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ABSTRACT 

Recent calls by the National Research Council and the National Science Foundation 

have stressed the need for excellence in undergraduate mathematics and science education 

with emphasis placed on inquiry learning. The purposes of this qualitative study include (1) 

the examination of the pursuit of inquiry in two collegiate mathematics classrooms 

incorporating methods of mathematical modeling and (2) the generation of a quantitative 

representation of characteristics of an inquiry environment. 

Instructors and students in two classes of laboratory-based calculus for life sciences 

majors were observed. To capture descriptions of the environments and students' 

mathematical modeling skUls, the classes surrounding three science investigations were 

audio or video recorded; interviews were conducted with one instructor and six students in 

the researcher's class; and copies of students' lab reports were obtained. Transcripts were 

coded using various scales to produce graphical images of the classroom environments. 

The data were used to describe and document the effects of both classroom 

environments. Instructors' goals and time factors influenced the development of inquiry, 

mathematical modeling, symbol and language use, and the amount of reflection. In both 

classes when time was of minimal concern, the class pursued students' questions, developed 

students' modeling methods and notation, and consistently and frequently linked the 

mathematics and science contexts. When pressured by time to cover specific mathematical 

topics, the class pursued instructors' questions and methods and less frequently linked the 

mathematics and science contexts. Most students in both classes retained a process 

conception of mathematical modeling as they could apply the developed methods but rehed 

on instructor prompts to relate the mathematics and science contexts. 
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The pictorial representations of the classroom environments illustrated that both 

classes had periods reflecting a constructivist inquiry environment. The graphs highlighted 

the classes' implementation of multiple cycles of inquiry, periods of consistency and 

inconsistency in connecting the mathematics and science, and intervals in which students' or 

instructor's ideas dominated discussion. Class observations suggested that the pictures 

lacked clarity in identifying periods of agreement or disagreement of the resonating concepts 

of students and instructors. Recommendations are made for future examination and 

representation of inquiry environments. 
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CHAPTER 1 

INTRODUCTION 

National organizations together with mathematics and science education researchers 

have called for the implementation of inquiry at all levels of education. The National 

Research Council (1996) urged colleges and universities across America to take action in 

improving the science, mathematics, and engineering education undergraduate students 

receive. One component of their call for improvement encouraged programs in which "all 

students have access to supportive, excellent undergraduate education in science, 

mathematics, engineering, and technology, and all students learn these subjects by direct 

experience with the methods and processes of inquiry" (NRC, 1996, p. 4). The National 

Science Foundation (NSF) reiterated this goal of inquiry in undergraduate education by 

imploring the opportunity for every student to be involved in inquiry and not just a "hands-

on" experience (NSF, 1996). The National Council of Teachers of Mathematics in the 

Principles and Standards for School Mathematics (2000) encouraged the use of inquiry in 

mathematics classrooms since the processes of science can inspire an approach to solving 

mathematical problems. 

The Standards-based reform efforts of both the mathematics and science education 

communities imply that all students need to leam more. Learning means more than to be 

shown or memorize or repeat (Romberg & Collins, 2000). "Learning involves asking, 

investigating, formulating, representing, and using strategies to solve problems, and then 

reflecting on the mathematics and the science being used" (p. 82). Revising the curriculum 

and class environment for "learning" to take place suggests that classrooms need to become 

settings in which hypotheses are made, arguments are presented, strategies are discussed, and 
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discourse is exchanged regularly. Romberg and Collins call for research on the effects of 

reform in classroom environments supporting these characteristics. 

The goals of this research study are to explore the implementation of an inquiry 

approach in a college mathematics course, represent the inquiry environment both 

qualitatively and quantitatively, explore what advances and what hinders the development of 

the inquiry environment in light of the instructors' goals, and suggest implications for future 

studies of inquiry in mathematics classrooms. This study will not and cannot prove that an 

inquiry oriented approach in the college mathematics setting provides the best learning 

environment for a college mathematics course (Hiebert, 1999; Kilpatrick &, Silver, 2000; 

Schoenfeld, 2000). Instead, descriptions of the positive and negative consequences of the 

inquiry process pursued will be given with recommendations for those intending to 

implement inquiry in their classroom environments. 

The Inquiry Process 

Process Component 

Inquiry in the mathematics or science classroom pertains both to the organizing 

structure or process as well as the philosophy behind the various stages. As a process, 

inquiry is a "multifaceted activity" involving the presentation of questions, assessment of 

prior knowledge, investigations to gather data to address the questions, interpretation and 

analysis of the data, communication and explanation of the results, refinement of previous 

questions, and consideration of new questions (National Research Council, 2000). Placed 

into four main stages, the process of inquiry displayed in Figure 1.1 consists of the 

prediction, experiment, analysis, and reflection stages. 
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Pre-Laboratory 
Make hypotheses and 

conjectures 
Design experiment 

Experiment 
Gather Data 

N • • V 

Analysis 
Find a mathematical model 
to answer question being 

addressed 

Reflection 
Evaluate, interpret, and 

refine analysis 
Generate new questions 

Figure 1.1. The inquiry process 

As illustrated in Figure 1.1, the inquiry process may be implemented as a cycle. 

When a new problem or question is launched, the prediction and discussion stage provides 

students with the opportunity to make hypotheses about the concept or phenomena based on 

the problem situation and their prior knowledge. In addition, students plan an experiment to 

test their hypotheses. The experiment stage provides students with an opportunity to gather 

data to test their hypotheses. The data are analyzed mathematically to explain the 

phenomena and promote students' understanding of the mathematics embedded in the 

analysis. Students then elaborate on the procedures and generalize the mathematics. During 

the reflection stage, students assess what procedures have been implemented, how the 
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original question or problem was answered, and how the procedures can be applied to other 

problems. New questions raised may be investigated in additional cycles of inquiry. 

Philosophical Component 

The philosophical component to inquiry emphasizes the behaviors, frames of mind, 

and attitudes behind the instructional strategies and process of inquiry in the classroom. The 

instructional strategies emphasize a student-centered environment in which students interact 

with the mathematics, the instructor, and other students. Stressed with student-centered 

techniques are issues of student-ownership of the problems and solutions. Hiebert et al. 

(1997) stress students' ownership of the mathematics indicating that a student must be 

challenged by a problem and must want to know the answer. The student must set a goal of 

resolving the problem. The goal might come from the student or be adopted by the student 

after listening to peers or the instructor. Due to the complexity of the relationship between 

teacher and learner (and between two learners) the mere transfer of a goal from one to 

another by command is simply not possible (Ernest, 1991). As Hiebert et al. state, the learner 

must adopt the goal. 

To accomplish this goal setting and resolution, Zevin (1973) elaborates that the 

inquiry classroom should be characterized by behaviors stressing the extensive use of student 

ideas, questioning by both students and teachers with an emphasis on higher cognitive level 

questions, and wide and frequent student participation. Lecturing and recitation should be 

kept to a minimum in an inquiry environment, and students should raise varied ideas and 

questions representing the conceptual frames each holds in consciousness. As the inquiry 

process develops and evolves with reflection, students' questions should be resolved and 

their goals met. 
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The National Research Council (NRC) and National Council of Teachers of 

Mathematics (NCTM) identified several of the same components of the pedagogy involved 

in students' learning in an inquiry environment. The NRC (2000) classified essential features 

of classroom inquiry. These essential features include the learner's engagement of 

scientifically oriented questions, the priority to evidence in responding to questions, the 

formulation of explanations from evidence, the connection of explanations to scientific 

knowledge, and the communication and justification of explanations. 

In their Principles and Standards for School Mathematics. NCTM (2000) proposed 

that students' understanding of mathematical ideas be built as they engage in tasks and 

experiences designed to deepen and connect their knowledge. The Standards are reflective of 

characteristics of an inquiry environment. NCTM calls for students' predictions and 

hypotheses with the students' development of questions, particularly when working with 

data. Students should "formulate questions that can be addressed with data and collect, 

organize, and display relevant data to answer them" (p. 49). Analysis is encouraged as 

students should "represent and analyze mathematical situations and structures using algebraic 

symbols" (p. 38). As students analyze their mathematics, they should "monitor and reflect 

on the process of mathematical problem solving" (p. 54) and "develop and evaluate 

inferences and predictions" (p. 50). The Principles recommended by the NCTM encourage 

instructors to promote an environment of inquiry with student discussion and collaboration, 

student justification, and emphasis on developing mathematical argument, reasoning, and 

reflection. A classroom reflective of the NCTM Standards mirrors an inquiry environment. 
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Why Inquiry? 

The choice to pursue the investigation of inquiry in mathematics education was 

founded primarily on three components. First, teaching a calculus class for life-sciences 

students led to the search for methods of instruction which accommodate students' 

constructions of mathematics. The course implemented data collection, and the question 

arose of how the methods scientists used in data collection could be applied in mathematics 

instruction. Secondly, the inquiry process is a potential application of constructivist learning 

theory. The association between the constructivist learning theory and the inquiry process 

opened exploration of how the mathematics and science components could be linked to 

promote symbolic reasoning, to support students' connections between the mathematics and 

science contexts, to encourage the resonating of compatible conceptual structures in students 

and instructor, to incorporate reflection, and to build community in the classroom. Thirdly, 

the realization was made that several claims are made by researchers and instructors of the 

effects of an inquiry environment or Standards-based classroom. The need for pictorial 

representations to compare and contrast the various environments could help to substantiate 

the claims. 

The Need to Represent Inquiry 

With the various calls for inquiry by national organizations and education researchers, 

different forms and levels of inquiry occur. In some classes, the procedural components may 

be emphasized with little attention given to the philosophical components. Or the 

philosophical components of inquiry may be stressed with execution of different structural 

components. Measures of different factors of inquiry are needed to illustrate the varying 
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formats. Once constructed, the measures may be used to reflect the similarities and 

differences between the inquiry environments of different classrooms. 

Constructed measures of inquiry could substantiate claims of a Standards-based or 

inquiry classroom. Lubienski's (2000) success in accomplishing a Standards-based 

classroom was judged through surveys and interviews with students. For example, a 

majority of her class of middle school students chose "Our teacher encourages us to figure it 

out for ourselves," with no student selecting "Our teacher tells us the answer." Huntley, 

Rasmussen, Villarubi, Sangtong, and Fey (2000) conducted interviews with high school 

instructors to suggest whether the classes were Standards-based or not. While surveys and 

interviews provide insight of participants' perspectives of the classroom environment, a 

better method of detecting differences between classes regarding inquiry might be to gather 

data while the class was in session. 

With data gathered in the classroom, various attributes of inquiry could be identified 

and coded. The codes could be graphed to provide pictorial representations reflecting the 

form and degree to which inquiry was achieved. The representative pictures may then be 

examined to highlight similarities and differences in process and pedagogy. This study 

sought to develop methods to reflect the forms of inquiry which occurred in mathematics 

classrooms. 

Constructivist Nature of Inquiry 

The forms of inquiry vary according to the degrees of implementation of the 

procedural and philosophical components. In a similar fashion, numerous instructional 

strategies are applications of the constructivist learning theory. Future reference to "inquiry" 

in this study refers to the intersection of the set of inquiry methods with the set of 
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Constructivist 
Instructional 

Strategies 

Inquiry 

Figure 1.2. Use of the term "inquiry" for this study 

constructivist instructional strategies. (See Figure 1.2.) Further discussion of the 

constructivist learning theory is now given in light of inquiry. 

The constructivist learning theory maintains that an individual's knowledge is built 

upon existing knowledge. Learners must construct their own knowledge, individually and 

collectively (Davis, Maher, 8c Noddings, 1990). The constructivist learning theory 

emphasizes that concept formation is not a mechanical, passive process. Instead, a concept 

emerges and takes shape through the process of a complex operation aimed at the solution of 

some problem or question which resonates in the student (Vygotsky, 1934/1986). 

Students construct their knowledge by interacting with others and making sense of 

their experiences in terms of their existing knowledge (Tobin, Tippins, &. Gallard, 1994). 

This construction is a development of cognitive conceptual structures which does not proceed 

from a series of observations of contingent events or objects (Noddings, 1990). Instead, the 

construction is a response to challenges to refine or revise what is already known in order to 

cope with new situations (Smith, 1994). 
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When challenged with new concepts, students filter and interpret new information in 

terms of their existing knowledge and then assimilate the concept into an appropriate schema 

or conceptual su^cture (Skemp, 1987). Assimilation is not merely an absorption of the new 

information but a connection or appendage to existing knowledge. Hence, students cannot 

assimilate new information that is completely unfamiliar. The gap between the formal 

instruction of new information and a student's existing knowledge prevents assimilation. For 

this reason, instructors cannot transfer their knowledge to students in developed, orderly 

pieces of information since knowledge is built based on students' experiences. In light of 

assimilation, the purpose of the prediction phase in inquiry is to help students recall prior 

information related to the context and to make hypotheses about a new event. 

The community in the classroom facilitates the assimilation of new information. The 

interactions smdents have with their instructor and their peers enhance the construction and 

inquiry processes. During interaction with others, students verbalize their thinking, explain 

or justify their solutions, and ask for clarifications. Attempts to resolve conflicts during the 

interactions provide opportunities for students to reformulate a problem and enlarge their 

conceptual framework of alternative solution methods (Koehler & Grouws, 1992). During 

the inquiry process students' predictions, data collection, analysis, and reflection improve as 

they first discuss their ideas with others before presenting the ideas to the class. Class 

examination of the predictions, analysis, and reflections highlights students' strengths and 

weakness of justifications. 

Aided by interactions with others, an individual's construction of knowledge is 

advanced through reflection. In mathematics the reflective process is essential as the 

construct becomes the object of examination (Confirey, 1990). Reflection occurs in various 
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ways such as mentally imagining the reversal of an action or solution process, explaining or 

justifying a solution method to others (Skemp, 1987), or self-questioning (Confrey, 1990) 

such as "What criteria allow me to make this step?" or "What am I doing and why am I doing 

it?" Reflection strengthens conceptual construction and promotes students' personal 

autonomy as they develop in their problem solving skills (Confr^ey, 1990 & Skemp, 1987). 

Constructivism is evident in the various stages of the inquiry process. During the 

inquiry process, students actively engage in methods, interact with others, and reflect on the 

procedures used. Evident in the prediction stage, students' prior knowledge is brought to the 

forefront as students make hypotheses based on their existing knowledge and previous 

experiences. New knowledge is potentially added to the prior knowledge as students pose a 

question to be answered, gather pertinent data, and analyze the data. As students 

communicate their interpretations and reflect on the results, opportimity exists for new 

concepts to be interiorized and links between previously existing concepts to be 

strengthened, added, rearranged, or removed. This process of interiorizing and operating on 

one's own mental objects potentially develops students' cognitive conceptions. 

Resonance 

In the process of building onto existing conceptual structures, the components of a 

particular conceptual schema is activated by various input on which new concepts can be 

constructed. Resonance is the consciousness of a particular concept. Conle (1996) defines 

resonance "as a way of seeing one experience in terms of another" (p. 299). Skemp (1987) 

describes resonance as the activation of a schema, a conceptual structure stored in memory. 

"For each new situation we encounter, usually an appropriate schema is activated, and within 

this schema, the relevant concepts" (p. 118). Similar to the resonance used by radios and 
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televisions to become sensitive to the frequency of particular wavelengths, resonance offers a 

model for the selective retrieval of a concept or schema into consciousness. In different 

people, different conceptual structures may be activated by the same input. In addition, at 

different times the same input can activate different structures in the same person leading to 

different interpretations. One goal in mathematics education is for the learners to develop 

compatible conceptual structures containing appropriate links between related concepts. 

When pertinent concepts are suitably linked and different individuals share similar 

conceptual strucmres, agreement in understanding is suggested. In light of construction, the 

need for compatible conceptual structures to resonate in individuals and a class of students is 

stressed. 

With the importance placed on compatible conceptual stmctures resonating with 

students, methods to promote appropriate resonance are favored. Skemp (1987) 

acknowledges the importance of instructional methods in promoting conceptual construction 

through shared resonance: 

The mode of thinking available is partly a function of the degree to which the 
concepts have been developed...(learners) are largely dependent on the way material 
is presented to them. If the new concepts encountered are too far removed from any 
of their existing schemas, they may be unable to assimilate them, particularly if 
reconstruction (of an existing schema) is required, (p. 44) 

Stated differently, schemas act as an attractor for incoming information. Sensory input is 

structured, interpreted, and understood in terms of whichever resonant structvire is activated. 

An example to illustrate what is meant by a resonating conceptual structure is 

appropriate. Davis and Vinner (1986) use the following example to illustrate 

compartmentalization of knowledge. The example is used here to demonstrate the activation 

or resonance of one conceptual structure over another: 
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Teacher: How much is seven times seven? 
Student: 14. 
Teacher: How much is seven plus seven? [italics included by Davis and Vinner] 
Student; Oh! It should be 49. (p. 284). 

The initial conceptual structure resonating in the student's understanding is an "adding" 

schema. When the teacher asked the second question, the student's multiplication schema 

was activated and the correct answer to the first question was given. Desired during 

instruction is the activation of similar schemas across all students. 

As an instructor, knowing the conceptual schemas resonating in students is 

impossible as conceptual schemas are internal objects. Some of what is internal is evident 

through students' statements, questions, symbolic manipulations, and other written work. 

When indications are given of a few students' resonating concepts, the instructor can easily 

make incorrect assumptions about all students based on the few students. Since resonance is 

an individual act, the resonance of one student is not necessarily a good indication of the 

resonance of other students in the class. Timing also is a consideration. Separated by one 

class session to the next, the instructor may not be able to pick up right where she ended 

assuming that the concepts that were resonating the previous class session continue to 

resonate or are ready to be activated again. Compatible resonance cannot necessarily be 

created between teacher and student or between student and student by a mere remark. 

Instead, interactive communication is needed in which each party reflexively influences each 

others' interpretations and actions (Cobb, 1991). 

In light of the discussion about resonance, instructors need to know as much as 

possible about the students' ideas to understand students' thinking and to help students 

further develop their thinking (Maher &. Davis, 1990). Attempts should be made to interpret 
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what the students are doing and why they are doing it. This is achieved by observing and 

analyzing the students' constructions as they investigate solutions to problems. This 

knowledge of students' thinking allows for instructors to challenge, extend, and/or modify 

students' thinking. 

Modification of students' resonance may be achieved through a process of 

communication and reflection on behalf of both instructors and students. As students 

communicate with the instructor and other students by sharing predictions, hyp)otheses, and 

questions, the concepts resonating in students' understanding are evident. Communicating to 

one another those concepts and reflecting on what others said promote the need to formulate 

common questions or problems to be resolved and the methods used to answer the questions. 

Given the discussion of resonance and the encouragement for agreement in the 

resonating concepts for class participants, implementing the inquiry process seems to be an 

appropriate instructional method. In the inquiry process, emphasis is placed on building on 

students' prior knowledge from the start of the prediction phase with experimenting, analysis, 

and reflection enabling the construction of students' conceptual structures. 

In this study, interactions in two collegiate mathematics classes will be examined to 

determine if and how agreement in resonating concepts was achieved. Attempts will be 

made to graphically represent the classroom environments to tag the occasions when 

agreement in resonance is or is not suggested. 

Conceptual and Contextual Connections 

Building conceptual constructions relies on the linking of appropriate concepts. 

Mathematics makes more sense and may be applied more easily when new knowledge is 

connected to existing knowledge in meaningful ways (Schoenfeld, 1988). Hiebert and 
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Carpenter (1992) highlighted the need for students to make multiple connections in learning 

mathematics. Understanding is present when a concept is linked to other concepts in 

multiple ways. This understanding promotes better retention of what is learned, reduces the 

amount that must be remembered, and enhances the transfer of knowledge as the concepts 

are well-connected to other concepts. 

While connections between multiple representations within the mathematics promotes 

understanding, connecting the mathematics to other contexts, such as science, lends 

additional links between students' concepts. Methods of pursuing additional connections 

relating the mathematics and science contexts include mathematical modeling and linking 

symbols to science context. 

Smdents do not often establish meaning for the symbols they use (Hiebert & Lefevre, 

1986). Yet, symbols are the foundation for mathematical competence as the symbols act as 

handles with which to manipulate mental representations or concepts (Skemp, 1987). 

Symbols which make sense are more likely to be recalled and are more likely to activate the 

appropriate conceptual structures. Hiebert and Lefevre (1986) added that "it is easier to 

remember things that make sense, that are meaningful, (and) that are understood by their 

users" (p. 10-11). Thus, instructional methods which promote learners' sense-making ability 

of symbols are favored. 

The inquiry process potentially promotes the connections between symbols and non-

math contexts. In the analysis stage, students can create symbols to meaningfully represent 

the data and manipulations acted on the data. Students' meaning anached to the symbols 

advance future reflection and understanding of the mathematical relationships. 
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Mathematical modeling of data offers connections between the real-world context and 

mathematics as provisions are made for symbol association with context. The National 

Council of Teachers of Mathematics (2000) stresses the need for students to recognize and 

apply mathematics in contexts outside of mathematics. Provided in mathematical modeling, 

the students "use representations to model and interpret physical, social, and mathematical 

phenomena" (p. 70). Mathematical modeling also offers students opportunities to explain 

changes, to find regularities among changes, to develop tools in working with functions, and 

to apply their knowledge of functions (Sierpinska, 1992). 

The development of a mathematical model need not be a linear process from the 

applied situation to the model and back to the situation. Huntley et al. (2000) emphasize the 

potential for modeling problems to provide a constant interplay between the applied problem 

situation and the mathematical representation. This constant interplay would suggest the 

strengthening of connections between the applied situation and mathematics, in turn 

strengthening understanding. 

Lesh and Doerr (2000) discussed the implementation of mathematical modeling and 

the need to focus on the big ideas or main constructs and conceptual systems which are 

fundamental to the mathematics and science curriculum. Similar to the potential for interplay 

identified by Huntley et al. (2000), Lesh and Doerr saw the opportunity for rich real-life 

situations to be modeled in the mathematics classroom: 

For traditional textbook word problems, the problematic aspects tend to involve 
trying to make meaning out of symbolically stated questions; however when students 
use mathematics in real-life situations, the processes that are needed tend to 
emphasize the need to make symbolic descriptions of situations that are already 
meaningful, (p. 367). 
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The meaning and richness comes when the model is interpreted, constructed, modified, 

refined, or extended. Lesh and Doerr in turn, caU for more research to be done on "the 

design of effective instructional sequences for learners" (p. 382). 

Fennema, Sowder, and Carpenter (1999) emphasize the need for students to engage in 

tasks which stress problem situations. Problem-solving tasks in the mathematics classroom 

represent mathematics "worth learning" (p. 187) and promote students' engagement in the 

mental activities necessary to develop understanding. Engagement in mathematical 

modeling tasks with emphasis on the connections between symbols and context creates the 

problem-solving environment desired. Coupled with an inquiry process, the mathematical 

modeling classroom environment may promote students' conceptual constructions, foster 

links between multiple mathematics and contextualized concepts, and encourage agreement 

in the concepts resonating in students and instructor. 

The Research Study 

This study seeks to describe the use of inquiry and mathematical modeling to provide 

a rich environment for students to engage in mathematics with links to science contexts. In 

addition, means of representing the inquiry environment quantitatively will be pursued. In 

representing the components of inquiry, identification of the occurrences of agreement in 

resonance between instructor and students is desired. FHirsuit of the representation will be 

characterized by the usefulness and limitations of tagging the following characteristics: the 

structure of inquiry, the sources of the goals and ideas, the roles of the contexts in the 

modeling activities, and the degrees of reflection. More information about these 

characteristics are provided in Chapters 2 and 3. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

The pursuit of inquiry in mathematics and science classrooms emphasizing diverse 

processes and philosophical components have been examined to varying degrees. While 

some studies highlight the process of inquiry, others address the philosophical and 

pedagogical issues. Those studies which directly inform the process of inquiry, the 

instructional practices, the implementation of mathematical modeling, the classroom 

interactions, the development of student understanding, and the construction of codes are 

reviewed. 

Inquiry 

Inquiry occurred in various forms in the research studies examined. Studies in the 

sciences implemented an inquiry process in which students completed a cycle of prediction, 

experiment, analysis, and development and application of theory. Inquiry studies in 

mathematics included students' exploration of open-ended questions, students' completion of 

projects, individual students meeting with an instructor to explore topics of interest, and 

students' attempts at mathematical modeling. The review of the following inquiry-related 

studies inform the structure of the inquiry process and students' development and reasoning 

through inquiry and mathematical modeling. 

Inquiry in Science 

Investigations of inquiry in science classes emphasized different components of the 

inquiry process. Some studies emphasized the structure of inquiry with prediction, data 

collection, and analysis phases. Others explored differences between open and closed 

formats for the laboratories. Those studies examining students' investigations indicated the 
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use of instructor's scaffolding, a gradual decline in the instructor's support as students 

completed their investigations, with multiple cycles of the inquiry process. In the open-

inquiry investigations negotiation of problem or task was recommended. Studies of the 

inquiry process in which more restrictions were placed on smdents' explorations illustrated a 

lesser degree of students' higher order thinking skills. In each of the studies described, 

inquiry was encouraged to develop students' thinking and reasoning skills with at least one 

study demonstrating benefits lasting beyond the inquiry-oriented course. 

Cycles of Inquiry 

White and Frederiksen (1998) implemented an inquiry approach in a middle school 

science curriculum. Pretest and posttest data measuring students' inquiry skills, physics 

knowledge, and attitudes about science were collected. Video recordings of class sessions 

and interviews with some students at the end of the curriculum were made. Students 

participated in scaffolded environments to leam about inquiry as they engaged in authentic 

scientific research of Newtonian physics. Students formulated questions, made hypotheses, 

conducted experiments using computer simulations, analyzed the data, and applied their 

"laws" and models to various situations. Application of the laws and models required 

reflection on the limitations of what they had learned and where additional knowledge was 

needed. Students evaluated their own and each other's work. Additional cycles were 

completed following reflection to address new questions. Each time the inquiry cycle was 

repeated some scaffolding was removed, so that eventually students conducted inquiry on 

their own questions. In addition, the complexity of the physics increased with multiple 

cycles. 
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The results of implementing the curriculum indicated that students incorporating 

reflective assessment had higher quality performance on project work than students in a 

control class. Pretest and posttest results indicated that students improved their scores on an 

inquiry test to examine students' abilities to develop hypotheses, experiments, data, and 

analysis when given a research question. The curriculum was effective in developing 

students' conceptual models for force and motion as students outperformed high school 

physics students on basic Newtonian physics problems. 

In general. White and Fredericksen's study emphasized the process of inquiry in 

science investigation. Students became increasingly independent in addressing their 

investigative questions as scaffolding to assist students was removed. Other science 

investigations allowed students freedom in investigating their research questions. Roth 

(1993, 1995) demonstrated the implementation of inquiry in high school physics classes with 

emphasis placed on mathematical connections. 

Open-Inquirv 

Roth (1993) conducted a two-year interpretive research study in which students in his 

two-year high school physics class conducted primarily student-designed laboratories. Data 

consisted of video-taped science lessons and laboratories, smdents' lab reports, teacher's 

observations, notes, and recollections, students' essays on the nature of knowledge and 

learning, questionnaire data, interviews regarding the nature of knowledge of students, 

students' views on various aspects of learning physics, academic records of students, and 

results of two surveys administered to classify students' perception of the classroom 

environment and preferences for classroom environment. 
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Roth (1993) gave a case study of one student, Michael, who had struggled in his 

previous mathematics and science experiences. The students had been asked to investigate 

non-uniformly accelerated motion. Using a photo gate and a data collection program, 

Michael and his lab partner collected data of the motion of a cart pinned between two 

springs. Michael produced distance-time, velocity-time, and acceleration-time tables and 

graphs. Having difficulty interpreting the graphs in terms of the data, Michael returned to the 

lab outside of class to repeatedly run the experiment and construct understanding of the 

connections between the motion and the graphical and numerical representations. He later 

submitted a report describing his analysis of the connections between the graphs, function, 

and data. 

Michael's report illustrated his ability to shift between representations and within 

representations. He demonstrated understanding of differentiation and integration through 

the physics applications before the topics were treated in his mathematics class. "Michael's 

involvement in a meaningful activity itself provided for the motivation necessary for its 

completion" (p. 120). His work evolved from a problem which the students framed for 

themselves in the context of a task to study non-uniform motion. "Michael made the 

problem his own,...he made the task problematic and constructed an understanding in his 

own terms beginning with what he knew" (p. 120). The inquiry environment provided the 

opportunity for Michael and other students to frame problems and construct understanding 

individually while working with group members. 

In discussing the same study from various perspectives of inquiry. Roth (1995) 

described the questions his physics students investigated and the effects on class discussion. 

Students in their groups of two or three each firamed a question they desired to investigate 



within a particular context. In one laboratory, students were to frame a question and 

investigation of the relationship between mass and acceleration in free fall. Students 

generally posed three different types of experiments which led to significantly different 

results: "A constant acceleration of about 10 m/s^, a constant acceleration but less than 10 

m/s", usually around 2 m/s^ and a curvilinear relationship with an asymptote for large masses 

of about 10 m/s^ and an intercept at 0 m/s^" (p. 114-115). Students presented their results to 

the class and then discussed and defended their interpretations of the problem. Students 

focused discussion on the various uses of the term "free fall" and implications for the 

presented results. The class eventually came to consensus with the experiment and students' 

results. The discussion led to the next experiment in which students explored how the 

acceleration on an inclined airtrack changed with the angle of incline. Through class 

discussions of the presentations and smdents' defense of their positions and interpretations, 

students' understanding was advanced rather than hindered by the range of questions 

investigated. Roth emphasized that group members have to negotiate the nature of the 

problem which they are trying to resolve. 

Roth (1995) described a similar study surrounding the need for shared understanding 

of the task in an inquiry envirormient. Students in an eighth grade biology class were to 

conduct investigations of classification schemes. In one described scenario, the teacher told 

students to 

come up with at least eight different classification zones...That means I want you to 
find the areas of the campus that are most similar to each other and indicate on the 
map where they are and then put a label to define that area and write out a description 
for it (p. 132). 
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The teacher thought his instructions were clear for students. Instead, the students constructed 

their own problems as they interacted with the teacher, other students, and the physical 

environment. Most students found exactly eight different categories and chose eight 

locations on campus and created eight different classifications. Some students chose the 

eight ball fields to demarcate their different classification zones, while others created new 

boundaries. Various responses grew from a single stated problem, illustrating that teachers' 

assumption that the clarity of the problem and that all students are working on the "same 

problem" can be questionable. 

Roth (1993) called for research of the construction of meaning and conmiunity in 

classroom settings incorporating science and mathematics laboratories. In forming this 

community, additional evidence is needed to suggest implications in students' understanding 

when negotiation of the problem is and is not made. 

The studies reviewed to this point have highlighted inquiry in environments where 

students were allowed a measure of freedom in their investigations, whether the process was 

initially scaffolded or whether students investigated the questions they posed. When in open 

laboratories, students developed in the content knowledge, inquiry process skills, and ability 

to make connections within the content and between the content and other contexts. 

Encouraged was the negotiation of the problem and task. Additional research suggests the 

types of thinking students engage when in closed or open labs as well as long-term effects of 

inquiry in the classroom. 

Open vs. Closed Inquiry Labs 

Related to the issue of negotiation of task or problem, Shepardson (1997) completed a 

comparative study of the types of thinking of twelve eighth-grade students in a life sciences 
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class during laboratories. Observation data was gathered as six students conducted five 

confirmation laboratories and six other students conducted five open-inquiry laboratory 

activities. Designed by a textbook publisher and completed in groups of four, the 

confirmation laboratories were activities in which the research question, design, data 

collection techniques, and evaluation processes were given to the students to implement. The 

open-inquiry laboratories required students to form the research questions, design the 

experiment and data collection and evaluation techniques. Six observers were each matched 

with one of six students to gather data for five seconds every 30 seconds from the start to the 

finish of the laboratory. Observations were noted according to three components: laboratory 

activity structure, interactions, and thinking process. The laboratory activity component 

referred to the phase of inquiry whether the research question, research design, data 

gathering, data analysis, or evaluation. Interactions were classified as student-student, 

teacher-student, or self if the student was engaged in activity but the actions were not in 

response to or initiated toward others. Thinking processes were classified as to whether 

students' actions were focused on ±e questions or goals, information gathering, 

remembering, organizing, analyzing, generating, integrating, or evaluation. 

In both open and closed laboratories, the frequency of students' thinking 

predominantly focused on information gathering. Based on multiple regression analysis, 

students in the confirmation laboratories often focused on the techniques to conduct the 

laboratory and interpret the instructions. In the open-inquiry labs, students engaged in 

thinking about the data and information gathered while interpreting and evaluating the 

results. Students in the confirmation labs did not relate their procedures and products. In the 

open-inquiry laboratories, student-student interactions prompted more thinking processes 
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than in confirmation laboratories, with emphasis placed on focusing, gathering and sharing 

information and data, and integrating. In the confirmation laboratory, teacher-student 

interactions contributed to students' thinking processes emphasizing students' analysis and 

generalizations. Shepardson concluded that open-inquiry laboratories are more likely than 

confirmation laboratories to promote students' scientific thinking. 

Zollar (1999) examined the effects of implementing higher-order cognitive skills-

oriented chemistry teaching and assessment strategies in a small college chemistry class and 

a large lecture university chemistry class. The instructor asked inquiry questions with active 

involvement of students through assignments, exams, and peer grading. Emphasis was 

placed on the capabilities of problem solving, decision making, critical thinking, reflection, 

and evaluative thinking. Judging performance on the higher-order cognitive skills-oriented 

exams, the inquiry oriented discussions in large and small classes were feasible and effective. 

In general, the research suggests that inquiry investigations promote students' 

thinking and cognitive constructions. Open laboratories, in particular, promote smdents' 

discussion of the problem and interpretation and evaluation of the results. Confirmation 

laboratories also promote students' thinking, though the thinking is more often focused on 

interpreting the question and instructions. The next study reviewed suggests that inquiry has 

long-lasting effects on students' analysis skills. 

Lasting Effects of Inquiry 

Scott (1977) examined the role of students' participation in an inquiry program during 

sixth and seventh grade classes on students' analysis abilities in algebra and geometry in their 

high school careers. The inquiry group and comparison group, students who had not had any 

training in an inquiry program, were comparable in socioeconomic and ability level during 
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their seventh grade year as measured by the California Test of Mental Maturity. Data 

gathered included assessments of students' analytical "conceptual" style as measured on the 

Sigel Cognitive Style Test, course grades for students during the first-year geometry and 

second-year algebra studies, completed questionnaires of their recollections from sixth-grade 

science classes, and completed questionnaires of students' reactions to the effect of inquiry 

on their performance in geometry and algebra classes. 

In a component of the sixth grade inquiry program, students were to analyze why for 

two pieces of wood, the larger piece floated and the smaller piece sunk. Students were to ask 

questions of the teacher to understand the resolution of the unbalanced forces in the situation. 

Responding with only a "yes" or "no," the instructor encouraged students to ask analytical 

questions about the situation. Those students who had completed the inquiry program had 

significantly higher grades in high school geometry and algebra classes than those students 

who had not completed the inquiry program. However, Pearson correlations between the 

analytical cognitive style data and the mathematics categories suggested that analytical styles 

between the inquiry group and comparison group were not significantly different. The 

majority of students in the inquiry group recalled learning different ways to approach and 

interpret problems as high school students, though none recalled the actual problem-solving 

activities. The survey data indicated that students did not necessarily believe that their 

success or difficulty in high school mathematics resulted from their involvement in 

elementary mathematics programs. Students did attribute the use of the inquiry program to 

develop their problem-solving skills, particularly in geometry. Scott (1977) suggested that 

the implementation of inquiry skills has long lasting effects on students' mathematical and 

analytical skills. 
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In summary, the studies on inquiry in science classrooms suggest that inquiry 

promotes students' development of their thinking skills and construction of scientific 

knowledge. Students' beliefs of their analytical skills are affected on a long-term basis when 

students receive inquiry training. Open-inquiry investigations tend to better provide for the 

development of students' interpretative and evaluative skills, while confirmation labs 

promote students' thinking of the task. In addition, studies which investigated students' 

questions and techniques suggest that sca^olding and negotiation of the problem and task is 

necessary to promoting students' understanding. Additional research is needed to indicate 

the consequences of the role of negotiation as well as the effects of inquiry in college 

mathematics classrooms. 

Inquiry in Mathematics 

Studies investigating inquiry in mathematics on a classroom level were few. More 

frequent was examination of students' behaviors when interacting one-on-one or two-on-one 

with a researcher. Even in working with one or two students, researchers acknowledged that 

true inquiry was difficult to achieve due to a lack of the instructor's control of what was 

going to happen next, the uncertainty of running with the student's ideas, and the changed 

roles of instructor and students (Arcavi & Schoenfeld, 1992; Borasi, 1992). In the 

examination of inquiry with the low teacher-student ratios, success in developing students' 

understanding of the mathematical process was frequently accomplished. 

Borasi (1992) met with two high school female students for three weeks. The junior-

level students had missed several class sessions at their alternative high school, and 

accommodations were made to explore the topic of mathematical definitions with the 

researcher as teacher. Through the mini-course, the researcher gathered qualitative data in 
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written and audio form and analyzed the interactions and students' development in the 

inquiry and mathematics process. Borasi asked students to define various topics such as 

circle, polygon, and purple, and then had students test their definitions. The students created 

various mathematical objects and tested the objects against their definitions. The students 

analyzed and reflected on their definitions making refinements to correct errors and 

accommodating specific properties. 

An example of the inquiry pursued by the students occurred after the students had 

generated the definition of a circle. Borasi had described taxicab geometry to the students, 

and they reevaluated the definition of a circle in light of the discovery that the set of points a 

given distance from a point in the "city" produced a "diamond" using the new geometry. 

The task provided evidence of the smdents' increased "understanding of the complexity of 

mathematical definitions and their growing creativity and critical stance within a 

mathematical learning context" (p. 90). The students on their own felt the need to create a 

definition, set the task, proceed in finding a solution, and evaluate the results. 

At the end of the course, Borasi asked the students to define some of the terms 

developed at the start of the course. Rather than pursue the process of developing the 

definitions, one student tried to recall the definitions created previously. Borasi explained 

that the student did not have a purpose, context, or need for producing the definition other 

than being in a "test" situation. Borasi reemphasized the need for students to have a goal in 

pursuing inquiry. 

Borasi encourages the implementation of inquiry at a classroom level. The researcher 

acknowledged that the instructor must deal with difficult decisions in allowing students to 

pursue genuine inquiry. She admonished that students working in small cooperative groups 
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on a genuine inquiry problem would be significantly different from smdents working on a 

well-defined task by the instructor. In a class, students and instructor would have to 

negotiate the sharing of tasks, the direction of inquiry, the monitoring and evaluation of 

inquiry, and criteria for when a task is complete. 

As recommended by Borasi, a component of the inquiry process is the degree to 

which instructors are willing to pursue students' ideas and methods above methods and ideas 

they intended to develop in the course. Arcavi and Schoenfeld (1992) acknowledged and 

encouraged the constructivist approach of "running with the student's ideas" in mathematics 

education. Arcavi and Schoenfeld examined transcripts from a tutoring session with an 

eighth grade student in light of the approach to run with students' ideas. The student 

attempted to guess the tutor's linear relationship when the student gave various input and the 

tutor responded with a particular output. When the student tried to find the equation using a 

method different than the tutor had planned, the tutor resorted to planned methods of 

intervention to help the student calculate slope and intercept. Had the tutor run with the 

student's ideas, the researchers found that quality mathematics would have emerged. 

The researchers acknowledged that running with students' ideas makes demands on 

instructors' mathematical knowledge, pedagogical and cognitive-analytic abilities, and 

communication skills as they help students build on their current knowledge. A problem 

with the approach of "running with the student's ideas" is the difficulty of implementing this 

in a class of thirty or more students. In the current study, analysis of the class' pursuit in 

running with the class' ideas will be given. 

Battista (1999) completed a case-study of three pairs of students within a fifth grade 

class as they completed an inquiry activity enumerating arrays of three-dimensional cubes. 
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Students were given grid diagrams of boxes witli various dimensions. They were to predict 

the number of cubes needed to fill each box, then check their predictions by constructing and 

filling the box with cubes. Students were to check the answer with their prediction before 

proceeding with the next box. Within each pair, students were to collaborate on the 

predictions and reflections. Most students initially counted the number of face cubes to 

(incorrectly) determine the number of cubes to fit in the box before proceeding to methods of 

counting the number of cubes per layer. Those who relied on enumeration by mentally 

layering cubes cycled through a series of structuring and counting layers of cubes followed 

by reflection and abstraction. Battista highlighted the use of students' predictions and 

collaborations in constructing their conceptual understanding. Predictions were essential in 

prompting later reflection of their mental models and enumeration schemes. Battista 

emphasized that a minimum standard for collaboration was for students to attempt to 

establish consensus for their problem solving. Students needed to make a commitment to 

communicate their own ideas and understand others' ideas. Battista acknowledged that 

cognitive conflict resulted more from the mismatch between predictions and students' 

answers than from interpersonal conflict when filling the boxes. Battista encouraged inquiry 

promoting students' predictions and group interaction. 

Results from inquiry based studies with individual students informs the inquiry at the 

classroom level, in particular that students on an individual level can pursue mathematical 

inquiry. Concerning the process of inquiry, emphasis is placed on the use of predictions to 

prompt later reflection. Concerning the pedagogy and philosophy, instructors are encouraged 

to run with students' ideas as quality mathematics and understanding evolves. In running 

with students' ideas negotiation and collaboration on the goal task is encouraged. Unknown 
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is how inquiry proceeds when implemented as a class pursuit. In addition, questions arise of 

how inquiry proceeds when different students pursue different questions or when a class 

agrees to explore a single issue. In the current study, examination of both the pursuit of 

inquiry as a class and the pursuit of different questions in a single class will be given. 

Mathematical Modeling through Context Connections 

Studies examining students' abilities to mathematically model generally consisted of 

three types of studies: those examining students' translating abilities, those examining 

students' abilities to connect context to mathematics through the curriculum, and those 

examining students' abilities to mathematically model data with reliance on contextual and 

functional understanding. The translation studies demonstrated undergraduate students' 

difficulties in relating the context with symbols and equations. When classrooms 

implemented mathematical modeling, students' abilities to relate context and mathematics 

improved. Studies examining students abilities to develop a model using computation tools 

indicated students' difficulty to fiilly translate the context situation into mathematics. 

Mathematical Modeling Based on Contextual and Functional Understanding 

Zbiek (1992, 1998) examined 13 prospective secondary teachers as they relied on 

computing tools to mathematically model data for given real world problems. Students were 

enrolled in a class taught by the researcher which emphasized mathematics while addressing 

issues of pedagogy and learning. During the first three weeks of a 15 week semester, 

students explored their understanding of functions through previously proposed models of 

real-world situations and computing tools. The next eight weeks focused on more abstract 

issues of function and proof. The last 4 weeks of the semester surrounded a modeling unit in 

which students collected data, generated function models using computing tools, and 
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discussed the real-world aspects of four open-ended modeling activities. One of the four 

activities was an individual modeling task asking students to describe which of the variables 

were related for data from the 50 states and the District of Columbia. Audiotapes of 

individual interviews with students and class interactions, written work from the interviews 

and class, instructor's notes of students' nonverbal communication and computing tool use, 

and teacher reflection notes from class session comprised the data for the study. 

Zbiek identified four different approaches students generally used to model their data. 

With each approach students gave different types of justification for their choice of model. 

Most students relied on a fitted function selector and chose a model based on the goodness-

of-fit values. A substantial number of students interpreted the graphs of the data when using 

a potential function generator. Few students used the scatter plot with a graphing tool to 

create and interpret graphs while linking the graph and algebraic rule. No students relied on 

unneeded or unused tools to examine ratios or formulas and to compare data and model 

values. Zbiek encouraged additional research to explore conditions under which students 

rely on the four approaches. Additional research is needed to observe if students with 

different mathematics backgrounds rely on the same four approaches and how a class evolves 

while emphasizing modeling. 

Lanier (1999) conducted a case study to investigate three college smdents' 

understanding of linear modeling. In the course, non-math majors were taught methods of 

modeling data using a spreadsheet template. Lanier observed class sessions, audio-taped 

three students as they used a linear modeling spreadsheet template, audio-taped semi-

structured, exit interviews with the three students, and analyzed students' project reports. 

When modeling data, students rarely deviated from the procedures given to find a model for 
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different data sets using the spreadsheet. The students seldom reasoned about the linear 

model based on the graphical representation, but used the average error calculations to 

determine which linear equation was best. Students were able to reason to some extent when 

a model was not entirely appropriate. In one example, a student reasoned that a linear model 

of a decreasing population was limited in predicting future population as a population was 

not likely to be zero, and definitely would never be negative. 

Lanier commented on students' reasoning skills when interpreting the meaning of the 

slope and y-intercept in terms of the context. Two of the three students correctly reasoned 

that the y-intercept represented the initial population. The third student acknowledge that the 

y-intercept occurred when x was zero. When interpreting the slope, two interpreted the slope 

as the amount of growth in population per year, while the third could only demonstrate how 

to find slope without giving an interpretation: "It's not like a percent or anything. I don't 

know how it tells like how much it increases. I just know it tells that it increases" (p. 44). 

Though the modeling class implemented methods to connect mathematics to the real 

world, the procedural components of modeling were emphasized. As a result, not all 

students fully interpreted the relationship between the context and the mathematics. Lanier's 

recommendations included the need for investigations of students' mathematical 

understanding of linear modeling in a course where less emphasis was placed on procedures 

and more emphasis was placed on interpretation and sense-making. This current study 

intends to further examine the role of mathematical modeling when the instructors attempt to 

build students' understanding through modeling with sense-making. 
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Mathematical Modeling Based on Curriculum 

Few studies implemented mathematical modeling to the degree in which the building 

of models evolved into the development of the topics covered in the course. Instead, a 

number of studies emphasized curriculum in which students related the mathematics with a 

real-world problem. Often, these problems were classified as mathematical modeling, 

though the modeling was used differently than intended in this study. The results from these 

studies are pertinent since insight of students' connections between mathematics and real-

world context is gained. Those studies founded on the curriculum emphasizing mathematical 

modeling displayed that students' abilities to relate the context and mathematics was higher 

for those students given specific instruction in mathematical modeling than students who 

were given more traditional instruction. 

Standards-Based and Calculus Curriculums 

Huntley, Rasmussen, Villarubbi, Sangtong, and Fey (2000) tested the effects of 

Standards-based mathematics education on students' abilities in algebra. Students in six U.S. 

high schools who had completed three years of mathematics under the Core-Plus 

Mathematics Project (CPMP), a Standards-based curriculum, were compared with students of 

comparable mathematics ability who had been taught in a traditional mathematics program at 

the same schools or at neighboring schools. Interviews with each of the CPMP and control 

teachers generated data about instructional practices, use of calculators, and assessment 

practices. Three assessments of students' abilities in algebra were conducted. One focused 

on contextualized problem solving, typical of the Standards-based curricula. A second 

emphasized context-free symbolic manipulations of algebraic expressions and solutions of 

equations and systems. A third assessment required group work on open-ended 
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contextualized problems The assessments occurred during two 50 minute class sessions. 

Graphing or scientific calculators were allowed on the first and third assessments. 

Results varied across the three assessments. Overall, students in the CPMP courses 

performed better than control students on questions requiring problem-solving skills such as 

translating problem conditions into symbolic expressions, solving equations, and interpreting 

results (type 1 assessment) and on problems requiring integration of the same skills on core 

complex modeling tasks (type 3 assessment). On the type 2 assessment, students taught in 

classes using traditional mathematics curriculum performed better than the CPMP students 

on the symbolic manipulation tasks. The study highlighted that students leam more about the 

topics, whether modeling or symbolic manipulations, emphasized in class and less about the 

topics less emphasized. In other words, the curricular or instructor goals determined the 

emphases of the course content which influenced students' performance on the different 

types of tasks. In particular, the researchers noted that "if students are asked frequently to 

formulate mathematical models for situations and to interpret results of algebraic 

calculations, they develop greater understanding of and skill in those processes" (p. 354). 

The researchers could not determine from their study whether context cues were a strength or 

a disability to students, suggesting that more research is needed to indicate whether context 

cues are to students' advantage or disadvantage. Additional research is needed to indicate 

when and how context is advantageous to students' problem-solving abilities. This study 

intends to examine how the inter-linklng of context and mathematics may be used to help 

students reason mathematically to find a model for real-world situations. 

Strickland (1999), assuming the role of teacher-as-researcher, completed a case study 

of two female students enrolled in his college Project CALC (calculus as a laboratory course) 
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section. The data was gathered through video recorded interactions of the respondents during 

classroom and computer laborator>' activities, one-on-one and group interviews with the 

instructor-researcher, the students' weekly journals of their experiences in the classroom and 

computer lab, and the researcher's personal journal. Strickland found that his students had 

difficulty relating the mathematical symbols with their meanings in spite of the reform 

Project CALC curriculum which contained many real-world problems. The researcher 

observed the students' difficulty differentiating between symbols and their definitions and 

their use in equations. The researcher acknowledged students' differences in meaning when 

compared to his own meaning of the symbols. The differences were particularly noted when 

related to the difference quotient and interpreting the difference quotient in terms of a graph 

and derivative. Based on his study, Strickland recommends shying 

away from using just one approach to teach. Lecture only courses can be very 
ineffective in facilitating a student' understanding of concepts. The same can be said 
of a course where only group activities are used, or a course where only a computer 
lab is employed, (p. 149) 

Strickland neither recommends nor suggests the form the collegiate mathematics classroom 

environment should take, supporting the examination of whether an inquiry approach aids the 

development of the desired concepts and connections for students. 

Based on the studies in which modeling and real-world problems were incorporated 

into the curriculum, students generally did better than comparison students at interpreting 

results of algebraic calculations. Additional research is needed, however, to indicate how the 

instructional approaches which accompany the curriculum advance students' sense-making 

abilities and connections between the mathematics and contexts. In this study, the inquiry 

approach will be investigated when accompanying the modeling curriculum in the course. 
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Realistic Mathematics Education 

An instructional theory related to mathematical modeling. Realistic Mathematics 

Education (RME) is founded on the premise that mathematics is a human activity in which 

students should leam by mathematizing subject matter from realistic situations. A realistic 

situation could consist of contextualized problems inside or outside the context of 

mathematics, but what is experientially real depends on an individual's background and 

experiences. In mathematizing, students are provided with the opportunity to reinvent 

mathematics. As students engage in generalizing their own mathematical activity, the formal 

mathematics emerge. Rasmussen and King (2000) conducted a developmental research 

study to design and analyze instructional tasks in a sequence based on the Realistic 

Mathematics Education instructional design heuristic of guided reinvention. 

In Rasmussen and King's study, twelve students in a differential equations course 

were observed and video recorded in class sessions with copies of students' written work 

made. A subset of the twelve participated in video-recorded interviews. Core learning 

activities were developed in which the instructor introduced a context, students worked 

collaboratively in small groups on the activities and then the whole class discussed the 

activities. Before being supplied with methods or algorithms to approach the problem, 

students were asked to predict the population of fish in a pond for consecutive months, given 

the equation dP/df = k*P{t) and initial fish populations with time measured in months. After 

students had been introduced to and discussed the problem, students were to reflect on their 

work and describe using words and symbols how to approximate the future number of fish in 

a  pond wi th  the  d i f ferent ia l  equat ion  dPIdt  =  P{ t ) .  
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The work of one group of students illustrated the reasoning pursued when given the 

realistic situations. The students initially demonstrated a continuous conception of the 

situation while interpreting the dP/dr as an average rate of change. Students then realized 

that piecewise linear segments were appropriate. When giving the procedure to approximate 

the number of fish, the group did not distinguish between rate of change and change in 

population. One group member gave the equation P^initial) +dP/dt P{initiai) while another 

group member interpreted the equation as "You take the current population and add to it the 

change relative to time to establish the new population, then continue the process" (p. 169). 

To help the group distinguish between the concept of rate of change and change in 

population, the instructor asked students to approximate the number of fish in the pond in 

half-month increments. The students resolved their dilemma and created a correct symbolic 

,p Fraction 
description for Euler's method: month^ 

the group, with the instmctor, and with graphical technology prompted the change in 

thinking for the students. Once students had created their own informal Euler's method, 

more conventional and formal methods of Euler's method emerged and were grounded in 

students' informal activity. 

The process used by Rasmussen and King to develop an instructional strategy with 

implementation relates to this study as a form of inquiry. Students made predictions, 

experimented with methods to predict populations, analyzed those procedures while 

mathematizing the process, and upon reflection, made accommodations to model the fish 

population at half-month intervals rather than full month intervals. 
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Modeling on Homework and Projects 

Galbraith and Clatworthy (1990) incorporated modeling into a senior-level high 

school course as students studied trigonometry, calculus, matrices, vectors, and particle 

mechanics. The modeling process was marked by seven stages in which students specified 

the real problem, made assumptions in the model, formulated the mathematical problem, 

solved the mathematical problem, interpreted the solution, validated the model, and used the 

model to explain, predict, and make decisions about the real world problem. Most of 

students' modeling was completed outside the class sessions in group sessions as homework 

or project assignments. Positive assessment of the success of the program was determined 

based on students' written and video reports, audio recordings of individual interviews 

during students' work on the projects, students' diary records, students' responses on a 

questionnaire, and class discussion. Based on students' work and responses on the 

questionnaire and interview, students indicated that they considered the modeling framework 

interesting and important. Students grew in confidence in approaching the problems. 

Students were successful in modeling the real world problems and submitting reports giving 

their analysis. 

The studies illustrate that when context and modeling are emphasized in the 

curriculum, students perform better on algebraic problems connecting the mathematics to the 

context. However, students have difficulty constructing a mathematical model built from the 

context and apart from technology and taught procedures. When students make first attempts 

at modeling the data, students are better able to accommodate mathematical methods 

emerging from their experiences. Additional study is needed to suggest how the 
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implementation of the inquiry process benefits students' mathematical modeling skills and 

ability to construct a model when they have the context. 

Translation Studies 

Student-Professor Problem 

A number of studies (Rosnick & Clement, 1980; Clement, Lochhead, & Monk, 1981; 

Rosnick, 1981; Wollman, 1983) have documented college students' translation errors and 

difficulty on problems of the sort "write an equation for the statement 'There are six times as 

many students as professors at this university.'" Rosnick and Clement (1980) gave 

individual instruction to six students who had made reversal errors. Students made initial 

corrections to their errors, but the evidence demonstrated that the change was behavioral with 

little change in students' conceptual understanding. Wollman (1983) illustrated that students 

were successful in working with the statement when they were asked to perform 

computations, were required to give Justifications, or were prompted with questions to 

compare sentence and equation. In light of the results of Wollman's study and a resonance 

perspective, students' difficulty with translation problems likely stems from the resonance or 

activation of the wrong schema rather than problems in students' conception of algebraic 

variables. 

Varying Forms of Abstraction 

Related to the translation studies. White and Mitchelmore (1996) examined first 

semester calculus students' abilities on problems ranging on four levels of abstraction. 

Abstract-apart problems had no attached contextual meaning while abstract-general problems 

were framed within a context. For each of the four levels of abstraction, four items related to 

rates of change and maximization were written. Forty students, divided into parallel groups 



of ten, were given a four question test containing one problem of each context and one of 

each level of abstraction. Tests were given before, during, immediately after, and six weeks 

after a six week period of instruction by White. Each test taking session, students attempted 

a different version of the test. In addition, four students from each group of ten were selected 

to be interviewed within three days of each of the four written data collections. The 

interviews provided a better opportunity to identify students' reasoning on their written 

responses. 

When students were given the problems in which concepts had to be symbolized, 

students performed less successfully. When the problems were completely abstract, students 

had greater success completing the problem. Analysis of students' errors suggested that 

students based decisions about which procedure to apply on the given symbols and ignored 

the meaning behind the symbols. Researchers identified the main inhibiting factor of success 

as an underdeveloped concept of variable. The researchers suggested that "modeling a given 

situation using algebra may represent an even higher level of abstraction than the several 

abstract-general concepts that may be invoked" (p. 92). 

The translation studies indicated students' difficulties in relating the mathematics and 

context apart from prompts or additional instruction. While the difficulty may stem from the 

need for appropriate conceptual schemas to resonate while completing the translation 

problems, few students successfully related the mathematics and context on their own. 

Additional research is needed to indicate how implementation of inquiry in the mathematics 

classroom while building on students' prior knowledge may help students in associating the 

symbols with the context. 



41 

Studies examining mathematical modeling and the interaction between context and 

mathematics illustrate students' varied reactions in relating the context with mathematics. 

Students' in several curricular domains, including science, had difficulty translating 

sentences into mathematical equations without instruction or prompts. Additional studies 

demonstrated that when curriculum emphasizes contextualized problems and mathematical 

modeling, on real-world problems, students outperform those students who have traditional 

instruction emphasizing symbolic manipulations. The studies by Zbiek and Lanier 

demonstrated that when given the liberty to model data, students rarely translated the 

mathematics in terms of the context or vice versa. The mixture of results suggest that 

additional research is needed to illustrate how students rely on the context when curriculum 

articulates the development of the mathematics from the science context. 

Classroom Interactions Surrounding Mathematics and Phvsical Contexts 

When instruction does emphasize the context and mathematics, the interactions in the 

classroom influence the types of connections made relating the mathematics and context. 

Bromme and Steinbring (1994) conducted an exploratory study analyzing the interactions 

and the role of context in two sixth grade classrooms. The researchers emphasized the role 

of the instructor in the development of mathematical meaning over time and presented a 

graphical form of the classroom interaction and context data. To form the graphs, 

transcriptions from the two classes were coded based on who was speaking; whether a 

question asked, explanation given, or statement made; and the classification of the elements, 

whether symbol, object, or relation. A symbol referred to the mathematical notation used to 

represent the concept. Object indicated the physical objects involved in the discussion, and 
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relation regarded the linking between object and symbol and the associations connected to 

each. 

The results of Bromme and Steinbring's study indicated that the two classes 

interacted differently, particularly regarding the achievement of stability of the relational 

level of the concept. In the "expert's" class, the relational level was of approximately the 

same rank as the symbol and object level with "soft transitions" between the levels. The 

lessons in the "non-expert's" class never stabilized at the relational level, but contained large 

blocks of object and symbol levels with sudden switches. Analyzed across a second lesson, 

the graphs maintained more similarity within the lessons taught by a single instructor than 

across instructors. 

Bromme and Steinbring observed differences in how the instructors communicated 

with their students. The "expert" teacher interacted with a "collective student" which was 

constituted from the contributions of multiple individuals. Hence, there was a joint 

presentation of the material. The "non-expert" teacher interacted with individual learners, 

suggesting the discourse of the lesson was divided into subtopics of individual students with 

no consistent dialogue referring to connected topics. 

Bromme and Steinbring hypothesize that the differences between the classes stemmed 

from the instructors' different subjective attitudes toward mathematics. They expressed that 

the "non-expert" instructor emphasized the manipulation of mathematical symbols and the 

equality of the object and symbol levels. The "expert" teacher accentuated the relationship 

between the object level and the symbol level. Additional research is needed at the college 

level to illustrate how interactions relating symbol, object, and relation inform the 

instructional techniques. Bromme and Steinbring's study informs this study concerning the 
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influence of the instructors' beliefs and communication on class discussion of context. In 

addition, the study suggests the coding for symbol, object, and relation to illustrate where 

emphasis is placed in class discussion. 

The instructors' goals and instructional techniques often dictate the role of context or 

object in relating the mathematics to context. When reviewed in light of the other studies 

investigating mathematical modeling, instructors' choices in curriculum and leadership in 

classroom interactions affect students' abilities to model and relate context and mathematics. 

Instructors are responsible to promote an environment in which compatible schemas resonate 

in students in order provide appropriate accommodation regarding modeling and solving 

real-world problems. The current study will draw on the current smdies to indicate how to 

implement inquiry and interpret the results as students are taught to rely on the context to 

construct a mathematical model of data. 

Levels of Mathematical Conceptions 

Instructors' goals and students' mathematical conceptions of modeling are classified 

in this study according to levels of understanding sought and attained. Various researchers 

have identified similar classification structures which inform this study. While the 

classification system "APOS" will be the primary structure referred in this study, other 

classifications directly relate to and inform the interactions which occur. 

APOS 

Asiala, Brown, Devries, Dubinsky, Mathews, and Thomas (1996) composed a 

framework for mental constructions for learning concepts in mathematics. Students' 

concepts develop from one level to the next through reflective abstraction, a general 

coordination or drawing of properties from mental or physical actions at a particular level of 
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thought (Dubinsky, 1991). Classified on four levels and characterized throughout this paper 

as "APOS," the four levels of conception are action, process, object, and schema. An 

individual has an action conception when the concept is perceived as external to the 

individual. One can enact the transformation only by reacting to external cues that give 

detail to the steps to take. When an individual has repeated the action sufficiently to the 

degree that reflection on the action can occur, the concept may be interiorized into a process. 

A process is f)erceived as being internal and under one's control as the individual may reflect 

on, describe, or reverse the steps of the transformation without actually performing the steps. 

A concept becomes an object when the process is viewed as a totality and actions can be 

performed on the process. Eventually, objects and processes may be interconnected and 

structured to form a schema. The schemas may then be treated as objects. 

Structural vs. Operational 

Similar to APOS, Sfard (1991, 1992) developed the descriptions of operational and 

structural approaches to instruction. Structural instruction refers to the teaching of 

mathematics emphasizing the structure of mathematics such as the building of new concepts 

by definitions and manipulations according to certain rules. An operational approach to 

instruction develops the mathematics as a computational process rather than as a static 

construct. Operational instruction is similar to an action or process conception whereas the 

structural would be similar to the object level of conception. Sfard (1992) formulated two 

principles which guide the operational approach to instruction: (i) "new concepts should not 

be introduced in structural terms" and (ii) "a structural conception should not be required as 

long as the student can do without it" (p. 69). Sfard recommended instruction that first used 

the operational approach to develop new mathematical concepts. The operational approach 
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would eventually lead to a structural approach as the basis was estabUshed for a higher level 

concept. The recommendation followed the notion that "when a new concept is to be 

learned, an ability to think about it as a process should be expected in the majority of the 

students before an ability to consider it as an object has been acquired" (p. 70). 

As part of a course on algorithms and computability, Sfard (1992) taught the concept 

of function operationally to four groups of undergraduates, ranging in size of 16 to 20 

students. Initially, the term function was used almost synonymously with algorithm and then 

explained as the name of a product of an algorithm. An initial structural characteristic, the 

set of all input-output pairs, associated the function with computation. Different methods of 

constructing functions from other functions were discussed with multiple representations of 

functions given as well. Eventually explicit remarks and questions on the nature of functions 

as opposed to algorithms were stressed in the course. Finally, the question of existence of a 

nonalgorithmic, noncomputable function was posed. Class observations indicated that 

students did function operationally and struggled with a transition to the structural 

conception. Full reification of the function concept did not occur as there was evidence that 

students could not cope with the proof that noncomputable functions exist. Responses on a 

questionnaire about characteristics of functions further supf>orted most students' operational 

rather than structural conceptions. Sfard (1992) acknowledged that students may need 

additional time and motivation to abstract the function concept in addition to proper 

instruction. 

Additional research (Vinner & Dreyfus, 1989; Sierpinska, 1992; Dubinsky & Harel, 

1992; Carlson, 1998) indicates students' operational conception of functions and their 

difficulty with a structural conception of functions. Carlson (1998) conducted a study with 
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three groups of students who had just received A's in college algebra, second semester 

calculus, or first-year graduate mathematics courses. Students completed a written 

examination of their concept of function. Follow up interviews were conducted with fifteen 

students, five from each group. Students who had just finished college algebra had difficulty 

explaining what was meant by the statement "express 5 as a fiinction of t." One student 

explained that the terminology meant one should find where s and t were equal. Another 

thought the roots of an equation were to be found. Carlson summarized that these students 

"are unable to translate a verbal function description into algebraic function representation" 

(p. 133-4). 

Knuth (2000) examined high school students' reliance on the algebraic or graphical 

representation of function when solving a problem. More than three-fourths of the 178 

subjects chose an algebraic approach as their primary solution method on a task for which a 

graphical representation seemed more appropriate. Knuth reasoned that students do not 

develop ability to flexibly employ, select, and move between algebraic and graphical 

representations. 

Tool vs. Object 

Duoady (1991) suggests a tool/object model for analyzing interactions in a 

mathematics classroom and the instructor's representations of the mathematics and 

mathematical activities in the classroom. Duoady contrasted the role of mathematical 

phenomena as receiving a status of tool or a status of object. A concept is attributed the 

status of "tool" when emphasis is placed on its use in solving a problem. "A tool is involved 

in a specific context, by somebody, at a given time. A given tool may be adapted to several 

problems, several tools may be adapted to a given problem" (p. 115). A concept acquires the 
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status of "object" when "considered in a cultural dimension, as a piece of knowledge 

independent of any context, of any person, which has a place in the body of the socially 

recognized scientific knowledge" (p. 116). Duoady elaborates the object status when 

describing the allowance for the structuring of knowledge and the extension of the body of 

knowledge. When the teacher presents the mathematics in a contextualized setting and 

organized in an inter-setting dynamic to give meaning, the mathematics is used as a tool and 

decontextualized to acquire the object status. 

Levels of Mathematical Understanding 

Much like the other levels of classiHcation, the classification scheme described by 

Gravemeijer, Cobb, Bowers, and Whitenack (1999) identifies students' level of mathematical 

understanding. A situational level of understanding is one in which interpretations and 

solutions depend on the understanding of how to act in the setting. At the referential level of 

understanding models-of are grounded in students' understanding of the experientially real 

settings. In the general level, focus is placed on interpretations and solutions apart from 

situation-specific imagery. Formal level of understanding is characterized by formal use of 

conventional notation and symbolization. 

Making use of these levels of understanding, Rasmussen (1999) described his 

developmental research study in which he analyzed students' learning while developing, 

modifying, and refining initial conjecmres of possible paths that students' learning might 

take. To develop the understanding of Euler's method, students were presented with the 

problem of how to use a rate of change equation to approximate future number of species at 

different time intervals when given an initial population. Students were challenged to use a 

rate of change equation for a quantity to inform them about the quantity itself. One student 
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described his initial difficulty of knowing what to do with the value returned when plugging 

the initial population into the differential equation. When the student realized that the result 

was a rate of change for the population he assumed that the rate was constant over the time 

interval and found that he could calculate a rate at the next point. The student essentially 

developed his own informal Euler method. Initially, the student had a situational level of 

understanding as he determined how he was to act once he had a value from the equation. 

With a referential level of understanding, the student would refer back to the discrete 

approximations by acting if the slope field indicated a rate of change at every conceivable 

point. Eventually, students discussed results of individuals or groups of students to produce a 

general formula or procedure. The conventional means of symbolizing Euler's method 

evolved from students' reasoning and mathematical modeling. 

Illustrated by research on students' conceptions of functions and development of 

Euler's method, the classification schemes are used to indicate students' levels of 

understanding of various concepts. References to each of the classifications schemes of 

mathematical conceptions are made in this study when describing students' levels of 

understanding of various concepts in the course and when describing instructors' goals for 

students' conceptions. 

Reflection 

Researchers who developed and use the concept classification schemes attribute 

students' upward movement in the classifications through reflection. In addition, many of 

the studies examining inquiry and mathematical modeling emphasize the role of reflection 

for students to connect the mathematics to the context. In many studies reflection was 
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enhanced through student interaction and cooperative groups. In other studies, reflection was 

a component of the heuristics taught and recommended for students' use. 

Reflection through Anticipation of Questions 

At least two studies acknowledged the use of instructional techniques including 

students' anticipation of questions to prompt reflection. With this technique, students 

reflected on their work in anticipation of the instructor's or classmates' questions about their 

methods. 

Tanner and Jones (1994) completed an action research smdy in which specific 

instructional tasks were structured into the class to promote students' reflection while 

mathematically modeling. Mathematics students in eight secondary schools were audio-

recorded while participating in modeling tasks. Approximately 100 lessons were observed in 

order to capture "the creation of a modeling culture in the classroom" (p. 13). Researchers 

actively participated in the classrooms, interacting with the students to assess their 

perceptions and strategies during the modeling tasks. 

Three different teaching approaches were observed in the creation of the modeling 

environment. "Start-Stop-Go" (p. 422) allowed for each student to thiiik about the situation, 

generate ideas, and discuss those ideas with others. In the approach students spent time 

silently reading and planning, small groups discussed various approaches, the whole class 

brainstormed, and students returned to small group planning. At various times, students 

reported back to the class. Students monitored their progress in anticipation of the report 

back sessions. During times of reporting back, "internalization of scientific argument" 

(p. 423) occurred as students learned how to address various questions, first from the 

instructor and then from clzissmates. The questions emphasized the methods students used to 
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collect and analyze the data. Again, students learned to anticipate the questions and 

developed skills to "argue with themselves" (p. 423) in order to prepare. Following the tasks, 

"encouraging reflection" occurred as students individually wrote and presented final reports 

to the class. In addition, students were to address the question, "If I were to do this 

investigation again, what would I do differently?" (p. 423-4). Students also were encouraged 

to complete self-assessments using frameworks provided by the researchers. The 

assessments validated the teacher's informal assessments and provided another opportunity 

for students to reflect on their work. Unclear in this study were the times at which the 

various types of assessments occurred and students developed in their ability to 

mathematically model due to the reflection. 

Cobb, Wood, Yackel, and McNeal (1992) contrasted two elementary school 

mathematics classrooms and the types of discourse which arose in both. Emphasis was 

placed on the classroom environment and the meanings that students made of the completion 

of place-value numeration problems. In the more traditional classroom, students were 

expected to use the mathematical procedures and manipulations to determine the number 

associated with the number of tens and ones displayed in blocks. The teacher religiously 

asked students "How many tens do you see? How many ones do you see? What number is 

that?" (p. 585-6). This type of procedural instruction resulted in discussions in which 

students did not feel the need to explain or agree upon the types of justification for the 

solution. Emphasis had been placed on what students were "supposed to do" (p. 586) and 

that mathematics was a set of "fixed, objective rules" (p. 589). However, students learned to 

anticipate the questions the instructor asked and were prepared to respond with an alternative 

response should the first response not be acceptable. 
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The environment of the other second grade classroom had developed such that 

students were expected to explain their answers while the other students were to agree 

whether the solution was legitimate. Characteristics of this enviroimient included students 

going to the board to illustrate their answers without being specifically asked to provide that 

explanation, other students offering alternative methods of solving the problem, the teacher's 

use of students' language, and the teacher's use of initiating and guiding the constitution of 

jointly understood mathematical interpretations. In both classes, students anticipated 

questions. In the first class students anticipated the teacher prompting a different answer if 

their first response was incorrect. In the second class students anticipated the need for 

additional support or justification asked by the teacher or other students. 

In both studies, some reflection occurred as students' anticipated questions by others 

or anticipated the need to generate additional explanation. Such reflection promoted 

students' mathematical development. In this smdy, similar instructional techniques will be 

implemented to prompt reflection of the methods. 

Reflection through Classroom Discourse 

Cobb, Boufi, McClain, and Whitenack (1997) demonstrate the nature of discourse in 

an elementary mathematics classroom, the role of the instructor in promoting the discourse, 

and the development of reflection in the classroom. The researchers note how the class 

discussion surrounding the task shifted towards a higher level of activity through reflection. 

Students had been discussing the different possibilities for a given arithmetic problem. As 

the students listed the possibilities, one smdent, who previously demonstrated difficulty in 

using different representations in arithmetic, hypothesized that all the possibilities had been 

given. The teacher then asked if there was a way to be sure that all the possibilities were 
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given. The teacher's question presented students with the opportunity to reflect on the work 

to this point and reorganize the activity mentally. 

Cobb, et al (1997) observed the existing opportunity for all students in the class to 

reflect and objectify their prior activity, but noted that only those students who participated in 

the discourse were enabled to reflect. Comparing the acts of reflection and reorganization 

with the concept of resonance, all are individual acts or existence. Cobb et al. emphasize that 

though the classroom may promote a particular environment for reflection and reorganization 

to occur, the stipulation is for individuals to engage in the discourse. So, as a few students 

participate and indicate to their instructor that they are objectifying the concepts as intended, 

the teacher cannot assume that all students are objectifying the concepts. Important to 

emphasize, is Cobb et al.'s statement, "the discourse and the associated conmiunal activity of 

collective reflection both support and are constituted by the constructive activities of 

individual children" (p. 266). 

The researchers also noted the danger of a teacher to persist in initiating a shift in 

discourse when none of the students indicates the motion toward reflection on a prior 

activity. "The very real danger is, of course, that an intended occasion for reflective 

discourse will degenerate into a social guessing game in which students try to infer what the 

teacher wants them to say and do" (p. 269). The role of the teacher, as Cobb et al note, is to 

assess if students' tendency is toward objectification, to guide the development of reflective 

discourse, to ensure the interaction during such discourse, and to help students communicate 

notationally (symbolically) in the discourse. 

Classroom discourse, as indicated, promotes the reflection and reorganization of 

conceptual structures in students' understanding. Advised, however, is the need for all 
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students to engage in the discourse. Without engagement, little or no reflection, and as a 

result, little or no accommodation can occur. In this study, attempts will be made to engage 

all the students in discussion through inquiry. Evidence to support the existence or non­

existence of such occurrences will be given. 

Metacognition and Heuristics 

Learning to solve problems and thinking mathematically requires reflection on the 

mathematical activity (Arcavi, Kessel, Meira, «& Smith, 1998). To promote reflection the use 

of metacognition, thinking about one's thinking, and heuristics, rules of thumb for successful 

problem solving, were implemented in various studies emphasizing inquiry and mathematics 

education. In general, of the studies reviewed the use of reflection, metacognition, and 

heuristics advanced students' thinking when properly applied. 

In a study of upper division science and mathematics majors, Schoenfeld (1985) 

examined whether problem solving experience was sufficient for students' acquisition of 

heuristic strategies or if specific instruction of the use of heuristics was beneficial. Each of 

seven students were given a pretest containing five problems. After the pretest, students 

were given twenty problems to work. Each student was given written and audio-taped 

solutions. Four of the seven students comprised the experimental group who received a list 

of five problem solving strategies in addition to the written and audio solutions. Their 

written and audio solutions also contained cues of how the heuristics were used in solving the 

twenty problems. Results on a five problem posttest indicated that students who received the 

heuristics training outperformed the students in the control group. Each smdent in the 

experimental group improved their performance from the pretest to the posttest, while only 

one student in the control group improved. Transcripts from students' posttest experiences 
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indicated that students in the experimental group deliberately applied the heuristics taught 

and were successful in the use of three of the five strategies. Explicit instruction in heuristics 

made a difference in students' problem solving abilities. 

Established Ex[)eriences vs. Plausible Reasoning 

In spite of instruction of various heuristics, Lithner (2000) found that students 

frequently rely on established experiences rather than the heuristics and plausible reasoning. 

Plausible reasoning was classified as argumentation founded on mathematical properties of 

the components and intended "to guide towards what probably is the truth, without 

necessarily having to be complete or correct" (p. 167). Reasoning based on established 

experiences was considered the argumentation founded on notions and procedures in one's 

prior experiences from the learning environment and intended "to guide towards what 

probably is the truth, without necessarily having to be complete or correct" (p. 167). The 

reasoning based on established experiences concerns the transfer of properties from one 

familiar task situation to another task situation. The researcher examined undergraduate 

students' difficulties when trying to solve mathematical tasks. Three student volunteers, 

completing their first semester of their undergraduate study in mathematics, were videotaped 

as they individually worked two tasks, neither of which were purely routine nor non-routine. 

Both problems drew on students' calculus experiences as one was a maximization task and 

the other a graphical analysis task. The students' processes were then analyzed to determine 

the students use of plausible reasoning and reasoning based on established experiences. 

Lithner found that students had the heuristics and resources they needed to correcdy 

solve the tasks. Students limited their application of heuristics and reasoned through the 

problems based on their established experiences. Reasoning according to the established 
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experiences created difficulty for the students when the familiar routines did not work for 

various reasons. This study suggests that additional methods are needed to better advance 

students' use of heuristics and plausible reasoning when problem solving. 

Related to Lithner's study of established experiences, Rasmussen (1997) used a case 

study approach to explore students' understandings and difficulties with quantitative and 

qualitative numerical methods for analyzing differential equations and the factors which 

shaped the understandings and difficulties. Six students within a single section of an 

introductory differential equations course volunteered to complete semi-structured interviews 

with the researcher. Other data gathered were interviews with the instructor of the class, 

interviews with other mathematics faculty, classroom observations, collections of students' 

written work on four Mathematica problem sets, quizzes, and exams, and a questionnaire 

completed at the end of the semester. Four audio-taped interviews were conducted with each 

of the six students following students' submission of their Mathematica assignments. The 

interviews consisted of three parts: exploration of smdents' concept images of the topics 

presented in class, three to five problems to solve, and discussion of the role of Mathematica 

in their learning about differential equations. Interview tasks were classified as association, 

prediction, conceptualization, or modeling. 

Class sessions included time for students to ask the instructor questions about 

homework or previous lectures. The remaining class time was spent as the instructor 

lectured on new course material. Students were able to ask questions during this time but 

few students did. All interaction was teacher-student oriented with no student-student 

interaction. No class time was spent discussing or demonstrating the use of Mathematica. 

The instructor regularly commented on the usefulness of the qualitative and numerical 
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methods to learn about solutions of differential equations without having actual solutions. 

However, sixty f>ercent of all textbook homework problems assigned emphasized analytic 

techniques with less than twenty percent emphasizing qualitative and numerical techniques 

for solving differential equations. 

Student interviews demonstrated that students often relied on established experiences 

much like Lithner's (2000) discussion of students' reliance on established experiences rather 

than plausible reasoning. Rasmussen found that students tended to memorize graphical 

methods of analysis in isolation from other aspects of the problem. Students demonstrated 

their ability to complete the Euler's method algorithm and other procedural components but 

displayed little understanding of the symbols involved nor of the connections between the 

algorithms and the direction fields. Given the class and interview data, Rasmussen 

recommended an inquiry approach emphasizing discussion of students' interpretations, 

strategies, and ways of conceptualizations of the concepts and representations rather than 

procedures and final answers. Rasmussen also recommended incorporating mathematical 

modeling into the curriculum, with modeling launching discussion of the numerical and 

qualitative methods rather than discussion occurring as illustrations of the methods. 

Though specific instruction in the use of heuristics proved beneficial for students, 

students in Lithner (2000) and Rasmussen's (1997) studies frequently relied on established 

experiences. Examination of the implementation of an inquiry process promoting the 

incorporation of modeling to launch mathematical discussion will be given in the current 

study. 
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Metacognition 

While the use of heuristics in mathematics prove beneficial to students in 

mathematical problem solving, reliance on metacognition tended to be minimized by novice 

problem solvers. The following studies illustrate students' infrequency in implementing 

metacognition while demonstrating students' success when engaging in metacognition. 

Stillman and Galbraith (1998) sought to explore female secondary students' 

metacognitive behaviors as they solved real-world, non-routine problems requiring the use of 

memory management techniques. In general, the senior level high school students spent 

most of their time on orienting and executing activities with little time on organization and 

verification. Students who were most successful spent less time on orientation components, 

engaged in a high number of organizational activities, and regulated their execution and 

evaluation activities. The researchers encouraged the development of teaching approaches 

which facilitate students' reliance on available cognitive and metacognitive resources 

through reflection and discussion. 

Schoenfeld (1985, 1987) also found that novice problem solvers tended to spend less 

time organizing and regulating their activities and more time on exploring solutions. To 

display individuals' managerial and metacognitive behaviors and indicate models of 

reasonable problem solving behavior, Schoenfeld created a framework for the "macroscopic 

analysis of problem-solving protocols." Coding for the sequence and time spent on reading 

the problem, analyzing, exploring, planning, implementing, and verifying, Schoenfeld 

created maps of the time spent on the various components. Use of the codes and resulting 

maps in analyzing novice and expert problem solving abilities suggested that expert problem 

solvers demonstrated controlled behavior, curtailed "wild goose chases," frequently assessed 
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doing (exploring). Novice problem solvers failed to activate self-regulation and spent all of 

their time exploring and implementing a single method of solving the problem, considered by 

Schoenfeld to be a "wild goose chase." 

Chin and Brown (2000) examined transcripts and written reports from eighth grade 

science students involved in inquiry process of learning a chemistry unit. The researchers 

identified two categories of approaches students applied in learning; deep and surface 

learning. The deep learners generated ideas more spontaneously and had more precise and 

elaborate responses. In addition, their questions focused on explanations, predictions, and 

resolving discrepancies. Deep learners relied on metacognition to regulate control of the on­

going learning process and persisted in the follow-up of ideas and predictions. Surface 

learners gave explanations which referred only to what was visible and asked more factual, 

procedural questions. Surface learners focused on the procedural and observational levels of 

understanding. Chin and Brown recommended future research of instructional processes to 

encourage deep processing of students. 

In general, when students relied on metacognitive and heuristics, they engaged in 

higher order thinking and were more successful in solving problems. When students did not 

rely on their metacognitive skills or heuristics and relied on their established experiences, 

students were often less successful in problem solving. In this study, the development of 

metacognitive skills and heuristics will be described as inquiry and mathematical modeling 

are pursued. Examination of students' reliance on reflection, metacognition, and heuristics 

will be completed. 
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Instructor Issues 

Various issues surrounding the instructor's goals, directions, and interactions with the 

students influence the class environment and degree to which inquiry and mathematical 

modeling are implemented. Items directly influencing this study include, as mentioned 

previously, running with students' ideas, negotiation of problem or task, and overall structure 

and pedagogy. Other items needing to be addressed more fully include the authenticity of the 

instructor's beliefs and practices, classroom interactions, and interpretation of task. 

Authenticity of Beliefs and Instructional Practices 

Informing the classroom environments for this study and the methods used to develop 

representations of inquiry was a study on authenticity of beliefs and instructional practices. 

Brendefur (1999) related high school teachers' beliefs about student learning, pedagogy, and 

mathematics to the authenticity of their actual instructional practices. Surveys, class 

observations, interviews, and textual analysis helped to address the following research 

questions: (1) "What is the nature and relationship of high-school mathematics teachers' 

beliefs about student-learning, pedagogical practices, and mathematics related to authenticity 

of instruction? (2) What is the relationship between the authenticity of the high school 

mathematics teachers' practices and their beliefs?" (p. 8). Fifty-one teachers from six 

different high schools and one technical institution from across the nation completed pre- and 

post-surveys concerning beliefs about teaching. Of the 51, eight mathematics teachers were 

selected based on their involvement in curriculum-writing projects grounded in the NCTM 

Standards and connecting mathematics with a vocational or technical topic. The remaining 

43 teachers formed the comparison group to determine if the project teachers represented the 

population of mathematics teachers and to evaluate the stability of teachers' beliefs over 



60 

time. The eight project teachers participated in two interviews, allowed two sets of 

classroom observations, and wrote, pilot tested, and revised a curricular unit, and attended a 

summer workshop in addition to completing the two belief surveys. The eight teachers had 

volunteered to participate in the curriculum-writing project. 

Brendefur classified the beliefs, classroom observations, and curriculum units 

according to three components of authenticity: Construction of Knowledge, Depth of 

Knowledge, and Value Beyond Instruction. Construction of Knowledge, grounded in higher 

order thinking, refers to the students' engagement of tasks where they make sense of a 

situation or phenomenon through discussions and exploration while relying on their prior 

knowledge and available resources. Depth of Knowledge relates to the belief that students 

leam mathematics by connecting mathematical ideas together. Value Beyond Instruction 

associates the belief that students leam and are engaged in mathematics when the problems 

have value to them or the real-world. Brendefur defined authentic pedagogy as 

teachers' deliberate actions to promote students' construction of knowledge through 
mathematical inquiries and problems that have personal or real-world significance. 
Pedagogy includes the curriculum, instructional activities and questions, and 
assessment tasks that teachers use in their classroom (p. 23). 

Teacher's beliefs were characterized as being more authentic when they thought that smdents 

leam by making sense of the mathematics themselves. Teachers' beliefs were characterized 

as more traditional and less authentic when they believed that students leam by memorizing 

or absorbing the mathematics presented to them. 

In relating high school teachers' beliefs toward authenticity with their instructional 

practices, Brendefur coded classroom observations according to various scales. The purpose 

of the scales was to gather numeric indicators of student experiences during instmction. The 
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class sessions were observed by two independent observers. The scores from the two 

observers were then aggregated and discussed until agreement was achieved between the two 

observers. In coding the observations, Brendefiir coded data in real-time rather than based on 

audio or video recordings. TTie researcher felt the use of written notes contain a person's 

reactions and other observations that cannot be captured on audio tape. 

The scales used during the classroom observation were higher order thinking, depth 

of knowledge and student understanding, mathematical connections, cross-disciplinary 

connections, substantive conversation, and value beyond the class. Each scale had five 

ratings which could be attributed to class during observations. The higher order thinking 

scale ranged from "most students, for most of the time, are engaged in higher order thinking" 

to "students receive, recite, or perform routine procedures" (p. 250). Classroom activity was 

classified as a high depth of knowledge and student understanding when students' reasoning, 

explanations and arguments demonstrated fiillness and complexity of understanding. The 

activity was classified as low when students applied algorithms with no attention to the 

underlying concepts. The scale for mathematical connections sought to address the extent to 

which the lesson connected topics across different areas of mathematics. Rated low was the 

isolated study of mathematics topics. The scale for cross-disciplinary connections rated 

whether mathematical topics were studied with or in isolation of other contexts. 

In addition to classifying the level of thinking and mathematical content and context, 

Brendefur's observation scales accounted for the class environment. Brendefiir examined the 

use of classroom discourse to promote shared understandings of mathematics. Rated high 

was "the creation of and maintenance of collective understandings" which could include the 

use of a common terminology and the careful negotiation of meanings. Rated low was 
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"Virtually no features of substantive conversation occur during the lesson" (p. 256). Value 

beyond the class was rated high when students worked on a topic directly connected to their 

personal experiences or actual contemporary public situations. In addition students were to 

recognize the connection between classroom knowledge and the current situation. Rated low 

was the lack of connection of the topic and activities to anything beyond itself. 

Brendefur classified the teachers' beliefs based on their comments during interviews. 

Two of the eight instructors were rated as authentic as they consistently made comments 

regarding the making and discovering of connections within mathematics and between 

mathematics and other contexts. Four of the eight tended to make more traditional comments 

that mathematics is a set of tools developed in a linear fashion and that students leam by 

memorizing and using algorithms in trivial ways. The remaining two teachers made an equal 

number of traditional and authentic comments. 

Seven of the eight instructional units were initially classified as traditional with one 

rated as a mix of traditional and authentic. After revisions, three remained traditional, three 

moved up in authenticity to "mostly traditional," and one moved to "mixed." The one 

"mixed" classification moved slightly towards the "mostly authentic" category. 

Of the two instructors whose interviews suggested they had authentic beliefs, only 

one was rated as "mostly authentic" based on observations of the instruction. The other was 

rated as a mix of authentic and traditional classroom practices. The two instructors who gave 

mixed beliefs on the interviews demonstrated mixed instructional practices. The four 

instructors who rated as traditional during the interviews were mainly traditional in their use 

of instructional practices. 



Positive correlations indicated a relationship between the authenticity of instruction 

and the teachers' belief regarding authenticity. In general, instructors' beliefs regarding 

authenticity tended to be rated higher than the ratings for instructional practice. Overall, 

changes in teachers' beliefs from the first to second implementation of the instructional units 

were found to be inconclusive. 

In considering an inquiry environment, authenticity of beliefs and instructional 

practices strongly relates to the pedagogy implemented by the instructor and students. In this 

study, examination of the instructors' practices and beliefs will not be classified as authentic 

or traditional. However, the instructional practices will be examined in light of the 

instructors' beliefs and goals. In addition, when examining the classrooms for characteristics 

of inquiry, similar codes as used by Brendefiir will be implemented, including connections 

across contexts and levels of mathematical understanding. 

In their own study of "authenticity," Arcavi, Kessel, Meira, and Smith (1998) 

examined Schoenfeld's teaching practices during a semester of his course "Mathematical 

Problem Solving" to investigate how he creates a classroom community of problem solvers 

in which undergraduate students think and perform mathematically. The researchers found 

that Schoenfeld's lectures were infrequent and contained heuristics or other instruction 

students needed to make progress on problems. Instruction was shifted from the 

mathematical content to methods of how mathematics is done. Students worked 

mathematical problems, presented solutions to their problems, and engaged in small group 

work and whole class discussions. With emphasis placed on students' participation in the 

mathematical community, Schoenfeld's language reflected that of the community with "we," 

"you," and "Devon's question was...," and was informal and non-technical. In de-
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emphasizing the formality of the written and oral mathematics, the process of how to do 

mathematics was reflected. 

Both studies by Brendefur (1999) and Arcavi et al. (1998) suggested that language 

played a role in the authenticity of instruction or emphasis on the process of mathematics. 

Brendefur incorporated a code to suggest the use of student vs. teacher language in the 

mathematics classroom. Arcavi et al. indicated that Schoenfeld de-emphasized formal 

mathematics terminology to focus on the "how" of mathematics. Neither study gave 

classroom examples suggesting the advantages to using student language over more formal 

mathematical language. In light of Sfard's (1992) study, using student language may 

emphasize a more operational instructional method before developing the structural 

component of mathematics. As a secondary component, the use of language and degree of 

formality will be examined in this study. 

Conceptual Orientation 

Much like the authenticity of one's beliefs and instructional practices, classification 

of the instructor's conceptual orientations informs the goals, purposes behind a task or an 

assignment, and interactions held in the class. Clement (1999) examined the conceptual 

orientations of two instructors of a mathematics course for elementary education majors. In 

using innovative materials, the teachers were observed and video-taped during two 

instructional units. Observations across two units provided the researcher with the ability to 

address the stability of instructors' orientations across and within different mathematical 

topics. One instructor represented a calculational orientation while the other had a 

conceptual orientation. The instructor identified as having a conceptual orientation toward 

teaching expected students to share their thinking; focused on aspects of students' thinking 
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associated with the underlying concepts; emphasized quantities over values in the problems; 

used diagrams and explanations to help develop students' reasonings and connections; and 

promoted students' thinking about their own and others' thinking about the mathematics. 

The instructor identified as having calculational oriented teaching practices demonstrated 

instructional techniques which emphasized mathematics as composed of procedures and 

facts. In the calculational instructor's class cooperative learning and diagrams were used to 

facilitate students' abilities to solve problems. Both instructors' orientations toward teaching 

remained stable throughout the course. 

In a related study, Thompson and Thompson (1994) analyzed one teacher's 

interactions with one of his sixth grade smdents as the student developed in her 

understanding of distance, time, and speed. The researchers purposely intended to examine 

the discourse between the teacher and one student to relieve the teacher of all distractions and 

reduce the social complexity and demands of the whole-class interaction. In doing so, 

Thompson and Thompson sought to gain insight into the cognitive and attitudinal constraints 

teachers face when they attempt to influence children's thinking and conceptual construction. 

The researchers had prepared a set of tasks for the student to work relying on a 

computer program "Over & Back" as needed to address issues of speed, distance, and time. 

The researchers worked with the teacher to help him be prepared for the student's difficulties 

with the tasks, but he more often relied on calculational understandings to explain to the 

student how to proceed in the problem. The discourse demonstrated the mismatch between 

the teacher and student's conceptualization of speed. The teacher's conceptualization was 

complex, but he was only able to use language reflective of the calculations required, rather 
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than the everyday language the student used. The teacher also lacked a sense of clarity of the 

purpose of the tasks, other than completion. 

Specific classifications of the instructors as conceptual or calculational or authentic or 

traditional will not occur in this study as it was not a goal of the study. However, examining 

the instructors' practices in light of their goals and beliefs will give justification behind some 

of the methods implemented. Identifying various aspects of the classroom interactions, 

language use, and instructor's beliefs regarding these studies of conceptual orientation and 

authenticity in instructional practices informs the nature of inquiry pursued in the classroom 

environments. 

Interpretation of Task 

Another component of the pedagogy is the negotiation of the problem or the 

interpretation of the task. Interpretation of task and explanations influence the inquiry in 

mathematics classrooms. Christiansen (1997) and Yackel (1995) both examined the role of 

interpretation in influencing classroom dynamics and inquiry in the class. 

Christiansen (1997) conducted a qualitative study of a freshman high school 

mathematics class as students studied mathematical modeling of population growth using 

linear, exponential, and logistics equations. Christiansen audio-taped class sessions and 

focused observations on a group of five students. Students had been given a homework 

assignment to examine the given population data and were asked if the assumption that the 

data was linear was reasonable. One student argued against the rest of his group that based 

on the ability to predict future populations and on his common-sense knowledge about 

population, the data was not linear. The group sought the instructor's help to resolve their 

disagreement of whether the data was linear. The instructor encouraged the student to focus 
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only on the data that was listed and to remember that a model did not have to be perfect, but 

reasonable. In the reminders, the instructor highlighted her intentions for the homework 

problem to use modeling as a tool to describe population before modeling became an object 

in itself. The instructor acknowledged the opposing student's judgment but indirectly gave 

her own judgment about the linearity of the data. In doing so, she advanced the exercise-

oriented goal and potentially interfered with students' ownership of the goals for the activity. 

Christiansen stressed the importance for students to understand that an activity have a well-

defined goal in order to know what kind of activity to engage. 

Yackel (1995) examined second grade students' interactions during mathematics 

classes as students focused on instructional activities designed to enable students to create 

and coordinate arithmetical units of different ranks (Cobb, Yackel, Wood, 1995). The 

classroom was video recorded for a school year with ten weeks of class sessions analyzed by 

researchers. Yackel identified instances indicating when and why interaction broke down in 

the classroom. Three classifications included participants' differing interpretations though 

they were unaware of the differences; incompatibility of the interpretations of the immediate 

task and what activity was considered mathematics; and smdents' inability to explain their 

ideas so others could understand. 

Both Yackel (1995) and Christiansen (1997) identified particular items which 

influence interactions in the mathematics classroom. Christiansen recognized the instructor's 

goals and comments in impacting students' interpretation of tasks and the intent of the 

assignments. Yackel identified that different interpretations among participants lead to 

breakdown of mathematical activity. Additional research is needed to extend these 
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classifications to the breakdown of interaction and understanding of task goal in the 

collegiate mathematics classroom. 

The interpretation of the task or problem as highlighted by Christiansen (1997) and 

Yackel (1995) as well as previous discussion of negotiation of problem in Roth (1995) and 

Borasi (1992) suggest the importance for students and instructor to agree on the nature of the 

task or problem under investigation. While not implying that all students have to investigate 

the same problem or question in an inquiry environment, understanding should exist of the 

purpose of the task and the means to assess whether the goals were attained. In this study, 

negotiation or interpretation of task will be examined as inquiry is pursued. 

Summary 

In summary of the literature reviewed, examination of inquiry and mathematical 

modeling in science and mathematics are well-documented. Several key points are noted 

which have a direct impact on the nature of this study. Studies indicate and support the 

implementation of inquiry in the classroom as students' higher order thinking is advanced, 

particularly in interpreting and evaluating results. When students have more freedom to pose 

and investigate their questions, their thinking is more often focused on the data and 

evaluation of the data and results rather than interpreting the instructions of the lab. When 

laboratories are more open, negotiation of task and purpose of the problem is encouraged. 

Investigations of inquiry in the college mathematics classroom demonstrating the interactions 

and students' reasoning are needed. In particular, this study will examine what happens 

when entire classes pursue inquiry, rather than instances in which inquiry is pursued in a 

situation with a low teacher-student ratio. 
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The studies relating context and mathematics indicate that students can better relate 

mathematics and context when given instruction and practice in mathematical modeling. 

More study is needed of how the context informs students' problem-solving abilities as some 

studies suggested students' reliance on established experiences and technological results 

rather than reasoning from the context. This study will seek to extend the literature on 

students' modeling abilities when relationships between context and mathematics are 

emphasized in class. As a component, the roles of reflection, metacognition, and heuristics 

will be addressed in the inquiry environment as students model and relate the context and 

mathematics. 

Few studies reviewed indicated ways in which pictorial representations of an inquiry 

environment could be created. Various coding techniques by Bromme and Steinbring 

(1994), Brendefur (1999), and Schoenfeld (1985, 1987) informed the codes used in this 

study. Bromme and Steinbring highlighted the role of context and interactions in a 

mathematics class. Brendefur's codes indicated degrees of authenticity in instructors' beliefs 

and practices. Schoenfeld's codes emphasized individual student's metacognitive and self-

regulatory skills in solving problems. In each of the codes components of inquiry such as 

phase of inquiry, cycles of inquiry, and indication of agreement or disagreement of resonance 

were missing. This study intends to examine the use of various codes to suggest inquiry in 

the classroom and the agreement and disagreement in resonance between class participants. 

Methods used to develop these codes and the inquiry and modeling topics of this study are 

discussed in Chapter 3. 
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CHAPTERS 

METHODOLOGY 

The Unit of Analysis 

The unit of analysis for this study consisted primarily of two sections of the freshman, 

collegiate level course Mathematics 181: Calculus for the Life Sciences. This course was 

selected based on the following reasons: the course already contained laboratory 

investigations, the instructors each had taught the course for several semesters, and the 

classroom environment promoted interaction. 

A brief history of the origin and the development of the course is appropriate in 

describing the underlying philosophy and process of Mathematics 181 while informing the 

choice of the unit of analysis. The course originated in 1994 when a mathematics professor 

collaborated with a zoology professor, a second mathematics professor, and a mathematics 

instructor. The team determined that the mathematics and engineering sequence of calculus 

seemed to lack the application-oriented problems that life sciences students felt were relevant 

to their education. Relying on an NSF grant, they developed a two-course sequence and text 

containing biology and ecology based problems while emphasizing both the review of 

precalculus topics and discussion of rates of change. The team desired for students to have 

hands-on interaction with the mathematics and science problems. 

The four originators of the course developed laboratories during which students 

would collect and analyze data as the mathematical topics unfolded. Prerequisites placed on 

the laboratories included the consistent gathering of data which accurately reflected specific 

mathematical relationships and a shortness of time required to gather data. The data needed 

to be collected within one 50 or one 85 minute class session. Catering to the life sciences 

students' mathematical needs and the prerequisites, the team developed laboratories focusing 

on properties and uses of linear, polynomial, exponential, and logarithmic equations as well 

as difference and differential equations. The labs were founded on life sciences topics such 
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as population growth, pharmocokinetics, allometry, and other specie-specific properties of 

wildlife. When analyzing the data gathered in the laboratories, students used various 

technology, including graphing calculators, and wrote lab reports summarizing their findings. 

Each semester since the origins of the courses, the laboratories and text have been modified 

to correct mistakes, enhance the accuracy of the methods of gathering data, and better 

accommodate the needs of the students and instructors through the rearrangement of 

discussion of various topics. 

The previously built-in laboratories in Mathematics 181 provided the potential for 

attaining process and philosophical components of an inquiry environment. Throughout the 

courses, laboratory investigations were completed both in the mathematics classroom and in 

a science laboratory. The class met for four 50 minute class sessions per week. During 

weeks in which students gathered data in the science laboratory, students attended one 85 

minute lab session and three 50 minute math class sessions. During the laboratories, students 

often participated in the process component of inquiry as they made predictions, collected 

data, and analyzed the data. Students were encouraged to explore mathematical situations 

including data handling and mathematical modeling. The models were used to describe the 

relationships, patterns, and operations inherent in certain scientific relationships they 

explored. Similar to Schoenfeld's experiences (1987), the course allowed students to 

experience mathematics in a way that made sense much like the mathematics the 

mathematicians and scientists experience. 

The experience of each of the instructors in teaching Mathematics 181 enhanced the 

choice of investigating inquiry in the course. Each of the instructors for the course, including 

the researcher, had many semesters of experience teaching the course. This experience 

allowed for confidence in the ability to teach the content and to apply different class and 

assessment activities which had been "tested." Each instructor often adjusted their methods 

based on what had worked well the previous semesters and what new methods, activities, or 
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assessments they wanted to implement in the attempt to improve students' success in 

learning and understanding the material. Neither felt they had become "the expert" 

instructor, but each sought to improve upon their prior teaching experiences. For the teacher-

as-researcher, the four semesters spent teaching Math 181 prior to the data collection period 

served the purposes to develop deep understanding of the environment and issues being 

examined and extended experience mulling over the issues under question. In addition, the 

time spent teaching allowed for growth as a researcher in learning how to identify and frame 

workable research problems—meaningful problems on which legitimate progress can be 

made in a reasonable amount of time (Schoenfeld, 1999) 

The two sections of Mathematics 181 taught by two instructors of offered two 

different pursuits of inquiry in mathematics classrooms. In the two classroom environments, 

the researcher could identify characteristics or activities which promoted the inquiry process 

and those which hindered the inquiry process. The multi-sections provided the researcher 

with the possibility to determine if patterns in the characteristics or activities arose across the 

different sections and with different instructors. 

Each Mathematics 181 class provided the opportunity to examine the philosophical 

component of inquiry. During class, students were often given time to discuss the data 

analysis and other mathematical tasks with their group members. Students in both sections 

of Math 181 were assigned seats and/or group members. Since the use of the graphing 

calculator often played a role in students work with the data, one instructor used students' 

graphing calculator type to arrange the assigned seating. The researcher also used graphing 

calculator type in addition to students' laboratory time, so students would be assured of 

working with the same students during the laboratory sessions. 

The interactions among the students and between the instructor and students in the 

classroom forced certain issues to play out, in contrast to an environment in which the 

researcher strictly interacted in a one-on-one study of individuals learning in an inquiry 
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environment. While studies consisting of one-on-one investigations of a researcher 

interacting with a single student in an inquiry environment add to the body of knowledge, 

particularly the metacognitive processes one incurs (Borasi, 1992; Schoenfeld, 1985, 1987; 

Arcavi & Schoenfeld, 1992; Thompson & Thompson, 1994), a classroom study provides 

additional information. One may argue that a classroom of many individuals as a unit of 

analysis establishes a greater potential for the unexpected, but a study of this nature more 

lends itself to the "real-world" environment for other collegiate mathematics instructors in 

pursuit of inquiry in their classrooms. Part of the question under investigation in this study is 

how inquiry can occur on a large scale. The interaction and laboratories conducted in 

Mathematics 181 provides the enviromnent for the examination of this question. 

Subjects 

Students 

Adult students in two sections of Math 181: Calculus for Life Sciences, the 

instructors for two sections, including the researcher, and a teaching assistant formed the 

participants for this study in the spring of 2000. The researcher taught one section of 31 

students in Math 181 while the other section consisted of 33 students. Though Math 181 is a 

freshman level collegiate mathematics course, students at all undergraduate classification 

levels enrolled in the course. The students also had varied mathematics backgrounds. Some 

students had recently taken all or part of a high school or engineering calculus course. 

Others delayed fulfilling their mathematics requirements and had no mathematics instruction 

for two or more years. These characteristics are noted as a smdent's mathematics 

background potentially influences the types of questions, comments, and interactions made in 

class. One similarity among the students was a major in a life science or pre-medical field of 

undergraduate study. 
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Instructors 

The instructor of section one of Mathematics 181 had master's degrees in both 

mathematics and molecular biology, providing her with a strong background in both the 

mathematics and sciences. Her knowledge enabled her to produce examples of how the 

mathematics and science interlinked. The instructor had also been a collaborator in writing 

the text and designing the experiments used in the course. As observed during the pilot study 

and confirmed during one-on-one interviews, the instructor felt the primary purpose of the 

laboratories was to develop contexts from which mathematical models could evolve. Once 

generated, the models launched further exploration and summary investigations of the family 

of functions produced and rates of change of the family of functions. 

With a bachelor degree in mathematics with secondary certification, the researcher 

had taught Math 181 for four semesters prior to the data collection period. She often 

collaborated with the instructor to discuss methods of instruction, the laboratory 

investigations, and student assessment. The researcher used the laboratory experiences to 

lend to the development of the mathematical discussion particularly modeling and rates of 

change. 

Teaching Assistant 

An additional participant in this study was a science laboratory teaching assistant. 

For Susie, a graduate student in electrical and computer engineering and having prior 

experience in a veterinary medicine laboratory associated with the university, the Spring 

2000 semester was her first as a teaching assistant for Math 181. Susie sat in almost all class 

sessions of section one of Math 181 and helped to answer students' questions. In addition, 

Susie led at least four laboratory experiences for this section in the science laboratory: an 

introductory lab session to familiarize students with the equipment and computer software, a 

motion experiment, a vibrio bacterial population growth lab, and the one-compartment model 
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of the body's processing of a dose of penicillin. Susie also led the one-compartment model 

of the body's processing of a dose of penicillin for a portion of the researcher's students. 

Design 

The nature of this study was exploratory using both qualitative and quantitative 

methods as described by Guba and Lincoln (1994) to inform the nature of inquiry in a 

collegiate mathematics classroom. As Schoenfeld (2000) and others (Hiebert, 1999; 

Kilpatrick & Silver, 2000) have indicated, there are no proofs in mathematics education. The 

intent of this study was to explore and represent the nature of the inquiry process in a 

collegiate mathematics course. The goal was not to prove that a course taught using an 

inquiry approach is better than other methods of instruction, as what is "good" is inherent in 

the goals one has for a course (Schoenfeld). Though proof is not achievable, much like a 

study in life sciences, multiple pieces of evidence must be presented to determine if a 

discovery meaningfully illustrates or supports a given theory. Hence, triangulation of the 

data is essential. 

In this study, multiple pieces of evidence were gathered with the intent to triangulate 

the data. The data consisted of audio or video taped class sessions surrounding the 

laboratories, copies of students' lab reports, copies of samples of the researcher's students' 

work during the laboratories, one-on-one interviews with six of the researcher's students, 

one-on-one interviews with the instructor, written observations of the instructor's class, and 

the researcher's class notes and journal. 

Laboratories 

Three laboratory investigations formed the context for the data gathered in Math 181. 

Two of the three laboratory investigations were conducted in the mathematics classroom: the 

water flow investigation and the light intensity investigation. The one compartment 

penicillin investigation was conducted in the science laboratory. 
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The water flow laboratory, performed within the first five weeks of the semester 

provided a context for quadratic functions and rates of change of quadratic functions. Hence, 

with completion of the lab early in the course, data from this laboratory produced 

information of the process of inquiry when students were first getting accustomed to the 

course. In the investigation, students gathered data by draining water through a cylindrical 

tube with a small hole drilled into the base of the tube. The data was then modeled with a 

quadratic function. 

Midway through the course, the light intensity laboratory investigation was 

completed in the mathematics classroom. Gathering data at this stage of the course gauged 

the development of the inquiry process over time. During this investigation, students 

explored the depletion of light through increasing depths of water or increasing layers of 

tinted Plexiglas. This depletion was modeled by an exponential function. 

To gain a sense of the use of the inquiry process after the majority of the course was 

completed, data were gathered in a third laboratory, a one compartment model. This 

laboratory followed on the heels of the light intensity investigation and was conducted in the 

science laboratory. This investigation mimicked how the kidneys in the human body 

eliminate a dose of penicillin in the blood and how the amount of penicillin in the blood 

changes as multiple doses are administered. The model implemented a simple wash-out of a 

given percentage of the fluid. Again exponential functions resulted in the modeling of the 

data, though in a different form than in the second laboratory. 

Data Collection 

Audio and Video Recording 

To capture the developments of the laboratories, the instruction, students' interaction, 

and teacher and student interactions, each class session pertaining to the described 

laboratories was audio or video recorded. The researchers' class sessions were video 

recorded. The class sessions in the other section of Math 181 were audio recorded. Audio 
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recording was selected by the researcher after discussion with the instructor. The instructor 

was willing to allow video recording in her class, but she preferred the audio recording. 

Audio recording was selected as this would be less intrusive to the classroom environment 

for the instructor and students. In addition, the researcher, a passive observer, recorded 

visual observations while sitting in the class sessions. 

Video recording was selected for the researcher's class sessions after review of the 

audio recordings of pilot sessions. The audio recordings of the pilot sessions of the 

researcher's section failed to capture the accompanying visual observations informing the 

context of discussions. The researcher had not and could not physically teach and record 

many visual observations simultaneously. While a daily journal was kept to record the 

researcher's observations, thoughts, and questions during the laboratories, the video 

recordings were implemented with the attempt of capturing students' interactions and 

engagement outside the researcher's immediate attention in addition to lending 

documentation of the class developments. All recordings pertaining to the laboratories were 

transcribed. 

During the transcription process, statements audible to the researcher were 

transcribed. In most cases, the researcher was able to identify the person who made the 

statement, and a pseudonym was typed with the comment. In those instances where the 

person speaking was identified but the words unclear, the pseudonym was recorded with 

"inaudible" marking the unclear statement or question. The occurrences in which the 

statement was recorded but the voice was unidentifiable, [?] was associated with the 

comment and eventually assigned a number during coding. 

When the interactions of the small group discussions were recorded, the researcher 

attempted to record as much as possible of the conversations. However, in many cases, the 

instructor's voice was clearly identifiable lending to greater ease of transcription. In 

addition, the microphone was more effective at capturing the sound of the voices closest to it. 
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Though some students may have participated extensively in small and large group 

discussion, the transcriptions may not have fully represented the level of participation. As a 

result, though much student interaction occurred in both classes, the interaction was not fully 

reflected in the transcriptions due to the limitations of the microphones and the researcher's 

ability to decipher students' communication. 

One exception in which the limitation of the microphones decreased occurred during 

the first four days of the light intensity laboratory in the researcher's class. Professional 

videographers recorded the investigation. The researcher's comments were captured through 

a cordless microphone while the interactions of a group of four students and students around 

this group were captured through a second microphone. The tape produced by the 

professionals was used for the transcription process. The use of the professionally produced 

tapes greatly increased the number of lines of transcription for these four days of the 

investigation and ultimately for the entire laboratory as better sound quality was obtained 

with the two microphones. Increase in sound quality and the transcriptions for this period 

influenced any resulting analysis emphasizing the number or type of student-to-student 

interactions. When reporting the qualitative results of the study, ellipsis points (...) 

designated where some comments were omitted from the discussion. 

Students' Written Work 

Lending to the information supplied by the transcriptions and classroom observations, 

additional evidence was gathered from students. In the researcher's section of Math 181, 

students were expected to regularly record their hypotheses, questions, data, analysis, and 

reflection questions in a "scientific notebook." Following the water flow laboratory, the 

students had not been held accountable for recording their observations. Thus, during the 

water flow investigation, students' questions about the laboratory and the analysis of the data 

were gathered as an incomplete component of the data. With the intent to be more 

systematic in capturing students' written work, during the light intensity and penicillin 
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investigations, the researcher developed worksheets which students were to complete 

throughout the investigations. Copies of students' "scientific notebooks" containing their 

questions, hypotheses, data, initial analysis, and reflection questions were made. 

Written work gathered of students in the other class took slightly different forms than 

the work gathered in the researcher's section. In section one of Math 181, data from select 

students were recorded by the researcher according to what the students wrote in their 

notebooks, on the board, or on overhead transparencies. 

Across all sections and each laboratory investigation, photocopies of students' lab 

reports were made. Students wrote lab reports following the class discussion of the analysis 

of the data. The lab reports demonstrated to the instructors the connections students made 

between the mathematics and science, the interpretations generated, the accuracy of students' 

work using the methods discussed in class, and students' use of multiple representations in 

communicating the mathematics and science. In the researcher's section of Math 181, 

students completed the water flow and light intensity lab reports in their groups while the 

penicillin reports were completed individually. Students in the other section of Math 181 

were given the option of submitting reports individually or with other classmates. In section 

one of Math 181, students had worked with their light intensity data on daily homework 

assignments which were not submitted for evaluation. To gain understanding of students' 

application of the methods developed when analyzing the light intensity data, the instructor 

collected students' Vibrio natrigens bacteria growth lab reports. The bacterial growth 

laboratory produced data of a population which grew exponentially as opposed to the data 

gathered from the light intensity laboratory which exponentially decayed. The researcher 

photocopied these reports, and they assumed the same role as light intensity lab reports. 

Interviews 

One-on-one interviews with the researcher were conducted to gather additional 

information about the instructors (see Appendix A) and a select number of students (see 
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Appendix B). The instructor of section one of Math 181 was interviewed before and after 

each laboratory. The purpose of the pre-interviews served to understand the instructor's 

goals for the laboratory investigation, her thoughts of how the class sessions would unfold 

including her anticipations of students' questions and hypotheses, and the instructor's 

perspectives of how students' growth in the inquiry process would be evident in the 

investigation. The purpose of the post-interviews served to record the instructor's 

observations made of students during the investigation, her reflections on how the goals for 

the laboratory were or were not met, and the instructor's perceptions of students' growth as 

the course progressed. Each interview was audio recorded and transcribed. 

Six students from the researcher's section of Math 181 were selected to participate in 

a single, task-oriented, video-recorded interview held at the end of the course. These six 

students were selected based on the data the researcher had from the transcriptions, the 

students' high attendance records throughout the course, particularly during the laboratories, 

and students' achievement throughout the course. The researcher desired to have a range of 

student success in the grades for the course, with a goal to capture differences in students' 

reasoning on the task. 

The semi-structured interview (see Appendix B) began with the question, "Have you 

ever noticed how quickly a cup of hot liquid, like coffee, tea, or cocoa, cools over time?" 

After a student gave a response, he or she was asked, "Using methods similar to what we've 

done in class, what would you do to try to understand this phenomena?" Once a plan was 

given, the researcher gave the student a list of ten time and temperature data points and 

instructed, "Here is some data I have from a cup of hot water cooling over time. 

Temperature readings were taken every 6 minutes. Show me what you would do with this 

data." During the sixty minute interview, students were asked to "talk aloud" as they worked 

the problem. When a student was quiet for several seconds at a time, the researcher 

prompted, "What are you thinking?" Those times when students were obviously frustrated 
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and did not know what to do next, the researcher intervened. Comments the researcher 

interjected included: "What did you graph?" "You originally thought this was what kind of 

graph?" "What's your end goal?" "What are you looking for?" or "What did we do in class?" 

Data generated from the student interviews were used to demonstrate students' individual 

inquiry skills as well as their conceptual, reasoning, and reflective skills following their 

experiences during a semester of Math 181. 

Researcher's Journal 

The researcher maintained a daily journal containing her daily plans, reflections on 

the class sessions, improvements to be made, and her observations of students' work and 

comments. This data served the same purposes as the instructor interviews. In addition, 

notes received in the form of relevant emails from the instructor and students, and 

conversations with instructor and students not captured on tape were recorded. 

Limitations of the Data 

As mentioned previously, multiple pieces of evidence were obtained to develop 

different illustrations of the development of the inquiry process throughout the semester and 

achieve triangulation. Areas in which the study was limited due to a lack of triangulation 

primarily resulted from a failure to obtain adequate pieces of students' daily class work, in 

the form of written questions, comments, or reflections. Failure to do so limits the 

researcher's ability to suggest agreement and or disagreement between the instructors' and 

students' resonating conceptual schemas. Skemp (1987) indicated that schemas cannot be 

observed directly but can only be inferred by individuals' responses. Hence, the fewer the 

records of smdents' and the instructors' behaviors, statements, and written responses, the 

greater the limitations in inferring what conceptual schemas are resonating as well as whether 

two parties' schemas are compatible. 

While the collection of written work was limited, the researcher understood that 

demanding the other instructor to daily collect samples of students' work, questions, or 
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reflections would potentially interfere with the development of the instructor's desired 

inquiry in her classroom environment and daily plans. Hence, the researcher did not require 

that a daily artifact be gathered from each student for the purposes of the research study. The 

transcriptions of the class sessions provide some image of the agreement and disagreement of 

the resonating schemas. The use of the transcriptions are also limited as not all the students 

spoke during class, and if they did, the microphone did not always capture what was said. 

Methods of Analvsis 

Pilot Study 

The nature of this study was exploratory in the sense that data was gathered and used 

as an opportunity to gain new insights about the development of the inquiry process in a 

collegiate mathematics course (Bromme & Steinbring, 1994). Though exploratory, data 

collection and analysis was conducted in various forms in an on-going pilot study begun in 

the spring of 1999. Methods of recording, transcribing, and coding were applied as part of 

the development and focusing of the research question. In addition, interviews with students 

and copies of students' lab reports were gathered to examine students' development in 

mathematical modeling and the inquiry process. The following sections describe the tools 

used and not used to analyze the data gathered in this study as a result of the pilot 

investigation. 

Transcriptions and Coding 

Recorded class sessions pertaining to the laboratory investigations and interviews 

were transcribed with line numbers assigned to each line of transcription. The transcripts 

were analyzed for common themes regarding the development of inquiry; the role of the 

context when discussing the mathematics; reflection and metacognition; students' use of 

symbols and mathematical language; evidence of students' procedural and conceptual 

understanding; the source, ownership, and level of the questions asked; and characteristics of 

interactions between the instructors and students and among students. Snapshots illustrating 
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each of these items were gathered to give a larger picture of the nature and development of 

the inquiry process. 

Adding to the big picture were quantitative descriptors of the class occurrences. 

Coding students' problem-solving behaviors and classroom environment is not a new 

technique. Schoenfeld (1985) cited others (Kilpatrick, 1967; Lucas, 1980; Kantowski, 1977) 

who created coding schemes to identify and objectify students' problem solving behaviors in 

order to explore problem solving success and frequency of occurrences of particular 

problem-solving process. Brendefiir (1999) coded overall class behaviors and instructional 

units established in high school mathematics courses. Unlike the prior implementations of 

coding, this study sought to quantify interactions occurring at a classroom level, rather than a 

one-on-one level, and sought to identify and examine characteristics of classroom practices 

as they affected the interactions. 

Each line of transcript was encoded using six scales which were variations of 

Cheffers' Adaptation to Flanders' Interaction Analysis Scales (Cheffers & Mancini, 1989; 

Flanders, 1970). The lines were classified according to the micro source of the statement, the 

macro source of the statement, who was speaking, the nature of the comment, the level of 

comment according to Bloom's Taxonomy, the phase of the inquiry process, the context of 

the comment, and the level of mathematical thought. Additional items were tagged 

including who prompted the periods of reflection which occurred. An idea spoken by one 

individual whose transcription extended beyond one line was encoded as one concept, unless 

a noticeable change in intent or concept occurred. 

Source of the Idea 

Intending to capture illustrations of the concepts resonating in students and 

instructors, in each segment of transcription, the source of the idea was acknowledged. The 

scale given in Table 3.1 classified the source of the idea discussed. When the discussion 

suggested the development of an idea, the line of transcription was assigned a "2" or "5" 
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depending if the idea originated with the instructor or with the student, respectively. Each 

line of transcription was classified twice using this scale: once for the source of the idea at a 

micro level and a second time for the source of the idea on a macro level. The micro source 

of the idea indicated the purpose of the speaker's comment or question on the more local idea 

being discussed. The macro source of the idea identified the larger, more global purpose 

which prompted the smaller questions or statements. The macro source of the idea was 

intended to illustrate whose ideas, students' or instructors', drove the investigations and 

anaJysis. The scale for the micro source of the idea was developed to show how questions 

and comments occurring more locally affected discussion and the resonance of participants in 

the discussion. The sources of idea were grouped further with items one through three being 

assigned as the teacher's ideas and items four through six being assigned as the students' 

ideas. The groupings provided for simpler graphical uses while acknowledging the source of 

the idea. 

Level of Question or Statement 

Each segment of transcription was encoded according to Bloom's Taxonomy as given 

in Table 3.2. The classification of a statement or question was determined to a degree by the 

Table 3.1. Micro and macro source of idea 

1. Give direction, praise or criticism 

Teacher 2. Develop teacher idea - use, develop and clarify teacher's idea 

3. Cite teacher idea - acknowledge a teacher's idea 

4. Give direction, praise or criticism 

Student 5. Develop student idea - use, develop, and clarify student's idea 

6. Cite student idea - acknowledge a student's idea 
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statements or questions surrounding the segment. The nature of a response indicated the 

depth of thought needed to respond, the prior knowledge recalled, or new knowledge being 

built. As noted by Mills, Rice, Berliner, and Rosseau (1980) the interaction between two 

parties, including student and instructor, does not always produce agreement in the level of 

responses. Hence, the use of Bloom's Taxonomy could suggest when agreement in 

resonance was not attained if questions and responses occurred at different levels. 

Table 3.2. Level of question or statement classified on Bloom's Taxonomy 

1. Knowledge - recall 

2. Comprehension - uses idea without relating it to other ideas or seeing fullest meaning 

3. Application - use generalizations in new and concrete situations 

4. Analysis - break down material into its parts and determine relations or organization 
among parts 

5. Synthesis - put together parts into a new, unified whole 

6. Evaluation - judges the value of ideas, procedures, methods using appropriate criteria 

Classroom Speakers 

Not originally coded in the pilot study, questions and comments by individual 

students were coded in this investigation. In so doing, the codes could suggest the level of 

participation with the interaction of many class members or a few students. Students, 

instructors, and TA's were given pseudonyms to protect their identity. (See the Human 

Subjects form in Appendix E.) The pseudonyms were assigned a number based on the order 

of alphabetized pseudonyms. These numbers were then used to identify who was speaking 

when working with just the codes. The instructor for any given section was assigned the 

number "0." When a student's voice could not be identified on the recording, the number 

"34" or "35" was assigned. Two numbers designated this role as there were occasions in 
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which one unidentified voice followed another. The number "36" was used to designate 

when several students of the class gave the same comment. The teaching assistant who 

worked with the section was assigned the number "37," and the researcher as an observer in 

section one of Math 181 was assigned "38." 

While specific numbers were assigned to indicate the speaker, a more general number 

was assigned to each segment to indicate whether the instructor or a student was speaking 

and whether a statement was made or a question asked. This scale, given in Table 3.3, also 

distinguished between the types of statements including a response or initiation of an idea or 

procedure. 

Table 3.3. Who is speaking? 

I. Responds - reaction or reply to a prior question, comment, or procedure is 
given. 

Teacher 2. Solicits - question is asked or participation of another is invited. 

3. Initiates - idea or procedure is suggested. 

4. Responds - reaction or reply to a prior question, comment, or procedure is 
given. 

Student 5. Solicits - question is asked or participation of another is invited. 

6. Initiates - idea or procedure is suggested. 

Phase of Inquiry 

Not originally acknowledged in the codes in the pilot study, coding for the phase of 

inquiry indicated which phases were implemented in the laboratory investigations, time 

emphases placed on the various phases, and the existence of multiple cycles of the inquiry 

process. The four phases of inquiry identified were prediction, experiment, analysis, and 
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reflection. The phase descriptions are given in Table 3.4. Both students' behaviors and 

recorded comments suggested the classification to be used. When a non-laboratory comment 

or question was made, the corresponding transcription was encoded with "X" representing 

"non-lab." Characteristics which were classified as "non-lab" included generic "how-to" 

calculator discussions, comments related to exams or assignments separate from the 

laboratory investigations, statements such as "Did everyone hear that?" or "small-talk" 

including comments made in jest. 

Table 3.4. Phase of inquiry 

Hypotheses are made about the context. Questions to be investigated are 
determined. Plans for data collection are generated and discussed. 

Data are collected. 

Data are mathematically modeled and used to answer the questions generated 
during the prediction phase. Abstraction of the mathematics occurs here. 

The process is reviewed and discussed emphasizing the degree to which the 
original questions were answered, the new questions which arose, and general 
heuristics to follow when presented with new and similar future situations. 

Topics discussed are not immediately relevant to the laboratory investigation. 

Context 

Separate from the phase in which the comments and questions occurred, each 

segment of transcription was encoded according to the context emphasized whether 

mathematics, science, a link between mathematics and science, or other. (See Table 3.5.) 

Much like Bronmie and Steinbring's (1994) classification of symbol, object, or relation, 

categorization of the context was used to indicate when switches in the nature of the 

discussion occurred surrounding the mathematics and science. The context scale was added 

to the scales implemented in the pilot study. The other scales had not addressed when links 

Prediction 

Experiment 

Analysis 

Reflection 

Non-Lab 
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Table 3.5. Context 

Mathematics including symbolic representations, concepts, procedures, and 
patterns forms the center of discussion. 

The science component or "physical objects" of the laboratory investigation 
are discussed. 

The mathematics and science are linked as the symbols, equations, graphs, 
and numbers are directly related to the scientific interpretation. 

A context other than mathematics or science is discussed. 

were made between the mathematics and science. Being a course in which the mathematics 

was founded in the science discussion, a measure was needed to indicate the emphases 

placed on each context and the relationships between contexts. 

Level of Mathematical Thinking and Understanding 

Described by Rasmussen (1999) and Gravemeijer, Cobb, Bowers, and Whitenack 

(1999), the level of mathematical thinking and understanding was classified for each segment 

of transcription encoded as having a mathematical context. The categories of understanding 

were labeled as situational, referential, general, and formal (Table 3.6). Not originally coded 

in transcriptions from the pilot study, classification of the level of mathematical thinking and 

understanding is intended to suggest whether students had procedural or conceptual 

understanding. Situational understanding referred to how to act mathematically. Typically, 

more procedural based comments were assigned to this category. Referential understanding 

indicated that students' understandings were of paradigmatic, experientially real settings, 

suggesting some conceptual understanding of the links between the mathematics and the 

context being represented. General understanding referred to the focus on the interpretation 

and solutions independent of a situation or specific context. Formal use of conventional 

Mathematics 

Science 

Link 

Other 
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Table 3.6. Level of mathematical understanding 

Understanding is based on how to act mathematically. 

Understanding is grounded in paradigmatic, experientially real settings. 

Understanding focuses on interpretation and solutions independent of a 
specific context or situation. 

Understanding is demonstrated with conventional notation and inscriptions. 

notation and inscriptions was classified as formal understanding. A sample of the transcripts 

with the assigned codes are included in Appendix C. 

Graphical Representations 

One goal of the study was to produce a quantitative representation of inquiry process 

and the ability to discern differences beyond qualitative observations. To achieve this, once 

the transcriptions are encoded, various graphs will be examined to illustrate the interactions 

which occurred in the classroom, the cycling of the phases of the inquiry process, the sources 

of the ideas, the role of the context, and the interactions between the various codes. The 

graphs will be analyzed to determine if new information about the courses is generated in 

addition to supporting the conclusions made with the qualitative data. 

Particular graphs will be examined to indicate the development of the structural 

components of the class. Graphs of the phases of inquiry across time will be constructed to 

illustrate what phases are incorporated into the laboratories as well as the time spent on each 

phase. This type of graph would suggest if multiple phases of inquiry occurred and the 

variations in the cycles when multiple cycles did occur. Graphing the context against time 

would suggest the emphases placed on the mathematical, science, and relational components 

and when and how often discussion of the various contexts occurred. Also intended was the 

use of the context graph to inform the qualitative data of when and how the classes discussed 

Situational 

Referential 

General 

Formal 
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methods of mathematical modeling. For instance, depending on the emphasis on each of the 

contexts, how were students' modeling abilities affected? While graphs of the context cannot 

answer the question apart from the qualitative data, indications of the roles of the contexts in 

the lab discussions would point to reasons for students' successes or difficulties. 

Aggregates of the coded data will be used to point to characteristics of the classroom 

not attained through examination of the separate scales. An aggregate of the context with the 

micro sources of ideas could point to whose ideas were most influential in discussion of the 

contexts. For instance, since the students were life sciences majors, did students' ideas 

dominate science discussion? Whose ideas, students or instructor, tended to promote 

discussion of the links between science and the mathematics? An aggregate of the phase of 

inquiry and sources of ideas could indicate similar information. Which source tended to 

produce ideas in each of the phases, particularly the analysis and reflection phases? If the 

instructor's ideas were the main source during the analysis phase, was agreement in 

resonating conceptual schemes attained? These characteristics could inform the 

interpretation of students' achievements in light of the classroom environments. 

Statistical Comparisons 

The coded data provided the opportunity to examine various statistical comparisons. 

The statistical comparisons could be used to indicate additional characteristics of the 

classrooms and determine if patterns regarding ±e various interactions across sections and 

across laboratories were significant. The intent of the statistics was not to indicate which 

section was better but to better inform the nature of inquiry and offer a different lens with 

which to view the data and classroom environments. 

Research Goals and Analysis 

One goal of this smdy was to examine attempts to implement inquiry in a college 

mathematics course. In light of the literature reviewed, key points of interest in pursuing and 

studying ways in which inquiry was achieved include the role of negotiation and 
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interpretation of the tasks and problems explored, the methods of mathematical modeling 

used in class, the development and use of symbols and language in the course, students' 

levels of understanding, and the degree to which reflection, metacognition, and heuristics 

play a role in the classes. These items will be used to indicate points when agreement in the 

resonance of appropriate schemas was or was not likely occurring in the minds of class 

participants. Chapter 4 will highlight these issues in terms of the classroom environments. 

Chapter 5 will address the effects of the environments on classroom interactions and 

students' understanding with these issues in mind. 

A second goal in this study was to develop and apply methods to represent inquiry in 

the mathematics classrooms. Coding class transcripts for the phase of inquiry, context of 

discussion, sources of ideas, level of mathematical understanding, level of comment and 

question, and speaker, will quantify classroom characteristics. Snapshots of the 

environments will suggest attributes of the environments, time spent on various phases and 

contexts, and the periods in which students' ideas dominated discussion. Accompanied by 

the qualitative data, the graphs will be used to point to the role of the above characteristics in 

promoting or hindering agreement in resonance. Times in which agreement in resonance was 

or was not occurring evidenced by the qualitative data but not by the quantitative 

representations will be mentioned. Suggestions for future codes which may enhance the 

characteristics tagged by the existing scales will be given. Graphs of the codes which 

illustrate the structural components of the environment will be displayed. More complex 

graphs of the aggregation of various codes will be shown in Chapter 5 to indicate the 

interactions of the class affecting students' mathematical development and understanding. 
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CHAPTER 4 

INQUIRY ENVIRONMENTS 

Two sections of Mathematics 181, Calculus for the Life Sciences, were observed 

during class sessions related to three laboratory investigations. The intent of this research 

project was to examine the nature of inquiry in the classroom environments during the 

laboratories, classify the degree to which certain characteristics of an inquiry environment 

were achieved in the different sections, and represent the characteristics quantitatively. In 

this chapter the structural components of the two class environments will be described. As 

part of the structural components, instructors' goals and intents for the classes will be 

discussed with similarities and differences noted. Dlustrations will be given of how the class 

interactions highlighted the intended goals. 

Instmctors' Goals for Mathematical Modeling 

Some of the greatest influences on the nature of inquiry in the classroom 

environments were the goals set by the instructors. Before any of the laboratories were 

conducted, each instructor set goals regarding the nature of inquiry, the role of mathematical 

modeling, the importance of context, and the types of mathematics to be pursued in the 

course. Both instructors intended the classroom environment to promote inquiry and placed 

emphasis on the use of context to bring real world application to the mathematics. 

The instructors had different goals for the role of modeling in the course. The 

instructor of section one of Math 181 intended for mathematical modeling to be developed as 

a tool in the course, much like other mathematical procedures the students were to learn. The 

modeling would be used as a tool to bridge the context and the mathematics. The researcher 

and instructor of the other section of Math 181 intended for mathematical modeling to 
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provide the motivation and the foundation for most of the mathematical discussion in the 

course. The instructors' goals for the laboratories were described in the interviews prior to 

the investigations, course objectives, and daily lesson plans. 

Tools-Focused Class 

The instructor of section one of Math 181 was an experienced instructor who had 

taught Math 181 several times in previous semesters. For the instructor, mathematical 

modeling was a tool used to take the students from the context of the scientific setting to the 

mathematics. Once reaching the model, the family of functions containing the particular 

model would be discussed. The mathematics would be abstracted and additional methods for 

solving mathematics problems would be developed. The instructor's desire, as highlighted 

during the class sessions, was for students to see that many mathematical problems could be 

solved using a variety of different methods. 

The instructor communicated her goals for mathematical modeling prior to the 

laboratories. Before the water flow laboratory, her goals were: 

To have (a) context to do more math; to have the students revisit the quadratic 
equation and how to work with that; to have the students have another application 
where they are able to talk about what kinds of models might be appropriate. 

Before the light intensity investigation, the instructor reiterated the role of the laboratories 

when she said that the goal was "To have a meaningful context for (the) exponential, in this 

case for exponential decay." She elaborated: 

So my goals are to come up with a good context and then to use that context to 
develop, to talk about difference equations which we haven't talked about, and 
generating equations. So we'll have that tool to use later on. 

While mathematical modeling played an important role for students in the course, the process 

more often led to the mathematics from which the main goals of the course could be met. 
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These main course goals included discussing different families of functions, methods to solve 

problems, and concepts of rates of change and derivatives. With tools as the emphasis of this 

instructor's goals for the course, the class will be referred to as the "tools-focused-class." 

The instructor's goals for the penicillin laboratory differed slightly from the previous 

laboratories. The analysis of the data would consist of two parts. In the first part of the 

laboratory, analysis of the data representing the wash-out of the penicillin would be used to 

assess students' abilities in modeling data indicative of exponential decay; 

I want to see if they understand that it's an exponential decay, and if they come up 
with that themselves. That they'll be comfortable enough with the ideas to do the 
first part. So part of it is an assessment for that. 

A second part of the lab was to develop methods to model data representing the amounts of 

penicillin in the blood when new doses were administered. The instructor's goals for the 

second part was to proceed with instruction of additional tools which could be used to model 

the data: 

And then part of it I'm going to go ahead and do the algebraic method to figure out 
where we're headed. Then I'm going to ask them to plot, once we know where the 
limit is, to plot the differences on semilog paper and then to see if we can tie it in that 
way. 

The penicillin lab was in part to be used as an assessment and to form a context for new 

instruction to be tied with previous methods. A portion of the lab maintained the instructor's 

goals to develop and extend mathematical tools for the students. 

Modeling-Focused Class 

The researcher served as the instructor for section two of Math 181 and had different 

goals for the course, the laboratories, and the role of mathematical modeling in the 

development of the mathematical concepts. In addition to providing links between the 
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science and mathematics context, the instructor intended for mathematical modeling to be an 

object obtained by students. Modeling framed the development of the course. 

The instructor's intents were noted in the course syllabus, in her lesson plans for the 

laboratories, and in the class discussions. In the course syllabus, the instructor wrote: 

With an emphasis on inquiry and modeling, students will acquire and apply 
mathematical tools and demonstrate understanding of the underlying mathematical 
concepts of functions and derivatives. Laboratories will be conducted in which 
students will make hypotheses, conduct experiments to gather data, and then analyze 
the data. During the analysis and reflection, the mathematics will evolve. 

On the first day of the semester, the students were informed of the inquiry process and the 

modeling process. As students prepared for their first laboratory, separate from the 

laboratories discussed in this study, the class generated a list of items to keep in mind as they 

conducted experiments. Highlighted on the Ust was the need for justification of their work 

and the numbers they generated when deriving a formula or a model. 

Throughout each of the subsequent laboratories, students were reminded to document 

the process, to justify the development of their model(s), and to use appropriate variable 

names in their model. In her lesson plans prior to the water flow investigation, the instructor 

recorded her intentions for the first assignment in working with the data. Each student was to 

record the "observations and the methods you use to analyze the data." The instructor 

explained to students that "analyze the data" meant to calculate the flow rate, find an 

equation relating the flow rate and height of water and justify the equation. In addition, 

students were to "present their analysis with justification for their calculations and interpret 

their results in light of data collection. Each group of students should demonstrate how they 

predict the flow rate based on a height of water." 
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The light intensity lab followed the water flow investigation. When launching the 

light intensity laboratory, the instructor encouraged students to reflect on the procedures from 

the previous laboratories, specifically: "What mathematical relationships were found? What 

were the primary variables involved in the water flow laboratory?...What are you going to do 

once you have data? What graphs will you examine once you have data? With the water 

flow data, what did you do to find the equation?" The researcher intended for students to 

"objectify" the modeling process by recording their hypotheses, observations, questions, and 

methods. Reflecting on procedures applied in previous laboratories was intended to promote 

the objectification. This class will be referred to as the "modeling-focused-class." 

The instructors' intents for mathematical modeling in the course rated differently on 

the APOS scale. For the instructor of the tools-focused class, mathematical modeling would 

be classified as an action or a process, while the instructor for the modeling-focused class 

intended her students to encapsulate modeling as an object. Using similar ideas as posed by 

Duoady (1991), the tools-focused class would be structured with modeling being a tool used 

in the solving of problems. The modeling-focused class would be structured with 

mathematical modeling as the overriding organization scheme for the course. Students in the 

modeling-focused class were to gain a modeling perspective while developing other tools to 

solve the different types of problems faced. 

The differences in the instructors' goals resulted in different manifestations of 

working with the data and other mathematical problems addressed in the course. These 

differences were slight at times and changed with laboratories within class sessions. 

Included in the differences were the role of context, language and symbol use, and the 

amounts of reflection. The differences did not suggest that one section was better than the 
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other. Proving that one section was better was never an intent of this research study, nor did 

the results point to any one section as higher achieving. The focus was placed on how the 

differences in the instructors' goals influenced the interactions, the developments of the 

laboratory investigations and other mathematical problems, and ultimately the role of inquiry 

in the course throughout the semester. 

Timing of the Laboratories 

One way in which the two sections of Math 181 differed as a result of the instructors' 

goals was the timing of the three laboratories throughout the semester. The two sections of 

Math 181 acted on independent time schedules when conducting the laboratories. With 59 

class sessions in a fifteen week time period. Table 4.1 indicates when each of the laboratories 

began and the number of class sessions spent discussing the laboratories. Only those class 

sessions which led directly to methods students could implement in their lab reports were 

counted. If discussion of the lab occurred in a portion of a class session, but not an entire 

class session, the class session counted as a whole session toward the number of class 

sessions. 

Table 4.1. The beginning and number of class sessions used for each lab 

Tools-Focused Modeling-Focused 

Began at Class Number of Began at Class Number of 
Session Sessions Session Sessions 

Water Flow Lab 3 8 7 11 

Light Intensity Lab 28 6 37 10 

Penicillin Lab 44 5 47 4 
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The contents of Table 4.1 do not suggest that spending more time on the laboratories 

was better but support the difference in focus between the two classes. For each of the water 

flow and light intensity laboratories, the modeling-focused class spent at least three more 

class sessions over the tools-focused class in developing and discussing the contents and 

results of the laboratories. The additional class sessions suggest that greater emphasis was 

placed on the development of the inquiry process or that the modeling-focused class was 

slower in reaching the desired content. 

A switch occurred with the penicillin laboratory. The tools-focused class discussed 

the laboratory over five class sessions with the modeling-focused discussing the laboratory in 

just four class sessions. In both classes the penicillin lab proceeded differently than the 

previous two laboratories. In the tools-focused class, as intended by the instructor, during the 

first part of the laboratory, students modeled the exponential decay branches of the 

"penicillin wash-out." Students' work was completed outside the class sessions and 

submitted for assessment. The instructor had intended for the second part of the lab to be a 

period of instruction on procedures to find a model for the amounts of penicillin when new 

doses were administered. Instead, the students worked on a similar "wash-out" problem. 

(See Appendix D.) Rather than giving immediate instruction, students worked with others in 

class to generate a discrete equation. Previously in the water flow and light intensity 

investigations, the instructor had more often had students present their data and discuss 

differences in graphs before instructing students of tools to use to model the data. In the 

penicillin lab, students were to first develop a model before additional instruction occurred. 

In the modeling focused class, as intended for the water flow and light intensity 

laboratories, the students presented their initial analyses of the data. Students hypothesized 
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various models and raised additional questions targeting the need for more mathematical 

procedures to justify and confirm whether their mathematical equations were adequate. 

Students' questions led to class discussion and instruction of additional means of modeling. 

The penicillin lab occurred differently. As the table indicates, only four class sessions were 

devoted to the penicillin lab. The class sessions were not consecutive with most discussion 

occurring during the 52°^ and 53"^*^ class sessions due to an absence by the instructor and a 

scheduled exam. With the ending of the semester, less time was devoted to the laboratory as 

additional topics needed to be covered before the semester ended. So less time was permitted 

to the development of the inquiry process. Students did not present their initial attempts of 

analysis, and the instructor proceeded with explanations of modeling methods. The tools-

focused class had fewer additional topics to cover in the remaining three weeks as some 

topics the modeling-focused class needed to address had been previously discussed in the 

tools-focused class. 

As examined in this portion and throughout the remainder of this chapter, the 

instructors' intents for the laboratories differed. In general, the instructor of the tools-

focused class intended for the laboratories to provide the underlying context on which to 

build the mathematical tools. The instructor of the modeling-focused class used inquiry and 

modeling as the overriding structure to promote discussion of the mathematical procedures. 

Some changes did occur within the classes. Coverage concerns influenced the degree to 

which inquiry occurred, evident in this portion and in the remainder of the chapter. 

The Inquiry Process 

The two instructors for the course pursued an inquiry environment in their 

classrooms. Striving for constructivist environments, the instructors intended to build on 
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students' prior knowledge, promote interactive classrooms, and engage students with 

scientific contexts of mathematics. In their pursuits, many similarities and differences 

existed. The differences included structural components of the class and the instructors' 

goals for modeling. The appearances of the classroom environments were similar in spite of 

the goal and structure differences. 

Cycling in the Inquiry Process 

In both classroom environments, multiple cycles of inquiry were pursued. Each class 

accomplished multiple cycles. The developments of the cycling differed in the classes while 

the appearance of the cycles were similar. 

Intents for Multiple Cycles in the Modeling-Focused Class 

The instructor for the modeling-focused class intended inquiry to proceed in a 

cyclical fashion. The lesson plans for the laboratories demonstrated the instructor's intent for 

multiple cycles of the inquiry process across the laboratories. Each cycle was to include 

prediction, experiment, analysis, and reflection phases. In her lesson plans, the instructor 

described how the process would unfold. 

Each phase had characteristic components. During the prediction phase, a context 

would be presented, questions would be asked of the context, hypotheses would be made, 

and an experiment would be planned. The experiment phase would proceed as students 

conducted their experiment(s). Once data was collected, students would analyze the data by 

finding a mathematical model using methods they felt appropriate. The analysis phase would 

continue as students presented their data and analysis. Following the presentations, students 

would reflect on the methods of analysis and ask new questions about the data and methods 

of analysis. 
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Once one cycle was completed, the instructor intended to pursue at least a second and 

possibly a third cycle of inquiry. The additional cycles would focus more fully on the 

mathematics. The predictions would emphasize the patterns within the mathematics and a 

particular family of functions. Explorations of the pattems, analysis of the mathematical 

context and modeling methods, and further reflection comprised the experiment, analysis, 

and reflection phases of the additional cycles. 

Inquiry Cycles in the Modeling-Focused Class 

The modeling-focused class did proceed in a cyclical fashion during two of the three 

laboratories. Graphs of the coded transcripts demonstrated the phases within the cycles for 

the laboratories. Figure 4.1 displays a graph of the phases of inquiry across the number of 

lines of transcription for the water flow lab in the modeling-focused class. The line numbers 

were indicative of time. Typical of the first two labs in this class, at least two fiill cycles of 

prediction, experiment, analysis, and reflection were evident in the water flow investigation. 

During the second and third cycles greater emphasis was placed on the mathematics in the 

analysis phase as the instructor intended. 

The penicillin lab proceeded in a slightly different fashion from the water flow and 

light intensity laboratories. The penicillin lab had followed on the heels of and may be 

considered an extension of the light intensity investigation. Forms of exponential equations 

resulted from both the light intensity and penicillin labs. Different factors influenced the 

cycling of inquiry in the penicillin lab. These factors included a break in the 

discussion of the results due to an absence by the instructor and the need to address other 

course topics with few class sessions remaining. The factors constrained the degree to which 

open inquiry was pursued and occurred. In particular, students did not give formal 
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Figure 4.1. Inquiry phases for the water flow lab in the modeling-focused class 

presentations of their initial analyses. Hence, a separate reflection phase during which 

students could pose new questions for investigation did not occur. As shown in Figtire 4.2, 

only one cycle of inquiry occurred in the penicillin lab with solid prediction, experiment, and 

analysis phases. Emphasis was again placed on the analysis phase. 

Intents for Multiple Cycles in the Tools-Focused Class 

The instructor of the tools-focused class also intended to implement the various 

phases of inquiry in the investigations in her class. During the interviews before the 

investigations the instructor stated that her goals were for students to "hypothesize a 

graph.. .and then plan the experiment, and then do the experiment and then come back and 

compare the data, (and) talk about analyzing it." Implied by her statement, students would 
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Figure 4.2. Inquiry phases for the penicillin lab in the modeling-focused class 

complete prediction, experiment, and analysis phases. Thus the instructors both intended for 

students to engage in similar phases of inquiry. 

Some differences were evident in the instructors' intents. One difference was that 

students in the tools-focused class would present their data and then discuss the analysis as a 

class. The students in the modeling-focused class would first attempt analysis before 

presenting the data and analysis. A second difference was the intent for reflection phases in 

the modeling-focused class. The instructor for the tools-focused class did not mention her 

intention for a separate reflection phase. 

Similar to the instmctor of the modeling-focused class, the instructor for the tools-

focused class intended for multiple cycles during the investigations. The instructor's goal for 

multiple cycles could be inferred when she described working with the mathematical models. 

•  I l l  U  
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In the interview before the light intensity investigation she stated that the context would be 

used to: 

talk about difference equations...and generating equations—And then to give them 
some experience with playing with a model because they are going to graph the 
differences versus the intensity and the differences versus the time and...look at data 
a variety of different ways and see if some insights come from it or help you to build 
a model. 

The instructor desired multiple cycles of inquiry during the investigations. A second cycle 

would be used to "play" with the different graphs and models suggestive of additional 

experiment and analysis phases. 

Inquiry Cycles in the Tools-Focused Class 

Graphical evidence of the coded transcripts illustrated that two cycles of the phases 

were present during the water flow and light intensity laboratories in the tools-focused class. 

(See Figure 4.3.) Representative of the first two labs in the class, two distinct cycles of 

inquiry were assumed in the water lab investigation. Similar to the graph for the modeling-

focused class, the second cycle was weak in the exp>eriment phase and strong in the more 

mathematical analysis phase. The graph also demonstrated that some formal reflection 

occurred. 

Like the modeling-focused class, the penicillin lab in the tools-focused class consisted 

of just one cycle of inquiry with no separate reflection phase. As suggested by Figure 4.4, 

the analysis phase dominated the discussion. The instructor intended the penicillin lab to 

provide an assessment for students' understanding of exponential decay. Rather than discuss 

methods focused more specifically on the analysis of the data gathered in lab, students were 

expected to analyze the data outside class sessions while focusing in class on a related 

problem examining the "wash-out" of pollution in a lake. (See Appendix D.) Little direct 
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Figure 4.3. Inquiry phases for the water flow lab in the tools-focused class 

instruction occurred as students collaborated with classmates on methods to solve the 

problem before presenting solutions. More discussion of students' work on this problem is 

given in Chapter 5. 

Inquiry Cycle Comparisons between the Two Classes 

The two classes had more similarities than differences when considering the phases of 

inquiry implemented in the class sessions, though the instructors' goals for the structure of 

the classes slightly differed. One similarity concerned the non-lab component. The two 

classes had several non-lab items displayed on the graphs. Non-lab items included 

interactions surrounding basic calculator operations, assessment issues such as upcoming 

tests, project reports, and grading policies, and remarks within class or group discussions not 

related to the laboratories including "small talk," sarcasm, and campus events. The non-lab 
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Figure 4.4. Inquiry phases for the penicillin lab in the tools-focused class 

items in the class sessions may have interrupted the flow of the class sessions, though the 

graphs suggest that the items did not hinder the flow of the cycles of inquiry. 

More often, both instructors intended and provided for the accomplishment of 

multiple cycles of the inquiry process in their classes. In each class, emphasis was placed on 

prediction, experiment, and analysis phases during the first cycle with weaker experiment 

and stronger analysis phases occurring during the additional cycles. Differences between the 

two classes included methods of accomplishing the various phases, including reflection. The 

graph of the phases for the modeling-focused class indicated more reflection than held in the 

tools-focused class. For the modeling-focused class, the significant portion of reflection 

occurred in the first half of the investigation, suggesting that the reflection was due to the 

structure of the course as students' presented and then generated new questions based on the 
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presentations. Amounts of reflection in the second halves of the investigations were more 

comparable to the reflection which occurred in the tools-focused class. 

The differences in class structure and instructor goals resulted in few overall 

differences in the appearance of the inquiry phases. Both classes completed multiple cycles 

of inquiry with similarities in emphasis placed on each phase. 

Questioning 

In the inquiry oriented environments the questions under investigation played an 

important role in the structure and development of the content in both classes. In examining 

the types of questions under investigation and the number of questions asked by students and 

instructors, the classes differed. In the modeling-focused class, students' questions 

determined the direction of the investigations and the manner in which the content was 

covered. In the tools-focused class questions from both the instructor and students 

influenced the direction of the laboratories. In both classes, much hinged on who posed the 

question for investigation. 

Who Posed the Question? 

Forman and Steen (2000) noted "experience with rich contexts helps students 

recognize that asking questions is often as important as finding answers" (p. 148). Such 

contexts offer variations causing the stimulation of mathematical habits of mind and 

propellant of students to deep understanding. One essential feature of classroom inquiry as 

given by the National Research Council (2000) was student engagement in scientifically 

oriented questions. The variations of this essential feature were presented on a scale ranging 

from more to less student self-direction with less to more direction from teacher and 

materials. Having the greatest amount of student direction was "learner poses a question" 
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(p. 29). Having the least student direction was "learner engages in question provided by 

teacher, materials, or other source" (p. 29). The two Math 181 environments differed in 

their ranking on the scales for the laboratories. 

Questions in the tools-focused class. The level of student engagement on 

scientifically oriented questions in the tools-focused class varied across laboratories. Both 

the instructor and students posed questions to be investigated. Most often, the instructor 

posed the initial questions for investigation. 

During the water flow investigation, the instructor initially posed the question for 

investigation. At the start of the laboratory, the instructor launched the investigation by 

giving a context emphasizing the structure of dams with intake towers and asking: 

My mom was skiing down here at the dam and she lost her wedding ring. So they're 
going to drain the lake to get that wedding ring back for her....I wondered how long 
that would take....They're going to drain the lake. The question is how long will it 
take? 

The instructor posed the question for investigation, "How long will it take to drain the lake as 

a function of depth?" 

During students' discussion of hypothesized graphs in the prediction phase, a second 

question was raised, "How does the depth of water affect how fast the flow is?" In the 

second two class sessions, students verified that both questions were being addressed. Some 

students thought the question under investigation was "how long it takes (water) to drain" 

while others interpreted "how fast the depth of the water makes it affect how fast the flow is" 

as the main question. In the water flow laboratory, questions posed by both the students and 

instructor were raised and investigated. 
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The other two laboratories began much like the water flow laboratory, with a variety 

of instructor and student input towards the development of the questions. For the light 

intensity lab both the instructor and students operated together to formulate the question for 

investigation. For the penicillin lab, once establishing the context, the instructor asked, 

"Would you draw me the graphs of what that penicillin in her body will look like?" before 

stating, "We are doing a one compartment model...to model what's happening with 

penicillin in your body." Overall, the instructor strongly influenced the questions for 

investigation with some input by students. 

Questions in the modeling-focused class. The environment for the investigations in 

the modeling-focused class ranked high in the level of student direction. The instructor 

intended for students' questions during the prediction and reflection phases to give direction 

for how the mathematical content would be covered. During the investigations, students 

posed the questions for exploration. As part of the prediction phase, students were presented 

with a context, smdents listed questions related to the context, and the class decided which 

questions to address. 

Typical of the laboratories in the modeling-focused class, the launch of the water flow 

investigation demonstrated how students posed and settled on the question(s) for exploration. 

On the first day of the investigation, an overhead transparency described the Hoover Dam, 

the role of intake towers, and a sample flow rate of water for a particular lake level. Students 

were asked to rewrite the following sentence as a question to be investigated; "A tower is 

capable of emptying approximately 3800 cubic feet per second at the present lake elevation." 

The students were encouraged to think about the situation, specifically, what the statement 

said about water flowing. 
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Most students posed questions of the form "How does lake elevation affect the flow 

rate?" Slight variations of the question included "At x lake elevation, how many cubic feet 

of water does the dam expel for a second?" and "How does the rate that water flows a 

function of lake elevation?" An additional question, "How does changing the diameter in 

relation to the height affect diameter?" was disregarded due to the equipment limitations with 

all the tubes having the same diameter. Once students reported their questions and realized 

most had the same type of question, the class agreed to answer the question "How does lake 

elevation affect flow rate?" Students were to be prepared to respond to the statement, "Given 

a height or depth or elevation, predict the flow rate." 

The modeling-focused classroom environment ranked high on the level in which the 

students engaged in scientifically oriented questions. Students posed the questions for 

investigation, evidence of student self direction. 

The classes varied across sections in terms of who posed the questions for 

investigations, whether students or instructor. In the modeling-focused class, the prediction 

phase was structured so that students posed the questions for exploration. In the tools-

focused class, both students and instructor influenced the questions for investigation, with the 

instructor more often initiating the question(s). 

Who Asked More Questions? 

The number of questions asked in the classes lent additional descriptive evidence of 

the inquiry environment in each class. Various components contributed to the numbers of 

questions asked in the laboratories. Any time an instructor asked, "Are there any questions?" 

or "Does everyone agree with the number _?" or "Is that okay?" the item was coded as a 

question and contributed to the numbers in the table. Questions related to non-lab items also 
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figured into the calculations. Table 4.2 gives the percent of occurrences of questions in the 

two classes and the percents across the laboratories. Chi-square statistics generated from 

two-by-two contingency tables were used to test differences across sections and laboratories. 

According to the percents of questions asked during the investigations, both instructors asked 

more questions than students (p < .01). 

Initially, few differences existed between the classes. During the water flow lab, the 

tools-focused instructor asked a fewer percentage of questions than the modeling-focused 

Table 4.2. Percent of occurrences of questions across sections and laboratories 

Instructor Students Occurrences of 
Questions 

Water Flow Lab 

Tools-focused class 

Modeling-focused class 

Light Intensity Lab 

Tools-focused class 

Modeling-focused class 

Penicillin Lab 

Tools-focused class 

Modeling-focused class 

67.70 

71.57 

70.02* 

60.44* 

58.14 

59.46 

32.30t 

28.43*» 

29.98 

39.56*» 

4L86t 

40.54 

610 

837 

527 

1034 

344 

296 

*p_<.001. **p_<.001. tE<-005 
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instructor, but not a significant amount. Students in the modeling-focused class asked a 

significantly higher percentage of questions (p < .001) during the light intensity lab and the 

penicillin lab than during the water flow lab. Students in the tools-focused class did not ask a 

significantly different percentage of questions between the water flow lab and the light 

intensity lab. For the tools-focused class there was a significant difference in the occurrences 

of questions between each of the first two laboratories and the penicillin lab Cp < .005). For 

the light intensity lab the instructor of the modeling-focused class asked a significantly 

smaller percentage of questions (u < .001) than the instructor of the tools-focused class. 

There was no significant difference in the percentages of questions asked by the instructors 

for the penicillin lab. Students' familiarity with the class set-up and gains in confidence in 

the strucmre of the laboratories likely contributed to the significant difference between the 

number of questions asked as the semester progressed. In addition, as smdents inquired 

more, the classrooms likely reflected an inquiry environment to a greater extent. 

The role of questioning in both classes was important. In both classes instructors 

asked high percentages of questions in the investigations. In the tools-focused class, the 

instructor and students both posed questions for investigation, with greater influence by the 

instructor. Little change occurred from the water flow lab to the light intensity lab of which 

party asked more questions. When the penicillin lab occurred, students asked a significantly 

greater proportion of questions than they had during the previous laboratories. In the 

modeling-focused class, the students posed the questions for investigation. As the semester 

developed, the modeling-focused students asked more questions during the investigations 

than initially. Based on the occurrences of questions and the progression and building of the 

questions for investigation, the classes developed in the implementation of inquiry. 
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Context of the Discussions 

The context under discussion, much like the role of questioning, played a significant 

role in the development of inquiry in both classes. Bromme and Steinbring (1994) stated that 

"students are able to understand and remember concepts for the subject matter if it has 

meaning for them" (p. 217). Hiebert and Lefevre (1986) also noted the importance for 

students to make meaning of the symbols and equations developed. The National Research 

Council (2000) acknowledged as essential features of inquiry the formulation of explanations 

from evidence and connections between sources of knowledge. Using an inquiry process to 

facilitate connections between mathematics and science contexts, both instructors tried to 

promote an environment rich in connections to further students' mathematical understanding. 

Context Goals for the Tools-Focused Class 

The goals set for the laboratories in the tools-focused class emphasized the role of 

context in the development of the mathematics. The instructor intended for students to 

reason about the mathematics from the science background. In reasoning from the contexts, 

mathematics was to be the primary focus of the course. 

During interviews prior to the water flow and light intensity investigations, the 

instructor affirmed her goals regarding the science context. She stated that her goal for the 

laboratories was "to have a context to do more math." The instructor described her plans for 

students to wrestle with the kinds of data to collect and the accuracy of the measurements. 

With the reliance on context, the instructor acknowledged the constraints of time, and she 

asked, "At what point are we trying to teach science and at what point are we trying to teach 

math? And it's the math we're trying to teach." The instructor knew the science context 
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brought to students experiential grounding in the mathematics, but she desired for the class 

focus to be on the mathematics. 

Contexts in the Tools-Focused Class 

The tools-focused class maintained an environment in which the science informed the 

mathematics of the course. Discussion of the science context was strong during the 

prediction and experiment phases. During these two phases, relations made to mathematics 

were most often in the form of predicted graphical relationships or rates of change. Once 

students reached the analysis phase, science discussion was minimized with emphasis on the 

mathematics and some discussion linking the science and mathematics. 

Various class activities promoted discourse relating the mathematics and science. For 

the water flow laboratory, link discussion emphasized the relationship between gravity and 

the mathematics of a failing object. Once the quadratic relationship was established, class 

discussion focused on the mathematics and methods of working with quadratic data and 

equations. For the light intensity laboratory, the symbols and equations were interpreted in 

terms of the light being absorbed by the depths of water. Discussion linking the mathematics 

and the science continued through much of the analysis. During one class session, groups of 

students wrote and debated the accuracy of statements interpreting the recursion relationship 

= .82/, developed during analysis: 

T: Are they equivalent? If you think they are equivalent, raise your hand. If you think 
they are not all equivalent, raise your hand. Yes, why not? 

Amber: Umm, because some of them don't say at depth 20 percent [inaudible] Like Ruby's, 
"For every filter added, light is inhibited by 18 percent."....The way I take hers is that 
for every filter added, there's a total of 18 percent, total of the other too? 

T: So if she added 3 filters, what would you expect that sentence to mean? 
Amber: 18 percent times three. 
T: That it would be decreased by 18 percent times three, so you're reading a linear 

relationship in there....If we agree there's a possible - another alternate explanation of 
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what this equation means, is there one of these sentences that seems to get around 
that? 

Ruby: That one. 
Rita: Yeah, the one that says by the previous. 
T: This one. 
Rita: Yes. 
T: Does that look like a good explanation of what we're talking about? "For each filter 

added the light received by the detector is 82 percent of the previous one". ...So we're 
saying that talking about the ocean, talking about the sea lions, that if we are going 
down every 10 feet or going down to another level, that there's a certain percent of 
light that is being absorbed in every 10 feet.... Decreased by 18 percent, 18 percent 
of the light is being absorbed, or 82 percent of the light gets through whichever way 
you want to look it. 

The mathematics informed the science followed by additional discussion where the science 

informed the mathematics. 

Context Graphs for the Tools-Focused Class 

Figures 4.5, 4.6, and 4.7 display graphs of the discussed contexts in the water flow, 

light intensity, and penicillin laboratories for the tools-focused class. The graphs illustrate 

the different emphases placed on the contexts for the three laboratories. In the first two 

laboratories, emphasis was placed on the science component early in the investigation as the 

context was presented and experiment conducted. The mathematics component dominated 

the remaining class time and discussion. The dominance of the mathematics discussion 

demonstrated that the instructor's goal emphasizing the mathematics was accomplished. 

During the penicillin laboratory more links between the science and mathematics discussion 

occurred in discussion reflecting the instructor's goal for students to reason about the 

mathematics from the science context. 

Context Goals in the Modeling-Focused Class 

In the modeling-focused class, the instructor's goals for the role of the context 

emphasized frequent interpretation of the mathematics in terms of the science context. 
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Figure 4.5. Contexts in the water flow lab in the tools-focused class 
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117 

X 
0) 

o 
U 

Math 

Link 

Science 

Other 

IIIM 111 
.• 
11IIIIII  III  

500 1000 1500 2000 
Line Number 

Figure 4.7. Contexts in the penicillin lab in the tools-focused lab 

Before the investigations, the instructor affirmed her goals about the context. Prior to the 

water flow investigation, the instructor stated that she wanted the class to use the context to 

give justification for mathematical relationships. Specifically, students were to explain why 

the science suggested a quadratic relationship between the heights of water and draining 

times. Students were then to relate the calculated flow rates to the methods of data 

collection. During the light investigation, the researcher intended, "Students will make sense 

of the equations, interpreting the equations and the signs and size of the numbers in the 

equations while keeping the perspective of the physical act of the light being absorbed." 

Contexts in the Modeling-Focused Class 

The instructor communicated to the students the importance of relating the 

mathematical equations to the science context. Students were instructed to include 
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interpretations of the equations in terms of the data and methods of data collection in their lab 

reports. During the analysis of the data, she encouraged students to reason about the 

equations in light of the science context. During the water flow investigation, students had 

reasoned that a quadratic function would model the height and draining times due to the 

effect of gravity on the water. Before linearizing the data, students used the context to 

support their hypothesis that the vertex for the height and time relationship would be the 

origin. 

R: Do we know anything about a, the /, or the k"? [Referring to the equation 
h  =  a { t - l ) ^  + k ]  

Matt: / and k  are 0. 
R: I  and k  are 0. 
Jamie: Ohh 
Dave: You are assuming. 
Jamie: That's assuming. 
R: You've got some argument here. Can you tell us why you think it should be (0,0)?... 
Matt: When the water drains all the way. 
Will: You can't have negative slope. The water is not going to drain up [inaudible] 
R: The water is not going to drain up so that means you can't have a negative -
Will: You can't have anything below 0. 
R Okay. So their argument is that you can't have a vertex down here. Because you are 

not going to have a negative height because it's not going to drain up.... 
Kiene: We decided that the only thing you can say for sure is that a  is positive.... 
Martha: If there's no water, there's nothing to drain, so there won't be any time for it to 

drain. 
Jamie: I understand that. 
R: So, that's an argument that (0,0) is definitely a data point.... 
Laurie: I was just going to say if the vertex were (1,2) or something, well then why do you 

get that it's possible to fill the tube up to .9 and then what happens, does it just sit 
there and not flow out even though the hole is open? 

Jamie: Well, then, (0,0) is the vertex. 

Students reasoned about the mathematics based on the context. 

Discussion linking the mathematics and science during class was encouraged. The 

instructor also encouraged students to ask mathematical questions during the reflection 

phases. Students had a tendency to ask questions regarding how data was collected and how 
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improvements in data collection could improve the results. While encouraging students' 

comments, the instructor reminded students that in a math class, they should be asking 

mathematical questions in addition to the science questions related to data collection. The 

instructor desired the mathematics to remain the focus of the course. 

Context Graph for the Modeling-Focused Class 

Figures 4.8,4.9, and 4.10 display the graphs of the context discussion for the three 

investigations in the modeling-focused class. The frequency of interactions in the math 

component indicated the emphasis on mathematics as desired by the instructor. The 

interactions in the link context illustrated that discussion relating the mathematics and 

science occurred through much of the investigation while the mathematics was performed. 

Based on the graphs, the environment promoted reasoning between mathematics and science. 

Both classes were successful in achieving environments which emphasized the relationships 

between the mathematical and science contexts as intended by the instructors. Class 

interactions demonstrated how the science informed the mathematics and how the 

mathematics informed the science. Also noted was the emphasis on the mathematical 

component in both classes, while discussion solely focusing the science context ended early 

in the investigations. 

Comparison between the Two Classes 

The contexts in the laboratories as displayed in Figures 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 

illustrated that most interaction focused on the science and the links or on the mathematics 

and the links between mathematics and science. Rarely in either class did discussion jump 

from the science to the mathematics or the mathematics to the science without some linkage 

or relational meaning made. According to Bromme and Steinbring's (1994) work, the 
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context component in both classes supported meaning-making within the inquiry process. 

With both classes having a balance between symbol, object, and relational discussion, both 

instructors behaved more closely to the expert instructor in Bromme and Steinbring's study. 

Some distinctions between Figures 4.5, 4.6, 4.7, 4.8,4.9, and 4.10 demonstrated that 

slight differences occurred within and between the classes. These distinctions were evident 

in the link context. In the tools-focused class during the water flow and light intensity 

investigations, the links between the mathematics and science tended to occur in blocks of 

discussion. From the water flow lab (Figure 4.5) to the light intensity lab (Figure 4.6) to the 

penicillin lab (Figure 4.7), the link discussion changed from occurring in the first two-thirds 

of the investigation to most and then all of the investigation. In the modeling-focused class, 

the number of occurrences of links appeared to be fewer than the number of link occurrences 
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in the tools-focused class. In the modeling-focused class the links seemed more consistent 

across the entire investigations for the water flow and light intensity labs, rather than 

occurring in blocks. Discussion during the penicillin lab (Figure 4.10) seemed to reflect 

more of a sequence of science to link to mathematics contexts. 

Differences in the graphs may be due to a lesser degree to the differences between 

classes as much as time pressures to cover specific content topics. As previously mentioned, 

the instructor of the tools-focused class commented on the need to focus on the mathematics 

due to a time concern. The modeling-focused class was under time constraints to cover the 

desired content during the penicillin lab. In these cases, as evidenced in Figures 4.5, 4.6, and 

4.10, discussion tended to occur in a sequence of science to link to mathematics with little 

overlap and infrequent return to the science or link contexts. When timing and coverage of 

topics was less of a concern, link discussion tended to occur consistently and all throughout 

the laboratories in both classes as seen in Figures 4.7,4.8, and 4.9. 

Another distinction between the two classes was the number of "other" classifications 

for the context of discussion. Items classified as "other" were issues such as directions and 

assignments not related to the laboratory, an instructor calling on a student, responses 

including, "I wasn't going to say anything," and classroom dynamics like, "Did everyone 

hear that?" Small talk in the classroom would also be considered as "other." More "other" 

context items were classified in the modeling-focused class than the tools-focused class. The 

number of "other" classifications suggest that the modeling-focused classroom may have 

been an environment in which the students felt comfortable expressing opinions and raising 

"other" issues with times of being side-tracked and losing focus on the tasks at hand. 



123 

Students in the tools-focused class tended to remain more focused on the tasks being 

discussed. 

More similarities than differences occurred between the two classes when relating the 

context discussion. Both classes demonstrated "expert" levels of instruction by linking the 

science and mathematics without making sudden switches between the math and science 

components. The mathematics component received the greatest emphasis, while the science 

context received lesser emphasis. Differences in the link discussion in the laboratories in the 

tools-focused class, connections between the science and math initially seemed to develop in 

blocks of discussion and occurred more consistently as the semester progressed. The link 

discussion in the modeling-focused class seemed to touch on the links through much of the 

laboratory with reduced link discussion during the penicillin lab. 

Micro Sources of Ideas 

Siegel and Borasi (1994) noted the importance of inquiry teachers to listen to 

students. When consistently talking or engaged in teacher-student discussion patterns, 

teachers inhibit the inquiry process and students' generation of ideas. At various times, the 

instructors of Math 181 were more successful to let students' ideas lead the discussion. 

Micro Sources of Ideas in the Modeling-Focused Class 

Indication that students' or instructors' ideas were the immediate focus of discussion 

was noted by the micro sources of ideas. The instructors' intents for the origin of the ideas 

were related to their intents for who posed the questions for investigation. For the modeling-

focused class, the instructor desired that students' ideas proactively contribute to the 

direction of the class discussions. The instructor's intents were evident in her lesson plans 

and in the class structure. In her lesson plans for the water flow investigation, the instructor 
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made the note, "Do not push the content. Let students do the analysis." During the class 

with the instructor's guidance, students first asked the questions for investigation and asked 

additional questions during reflection phases. Students' questions and ideas gave direction to 

the manner of development of the mathematical methods. 

In the modeling-focused class, students' ideas were discussed and influenced the 

direction of the class. One example of how students' ideas motivated the analysis discussion 

occurred during the light intensity investigation. The instructor was developing a method 

used to model exponential data. The class had developed the equation relating the rates of 

change with the intensities. 

R: You have >> equals-.4288 j: + .0002. [R writes =-.4288Ar + .0002] All right. Since 
I was real big on appropriate variable names, I don't really care for y and x. What 
can we put in their place? What was on the y? 

Student: Rate 
Smdent: Rate 
R: Let's go ahead and put that in. What was on the x? 
Laurie: Intensity. 
R: A couple days ago Ellen asked an important question....She asked, "What does the 

rates graph say? What are we supposed to grasp from the graphs?" 
Jamie: Can we get rid of the .0002? 
Brett: Yeah. 
R: What do you think? 
Brett: I like that idea. 
R: Can we get rid of it just to get rid of it?.. .What does the y-intercept mean in this case? 

The instructor was the initial source of the micro idea as evidenced by her prompts. She 

urged students to use appropriate variable names in the equation to build associations 

between the science and mathematics and to promote interpretation. Before reaching the 

interpretation of the graph and equation, one student prompted a slight change in class 

discussion when he asked, "Can we get rid of the .0002?" His question noted a change in 

micro source of idea. Others in the class agreed with his desire to rid the equation of the 
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.0002. promoting discussion about the size of .0002, the role of .0002 as the y-intercept, and 

the connection between the y-intercept and science context. 

The class example demonstrated the use of micro sources of ideas and the impact of 

students' ideas on class discussion in the modeling-focused class. The instructor intended for 

much of the direction of the class instruction to be dominated by students' ideas. 

Micro Sources of Ideas in the Tools-Focused Class 

The instructor of the tools-focused class recognized the impact of students' ideas and 

questions on the direction class sessions would take. During interviews the instructor noted 

her plans for the class sessions and commented that the plans would change based on 

students' questions, contributions, and challenges. The instructor's ideas often initiated 

discussion, and her plans changed as students offered their questions, contributions, and 

challenges. 

An example of how a student's question changed the instructor's plans for the tools-

focused class session occurred at the beginning of a class session during the light intensity 

investigation. Students were to have completed an assignment of modeling data for the 

removal of a dose of penicillin from the body. The methods of analysis were to be similar to 

those completed for the light intensity data. 

T: Please take out your penicillin homework and pass it that way. I'm really anxious to 
see those. 

Rita: Wait, umm, the numbers they gave us, had like an intercept of 6.789 and 
[inaudible] 

T; Okay. And the question was how do you handle that 6.789? 
Rita: Right. We were supposed to add that into the equation, right? Because in our other 

example the intercept was zero and in this case it's 6.789. Do you add that onto the 
end of the equation? 

T: Good question. How will we handle it? You've got a lot of company. You've got a 
lot of company. How many - does everybody understand the question? Okay, good. 
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How did you handle that remainder? How did you handle that intercept?...Okay. 
Let's look at this. 

The instructor had not intended to talk about the role of the y-intercept. Her plans were 

changed when a student asked how to handle the intercept of size 6.789. Over half of the 

class session was then devoted to addressing the student's question and related issues, issues 

relevant to modeling data. Students' ideas and questions in the tools-focused class 

contributed to the direction of the class discussion, at times different than planned by the 

instructor. 

The instructors' intents for whose micro sources dominated the class discussions were 

similar to their intents for the posing of questions in the class. The modeling-focused class 

encouraged students' ideas to give direction to the mathematics and science discussion. The 

tools-focused class followed students' ideas and questions as they arose in the context of 

other methods and mathematical discussion. 

Language 

Supportive of the instructors' goals and reflective of student authority and sources of 

ideas in the classrooms, language use indicated another area in which the two classrooms 

differed. In the tools-focused class, language use reflected the instructor's goal to teach the 

mathematics and keep the mathematics as the focus of the class. Hence, language reflective 

of the mathematical concepts was emphasized. In the modeling-focused class, less emphasis 

was placed on formal mathematical terminology as students' language was used to describe 

the scientific and mathematical processes. As the need arose for the more formal 

mathematical terminology, the modeling-focused instructor introduced the terms to 

accompany the previously discussed concepts. 
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Language in the Tools-Focused Class 

An example of the use of language in the tools-focused class occurred during the 

launch of the water flow investigation. Students had been told about the Hoover Dam and 

the desire to examine the relationship between the depth of water in the lake and the time 

needed to drain the lake. The instructor asked, 

I want to see a graph of what you think it would look like of how long it would take 
to drain the lake as a function of how deep that water is. What do you think that 
graph would look like? 

As students drew axes to sketch their hypotheses for the graph relating the depth and 

drainage time, discourse arose as students questioned what the instructor meant by "as a 

function of." Students didn't understand which variable went on which axis. This resulted in 

the instructor answering several of students' questions of which variable she wanted on 

which axis. She eventually addressed the issue to the class as a whole: 

I used mathematical language when I expressed the question. And the question I 
asked was, How long it took to drain the lake as a function of how deep the lake 
is. Let me write that down. We haven't talked about this, but the question said, as a 
function of how deep the water is. That question has an implicit assumption about 
which is the independent and which is the dependent variable. Is this question 
assuming that how long it takes determines how deep the water is? Or is the question 
assuming that how deep the water is determines how long it takes to drain? 

Note that the instructor clarified the language "as a function of by asking students which of 

the two relationships made more sense, and proceeded to give the two possible relationships 

of one variable depending on the other. Kieran (1993) cited researchers Freudenthal, Davis, 

Shuard and Neill who strongly emphasized the use of functional dependencies in the 

development of function understanding in mathematics, particularly since the dependency 

promotes "pedagogical accessibility." To help her students quickly become reestablished in 
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the context of the problem as well as understand "as a function of," the instructor relied on 

this dependency approach. 

The instructor's use of the terms "as a function of was fundamentally warranted in 

the class. Students met the prerequisites for the course, having math through trigonometry. 

Technically, students should have been familiar with function terminology as well as the 

connection between the terminology and the process of graphing functions. As well 

documented (Sfard, 1991, 1992; Vinner& Dreyfus, 1989; Sierpinska, 1992; Dubinsky & 

Harei, 1992; Carlson, 1998), students in mathematics up to and including the first year 

calculus courses have difficulty with function notation and terminology. Comparable in 

mathematics background to the college algebra students in Carlson's study, the tools-focused 

students had difficulty explaining what was meant by "express j as a function of r." 

The use of the tenninology "as a function of occurred early in the course as students 

adjusted to the methods, terminology, and symbols used in the course. During the launch of 

the light intensity laboratory, most students had better understanding of the relationship 

suggested by "as a function of." The light intensity laboratory began in a similar manner as 

the water flow laboratory with the establishment of the context and the request for students to 

graph one variable as a function of the other. Most students correctly responded as to which 

variable was the independent variable. The language used in the tools-focused class 

highlighted the instructor's emphasis on the mathematics and the accompanying precise 

mathematical terminology. 

Language in the Modeling-Focused Class 

In the modeling-focused class less emphasis was placed on formal mathematical 

terminology with more emphasis given to students' terminology in describing the 
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mathematical concepts. The instructor's purpose for this difference of emphasis may be 

summarized by Sfard's (1992) statement, "a structural conception should not be required as 

long as the student can do without it" (p. 69). One example where less emphasis was placed 

on formal mathematical terms surrounded the issue of functional relations. Neither the use of 

the term function, nor function notation was strongly emphasized. The instructor's goal for 

modeling to be the focused object led to the emphasis of dependency relationships as Kieran 

(1993) described. 

A small group of students chose to use the language of functions both in class and in 

their lab reports. The times that these students used the function notation were appropriate 

and meaningful for these students. Two main instances in which students chose to express 

mathematical relationships using "as a function of occurred during the prediction and 

reflection phases. During these phases, students asked how one variable was a function of 

the other or specifically asked how to verify the suspected mathematical relation for data 

thought to be modeled by a given family of functions. 

When the modeling-focused class initially discussed rates of change, language use 

emphasized the mathematical concepts before formal terms of "instantaneous rates of 

change" and "derivative" were introduced. Students put forth the terminology of average 

rates of change when comparing groups' water flow experiments. Some groups collected 

data by filling a cylindrical tube to a given mark, recording the drainage time, filling the tube 

to a lower mark, and recording the drainage time. Other groups measured the amount of 

water that flowed out the tube for ten seconds as more water was added at the top to maintain 

a constant water level in the tube. Students noted that some groups calculated "average rates 

of change" while the others calculated a "constant rate of change," closely related to an 
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instantaneous rate of change. The class retained the use of the terms "average" and 

"constant" to denote the rates of change until the class developed the concept of 

instantaneous rates of change graphically and numerically. 

The use of language in the two classes reflected the instructors' goals for the course. 

The instructor of the tools-focused class emphasized formal mathematical terminology as the 

mathematics and tools were developed. The instructor of the modeling-focused class 

allowed the mathematical terminology to arise as the concepts were built in the modeling 

process. 

Symbols 

Related to the issue of language use and development of terminology in the class, 

symbol development and usage also differed in the two classes. New symbolic notation in 

the tools-focused class was given and explained by the instructor as needed for the various 

mathematical tools. In the modeling-focused class, the instructor allowed students to develop 

notation to represent the mathematical concepts and procedures. 

One area in which the development of symbols was particularly evident in both 

classes involved subscript notation. During the light intensity laboratory, subscript notation 

was used in both classes to distinguish the intensity at the "next" depth from the intensity at 

the "current" depth. Previous experiences in the pilot studies suggested students' difficulty 

with subscript notation. Between the two classes, differences existed in how the subscript 

notation originated. 

Symbol Development in the Tools-Focused Class 

In the tools-focused class, the instructor and the textbook were the originators of the 

subscript notation. Students had come to class with their calculations of the differences in 
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intensities and graphs of the intensities versus depth, change in intensities versus depth, and 

change in intensities versus intensities. After discussing properties of the graphs, students 

were asked to turn to a page in their book which contained additional intensity data. 

T: Now, let's come back up and look at the headings on those tables. Ij What does Ij 
represent? 

Pete: Light intensity. 
T: Light intensity. And what is ? Just be quiet for a second. Can you express 

that in words? What does mean? Bret, what do you think? What does that 
mean? 

Bret: The change? Change in absorption? 
T; The change in absorption from what? 
Bret: From the one point to the other. 
T: From one point to the other point. And what about the next? What about the other 

point? 
Bret: It's one below? 
T: It's one below it. It's one below it. The change in intensity between two adjacent 

readings. Between one reading and the next reading. Which is what this i/ + l is 
talking about. Is everybody okay with the notation? We just sort of slid into this 
notation. We're kind of using it without talking about it a lot. Any problems with the 
notation? Some people have a lot more experience with this type of notation than 
other people. So if you have any questions please feel free to ask. 

Amy: What is 7^ ? 
T: I J means the intensity at a particular depth or at a particular number of filters. If this 

is the intensity at a particular depth, this is the intensity at the next depth. [The 
instructor points to the numbers in the table on the transparency.] 

The class continued discussing how the equation for the change in intensities versus 

intensities could be expressed with the subscript notation. The subscript notation was a tool 

used in the development of additional tools: methods for modeling data thought to be 

exponential. 

Symbol Development in the Modeling-Focused Class 

In the modeling-focused class, students developed the subscript notation. Students 

had come to the class with calculations of the ratios for the light intensity data. Students 

observed that the ratios of the "next intensity" to the "current intensity" remained fairly 
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constant for consecutive pairs of intensities. The instructor asked students to develop 

notation to represent the calculations they had performed. Each group decided on a 

representation and presented their notation on the board. The class examined and discussed 

which representation(s) seemed to succinctly and precisely indicate the calculations: 

R: Let's look at Dan's. [ ... Could you take that formula and could you do a test 

and does that work? 
Kiene: No. 
Ben: Nope. 
R: Some are saying yes and some are saying no. Let's hear from the group that said no. 
Ben: We explained it to you because that was our first equation and then we realized -... 
Kiene: You can't do it because like for I you put in .81 over whatever your second value was 

but that would give you 1.81 over your second value. It's close. 
Dan: Okay, well, what we meant I guess you have to know what we meant by representing. 

That doesn't mean add one to that point, it means your second point. 
R: Okay. 
Dan: It means your first one divided by - well the second one divided by the first one. 
Ben: See then you could do it. 
Kiene: You just need a legend. 
Dan: I understand. Actually, I thought about it right here, I do-
R: Okay. What about Kiene, X2 divided by xi? Does that - could you do your 

calculations looking at that formula? 
Kiene: Once again, we'd have to make a legend. 
R: And what would your legend be? 
Kiene: Because your points would change every time. It'd be -
Jamie: Go down 
Kiene: We would have went with the n , n  -  I  method if we were redoing it again, [referring 

_WZM£!L><ioo] 
Light _ Int„_i INTENin — 1) 

• ,  ,  j  j j t - L i -  L i g h t  _ I n t „  I N T E N i n )  , .  ,  ,  
Others m the class decided that both — or x 100 were slightly 

Light _Intn-i INTENin 

faulty since the substitution of zero for n would result in a negative one as the subscript for 

the intensity in the denominator. 
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When asked which of the notations could be used with no legend or minimal 

Y I 
additional information given in a legend, the class opted for -2±1 or As the class 

discussed the two options, one student argued that the use of Y was useful since the notation 

could be used for any situation where Y represented the dependent variable, not just intensity. 

A student countered that for the same reason I was more useful since the I would indicate 

more precisely what variable was involved, intensity in this case. 

Building on the class discussion, the instructor reminded students to use appropriate 

variable names. Students were given the heuristic to "use appropriate variable names" diuing 

the water flow laboratory to help in the process of modeling. With the reminder, the 

instructor recommended the use of and the replacement of n with d to represent depth. 
In 

The development of the subscript notation supported the modeling-focused environment 

since students modeled the procedure of calculating ratios and attaching meaning to the 

symbols. 

In both classes, the functions of the symbols as described by Hiebert and Carpenter 

(1992) were evident. The symbols were a record to share and communicate what was 

already known and were used to organize and manipulate ideas. The development and 

organization of symbols differed in the two classes though they reflected and promoted the 

instructors' goals for the class. In the tools-focused class, symbols were the handles of the 

tools used for modeling data and other mathematical procedures in the course. In the 

modeling-focused class, both the development and use of the symbols reflected the process 

of modeling data. 
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Heuristics and Reflection 

Throughout the course, when addressing methods of modeling data and building on 

the contexts, the classes developed heuristics. The heuristics were intended to help students 

to think about their thinking, also known as metacognition. The use of the heuristics was to 

promote students' abilities to communicate and justify their explanations when modeling 

data, an essential feature of classroom inquiry as noted by the National Research Council 

(2000). The heuristics were also intended to prompt reflection in students. The tools-

focused class developed several heuristics, each tailored more closely to the types of 

problems they could be used to solve. The modeling-focused class, for the most part, 

emphasized one heuristic used in modeling data. 

Heuristics in the Tools-Focused Class 

In the tools-focused class new heuristics were developed or new steps were added to 

existing heuristics as new categories of problems were confronted in the class. The heuristics 

helped students move forward in various kinds of problems by looking back at what they had 

completed. The instructor explained the heuristics and encouraged students to record them in 

their notebooks and to use them when attacking various problems. 

One development of a heuristic occurred across laboratories. Early in the semester, 

students gathered data to examine the mathematical relationship between an adult's height 

and stride length. When the class analyzed the data and sought to find a mathematical 

relationship, the instructor informed the students of Occam's Razor: "when you have two 

competing theories which make exactly the same predictions, the one that is simpler is the 

better" (http://www.weburbia.com/physics/occam.html). When the class mathematically 

modeled the height and drainage time data from the water flow experiment, the instructor 

http://www.weburbia.com/physics/occam.html
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added to the heuristic the need for prior knowledge. Students needed to use the simplest 

model informed by prior knowledge based on mathematics applied to the context. In the case 

of the water flow lab, this prior knowledge concerned students' knowledge of acceleration 

due to gravity and equations relating the height of an object to the time taken for an object to 

reach the ground.' Once prior knowledge was established, a mathematical model was 

suggested and tested using linearization techniques. 

Other heuristics were developed throughout the course. Additional heuristics, acting 

as tools, included how to proceed using the difference method when modeling exponential 

data and how to plot data and find equations for semi-logarithmic and log-log plots. A key 

component in several of the written procedures emphasized students' reflection on the 

created plots of the data and careful recording of the calculations which had been performed. 

Heuristics in the Modeling-Focused Class 

In the modeling-focused class, one primary heuristic was used to assist students in the 

process of modeling data. The one heuristic acted much like the multiple heuristics in the 

tools-focused class. Like the students in the tools-focused class, students in the modeling-

focused class were encouraged to rely on the context and linearization in the development of 

their explanations and justifications of their models. 

Students were encouraged to apply the heuristic "use appropriate variable names." 

When students had data to be modeled, students were to graph the data and suggest a model 

based on the shape of the graph and on the underlying scientific context. To both verify the 

' The instructor realized that more advanced physics is needed to fully explain the relationship between the 
height of water in a cylindrical tube and the time required to drain the tube. Students readily propose and affirm 
the role of gravity in draining the water, thereby suggesting a quadratic relationship. 



136 

appropriateness of the model and to find the equation of the model, students were taught to 

linearize the data. Linearized data was data that was transformed such that if the model was 

appropriate, a line would be evident on the plot. Once the equation of the line was found, 

students were advised to use appropriate variables to represent what transformed data was 

graphed on the x and y axes. By identifying what was graphed and writing the terms using 

meaningful symbols, students reflected on what they had done, linked the mathematics to the 

science context, remembered what they anticipated the equation would be, and potentially 

had the direction needed to rearrange the terms to a more common form. 

Students in both classes were encouraged to use heuristics to develop mathematical 

models for data and to solve problems. Students in the tools-focused class were taught 

several heuristics to apply to various problems. The multiple heuristics had underlying 

themes of using prior knowledge and correctly representing what variables were graphed. 

Students in the modeling-focused class were primarily taught the one heuristic to use 

appropriate variable names which applied to modeling data in several different contexts. 

Reflection 

Key components of the heuristics in both classes was the use of reflection. Both 

instructors recognized what researchers Hiebert and Carpenter (1992) noted: that without 

reflection, symbol manipulation would unlikely stimulate the relationship construction 

leading to understanding. Mathematical modeling may be attributed as a form of symbol 

manipulation. During modeling, students were encouraged to reflect on the context of the 

problem and relate the context to their prior knowledge. Reflection was prompted when 

students were asked to represent what was graphed on the x and y axes. Instructors in both 

classes often modeled the reflection process and prompted the students to reflect on the 
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procedures to promote advancement on the problems students worked. Examples from each 

class illustrate the instructors' prompts toward reflection. 

Prompted reflection in the tools-focused class. In the tools-focused class, students 

were taught heuristics to develop mathematical models for exponential data. The instructor 

emphasized the multiple ways of finding the same type of equation and exemplified how to 

reflect on what was graphed. 

T; Ron, tell me what we did. Tell me yesterday or on Tuesday, please 
Ron: Well we found the equation of our line. 
T: And what were we plotting with the line? 
Ron: The light intensity versus change in intensity. 
T: Okay, we plotted the intensity versus the change in intensity. And what do we get 

when we plotted that? 
Ron: We got a bunch a dots. 
T: A whole bunch of dots. What was the relationship between those dots - if there was 

any pattern? 
Ron: It was linear. 
T: Okay, it was linear. We got a line. So the first thing we do is the plot. Then what did 

we do? 
Ron: The equation of our linear regression line. 
T: Amy, what do we do next? 
Amy: Once you find the line, then you have to do the . 
T: You have to do the . What do you mean by that? 
Amy: Well you have to put that into your equation. 
T: Put that into equation. Okay. Robin, does that make sense? 
Robin: Uh-huh. 
T: What did Amy mean when she said put the Ij and the in the equation? 
Robin: What do you mean what did she mean? The is like the first point and then the 7^^, 

is the point right above that. And you set them to equal each other. Oh, wait. I 
mean, I don't know what you mean. 

T: It's real hard to say in words what we did. What did we do? 
Robin: Well we took 7^^., — 7^ equals the slope times 7^. 
T: So this 7^^, — I j  we found the equation of the line, my x  corresponded to the intensity 

right? Which is for - some people used 7^ and some people used 7^^, because there 
was a mismatch with the intensities and the change in intensities. There was one 
more intensity in that list than there was change in intensities. So some people 
ignored the top number. Some people ignored the bottom number. It doesn't matter, 
but which one you do will effect which one shows up here. And then the y was the 
change, so it was either or it was depending on how you decided to 
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subtract. It doesn't matter what your decisions are as long as your equation reflects 
that perfectly. This is not a place to hurry. 

The instructor prompted reflection on what occurred during the previous class session and 

modeled how to reflect what variables should be plugged into the equation in place of x and 

y. Demonstrating the instructor's goal for multiple tools to arise in the course, multiple 

methods of modeling the data were encouraged as she emphasized, "It doesn't matter...as 

long as your equation reflects that." The instructor advocated the use of reflection on what 

was graphed to prompt appropriate modeling of data. 

Prompted reflection in the modeling-focused class. Similar to the tools-focused class, 

the instructor of the modeling-focused class encouraged reflection on students' calculations, 

graphing, and the context to promote proper symbolic representation in the equation 

modeling the data. When developing an exponential equation for the light intensity data, 

students had graphed the rates versus the intensity. As previously discussed, students 

questioned whether the y-intercept should be zero. The class reasoned that the intercept 

should be zero, given the context. Students were then encouraged to use appropriate variable 

names to replace the x and y. 

R: So our equation is rate equals -.43 times Intensity. Rate = -.43/nt... .I'd like you to 
write down in our notation of IjOr or whatever, write a formula for how you 
calculated the rate. You calculated rate - how do you calculate a rate? 

Alison;Change in Intensity over change in depth 
R: You calculated rate by taking change in intensity divided by change in depth. 

Rewrite change in intensity divided by change in depth using Ij and How did 
you calculate - write a formula for how you calculated rate. We want to use the same 
notation that we had been using What was your change in depth each time when 
you were calculating the rates? 

Several respond: one 
R: one. Change in intensity - how can you use that notation to rewrite your change in 

intensity? Okay, that's your assignment - that's part of your assignment for 
tomorrow. For tomorrow, come up with a formula to write change in intensity over 
change in depth using this notation. 
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The instructor encouraged students' reflection on the calculations performed and the data 

plotted. Students were led through stages of how to transform the equation in x and y into an 

equation using symbols more meaningful to the context. The use of the new notation would 

lead to the development of an exponential equation using discrete methods. Through 

reflection and the use of appropriate variable names, the exponential model developed. 

In both classes, reflection was encouraged as students mathematically modeled data. 

The reflection was often prompted by the instructors rather than originating with students. 

Related to the phases of inquiry as displayed in Figures 4.1, 4.2, 4.3 and 4.4, overall in both 

classes, long periods of reflection were weak. The instructors attempted to aid in reflection 

during analysis phases with emphasis on connections between the mathematics and science 

contexts. Figures 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 illustrated that the links were not always 

consistent nor frequent. Reflection, though present in both classes, did not exist in the 

strength as recommended by researchers. 

Conclusions 

The similarities and differences in the classroom environments for the tools-focused 

class and the modeling-focused class were described in this chapter. Both instructors 

pursued inquiry through the conduction of experiments and mathematical modeling in the 

classes. Some of the highlighted similarities and differences are reviewed. 

The instructors differed in their goals for the role mathematical modeling would play 

in the course. The tools-focused class sought to develop mathematical models reasoning 

from the context. Once the data was modeled, the mathematics surrounding the model was 

emphasized. Observations of the class and evidence in the graphs of Figures 4.3, 4.4, 4.5, 
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4.6, and 4.7 illustrated that the instructor's goals for the environment were accomplished. In 

the pursuit of an environment in which the mathematical tools were the emphasis, certain 

course developmental characteristics were evident. More often the instructor posed the 

questions for investigation, used more traditional mathematical language when discussing the 

relationships, and introduced new notation for the mathematical modeling. 

The instructor for the modeling-focused class sought to achieve an environment 

focused on the process of modeling. With the modeling emphasis, the class posed the 

questions for investigation, used less formal mathematical terminology initially, and 

developed the symbols needed for proper representation of the data. 

Observations of the classes and graphs illustrated that few differences existed in the 

appearance of the modeling-focused class and the tools-focused class. Both classes pursued 

multiple cycles of inquiry with prediction, experiment, and analysis phases. In both classes, 

reflection on the analytical methods and context was encouraged. In light of the 

encouragement, reflection in both the tools-focused class and the modeling-focused class 

seemed weak. Each section emphasized the link of the science context with the mathematics, 

relied on heuristics in mathematical modeling, and sought agreement in the questions under 

investigation. When coverage of content was a concern, open-inquiry was limited with 

contextualized discussion following a sequence of science to link to mathematics. 

In light of the characteristics presented, both classes achieved a degree of inquiry in 

the classroom environments. In the next chapter, the effects of the characteristics on 

students' mathematical modeling skills will be demonstrated. The affects will be used to 

further assess the accomplishments of the inquiry environments. 
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CHAPTERS 

CONSEQUENCES OF CLASSROOM ENVIRONMENTS 

The instructors' goals regarding the structure of inquiry for the classroom and 

mathematical modeling resulted in various outcomes for students. Overall, the structure of 

the laboratories led to differences in students' responses toward the questions under 

investigation, students' reliance on the science context to inform the mathematics, students' 

use of symbols when modeling data, and the forms of reflection in the laboratories. Aside 

from the differences in class and laboratory structure, students' abilities in modeling were 

often similar when applying new methods of modeling taught by the instructors. In 

particular, when coverage was a concern for instructors, then inquiry was somewhat 

restricted. In both classes, when students' generation of ideas and methods was emphasized, 

inquiry occurred more consistently. 

As described in Chapter 4, in the modeling-focused class, the instructor intended for 

students to objectify the modeling process. To develop students' abilities in inquiry and 

modeling, students posed questions for investigation, collected data, analyzed data by 

developing mathematical models and presented their models while in small groups. After the 

presentations, students refined and revised their questions before further discussion of 

mathematical models as a class with the instructor. The class did not maintain this structure 

during the penicillin laboratory due to time constraints and coverage concerns. 

In the tools-focused class, the instructor intended to use the context from the different 

experiments to be the underlying foundation on which to develop the mathematics for the 

course. While the instructor desired for students to reason from the context, she maintained 

that the focus of the class was the development of the mathematics. In addition, she aimed 
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for multiple perspectives, tools, and methods to be applied in solving the various problems. 

Students in the tools-focused class made predictions, conducted experiments, presented the 

data, and discussed means to mathematically model the data as a class. The structure of the 

laboratories in both classes influenced the characteristics of inquiry and the effects on 

students' modeling skills and learning. 

Agreement of Question 

As stated in Chapter 4, the two classes differed in who initiated the questions for 

investigation. In the modeling-focused class, the students settled on the question to be 

addressed. In the tools-focused class, the instructor more often initiated the questions for 

investigation. Additional questions were raised as students discussed hypotheses. 

Throughout the investigations, students in the two classes differed in their understanding of 

what questions were being addressed. Students in the modeling-focused class were more 

often in agreement of the questions under investigation. During laboratories in the tools-

focused class, students varied in their agreement of the questions under investigation. 

Agreement of the Question in the Modeling-Focused Class 

Students in the modeling focused class generated and agreed upon the questions to be 

investigated in the laboratories. During the laboratories and in their lab reports, students 

demonstrated their continued agreement of the questions being answered. When students 

presented their data and initial analyses, each group of students addressed the common 

questions initially set to be answered. For example, during student presentations of the water 

flow data, the groups demonstrated how they addressed the question, "How does lake 

elevation affect flow rate?" and proved how they would predict a flow rate given a height or 
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volume measurement of water. Students were similarly prepared after initial analyses of the 

light data to predict a light intensity reading given a depth. 

Assessment of Question in Class 

Later in the investigation, when the instructor taught additional modeling methods to 

be used, she assessed what questions students perceived were being addressed. The 

instructor asked students to record "What questions are we trying to answer?" Frequently, 

students responded with questions similar to the questions posed and agreed upon as a class 

during previous class sessions. Students' responses suggested that students and instructor 

were in agreement on the questions being addressed. Additional questions from students 

indicated that students did not always understand the methods used to answer the questions 

though they did understand what questions were of importance. 

Assessment of Question in Lab Reports 

Students' lab reports for the experiments demonstrated agreement in the questions 

addressed during the investigations. In the reports, students presented their analysis for the 

data. Though some students' analysis contained errors and indicated misunderstanding of 

some of the methods to address the question, agreement of the question was evident. Using 

the water flow lab reports as an example, most students stated the purpose of the experiment 

and their initial hypotheses of the relationships between the amount of water and the flow 

rate. Typical of students' statements and reflective of the class discussion which occurred 

during the laboratory, one group of students wrote "we wanted to find a relationship between 

the elevation of a body of water and it's rate of flow. Our hypothesis was that as the height 

of a body of water decreased, so would the rate of flow." This group proceeded to explain 
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how they collected data, what assumptions were made about the role of gravity, and what 

justified their development of the square root relationship between the height and flow rate. 

In the modeling-focused class, students posed and agreed on the questions to be 

investigated. Throughout the investigation and on lab reports, students demonstrated their 

agreement of the questions under investigation. Most often students responded with the 

question agreed upon with related questions and hypotheses. 

Agreement of the Question in the Tools-Focused Class 

In the tools-focused class, the instructor more often initiated the questions for 

investigation. In the light intensity and penicillin investigations, students demonstrated 

agreement of the question(s) being addressed in class and on lab reports. During the water 

flow investigation, students had different interpretations of what questions were being 

addressed. The interpretations of the questions under investigation were noted during class 

and on students' lab reports. 

Assessment of Questions in Class 

In the tools-focused class, the instructor often assessed question agreement to prompt 

reflection. The instructor asked individuals at the start of class sessions, "What did we do 

yesterday?" or "Would you tell me what we're doing?" During the water flow investigation, 

when asked what was done the previous day, one student responded that the class had 

worked with water to address "how long it takes to drain." The student noted that some 

hypothesized drainage with a constant rate with increasing depth while others said that the 

rate would decrease as the height of water decreased. The following class session, another 

student was asked what experiment was being performed. She replied, "We're timing how 
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fast the depth of the water makes it affect how fast the flow is." Both students interpreted 

slightly different goals for the laboratory. 

Students' different interpretations of the questions under investigation led to different 

types of data to be gathered and reported. The instructor encouraged and supported the 

various representations of the data gathered. When presenting new methods to model the 

data, the instructors' methods emphasized one representation of data and how to model the 

relationship between the time needed to drain a given depth of water. Some students needed 

to modify their data to apply the instructor's methods of modeling to their data. 

Assessment of Questions in Lab Reports 

Most students did not change their data, while proceeding to use the methods taught 

by the instructor. These students overlooked the difference in the instructor's goal in 

modeling data and their own goal in modeling the data. One example occurred when a group 

stated their objective was to explore how "depth of water affects rate of flow." Little 

discussion of flow rates was given as students modeled their time and depth data. These 

students had data reflecting the time needed to drain two inches of water at varying heights of 

water. This group proceeded to model the relationship between time and depth using 

methods given by the instructor without adjusting their data. 

On the light intensity and penicillin laboratories, students and instructor agreed on the 

questions under investigation. Class discussion and lab reports reflected the agreement to 

model the light intensity data and the amounts of penicillin at various times for the respective 

laboratories. Students' work demonstrated some difficulty in finding models for the data, 

though ail seemed to have the common goal to model the same types of data with the same 

types of methods. 



146 

In the two classes, with the mix of results in students' interpretations of the questions 

under investigation, the laboratory equipment and procedures likely influenced the agreement 

between students and instructor of the question(s) being addressed in the laboratories. Data 

in the water flow laboratory could be gathered a variety of ways resulting in an assortment of 

graphs of the data. In the penicillin and light intensity investigations, there was less variation 

in the types of data which could be gathered due to restrictions placed by the equipment. The 

equipment and procedures likely contributed to the agreement in questions in addition to how 

the questions for investigation were introduced. 

Overall, the two classes differed in the introduction of the questions for investigation. 

The differences likely contributed to differences in students' understanding of the questions 

being investigated. In each of the laboratories in the tools-focused class, the instructor 

initiated the questions for investigation. In the water flow investigation, students sought to 

explore issues surrounding rates in addition to the instructor's goal question to relate the 

draining time with depth. Different interpretations of the objectives and data led to mixed 

results on students' lab reports. During the other investigations, students agreed with the 

questions the instructor posed. In the modeling-focused class, students posed the questions 

and demonstrated agreement of the questions under investigation during class and on their 

reports. 

Discussion Linking Mathematics and Science Contexts 

In both classes, the instructors intended for the various contexts to play a role in how 

students answered the questions under investigation. The instructors desired that students 

rely on the science context to inform their mathematical procedures and insights. In the 

modeling-focused class, the instructor's goals for students to objectify the modeling process 
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and use appropriate variable names were not fully achieved. Students demonstrated their 

abilities to apply methods of modeling and assumed consistency in their use of notation. 

However, students lacked reflective skills of the meaning of the variables when learning and 

applying new methods of modeling. In the tools-focused class, students attained an action or 

process level of conception of modeling as they infrequently relied on the science context 

and assumed inconsistencies in symbolic representations. The students were successful in 

implementing various tools as the instructor desired. Observations surrounding the roles of 

the contexts, symbols, and reflection support the level of mathematical modeling conceptions 

achieved by students in both classes. 

Context Connections in the Modeling-Focused Class 

In the modeling-focused class, students' use of the context to inform and interpret the 

mathematics differed depending on the methods of modeling they applied. When students 

modeled data using methods that made sense to them, students relied on the context to 

interpret their results. When students modeled data using methods taught by the instructor, 

students relied less on the science context to inform and interpret the mathematics. 

Context Connections When Students Applied Their Modeling Methods 

When students were free to model data using methods of their choosing, students 

interpreted and adjusted their results based on the science context. Students in the modeling-

focused class analyzed their data before presenting the results of their experiments. During 

these times, students mostly relied on regression features of their calculators to find an 

equation for their data. When analyzing their data from the light intensity lab, students 

discussed how the calculator-produced quadratic function fit the data very well. These 

students soon realized that the equation insufficiently modeled the data for an extended 
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domain. The graph of the parabola reached a minimum and slowly increased. Reasoning 

from the science context, students understood that for increasing depths of water, the light 

intensity would never increase but would approach zero. The students proceeded to consider 

alternative equations which better fit the data and the science context. 

Context Connections When Students Applied Instructor's Modeling Methods 

When using modeling methods taught by the instructor, students less frequently 

connected the mathematics and science contexts unless prompted by the instructor. Students 

applied the new mathematical methods, but made few connections to the scientific context. 

One example in which students failed to rely on the context and faultily modeled data 

occurred during the water flow laboratory. Students had been reminded of the motivation 

behind the choice of a quadratic model and the vertex in the equation relating the drain time 

and height for a column of water. For additional practice using the methods of linearization 

with quadratic data, the instructor asked students to model data for a falling bail. The class 

discussed how to model the data. 

R: Okay, let's quick look at a graph of this data [of a dropped ball]. [See Figure 5.1.] 
R: .. .What can we do next? If we want to find a quadratic equation for that using this 

method of linearizing data, what could we do? I'm hearing people say "square the 
time." 
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Figure 5.1. Graph of the height vs. time for the ball data 



149 

Dan: Take your graph and height 
R: And make a graph of height vs. time squared. 
Jake: Just like we did. 
R: Just like we did. So you want to graph of height vs. time squared. All right, let's do 

it. My times are in CI [column 1] and I'm now going to square them. And I'm going 
to graph C3 [column 3]. I'm going to graph the time squared on the x, and the heights 
on the y. [See Figure 5.2.] 
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Figure 5.2. Graph of the height vs. time-squared for the ball data 

R: Did we get a line? 
[?]: Nope. 
Brett: Wouldn't we take the square root because isn't - the line is going the other way 

compared to the last one? 
R: So you want to take the square root of what? 
Brett: Umm, let's try time. 
R: Okay. And your justification for that is? 
Brett: slope 
R: It's going the other way? 
Brett: The other graph went like this, and it was square root. And this graph went like this. 

[The instructor took Brett's advice and graphed height vs. the square root of time. 
See Figure 5.3.] 

Brett: So why not be embarrassed? Nope. 
R: This is why I wrote down the steps. What assumptions did we make? 
Dan: We forgot and assumed that ball was at (0,0). 
R: Is the vertex at (0,0)? 
[Several]: No. 
R: Where is it? 
Jamie: Wherever you were holding it. 
R: Wherever we were holding it, right? 
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Figure 5.3. Graph of the height vs. square root of time for the ball data 

When students applied new methods of modeling data, students failed to rely on the context 

to inform the mathematics. As a result, they told the instructor to apply incorrect steps to 

model the data. 

Graphical Support of the Context Connections 

In Figures 5.4, 5.5, and 5.6 graphs of the context with the micro sources of ideas 

demonstrate the interactions between instructor and students in discussing the contexts. 

When the micro source of ideas was the instructor, a mark in the bottom half of the relevant 

context was made. When a student was ±e source of the idea, a mark in the top half of the 

relevant context was made. The marks across time reflected the interactions which occurred 

in the class and the sources of immediate ideas which influenced discussion. 

Sources of ideas in the modeling-focused class. At various times and within certain 

contexts, students' ideas played a larger role in discussion when compared with instructors' 

ideas. The figures illustrate that students ideas, marked in the top half of the context bands, 

dominated the science discussions and in both laboratories. The students were life sciences 
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Figure 5.4. Context with the micro sources of ideas for the water flow lab in the modeling-
focused class 
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Figure 5.5. Context with the micro sources of ideas for the light intensity lab in the modeling-
focused class 
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Figure 5.6. Context with the micro sources of ideas for the penicillin lab in the modeling-
focused class 

majors, so most students felt comfortable discussing and generating ideas about the science 

contexts and issues surrounding data collection. 

Sources of ideas during discussion in the link and mathematics contexts were mixed 

between instructors and students. In the modeling-focused class, the first half of the 

investigations were dominated by discussion of students' ideas. In each of Figiwes 5.4, 5.5, 

and 5.6, the number of black segments in the top half of the link and mathematics bands were 

more frequent when compared to the number of black segments in the bottom half. The 

comparison of the number of these segments within the link and math contexts illustrate that 

students' ideas were more frequent than instructors' ideas in the modeling-focused class for 

the first half of the investigation. During the second half of the investigation, the instructor's 

ideas outweighed smdents' ideas discussed concerning the mathematics and the links with 

science. 
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Informed by the multiple cycles of inquiry for the water flow and light intensity 

investigations (Figure 4.1), in the modeling-focused class the first half of the investigation 

corresponded to the first cycle of inquiry, while the second half corresponded to the 

additional cycle(s). The sources of ideas supported the instructor's goal for students to 

discuss their predictions, experiments, and initial analyses before a second cycle emphasized 

mathematics with instruction of modeling methods. The first halves of the investigations 

gave students the opportunity to explore personal choices of methods to model data including 

regression features on students' calculators. Students had more segments in the link context 

than the instructor initially. Students reflected on the context as they sought a model. In the 

second halves of the investigations, students and instructor had similar numbers of segments 

in the link context. The similarity suggests that students and instructor interacted at a 

common level about the connections between the mathematics and science contexts with 

neither party dominating the discussion. 

The graphs in Figures 5.4, 5.5, and 5.6 illustrate differences in the structure of the 

laboratories. During the water flow and light intensity investigations, the class proceeded 

with the multiple cycles of inquiry as students presented their models, reflected on their 

work, and revised the questions being addressed. In each of the laboratories, ideas discussed 

linking the mathematics and science contexts were consistent across the entire investigations. 

In the penicillin laboratory, as illustrated in Figure 5.6, discussion proceeded in a terminal 

sequence of science, links, and mathematics. The discussion of the Unks did not exist 

throughout the entire laboratory investigation. Pressures due to time and the need to cover 

remaining topics in the course influenced the time spent on the investigation and the time 

devoted to the links between the science and mathematics contexts. 
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Starting sources of ideas in the modeling-focused class. The graphs in Figures 5.7, 

5.8 and 5.9 illustrate who's ideas initiated discu.ssion within a given context. Once 

discussion began by students or instructor was coded as a particular context, subsequent 

comments were coded as having the same source until the discussion switched to another 

context. Figures 5.4, 5.5, and 5.6 demonstrated the interactions which occurred. Figures 5.7, 

5.8, and 5.9 give related information of which party began the particular discussion. 

For the first haives of the investigations, students' ideas began the link discussions. 

For the second halves of the investigations, the instructor's ideas prompted the link 

discussion. When students generated models on their own in the first half of an 

investigation, they connected the science and mathematics contexts. When interaction 

occurred of the new methods of modeling, the instructor prompted the connections relating 

the mathematics and science. Students infrequently made the connections on their own. 

Context Connections in Students' Written Work in the Modelinp-Focu.sed Class 

Students' lab reports reflected the infrequency with which students connected the 

mathematics and the science contexts. Students highlighted the main connections 

emphasized in class, but failed to mention other connections. For the water flow lab reports, 

most students mentioned the role of gravity in causing the water to fall, thereby suggesting a 

quadratic relationship for the height and drain time relationship. Most also reasoned from the 

science context that the vertex for the quadratic relationship would be (0,0). For the light 

intensity reports, most students indicated why the context justified the y-intercept could be 

considered zero in the rates versus intensity relationship. Few students made additional 

connections such as the interpretation of the recursion relationship or the scientific 

significance of the values of a and r in the exponential equation y = a r'. 
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Figure 5.7. Context with the micro source starts for the water flow lab in the modeling-
focused class 

0) 

9> o 
3 

o 
o 

1 
4-> 
X u 
c 
5 

Math 

Link 

Science 

Other 

III 1 II Mia I  I I I  I I I  wi 
II 1 I I I  l i l l l i l  II III! 

• II 1 1 i  l l l l l  1 1 I I  I I I  
1 1 III II 1 II 1 1 II 

1 null  1 ll l l l  1 1 
1  l l l l l !  Instructor | 

1 1 11 1 III  lllll 1 II 1 1 11 
l l l l l  II  III 1  1 ll l l l l l  1 II 

1000 2000 3000 

Line Number 

4000 5000 

Figure 5.8. Context with the micro source starts for the light intensity lab in the modeling-
focused class 



156 

^ Math 

0) 
u 

J Link 

o 
0 
Z 

•5 Science 
1 

g Other 
O 

0 500 1000 1500 
Line Number 

Figure 5.9. Context with the micro source starts for the penicillin lab in the modeling-focused 
class 

Students in the modeling-focused class demonstrated mixed occurrences in linking 

the mathematics and science contexts. When students developed their own methods for 

modeling the data during the first halves of the investigations, students regularly reasoned 

about the model from the science component. When students applied modeling methods 

taught by the instructor occurring in the second halves of the investigations, students more 

often had to be prompted to relate the mathematics and science contexts. Graphs of the 

micro sources of ideas during context discussion supported the consistent interactions 

between students and instructor about the science, mathematics, and connections. Graphs of 

the starting sources of ideas indicated that students frequently began link discussion when 

I • 
J ML! 
II Hill II I 

mil I I  n i l  I I I  
III HHI 
I I III I I Inst ructor  

III mill I 
w m  I I  B  



157 

they first attempted modeling the data, while the instructor began link discussions when she 

gave instruction on modeling methods. 

Context Connections in the Tools-Focused Class 

When compared to students in the modeling-focused class, students in the tools-

focused class demonstrated similar conceptions of connections between the mathematics and 

science components. Students in the tools-focused class generally made infrequent links 

between the mathematics and science contexts unless prompted by the instructor. 

Context Connections When Students Applied Their Modeling Methods 

The tools-focused class was structured such that in the water flow and light intensity 

investigations, students presented their data before most analysis occurred. The structure 

provided students little opportunity to explore possible models individually or in small 

groups prior to instruction of methods of modeling. As a result, little evidence was known of 

how students reason from and about the science context when pursuing a mathematical 

model using their own methods. The evidence that was generated during the penicillin lab 

indicated that students infrequently related the science context to the mathematics. 

The penicillin laboratory differed slightly in format than the water flow and light 

intensity laboratories. As stated in an interview, the instructor intended for the penicillin lab 

to provide an assessment of how students model exponential decay data and to generate 

discussion of modeling exponential data whose asymptote differs from the x axis. Analysis 

during the penicillin laboratory offered students some opportunity to explore models on their 

own. 

Students examined the data from the penicillin lab in two parts. The first part 

required students to model the data of a "wash-out" of a single dose of penicillin. Modeled 
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by an exponential equation, the instructor was pleased that students relied on several different 

methods to demonstrate that the data was exponential. Students demonstrated their use of 

various tools including graphing the concentrations versus time on semilog graph paper, 

graphing the logarithms of concentration versus time, and graphing change in concentration 

versus concentration. The instructor was disappointed, however, that students had not 

reasoned from the context of the problem. "None of those people that came in said, 'from 

the context of the problem I know it should be exponential.'" Students reasoned from the 

graph and other mathematical modeling "tools," but they had not relied on the context to 

inform the mathematics. 

During the second portion of the penicillin lab, students were to find a difference 

equation to represent the change occurring in the concentration from one dose of penicillin to 

the next when considering five dilutions between doses. Students worked on a related lake 

pollution problem to develop methods to find a model for concentration of penicillin when 

the new doses were administered. [See Appendix D for the problem students worked in 

class.] On the lake pollution problem, students in groups spent the majority of two class 

sessions discussing and attempting methods to solve the problem. Several students had 

difficulty with the units and translating the words to equations. In addition, many students 

initially assumed that they needed to find an equation generating the amount of pollution in 

the lake after n number of days rather than the difference in amounts for a given pair of days. 

Others translated the problem differently in terms of when new pollutant was added, resulting 

in various equations to represent the situation. 

Some students were successful in finding a difference equation to model the change 

in the amount of pollution from one day to the next. One group that was successful in 
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finding a difference equation consistently relied on the science context of the problem. A 

representative of the group explained the group's solution: 

Meg: [For the equation d{t +1) = d{t) +100 - i initially thought about this as 
2000 

what pollution was leaving during - over the course of the day minus how much was 
there to start with. And we were taking our readings at the end of the day instead of 
the beginning, so this was like, how much pollution is left at the end of the day? This 
is what you started with at the beginning of the day, so that would make up the 
solution the next day, that was there. And we got the 2000 by dividing the total 
volume of the lake by the flow rate so that's how we got the numbers. So basically at 
the end of the day, at the first day you would have everything else would be 0 so you 
would have 100 kg divided by 2000 because one two-thousandths of the pollution is 
leaving that day. So this is the total that was there to begin with minus one 2000th 
the first day. And that's how much you have left over. 

T And the 2000th came from simplifying that fraction. 
Meg Yeah. 

When students relied on the context and translated how to express the science context in 

mathematical notation, students were successful in modeling the situation. 

A portion of the class searched and found the problem and solution in the textbook. 

When asked to explain where the numbers in the equation came from, some students lacked 

understanding of how the equation connected to the science context: 

10000 
[On the board. Amy wrote the equation - W ,  =100 W ,  which was 

20000000 
found in the book.] 
T: Would you explain exactly where these numbers in the equation are coming from 

then? 
Amy: All right... Umm, is the waste that comes in the chemical dumping, plus one, 

minus the W, which is the [inaudible] plus one equals the waste for that day and then 
minus the 100 is the amount of chemical added that day, and divided by the amount 
removed which is the little lake divided by the volume. And then -

T: Craig, what does mean? 
Craig: I don't know. It's like the waste plus a day. That's the way I took it. 
T: The waste plus a day. 
Craig: Yeah. Another waste, I don't know. 
[?]: The amount of waste. 
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Craig: Yeah, the amount of waste. 
[?]: From one day to the next. 
T: So the amount of waste for one day and the next day. So then you don't take the 

waste and add one, it's ±e waste on the next day. 
Amy: Yeah. 
T: Okay. 
Amy: So it's kind of like the change. 
T: And why are we looking at 10000 over 2 million, 20 million? 
Amy: Umm, this is the volume. This is the little river going through, and then this is the 

volume of the lake, the depth times the area. And so then that is how much clean 
water is in there. 

When students relied on the textbook solution, students had some difficulty relating the 

mathematics to the science contexts. Students demonstrated better understanding of the 

meaning and purpose behind the equations when they reasoned from the context and 

developed their own models rather as opposed to reading a textbook solution. 

Context Connections When Students Applied Instructor's Modeling Methods 

When students in the tools-focused class applied methods of modeling taught by the 

instructor or included in the book, students less frequently related the science and 

mathematics context unless prompted by the instructor. In the example given above, students 

were specifically asked how the context and mathematics were related. Students did not 

make immediate connections nor did the connections come easily for the students. An 

additional example, described in Chapter 4, occurred during the light intensity laboratory 

when the instructor asked students to explain how the recursion relation .82/, related 

to the light and the filters of tinted Plexiglas. Students were prompted to relate the 

mathematics and science and as illustrated, some misunderstood how the equation informed 

the science. These examples reflected the instances in which students were prompted by the 

instructor to relate the science and mathematics contexts. 
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Graphical Support of the Context Connections 

Figures 5.10, 5.11, and 5.12 graphically illustrate the interactions between the 

instructor and students on the various contexts discussed during each of the investigations. 

These graphs present the micro sources of ideas across time in the separate contexts. Figures 

5.13, 5.14, and 5.15 display whose ideas initiated the contexts discussions. The graphs 

support the observations made about the students and instructor interactions, the origins of 

the context discussions, and the degree to which each context was discussed. 

Sources of ideas in the tools-focused class. As evidenced in Figures 5.10, 5.11, and 

5.12, within each lab and within each context, students and instructor interactions were 

frequent. In the tools-focused class, the micro sources of ideas were mixed in the link and 

mathematics contexts. During the first halves of the investigations, students' ideas slightly 

outweighed the instructor's ideas during the link discussion. When link discussion occurred 

during the second halves of the investigations, more frequently, the instructor was the source 

of the ideas. During the second half of the penicillin lab students continued to be the source 

of ideas when discussing links between mathematics and science. The frequency of students 

as the source of ideas stemmed from students' high involvement in discussing, interpreting, 

and questioning other groups' methods as they presented their analysis of the lake pollution 

problem. In the mathematics contexts in all investigations, the instructor's ideas occurred 

more regularly than students' ideas and tended to dominate class discussion. 

Informed by the graphs of the phases across time (Figure 4.3,4.4), the tools-focused 

class progressively developed from the prediction and experiment phases to the analysis 

phase. Corresponding to the micro sources of ideas, most of the ideas during the prediction 

and experiment phases were contributed by students with the analysis phase dominated by 
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the instructor's ideas with much student involvement. The graphs of the phases associated 

with the graphs of the contextualized micro sources of ideas demonstrated achievement of 

the instructor's goals to develop the mathematics founded on the contexts. In the water flow 

and light intensity investigations (Figures 5.10, 5.11), once the mathematical component was 

reached, discussion more often emphasized the mathematical properties and methods of 

solving problems. In the water flow lab, discussion of the links between the mathematics and 

science did not continue throughout the entire investigation. Instead, the discussion followed 

the sequence of science, link, and mathematics. In the light intensity lab, discussion returned 

to the relationship between the science and mathematics following a period of time in which 

just the mathematics was discussed. In the penicillin lab (Figure 5.12), the links dominated 

much of the discussion throughout the entire investigation. When httle time was allowed for 

students to develop their methods for modeling the situation, the link discussion was limited 

and segmented. When students were given the opportunity to pursue models of the situation, 

the link discussion extended through most of the investigation. 

Starting sources of ideas in the tools-focused class. Figures 5.13, 5.14, and 5.15 

display the originators of the discussions across the various contexts for the tools-focused 

class. Results were mixed across the three laboratories. In both the water flow and the light 

intensity laboratories, students' ideas most often began discussion of the science context. In 

the penicillin lab, the instructor initiated the science discussion by launching the laboratory. 

Following the launch, instruction of the laboratory procedures were given. For the first half 

of the water flow investigation, students' ideas frequently began the conversations within the 

link and mathematics contexts. The instructor's ideas usually initiated discussions in the 

latter halves of the investigations with significant periods of discussion in the mathematics 
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context. In the light intensity lab, students' ideas infrequently launched conversation in the 

link context. Almost all link discussion originated with the instructor, supporting the class 

observation that students infrequently made connections between the mathematics and 

science unless prompted. 

As stated above, link discussion in the penicillin lab proceeded differently than in the 

water flow and light intensity laboratories. Figure 5.15 further supports the distinction 

between the labs as the link discussion in the second half of the jjenicillin investigation often 

originated with the students. Figures 5.12 and 5.15 suggest that when students are given the 

opportunity to develop mathematical models on their own, they more often generate ideas of 

how the science and mathematics components are linked and how one context informs the 

other context. 

Context Connections in Students' Written Work in the Tools-Focused Class 

Across each investigation students' lab reports contained discussion on the science 

and mathematics components of the investigations but contained few connections of the two 

contexts. Most often students described the experiment performed and generated the 

mathematical model for the data. With some exceptions, generally students did not describe 

how the experiment or science informed the mathematics nor how the mathematics informed 

the science. Students' lab reports for the first portion of the penicillin lab supported the 

instructor's observations that students reasoned about the mathematical equations from their 

graphs but did not reason from the context. Most students described the methods used to 

conduct the experiment but did not associate the dilution factor with a recursion relation or 

with the ratio of the "next" concentration to the "current" concentration. Students described 
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methods of finding the equations but did not relate how the mathematics and science contexts 

were connected. 

In the tools-focused class, most discussion relating the mathematics and science 

components in the water flow and light intensity investigations was prompted by the 

instructor. The penicillin lab occurred differently in that students were successful in using a 

variety of mathematical tools and methods taught in class to generate new models for the first 

component of the penicillin laboratory. For the second component of the penicillin lab, those 

students who relied on the science context to build a model were successful in their model 

construction. 

Comparisons between the Two Classes 

Students in both the tools-focused class and modeling-focused class behaved 

similarly when relating the mathematics and science contexts. In class, students infrequently 

specified the relationship between the mathematics and the science contexts without 

instructor prompts. Most link discussion on taught methods of modeling originated with the 

instructors. On lab reports, students most often explained the science context when 

describing the experiment and described their mathematical procedures. The mathematical 

procedures most often were those taught by the instructors. When elaborating on both the 

mathematics and science, students made few connections between the mathematics and 

science. 

The structural component of the classes gave reason for most differences between 

students' own initiation of link discussion. During the water flow and light intensity 

investigations in the tools-focused class, students rarely proposed models before the class 

discussed methods of modeling. During the penicillin lab in the modeling-focused class. 
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students were not given time to explore and discuss potential models in their groups. In these 

instances, students rarely relied on the context to inform and interpret implementation of 

methods. In the tools-focused class during the penicillin lab and in the modeling-focused 

class during the water flow and light intensity investigations, students developed models for 

their data prior to instruction of new methods. Students more frequently reasoned about the 

appropriateness of the model from a science perspective. Students rarely generated the exact 

form(s) of equations warranted by the science context, but they were successful in 

eliminating other choices of models by considering graphs and contextual interpretation of 

such graphs. In addition, students' inquiries of models and methods that would fit the data 

and science context were heightened. Overall, when students were given the opportunity to 

construct possible models for the data and time pressures to cover content were of less 

concern, discussion relating the science and mathematics continued consistently throughout 

the investigations. 

Symbols 

Closely associated to students' connections between the mathematics and science 

contexts was students' use of symbols. Noted in Chapter 4, the modeling-focused class 

placed emphasis on the development of symbols, particularly subscript notation, and stressed 

the use of appropriate variable names. The tools-focused class stressed the use of subscript 

notation in various methods for solving problems after the notation was introduced and 

explained in the book and by the instructor. Many students in the tools-focused class 

switched notation when working problems discussed in their lab reports. Most students in 

the modeling-focused class were consistent in their use of notation, but did not fully 

implement the heuristic to use appropriate variable names. 



169 

Symbol Use and Understanding by Tools-Focused Students 

On lab reports and during class, students in the tools-focused class demonstrated 

inconsistencies in their symbolic representations of the data and mathematical models. 

Students wrote lab reports applying the methods of modeling exponential data to population 

growth data gathered in ten minute intervals in the science laboratory. Students had worked 

with their light intensity data in class and on homework assignments. The bacterial growth 

data provided students with additional practice in applying the modeling methods. 

Many students switched notation when developing the mathematical model for the 

data. In several reports, students implemented one type of notation, such as d for time and I 

for the amount of bacteria and £/ + 1 to denote the "next" time. After using the subscript 

notation with d and I, several expressed their exponential equation in the form y = a- r^°. 

The switch in notation suggested that students had initially followed the example of 

modeling the light intensity data in class. Students then rewrote the independent variable as 

time and accounted for the ten minute interval by dividing by ten in the exponent. Students 

did not reason that the ten should also be represented in the "d+1" subscript notation. 

The instructor observed students' difficulty with the symbols and acknowledged 

during the post-interview for the light intensity laboratory how students were inconsistent in 

their use of notation: 

Notationally, they still need to work. They have a problem with "How do we handle 
notation?" I saw lab reports that said = .7 -1.67" and that wasn't what was. 
That would be /„. So just sort of thinking about what their equations means instead 
of following the model slavishly. 

Students displayed similar difficulties with notation during discussion of the lake pollution 

problem and in their penicillin lab reports. Noted previously in this chapter regarding the 
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book's solution of the lake pollution problem, one student did not understand the notation 

and Wf^i, thinking that W,+i was "waste plus a day" rather than the amount of waste on the 

next day. 

Students in the tools-focused class demonstrated inconsistencies in applying the 

subscript notation in their light intensity lab reports, penicillin lab reports, and lake pollution 

problem. Students' work illustrated that they acted at an action or process level of 

conception when applying the methods of modeling. 

Svmbol Use and Understanding bv Modeling-Focused Students 

Students in the modeling focused class were more consistent in their use of symbols 

when modeling data. Most students correctly modeled their data for each of the three 

investigations: water flow, light intensity, and the penicillin labs. For the most part, students 

did not mix variables to represent the same concept. For example, on students' light intensity 

lab reports, most developed a recursion relation of the form /j+j = r • /j from the linear 

equation for the (average) rates of change versus intensity graph. They then generated an 

exponential equation of the form /</ = r'' • Iq through induction. Much of the students' 

success on the lab reports was attributed to the multiple problems worked in class and on 

homework assignments which were similar in the modeling process. 

Additional evidence in the course demonstrated that students had not objectified the 

modeling process as they did not fully master the "use of appropriate variables" when 

modeling data. On a problem assigned in class, students were to model data of a population 

of bacteria with an exponential equation using the discrete methods developed in class. The 

difference between this data set and previous data sets modeled by exponential equations was 
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the readings were taken every 16 minutes rather than each minute. Students correctly 

calculated rates of change, but committed slight, "fatal" errors when they expressed the 

recursion relation and inductively developed the exponential equation. A minority of 

students presented correct solutions using proper subscript notation to represent the 16 

minute intervals. The majority of the class failed to continue to represent the 16 minute 

intervals when applying induction. One group of students presented the following solution. 

Other groups presented similar solutions. 

Rate = .0398(D) 

Rate = ~ ^ .0398(D) 
16 
=-6368(0) 

^d+\6 - -6368(D^) + Dj 

0^+16 =1-6368(D^) 

Do = .022 

Di=1.6368(£\)) 

£>2 = 1.6368(Z),) = 1.6368^(.022) 

D„ = 1.6368" (Db) 

Students' work suggested a process conception of modeling as they generally 

understood the modeling procedure used previously and did not require external prompts. 

Students lacked an object conception of modeling and the use of appropriate variables. In the 

students' work, the D represented population density while d was assumed to represent time, 

the independent variable. Students replicated the implementation of the variable, d, which 

had been used as the independent variable in the light intensity investigation. The students 

did not continue to use appropriate variable names through the induction process with the use 

of £>i rather than Djg for the first implementation of the recursion relation. As a result, the 

exponential equation did not account for the 16 minute intervals. A switch in notation from d 
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to n was displayed as well with no reason given for the change. The switch did occur in both 

the subscript and superscript, so the inconsistency from dion was minor. 

Graphical Evidence of the Use of Symbols 

Figures 5.4 - 5.15 indicate the micro sources of ideas and whose ideas began the 

discussions within the various contexts. Examination of these graphs in terms of the 

mathematics context sheds understanding on the observations made in the classes. Figures 

5.4, 5.5, 5.6, 5.10, 5.11 and 5.12 demonstrate that students and instructor in both classes 

engaged in frequent interactions about the mathematics. The lack of solid blocks of marks in 

either the instructor or students regions suggests that no one party in either class completely 

dominated discussion about the mathematics. Thus, students were highly engaged in the 

conversation surrounding the mathematics including the use of symbols in modeling data. 

Figures 5.7, 5.8, 5.9, 5.13, 5.14, and 5.15 further inform the mathematics discussion. 

These graphs suggest whose ideas launched discussion within a given context. In each of the 

laboratories in both classes except the light intensity lab in the tools-focused class (Figure 

5.14), the graphs indicate that math discussion most often began with the instructor's ideas in 

the second halves of the investigations. Most discussion about the methods students were to 

apply to the data in the lab reports occurred during the latter halves of the investigations. 

These graphs suggest that instructors' ideas began the discussion about the methods and 

symbols to be used in the reports. 

Figure 5.14 displays the origin of the micro sources of ideas for the light intensity lab 

in the tools-focused class. Marked in the last third of the graph the math context has solid 

blocks suggesting that students' ideas began the mathematics discussion on three significant 

occasions. Examination of the transcripts provided the reference of these blocks and the 
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ideas prompting the switches from a previous context. The ideas being discussed during this 

time marked by the blocks did not entail subscript notation as the discussion of subscript 

notation occurred earlier in the laboratory. Instead, these three blocks referred to three 

separate issues surrounding exponential equations. The issues included a student's idea of 

the form of an exponential equation, a second student's request for help from the instructor, 

and a third student's representation of the exponent for data whose intervals are greater than 

one. 

Class observations indicate that some differences occurred between classes in the use 

of symbols. Students in the tools-focused class were inconsistent in their use of notation 

when modeling data. Smdents in the modeling-focused class remained consistent in their use 

of notation when modeling data, but did not fiilly master the use of appropriate variable 

names. Most students in both classes did not objectify the use of symbols when modeling 

data but remained on an action or process level conception. 

The graphs of the micros sources of ideas across contexts demonstrated that students 

in both classes and in each laboratory were highly engaged in the mathematics discussion. 

The graphs of the starts of the micro sources of ideas illustrated that much of the discussion 

on the methods the instructors desired students to use began with the instructors. As a result, 

symbolic discussion most likely began with the instructors and influenced students' work on 

lab reports. 

Reflection 

Reflection in the classes occurred in small degrees on a structural level and on levels 

related to contexts and mathematical procedures. Much informed by the observations of the 

connections between contexts and the symbol use in the classes, reflection was weak in both 
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classes. In both classes the periods of reflection concerning the methods taught to students 

were most often prompted and dominated by the instructors' ideas. 

Reflection in the Modeling-Focused Class 

In the modeling focused class, most periods of reflection were structured into the 

inquiry development process. As described in chapter 4, after students presented their data 

and methods of analysis, the class reflected on the experiment(s) and analyses. New 

questions about the mathematics were generated. The reflection which occurred at these 

times of the investigations were more signiflcant than at other periods of reflection in the 

investigations. Discussion during the structured reflection phases was usually dominated by 

students' ideas. 

Figures 5.16, 5.17, and 5.18 display the graphs of the phases of inquiry with the micro 

sources of ideas for the three investigations. In Figures 5.16 and 5.17, corresponding to the 

water flow and light intensity investigations, the segments recorded in the reflection phases 

in the first halves of the investigations refer to the reflection which occurred after student 

presentations. In the graph associated with the water flow laboratory, the last portions in the 

reflection phase also refer to students' questions which followed additional presentations 

relating rates of change and heights. During the segments in which students reflected on 

what was presented, students' ideas dominated the discussion. The other periods of 

reflection, not directly related to issues stemming from students' presentations, were 

frequented more often by the instructor's ideas. These periods of reflection most often 

pertained to the methods of modeling taught by the instructor. In the penicillin lab, no 

separate stages of reflection occurred. As described previously, the penicillin lab transpired 
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over segmented class sessions toward the end of the semester. Students were not given the 

opportunity to present group methods of modeling data nor reflect on methods developed. 

Who started the reflection? As stated previously, students were prompted to connect 

the mathematics and science contexts when the instructors' methods were applied. Figures 

5.19 and 5.20 generate further support that when instmctor's methods were taught during the 

second halves of the investigations, the reflection which occurred was more often prompted 

by the instructor. 

The graphs illustrate that reflection in the modeling-focused class was weak when 

related to the instructed methods of modeling. Stronger periods of student-generated 

reflection periods occurred following students' presentations of their analysis methods. 
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These reflection periods were structured into the class. Time pressures likely influenced the 

existence of reflection periods in the investigation, particularly when the need to cover 

additional content influenced the class procedures. 

Reflection in the Tools-Focused Class 

Figures 5.21, 5.22, and 5.23 give the graphs of the phases of inquiry with the micro 

sources of ideas for the tools-focused class. The infrequency of segments by both students 

and instructors support the observation that periods of reflection were not structured into the 

tools-focused class. The reflection which did occur more often was generated by the 

instructor. Like the modeling-focused class. Figure 5.23 illustrates that no separate reflection 

phase occurred in the tools-focused class during the penicillin lab. Again, time pressures and 

needs to cover specific topics likely contributed to the lack of reflection. 
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Who started reflection? Based on the graphs in Figures 5.24 and 5.25, the periods of 

reflection in the tools-focused class were rarely initiated by students' ideas. Given the few 

number of reflection periods, however, more information about students' reflection was 

needed to support the observations. Students' reflections on the connections between the 

mathematics and science contexts and the use of the symbols, as discussed previously, 

suggested that students needed to be prompted to reflect on the procedures taught by the 

instructor. 

Significant periods of reflection in both the tools-focused class and the modeling-

focused class were weak. The modeling-focused class had slightly more periods of reflection 

with students' contributions structured as part of the inquiry process. When the reflection 

focused on the methods taught by the instructor, students' ideas less frequently began the 

reflective discussion. The tools-focused class had periods of reflection though reflection was 

not specifically mentioned as a goal by the instructor prior to the laboratories. Supported by 

the observations in the context and symbol discussions in both classes, students' reflections 

were few unless prompted by the instructor. 

Student Interviews 

Interviews with six smdents from the modeling-focused class at the end of the 

semester gave further support of the observations recorded previously in this chapter. 

Provided wi± a context and data (Appendix B.), students were to demonstrate and share their 

thinking as they modeled the data using methods similar to those used in class. Results from 

the interviews illustrated that most students had achieved a process rather than object 

conception of mathematical modeling. One of the six students correctly found a 

mathematical model for the temperature data. The other five students committed various 
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errors in the representation of the context. The students often lacked the ability to 

consistently use appropriate variables and often did not fully rely on the science context to 

reason about the mathematics. 

Interview with Brett 

Brett found a mathematical model for the data of a hot liquid cooling over time. 

During the interview, he often stopped his work and asked, "What am I doing?" He reflected 

on his work, reminded himself of the context, and gauged his performance in light of his 

goal. Brett relied little on specific modeling methods developed in class. He depended on 

the graphs of the data, rates of change, the science context, and different regression options 

on his calculator. 

Brett pursued different "wild goose chases" during the interview. He began by "zero-

zeroing" the data, meaning he wanted the data to begin at (0,0) and increase rather than begin 

at (0, 59.50) and decrease. Though the graph was not what he expected, he realized the 

"zero-zeroed" graph made sense in terms of what he had predicted about the liquid cooling to 

room temperature. He estimated the rates of change and recognized that the rates were 

nonlinear with time. Calculating the rates of change of the rates of change, he indicated that 

the new rates were again nonlinear with time. His calculations supported his hypothesis that 

the data was exponential. After several "wild goose chases" Brett shifted the temperature 

values so that they approached zero rather than room temperature. He applied exponential 

regression to generate a model for the translated values and shifted the graph up to produce a 

model for the original temperature data. After checking his work by testing a time value, he 

was confident that he had found an appropriate model for the data. 
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Brett successfully relied on the context to reason about the temperatures and the rates 

at which the liquid cooled. He attempted several different methods and consistently gauged 

his performance in light of his goal to find a model. While Brett did not rely on specific 

modeling techniques taught in class, he had objectified modeling in the sense of monitoring 

his progress, relying on the context, and interpreting and testing his results. 

Interview with Jewel 

Five other students demonstrated during the interviews that they had not fully 

objectified mathematical modeling into their conceptual schemas. Most students 

hypothesized that the data would be exponential since the temperatures would cool until they 

reached room temperature. After the hypothesis, students seldom referred to the science 

context. Instead, they depended on their experiences and class notes of the instructed 

procedures to find a model of the data. These five students stated their desire to linearize the 

data. They resorted to combinations of methods used in class and failed to reason about their 

methods in light of the context. Students frequently used inappropriate variable names 

causing additional problems in their modeling attempts. Since in-depth analysis of individual 

student's modeling techniques was not a primary goal of this research study, the work of only 

one of the five remaining students will be described here. Each of the five students pursued 

slightly different avenues in modeling the data, and Jewel's techniques fairly represent the 

major issues arising in the other interviews. 

Jewel failed to reason about the mathematics from the science context and 

inappropriately represented the relationships she graphed. Jewel calculated the rates and 

examined the rates versus time graph. Since the temperatures went down, the negative rate 

values made sense. To linearize the data. Jewel graphed the (average) rates versus time-
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squared. Though the graph was not linear, she knew she wanted a recursive equation to 

evolve from a rate equation. She used linear regression to produce an equation for rate 

versus time. She ignored the y-intercept and replaced the x and y variables with Tenij and 

—1£^ respectively. Jewel's representation of the rate, change in temperature over 

change in time, was off by a negative sign, and the x was replaced by a temperature variable 

rather than the time variable. Jewel used her equation —Temj _ to 

develop the recursion relation rem,_6 = 1.2887e/n,. 

Jewel occasionally paused to consider her work, but did not fiilly assess her methods 

and the relation to the science context. She recognized that her work did not tell her if the 

data was exponential: "It just tells me that if you know this one you can find that 

temperature....! can find the exponential though." Working with the equation and assuming 

that the subscript on the left of the equation was /+6, she inductively generated the 

exponential equation Tn^ = 1.288-^(59.50), keeping the representation for the six minute 

time intervals. Jewel numerically checked her equation against her data and realized that her 

work was incorrect. The instructor indicated to her that she needed to examine the graph of 

the rates versus temperatures rather than the graph of rates versus time. She graphed the 

rates versus temperatures, saw a line, and applied linear regression to produce the linear 

relationship y = -.0656x +1.605. She again ignored the y-intercept and developed an 

exponential equation Temp = .61^(59.50). The exponential equation took into account the 

six minute intervals, but overlooked the effect of the room temperature on the y-intercept. 
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Graphical Support of Interview Observations 

Figures 5.26 and 5.27 display the graphs of the phases of inquiry for the interviews 

for Brett and Jewel. Students proceeded through each of the phases of inquiry. Jewel 

stopped and considered her mathematics as indicated in the reflection phase. Figures 5.28 

and 5.29 indicate students' uses of the context. These graphs may be more informative of 

students' success in solving the problem. Brett regularly linked his work with the context as 

illustrated in Figure 5.28. These links were not indicated in the reflection phase of inquiry in 

Figure 5.26. Jewel linked the science and mathematics occasionally, but less frequently than 

Brett. Figures 5.27 and 5.29 also demonstrate greater instructor influence in Jewel's 

interview when Jewel did not know how to continue or correct the work she had done. 

The student interviews supported the observations from the class transcripts and 

students' lab reports for the modeling-focused class. Few students reflected on the 

relationship linking the mathematics and science contexts unless prompted by the instructor. 

Few students consistently applied the use of appropriate variable names. Students were more 

successful in modeling the data when they regularly linked the science and mathematics 

contexts. In general, few students objectified the modeling conception. 

Conclusions 

Graphical evidence and interviews with modeling-focused students supported the 

observations of the two classes. The differences that existed within and across the sections of 

Math 181 may be attributed to the structural components of the laboratories. In each class, 

the emphasis placed on the process of inquiry varied with the laboratories and influenced the 

classroom discussion and smdents' interactions with the mathematical modeling. 
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The party which posed the question(s) for investigation coupled with the equipment 

and procedures used in the laboratories affected students' interpretations of the question(s) 

being addressed. Students in the modeling-focused class pursued and achieved agreement in 

the questions under investigation. The tools-focused class investigated questions posed by 

the instructor. During the water flow investigation in the tools-focused class, the equipment 

promoted a variety of means to investigate the instructor's question and address other 

questions raised by smdents. The multiple interpretations of the questions led to varied 

results on students' lab reports when applying the methods of modeling. In the light intensity 

and penicillin labs the equipment and procedures limited the pursuit of multiple questions, 

helping to maintain agreement on the questions addressed. 

Pressures to cover specific topics in a limited amount of time influenced the types of 

inquiry which occurred. Coverage seemed to be a concern during the penicillin lab in the 

modeling-focused class and during the water flow and light intensity investigations in the 

tools-focused class. During these times, link discussion did not occur consistently 

throughout the entire lab. When the coverage of specific topics was less of a concern, link 

discussion occurred throughout the entire lab. This was seen during the water flow and light 

intensity investigations in the modeling-focused class and during the penicillin lab in the 

tools-focused class. 

In both classes, when students had the opportunity to pursue methods of modeling 

data before new, instructed methods were given, they more frequently referred to the science 

context to inform the mathematics. When applying new and instructed modeling methods, 

students rarely related the science and mathematics contexts unless prompted by the 

instructor. The effects were evident in students' use of notation. When time was devoted to 
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the development and meaning of the notations students were more consistent in their use and 

interpretation of the notation. In the tools-focused class, students were inconsistent in their 

use of subscript notation to represent the concepts. Students in the modeling-focused class 

were more consistent in their use of variables within a given problem, though they did not to 

regularly attend to the use of appropriate variable names. 

In both classes, periods of discussion were dominated by different parties in light of 

when they occurred. Students' ideas regularly dominated and initiated discussion during the 

first halves of the investigations as the first cycle of inquiry occurred. During the second 

halves of the investigations, instructors' ideas more often initiated discussion as instruction 

of new methods of modeling and other mathematics were given. Periods of reflection were 

rather weak in both halves of the investigations and in both classes. The reflection which did 

occur was generally structured into the lab format. 
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CHAPTER 6 

CONCLUSIONS 

This study sought to explore and represent the implementation of inquiry in two 

mathematics classroom. Chapters 4 and 5 described the enviroimients and the effects on 

students' modeling skills. Provided below is a summary of the findings, implications for 

future pursuits of inquiry in collegiate mathematics classrooms, and implications for future 

research studies examining issues of representing inquiry in the classroom. 

Was Inquiry Achieved in Both Classes? Implications for Future Pursuits of Inquiry 

This study adds to and extends the current body of knowledge concerning inquiry in 

collegiate mathematics education. Studies examining inquiry (Roth, 1995; Galbraith & 

Clatworthy, 1990) allowed for and encouraged students to explore open-ended questions in 

open-inquiry environments. The instructors of the two classes in this study set goals to cover 

specific content areas which did not allow for full inquiry investigation of all the subject 

matter to be covered. Both classes structured the kinds of questions to be investigated with 

limitations placed by context, equipment, and time. In structuring the classes, some 

components of inquiry were more frequent than others such as the structural stages of inquiry 

and student and teacher interaction in all contexts in both classes. Other components such as 

reflection and consistent linking of the science and mathematics contexts were less frequent 

in both classes across all investigations. The pursuit and indication of inquiry in both classes 

provide implications for future pursuits of inquiry in collegiate mathematics classrooms and 

future studies of inquiry. 
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Cycles of Inquiry 

On a structural level, inquiry occurred in cyclic processes in both classes much as 

described by White and Fredericksen (1998). Students made predictions about a context, 

collected data, analyzed the data, generalized the results, and reflected on the processes. In 

White and Fredericksen's study, as students repeated the cycles of inquiry, students pursued 

deeper content questions and were less aided by ±e instructor as scaffolding was removed. 

In both classes in this study, multiple cycles of inquiry were pursued with deeper 

mathematical questions addressed. However, "scaffolding" frequently increased rather than 

decreased in the second and third cycles. This fact was evident in the graphs of the micro 

sources of ideas and the starts of the micro sources of ideas (Figures 5.16-5.25). The 

instructors' ideas were more frequent and often started the sequences of discussion during the 

second halves of the investigations in the analysis phases. 

The greatest factor for the increased influence by the instructors in the development 

of the concepts in the second halves of the investigation was time constraints. Both 

instructors acknowledged the need to cover planned topics within the semester long time 

period since the course was a prerequisite for the subsequent calculus course and other 

science courses within the students' majors. The instmctor of the tools-focused class 

admitted the restrictions due to time: "I can afford a class period. I can't afford two class 

periods to work on experiment protocol." The instructor of the modeling-focused class 

agreed stating, "We don't have much time to keep going back and refining like scientists 

do....Sometimes the semester just doesn't seem long enough." The instructors wanted 

students to pursue their questions and experiments in the multiple cycles, but the time 
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restraints limited the amount of time students could investigate questions on their own 

without some instructor input of additional methods and mathematics students were to learn. 

Implications for future studies of inquiry in collegiate mathematics involve time and 

curricular issues. As indicated in the study by Huntley, Rasmussen, Villarubi, Sangtong, and 

Fey (2000), students acquire different types of mathematical skills based on the methods of 

instruction. In particular, students perform better computationally when instruction 

emphasizes symbol-manipulation routines. Those students who are regularly asked to 

mathematically model and interpret their results in inquiry oriented environments develop 

greater understanding of those skills and processes. Collegiate mathematics educators must 

decide as a profession which types of skills, whether inquiry-oriented or computational, are a 

priority for their students and detemiine the methods to assess and measure students' 

acquisition of the desired skills. 

If pursuing an inquiry environment, an instructor must decide the level of 

involvement or the amount of scaffolding to be structured into the inquiry cycles. If students 

are having their first experiences in an inquiry oriented environment and the course is a 

single semester, some scaffolding of the inquiry process will likely need to be maintained for 

students for the duration of the course. If the course continues into an additional semester, 

the scaffolding may be removed depending on students' and instructor's success in pursuing 

the curricular items needed. 

Posing and Interpreting the Question under Investigation 

In inquiry environments, negotiation of the goal of the task should be understood by 

students and instructor. If the investigation is to be open-ended, then students should 

understand what guidelines will be used to judge success as they run with their ideas. If the 
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instructor has targeted goals for the investigation, formulation of the goals can occur as a 

class and agreement of the goals can be carried through the investigation. Techniques which 

help to focus students' questions and maintain agreement include those recommended by 

Tanner and Jones (1994) in which students can be prepared to present results to address a 

particular question. 

For inquiry to occur, the students do not need to pose all the questions for 

investigation, but agreement of interpretation of the question(s) and of the tasks for 

investigation should be pursued (NRC, 2000; Hiebertet al., 1997; Roth, 1995; Borasi, 1992). 

The two classes initially showed differences in student and instructor agreement of the 

interpretation of the problems pursued. Yackel's (1995) and Christiansen's (1997) research 

indicated that breakdown of interactions occur when the different participants have different 

interpretations of the task or of what constitutes mathematics. In the tools-focused class, the 

different interpretations in the goal of the water flow investigation between students and 

instructor led to misapplication of the instructed methods of analysis in students' lab reports. 

Students misaligned the analysis for their data with their goals. Subsequent investigations in 

the tools-focused class and investigations in the modeling-focused class demonstrated the 

agreement between students and instructors on the interpretation of the goal(s) of the 

investigations. 

Reasons for agreement or disagreement in the interpreted goals for the investigations 

may be attributed to factors described in prior research studies. As Borasi (1992) 

recommended, the modeling-focused class, negotiated the direction of inquiry and the 

monitoring and evaluation of inquiry. At the launch of each investigation in the modeling-

focused class, the students posed and agreed on the question being pursued. In addition, the 
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students were to be prepared to present their data and analysis, giving explanation and 

justification for their work and conclusions. For example, in the water flow investigation, 

students were to be prepared to predict a flow rate given a height or volume of water. 

Students anticipated questions and were prepared to address the questions as encouraged in 

the Tanner and Jones (1994) study. Applying the strategy for students to be prepared to 

present coupled with students' generation of new questions promoted agreement of the 

questions, focused the task for students, and caused specific issues related to the course 

content to be raised. 

Reasons for agreement or disagreement in the interpreted goals for the investigations 

in the tools-focused class are less clear. None of the strategies given by Borasi (1992) and 

Tanner and Jones (1994), were direcdy applied in the investigations for the tools-focused 

class. Yet agreement in interpretation of the goals for the light intensity and penicillin labs 

was attained between students and instructor. The agreement was noted as the students 

recorded their goals in their lab reports and demonstrated their abilities to model the 

exponential data. The students' methods agreed with their goals to find equations which 

represented the data and the characteristics of the lab procedures. One possible reason for 

agreement include the students' familiarity with the class procedures and instructor. The 

light intensity and penicillin labs occurred at eight and twelve weeks of the semester, 

respectively. By this time, students were more familiar with the process of conducting 

experiments and writing the lab reports. The water flow investigation began at the end of the 

first week of the semester. Students were adjusting to the class procedures. 

A second possible reason for agreement on the interpretation of the goals for the light 

intensity and penicillin labs was the limitations placed by laboratory equipment. In these two 
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investigations, the equipment allowed for little variation in the kinds of data gathered. In the 

light intensity lab, the procedures and equipment used to gather depth and intensity readings 

were demonstrated. In the penicillin lab, descriptions of the conductivity probes and their 

use to collect conductivity readings at each step were given. During the water flow 

investigation, students used the tubes, water, and stop watches to gather data relating height 

and time variables. Different groups used the same equipment and gathered different types 

of data. Some gathered the time to drain entire heights of water. Others collected the height 

paired with the time to drain a small amount of water, such as five centimeters, at that height. 

Some paired time values which increased in equal increments with the heights of the draining 

water as the times were announced. The variations in the kinds of data collected in the water 

flow investigation likely contributed to the different interpretations of the questions under 

investigation and the kinds of analysis to include in the lab reports. 

In general, agreement of the intents and tasks of the investigation whether open-ended 

or focused needs to be attained in inquiry environments. When the agreement is promoted 

due to the limited variability of the kinds of data allowed by the equipment, scaffolding by 

the instructor is increased thereby limiting the openness of inquiry. When the agreement of 

the question or task is not achieved, misalignment of instructor and student goals promotes 

confusion and misunderstanding of application of the modeling methods. To encourage 

agreement of the questions under investigation and of the tasks while maintaining an open-

inquiry environment, strategies may be applied to help students to focus on particular issues 

in their investigations. Strategies similar to those given by Tanner and Jones (1994), in 

which students anticipate particular questions when presenting their analysis and results, 

advance both the goals of inquiry and the curricular goals set by the instructor. 
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Running with Students' Ideas 

Arcavi and Schoenfeld (1992) encouraged instructors to pursue the approach of 

"running with students' ideas" in mathematics problem solving sessions. Interpreted as a 

component of inquiry, the graphs of the micro source starts of ideas (Figures 5.7, 5.8, 5.9, 

5.13, 5.14, & 5.15) illustrate a degree to which students' ideas were pursued. In both classes 

instructors ran with students' ideas in varying manners across the laboratories. In the 

modeling-focused class, students' ideas consistently and frequently started discussion in the 

science, link, and mathematics contexts and across the various phases for the first halves of 

the investigations. (See Figures 5.7, 5.8, & 5.9.) During the second halves of the 

investigations, the instructor's ideas more frequently launched discussion in a phase or 

context. In the multiple cycles of inquiry, the instructor may have been willing to run with 

students' ideas, but the class understood that new modeling methods were being presented, 

so students' likely felt less freedom to offer ideas. 

In the tools-focused class, the same measure shows mixed results. During the first 

half of the water flow investigation (Figure 5.13), students' ideas often started discussions in 

each of the contexts. For the second half, the instructor's ideas regularly started the 

discussions. The graph suggests, like the modeling-focused class, the class ran with the 

students' ideas during the first half of the investigation. In the light intensity investigation 

(Figure 5.14), the graph suggests that the instructor's ideas initiated the discussion across 

most of the lab suggesting that less emphasis was placed on running with students' ideas. 

During the penicillin laboratory, students' ideas often initiated discussion for most of the 

laboratory including the discussion concerning the links in the second half of the laboratory. 
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In both classes, results were mixed when considering the approach to run with 

students' ideas. In most investigations, the class frequently ran with students' ideas during 

the initial stages of the investigations with greater instructor initiation during the latter parts. 

When the first portion of the laboratory was specifically set aside for students to develop and 

run with their ideas, as in the water flow and light intensity labs for the modeling-focused 

class and in the water flow and penicillin labs in the tools-focused class, students remained 

focused on the task while running with their ideas. Implementing techniques into second and 

third cycles of inquiry in which students can remain focused on the mathematics while 

resolving issues of their ideas with others' ideas promotes the richness of mathematics to 

evolve as in Roth's (1995) physics classroom. Additional study should examine methods to 

accomplish continual running with students' ideas while yet accomplishing curricular 

objectives. 

Context 

The role of context was an influencing factor in bo± classroom environments. In 

both classrooms, the role of the science and link contexts was associated with the time 

constraints placed on the laboratories. During the water flow and light intensity 

investigations in the tools-focused class (Figures 5.10 & 5.11) and during the penicillin lab 

(Figure 5.6) in the modeling-focused class, the graphs of the contexts over time indicated a 

sequence of science to link to mathematics discussion. In other words, when time spent on 

the laboratory seemed to be limited, the inquiry process seemed to be limited. Once the 

mathematics context was attained in discussion, little science or links between the 

mathematics and science existed. During the light intensity lab in the tools-focused class, the 

class did return to a period of link discussion following a period of sole mathematics 
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discussion (Figure 5.11). During the penicillin lab in the tools-focused class and during the 

water flow and light intensity labs in the modeling-focused class, discussion of the links 

between science and mathematics tended to occur regularly and consistently throughout the 

laboratory. During these labs, students were given more opportunity to pursue their own 

methods as the instructors seemed less stressed for time. While modeling the data from these 

labs, students relied on the context to inform the modeling process. 

Overall, this study adds to the body of literature concerning students' difficulty in 

relating mathematics with science or real world contexts (Rasmussen & King, 2000; White & 

Mitchelmore, 1996; Stricidand, 1999). The role of the context influenced students' linking of 

the science and mathematics. When the context was used as a tool to build the mathematics 

ideas, students less frequently relied on the context to give direction to their mathematical 

procedures and less frequently reflected back on their procedures in light of the science 

context. When the context was incorporated to direct the mathematics, students more often 

used symbols which reflected the context, and interpreted some of the mathematics in light of 

the science context. 

Evaluation of the transcripts from the student interviews suggest the kinds of 

contextual qualities which may be preferred in an inquiry environment incorporating 

mathematical modeling. The graph of the phase with micro source of ideas for Jewel's 

interview (Figure 5.27) indicated that she periodically reflected on the mathematics she 

performed. The level of reflection lacked depth as Jewel inconsistently linked the science 

and mathematics contexts, and Jewel was unsuccessful in solving the problem (See Figure 

5.29.). Examination of Brett's graphs illustrate no periods of reflection until the end of the 

interview (Figure 5.26). However, regular and consistent links were made between the 
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mathematics and science contexts as portrayed in Figure 5.28. Brett successfully solved the 

modeling task. Based on the student interviews, when mathematically modeling data, regular 

and consistent periods of relating the mathematics and science contexts may be of greater 

benefit than separate and specific periods of reflection. 

One question to pursue in future studies is "Can the collegiate mathematics classroom 

attain regular and consistent links between the science and mathematics contexts with the 

students as the micro sources of the link ideas?" If the answer is yes, then the natiu-al and 

more important follow-up question is "Are the students in a 'linking,' inquiry environment 

successful in the mathematical modeling of data?" 

The graph of the context with micro sources of ideas for the light intensity lab in the 

modeling-focused class (Figure 5.5) and the graph for the penicillin lab in the tools-focused 

class (Figure 5.12) reflected classrooms which were close to achieving regular and consistent 

links with the students as the sources of ideas. Figure 5.8 with the micro source starts and 

contexts for the light intensity lab in the mode ling-focused class suggests that the students' 

link ideas followed the instructor's link ideas in the latter third of the investigation. The 

instructor's link ideas prompted the students' link ideas, calling into question the accuracy in 

comparing the graphs to Figure 5.28. Figure 5.15 with the micro source starts and contexts 

for the penicillin lab in the tools-focused class suggests that the links in the latter half of the 

investigation were initiated by the students with some instructor initiation. Though the graph 

indicates student initiation, comparing student links in this penicillin lab with Brett's links in 

the student interview (Figure 5.28) may also be questionable as many students were unable to 

create a model for the lake pollution problem while Brett was successful in finding a model 

for the temperature data. 
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Class observations. Figures 5.5, 5.8, 5.12, 5.15, and 5.28, and results of students' lab 

reports highlight the need for mathematics classrooms to pursue environments incorporating 

the regular and consistent occurrence of students' link ideas, students' link ideas which 

launch discussion, and many or all students interacting and generating the link ideas. 

Consistent linking of contexts influences the appropriate use of symbols in modeling data 

and solving problems, in general. Consistent link is not enough as evidenced by Figure 5.15 

and the need for more success in students' modeling abilities. Additional research is needed 

to identify codes and graphs which suggest when success in modeling and in relating the 

mathematics and science contexts was achieved. 

Implications for Future Research 

One intention of this study was to produce means to quantitatively represent inquiry 

in the mathematics classroom to illustrate when inquiry does and does not occur. The 

measures presented in this study portray images of the inquiry environments. Some existing 

characteristics of the environment remain blurred. Future studies intending to examine 

inquiry in the mathematics classroom need to focus on those traits not fully clarified in this 

study to produce a clearer reflection of the inquiry environment. 

Attributes Portraved with Clarity 

The codes and graphs produced in this study were successful in isolating and 

reflecting the phase, context, micro sources of ideas, the starts of those ideas, and the 

interactions between instructors and students observed in the two classes. Future studies 

intending to represent the degree of inquiry in the classroom in light of these components 

would do well to continue in their use. 
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Phases of Inquiry 

For both classes, coding for the phase of inquiry proved useful in illustrating the 

structural components of the class. Graphs of the phases over time revealed that multiple 

cycles of inquiry were attained with greater emphasis placed on the prediction and 

experiment phases during the first cycle and on the analysis phase during the additional 

cycle(s). In both classes, the graphs demonstrated that periods of reflection were infrequent 

unless structured into the course. The graphs portrayed support of the instructors' goals to 

pursue inquiry with additional cycles focused more on the analytical and mathematical 

components of the investigations. 

When the phases were graphed with the micro sources of ideas, students' influences 

were identified in the inquiry process. The codes and graphs depicted the students' high 

engagement during the first half of the investigation as their ideas frequented the prediction, 

experiment, and analysis phases. The instructors' ideas were more frequent during the 

second halves of the investigations. The micro sources of ideas paired with the phases also 

indicated how the reflection phase was frequented more by instructors' ideas excluding the 

periods in which reflection was structured into the process. 

Context 

Coding to identify the context of the discussion proved useful in classifying the 

emphases of mathematics, science, and the links in class discussion. The classiHcations 

distinguished differences in the classes regarding the regularity and consistency in 

recognizing the relationships between the science and mathematics. The distinctions 

between the two classes regarding the role of context and the times at which the emphases 

occurred aided in the interpretation of students' in-class and written responses surrounding 
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symbolic notation. The role of context gave indication of a form of reflection or 

metacognition which occurred separate from the reflection phase as connections of how the 

science informed the mathematical procedures were made. 

Associating micro sources of ideas with the context informed whose ideas frequented 

each context. The graphs illustrated high engagement of students in the class when 

discussing the various contexts in both classes. Implementing the starts of the micro sources 

of ideas suggested whose ideas launched discussion in each of the context and aided in 

understanding when the instructors potentially prompted discussion within a given context. 

In this study the graphs of the interactions between context and micro source and 

between phase and micro source illustrated the emphases placed on context, the participants 

which most influenced the various phases or contexts, and the structural components of the 

classes. Incorporating each of phase, context, and micro source of idea gives additional 

illustration of the same influences described in Chapters 4 and 5 with portrayal of the context 

pursued within each phase. Figures 6.1 and 6.2 give the graphs of the three interactions for 

the light intensity investigations for both the tools-focused class and the modeling-focused 

class. These figures portray the same types of information as given in Figures 5.11 and 5.22 

for the tools-focused class and Figures 5.5 and 5.17 for the modeling-focused class with the 

additional component of the context across the phases. 

Figures 6.1 and 6.2 demonstrate which contextual discussion dominated the different 

phases of inquiry with the sources of ideas within the contexts and phases. To be expected, 

the science and link contexts dominate the prediction and experiment phases while the 

mathematics and links dominate the analysis and reflection phases. Also evident is the 

emphasis placed on the mathematics and links for each phase during the second cycle of 
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inquiry. Relatively little link discussion occurred in the reflection phases of either class, 

justifying the use of link as a separate portrayal of another type of reflection which occurred 

in the classes. 

Overall, the codes and graphs of phase, context, and micro sources of ideas clarify the 

structural and procedural emphases of the inquiry environment. Coding for these three 

components in future studies is recommended. 

Attributes Not Portrayed with Clarity 

The codes and resulting graphs in this study did not fiilly capture some traits of the 

classroom. Particularly noticeable were those instances in which the transcripts and 

classroom observations suggested cognitive conflict, disagreement in interpretations, or 

general confusion in the classroom. Periods of dissonance and agreement or resonance of 

other periods observed in the classroom, were not often distinguishable on the graphs 

produced using the existing scales. Particular examples given in previous chapters were 

items in which new language or symbols were introduced before students were structurally 

prepared to use the language or symbols. Additional examples were the agreement in 

interpretations of questions under investigation or of mathematical arguments given for the 

class. 

The scales for micro sources of ideas and macro sources of ideas were intended to 

capture evidence suggesting the compatibility of resonating conceptual schemas. 

Observations obtained by the scale for the micro source of idea were those identifying the 

origin of the idea on a fairly narrow level of conversation. Observations detected by the 

macro source of idea were broad as the instructors were frequently the originators of most of 

the overriding ideas as the instructors often set in motion the context of the investigations and 
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mathematical methods. In the current forms, the observations captured by the line-by-line 

coding for the sources of idea lacked clarity in distinguishing the dissonance or resonance 

which occurred in the classroom. Factors in addition to the sources of idea should be 

considered when identifying resonance and dissonance. 

Possible factors to consider when attempting to identify resonance or dissonance in 

participants' conceptions being discussed include language source, symbol source, and 

interpretation factor. These factors are discussed with possible methods to implement them 

into future studies. 

Language Use 

Coding for language use and shared understanding on an interaction level would 

identify the type of terminology being used or referred. Classification for whether students 

and instructor agreed in the use and understanding of the terms could suggest agreement or 

disagreement in the resonance of compatible conceptual schemas. In the present study, 

identification of whose language and the appropriateness of the language was not attributed. 

Instances during which instructor or students' language was being used were described in 

Chapter 4. Conflict caused by the use of structural, formal language such as the term 

"function" early in the class was not evident on the graphs. In the modeling-focused class, 

the class' use of student terminology or more action-oriented language was not captured by 

the graphs. Coding for the types of language used and whether shared understanding was 

achieved could filter through those occurrences and suggest a degree to which agreement in 

language use is pursued. 

Developing a new code for the use of language could isolate those instances where 

disagreement or agreement occurred in language use. Building on Sfard's (1992) research on 



207 

structural and operational instruction, those times during which structural terms or 

descriptions are incorporated into class discussion could be contrasted with those instances in 

which the operational terminology is used in the course. Associated with who was speaking, 

student or instructor, a joint coding could indicate who introduces new terminology and 

would identify those instances in which the instructor used structural instruction before 

students had fully developed operationally in their understanding of the concept. Building 

also on research by Brendefur (1999) and Arcavi, Kessel, Meira, and Smith (1998), 

identification of the creation and maintenance of collective understandings while including 

common terminology could suggest when resonance of conceptual schemas of class 

participants was compatible. 

Symbol Use 

Much related to language use is symbol use. In a code, identification of new notation, 

proper use of notation, or inappropriate uses of notation by students could indicate where 

conflict or agreement was attained in the classroom when mathematical methods are 

discussed. The observations captured by the current codes and graphs in this study did not 

distinguish when procedures were applied correctly or incorrectly, nor did they suggest when 

questions arose of particular notation. The scale for start of micro source of idea potentially 

suggested whose ideas prompted discussion for new notation or ideas. However, the start of 

micro source of idea did not identify those times students used the notation properly or 

improperly. Coding for symbolic use on a person-to-person interaction level could identify 

those instances when new symbols were introduced, who developed and/or introduced them, 

and the appropriateness in the use of the symbols. 
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Slightly different from the language use, distinguishing between a structural or 

operational use of symbols would be difficult. An additional scale to code for the agreement 

or disagreement in the use of the symbol with concept could prove useful in filtering the 

instances in which symbol use was or was not appropriate. Building on Lithner's (2000) 

study of established experiences and plausible reasoning, a person's symbol use could be 

coded to identify when symbol use matched the new context or problem. For example, if a 

student is given a new context but relied on established experiences or previous examples to 

model the data or solve the problem, the notational use would be assigned a code to represent 

old notation and old application. The student did not fully take into account new notation to 

represent the new context nor were decisions in manipulating the symbols made based on the 

new context. To be attempted in future studies, identification of the uses of notation could 

prove useful in distinguishing differences in class environments. 

Interpretation in Discussion 

The class observations revealed occasions in both classes where agreement or 

disagreement in interpretations of the questions under investigation or the mathematical 

arguments used in addressing the questions transpired. Particular instances in the tools-

focused class occurred when agreement existed in the interpretation of the goal question(s) 

within groups as discussed in class and on lab reports for the water flow investigation. 

Disagreement in interpretation of the overriding questions occurred during the water flow 

investigation across groups or between particular groups and the instructor. In the modeling-

focused class, agreement and disagreement transpired within groups, across groups, and 

between students and instructor. When analyzing the light intensity data some members 

examined the quality of fit based on the graph of the function with the actual data points. 
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Disagreement arose as another reasoned that the function's end behavior compared with 

potential additional data readings suggested a poor fit. Codes are needed to identify when the 

agreements and disagreements occur. 

The instances of agreement or disagreement in interpretation were not captured in the 

graphs in this study. Coding for the existence or nonexistence in the agreement of 

interpretation at both macro and micro level may filter those occurrences to be evident on 

graphs. A macro level of agreement in interpretation would suggest agreement across groups 

or between students and instructor. A micro level of agreement in interpretation would 

suggest agreement within groups. Accounting for Yackel's (1995) identification of causes of 

interaction break-down could be attributed in coding scales to distinguish interpretation 

differences. 

Filtering the data through additional codes of language use, symbol use, and 

interpretation at a micro and macro level may help to graphically indicate the occurrences 

when compatible conceptual structures are resonating or are not resonating between 

participants. Coding for the structural and operational language use would suggest those 

times when students were able and willing to use the structural language or when they 

resorted to operational language though the instructor encouraged structural language. 

Coding for the use of notation would help to identify instances when symbols were 

developed and resulting interactions surrounding the context and phases of inquiry. In 

addition, occurrences could be tagged to suggest students' use of established experiences or 

plausible reasoning as described by Lithner (2(XX)). Coding for interpretation point to the 

instances when instructors and students had different goals for a task and suggest where the 

interaction broke down. Each of language use, symbol use, and interpretation are 
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characteristics to tag in transcripts in future studies to produce a clearer graphical image of 

the environment and to point to item which advance and hinder the inquiry process. 

Certain items were coded according to the transcripts but were not included in the 

graphs to represent the data. The reason some items were not incorporated into the graphs 

included the lack of distinctive information provided by the scales. Other items provided too 

many differences to produce meaningful and interpretable graphs. Items not represented in 

the graphs of the study include which student was speaking; the distinction of whether 

statements were in the form of a question or comment; level of question or comment 

classified according to Bloom's Taxonomy; and level of mathematical understanding. 

Discussion of these items is given. 

Which and How Many Students Engage in Discussion 

Cobb et al. (1997) emphasized the individual components of reflection. One may 

engage in reflective discourse supporting and enabling individual reflection on and 

reorganization of prior activity, but the actual engagement in discussion does not cause, 

determine, or generate the reflection or reorganization. While engagement does not 

guarantee reflection, Cobb et al. emphasized the initial need for students' engagement to 

encourage the reflection. Instructors should realize that though one or few smdents are 

engaged in discussion and reflection, no assumptions may be made about the reflection or 

concepts of the entire class of students based on what few students are contributing. The 

graphs and discussion presented in this study indicated that throughout the investigations in 

both classes some students were highly engaged and contributing their ideas. The graphs 

also suggest when students' engagement was highest, particularly in the first halves of the 
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investigations. Caution must be taken to attribute success or failure of the class environment 

based on a few students' contributions or based on a few students' lab reports. 

Coded but not represented in the graphs was identification of which students were 

engaged in discussion and reflection. The transcripts were coded for who was speaking, but 

to generate the graphs the codes were reduced to identify teacher or student. When including 

graphs with the thirty or more class members, the graphs were complicated and patterns 

relating the phases of inquiry, context, and sources of ideas were difficult to identity. 

Overall, examining individual students' contributions was not a goal of this study. 

Representing the classroom environment including interactions which occurred was a goal. 

Researchers wishing to track individual students' contributions and their effects on the 

classroom environment should consider incorporating a representation of which and how 

many students engaged in discussion. 

An item to note when considering which students engaged in discussion concerns the 

use of the recording devices in the classroom. The voices clearest on the recordings were 

most often the loudest and closest voices to the microphone in the classroom. Any study 

implementing similar methods of data collection and attempting to represent which and how 

many students were involved in class interaction would need to keep in mind the limitations 

of the recording devices. 

Bloom's Taxonomy 

Comments and questions made in the class were coded based on Bloom's Taxonomy. 

The classifications were not represented in the graphs since most of the questions and 

comments were coded at knowledge or comprehension levels with no distinctive patterns 

evident. Carlsen (1991) reviewed studies on classroom questioning. He noted that most of 
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the research on level of questioning and the effects on students' achievement is not 

meaningful apart from the context of the questions and the comments leading to the 

particular question. For example, a question asked at the beginning of a study of new content 

could be classified as a high level question. The same question asked the following class 

session could be considered as a lower level recall question. In this study, the context 

surrounding the questions and comments was attributed. In accounting for the context, no 

distinctive patterns were observed. Future studies may wish to examine the component of 

the level of question and comment more intently with possibly a different set of codes. 

Mathematical Level of Understanding 

The class transcripts were coded for mathematical levels of understanding. Much like 

the codes for level of question or comment, the codes for the mathematical level of 

understanding produced minimal distinctions. Almost all classifications were made at the 

situational level as most class discussions and interactions focused on how to act in given 

problem situations. Future use of this scale is not recommended. Coding for language and 

symbol use as well as understanding would likely prove more useful to identify distinctions 

within and between the classes. 

In general, items which were coded but not incorporated into the graphs provided too 

little distinctive information or provided too much distinctive information. Future studies 

emphasizing levels of questions and comments according to Bloom's Taxonomy or 

mathematical levels of understanding would need to further filter the scales to produce 

distinctive information. Studies examining inquiry in light of individual students' 

contributions and reflections would need to examine means to portray the level of individual 
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students' engagement while maintaining the presentation of other characteristics of the 

inquiry process. 

Summary 

In summary, this qualitative study sought to examine and represent the 

implementation of inquiry methods into a collegiate mathematics course. When coupled 

with exploration and instruction of mathematical modeling, the following results were 

evident with implications for future pursuits of inquiry environments and future studies of 

inquiry. 

1. Coding for phase of inquiry, context, and micro sources of ideas generated 

pictorial representations of the structure of the classes, emphases placed on the different 

phases of inquiry, the importance given to contexts, and the frequency with which students or 

instructors' ideas dominated discussion. 

2. Graphs of the codes involving phase of inquiry, context, and micro sources of 

ideas did not capture instances in which students' and instructor's ideas were or were not 

resonating with compatibility. Future studies seeking to distinguish the resonance or 

dissonance of compatible conceptual schemas of class participants may find coding for 

language use, symbol use, and interpretation components useful. 

3. An instructor's goals and tasks influence the amount of time spent on 

mathematics, science, and the links between the mathematics and science. In particular, 

when the coverage of speciHc mathematical topics was a goal, a sequence of science to links 

to mathematics discussion was evident contextually. When there was less pressure to cover 

specific topics, more focus was placed on inquiry and consistent and frequent linking of the 

mathematics and science contexts. 
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4. Students' regular and consistent connections made between the context and 

mathematics promoted students' mathematical reasoning and appropriate use of symbols in 

mathematical modeling and other mathematical procedures. 

5. When the prediction phase of inquiry incorporated negotiation of task and the 

goal(s) of the investigation were clear to students and instructor, agreement of question and 

task purpose was promoted and better maintained throughout the investigation and 

instruction. 

6. When instruction of new mathematical modeling methods was given, students 

needed to be more frequently prompted to connect the mathematics and science components. 
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APPENDIX A 

INSTRUCTOR INTERVIEW QUESTIONS AND PROCEDURES 
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Questions prior to the Water Flow Laboratory: 

1. What are some of your goals for this laboratory? 

2. Describe how you envision the lab will unfold from the introduction of the lab to the 

completion of the lab reports. 

3. What are some of the questions you plan to ask? What do you anticipate students' 

responses to be? 
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Interview Questions after Day 5 of the Water Flow Laboratory: 

1. What observations did you make as students collected data? as students graphed their 

data and explained their graphs to you and to the class? 

2. Where will you go from here? 

3. In the first interview you mentioned wanting to set the stage for the rest of the class in 

terms of having a sense of the laboratories and what they are doing and then 

analyzing the data. Given the classes' experiences from this lab and the stride and 

height lab, how will you begin the next lab? What types of things will you continue 

to do and what will you do differently? 
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Questions prior to the Light Intensity Laboratory; 

1. What are some of your goals for this light intensity laboratory? 

2. Describe how you think this light intensity lab will unfold from the introduction to the 

lab reports? 

3. What are some questions you will ask and what do you anticipate students' responses 

to be? 

4. One of my goals in gathering data in Math 181 is to document students' growth in the 

inquiry process. What are some ways that you feel growth might be evident from the 

water flow lab to this light lab? [or from the beginning of the class to this stage?] 
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Questions after the Light Intensity Laboratory: 

1. What observations have you made as students made hypotheses, collected data, 

graphed their data, and modeled their data in this light intensity lab? 

2. What are your perceptions of how smdents have grown from the first of the semester 

to this midterm? What observations made during the laboratory indicate growth or 

suggest that more growth is needed? 

3. For those areas that you mentioned where more growth is needed, what types of 

things do we need to be doing in Math 181 to achieve that growth? 

4. In the previous interview you mentioned having 2 main goals for this lab: 

have a good context and use the context to develop and talk about difference and 

generating equations and examine data a variety of ways and see if some insights 

come from it or help build a model. 

Do you feel these goals were met? Why or why not? 

5. Where will you go from here? 
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Questions prior to the Penicillin, One-Compartment Model Laboratory: 

1. What are some of your goals for this One-Compartment Laboratory? 

2. Describe how you think this one-compartment lab will unfold from the introduction 

of the lab reports? 

3. What are some questions you will ask and what do you anticipate students' responses 

to be? 

4. What are some ways that you feel growth might be evident from the beginning of the 

semester to this one-compartment lab? 

5. What would you like me to watch for during the laboratory and discussion? 
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Questions after the Penicillin, One-Compartment Model Laboratory: 

1. In the penicillin lab reports that students wrote, did they interpret the mathematical 

equations as desired? Did they detail the relationship between what's happening 

mathematically and experimentally? Is there a particular example that sticks out in 

your mind which illustrates this? 

2. One of my goals in gathering data during this semester is to observe and document 

the growth that students demonstrate in the inquiry process after a semester of Math 

181. 

What are your perceptions of how students grew throughout the semester of Math 181 

and what observations made during this laboratory indicate growth or suggest that 

more growth is needed? 
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APPENDIX B 

STUDENT INTERVIEW QUESTIONS AND PROCEDURES 
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Student Interview 

Have you ever noticed how quickly a cup of hot liquid (like coffee, tea, or cocoa) cools over 

time? 

I. Using methods similar to what we've done in class, what would you do to try to 

understand this phenomena. 

2. Here is some data I have from a cup of hot water cooling over time. Temperature 

readings were taken every 6 minutes. Show me what you would do with this data. 

Time (min) Temp (°C) 
0 59.50 
6 45.36 
12 37.41 
18 32.51 
24 29.36 
30 27.21 
36 25.81 
42 24.74 
48 24.09 
54 23.66 

3. Now I have a few additional questions I would like to ask you. 

For this (Time, Temperature) graph, give a sketch of the rate of change vs. time 

graph. Explain why it has the shape that it does. 

Explain the difference between an average rate of change and an instantaneous rate of 

change. 
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APPENDIX C 

SAMPLE TRANSCRIPTS AND CODES 



Micro Macro Bloom Speaker Inquiry 

Phase 

Context Math 

Level 

Calc Wouldn't it let some light pass all the way through? 6 5 2 5 P S S 

Brett Yeah. Because - 6 5 1 4 P S S 

Cale It would absorb ceilain wavelengths - 5 5 2 4 P S S 

R Okay it sounds like another hypothesis. 6 5 1 1 P S S 

Cale You couldn't actually measure just because you're never going to have the water like that. 5 5 3 4 P S S 

Brett But when you chemically you can make it, but we're not going to do that. And so I'm 

just, what I was thinking-

5 5 1 4 P S S 

R That's great that you're coming up with a plan. Is there - do you have a plan of action 1 5 1 1 P S S 

once you have data? 2 2 3 2 P L S 

Brett What do you mean? 3 2 1 5 P L S 

Cale For Thursday? 3 2 1 5 P L S 

R Like what are you going to graph, What are you going to do with the data? 2 2 3 2 P L S 

Cale We know what we're going to do with the experiment. 5 2 1 4 P S S 

R Okay. Do you know what you are going to do with the data once you have data? What 

graphs are you going to look at? 

2 2 3 2 P L S 

Cale Probably going to look at depth. 3 2 1 4 P L s 
Brett Depth vs. intensity. 5 2 1 4 P L s 
Cale Yeah, we could look at depth vs. intensity. 6 2 1 4 P L s 
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LAKE POLLUTION PROBLEM 
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This problem was presented to the tools-focused students with the intention to help develop 

methods of modeling the penicillin "peak" data. 

A pristine lake of area 2 km^ and average depth of 10 meters has a river flowing through it at 

a rate of 10,000 per day. A factory is built beside the river and begins releasing 1000 kg 

of chemical waste into the lake per day. 

1. Write a mathematical model that describes the change in the amount of chemical 

waste in the lake each day after the factory begins production. 

2. Write a difference equation that describes the amount of chemical waste in the lake t 

days after the factory begins production. 

3. What will be the concentration of chemical waste in the lake after one year? 
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HUMAN SUBJECTS APPROVAL FORM 
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Information for Review of Research Involving Human Subjects 
Iowa State University 

(Please type and use the attached instiuctions for completing this form) 

I. Title of Project The Nature and Development of Systematic Inquiry and Resonances in the College 
Mathematics Classroom 

2. I agree to provide the proper surveillance of this project to insure that the rights and welfare of the human subjects are 
protected. I will report any adverse reactions to the committee. Additions to or changes in research procedures after the 
project has been approved will be submitted to the committee for review. I agree to request renewal of apfroval for any 
project continuing mote than one year. 

10/25/99 Heather A. Thompson 
Typed name of principal investigator 

Mathematics 

Date 

400 Carver Hall 

Signature of (Snncipal investi^tor 

Department 

294-1752 

Campus address 

Phone number to report results 

3. 

4. Principal tnvestigator(s) (check all that apply) 
• Faculty • Staff IS Graluate smdent 

5. Project (check all that apply) 
Q Research I2 Thesis or dissertation • Qass project 

6. Number of subjects (complete all that apply) 

# adults, non-students: 3 # minors under 14: 

# ISU students: 98 other (explain): 

53 1999 

/ 
f 
% Relationship to principal investigator^/^ , 

Major Professor 

Q Undergraduate student 

O Independent Study (490, 590, Honors project) 

# minors 14 - 17: 

. ' f y f  

1. Brief description of proposed research involving human subjects; (See instructions, item 7. Use an additional page if 
needed.) 

(A) Three classes consisting of both sections of Math 181 and one section of Math 182 in Spring 2000 will be 
observed to document the nature and development of systematic inquiry as an instructional technique in mathematics, 
what concepts resonate in students during inquiry, and the effects on students' understanding of mathematical concepts. 
This study will report the details of the inquiry process, what's resonating in students and instructors suggested by 
questions, comments, and tasks performed, and the effects on students' concepmal understanding evident by students' 
performance on laboratory reports, written responses to questions and student interviews. To gather data, students and 
instructors of both sections of Math 181, Spring 2000 will be observed during three laboratory experiments and 
analysis, each lasting 1-2 weeks in length. One section of Math 181 will be taught by the researcher, while the other 
will be taught by an instructor experienced in teaching Math 181. Students and the instructor in one section of Math 
182, Spring 2000 taught by the researcher's major professor will be observed during one laboratory experiment. Class 
sessions pertaining to the laboratory exercises will be video taped, (continued on fourth page) 

(Please do not send research, thesis, or dissertation proposals.) 
8. Informed Consent: ^ Signed informed consent will be obtained. (Attach a copy of your form.) 

Q Modified informed consent will be obtained. (See instructions, item 8.) 
Q Not applicable to this project. 

http-JAMww.grad-colege.iastalt.adu/fo(Tns/HumanSubi«cb.doc GC M9 
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9. Confidentialjcy of Data; Describe below the methods you will use to ensure the confidentiality of data obtained. (See 
instructions, item 9.) 

Actual names of participants in the study will not be reported in any written or oral form. Names of participants on 
written information gathered as data will be removed and replaced with pseudonyms. Video tapes of class sessions 
containing the names of participants will be transcribed using pseudonyms. The file containing the match of the 
participants' names with the pseudonyms will be kept in an encrypted file accessible only by password on the 
computer used primarily by the researcher and to be deleted at the completion of the study. Video tapes will be kept in 
locked cabinet in the researcher's ofSce and accessible only to the researcher. 

10. What risks or discomfort will be part of the study? Will subjects in the research be placed at risk or incur discomfort? 
Describe any risks to the subjects and precautions that will be taken to minimize them. (The concept of risk goes 
beyond physical risk and includes risks to subjects' dignity and self-respect as well as psychological or emotional risk. 
See instructions, item 10.) 

Data gathered wiU be based on observations, transcriptions from video taped class sessions and one-on-one interviews 
with the researcher, written samples of students' work, and instructors' journal entries. Since the observations and 
taping are conducted in the class with focus on no one student in particular, this should not cause discomfort. 
Collected written work is standard in the course which should lend no additional risks or discomfort than being enrolled 
in the course. Any discomfort felt by students during interviews would stem from discomfort in their level of 
understanding of the material and their ability to explain their methods. To minimize this, the researcher will ensure 
the students that their thoughts and comments are of interest and that they are not being evaluated. Students' responses 
on the interviews will not affect their grades for the course, so no risk is involved academically. No evaluation report 
will be made for participating instmctors, so no pressure should be felt in their job performance. 

11. CHECK ALL of the following that apply to your research; 
I [ A. Medical clearance necessary before subjects can para'dpaie 
I I B. Administration of substances (foods, drugs, etc.) to subjects 
I I C. Physical exercise or conditioning for subjects 
I I D. Samples (blood, tissue, etc.) from subjects 
I I E. Administration of infectious agents or recombinant DNA 
I I F. Deception of subjects 
I I G. Subjects under 14 years of age and/or Q Subjects 14 - 17 years of age 
I I H. Subjects in institutions (nursing homes, prisons, etc.) 
I 11. Research must be approved by another institution or agency (Attach letters of approval) 

If you checked any of the items in 11, please complete the following in the space below (include any 
attachments): 

Items A-E Describe the procedures and note the proposed safety precautions. 

Items D—E The principal investigator should send a copy of this form to Environmental Health and Safety, 118 
Agronomy Lab for review. 

Item F Describe how subjects will be deceived; justify the deception; indicate the debriefing procedure, including 
the timing and information to be presented to subjects. 

Item G For subjects under the age of 14, indicate how informed consent will be obtained from parents or legally 
authorized representatives as well as from subjects. 

Items H-I Specify the agency or institution that must approve the project. If subjects in any outside agency or 
institution are involved, approval must be obtained prior to beginning the research, and the letter of 
approval should be filed. 

http-VAwww.gnd-colege.iaaiala.eduA9iTniMjmanSubjaclB.doc GC 999 
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-ast name of Principal Investigator Thompson 

Checklist for Attachments and Time Schedule 

The following are attached (please check): 

L2. Letter or written statement to subjects indicating clearly: 
a) Che purpose of the research 
b) the use of any identifier codes (names. #"5), how they will be used, and when they will be removed (see item 17) 
c) an estimate of time needed for participation in the research 
d) if applicable, the location of the research activity 
e) how you will ensure confidentiality 
f) in a longitudinal study, when and how you will contact subjects later 
g) that participation is voluntary; nonpanicipation will not affect evaluations of the subject 

13. Signed consent form (if applicable) 

14. 03 Letter of approval for research from cooperating organizations or institutions (if applicable) 

15. ^ Data-gathering instruments 

16. Anticipated dates for contact with subjects: 
First contact Last contact 

01/10/2(XX} 05/05/2000 
Month/Day/Year Month/Day/Year 

17. If applicable: anticipated date that identifiers will be removed frr^m completed survey instruments and/or audio or visual 
tapes will be erased: 

12/31/2000 
Month/Day/Year 

18. Sjpianjn! of Departmental Executive Officer Date Depaxtment or Administrative Utiit 

19. Decision of the University Human Subjects Review Committee; 
SI Project approved Q Project not approved Q No action required 

Name of Human Subjects in Research Committee Chair Date 

Patricia M. Keith 

Signature of Comminee/Ciuu 

htts7/www.grad-CDHege.iastaie.edu/faflnaMjmanOubjacu doc GC 999 
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7. (continued) The video tapes will be transcribed and analyzed. Students' written work in the form of brief, written, 
and in-class responses to instructors' questions (see attached page for example questions), and students' written lab 
reports detailing the methods and mathematics applied in the laboratories will be collected (see attached page for lab 
report format). These wrinen components of students' work are a normal part of the courses. Names on written work 
will be removed and replaced with a pseudonym. Instructors' written responses to the same questions answered by 
students, daily journals by the researcher and major professor, and video taped pre- and post-laboratory interviews with 
the second Math 181 instructor conducted by the researcher will be gathered. (See attached page for interview 
questions.) Six students chosen at random from the researcher's section of the course will complete one-on-one, video 
taped interviews with the researcher. 

(B) The instructors in the study will be the researcher, an instructor experienced in teaching Math 181, and the 
researcher's major professor. Students in both sections of Math 181, Spring 2000 and in the researcher's major 
professor's section of Math 182 will be observed during the data collection periods. Tbese students are life-sciences 
majors and complete the courses as a requirement for their majors. Students will be involved as they ask and respond 
to questions, communicate ideas, and practice mathematical processes in class. Six students from the researcher's 
secnon selected at random will be asked to participate in one 45-60 minute interview following the second laboratory. 
Interview questions will consist of mathematical questions. (See attached page.) 

The only incentive offered to student participants in the study is the offer of an addidonal resource to help answer 
questions regarding the course material. Students' written, in-class responses to the instructors' questions and lab-
rcpoiu will be used as a part (25%) of students' course grades, but these are standard components of students' grades 
which should not be affected by the nature of the study. Participating instructors will not be given any incentive to 
participate in the study. 
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Dear Math 181 or 182 student: 

In Mathematics 181 and 182, Calculus and Differential Equations for the Life Sciences, an 
inquiry approach is often pursued in the laboratories as students make hypotheses, collect data, 
analy^ the data, generalize the mathematics, and reflect on the process. Throughout the process 
different ideas and concepts are discussed. I am conducting a research study to document the 
inquiry process in the college mathematics classroom and what ideas and concepts are generated 
and discussed. To create an instrument to measure the degree to which inquiry occurs and the 
ideas or concepts which resonate, I will collect data during laboratories throughout the semester. 

Throughout the laboratories I will video tape the class sessions. The t^)es will be transcribed 
and coded using various scales regarding the inquiry process. When your voice is recorded on 
tape, a pseudonym will be used in place of your name. This pseudonym will be attached to any 
written work submitted for use as data. I will be the only one who knows w^ch pseudonym 
goes with which student. When the research study is complete, the tapes will be erased. This is 
expected to occur by December 31,2000. 

In addition to video taped class sessions and the use of written course work as part of the data, 
six students will be selected at random to complete a one-on-one, video taped interview with me. 
The purpose of the interview is to discern your understanding of key mathematical concepts of 
the course. This information will be related to the inquiry process and mathematical ideas 
discussed during the laboratories. While completion of the interview is not intended to influence 
your final course grade, this will be an opportunity to ask questions on the course material. 

Your participation in this research study is voluntary. Should you not consent to the use of your 
quotations and written work as being a part of this study, though your voice or image may be 
captured on tape and your work collected as part of the course, these items will not be included 
in any report of the data. Any report of the data will occur in my dissertation, at an educational 
research conference, or in an educational research journal. 

Thank you for considering being a part of this research study. If you have any questions, please 
contact me. 

Sincerely, 

Heather Thompson 
Department of Mathematics 
489 Carver Hall 
294-1752 
hathomps@iastate.edu 
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The Nature and Development of Inquiry and Resonances in Math 181,182 
Participant Consent Form 

You are invited to be in a research study to explore the implementation of the inquiry process in Math 
181, 182 and measure its effects on students and instructor interactions. You were selected as a 
participant because you registered for Mathematics 181 or 182, Calculus and Differential Equations for 
the Life Sciences. Please read this form and ask any questions before agreeing to be in this study. 

The purpose of this study is to explore how the inquiry process is implemented in Math 181 and 182 and 
the effects on what resonates in students. What is resonating is suggested by the questions asked, ideas 
communicated, and mathematics performed. Your instructor has allowed the researcher to be an 
observer in the class sessions and to video tape class sessions related to laboratories you will conduct. 

In the course of the study: 

1. Your name will not be reported in any written or oral form. Names on papers or lab reports will be 
removed and replaced with pseudonyms. Names recorded on the video tapes will be transcribed 
using pseudonyms. 

2. The records of this study will be kept confidential. Only the researcher and her major professor will 
access the research records including the video tapes and the transcriptions of the video tapes. 

3. There are no risks to participants in this study. No payment or reimbursement will be given to 
students. One benefit of this study includes the opportunity for you to ask the researcher questions 
about the course material since she is experienced in teaching mathematics. 

4. Your decision to participate in this study will not affect your current or future status in Math 181, in 
Math 182, nor in any other class at Iowa State University. If you decide to participate, you are ftee 
to withdraw at any time without influencing your relationship with your instructor nor any other 
relationship at Iowa State University. Should you choose not to participate or withdraw from this 
study, your comments and actions recorded on video tape or by the researcher will not be included in 
any report of the data. 

If you agree to participate in this study, please check (^) the following boxes, and print and sign your 
name below; 

Q I agree that my questions and statements recorded on video tape or by the researcher may be 
transcribed for the study. 

0 I agree that the transcriptions may be used in a report of this research in the researcher's 
dissertation, at educational research conferences, or in educational research journals. 

Q I agree that my written work as a part of the course may be used in a report of this research in the 
researcher's dissertation, at educational research conferences, or in educational research journals. 

• I agree that portions of the video tapes recording my comments and/or displaying my image may 
be used in a report of this research for educational purposes. 

Signature Date 

Print Name 

The researcher conducting this study is Heather A. Thompson under the guidance of Dr. Brian A. Keller. 
For questions, please contact Heather in 489 Carver Hall, by phone at 29^1752, or by email 
hathomps@iastate.edu. 

mailto:hathomps@iastate.edu
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The Nature and Development of Inquiry and Resonances in Math 181 
Interview Participant Consent Form 

You were selected at random &om the students in tiiis section of Math 181 to participate in one 45-60 
minute interview with your instructor. The interview will be scheduled to occur after the completion of the 
analysis of the light intensity data in class. This intent of this interview is to examine your conceptual 
understanding of major mathematical concepts of this course in an effort to explore how an inquiry 
approach in teaching accompanied by an emphasis on students' resonances affects students' 
understanding. Please read this form and ask any questions about the nature of the study before agreeing 
to participate. 

In the course of the study: 

1. Your name will not be reported in any written or oral form. Names on papers will be deleted and 
replaced with a pseudonym. Names recorded on the video tapes will be transcribed using a 
pseudonym. 

2. The records of this study will be kept confidential. Only the researcher and her major professor will 
access the research records including the video tapes and the transcriptions of the video tapes. 

3. There are no risks to participants in this study. No payment or reimbursement will be given to 
students. One benefit of completing the interview includes the opportunity for you to ask the 
researcher questions about the course material in a one-on-one setting. 

4. Your decision to participate in an interview will not affect your current or future status in Math 181, in 
Math 182, nor in any other class at Iowa State University. If you decide to participate, you are free to 
withdraw from completing the interview at any time without influencing your relationship with your 
instructor nor any other relationship at Iowa State Universi^. 

If you agree to be a participant in this study, please check (|^) the following boxes, and print and sign 
your name: 

• I agree that my interview may be recorded on video tape and may be transcribed for the study. 
!• I agree that the transcriptions may be used in a report of the research in the researcher's dissertation, 

at educational research conferences, or in educational research journals. 
• I agree that my graphs, equations, and notes written during the interviews may be used in a report of 

the research in the researcher's dissertation, at educational research conferences, or in educationad 
research journals. 

Q I agree that portions of the video taped interview may be used in a report of this research for 
educational purposes. 

Signature Dale 

Print Name 

The researcher conducting this study is Heather A. Thompson under the guidance of Dr. Brian A. Keller. 
For questions, please contact Heather in 489 Carver Hall, by phone at 29^1752, or by email 
hathomps@iastate.edu. 

mailto:hathomps@iastate.edu
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Dear Math 181 or 182 Instructor 

I am conducting a research study to document the inquiry process in the college mathematics classroom 
and what ideas and concepts are generated and discussed throughout the process. To create an 
instrument to measure the degree to which an inquiry environment occurs and the ideas or concepts 
which resonate, I will collect data during laboratories throughout the semester. 

I would like your permission to observe and video tape your section of Math 181 or 182 during 
laboratories. While I observe, I will record student-student interactions and student-instructor 
interactions with an emphasis on the questions asked and ideas communicated. The video tapes will be 
transcribed and encoded. The codes will be examined and used to develop an instrument wliich 
quantifies the degree to which an inquiry environment is achieved and the nature of the concepts which 
resonate. 

To help triangulate the data, your written responses to the same daily in-class questions asked of the 
students are requested. In addition, a daily journal kept during the laboratory or six one-on-one video 
taped interviews with me are requested. This data should address the goals of each class session, your 
plans to implement an inquiry process, and your methods to be aware of students' questions and ideas 
as well as your assessment of these goals and procedures. 

To help maintain confidentiality, ail video tape transcriptions and written work will contain a 
pseudonym in place of your name. Also, only the researcher and her major professor will handle the 
data. I anticipate that the research will be completed by December 31, 2000, and all video t^jes will be 
erased at that time. 

Your participation in this research study is voluntary. Should you not consent to the use of your 
quotations in this study, though your voice may be captured on tape, they will not be included in any 
report of the data including in my dissertation, at educational research conferences, or in educational 
research journals. 

Thank you for your help in this study. If you have any questions or comments about the nature of this 
study, please contact me. 

Sincerely, 

Heather A. Thompson 
Department of Mathematics 
489 Carver Hall 
294-1752 
hathomps@iastate.edu 
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The Nature and Development of Inquiry and Resonances in Math 181, 182 
Instructor 181 Consent Form 

You are invited to be in a research study to explore the implementation of the inquiry process in Math 181, 
182 and measure its effects on students and instructor interactions. You were selected as a participant 
because you are an instructor for Mathematics 181, Calculus and Differential Equations for the Life 
Sciences. Please read this form and ask any questions before agreeing to be in this study. 

The purpose of this study is to explore how the inquiry process is implemented in Math 181 and 182 and 
the effects on what resonates in students evident by the questions asked, ideas communicated, and 
mathematics performed. 

In the course of the study: 

1. Your name will not be reported in any written or oral form. Names recorded on video tapes will be 
transcribed using a pseudonym. 

2. The records of this swdy will be kept confidential. Only the researcher and her major professor will 
access the research records including the video tapes and the transcriptions of the tapes. 

3. There are no risks to participants in this study. No payment or reimbursement will be given to 
students. 

4. Your decision to participate in this study will not affect your current or future status at Iowa State 
University. If you decide to participate, you are firee to withdraw at any time without influencing your 
relationships at Iowa State University. Should you choose not to participate or withdraw from this 
study, your comments and actions recorded on video tape or by the researcher will not be included in 
any report of the data. 

If you agree to participate in this study, please check (^) the following boxes, and print and sign your 
name below: 

Q I agree that the researcher may observe and video tape the class sessions related to the water flow 
laboratory, the light intensity laboratory, and the one-compartment wash-out laboratory. 

Q I agree to complete one-on-one, video taped interviews with the researcher before and after each 
laboratory to assess my goals for the laboratory, my intent for the role of inquiry in the laboratories, 
and my plan to consider what students are thiiildng and the questions students have. 

• I agree that my questions and statements recorded on video tape or by the researcher may be 
transcribed for the study. 

Q I agree that the transcriptions may be used in a report of the research in the researcher's dissertation, 
at educational research conferences, or in educational research journals. 

• I agree that my responses to the brief, written, in-class questions posed to students may be reported 
in the researcher's dissertation, at educational research conferences, or in educational research 
journals. 

Signature Dsoe 

Print Name 

The researcher conducting this study is Heather A. Thompson under the guidance of Dr. Brian A. Keller. 
For questions, please contact Heather in 489 Carver Hall, by phone at 29^1752, or by email 
hathomps @ iastate.edu. 
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The Nature and Development of Inquiry and Resonances in Math 181, 182 
Instructor 182 Consent Form 

You are invited to be in a research study to explore the implementation of the inquiry process in Math 181, 
182 and measure its effects on students and instructor interactions. You were selected as a participant 
because you are an instructor for Mathematics 182, Calculus and Differential Equations for the Life 
Sciences. Please read this form and ask any questions before agreeing to be in this study. 

The purpose of this study is to explore how the inquiry process is implemented in Math 181 and 182 and 
the effects on students' resonances evident by the questions asked, ideas communicated, and mathematics 
performed. 

In the course of the study; 

1. Your name will not be reported in any written or oral form. Names recorded on the video tapes will be 
transcribed using a pseudonym. 

2. The records of this study will be kept confidential. Only the researcher and her major professor will 
access the research records including the video tapes and the transcriptions of the video tapes. 

3. There are no risks to participants in this study. No payment or reimbursement will be given to 
students. 

4. Your decision to participate in this study will not affect your current or future status at Iowa State 
University. If you deci^ to participate, you are firee to withdraw at any time without influencing your 
relationships at Iowa State University. Should you choose not to participate or withdraw from this 
study, your comments and actions recorded on video tape or by the researcher will not be included in 
any report of the data. 

If you agree to participate in this study, please check (^) the following boxes, and print and sign your 
name below: 

Q I agree that the researcher may observe and video tape the Math 182 class sessions related to the two-
compartment wash-out laboratory. 

• I agree to complete daily journal entries during the laboratory. 
Q I agree that my questions and statements recorded on video tape or by the researcher tnay be 

transcribed for the study. 
Q I agree that the transcriptions may be used in a report of the research in the researcher's dissertation, 

at ^ucational research conferences, or in educational research journals. 
• I agree that my responses to the brief, written, in-class questions posed to students may be reported 

in the researcher's dissertation, at educational research conferences, or in educational research 
journals. 

Q I agree that the portions of the video t^)es containing my statements and/or image may be used in a 
report of the research for educational purposes. 

Signature Date 

Print Name 

The researcher conducting this study is Heather A. Thompson under the guidance of Dr. Brian A. Keller. 
For questions, please contact Heather in 489 Carver Hall, by phone at 29^1752, or by email 
hathomps @ iastate.edu. 
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