to incorporate 

voltage dependent load models. This approximation directly 

influences the behavior of the loads during the transient 

period and therefore influences the behavior of the faulted 

trajectories as well. To investigate the fairness of the 

new load models a simple test was performed. This test was 

to compare the rotor angles, during the transient period, 

obtained using the proposed non-linear load models with 

those obtained by time solution using a conventional 

transient stability program. Figures 5.3-5.6 illustrate the 

results of such test for all four fault locations studied on 

the modified Iowa system. 

In Figures 5.3-5.6, generators' rotor angles versus 

time^ are plotted for a period of 0.2-0.3 seconds. Each 

^These curves are commonly called swing curves. 
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plot consists of two sets of curves, one obtained by the 

model used in this dissertation and another obtained by 

using Philadelphia Electric Company's (PECO) transient 

stability program [37]. Although identical model of power 

system is being used by both techniques, different methods 

of solution are employed. The PECO program performs 

simultaneous network solutions which allows the program to 

update load bus voltages and angles at every time 

interval. The method of this dissertation updates the same 

parameters only once, at the start of the transient period. 

The close agreement between the two sets of 

trajectories in Figures 5.3-5.6 assures the fairness of the 

newly introduced load models adopted in this dissertation. 

It also supports the initial assumption that, for first 

swing transient stability characteristics, once the fast and 

sudden fault dips are accounted for, the slowly varying 

swing dips could be ignored. 

Finally, it must be noted that the excellent agreement 

between the faulted trajectory of the generators adjacent to 

the fault by the two methods is due to the severe reduction 

of voltage near those generators (see equation (4.2)). 
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D. Stability Assessment 

Prior to the development of this research, Vittal [2] 

and Michel et al. [31 had investigated the first swing 

transient stability characteristics of the two power 

networks presented earlier in this chapter for the same 

disturbances assuming constant shunt impedance 

representation of the loads. Subsequently, in order to 

investigate the influence of the newly modified load models 

on the previous results, several cases were selected. New 

load compositions and new non-linear load distributions in 

each case were selected to provide answers for such 

questions as: 

The influence of non-linear load modeling on first 

swing transient stability characteristics as 

compared to those results previously obtained using 

linear load models. 

The effects of non-linear load representation on 

the mode of instability. 

The severity of constant-MVA loads versus constant 

current loads, especially near the fault where 

voltages are depressed the most. 
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The effects of the voltage dependent loads on the 

behavior and the pattern of potential and kinetic 

energy of the individual machines. 

In each case, the components of the individual machine 

energy are calculated for each machine. For the critical 

machine(s), the critical energy, which is the same as 

^PE.(max)' determined. The time at which, for the 

faulted trajectory, the total energy equals this critical 

energy (V^critical) is considered the critical fault 

clearing time, critical t^^. This means that if stability 

is to be maintained, for the given fault and post-

disturbance network, the fault duration must not exceed this 

value of critical t ,. 
ci 

1. Stability assessment results 

Data for stablity assessment, based on the newly 

developed individual machine energy functions, are presented 

in table 5.2. For each of the two networks the following 

are given: The location of the disturbance (three-phase 

fault}, the composition of the loads, the critical machines 

(i.e., the group of machines whose potential energy first 

reaches a maximum value), the value of Vpg (jn^x) the 



Table 5.2 
Stability Assessment Using Individual Machine Energy Function 

Case Fault Load Critical 
^PEi max 

Critical t , 
based on ' 

^PEi max 

No. Location Description Machine(s) ^PEi max 
Critical t , 
based on ' 

^PEi max 

4--Generator System 
1. bus #10 All loads const. I #4 0.3565 0.120 
2. bus #10 Loads A,B: const. I 

Load C: const. Z #4 0.3414 0.129 
3. bus #10 Load At const. MVA 

Load B, C: const. Z 
#4 0.4237 0.1349 

4. bus #10 Loads A, B: 60% const 
20% const. I, 20% 
const. MVA 

Load C: const. Z 

. Z #4 0.4315 0.151 

17 -Generator System 
5. Cooper All loads const. I #2 8.7733 0.202 
6. Cooper Non-linear loads 

East + West 
#2 8.6928 0.205 

7. Ft. Calhoun All loads const. I #16 9.1818 0.346 
8. Ft. Calhoun Non-linear loads 

.East + West 
#16 9.7292 0.365 

9. Ft. Calhoun Non-linear loads East only #16 9.9565 0.360 
West loads: const Z 

10. Council Bluffs All loads const. I #10,12 8.4506 0.186 
11. Council Bluffs Non-linear loads 

East + West 
#10,12 10.4594 0.199 

12. Raun All loads const. I #5,6 12.7754 0.176 
13. Raun Non-linear loads 

East + West 
#5,6 15.8284 0.188 

14. Raun Non-linear loads East 
West loads: const Z 

only#5,6 16.4469 0.190 
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critical clearing time based on this value of (max) 

For the cases listed in table 5.2, the critical 

clearing times were estimated using time solution obtained 

by the Philadelphia Electric Company's transient stability 

computer program; this clearing time was bracketed between a 

stable and an unstable cases. The estimated critical 

clearing times using Vpg (max) using time solution are 

tabulated and compared in table 5.3. 

Examining the data in table 5.3, we note the close 

agreement between the critical clearing times obtained by 

the two methods. This agreement supports the validity of 

the technique suggested in this dissertation for the 

incorporation of non-linear voltage dependent load models in 

first swing transient analysis. 

2. Effect of load model on transient stability 

To investigate the effect of the non-linear load 

representation, the results in table 5.2 are compared with 

similar data for the same disturbances and networks using 

constant impedance load models. The latter data are 

obtained from reference [2] and are reproduced here in table 

5.4. 

Examining the data in table 5.2 and 5.4, we observe the 

following: 



Table 5.3 
Comparison of Stability Assessment 

Case Fault Critical t^, „ Time solution - t^, „ 
C i , s  ci,s  

No. Location using Vpg^ stable unstable 

4-Generator System 

1. bus #10 0.120 0.100 0.110 
2. bus #10 0.124 0.120 0.130 
3. bus #10 0.134 0.130 0.135 
4. bus #10 0.151 0.143 0.146 

17-Generator System 

5. Cooper 0.202 0.200 0.202 
6. Cooper 0.205 0.200 0.210 

7. Ft. Calhoun 0.346 0.335 0.338 
8. Ft. Calhoun 0.365 0.350 0.355 
9. Ft. Calhoun 0.360 0.352 0.356 

10. Council Bluffs 0.186 0.1.92 0.193 
11. Council Bluffs 0.199 0.200 0.202 
12. Raun 0.176 0.180 0.182 
13. Raun 0.188 0.184 0.188 
14. Raun 0.190 0.190 0.195 



Table 5.4 
Stability Assessment Using Individual Machine Energy Function 

Case Fault Load Critical Vpp. Critical t , 
No. Location Description Machine(s) based on ' 

^PEi max 

4-Generator System 

1 bus #10 All loads con&t. Z #4 0.6420 0.1572 

17-Generator System 

2 Cooper All loads const. Z #2 11.0437 0.210 
3 Ft. Calhoun All loads const. Z #16 12.2501 0.350 
4 Council Bluffs All loads const. Z #12 11.5305 0.202 
5 Raun All loads const. Z #5,6 18.4312 0.1923 

^Reported from reference [2]. 
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1. The energy absorbing capacity of the network as viewed 

by internal node of the critical machine(s), Vpg (max)' 

influenced by the location as well as the composition of the 

non-linear loads around the network. In other words, when 

voltage dependent, i.e., constant current or constant-MVA, 

loads replace the constant impedance loads the transient 

characteristics of the power network are changed. For 

example, we note that the values of Vpg (max) the cases 

in table 5.2 are consistently lower than the values of the 

corresponding cases listed in table 5.4. 

2. The obtained critical clearing times are also dependent 

upon the choice of the load models. In fact, the critical 

clearing times obtained in table 5.2 were almost always 

shorter theun the corresponding results from table 5.4 (where 

all loads are represented by constant impedance model). 

This means that, for those cases studied in this chapter, 

the linear representation of the loads leads to optimistic 

results. However, this may not always be true. There are 

situations where constant impedance representation of the 

load might lead to optimistic results (e.g., compare case 

no. 8 with case no. 9, both in table 5.2). The important 

point is that the constant impedance load representation 

masks the transient voltage fluctuations and may give an 

unrealistic picture of the power network. 
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3. The mode of stability is independent of the choice of 

the load models. This means that, for the different load 

combinations studied in table 5,2, the critical machine(s) 

stays the same even when its critical energy and its 

critical clearing time do not. 

3. Two sources of error 

Finally, while performing digital simulation on the 

test networks, two sources of error were detected. 

1. When the disturbance is at (or near) one of the two 

machines at the same plant (e.g., two machines at Raun in 

the modified Iowa network), transient stability assessment 

of the system can be correctly made based on Vpg (max) 

the "dominant" machine, or even based on the critical energy 

of the equivalent of the two machines. However, when 

critical energy of the second machine alone is used for 

assessment, the results are not as reliable. The reason 

appears to be that the individual machine's energy function 

for the dominant machine is so much greater than that of the 

second machine that the generator's current injections, due 

to the non-linear loads, may tend to distort the values of 

for the two closely coupled machines. 
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2, The value of the post-disturbance stable equilibrium 

points used in the dissertation are those obtained using 

constant impedance load modelsr as in reference [2]. To 

explore how dependent this choice is on the particular load 

models used, a new set of angles were obtained using a 

succession of load flow runs for the Raun fault holding the 

generators' powers constant. The new values obtained by 

this procedure differed only slightly from the previous 

values. ̂  New cases 12-14 were run, where Vpg (max) 

computed using the new angles. However, the newly computed 

critical energies, and the corresponding critical clearing 

times, were essentially the same as those in table 5.2. 
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VI. CONCLUSIONS 

In 1982, Fouad and Vittal [2,31 proposed a criterion 

for direct assessment of first swing transient stability 

based on the individual machine energy functions. Using the 

classical model of the power system, they obtained critical 

fault clearing times that were in excellent agreement with 

those obtained by time solution. In all cases, the mode of 

instability was correctly predicted, even in very complex 

situations. 

A major shortcoming of the above work has been the 

constant impedance representation of the electrical loads. 

This linear model of the loads is an unrealistic model 

because it masks the transient voltage fluctuations that 

follow the disturbance. 

The major objectives of this dissertation have been: 

1. To replace the linear model of the loads by a more 

realistic one which accounts for the transient 

voltage changes and to develop a new expression for 

the individual machine energy function which 

incorporates the new load model. 
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2. To investigate the effects of the modified load 

representation on first swing transient stability 

characteristics of the power system. 

Efforts and accomplishments concerning the research 

objectives have been presented in the previous chapters. 

Subsequently, two sets of conclusions are drawn. First, 

conclusions are made based on the issue of proper load 

representation in stability studies. Secondly, conclusions 

are drawn based on the results presented in Chapter V. 

A. Conclusions Drawn Based on Proper Representation of 

Loads in Stability Studies 

1. Proper representation of loads as a function of voltage 

and frequency is important in power systems stability 

studies. 

2. Load modeling is a difficult task due to the stochastic 

nature of the loads. Individual loads exhibit 

different characteristics. These characteristics are 

dependent on such complex factors as time of the day, 

weather, human use patterns, etc. 
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In power system stability studies, it is not necessary 

to know the behavior of each individual load device. 

Only the aggregate behavior of the power system load is 

desired. 

When the classical model of power system is used, loads 

are represented as constant impedances. This linear 

model of the loads masks the true nature of voltage 

changes following a disturbance, 

A more realistic model of the voltage dependent loads 

is the one that either accounts for the transient 

voltage fluctuations directly or a model that 

approximates the transient voltage changes, as is the 

case in this dissertation. It is important to note 

that the order of network formulation is directly 

related to this choice. 

Conclusions Drawn Based on the Results of Chapter V 

A more realistic model of load is proposed. In this 

model, loads are represented by any desired combination 

of constant impedance, constant current or constant-MVA 
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models. The effect of the non-linear loads is 

reflected at the internal nodes of generators as 

injected currents. 

Transient voltage fluctuations are successfully 

approximated by using only the network information at 

the start of the transient period. This approximation 

technique accounts for the fast and sudden fault dips 

and ignores the slowly varying swing dips. Since there 

is no need to continuously update the voltages, load 

buses are Kron reduced and an internal node 

representation of the power system is derived. 

It was found that the faulted trajectories obtained 

using the proposed non-linear load models were in good 

agreement with the ones obtained by time solution using 

the Philadelphia Electric Company's (PECO) transient 

stability program. This comparison assured the 

fairness of the proposed load model. 

Criterion of stability suggested in references [2,3] 

was found to be valid, even when constant impedance 

loads were replaced by voltage dependent constant 

current or constant-MVA loads. Nevertheless, the peak 
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of the potential energy reached by the critical 

machine(s) is influenced by the presence of the non­

linear load models. This effect has the following 

consequences: 

First, the properties of the power network are closely 

coupled to the voltage characteristics of the loads. 

Secondly, the critical energy or the energy absorbing 

capacity of the network as viewed by the internal node 

of the critical machine(s) is also dependent on the 

choice of the load models. 

5. Critical fault clearing times, or the time at which the 

critical machine's total energy reaches its critical 

energy, is also influenced by the voltage 

characteristics of the loads. In almost all cases 

studied, the obtained critical fault clearing times 

were reduced as a result of replacing linear load 

models by non-linear load models. 

However, it is not always clear whether 

pessimistic or optimistic results should be expected. 

Constant impedance representation of the loads might 

indicate a more stable ^stem in one case while it 

might indicate a less stable system in another. The 

same is true for non-linear voltage dependent loads 
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such as constant current or constant-MVA loads, the 

primary difference is that the results obtained using 

non-linear load models are more realistic and therefore 

tend to reflect the true system response. 

The machines tending to lose synchronism seem to be 

independent of the voltage characteristics of the 

loads. Howeverf depending on the characteristics of 

the power system and also depending on the nature of 

the disturbance, there exists a possibility of a 

situation where the mode of instability will be 

dependent on the model of the loads. 

The critical fault clearing times obtained using the 

modified individual machine energy functions were found 

to be in close agreement with the corresponding time 

solution results obtained using the Philadelphia 

Electric Company's (PECO) transient stability 

program. However, the two sets of results are not 

identical. This is due to the fact that in the method 

of this dissertation the transient voltage fluctuations 

are approximated while the same voltages are 

continuously updated (no approximation) in the other 

method. It must be noted that the mismatch between the 

two sets of results vanishes as all loads are 

represented by the linear model. 
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C THIS PROGRAM INPUTS BUS DATA,LINE DATA, 
C TRANSFORMER DATA, PRE-FAULT LOAD FLOW DATA, 
C GENERATOR PARAMETERS,FAULT LOCATION AND 
C LINES CLEARED TO CALCULATE REDUCED FAULTED 
C Y-BUS,POST-FAULT Y-BUS AND VOLTAGE AND 
C ANGLE AT GENERATOR INTERNAL BUS. 
C 

COMPLEX Y(170,170),E(170),VT(39),CT(39) 
COMPLEX YF,YR(120,120),Y1(40,40),Y2(40,40) 
COMPLEX YSHUNT,YIJ,ZIJ,YII,YJJ,CURR,S,EDP 
COMPLEX YFICT,SI(170),CI(170) 
COMPLEX YNMF(90,90),YMMF(90,90),YNMMF(90,90),BBF(90,90) 
COMPLEX CIF(40),EPF(170),CII(170),CM(170),CMM(170) 
COMPLEX DRP(90),DAVT(90),EFF(170),SM(170),CC(170),CCC(170) 
INTEGER TYPE(170),GBUS(170) 
DIMENSION PBASE(39),H(39),R(39),XD1(39).DAMP(39) 
DIMENSION ODT(39,6),PM(40),EF(40) 
DIMENSION FK(40),ALPHAF(40),LI(90) 

C -
C START READING DATA. 
C -

READ(15,1000)NGEN,NI 
1000 F0RMAT(2I5) 
C 
C READ GENERATOR PARAMETERS. 
C - - -

DO 20 I=1,NGEN 
READ(15,lOlO)PBASE(I),H(I),R(I),XD1(I),DAMP(I) 

1010 F0RMAT(8F10.4) 
C CONVERT THE DATA TO lOOMW BASE 

C=100.0/PBASE(I) 
H(I)=H(I)/C 
R(I)=R(I)*C 
XD1(I)=XD1(I)*C 
DAMP(I)=0.0 

20 CONTINUE 
C -
C THIS SEGMENT OF THE CODE PERFORMS THE FOLLOWING FUNCTIONS 
C 
C 1- FORMS 3 Y-BUS ARRAYS 
C 2. REDUCES Y-BUSES TO INTERNAL NODES 
C 3. CALCULATES GENERATOR INITIAL CONDITIONS 
C 
C INITIALIZE VARIABLES 

DO 10 1=1,170 
E(I)=(0.0,0.0) 
TYPE(I)=0 
DO 10 J=l,170 

10 Y(I,J)=(0.0,0.0) 
READ(15,990)NBUS,NGEN 
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990 F0RMT(2I5) 
C LOOP HERE FOR EACH BUS 

N=0 
K=^GEN 

16 READ(15,1001)I,NrYPE,EMAG,ARG,PLZ,QLZ,PG,QG,PLI,QLI,YSH0NT 
1001 F0RMAT(I5,T18,I1,F6.4,F6.2,6F6.1,T67,2F6.3) 

IF(I.EQ.O)GO TO 17 
IF(NTYPE.NE.2)G0 TO 159 
READ(15,158)EMAGPF,ARGPF,PLM,QLM,EMAGF 

158 F0RMAT(T19,F6.4,F6.2,2F6.1,F6.4) 
ARGPF=ARGPF*3.14159/180.0 
EPF(I)=EMAGPF*CMPLX(COS(ARGPF),SIN(ARGPF)) 
EFF(I)=EMAGF*CMPLX(COS(ARG),SIN(ARG)) 

159 ARG=ARG*3.14159/180.0 
Y(I,I)=Y(I,I)+YSHUNT+CMPLXCPLZ,-QLZ)*.01/EMAG**2 
TYPECI)=NTYPE 
E(I)=EMAG*CMPLX(COS(ARG),SIN(ARG)) 
SI(I)=CMPLX(PLI,QLI)*0.01 
SM(I)=CMPLX(PLM,QLM)*0.01 
CC(I)=CONJG(SI(I)/E(I)) 
IF(NTYPE.NE.2)G0 TO 164 
CCC(I)=CONJG(SI(I)/EPF(I)) 
CMCI)=CONJG(SM(I)/EFF(I)) 
CI(I)=CC(I)+CM(I) 
CMMCI)=CONJG(SM(I)/EPF(I)) 
CII(I)=CCC(I)+CMM(I) 

164 IFCTYPE(I).EQ.1)G0 TO 18 
Yd, I)=Y(I, I)+CMPLX(-PG,QG)*. 01/EMAG**2 
IF(TYPECI).EQ.2)G0 TO 19 
GO TO 16 

18 N=N+1 
GBUS(N)=I 
VT(N)=E(I) 
CT(N)=CMPLX(PG,QG) 
GO TO 16 

19 K=K+1 
GBUS(K)=I 
GO TO 16 

17 CONTINUE 
NGEN#* 

C LOOP HERE FOR EACH LINE TO BE READ 
21 READ(15,1003)1,J,ZIJ,B 
1003 FORMAT(2I5,3F10.5) 

IF (I.EQ.O)GO TO 25 
YIJ=(1.0,0.0)/ZIJ 
Yd, I)=Y(I, I)+YIJ+CMPLX(0.0 ,B/2.0) 
Y(J,J)=Y(J,J)+YIJ+CMPLX(0.0,B/2.0) 
Yd,J)=Y(I,J)-YIJ 
Y(J.I)=Y(J,I)-YIJ 
GO TO 21 
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25 CONTINUE 
C LOOP HERE FOR EACH TRANSFORMER CARD TO BE READ 
30 READ(15,1004)I,J,ZIJ.RATIO 
1004 F0RMAT(2I5,2F10.5,F6.4) 

IF(I.EQ.O)GO TO 35 
YIJ=(1.0,0.0)/ZIJ 
YII=YIJ*(1.O/RATIO-1.0)/RATIO 
YJJ=YIJ*(1.0-1.O/RATIO) 
YIJ=YIJ/RATIO 
Y(I,I)=Y(I,I)+YII+YIJ 
YCJ,J)=Y(J,J)+YJJ+YIJ 
Y(I,J)=Y(I,J)-YIJ 
Y(J,I)=Y(J,I)-YIJ 
GO TO 30 

35 CONTINUE 
DO 195 N=1,NGEN 
PG=REAL(CT(N)) 
QG=AIMAG(CT(N)) 
CT(N)=CONJG(CMPIXCPG,QG)/VT(N)) 
CT(N)=CT(N)/100. 

195 CONTINUE 
DO 1934 I=1,NBUS 
DO 1934 J=1,NBUS 
WRITE(11)Y(I,J) 

1934 CONTINUE 
C -
C INITIALIZATION OF GENERATOR VARIABLES 
C CALCULATE VOLATAGE BEHIND TRANSIENT REACTANCE 
C 

DO 280 I=1,NGEN 
EDP=VT(I)+CMPLX(R(I),XD1(I))*CT(I) 
EF(I)=CABS(EDP) 
DEL=ATAN2 (AIMAG(EDP) ,REAL(EDP) ) 
CURR=CT(I) 
CA=CABS(CT(I)) 
CURR=VT(I)*CONJG(CT(I)) 
PE=REAL(CURR) 
PE=PE+CA*CA*R(I) 
PM(I)=PE 
OUT(I,1)=0.0 
0UT(I,2)=DEL 
WRITE(16)I,EF(I),DEL,PE 

280 CONTINUE 
READ(15,2000)NFAULT,JFAULT,YF 
KC0UNT=0 

2000 FORMAT(2I5,2F10.4) 
REWIND 11 
DO 1939 I=1,NBUS 
DO 1939 J=1,NBUS 
READ(ll) Y(I,J) 
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1939 CONTINUE 
DUM=CABS(YF) 
IF(DUM,GT.1.0E-08) GO TO 230 

C NO FAULT IMPEDANCE 
C ZERO ROW AND COLUMN AT THE FAULTED BUS 

IROW=WAULT 
DO 38 I=1,NBUS 
Y(I,NFAULT)=(0.0,0.0) 
Y(NFAULT,I)=CO.0,0.0) 

38 CONTINUE 
GO TO 39 

230 Y(NFAULT,NFAULT)=Y(NFAULT,NFAULT)+YF 
GO TO 39 

39 CONTINUE 
C PERFORM KRON REDUCTION 

DO 60 M=1,NBUS 
IF(M.EQ.IROW) GO TO 60 
IF(TYPE(M).EQ.l) GO TO 60 
IF(TYPE(M).EQ.2) GO TO 60 
IF(CABS(YCM,M)).LT.1.0E-08)GO TO 60 
TYPE(M)=-1 
DO 50 I=1,NBUS 
IF(TYPE(I).EQ.-1)G0 TO 50 
DO 40 J=1,NBUS 
IF(TYPE(J).EQ.-1)G0 TO 40 
Y(I,J)=Y(I,J)-Y(I,M)*Y(M,J)/Y(M,M) 

40 CONTINUE 
50 CONTINUE 
60 CONTINUE 

IR0W=0 
C RESET TYPE FOR OTHER CALLS 

NGENI=NGEN+NI 
DO 65 I=1,NBUS 
IF(TYPE(I).EQ.l) GO TO 65 
IF(TYPE(I).EQ.2) GO TO 65 
TYPE(I)=0 

65 CONTINUE 
DO 85 I=1,NGENI 
KK=GBUS(I) 
DO 83 K=1,NGENI 
KN=GBUS(K) 
YR(I,K)=Y(KK,KN) 

83 CONTINUE 
85 CONTINUE 
C AUGMENT Y-MATRIX WITH GENERATOR BUSES 
C ELIMINATE THE TERMINAL BUSES 

N1=NGEN+NI+1 
DO 80 I=1,NGEN 
YR(N1,N1)=YR(I,I) 
YR(I,I)=(0.0,0.0) 
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DO 75 J=1,NGENI 
YR(N1,J)=YR(I,J) 
YR(I,J)=(0.0,0.0) 
YR(J,N1)=YR(J,I) 
YR(J,I)=(0.0,0.0) 

75 CONTINUE 
C ADD IN GENERATOR BUS 

YFICT=CMPLX(R(I),XD1(I)) 
YFICT=1./YFICT 
YR(I,I)=YFICT 
IF(CABS(YR(N1,N1)).EQ.O.O)GO TO 80 
YR(N1,N1)=YR(N1,N1)+YFICT 
YR(I,N1)=-YFICT 
YR(N1,I)=-YFICT 
DO 76 M=1,NGENI 
DO 76 N=M,NGENI 
YR(M,N)=YR(M,N)-YR(M,N1)*YR(N1,N)/YR(N1,N1) 
YR(N,M)=YR(M,N) 

76 CONTINUE 
80 CONTINUE 

IF(NI.EQ.O)GO TO 485 
C START PARTITIONING THE FAULTED Y-BUS 

NGENI=NGEN+NI 
DO 402 I=1,NGEN 
KK=NGEN+1 
DO 401 J=KK,NGENI 
K=J-NGEN 
YNMF(I,K)=YR(I,J) 

401 CONTINUE 
402 CONTINUE 

Lt=NGEN+l 
DO 405 I=LL,NGENI 
DO 404 J=LL,NGENI 
K=I-NGEN 
L=J-NGEN 
YMMF(K,L)=YR(I,J) 

404 CONTINUE 
405 CONTINUE 

C OBTAIN THE INVERSE MATRIX FOR YMMF 
CALL DECOMP(NI,YMMF,LI,NI) 
DO 410 1=1,NI 
DRP(I)=CMPLX(0.0,0.0) 

410 CONTINUE 
DO 415 1=1,NI 
DRP(I)=CMPLXfl.O,0.0) 
CALL SOLVE (NI, YMMF,LI,NI ,DRP,DAVT) 
DO 420 J=1,NI 
BBF(J,I)=DAVT(J) 

420 CONTINUE 
DRP(I)=CMPLX(0.0,0.0) 
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415 CONTINUE 
C START FORMING THE PRODUCT YNMF*BBF 

DO 430 I=1,N6EN 
DO 425 J=1,NI 
YNMMFCI,J)=CMPLX(0.0,0.0) 

425 CONTINUE 
430 CONTINUE 

DO 440 I=1,NGEN 
DO 435 J=1,NI 
K=1 
D=1 

445 YNMMF(I,J)=YNMMF(I,J)+YNMF(I,K)*BBF(L,J) 
K=K+1 
L=L+1 
IF(K.LE.NI)GO TO 445 

435 CONTINUE 
440 CONTINUE 

DO 450 1=1,NI 
J=I+NGEN 
JJ=GBUS(J) 
CI(I)=CI(JJ) 
CII(I)=CIICJJ) 

450 CONTINUE 
DO 455 I=1,NGEN 
CIF(I)=CMPLX(0.0,0.0) 

455 CONTINUE 
IF(KC0UNT.LT.1)G0 TO 193 
DO 192 1=1,NI 
CI(I)=CII(I) 

192 CONTINUE 
193 DO 470 I=1,NGEN 

K=1 
If 1 

460 CIF(I)=CIF(I)+YNMMF(I,K)*CI(L) 
K=K+1 
L=L+1 
IF(K.LE.NI)GO TO 460 
FK(I)=CABS(CIF(I)) 
IF(FKCI).EQ.O.O) GO TO 462 
CIFI^REAL(CIFCI)) 
CIFI=AIMAG(CIF(I)) 
ALPHAF(I)=ATAN2 CCIFI ,CIFR) 
GO TO 470 

462 ALPHAF(I)=0.0 
470 CONTINUE 
C FK'S & ALPHAF'S ARE PARAMETERS OF THE SWING EQUATIONS. 

DO 485 K=1,NI 
L=NI+NGEN+1-K 
M=L 

LLD=L-1 



475 
480 
485 

599 

1937 

1930 
1945 

1940 

1941 

1938 
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C— 
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DO 480 1=1,ILL 
DO 475 J=1,LLL 
YR(I, J)=YR(I, J) - (YR(L, J)*YR(I ,M)/YR(L,M) ) 
CONTINUE 
CONTINUE 
CONTINUE 
IF(NI.NE.O.O)GO TO 599 
DO 599 I=1,N6EN 
FK(I)=0.0 
ALPHAr(I)=0.0 

CONTINUE 
KCOUNT^KCOUNT+1 
IF(KC0UNT.GT.1)G0 TO 1941 
DO 1937 I=1,NGEN 
DO 1937 J=1,NGEN 
Y1(I,J)=YR(I,J) 
WRITE(10) Y1(I,J) 
CONTINUE 
DO 1945 I=1,NGEN 
WRITE(10) FK(I),ALPHAF(I) 

WRITE(6,1930)FK(I) .ALPHAFd) 
FORMATC2F10.6) 
CONTINUE 
REWIND 11 
DO 1940 I=1,NBUS 
DO 1940 J=1,NBUS 
READ(ll) Y(I,J) 
CONTINUE 
READ(15,2000)NFAULT,JFAULT,YF 
IF (NFAULT.EQ.O.AND. JFAULT.EQ.O)GO TO 39 
READ(15,1003)1,J,ZIJ,B 
YF=(1.0,0.0)/ZIJ 
Y(NFAULT, JFAULT)=Y (NFAULT, JFAULT)+YF 
Y( JFAULT,NFAULT)=Y(NFAULT,JFAULT) 
Y(NFAULT,NFAULT)=Y(NFAULT,NFAULT) -YF-CMPLX(0.0 ,B/2.0) 
Y(JFAULT,JFAULT)=Y (JFAULT, JFAULT) -YF-CMPLX(0.0,B/2.0) 
GO TO 39 
DO 1938 I=1,NGEN 
DO 1938 J=1,NGEN 
Y2(I,J)=YR(I,J) 
WRITE(12) Y2(I,J) 
CONTINUE 
DO 1950 I=1,NGEN 
WRITE(12) FK(I),ALPHAF(I) 

WRITE(6,1960)FK(I),ALPHAF(I) 
F0RMAT(2F10.6) 
CONTINUE 
STOP 
END 
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SUBROUTINE DECOMPOSE 

SUBROUTINE DECOMP(N.JACOB,LI,N3) 
DIMENSION JACOB(90,90),LI(90),JM(90) 
COMPLEX JACOB,T 
LI(N)=1 
DO 6 K=1,N 
IF(K.EQ.N) GO TO S 
KP1=K+1 
M=K 
LI(K)=M 
IF (M. NE. K) LI (N)=-LI (N) 
T=JACOB(M,K) 
JACOB(M.K)=JACOB (K,K) 
JACOB(K,K)=T 
TM=CABS(T) 
IF(TM.EQ.O.O)GO TO 5 
DO 2 J=KP1,N 

2 JACOB(J,K)=-JACOB (J,K)/T 
DO 4 J=KP1,N 
T=JACOB(M,J) 
JACOB (M, J)=JACOB (K.J) 
JACOB(K,J)=T 
TM=CABS(T) 
IF(TM.EQ.O.O)GO TO 4 
DO 3 I=KP1.N 

3 JACOBd, J)=JACOB(I, J)+JACOB (I ,K)*T 
4 CONTINUE 

JM(K)=CABS(JACOB(K.K)) 
IF ( JM(K).EQ.0.0)LI(N)=0 

6 CONTINUE 
RETURN 
END 

C SUBROUTINE SOLVE 
C -

SUBROUTINE SOLVE(N.JACOB.LI.N3,DRP,DAVT) 
COMPLEX JACOB,DAVT,DRP,D,BV.T 
DIMENSION JACOB(90,90),LI(90),DRP(90),DAVT(90).P(90),BI(90) 
DIMENSION XM(90),CHP(90,90) 
DO 5 1=1,N 
DAVT(I)=DRP(I) 
CONTINUE 
IF(N.EQ.1)G0 TO 
NM1=N-1 
DO 7 K=1,NM1 
KP1=K+1 
M=LI(K) 
T>=DAVT(M) 
DAVT(M)=DAVT(K) 
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DAVT(K):^ 
DO 7 I=KP1,N 

7 DAVT(I)=DAVTCI)+JACOB(I,K)*T 
DO 8 KB=1,NM1 
KM1=N-KB 
K=KM1+1 
DAVT(K)=DAVT(K) / JACOB (K,K) 
T=-DAVT(K) 
DO 8 I=1,KM1 

8 DAVT(I)=DAVT(I)+JACOB(I,K)*T 
9 DAVT(1)=DAVT(1)/JACOB(1,1) 

RETURN 
END 

C THIS PROGRAM READS IN THE OUTPUT OF PROGRAM 'YBUS* 
C FORMS THE SWING EQUATIONS AND INTEGRATES THE SWING 
C26EQUATI0NS USING THE SUBROUTINE 'DVERK' FROM THE 
C IMSL LIBRARY.IT CALCULATES INDIVIDUAL MACHINE ENERGY 
C AT EACH TIME STEP USING TRAPEZOIDAL INTEGRATION RULE. 
C 

COMPLEX YM(40,40),Y1(40,40),Y2(40,40) 
REAL EF(40),HI(40),DEL(40),OMGA(40),PM(40),H(40) 
REAL CF(40,40),DF(40,40),CPF(40,40),DPF(40,40) 
REAL HM(40),Y(80),VP(40),THETA(40),P(40),SEP(40) 
REAL FUNCP(40),FUNC0(40),VK(40),VT0T(40),ANG(40) 
REAL PEE(40) 
REAL C(24),W(80,9),X,TOL,XEND 
EXTERNAL FCNl 
COMMON YM,PM,HI,EF,NGEN 
COMMON FK(40),ALPHAF(40),PFK(40),ALPHPF(40) 

G 
C START READING DATA 

READ(17,1000) NGEN,TSTEP,TCL,TF 
1000 F0RMAT(I5,5X,3F10.4) 

DO 100 I=1,NGEN 
READC17,1001)H(I) 

1001 FORMAT(F10.6) 
100 CONTINUE 

DO 101 I=1,NGEN 
READ(16)KKI,EF(I),DEL(I),PM(I) 

101 CONTINUE 
DO 102 I=1,NGEN 
DO 102 J=1,NGEN 
READ(IO) Y1(I,J) 

102 CONTINUE 
DO 50 I=1,NGEN 
READ(IO)FKCI),ALPHAF(I) 
WRITE(6,420)FK(I),ALPHAF(I) 

420 F0RMAT(2F12.6) 
50 CONTINUE 

DO 103 I=1,NGEN 
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DO 103 J=1,NGEN 
READ(12) Y2(I,J) 

103 CONTINUE 
DO 51 I=1,NGEN 
KEÔD(12)PFK(I),ALPHPF(I) 
WRITE(6,430)PFK(I) .ALPHPFCI) 

430 F0RMAT(2F12.6) 
51 CONTINUE 

DO 104 I=1,NGEN 
DO 104 J=1,NGEN 
YM(I,J)=(0.0,0.0) 

104 CONTINUE 
DO 105 I=1,NGEN 
DO 105 J=1,NGEN 
YM(I,J)=Y1(I,J) 

105 CONTINUE 
DO 106 I=1,NGEN 
DO 106 J=1,NGEN 
CF (I, J)=EF CI )*EF (J)*AIMAG (YM( I, J) ) 
DF(I,J)=EFCI)*EF(J)*REAL(YM(I,J)) 
CPF CI,J)=EF(I)*EF(J)*AIMAGCY2(I,J)) 
DPFCI,J)=EF(I)*EF(J)*REAL(Y2CI,J)) 

106 CONTINUE 
PI=3.14159 
DO 107 I=1,NGEN 
READ(17,1754) SEP(I) 

1754 FORMATCF8.4) 
SEP(I)=SEP(I)*PI/180. 

107 CONTINUE 
HMT=0.0 
DO 108 I=1,NGEN 
HM(I)=H(I)/(PI*60.0) 
HI(I)=2.0*H(I) 
HMT=HMT+HM(I) 

108 CONTINUE 
DO 109 I=1,NGEN 
J=I+NGEN 
Y(I)=1.0 
Y(J)=DEL(I) 
VP(I)=0.0 
FUNC0(I)=0.0 

109 CONTINUE 
C 

NW=2*NGEN 
N=2*NGEN 
TOL=0.0001 
IND=1 
X=0.0 
XEND=0.0 
TIMES=0.0 
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IF(TIMES.EQ.0.0) GO TO 110 
999 XEND=XEND+TSTEP 
99 CALL DVERK(N,FCN1,X,Y,XEND-T0L,IND,C,NW,W,IER) 
110 COIA=0.0 

cois=o.o 
DO 111 I=1,NGEN 
J=I+NGEN 
COIS=C0IS+HM(I)*Y(I)*377.0 
C0IA=C0IA+HM(I)*Y(J) 

111 CONTINUE 
COIS=COIS/HMT 
COIA=COIA/HMr 
DO 112 I=1,NGEN 
J=I+NGEN 
0MGA(I)=Y(I)*377.O-COIS 
THETA(I)=Y(J)-COIA 

112 CONTINUE 
PT=0.0 

C COMPUTE PCOI 
DO 113 I=1,NGEN 
P(I)=PM(I)-DPF(I,I) 
PT=PT+P(I) 

113 CONTINUE 
C CALCULATE INDIVIDUAL MACHINE POTENTIAL ENERGY 

DE=0.0 
NGENN=NGEN-1 
DO 115 I=1,NGENN 
K=I+1 
DO 114 J=K,NGEN 
DE=DE+2 .*DPF(I,J)*(COS (THETA(I) -THETA( J) ) ) 

114 CONTINUE 
115 CONTINUE 

DC=0.0 
DO 301 I=1,NGEN 
DC=DC+EF ( I )*PFK (I)* (COS (THETA ( I ) -ALPHPF (I))) 

301 CONTINUE 
PCOIF=PT-DE+DC 
DO 117 I=1,NGEN 
K=I+1 
P(I)=PM(I)-DPF(I,I) 
PEE(I)=0.0 
DO 116 J=1,NGEN 
IF(J.EQ.I)GO TO 116 
PEE ( I )=PEE (I)+CPF (I ,J)*SIN(Y (NGEN+I )-Y (NGEN+J) )+ 

2 DPF (I ,J)*COS (Y (NGEN+I ) -Y (NGEN+J) ) 
116 CONTINUE 

PEE (I )=PEE (I) -PFK(I )*EF (I )*COS (THETA (I) -ALPHPF (I ) ) 
117 CONTINUE 

DO 118 I=1,NGEN 
FUNCP (I )=P ( I ) -PEE (I ) - (KM ( I )*PCOIF/fflfr) 
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118 CONTINUE 
DO 119 I=1,NGEN 
VP(I)=VP(I)-0.5*CFUNCP(I)+FUNC0CI))*(THETA(I)-SEP(I)) 

119 CONTINUE 
C • COMPUTE THE KINETIC ENERGY 

DO 120 I=1,NGEN 
VK(I)=0.5*HM(I)*0MGACI)*0MGA(I) 
VT0T(I)=VP(I)+VKCI) 
SEP(I)=THETA(I) 
FUNCO(I)=FUNCP(I) 

120 CONTINUE 
DO 121 I=1,NGEN 
J=I+NGEN 
ANG(I)=Y(J)*(180.0/PI) 

121 CONTINUE 
C OUTPUT THE RESULTS 

WRITE(20,1061)XEND 
1061 F0RMAT(//F10.6) 

WRITE(20,1058) 
1058 F0EMAT(//5X,'C0IA',8X,'C0IS') 

WRITE(20,1059)COIA,COIS 
1059 F0RMAT(F9.5,3X,F9.5) 

WRITE(20,1063) 
1063 F0RMAT(/2X. 'GEN#' ,5X, 'OMEGA' ,8X, 'THETA' ,12X, 

1 'POT.EN' ,11X, 'KIN.EN* ,10X, 'TOT.EN' ,lOX, 'DELTA') 
DO 1050 I=1,NGEN 
TET=THETA(I)*180.0/PI 
WRITE(20,1062)1,OMGA(I),TET,VP(I),VK(I),VTOT(I),ANG(I) 

1062 F0RMAT(2X,I3,2X,F8.5,3X,F13.6,3X,F14.8,3X,F14.8,3X,F14.8, 
1 6X,F9.5) 

1050 CONTINUE 
TIMES=TIMES+1.0 
IF(TIMES.EQ.1.0)GO TO 999 
IF(XEND.LT.TCL)GO TO 9999 
DO 122 I=1,NGEN 
DO 122 J=1,NGEN 
YM(I,J)=Y2(I,J) 
FK(I)=PFK(I) 
ALPHAF(I)=ALPHPF(I) 

122 CONTINUE 
9999 XEND=XEND+TSTEP 

IF(XEND.LE.TF)GO TO 99 
123 CONTINUE 

STOP 
END 
SUBROUTINE FCN1(N,X,Y,YPRIME) 
INTEGER N 
REAL Y(N),YPRIME(N),X 
REAL PE(40),PR(40),EF(40),AP(40) 
REAL C(40,40),D(40,40),PM(40),HI(40) 
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COMPLEX YM(40,40) 
COMMON YM,PM,HI,EF,NGEN 
COMMON FK(40) ,ALPMF(40) ,PFK(40) ,ALPHPF(40) 
DO 10 I=1,NGEN 
DO 10 J=1,NGEN 
C(I,J)=EF(I)*EF(J)*AIMAG(YMCI,J)) 
D(I,J)=EF(I)*EF(J)*REALCYMCI, J) ) 
CONTINUE 
DO 20 I=1,NGEN 
K=I+NGEN 
PR(I)=PM(I)-D(I,I) 
PE(I)=0.0 
DO 15 J=1,NGEN 
IF(J.EQ.I) GO TO 15 
PE (I)=PE(I)+C (I, J)*SIN(Y(NGEN+I) -YCNGEN+J) )+ 
DCI,J)*COS(Y(NGEN+I)-Y(NGEN+J)) 
CONTINUE 
PE(I)=PE (I)-FK(I)*EF(I)*COS (Y(NGEN+I)-ALPHAF(I) ) 
AP(I)=PR(I)-PE(I) 
YPRIME(I)=AP(I)/HI(I) 
YPRIME(K)=377.0*(Y(I)-1.0) 
CONTINUE 
RETURN 
END 


