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1 INTRODUCTION 

The dimension of an object is a measure of its complexity. Effective fractal dimension 

makes this idea more precise and useful for theoretical computer science. 

Intuitively, in Euclidean space, the dimension of a set is the amount of information that is 

necessary and sufficient to identify any point in the set. Traditionally, points have dimension 

0 as there is nothing to specify, curves have dimension 1 because they can be parametrized by 

a single real coordinate, and surfaces have dimension 2 since two coordinates describe every 

point on a surface. However, this intuitive concept of dimension is not completely adequate. 

For example, a Peano space filling curve includes every point in the unit square, but the unit 

square should be 2-dimensional. 

In 1919, Hausdorff [17] used measure theory to give a mathematically sophisticated notion 

of dimension that is now most commonly called Hausdorff dimension. This dimension agrees 

with our intuition for simple sets. Points have Hausdorff dimension 0, simple curves have 

dimension 1, and simple surfaces have dimension 2. It is possible for complex curves to have 

dimension larger than 1 and for complex surfaces to have dimension larger than 2. In fact, 

the Peano space filling curve has Hausdorff dimension 2. The Hausdorff dimension of a set 

need not be an integer; it can be an arbitrary real number. 

Hausdorff dimension has become a powerful tool in fractal geometry [13]. Fractals are 

sets that typically have simple definitions but still exhibit complex properties. Fractals often 

have non-integral dimension. One of the simplest examples of a fractal is the Cantor middle-

thirds set, an uncountable, totally disconnected, measure 0 subset of the unit interval that 

has Hausdorff dimension |^||. The von Koch curve has Hausdorff dimension ]2|| and is an 

example of a fractal in the plane. These dimensions capture the similarity ratios of the Cantor 
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set and von Koch curve and can be thought of as a measure of their complexity. 

The definition of Hausdorff dimension is sufficiently general to work in any metric space. 

The Cantor space, consisting of all infinite binary sequences, is a metric space that is of 

central importance to theoretical computer science. For example, it is standard to identify a 

decision problem, a subset of the finite binary strings, with the element of Cantor space that 

is its characteristic sequence. In this way, complexity classes, classes of decision problems, 

can be viewed as subsets of Cantor space. However, most interesting complexity classes are 

countable and all countable sets have Hausdorff dimension 0, so Hausdorff dimension is not a 

useful measure of complexity for studying these classes. 

This problem of countabihty also occurs when Lebesgue measure is used as a notion of 

size for complexity classes - all interesting classes have measure 0. Lutz [33] overcame this 

when he introduced resource-bounded measure, an effective version of Lebesgue measure. The 

basis for this effectivization is Ville's theorem [62] that gives an equivalent way to define the 

Lebesgue measure 0 sets using martingales, functions which represent a gambler's capital in 

a fair game. Martingales were introduced by Levy [27] and Ville [62] and have also been used 

extensively by Schnorr [52, 53, 54] and others in the investigation of algorithmic randomness 

and constructive measure. 

Lutz defined the notion of resource-bounded measure 0 by imposing appropriate com-

putability and complexity constraints on the martingales from Ville's theorem. The resource 

bound is a parameter in the definition; the special cases of computable measure, polynomial-

space measure, and polynomial-time measure are of particular interest. These measures define 

a reasonable and interesting notion of size within the class DEC of decidable problems and also 

within various countable complexity classes including the class ESPACE of problems decidable 

in exponential space and the class E of problems decidable in exponential time. In particular, 

DEC does not have computable measure 0, ESPACE does not have polynomial-space mea­

sure, and E does not have polynomial-time measure 0. On the other hand, subclasses of these 

classes can have resource-bounded measure 0. 

More recently, Lutz [30, 31] has also effectivized Hausdorff dimension in much the same 
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way. The key is an analogue of Ville's theorem that characterizes Hausdorff dimension us­

ing gales, generalizations of martingales where the gambling game is not fair. This yields a 

new, simpler definition of Hausdorff dimension for Cantor space. Computability and com­

plexity constraints are placed on these gales to define a variety of effective fractal dimensions 

including constructive dimension and resource-bounded dimension. Constructive dimension 

is fundamentally related to algorithmic randomness and provides a definition of dimension 

for individual elements of Cantor space. Resource-bounded dimension is defined using a 

general resource bound as a parameter (just like resource-bounded measure) and includes 

computable dimension, polynomial-space dimension, and polynomial-time dimension as spe­

cial cases. These dimensions have the same relationship with resource-bounded measure as 

Hausdorff dimension has with Lebesgue measure. 

These effective dimensions serve as a useful notion of complexity for theoretical computer 

science. They have been shown to be closely related to several measures of complexity in­

cluding Kolmogorov complexity [43, 31, 23], Boolean circuit-size complexity [30, 23], and 

predictability [15]. Applications have also been given to the study of polynomial-time degrees 

[2] and approximate optimization [19]. 

In Chapter 3 we present the theory of effective fractal dimension and make several con­

tributions to it. Chapter 4 investigates relationships between constructive dimension and 

the arithmetical hierarchy. Classes involving polynomial-time reductions are studied using 

resource-bounded dimension in Chapter 5. The remainder of this introduction is a summary 

of the main contributions of this dissertation. 

1.1 Foundations of Effective Fractal Dimension 

In Chapter 3 we define the effective fractal dimensions and present their basic properties. 

Along the way, several foundational results are proved. We now highlight some of them. 
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1.1.1 Effective Strong Dimension 

In the 1980s, a new concept of fractal dimension, called the packing dimension, was intro­

duced independently by Tricot [61] and Sullivan [59]. Packing dimension shares with Haus­

dorff dimension the mathematical advantage of being based on a measure. Over the past two 

decades, despite its greater complexity (requiring an extra optimization over all countable 

decompositions of a set in its definition), packing dimension has become, next to Hausdorff 

dimension, the most important notion of fractal dimension, yielding extensive applications 

[13]. Packing dimension agrees with Hausdorff dimension for sets that are sufficiently regular, 

but the two dimensions can be different. 

After reviewing Lutz's gale characterization of Hausdorff dimension, we prove that packing 

dimension can also be characterized using gales in Section 3.1.1. Moreover, notwithstanding 

the greater complexity of packing dimension's definition (and the greater complexity of its be­

havior on compact sets, as established by Mattila and Mauldin [41]), our gale characterization 

of packing dimension is an exact dual of - and every bit as simple as - the gale characteri­

zation of Hausdorff dimension. (This duality and simplicity are in the statement of our gale 

characterization; its proof is more involved than its counterpart for Hausdorff dimension.) 

Effectivizing our gale characterization of packing dimension produces for each of Lutz's 

effective dimensions an effective strong dimension that is its exact dual. Just as the Hausdorff 

dimension of a set is bounded above by its packing dimension, the effective dimension of a set 

is bounded above by its effective strong dimension. Moreover, just as in the classical case, the 

effective dimension coincides with the strong effective dimension for sets that are sufficiently 

regular. 

Throughout Chapter 3 we present the theory of effective strong dimension alongside that 

of effective dimension. The material on packing dimension and effective strong dimension is 

joint work with Athreya, Lutz, and Mayordomo and is based on [5], 
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1.1.2 Gales Suffice for Constructive Dimension 

Lutz [31] originally formulated constructive dimension using supergales, functions which 

are similar to gales but lack an equality property. (Supergales are to gales as supermartin­

gales are to martingales.) For the classical and resource-bounded dimensions, it is easy to see 

that gales and supergales give equivalent definitions. For constructive dimension, Lutz used 

supergales rather than gales because he was able to show that optimal constructive supergales 

exist. These optimal supergales give constructive dimension some very nice properties. The 

questions of whether optimal constructive gales exist and whether gales can be used to equiv­

alent^ define constructive dimension were left open. In Section 3.2.1 we show that certain 

forms of optimal constructive gales do exist and that gales and supergales are equivalent for 

defining constructive dimension. This section is based on [21]. The main result is also due 

independently to Fenner [14]. 

1.1.3 Entropy Rates and Kolmogorov Complexity 

For each set X of sequences, Staiger [57] defined a kind of entropy rate that coincides 

with classical Hausdorff dimension and proved results relating a computable version of this 

entropy rate to Hausdorff dimension. In Section 3.2.2 we show that a constructive version of 

Staiger's entropy rate gives an analogous characterization of constructive dimension. We show 

in Section 3.3.2 that Staiger's computable entropy rate coincides with computable dimension 

and also that a polynomial-space entropy rate characterizes polynomial-space dimension. The 

material on entropy rates is based on [18]. 

There is a natural relationship between entropy rates and Kolmogorov complexity. In 

Section 3.3.2 we use this to extend Mayordomo's Kolmogorov complexity characterization 

of constructive dimension [43] to the computable and polynomial-space dimensions by using 

resource-bounded Kolmogorov complexity. 
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1.1.4 Log-Loss Unpredictability 

Given a set X  of infinite sequences over a finite alphabet, consider the problem of de­

signing a single predictor that performs well on all sequences in X. We define the log-loss 

unpredictability of X as the minimal average log-loss rate that a predictor can achieve on all 

members of X; here the rate is given by a limit inferior. Using a limit superior, the strong 

log-loss unpredictability of X is defined analogously. In Section 3.3.1 we show that log-loss 

unpredictability is Hausdorff dimension and that strong log-loss unpredictability is packing 

dimension. This extends to resource-bounded dimension by imposing resource-bounds on the 

predictors to define resource-bounded unpredictabilities. This result explains and illuminates 

the relationships between prediction and Hausdorff dimension that were obtained by Fortnow 

and Lutz [15], Ryabko [49, 50, 51], and Staiger [57]. This section is based on [20]. 

To overcome limitations of resource-bounded dimension for investigating certain complex­

ity classes within ESPACE, Hitchcock, Lutz, and Mayordomo [23] introduced a theory of 

resource-bounded scaled dimension. This is in analogy with the classical theory of generalized 

dimension (see [47]) that arises naturally from Hausdorff dimension. In Section 3.4 we review 

scaled dimension and develop some log-loss unpredictability tools for working with it. This 

section is based on [22]. 

1.2 The Arithmetical Hierarchy 

In Chapter 4 we investigate relationships between the arithmetical hierarchy and construc­

tive dimension. We identify the levels of the arithmetical hierarchy in which the Hausdorff 

and constructive dimensions of a set are guaranteed to be equal. The constructive dimension 

classes are precisely located in the arithmetical hierarchy. 

1.2.1 Correspondence Principles 

In early lectures on effective dimension [36], Lutz conjectured that there should be a 

correspondence principle stating that the constructive dimension of every sufficiently simple 
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set X coincides with its classical Hausdorff dimension. In Section 4.2 we provide such a 

principle, along with a new proof of an analogous correspondence principle for computable 

dimension. Our correspondence principle for constructive dimension says that for every set 

X that is an arbitrary union of n°-definable sets of sequences, the constructive and Hausdorff 

dimensions of X are equal. The correspondence principle for computable dimension (which 

was first proven by Staiger [57]) says that for every S^-definable set X of sequences, the 

computable and Hausdorff dimensions of X are equal. We show that these results are optimal 

in the arithmetical hierarchy. This section is based on [18]. 

1.2.2 Complexity of Dimension Classes 

Just as Martin-Lof [40] used constructive measure to define the randomness of individ­

ual sequences, Lutz [31] used constructive dimension to define the dimensions of individual 

sequences. Each element S of Cantor space is assigned a dimension and a strong dimension 

which are the constructive dimension of {S} and the constructive strong dimension of {S}, 

respectively. 

For any a G [0,1], let DIM" be the class of all sequences that have dimension a and 

let DIM"tr be the class of all sequences that have strong dimension a. We investigate the 

complexities of these dimension classes in terms of the arithmetical hierarchy of subsets of 

Cantor space. We show that DIM0 is properly H°, and for all A^-computable a G (0,1] we 

show that DIM" is properly H°. To classify the strong dimension classes, we introduce a 

more powerful effective Borel hierarchy where a co-enumerable predicate is used rather than 

a enumerable predicate in the definition of the S° level. We show that DIMsitr is properly in 

the H° level of this stronger hierarchy. For all Ag-computable a G [0,1), we show that DIM"tr 

is properly in the H® level of this hierarchy. This section is joint work with Lutz and Terwijn 

and is based on [24]. 
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1.3 Polynomial-Time Reductions 

In Chapter 5 we use resource-bounded dimension to investigate complexity classes involv­

ing polynomial-time reductions. 

1.3.1 Small Spans 

In Section 5.1 we use resource-bounded scaled dimension to strengthen from both ends 

the contrasting theorems of Juedes and Lutz [25] and Ambos-Spies, Merkle, Reimann, and 

Stephan [2] regarding spans under polynomial-time reductions. 

1. The small span theorem of [25] for ^-reductions [25] is strengthened from resource-

bounded measure to -3rd-order resource-bounded scaled dimension. 

2. The result of [2] that <m-lower spans and -degrees have the same dimension in E is 

extended to all orders — 2 < i < 2 of scaled dimension in E. This implies that there is 

no small span theorem in — 2nd-order scaled dimension in E. 

These results suggest that contrast between the - 2nd- and —3rd-orders of resource-bounded 

scaled dimension will be useful for studying complexity classes involving polynomial-time re­

ductions. For example, our results imply that the many-one complete degree of NP uncondi­

tionally has — 3rd-order scaled dimension 0 in E, but that in order —2 the scaled dimension of 

the complete degree is the same as the scaled dimension of NP. Scaled dimension therefore 

provides two different types of dimension for studying NP. The NP-complete degree provides 

all the dimension of NP in order -2, but in order -3 the NP-complete degree unconditionally 

has dimension 0. 

We also prove analogous results for scaled dimension in ESPACE. We are able to show 

that determining the -1st- or — 2nd-order scaled dimension of the class of complete languages 

for E within ESPACE would fully derandomize BPP or separate P from PSPACE. In contrast, 

without any hypothesis we show that the complete languages for E have — 3rd-order dimension 

0 in ESPACE and —2nd- and — lst-order dimension 1 in E. 

This section is based on [22]. 



9 

1.3.2 Degrees of Arbitrary Dimensions 

Ambos-Spies, Merkle, Reimann, and Stephan [2] showed that for any A^-computable real 

number a there is a decision problem A 6 E such that the polynomial-time many-one degree 

of A has dimension a in E. In Section 5.2 we extend this result to show that for every pair 

of ArJ-computable real numbers 0 < a < 0 < 1 there is a decision problem A € E such 

that the polynomial-time many-one degree of A has dimension a in E and strong dimension 

j3 in E. This extension uses our log-loss unpredictability characterization of polynomial-time 

dimension. 

This section is joint work with Athreya, Lutz, and Mayordomo and is based on [5]. 

1.3.3 Reductions to Nondense Languages 

Polynomial-time measure has been used by Lutz and Mayordomo [37] and Lutz and Zhao 

[39] to investigate the size of the class of problems that can be efficiently reduced to languages 

that are not exponentially dense. In order to use polynomial-time dimension to understand 

the frequency of inapproximability for the MAXSSAT optimization problem, a result similar 

to those in [37, 39] (but using weaker reductions) was proved in [19] for polynomial-time 

dimension. In Section 5.3 we strengthen the result of [19] to more powerful reductions. This 

gives a new proof of a result due to Watanabe [63] regarding the densities of hard languages 

for exponential time. 
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2 PRELIMINARIES 

We use the set Z of integers, the set Z+ of (strictly) positive integers, the set N of natural 

numbers (i.e., nonnegative integers), the set Q of rational numbers, the set R of real numbers, 

and the set [0, oc) of nonnegative reals. All logarithms in this thesis are base 2. We use 

the slow-growing function log* n = min{j e N | tj > n}, where to = 0 and tj+\ = 2^, and 

Shannon's binary entropy function H : [0,1] —• [0,1] defined by 

n(P) = P log ̂  + (1 - 0) log 

where 0 log g = 0. 

A language, or decision problem, is a set A C {0,1}*. We usually identify a language A 

with its characteristic sequence XA S C defined by xa M = if s„ G A then 1 else 0, where 

sq = A, si = 0, S2 = 1, S3 = 00,... is the standard enumeration of {0,1}*. That is, we usually 

(but not always) use A to denote both the set A Ç {0,1}* and the sequence A = xa E C. In 

the same way, classes of languages are routinely identified with subsets of Cantor space. 

A string is a finite, binary string w G {0,1}*. We write \w\ for the length of a string w and 

A for the empty string. For i, j G {0,..., \w\ — 1}, we write w\i..j] for the string consisting of 

the ith through the jth bits of w and w[i\ for w[i..i\, the zth bit of w. Note that the 0th bit 

to[0] is the leftmost bit of w and that w[i..j] = A if i > j. We also define w \ i = w[0..i - 1] 

as the first i bits of w. A sequence is an infinite, binary sequence. If S is a sequence and 

i,j G N, then the notations S[i..j], S[î], S \ i are defined exactly as for strings. We work in 

the Cantor space C consisting of all sequences. A string w G {0,1}* is a prefix of a sequence 

S G C, and we write w Ç S, if S \ |u;| = w. The cylinder generated by a string w G {0,1}* is 
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C w  = {S G C|u; Ç S}. Note that C> = C. 

Given a set A C {0,1}* and n G N, we use the abbreviations A=n = A A {0,1}" and 

A<n = A fl {0, l}-n. A prefix set is a set A Ç {0,1}* such that no element of A is a prefix of 

another element of A. 

For each i G N we define a class Gj of functions from N into N as follows [33]. 

Go - {/|(3t)(V°°n)/(n)<tn} 

(%+i = = {/ | (3g E (%)(V°°n)/(n) < 

We also define the functions & G Gj by go(n) — 2n, gi+\(n) = 2®i(log"\ We regard the 

functions in these classes as growth rates. In particular, G0 contains the linearly bounded 

growth rates and G\ contains the polynomially bounded growth rates. It is easy to show 

that each G, is closed under composition, that each / G G, is 0(^+1), and that each gi is 

o(2n). Thus Gi contains superpolynomial growth rates for all i > 1, but all growth rates in 

the Gj-hierarchy are subexponential. 

Let CE be the class of computably enumerable languages. Within the class DEC of all de­

cidable languages, we are interested in the exponential complexity classes Et = DTIME(2G'-1) 

and EjSPACE = DSPACE(2Gi_1) for i > 1. The much-studied classes E = Ei = DTIME(2linear), 

EXP = E2 = DTIME (2Polynomial ), ESPACE = Ei SPACE = DSPACE(2linear), and EXPSPACE = 

Eg SPACE = DSPACE(2polynomial) are of particular interest. 

We use the following classes of functions. 

all = {/I/: {0,1}*-^{0,1}*} 

comp = {/ G all I / is computable} 

Pi = {/ G all I / is computable in Gi time} (i > 1) 

pispace = {/ G all I / is computable in G* space} (i > 1) 

(The length of the output is included as part of the space used in computing /.) We write p 
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for pi and pspace for pispace. 

A constructor is a function S : {0,1}* —> {0,1}* that satisfies x^S(x) for all x. The 

result of a constructor S (i.e., the language constructed by 5) is the unique language R(5) 

such that én(A) C R(S) for all n € N. Intuitively, <5 constructs R(ô) by starting with A and 

then iteratively generating successively longer prefixes of R(ô). We write R(A) for the set of 

languages R(ô) such that 5 is a constructor in A. The following facts are the reason for our 

interest in the above-defined classes of functions [33]. 

i? (all) = C. 

i?(comp) = DEC. 

For i > 1, R(pi)=Ei. 

For i > 1, i?(pispace) = EjSPACE. 

If D is a discrete domain (such as N, {0,1}*, N x {0,1}*, etc.), then a function / : D —> 

[ 0 ,  o o  )  i s  A - c o m p u t a b l e  i f  t h e r e  i s  a  f u n c t i o n  /  :  N x D  — >  Q n [ 0 ,  o o )  s u c h  t h a t  | / ( r ,  x )  —  f ( x ) \  <  

2~r for all r G N and x € D and / € A (with r coded in unary and the output coded in 

binary). We say that / is exactly A-computable if f : D —> Q n [0, oo) and / 6 A. 

Let resource 6 {time, space} and let t ( n )  be a resource bound. Let i £ N. A function 

f :Nl x {0,1}* —* [0, oo) D Q is t{n)-resource exactly computable if there is a Turing machine 

that computes f ( k \ , . . .  , k i , w )  using at most i(fcH \-ki+\w\) resource for all (k\,..., ki,w) e 

N' x {0,1}*. Let g : Nl x {0,1}* —> [0, oo) be a real-valued function. An approximation of g 

is a function g : N,+1 x {0,1}* —> [0, oo) such that 

|g(%) -g(r,i)| < 2""" 

for all x 6 N* x {0,1}* and r G N. We say that g is t(n)-resource computable if there 

is an exactly £(n)-resource computable approximation g of g. A family of functions (fi : 

x {0,1}* —> [0, oo) | i 6 N) is uniformly t(n)-resource (exactly) computable if the function 

f(i,x) = fi(x) is ((n)-resource (exactly) computable. 

We say that / is lower semicomputable if there is a computable function / : D x N —> Q 
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such that 

(a) for all ( x , t )  eflx N, f ( x , t )  <  f ( x , t  +  1) <  f ( x ) ,  and 

(b) for all x  G D ,  lim^^ f { x , t )  =  f ( x ) .  

Finally, we say that / is Ag-computable if / is computable (i.e., comp-computable) relative 

to the halting oracle. 

A real number a G [0, oo) is computable (respectively, A®-computable) if the function 

/ : {0} —» [0, oo) defined by /(0) = a is computable (respectively, A^-computable). 
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3 EFFECTIVE FRACTAL DIMENSION 

This chapter introduces effective fractal dimension. First we recall the classical Hausdorff 

and packing dimensions and present their gale characterizations that form the foundation for 

the constructive and resource-bounded dimensions and strong dimensions. 

3.1 Hausdorff and Packing Dimensions 

We begin this section by reviewing the classical definitions of some fractal dimensions and 

the relationships among them. Since we are primarily interested in binary sequences and 

(equivalently) decision problems, we focus on fractal dimension in the Cantor space C. 

For each k G N, we let Afc be the collection of all prefix sets A such that A<& = 0. For 

each X Ç C, we then define the families 

If A € A k { X ) ,  then we say that the prefix set A covers the set X .  If A e %(%), then we call 

the prefix set A a packing of X. For X G C, s € [0, oo), and k e N, we then define 

# & ( % )  =  { A E . A t | ( V u , < 5 A ) C w n X ^ 0 } .  

sup 
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Since H f , { X )  and P j ! ( X )  are monotone in k .  the limits 

k—>OQ 

K—*00 

exist, though they may be infinite. We then define 

i=0 
(3.1) 

The set functions Hs and Ps have the technical properties of an outer measure [13], and the 

(possibly infinite) quantities HS(X) and PS(X) are thus known as the s-dimensional Hausdorff 

(outer) cylinder measure of X and the s-dimensional packing (outer) cylinder measure of X, 

respectively. The set function P^ is not an outer measure; this is the reason for the extra 

optimization (3.1) in the definition of the packing measure. 

Definition. Let I C C .  

1. The Hausdorff dimension of X is dimy(%) = inf{s € [0,00) | HS(X) = 0}. 

2. The packing dimension of X is dimp(X) — inf{s G [0, 00) | PS(X) = 0}. 

There is a well-known characterization of packing dimension as a modified box dimension. 

For each X Ç C and n G N, let 

The lower box dimension dimB(X), which we do not use here, is obtained by using a limit 

inferior in place of the limit superior in (3.2). When dimB(X) = dimg(%), this quantity, 

#*(%) = {w G {0,1}"|(3S e X)tu Ç 3} . 

Then the upper box dimension of X is 

diEs(X) - limsup 
n—+oo Tl 

(3.2) 
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written diniB(X), is called the box dimension of X .  

Box dimensions are over 60 years old, have been re-invented many times, and have been 

named many things, including Minkowski dimension, Kolmogorov entropy, Kolmogorov di­

mension, topological entropy, metric dimension, logarithmic density, and information dimen­

sion. Box dimensions are often used in practical applications of fractal geometry because they 

are easy to estimate, but they are not well-behaved mathematically. The modified upper box 

dimension 

is much better behaved. (Note that (3.3), like (3.1), is an optimization over all countable 

decompositions of X.) In fact, the following relations are well-known [13]. 

Theorem 3.1. For all X Ç C, 0 < dimg(X) < dimMB^) — dimp(X) < dime(X) < 1. 

The above dimensions are monotone, i.e., X C Y implies dim(X) < dim(F), and stable, 

i.e., dim(X IJ Y) = max{dim(X), dim(F)}. The Hausdorff and packing dimensions are also 

countably stable, i.e., dim(Ug0Xj) — sup{dim(Xj)|i G N}. 

3.1.1 Gale Characterizations 

In this subsection we review the gale characterization of Hausdorff dimension and prove 

the dual gale characterization of packing dimension. 

Definition. Let s G [0, oo). 

1. An s-supergale is a function d : {0,1}* —> [0, oo) that satisfies the condition 

dimMs(^) — inf < sup dims ( X i )  X  Ç |^J X ,  (3.3) 

d { w )  > 2 s [ d ( w 0 )  +  d ( w l ) ]  (3.4) 

for all w G {0,1}*. 

2. An s-gale is an s-supergale that satisfies (3.4) with equality for all w G {0,1}*. 

3. A supermartingale is a 1-supergale. 
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4- A martingale is a 1 -gale. 

Intuitively, we regard a supergale d as a strategy for betting on the successive bits of a 

sequence S G C. More specifically, d(w) is the amount of capital that d has after betting on 

the prefix w of S. If s = 1, then the right-hand side of (3.4) is the conditional expectation of 

d(wb) given that w has occurred (when b is a uniformly distributed binary random variable). 

Thus a martingale models a gambler's capital when the payoffs are fair. (The expected capital 

after the bet is the actual capital before the bet.) In the case of an a-gale, if s < 1, the payoffs 

are less than fair; if s > 1, the payoffs are more than fair. 

We use the following known generalization of the Kraft inequality. 

Lemma 3.2. (Lutz [30]) Let s G [0, oo). If d is an s-supergale and B Ç {0,1}* is a prefix 

s e t ,  t h e n  f o r  a l l  w  G  { 0 , 1 } * ,  Y l u ç B  2 ~ s ^ d ( w u )  <  d ( w ) .  

We now define two criteria for the success of a supergale. 

Definition. Let d be an s-supergale, where s G [0, oo). 

1. We say that d succeeds on a sequence S G C if 

limsupd(S f n) = oo. (3.5) 
71—• OO 

The success set of d is S°°[ci] = {S1 G C | d succeeds on S}. 

2. We say that d succeeds strongly on a sequence S G C if 

liminf d ( S  \  n )  = oo. (3.6) 
n—>oo 

The strong success set of d is 5gfr[c?] = {S G C | d succeeds strongly on S}. 

We have written conditions (3.5) and (3.6) in a fashion that emphasizes their duality. 

Condition (3.5) simply says that the set of values d(S \ n) is unbounded, while condition (3.6) 

says that d(S \ n) —» oo as n —> oo. 
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The following characterization of Lebesgue measure using martingales is foundational to 

resource-bounded measure. 

Theorem 3.3. (Ville [62]) Let X Ç C. The following conditions are equivalent. 

1. X has Lebesgue measure 0 in C. 

2. There is a martingale d with X Ç S00 [d]. 

3. There is a martingale d with X Ç S^jd]. 

Ville [62] proved the equivalence of the first two conditions. The equivalence of the second 

two conditions is well known and easy to prove. We note that replacing "martingale" by 

"supermartingale" in the theorem yields further equivalent conditions. 

The Hausdorff and packing dimensions can be similarly characterized using gales and 

supergales. For this, we define the following sets of real numbers. 

Notation. Let X Ç C. 

1. G ( X )  is the set of all s G [0, oo) for which there exists an s-gale d such that X Ç S°° [d]. 

2. Ç/str(X) is the set of all s  G [0, oo) for which there exists an s-gale d  such that X  Ç [ d ] .  

3. G ( X )  is the set of all s  G [0, oo) for which there exists an s-supergale d  such that 

X ç 

4. <?str(X) is the set of all s G [0, oo) for which there exists an s-supergale d such that 

% C 

Note that s '  >  s  G G ( X )  impliçg that s '  G G ( X ) ,  and similarly for the classes <?str(X), 

G(X), and Qslr(X). The following fact is also clear. 

Observation 3.4. For all X ç C, G{X) = Q(X) and GstI(X) = §stT(X). 

For Hausdorff dimension, Lutz proved the following fundamental theorem. 
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Theorem 3.5. (Gale Characterization of Hausdorff Dimension - Lutz [30]) For all X Ç C, 

d i m H ( X ) = m î g ( X ) .  

In analogy with Ville's martingale characterization of Lebesgue measure in Theorem 3.3, 

Lutz proved the gale characterization of Hausdorff dimension by showing that for all X Ç C, 

H S ( X )  —  O  i f  a n d  o n l y  i f  t h e r e  i s  a n  s - g a l e  d  w i t h  X  Ç  , 3 ' ° °  [ d ] .  

The following theorem is a dual of Theorem 3.5 for packing dimension. 

Theorem 3.6. (Gale Characterization of Packing Dimension) For all X Ç C, 

dimp(X) = inf9^(X). 

We will use the following lemma to prove Theorem 3.6. 

Lemma 3.7. For each family of sets {X^ Ç C \k G N}, INF Gstr (Ufc ^k) = SUPFC INF 5STR(^FC). 

Proof. The inequality inf 5str(Uk ^k) > supfe inf Q s t x { X k )  holds trivially. 

To prove that inf Sstr(Ufc ^ k )  < supfc inf Q s t T ( X k ) ,  let s  > supfc inf Q s t r ( X k ) .  Then for each 

k G N there is an s-gale such that Xk Ç S^r[cifc]. We define an s-gale d by 

v 2 — k 
d ( w )  =  TTTT '4M 

FCEN ' 

for all w  G {0,1}*. Then for each k ,  for any S  G X k ,  we have 

I" n) > T n) 

for all n, so S  G 5%[D]. Therefore \ J k X k  Ç S^T[d] and the lemma follows. • 

Proof of Theorem 3.6. Let X Ç C. By Theorem 3.1, it suffices to show that DIMME(^) = 

inf es*PC-

To see that dimMs(^) < inf 5str(X), let s > inf 5str(X). It suffices to show that 

dimMB(X) < s. 
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By our choice of s, there is ail s-gale d such that X C S^°r[D]. For each n G N, let 

g* = {%, E {0,1}" I dM > d(A)} 

and 

Yn = {S € C | S \ n G Sn}. 

For each i G N, let 
OO 

n—i 

and note that 

X (= |J %i. (3.7) 
i=0 

For all n > % G N, we have Xt Ç Yn, whence the generalized Kraft inequality (Lemma 3.2) 

tells us that 

#„(%() < ^%) = |Bn| < 2"". 

It follows that, for all i G N, 

dims (Xi) = lim sup < S) 
n—*00 Tl 

whence by (3.7), 

dimMB(X) < sup dims(XJ < s. 

To see that inf Q s t r { X )  <  dimMs(X), let s  >  s '  >  s "  >  dimMB(X). It suffices to show 

that inf GstT{X) < s. Since s" > dimMs(X), there exist sets Xq, Xi, ... Ç C such that 

X = Ul=o Xi and dimg(X%) < s" for all i G N. By Lemma 3.7, it suffices to show that 

s G g^(Xi) for all i E N. 

Fix Î É N . Since dime(XI) < s", there exists no G N such that, for all n > no, log ^(*0 < 

s", i.e., Nn(Xi) < 2s"n. For each n > n0, let 

^ - {g ^ i g e xj 
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(noting that \An\ = Nn ( X i ) ) ,  and define dn : {0,1}* —> [0, oo) by 

2(S-S')N| ^ 2~S'M if \w\ < n 
u 

WueAn 

2(S_1)(I"'I~n^dn(w f n) if |w| > n 

^n('f) — < 

It is routine to verify that d n  is an s-gale for each n > u q . Note also that d n ( w )  =  2^ s''n for 

all n > no and w £ An. Let d = Y^=no ^n- Then 

OO OO OO 
d(A) = dn(A) = E ^(X,)2-"'" 

71=710 71=710 71=710 
OO 

< < oo, 
71=710 

so d  is an s-gale by linearity. Let S  G X i .  Then, for all n > no, S | n G An, so 

d(S r n) > cL(^ r ^) > 

Thus S  € 5^.[ci]. This shows that X i  Ç 5^.[ d ] , whence s  S Q s t r ( X i ) .  •  

By Observation 3.4, we could equivalently use Q ( X )  and Q s t T ( X )  in Theorems 3.5 and 3.6, 

respectively. 

3.2 Constructive Dimensions 

In this section we present the constructive dimensions, the most fundamental of the ef­

fective dimensions. Constructive dimension was introduced by Lutz [31] as an effectivization 

of Hausdorff dimension by using constructive supergales. Packing dimension is effectivized in 

the same way to give constructive strong dimension. 

Definition. An s-supergale d is constructive if it is lower semicomputable. 

Notation. Let ICC. 
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1. 5constr(-X") is the set of all s G [0, oo) for which there exists a constructive s-gale d such 

that X Ç S°° [d]. 

2. ^constr(^) is the set of all s € [0, oo) for which there exists a constructive s-gale d such 

that X Ç [d]. 

3. Ç/Constr(^0 is the set of all s € [0, oo) for which there exists a constructive s-supergale d 

such that X C S°° [d]. 

4. 5constr(^0 the set of all s G [0, oo) for which there exists a constructive s-supergale d 

such that X Ç S^T [d]. 

Constructive dimension [31] and constructive strong dimension are defined as follows. This 

definition is motivated by Theorems 3.5 and 3.6. Intuitively, constructive dimension is a con­

structive version of Hausdorff dimension and constructive strong dimension is a constructive 

version of packing dimension. 

Definition. Let I C C .  

1. The constructive dimension of X is 

cdim(Jf) = inf £Constr(I)-

2. The constructive strong dimension of X is 

cDim(X) - inf 

The constructive dimensions have the following relationship with each other and the Haus­

dorff and packing dimensions. 

Observation 3.8. For any I C C ,  

0 < dime (I) < cdim(I) 

IA IA 

< dimp(I) < cDim(X) < 1. 



23 

It will be very useful to consider the dimensions of individual sequences. 

Definition. Let S G C. 

1. The dimension of S is 

dim (S1) = cdim({5}). 

2. The strong dimension of S is 

Dim(S) = cDim({5}). 

Martin-Lof [40] used constructive null sets (Martin-Lof tests) to give a definition of indi­

vidual randomness for sequences that is now commonly called Martin-Lof randomness. This 

randomness notion is robust and has many equivalent definitions. In particular, Schnorr 

[52, 53] showed that Martin-Lof randomness can be equivalently defined using constructive 

martingales and supermartingales. Let RAND be the class of all Martin-Lof random se­

quences. 

Theorem 3.9. (Schnorr [52, 53]) Let S G C. The following conditions are equivalent. 

1. S £ RAND. 

2. There is a constructive martingale d with S G S00 [ci]. 

3. There is a constructive supermartingale d with S G S°° [d]. 

The dimension of individual sequences refines Martin-Lof nonrandomness. 

Proposition 3.10. (Lutz [31]) Let S G C .  If dim(S) < 1, then S 0 RAND. 

Proof. Assume that dim(S') < 1 and let d be a constructive s-supergale with S G 5°° [d] and 

s < 1. Since d is a supermartingale, S 0 RAND by Theorem 3.9. • 

Schnorr showed that there are optimal constructive supermartingales and martingales. We 

will use the following notion of optimality for constructive supergales. 
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Definition. Let d* be a supergale and let V be a class of supergales. We say that d* is 

multiplicatively optimal for V if for each d € V there is an a > 0 such that d*(w) > ad(w) 

for all  w € {0,1}*.  

Lutz used Levin's universal constructive semimeasure [64] to show that there exist multi­

plicatively optimal supergales. 

Theorem 3.11. (Lutz [31]) For any computable s 6 [0, oo) there is a constructive s-supergale 

d(s) that is multiplicatively optimal for the class of constructive s-supergales. 

Proof. A semimeasure is a function u : {0,1}* —> [0, oo) satisfying v(w0) + v{w 1) < v(w) (i.e., 

a 0-gale). Levin [64] proved that there is a constructive semimeasure M that is multiplicatively 

optimal for the class of all constructive semimeasures. The s-gale we want is defined by 

= 2'HM(w) 

for all w e {0,1}*. • 

Corollary 3.12. Let X Ç C. Let s > cdim(X) and t > cDim(Jf) be computable. Then 

% ç and X ç %[d%]. 

Proof. Since s > cdim(X), for some s' < s there is a constructive s'-supergale ds* such that 

X Ç S'00[ds']. Since s' < s, ds> is also a constructive s-supergale, so S°° [dy] Ç 5°° [d'®)] by 

Theorem 3.11. The proof that X Ç 5^r[d(^] is analogous. • 

The following is a cornerstone of constructive dimension theory. 

Theorem 3.13. (Lutz [31]) For any X C C ,  

cdim(X) — sup dim(S) 

and 

cDim(X) = sup Dim(5). 
sex 
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Proof. We prove the first equality; the proof for strong dimension is analogous. Let 

r = sup dim(S). 

The inequality cdim(Jf) > r is clear by monotonicity. For the other inequality, let t > 

r be computable. For each S Ç I, we have dim(S) < t, so S G S00[d^] by Corollary 

3.12. Therefore X Ç S100^')] and cdim(X) < t. As t > r is an arbitrary computable real, 

cdim(X) < r follows. • 

Mayordomo showed that constructive dimension has a fundamental relationship with Kol-

mogorov complexity. 

Theorem 3.14. (Mayordomo [43]) For any S G C, 

#(g [ n) 
dim(S) — lim inf -

n 

and 

%(g r n) 
Dim(S') = lim sup • 

n 

Proof. We give the proof for dimension; the proof for strong dimension is analogous. 

Let t > dim(S) be rational. Then by Corollary 3.12, S G S°° [d^]. Recall from the proof 

of Theorem 3.11 that d.^(w) — 2tlu,lM(u>) for all w G {0,1}*. Since d^ succeeds on 5, there 

is an infinite set J such that d^S f n) > 1 for all n G J. Therefore 

- log M(S I" n) < - log 2~ tn  = tn 

for all n G J. As 

| - logM(u;) - K(w)\ — 0(log |w|) (3.1) 

(see [28]), the inequality 

n—>oo n 
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follows. 

Now let 

t > s > r > lim inf K^S ^ 
n—>oc n  

be rational. Then for infinitely many n, K(S \ n) < rn. Then using (3.1), there is an infinite 

set J such that — log M(5 \ n) < sn for all n G J. Therefore 

d W ( g  r  n )  =  2 ^ M ( g  [  n )  >  2 ^ - ' ) "  

for all n € J, so S G 5°°[d(i)] and dim(S') < t. • 

Note that any of the usual variants of Kolmogorov complexity can be used in Theorem 

3.14 as they all coincide up to a logarithmic additive term. 

The rate at which a gambler can increase its capital when betting in a given situation is 

a fundamental concern of classical and algorithmic information and computational learning 

theories. In the setting of constructive gamblers, the following quantities are of particular 

relevance. 

Definition. Let d be a supermartingale, let S G C, and let ICC. 

1. The lower d-Lyapunov exponent of S is 

n—>00 n 

2. The upper d-Lyapunov exponent of S is 

A„(S) = limSupÏ3 
n—>oc Tl 

3. The lower Lyapunov exponent of S is 

A(S) = sup{Acj(S)|ii is a constructive supermartingale}. 
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4- The upper Lyapunov exponent of S is 

A(S) — sup{A^(S)|ci is a constructive supermartingale}. 

5. The lower Lyapunov exponent of X is 

A(X) = inf A(S). 
gex 

6. The upper Lyapunov exponent of X is 

A(X) = inf A(S). 

Lyapunov exponents such as these were investigated by Schnorr [53, 55], Ryabko [51], and 

Staiger [57, 58] (using slightly different notations) prior to the effectivization of Hausdorff 

dimension. The quantities Ad(S) and Ad(S) are also called "exponents of increase" of d on S. 

It is implicit in Staiger's paper [57] that 

•A-comp('S') = 1 — dimcomp (S1) 

for all Se C, where Acomp(,S') is defined like A (S) above, but with d required to be a 

computable martingale. Similar reasoning leads to the following characterizations of the 

Lyapunov exponents. 

Theorem 3.15. Let S G C and X Ç C. Then A (S) = 1 - dim(S), A (S) = 1 - Dim(S), 

A(X) — 1 — cdim(AT), and X(X) — 1 - cDim(AT). 

Proof, We show that A(S) — 1 — dim(S). A similar argument shows that A(5) — 1 — Dim(S). 

By Theorem 3.13, A(X) — 1 — cdim(X) and A(%) = 1 — cDim(X) follow from the statements 

about sequences. 

Let t < s < A(S) with t computable, and let d be a constructive martingale for which 

Ad(S) > s. Then for infinitely many n, d(S \ n) > 2s". Define a constructive (1 - t)-
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gale d1 by d'(w) — 2^w<[d(w) for all w G {0,1}*. Then for infinitely many n, we have 

d'(S \ n) = 2~tnd(S f n) > 2^s~^n, so S G S°° [d]. Therefore dim(S') < 1 - t. This holds for 

all computable t < A(S'), so dim(5) < 1 — A(S). 

Let s > dim(S) be computable, and let d be a constructive s-gale with S G S°° [d]. Define 

a constructive martingale d' by d'(w) = for all w G {0,1}*. For infinitely many 

n, we have d(S \ n) > 1, and for each of these n, d'(S \ n) > 2^"^". Therefore Ad'(S) > 1 -s, 

so A (S) > 1 - s. This holds for all s > dim(5), so A(S') > 1 — dim(S). • 

In the classical case, Tricot [61] has defined a set to be regular if its Hausdorff and packing 

dimensions coincide, and defined its irregularity to be the difference between these two fractal 

dimensions. Analogously, we define the c-irregularity (i.e., constructive irregularity) of a 

sequence S G C to be Dim(S') — dim(S), and we define the c-irregularity of a set X Ç C to be 

cDim(X) — cdim(X). We define a sequence or set to be c-regular (i.e., constructively regular) 

if its c-irregularity is 0. 

As the following result shows, the c-irregularity of a sequence may be any real number in 

[0,1]. 

Theorem 3.16. For any two real numbers 0 < a < (3 < 1, there is a sequence S G C such 

that dim(S) = a and Dim(S') = (3. 

Proof. Let R be a Martin-Lof random sequence. It is well-known that 

# ( . R r n ) > n - 0 ( l ) .  ( 3 . 2 )  

Write R = ... where \rn\ = 2n - 1 for all n. Note that \r\ • • • rn\ — n2. 

For each n, define 

if log* n is odd 
In — 

and let 

if log* n is even, 

k-n — [|rn|7n] • 
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We now define S G C as 

Note that for all n, 

MM = [>n|(l+ 7n)l 

r^knll if log1" n is odd 

if log* n is even. 

Let w C S. Then for some 

w = riOkl  • • • rn-iOfcn_1r'0-7 

where r'n Ç rn and 0 < j < kn. We have 

Also, 

< K(n - - - r„_ir;) + AT(A=i) + - - - %_i) + + O(l) 

< In • • - T n -ir'nl + 0(nlogn) 

< (n - l)2 + 0(n log n). 

+ AT(ki) + ... + + A:(;) + O(l) 

<  K  ( w )  +  0 ( n  log n), 

so by (3.2), 

K ( w )  >  K ( n  •  • • r n - . i r ' n )  -  0 ( n logn) 

> |n • • • rn-\r'n\ - O(nlogn) 

> (n - l)2 - O(nlogn). 
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We bound the length of w in terms of n as 

M > |n| ( l  + 7i)  + •••  + | rn- i | (1 + 7n-i)  + Ir 'n  

I n • • - r n _ i |  > 
(3 

- ± ( » - l ) '  

and 

From (3.3) and (3.5), we have 

and (3.4) and (3.6) yield 

For each n, let 

wn — riO fc l  • • • rn0kn. 

(3.5) 

M < I r i I(  1  + 7i)  + • • -  + |rn_i |( l  + 7n-i)  + |r„ |( l  + Jn) + n 

<  l r i - ' - r " - i r " l  +n (3.6) 
a 

< -(n + l)2 .  
a 

Iimsup jgiM < Mmsup (" - ')' + = ft (3.7) 
m—»oc Wi n—>00 ^ (77- — 1) 

lim inf > iimi„f <" ~ 'f - 0("'°g"> = (3.8) 
m—> oo m n—>00 + 1)^ 

Recall the sequence of towers defined by tj by to = 1 and = 2<J. If j is even, then for all 
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t j - 1 < i  <  t j ,  7i = Then 

\w t j  I < tj + ̂ 2 lr«|(l + 7i) 
2=1 

tj-l tj 

= 4 + Zl^l(i + ̂ ) + 3 Ë hi 
i=i M i=tj_1+i w-y; 

- ̂ 

^^2 , 1 /42 4.2 

a 

~ ~/3  ̂ + ̂  + ̂ ((^S^)2)-

Similarly, if j is odd, we have 

tj 

\wh \ ^ ^]lnl(i + 7i) 
i=l 
t j ~  i ^ tj 

= 53 I^K1 + 7i) + - 53 |r,; 
Q 

î=l i=ij_i + l 

> —d - 0((log*j)2). 

Combining (3.4) and (3.9), we have 

(3.10) 

limsupSy^ > limsup^l > (3.11) 
m—>00 TTl n—>oo \wt2n  I 

Putting (3.3) together with (3.10) yields 

< lim inf !̂ 4 < a. (3.12) 
m^oo m n-^oo l^+il 

By Theorem 3.14, (3.8), and (3.12), we have dim(S') = a. We also have Dim(S') = f3 from 

Theorem 3.14, (3.7), and (3.11). • 

Examples of c-regular sequences that are more natural than those given by Theorem 3.16 

can be obtained by generalizing the construction of Chaitin's random real number f2 [11]. 
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Mayordomo [43] and, independently, Tadaki [60] defined for each s G (0,1] and each infinite, 

computably enumerable set AC {0,1}*, the real number 

where U is a universal self-delimiting Turing machine. Given Theorem 3.14, the following fact 

is implicit in Tadaki's paper. 

Theorem 3.17. (Tadaki [60]) For each s G (0,1] and each infinite, computably enumerable 

set A C {0,1}*; the (binary expansion of the) real number 0S
A is c-regular with dim(é^) = 

Dim(y^) = s. 

3.2.1 Gales Suffice for Constructive Dimension 

In [35], a conference paper preceding [31], Lutz defined constructive dimension using con­

structive gales. There Lutz used an incorrect assertion about martingales to argue that for 

each computable s there exists a constructive s-gale that is multiplicatively optimal for the 

class of constructive s-gales. These "optimal gales" were then used to prove Theorem 3.13. 

These flawed arguments were subsequently noticed and corrected in [31] by reformulating 

constructive dimension in terms of constructive supergales. The multiplicatively optimal su­

pergales of Theorem 3.11 exist and Theorem 3.13 is true in the reformulation. However, 

Lutz left open the questions of whether there exist optimal constructive gales and whether 

constructive dimension can be equivalently defined using constructive gales. We now address 

these questions. 

Theorem 3.18. Let 0 < r < t be computable real numbers. Then for any constructive r-

supergale d, there exists a constructive t-gale d' such that S°° [d] Ç S°° [d'\ and S^r[d] Ç S^jd']. 

Proof. Let d be a constructive r-supergale, and assume without loss of generality that d(A) < 

1. Define the language A = {w G {0, l}*|d(w) > 1}. Observe that A is computably enumer-
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able. For all n G N, 

E d M < 2 " ,  
tu€{0,l}n 

SO |A=n| < 2^". 

For each n € N, define a function d'n : {0,1}* —> [0, oo) by 

<4 M ̂  
n 2~t(n-\w\) .  |{^ g A=n\w Ç u}| if |to| < 

2( t~1)(lW\~n)d'n{w \ n) if |it;| > n 

Then for all n, d'n is a (-gale and d'n(w) — 1 for all w € A=n. 

Let s G (r, t) be computable and define a function d' on {0,1}* by 

OO 

n=o 

Then 
OO OO 

(f(A) = < OO, 
71=0 71 =0 

and it follows by induction that d'(w) < oo for all strings w. Therefore, by linearity, d' is a 

(-gale. Also, because the language A is computably enumerable, d! is constructive. 

For all w G A, 

> 2("-'")l^l^|(w) = 2^-'")^l. 

If S G S°° [d], then S has infinitely many prefixes in A, so it follows that S G S00^']. Similarly, 

if S G S^T[d], then all but finitely many prefixes of S are in A, so S G S^T[d'\. • 

Constructive dimension and constructive strong dimension may now be equivalently de­

fined using gales instead of supergales. 

Theorem 3.19. For all X Ç C, 

cdim(X) = inf SConstr(I) 
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and 

cDim(X) = mfG^(X). 

Proof. Because any gale is also a supergale, 5œnstr(Af) Ç Sconstr(^), so 

cdim(X) = inf&onstrW < inf <7constr(X) 

is immediate. 

Let t > r > cdim(X) be computable real numbers and let d be a constructive r-supergale 

such that X Ç S°° [d]. By Theorem 3.18, there is a constructive it-gale d! such that X Ç 

S00 [d] Ç S°°[d'], so t E 5constr(I)- As this holds for any computable t > cdim(X), we have 

inf (/constr(I) < cdim(X). 

The proof for constructive strong dimension is analogous. • 

We can also state the existence of a form of optimal constructive gales. 

Definition. Let d* be a supergale and let T> be a class of supergales. We say that d* is 

success-optimal for V if for every d E V, S°° [d] C S°°[d*] and 5^.[d] Ç S^r[d*]. 

Corollary 3.20. For all computable real numbers t > r > 0 there exists a constructive t-gale 

that is success-optimal for the class of constructive r-supergales. 

Proof. Let dM be the constructive r-supergale from Theorem 3.11 that is multiplicatively 

optimal for the constructive r-supergales. Take the constructive t-gale d' from Theorem 3.18 

that succeeds everywhere that does. Therefore ^°°[d] Ç S°° [d^r)] Ç S°° [dz] (and similarly 

for strong success) for any constructive r-supergale d, so the corollary is proved. • 

The optimal gales provided by Corollary 3.20 may not be technically as strong as possible, 

in two respects. 

1. Lutz's optimal constructive r-supergale is multiplicatively optimal, whereas our optimal 

constructive t-gale is only success-optimal. Does there exist a constructive t-gale that 

is multiplicatively optimal for the class of constructive r-supergales? 
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2. Our proof seems to require the hypothesis t > r. Does there exist a constructive r-gale 

that is success-optimal for the class of constructive r-supergales? 

However, the optimality in Corollary 3.20 remains strong enough to directly prove Theorem 

3.13 using the gale definition of Theorem 3.19. 

3.2.2 Entropy Rates 

In this section we show that the constructive dimensions characterize entropy rates of the 

type investigated by Staiger [56, 57], 

Definition. Let A Ç {0,1}*. 

1. The entropy rate of A Ç {0,1}* is 

In [56, 57], A10' is called A5, the 5-limit of A. Staiger observed that Ha has a useful 

alternate characterization. 

2. We define the sets of sequences 

A ' °  = { S E C | ( B ° ° n ) g r n E A }  

and 

A^ - C|(V°°n)S rne A}. 

Lemma 3.21. (Staiger [56]) For any A C {0,1}*, 

= inf 2-*H < oo 

Proof. Let 
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Let s > H a and e = s — H a- Then for some no, we have 

f f A  +  i > t o 8 l A -
2 M 

for all n > no. We have 

and 

52 2™s|u'1 = 53 2-(//a+£)|u'1 = 53 |A=n|2 
iuEA u?EA n=0 

OO OO / lop- IA- I \ 
jP |A=n|2"(//A+f)n2"ln < |A=n|2™( ^7n2~t n 

n=rio n=no 
oo 

-
n=no 

< OO, 

SO 

E 2  -s|to| < oo. 
uieA 

Therefore r < s. As s > /ZA is arbitrary, we have r < i/^. 

For the other inequality, let s > r. Then since 

OO 

5]2-'"|VLn| = 5]2-'M Oo, 
71=0 MJEA 

there is some no such that 2~sn|A=n| < 1 for all n > no- Therefore 

log |A=Î] < s 
n 

for all n > no, so H a < s. Since s > r is arbitrary, we have < r. • 

We now give a general definition of entropy rate of a class of sequences that takes a class 

of languages as a parameter. 
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Definition. Let X Ç C and let C be a class of languages. 

1. The C-entropy rate of X is 

Mc(%) = mf{#A | % ç A' ° A € C}. 

2. The strong C-entropy rate of X is 

M^(X) = inf{#4 | % ç anj A E C}. 

For now we are interested in the cases when C  = ALL, the class of all languages, and C  =  CE, 

the class of computably enumerable languages. In Section 3.3.2 the PSPACE- and DEC-

entropy rates will also be of interest. 

The classical Hausdorff and packing dimensions may be characterized in terms of entropy 

rates. 

Theorem 3.22. For any ICC, 

dimH(I) = WALL (I) 

and 

dimp(I) = 

Proof. A proof of the Hausdorff dimension part can be found in [56]; it also follows from 

Theorem 32 of [47]. We omit a proof for packing dimension. (Both parts can also be proved 

using the arguments from the proofs of Lemmas 3.23 and 3.24 below.) • 

In analogy with Theorem 3.22 we will show that the constructive dimensions can be 

characterized using the constructive entropy rates HCE(X) and TYq^X). First we show that 

the dimensions are lower bounds of the entropy rates. 
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Lemma 3.23. For any ICC, 

cdim(X) < McE(AT) 

and 

cDim(X) < 

Proof. Let A Ç {0,1}* and let t > s > H a- For each n£N, define a function dn : {0,1}* —> 

Then each dn is a (-gale. Define a function d on {0,1}* by d = ^ ^"dn- Then 

because s > H a- By induction, d(w) < oo for all strings w, so d : {0,1}* —» [0, oo). By 

linearity, d is also a (-gale. For any tu G A, we have 

so it follows that A1'0' C S°° [d] and Aa e- Ç S^.[c?]. 

Let r > T-Cce( X )  be arbitrary. Then there is a computably enumerable A with X  Ç A' °-

and Ha < r. We can also choose ( and s computable so that Ha < s < t < r. Because A is 

computably enumerable, the (-gale d defined above is constructive. Since X Ç A10, C 5°° [d], 

we have cdim(X) < ( < r. As this holds for all r > Hce{X), we have cdim(X) < Hce{X). 

The proof that cDim(AT) < Wgg(X) is analogous to the previous paragraph. 

[0, oo) by 

d(A) = = 5] 2-*W < oo 

• 

Next we give lower bounds for the dimensions by entropy rates. 
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Lemma 3.24. For all X Ç C, 

H C E ( X )  < cdim(X) 

and 

< cDim(I). 

Proof. Suppose that d is an s-supergale with X Ç S°° [d]. Assume without loss of generality 

that d(A) < 1 and let A = {w \ d(w) > 1}. Then for all n G N, 

E d(w) < 2"" 
u)e{o,i}n 

and \A=n\ < 2sn. Also, X Ç S°°[d] Ç A10'. For any t > s, 

OO OO 

2-W = 5]2-*"|A^| < < oo, 
tueA n=0 n=0 

so H a < t. Therefore H a < s. 

If we let s > cdim(X) be computable, then there is a constructive s-supergale d with 

X Ç 5°°[d]. Then the set A defined above is computably enumerable and X Ç A10', so 

HCE{X) < HA- We showed that HA < s, so HCE(X) < s. Therefore HCE(X) < cdim(X). 

The proof that < cDim(X) is analogous. 

• 

We now have an equivalence between constructive entropy rates and the constructive 

dimensions. 

Theorem 3.25. For all ICC, 

cdim(X) = H C E ( X )  

and 

cDim(X) -
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Proof. This follows immediately from Lemmas 3.23 and 3.24. • 

3.3 Resource-Bounded Dimensions 

In this section we define resource-bounded dimension and resource-bounded strong di­

mension. Resource-bounded dimension was introduced by Lutz [30] by effectivizing the gale 

characterization of Hausdorff dimension (Theorem 3.5) in much the same way that the martin­

gale characterization of Lebesgue measure (Theorem 3.3) was effectivized to define resource-

bounded measure [33]. 

Unless otherwise specified, A denotes any of the resource bounds defined in Chapter 2. 

We begin by recalling the definition of resource-bounded measure. This is done by restricting 

the martingales in Theorem 3.3 to be A-computable. 

Definition. Let XÇC. 

1. We say that X has A-measure 0, and write p/\(X) = 0, if there is a A-computable 

martingale d such that X Ç S00 [d]. 

2. We say that X  has A-measure 1, and write P A { X )  = 1, if P a(Ie) = 0. 

3. We say that X has measure 0 in R(A), and write p(X \ R(A)) = 0, if p/\(Xr\R(A)) = 0. 

4- We say that X has measure 1 in R(A), and write p(X \ R(A)) = 1, if p&{Xc \ R{A)) = 

0. 

The definition of measure in R(A) is justified by the following theorem. 

Theorem 3.26. (Measure Conservation Theorem (Lutz [33])) p&{R(A)) ^ 0. 

In particular, Theorem 3.26 implies that the conditions pa{X | R(A)) = 0 and p&{X \ 

R(A)) = 1 are mutually exclusive. 

To effectivize the Hausdorff and packing dimensions, we use A-computable gales and 

supergales. The following sets are similar to those defined in Section 3.2 that were used for 

the constructive dimensions. 
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Notation. Let X  Ç C. 

1. gA(X) is the set of all s G [0, oo) for which there exists a A-computable s-gale d such 

that X C 

2. <?£r(X) is the set of all s G [0, oo) for which there exists a A-computable s-gale d such 

that X Ç S^T [d]. 

3. Q A ( X )  is the set of all s G [0, oo) for which there exists a A-computable s-supergale d 

such that X Ç S°° [d]. 

4. Qs£r(X) is the set of all s G [0, oo) for which there exists a A-computable s-supergale d 

such that X Ç S°° r  [d]. 

The following effectivizations of Hausdorff and packing dimension are motivated by The­

orems 3.5 and 3.6. 

Definition. Let X Ç C and S G C. 

1. The A-dimension of X is 

dimApO =inf G A ( X ) .  

2. The A-strong dimension of X is 

DimA(X) - inf gg'(X). 

3. The dimension of X in R(A) is 

dim(X | #(A)) = dimA(X n #(A)). 

4- The strong dimension of X in R(A) is 

Dim(X | R(A)) = DimA(X n R(A)). 
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The polynomial-time dimensions dimp(X) and Dimp(X) are also called the feasible di­

mension and the feasible strong dimension, respectively. The notation dimp(X) for the p-

dimension is all too similar to the notation dimp(X) for the classical packing dimension, but 

confusion is unlikely because these dimensions typically arise in quite different contexts. 

Note that the classical Hausdorff and packing dimensions can each now be written in three 

different ways, i.e., 

dimn(I) = diman(X) = dim(X | C) 

and 

dimp(JsT) = Diman(X) = Dim(X | C). 

In the definition of the resource-bounded dimensions, we could equivalently use the "hat­

ted" sets QA{X) and in place of their unhatted counterparts. This is immediate from 

the following exact computation lemma. 

Lemma 3.27. (Lutz [30]) If d is a A-computable s-supergale and 2s  is rational, then there is 

an exactly A-computable s-gale d such that S"°°[d] Ç S°°[d\ and [d] C S^r[d]. 

We now give some basic properties of the resource-bounded dimensions. 

Observations 3.28. Let X, Y Ç C and let A, A' be resource-bounds. 

1. 0 < dimA(I) < DimA(I) < 1. 

2. If X Ç Y, then dirndl) < dimA(y) and DimA(I) < DimA(y). 

3. If A Ç A', then dimA'(X) < dimA(I) and DimA'(I) < Dim A (I). 

Resource-bounded dimension refines resource-bounded measure in the following way. 

Proposition 3.29. (Lutz [30]) Let X Ç C. 

1. //dimA(I) < 1, then H A { X )  =  0. 

2. If dim(X | /2(A)) < 1, then fi(X | R(A)) — 0. 
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Proof. Assume that dirndl) < 1 and let d be a A-computable s-gale with X Ç 500 [d\ 

and s < 1. Then d is a 1-supergale, so by Lemma 3.27, there is an exactly A-computable 

martingale (i.e., a 1-gale) d with S°°[d\ Ç S°°[d], so HA(X) = 0. • 

That is, sets that do not have A-measure 0 have A-dimension 1. In particular, from 

Theorem 3.26, we have the following. 

Corollary 3.30. (Lutz [30]) 

1. dimp(E) = Dimp(E) = 1. 

2. dimp2 (EXP) = DimP2 (EXP) = 1. 

3. dimpspace (ESPACE) = Dimpspace (ESPACE) = 1. 

4 .  dim?2Space(EXPSPACE) = DimP2space(EXPSPACE) = 1. 

On the other hand, "slices" of these classes have A-dimension 0. 

Proposition 3.31. (Lutz [30]) Let c G N. 

1. dimp(DTIME(2cn) = Dimp(DTIME(2cn)) = 0. 

2. dimP2 (DTIME(2"C) - DimP2 (DTIME(2"C)) = 0. 

g. dimpspace(DSPACE(2^) = Dimpspace(DSPACE(2™)) = 0. 

dimp^p^(DSPACE(2"') = Dimp^p^e(DSPACE(2"')) = 0. 

It is possible for a subclass of R{A) to have A-dimension strictly between 0 and 1, but so 

far this is not known to hold for any standard complexity class. 

3.3.1 Log-Loss Unpredictability 

In this section we establish a fundamental relationship between the Hausdorff and packing 

dimensions and log-loss prediction. 

Consider predicting the symbols of an unknown infinite sequence. Given an initial finite 

segment of the sequence, a predictor specifies a probability distribution over {0,1}. We may 
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think of the probability that the algorithm assigns to each character as representing the 

predictor's confidence of that character occurring next in the sequence. Formally, we define a 

predictor as follows. 

Definition. A function -k : {0,1}* x {0,1} —> [0,1] is a predictor if for all w G {0,1}*, 

n(w, 0) + 7T ( W ,  1) =  1 .  

Here we interpret ir(w,b) as the predictor TT'S estimation of the likelihood that the bit im­

mediately following the string w is b. There is a natural correspondence between predictors 

and gales. (An early reference for the following type of relationship between prediction and 

gambling is [12].) 

Notation. 1. A predictor TT induces for each s G [0, oo) an s-gale d^ defined by the 

recursion 

dW(A) = 1 

d^(wa) = 2sd^\w)ir(w, a) 

for all w 6 {0,1}* and a G {0,1}; equivalently 

M-i  

d^(w) = 2s'tu' n(w I" w[i]) 
i=0 

for all w G {0,1}*. 

2. An s-gale d with d(A) — 1 is induced by the predictor defined by 

7Td(w,a) = < 

-i-s d(wa) 

^ otherwise 

for all w G {0,1}* and a G {0,1}. 

The following observation is simple but useful. 
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Observation 3.32. 1. Let s be rational and ir be a predictor. If it is A-computable, then 

2. Let 2s be rational and d be an s-gale. If d is exactly A-computable, then is exactly 

A-computable. 

In judging the performance of a predictor on a sequence, it is instructive to consider its 

"loss" on individual bits of the sequence. A standard way to do this is the log-loss function 

(see [44]). If the probability that the predictor assigned to the correct bit is p, then we assign 

a loss of 

log-
P 

to that prediction. If p = 1, then the loss is 0. As p approaches 0, the loss becomes infinite. 

Using P — \ achieves a loss of 1 no matter which bit occurs. 

In the following definition we write 11(A) for the class of all A-computable predictors. 

Definition. Let ui G {0,1}*, S G C, and X Ç C. 

1. The cumulative log-loss of n on w is 

d\^ is A-computable. 

2. The log-loss rate of I T  on S is 

Ôog{ir, S) = liminf 
n 

3. The strong log-loss rate of TT on S is 

£g°®(7r, S) = lim sup 
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4- The (worst-case) log-loss of I T  on X is 

£ log(n,X) = sup C log(n, S). 
gex 

5. The (worst-case) strong log-loss of n on X is 

sex 

6. The A-log-loss unpredictability of X is 

unpred^(X) — inf £}°e(ir, X). 
A 7ren(A) 

7. The A-strong log-loss unpredictability of X is 

Unpred^(X) -

We now show that log-loss unpredictability equals dimension. 

Theorem 3.33. For any X Ç C, 

dimA(X) = unpred^g(X) 

and 

DimA(%) = Unpred^(X). 

Proof. Let 2s be rational such that dimA(X) < s and let d be an exactly A-computable s-gale 

with X Ç S°° [d]. Assume without loss of generality that d(A) = 1. Let TT^ : {0,1}* x {0,1} —* 

[0,1] be the predictor inducing d as defined above. The ltd is also exactly A-computable. For 
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any w G {0,1}* with d(w) > 0, 

M-i . 
£*(*,») = 

|w|-l 
= -log ]^[ TTd(w \ i,w\i}) 

i=0 

= s\w\ - logd(w). 

Let S G S°° [d]. Then there exist infinitely many ra G N such that d(S \ n) > 1, and for each 

of these n we have 

£ log(7r<j, S \ n) _ sn - log d(S \ n) 

n n 
sn - log 1 

~~ n 

— s. 

Therefore £log(7r,j, S )  < s, so this establishes that unpred^g(X) < £}og{-Kd, X )  < s. By 

density of the set {s | 2s G Q}, it follows that unpred^g(X) < dimA(X). The proof that 

Unpred^g(X) < DimA(X) is analogous. 

Now let s > t > unpred^g be rational, and let tc be a A-computable predictor for which 

jC,l^g(X) < t. Let dfî be the s-gale induced by TT as defined above. Note that is also 

A-computable. Let S G X. Then there exist infinitely many n G N such that 
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and for each of these n we have 

n—l 

log d f î ( S \ n )  =  s n  +  y^log7r(w [ i,w[i]) 
i=0 

= sn - C l°g(S \ n) 

> sn — tn 

=  ( s - f ) n ,  

so it follows that S 6 S°° [di8-1] and X C 5°° [d^]. Therefore, dimA(X) < s. As this holds for 

all rational s > unpred^g(X), we have dimA(X) < unpred^g(X). The proof that DimA(%) < 

Unpred^g(X) is analogous. • 

3.3.2 Entropy Rates and Kolmogorov Complexity 

In this section we show that versions of the entropy rate and Kolmogorov complexity char­

acterizations of constructive dimension (Theorems 3.25 and 3.14) also hold for the computable 

and polynomial-space dimensions. 

In the following definition, comp is the class of all computable space bounds and poly is 

the class of all polynomials. We use KS-^ to denote /-space-bounded Kolmogorov complexity. 

Definition. For any X Ç C, we define the quantities 

jrc /v\ • r ,. - f KSf ( S  r n) A-<Scomp(X) = inf suplimmf , 
/6comp Sex n — >0° n 

^«Scomp W = , inf sup limsup KS (S ^n\ 
/ecomp seX n—>oo n  

^poly(^) — inf suplimmf 

and 

pepoly sex n^°° n 

/CSpoly(X) = inf sup lim sup^ ̂ ^ 
pepoly Sex n->oo Tl 

The main result of this section gives new characterizations of the computable and polynomial-
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space dimensions. Here we use the Hc(X) and W^iX) entropy rates from Section 3.2.2. 

T h e o r e m  3 . 3 4 .  F o r  a l l  I C C ,  

dimcomp(X) = H D E C ( X )  —  F C S C O M P ( X ) ,  

Dirn.omp(%) = 

dimpspace(X) = 7YPSPACE(-^) — ^^poiy (I), 

Dimp,pace(%) - ̂PACE(^) = %% W-

Theorem 3.34 will follow from the next few lemmas. First, we show that the dimensions 

are upper bounded by the entropy rates. 

Lemma 3.35. Let A G {comp, pspace}. For any X Ç C, 

dima(X) < H r ( A ) ( X )  

and 

Proof. We first give the proof for A — comp. The case 7YDEC(X) = 1 is trivial, so assume 

7~(-DEC(X) < 1 and let 1 > r > T^DEC(^) be arbitrary. Take a decidable A and 2s, 24 rational 

such that X C ALO' and Ha < s < t < r. Recall the construction of a (-gale d that succeeds 

on A10' from the proof of Lemma 3.23. For each n G N, we first defined dn : {0,1}* —> [0, oo) 

by 

( 2~t(n-\w\) .  | |y  g A=n | w Ç y}| if |u>| < n 

2( t -1)(lu,hn)c/n(u; \ n) if |w| > n. 
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and then defined d : {0,1}* —> [0, oo) by 

00 

n=0 

We will show that d is computable. For this, choose a natural number k > Define a 

function d : {0,1}* x N —> [0, oo) n Q by 

fcr+M 

d(w,r) = ^2 2(s~^ndn(w). 
n=0 

Then d is exactly computable. For all n, dn(w) < 1 for all w with |w| > n, so for any precision 

r € N, 

\d(w) - d(w,r)\ = 

< 

< 

< 

Therefore d demonstrates that d is computable. Then dimcomp(Jf) < t < r because X Ç 

ALO- Ç S°°[d\. It follows that dimcomp(X) < TYDEC(^) because r > Hvec{X) is arbitrary. 

The proof that Dimcomp(I) < ^DEC(^) m analogous. 

For A = pspace, the same construction works. If A e PSPACE, then dn(w) can be exactly 

computed in space that is polynomial in n+ |u>| by reusing space. Therefore d(w, r) is exactly 

computable in space polynomial in r + |u>|, so d is a polynomial-space computable (-gale. • 

We now show that the dimensions are lower bounded by the entropy rates. While it seems 

difficult to extend the upper bounds in Lemma 3.35 to the polynomial-time case, the lower 

n=kr+\w\+l 

n=kr+\w\ + l 

2 (s~t)n 

n=kr+1 

9 (s-t)(kr) 
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bounds do hold for polynomial time. 

Lemma 3.36. Let r(comp) = DEC, r(pspace) = PSPACE, and r(p) = P. For all X Ç C 

and A G {comp, pspace, p}, 

7~Lr(A){X) < dimA(X) 

and 

< Dima(X). 

Proof. Let d be an exactly A-computable s-gale with X Ç S°°[d]. Assume without loss of 

generality that d(A) < 1 and define A = {w \ d(w) > 1}. For all n G N, we have 

ttiGjO,!}" 

so \A=n\ < 2s™. Also, X Ç S°°[G?] Ç A10'. For any t > s, 

OO OO 

^ 2-W = ^2-*"|A=J < < oo, 
iuEA 71=0 71=0 

so Ha < t. Therefore Ha < s. Since A G r(A), we have H-r^iX) < s. It follows that 

^r(A)PO < dimA(X). The proof that < DimA(AT) is analogous. • 

The next lemma equates the entropy rates with the Kolmogorov complexity quantities 

defined at the beginning of this section. 

Lemma 3.37. For all I C C ,  

^DECpO = ^comp(I), 

WPSPACEPO = £<Spoiy(X), 

^PSPACE (^0 — ^poly(^)-
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Proof. Let t > s > ICScomp(X) be rational and let / be a computable space bound such that 

U m i n ( K s ^ r ™ ) < s  

71—•OO 71 

for all S £ X. Define 

A  =  { w  | KSf ( w )  < s|îti|}. 

Then A G DEC and X Ç A1'0'. Also, |A=n| < 2^™! < 2tn for all n, so H a < t. Therefore 

TiDECpO < t- As t > JCScomp(X) is an arbitrary rational, we have ^dec(^) < ^comp(^)-

The inequality < /C5®or
mp(X) is established analogously. The corresponding in­

equalities for the polynomial-space part follow in the same way using the fact that {w | 

KS^(to) < s|y;|} is in PSPACE if / is a polynomial. 

Let s > Hr,Ec{X), and let A G DEC such that Ha < s and X Ç A10-. Let /(n) > n be a 

computable space bound in which A is decidable. Any w G A=n can be described by giving 

n and its index within a listing of A=n in lexicographic order. By reusing space, w can be 

computed from this description in 0(f(n)) space. Therefore 

KS°^(u;) < log |A=n| + O(logn). 

Let S G X. Then 

Also, since H a < s, 

so 

Therefore 

logj^ < 

n 

K S ° W ( 5 r ~ )  <  l o S | A . „ |  +  0 ( l , g „ )  e  s  +  

n n 

B m i n f K S ° M ( S t » ) < t  

n—»oo n 
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Because s > Ha is arbitrary, this establishes that /CScomp(X) < Wdec(-^0- The proofs of the 

remaining three inequalities are analogous. • 

Theorem 3.34 now follows immediately from Lemmas 3.35, 3.36, and 3.37. 

3.4 Scaled Dimension 

To overcome limitations of resource-bounded dimension for investigating complexity classes 

within ESPACE, Hitchcock, Lutz, and Mayordomo [23] introduced for each integer i e Z 

the ith-order scaled dimension dim^(X) and also the ith-order scaled dimension in R(A) 

dim^(X | R(A)) = dim^(X A R(A)). For any class X and i £ Z, dim^(X) G [0,1], and if it 

is less than 1, then ha(X) = 0. The quantity dim^(X) is nondecreasing in i, and there is at 

most one i G Z for which 0 < dim^(X) < 1. The 0th-order dimension, dim^(-), is precisely 

the standard unsealed dimension, and the other orders can be more useful than it for certain 

complexity classes. To illustrate this, we mention some examples from circuit-size complexity. 

For a function s : N —> N, let SIZE(s(n)) consist of all languages decidable by nonuniform 

Boolean circuit families of size s(n). Lutz [30] showed that 

(SIZE (c dim ( SIZE [ a — 
n 

ESPACE j = a (3.1) 

for all a G (0,1). Circuit size bounds of the from 2 a n  and 2 n °  are typically of more interest 

in complexity theory, but (3.1) implies that SIZE(2an) and SIZE(2n") have dimension 0 in E 

for all a G (0,1). For these size bounds, the scaled dimensions are useful; in [23] it is shown 

that 

dim(1)(SIZE(2an) ] ESPACE) = a 

and 

dim(2)(SIZE(2n") ] ESPACE) = a 

for any a G (0,1). 

In this section we review the essentials of resource-bounded scaled dimension and develop 
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some new tools for working with it. The principle concept is a scale, which is a function 

g : H x [0, oo) —> M, where H = (a, oo) for some a G M U {—00}. 

Definition. A scale is a continuous function g : H x [0, oc) —> M with the following proper­

ties. 

1. H = (a, 00) for some a € M U {-00}. 

2. g(m, 1) = m for all m G H. 

3. g(m, 0) = g(m', 0) > 0 for all m, m! G H. 

4- For every sufficiently large m G H, the function s >-> g{m,s) is nonnegative and strictly 

increasing. 

5. For all s' > s > 0, lim [g(m, s') — g(m, s)] = 00. 

The canonical example of a scale is the function go : M x [0,00) —> R defined by go(m, s) = 

sm. This scale is used in the standard (unsealed) dimension. Other scales of interest are 

obtained from go by rescaling and reflection operations. 

Definition. Let g : H x [0, 00) —> R be a scale. 

1. The first rescaling of g is the scale g# : H# x [0, 00) —> R defined by 

H* = {2m I m G H} 

2. The reflection of g is the scale gR : H x [0,00) —> R defined by 

m + g(m, 0) — g(m, 1 — s) if 0 < s < 1 

g(m, s) if s > 1. 
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If g is a scale, then for all m G H& and s € [0, oo), 

log g# (m, s) = g(logm,s), 

which means that a log-log graph of the function m >—> g#(m,s) is precisely the ordinary 

graph of the function m g{m, s). This is the sense in which g# is a rescaling of g. 

A family of scales, one for each integer, is defined as follows. 

Definition. 1. For each i £ N, define a* by the recurrence ag = —oo, aj+i = 2a*. 

2. For each i € Z, define the i th  scale g, : (a^, oo) x [0, oo) —> R by the following recursion. 

(a) go{m, s) = sm. 

(b) For i > 0, gi+1 = gf. 

(cj For i < 0, gi = 

For clarity, we compute the first few scales. For all s G [0,1], if m > a^, then <%(m, s) is 

defined by 

93(771, s 

92 (m, s 

go(m,a 

9 - i ( m , s  

9-2 (m, s 

9-3 (m, a 

2(log log m ) s  

= 2 

— 2(Iogm)s 

= m 

— $m 

= m + 1 — m 1—s 

— m + 2 - 2^ logm)1 

= m+4-2 
2(log log m)1 

Scaled dimension is defined using functions called scaled gales. 

Definition. Let i G 1 and let s G [0, oo). An îth-order scaled s-gale (briefly, an s^-galej is 
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a function d : {0, l}> c tKl —> [0, oo) such that for all w G {0,1}* with |w| > a^, 

d(w) - 2-^(^1'") [d(tuO) + d(wl)], (3.2) 

where Agi : (a^, oo) x [0, oo) —» R is defined by 

A#(m,a) = g((m+ l,s) - #(m,s). 

Note that an s^)-gale is simply an s-gale. 

Success sets of scaled gales are used to define scaled dimension. 

Definition. Let X Ç C and i G Z. 

1. The i th-order scaled A-dimension of X is 

dim^(X) = inf { s 
there exists a A-computable 

s^ -scaled gale d for which X Ç S00 [ci] 

2. The i th-order scaled dimension of X within R(A) is 

dimW(% | #(A)) = dim^(% n #(A)). 

The 0th-order dimension dim^(-) is precisely the dimension dim&(-) defined in Section 3.3 

and the other orders are interpreted as rescalings of this concept. 

The following lemma relates resource-bounded scaled dimension to resource-bounded mea­

sure. 

Lemma 3.38. ([23]) For any class X Q C and ! ë Z, 

dimg(X) < 1 => pape) = 0 
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and 

dimW(X | #(A)) < 1 | A(A)) = 0. 

The following is another key property of scaled dimension. 

Theorem 3.39. ([23]) Let ICC and i G Z. If dim^"1"1^!) < 1, then dim^(X) = 0. 

This theorem tells us that for every class X, the sequence of dimensions dim^(X) for 

i G Z satisfies exactly one of the following three conditions. 

(i) dim^(X) = 0 for all i 6 Z. 

(ii) dim^(X) = 1 for all i G Z. 

(iii) There exist i* G Z such that dim^(I) = 0 for all i < i* and dim^ (X) = 1 for all i > i*. 

3.4.1 Unpredictability Tools 

This section provides some tools involving measures and the log-loss concept that are 

useful for working with the scaled dimensions. In Section 3.3.1 we showed that log-loss un­

predictability is equivalent to dimension. We similarly characterize scaled dimension using the 

log-loss of measures. 

Definition. A measure on C is a function p : {0,1}* —> [0, oo) satisfying 

p(w) = p(w 0) + p(wl) 

for all w G {0,1}*. 

Measures have the following fundamental relationship with scaled gales. This extends 

Schnorr's "likelihood ratio" characterization of martingales [55]. 

Observation 3.40. Let i G Z and s G [0, oo). 

1. If p : {0,1}* —> [0, oo) is a measure, then the function dp : {0, l } > a l
ii —> [0, oo) defined 
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for all w G {0, l } > a l * l  is an s^-gale. 

2. If d : {0,l}>ai'i —» [0, oo) is an s^-gale, then the function pd : {0,1}* —> [0, oo) defined 

by 

Pd{w) = 2 ~9i(\w\'sï d(w) 

>ai, for all w G {0, l}>al i l  and 

Pd(w) = P d i w v )  

M=aiii+i-M 

for all w G {0,1}-°^ is a measure. 

The following lemma relates the scaled dimension of a class to limits involving scales and 

logarithms of measures. 

Lemma 3.41. Let ICC and let i e Z .  

1. If s > dim^(I), then there is a A-computable measure p such that 

limsupgi (n ,  s )  +  logp(A \  n)  — oo  
n—>oo 

for all A G X . 

2. If s < dim^(X), then for any A-computable measure p there is an Ap G X such that 

lim gi (n , s )  + logp(Ap \ n ) = -oo. 
71—^OO 

Proof. Let r be rational with s > r > dim^(X) and let d be a A-computable rW-gale 

succeeding on X. Then the measure pd from Observation 3.40 is also A-computable. Let 

A G I. There are infinitely many n G N such that d{A f n) > 1 since A G 5°° [d]. For such n, 

gi{n,s )  + logpd(A \ n) = ^(n, s )  - g,(n, r) + logd(A \ n) 
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Part 1 follows because r < s. 

For part 2, let p be a A-computable measure. Let t be rational with s < t < dim^(JT) and 

obtain the fM-gale dp from Observation 3.40. Then X % S°° [dp] because dp is A-computable, 

so there is an Ap G X and a constant c such that d(A \ n) < c for all n > . Then 

gt (n ,s) + logp(A \ n)  =  gi (n ,s) - gi(n ,t) + logdp(A \  n)  

so the claim follows because s < t. • 

Lemma 3.41 asserts that if the zth-order scaled dimension of a class X is less than s then 

there is a measure p such that for every A G X, there are prefixes w Ç A where the log-loss 

quantity 

- log p(w) 

is arbitrarily less than g«(|%i|, s). 

It is often convenient to replace computable measures by exactly computable measures. 

Lemma 3.42. Let p be a measure that is computable in t(n) time (respectively, space). Then 

there is a measure p that is exactly computable in 0{n • t(3n)) time (respectively, space) such 

that 

log p(w) > log p(w) - c 

for all w G {0,1}* where c is a constant that is independent of w. 

Proof. We assume that p(w) > 2"^ for all w G {0,1}*. (If p does not satisfy this condition, 

add 2~l™l to p(w) to obtain a measure that does and use it instead.) 

Let p : N x {0,1}* —> [0, oo) be an approximation of p. For all w G {0,1}*, define 

p'(w) = p(2\w\,w). 
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The measure p : {0,1}* —> [0, oo) is defined by 

/5(A) = p'(0) + p'{l) 

and 

i,(wb) = AM)+b)(wifiw} 

for all w 6 {0,1}* and b € {0,1}. If p is exactly computable in t(n) time, then p'(w) is 

computable in t(2\w\ + |tu|) time, so we can exactly compute p(w) in 0{\w\ • t(3|iu|)) time. 

Similarly, if p is computable in t(n) space, then p is computable in 0(n • t(3n)) space. 

For any w G {0,1}+, we have 

p(w) - 2-2H 

p(w 0) + 2~2(M+1) + p(wl) + 2~2(M+1) 

p(w) - 2~2M 
p{w) + 2™2ly,l™1 

2~M _ 2-2Iu,I 

2-kl + 2~2M-1 

2^1 _ i 
2M + i 

3 

1 - —:—p j-
2M + I 

1 -2M+1 

1 - 2~'w', 

with the second inequality holding because 

a — e 

a + § 

P'{w) > 

p'(w0) + p'(wl) ~ 

> 

> 
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is an increasing function of a and 2 M is the minimum possible value for p(w). Therefore 

M 
log p ( w )  = log m — 

, i=l pt{{w \ i - 1)0) + p'{{w \ i - 1)1) 
P(A) 

M-i 
= log p'(w) + log-77 

/(w r 
z + log ^/(0)+p/(1) 

^ p'((w \ 1)0) + p'((w \ î)1) p'(0) + p'(l) 

\w\-l 
> log p(w) + ^ log 1 - 2~ l  

i=l 

I™!"1 o-i 
> log p'(w) + ^2 

> log/(w)-

1=1 

1 

In 2 

In 2 

Also, again using the fact that p(w) >2 l®"l, 

log p'(w) > log p(w) - 2 2'"'' 

2_M - 2-2M 
> logp(w) 

— logp(u;)(l - 2"'™') 

2~\w\ 
> log p{w)~ 

ln2 

Combining the above, we have 

log p(w) > log p(w) 
In 2 

for all w G {0,1}+. The lemma holds with c — max {1^5, log j • 

The measures that are exactly computable within a fixed time or space bound are uniformly 

exactly computable with slightly more time or space. 

Lemma 3.43. For any time constructible functions t(n) andt'(n) witht(n)logt(n) — o(t'{n)), 

the family of exactly t(n)-time computable measures is uniformly exactly computable in t'(n)-

time. Ift(n) — o(t'(n)), then the family of exactly t(n)-space computable measures is uniformly 
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exactly computable in t'(n)-space. 

Proof. There is a uniform enumeration (Mi \ i  G N) of all ((n)-time (respectively, i(n)-space) 

clocked Turing machines such that for all i G N, Mi(w) can be computed in 0(t(\w\) log((|w|)) 

time (respectively, O(t(|to|)) space) for all w G {0,1}*. (Here the constants in the O(-) depend 

on % but not on \w\.) Define pi : {0,1}* —> [0, oo) inductively by Pi(X) = Mi(X) and 

{ Mi(w0)  if Mi(w0) < pi(w)  

Mi(w)  otherwise, 

Pi(w 1) = pi(w) - pi(w0) 

for all w G {0,1}*. Then each p% is a measure, and the family is uniformly computable in 

t'(n) time (respectively, t'(n) space). Also, if p is a measure that is exactly computed by Mi 

in t(n) time, then Pi(w) = p(w) for all w. • 

Uniformly exactly computable families of measures can be combined into a single measure 

in an efficient manner. 

Lemma 3.44. Let (pk  \ k G N) be a uniformly exactly A-computable family of measures. 

There is a A-computable measure p* such that for any k, there is a constant c& such that 

logp*(w) > logpk(w) - ck  

for all w G {0,1}*. 

Proof. Define 

Then p is a measure by linearity. Also, p* is A-computable by the approximation function 

p* : N x {0,1}* —> [0, oo) defined by 
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since 

< 

fc=r+1 
oo 

E 
k=r+1 

Pk(w) 
2^t(A) 

pkW 
2WA) 

= 2" 

Let fceN. For any w G {0,1}*, 

logp*(w) > log 
2WA) 

= logPk(w) - k - pk(\), 

so the lemma holds with ck  = k + pk(A). • 

We now combine the preceding lemmas to obtain a tool that will be useful in calculating 

scaled dimensions. 

Theorem 3.45. Let X Ç C, i G Z, and k G N. 

1. If for each A G X there is a measure pa computable in 0(nh) time such that 

(3ca G Z)(3ocn)g i(n,s) + logpA(A \ n) > cA, (3.3) 

then dinip)(X) < s. 

2. If for each A G X there is a measure pa computable in 0(2 lognfc) time such that (3.3) 

holds, then then dimpj (X) < s. 

3. If for each A & X there is a measure pa computable in 0(nk) space such that (3.3) 

holds, then then dimpSpace(X) < s. 

4• If for each A g X there is a measure pa computable in 0(2 lognk) space such that (3.3) 

holds, then then dimp^p^(X) < s. 
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Proof. From Lemmas 3.42, 3.43, and 3.44 we obtain an exactly A-computable measure p such 

that logp(w) > logPa{w) — bA for all w G {0,1}* where &a is a constant that depends on A 

but not on w. 

Let t > s. For any A G X, 

9i{n ,t) + logp(A \  n)  >  gi (n ,t) - gi{n ,s )  + cA-bA 

for infinitely many n.  Therefore 

lim sup gi  (n, t) + log p(  A  \  n)  = oo 
n—>oo 

since t > s. It follows from the contrapositive of Lemma 3.41(2) that dima(X) < t. • 
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4 CONSTRUCTIVE DIMENSION AND THE ARITHMETICAL 

HIERARCHY 

In this chapter we use the arithmetical hierarchy (the effective Borel hierarchy) to investi­

gate constructive dimension. In Section 4.2 we will prove a correspondence principle asserting 

that dimn(X) = cdim(X) for any class X that is a union of Ilj-sets. We investigate the arith­

metical complexity of the classes DIM" and DIM"tr consisting of all sequences of dimension 

a and strong dimension a, respectively, in Section 4.3. To classify DIM"tr, we introduce a 

stronger effective Borel hierarchy. This new hierarchy is defined in Section 4.1 where the Borel 

and arithmetical hierarchies are also reviewed. 

4.1 Effective Borel Hierarchies 

We use and 11° to denote the levels of the Borel hierarchy for subsets of Cantor space. 

The levels of the arithmetical hierarchy (the corresponding effective hierarchy) are denoted 

by 2% and 11%. 

We will also make use of the following more general hierarchy definition. 

Definition. Let V be a class of predicates, let n > 1, and let X Ç C. 

• X G [P] if for some predicate P G V, 

A e X <=> (3kn)(Vkn-i) • • • (Qk\)P(kn,..., &2, A \ k\), 

where Q = 3 if n is odd and Q = V if n is even. 
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• X G II® [P] if for some predicate P eV, 

A e X <=> (Vkn)(3kn-1)---(Qki)P(kn,...,k2,A f h), 

where Q = V if n is odd and Q — 3 if n is even. 

If we take V to be Aj (decidable predicates), then the above definition is equivalent to 

the standard arithmetical hierarchy; that is, 

= 2%[A?] 

and 

hold for all n. Also, if ALL is the class of all predicates, then we obtain the classical Borel 

hierarchy: 

S% = S%[ALL] 

and 

n° = n® [ALL]. 

In this chapter, we will also be interested in the cases where V is (enumerable predicates) 

or IIj (co-enumerable predicates). In some cases, the classes in the generalized hierarchy using 

these sets of predicates are no different that the standard arithmetical hierarchy classes. If 

n is odd, then = E® [E®] as the existential quantifier in the Ej predicate can be absorbed 

into the last quantifier in the definition of E°[Aj] = E°. Analogously, 11° = 11% [11°] for 

odd n, and for even n we have E% = E%[II°] and 11% = 11% [E°]. On the other hand, using 

the complementary set of predicates defines an effective hierarchy that is distinct from and 

interleaved with the arithmetical hierarchy. 
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Proposition 4.1. 1. If n is odd, then 

2% g s 2%+i 

and 

K Ç nK] Ç n°+1. 

2. If n is even, then 

2% S Ç 

and 

u°n c n°[n?] ç n°+1. 

Proof. We only show £% C E%[NÇ] C E%+1 for odd n; the arguments for the other statements 

are analogous. 

The inclusion E% Ç £%[IIj] is obvious. To show that it is proper, let P be a predicate that 

is complete for the class of 11% predicates. Then there is a decidable predicate R such that 

P{n) <=> (V/cn)(3fc„_i) • • • iyk\)R(n, fc„, • • • ,k\). 

Define X Ç C as 

X = \J 0™1C. 
neP 

Then X G E%[H°] as we have 

(3n)P{n) and 0nl E S 

(3n)(V/c„)(3fc„_i) • • • (\/ki)R(n,kn, • • • , ki) and 0nl E S 

(3n)(V/cn)(3fc„_i) • • • (3k2)T(n, kn, • • • ,k3,S \ k2), 
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where T is the 11° predicate defined by 

T(n,kn,- • • ,ks,w) <=> (V7ci).R(n, , k%, \w\,ki) and Onl Ç w. 

Now suppose that X G . Then for some decidable predicate U, 

S G X <=> (3fcn)(Vfc„_i) • • •  (3ki)U(kn, • • • ,k2,S f k\). 

We then have 

m G P 0"1C ç % 

<=> 0"10°° E f 

(3^)(v^_i)... , kg, o»io°° r W, 

so P is a £° predicate, a contradiction of its ff^-completeness. Therefore X $ and we have 

established £% C E° [11°]. 

The inclusion X%[II°] Ç £%+1 is immediate from the definitions using E%+1 = S%+1[A°], 

That it is proper follows from the facts £%+1 - S„ 7^ 0 and [11°] ÇS®. • 

Intuitively, the classes S°[II°], 11° [S°], S°[E°], 11° [11°],... are slightly more powerful than 

their respective counterparts in the arithmetical hierarchy because they use one additional 

quantifier that is limited to the predicate. 

4.2 Correspondence Principles 

In this section we will prove that cdim(JT) = drain (X) for any X that is an arbitrary union 

of H°-definable sets. We will also show that dimcomp(X) = dimn(I) if X is E°-definable. 

Lemma 4.2. If X G 11°, then dimH(X") = dimcomp(X). 

Proof. Let X G 11°. Since dimcomp(X) > dimji(X), it is enough to prove that dimcomp(X) < 

dimH(X). For this, let s > dimn(X) be such that 2s is rational. 
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Since s > dimnC-X"), for each r G N, there is a prefix set Ar  Ç {0,1}* such that 

2~sH < 2"r and X Ç (J Cw. 
W^Ar W^Ar 

Because C is compact and X is closed, X is compact. Thus each Ar  may be taken finite. 

Because X E 11°, there is a computable function h : N —> {0,1}* U {T} such that 

X  = f ] C c  

OO 

k(i)-
i=0 

For each k G N, let 
k 

je*=n c= 
M')-

1=0 

Then for each k E N, it is easy to compute a finite prefix set Bk  such that 

2 s'™' is minimal and Xk  Ç Cw. 
w£Bk  u>eBk  

For each r G N, let 

kr  = min < k 2 -s |w |  < 2~ r  

w€Bk  

We know that each kr  exists because of the existence of the finite prefix sets Ar  that satisfy the 

condition. Also, each kr can be computed by computing the finite sets Bk until the condition 

is satisfied. 

The rest of the proof is based on a construction that was used in [30] to prove Theorem 

3.5, the gale characterization of Hausdorff dimension. There the prefix sets Ar mentioned 

above are used to give an s-gale that succeeds on X. Here we use the finite, computable prefix 

sets Bk r  in the same manner to give a computable s-gale that succeeds on X. 
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Define for each r 6 N a function dr  : {0,1}* —> [0, oo) by 

dr(w) = < 

2(s-i)(M-M) i f  e  Bkr  

Yj 2™s'"' otherwise. 
«€{0,1}* 
wu£Bkr 

Then each dr  is an s-gale. Also, dr(A) < 2 r and dr(u;) = 1 for all w € Bhr. Next define a 

function d on {0,1}* by d = J2^=o 2rc?2r- Then 

OO OO 

d(A) = ^2%XA)<E2'"2-"' = 2, 
r=0 r=0 

so by induction it follows that d(w) < oo for all strings w. Therefore, by linearity, d is an 

s-gale. 

Let S G X. Then S S Xk2r  for all r € N. This means that S has some prefix S \ n G Bk2r, 

and then 

d(g r 7^) > 2^2r(^ r = 2\ 

Therefore d succeeds on S, so X Ç S°° [d]. 

To see that d is computable, define d : N x {0,1}* —> [0, oo) by 

r«Mi+< 

d(i,w) — ^2 2rd2r{w). 
r=0 
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We can exactly compute d by using the function h to uniformly compute the sets Bkr • Then 

\d(w) — d(i,w) — ^2 2rd2r(w) 
r=\s\w\]+i+l 

OO 
< 2'-2'l"'ld2r(A) 

r—[s|u;|]+2+l 

oo 
< ^ 2r+s\w\2~2r 

r=\s\w\]+i+l 

oo 
= 2sH y 2~r 

r=\s\w\\+i+l 

_ 2s\w\2~^s\w^~i 

< 2T\ 

so d is a computable approximation of d. Therefore d is computable, so it witnesses that 

dimcomp(X) < s. Since s > dimy(%) is arbitrary with 2s rational and the rationals are dense, 

it follows that dimcomp(X) < dimn(X). • 

We now use the preceding lemma to give our correspondence principle for constructive 

dimension. 

Theorem 4.3. If X Q C is a union of 11° sets, then dimn(X) = cdim(X). 

Proof. Let J be an arbitrary index set, Xa € IF" for each a € Î, and X — (JQ€2- Xa. By 

definition, dimn(^) < cdim(X). Using Theorem 3.13 (the pointwise stability of constructive 

dimension), Lemma 4.2, and the monotonicity of Hausdorff dimension, we have 

cdim(X) = sup cdim(Xa 
a£l 

= sup dimn (Xa 
ael 

< dimH(X). 

• 
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Theorem 4.3 yields a pointwise characterization of the classical Hausdorff dimension of 

unions of 11° sets. 

Corollary 4.4. If X Ç C is a union of 11° sets, then 

dimHpf) = sup dim(5). 
gex 

Proof. This follows immediately from Theorems 4.3 and 3.13. • 

If we require that the union in Theorem 4.3 be effective, we arrive at the following cor­

respondence principle for computable dimension. This result also follows implicitly from 

Staiger's work on martingale exponents of increase [57]. 

Theorem 4.5. If X G E°, then dimntX) = dimcomp(X). 

Proof. Let X G £°. Since dimcomp(X) > dimn(^), it is enough to prove that dimcomp(AT) < 

dimn(Ar). For this, let s > dimn(X) be such that 2s is rational. As in the proof of the Lemma 

4.2, it suffices to give a computable s-gale d that succeeds on X. 

Since X G £°, there is a computable function h : N x N —> {0,1}* U {T} such that 

OO OO 

X = U N C M , „ > -
j=0 i=0 

For each j G N, let 
OO •̂ = nc»<or 

i=0 

Since each X j  Ç X ,  dimn(-Xj) < dimn(%) < s .  Each X j  G 11°, so by Lemma 4.2, 

for e a c h j G N, there is a computable s-gale dj with dj(A) < 1 that succeeds on Xj. Let 

d — ^dj. Then d is an s-gale, d is computable by using h to uniformly compute the 

dj, and X C [] 

We note that Theorems 4.3 and 4.5 cannot be extended to higher levels of the arithmetical 

hierarchy. 
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Observation 4.6. There is a set X G H® such that dimn(X) ^ cdim(X). 

Proof. It is well known that there exists a sequence S G RAND A A®. (A sequence S is in A° if 

S is decidable relative to an oracle for the halting problem.) Let X = {S}. Since S G A°, we 

have X G H®. By Proposition 3.10, cdim(X) = dim(5) — 1. But any singleton has Hausdorff 

dimension 0, so drain(X) = 0. • 

4.3 Classification of Dimension Classes 

In this section we investigate the arithmetical complexity of the following dimension and 

strong dimension classes. 

DIM" = {A G C dim(A) = a} 

DIM-" = {A G C dim(A) < a} 

DIM-" II m
 

O
 

dim(A) > a} 

DIM:, = {A G C Dim(A) = a} 

II m
 

O
 

Dim(A) < a} 

- {A G C Dim(A) > a} 

Let a G [0,1] be A^-computable. For any such a, it is well known that there is a com­

putable function â : N —> Q such that lim â(n) = a. Using Theorem 3.14 , we have 

dim(X) < a liminf K^X ^ < a 
n—> oo n 

(Vt)(VAr)(3Ti > [ n) < (â(n) + 

so DIM-" is a H°-class. Also, 

dim(X) > a liminf K{X ^ ^ > a 
oo n 

(Vt)(3JV)(VM > [ M) > (&(AT) - l/t)n, 
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so DIM-" is a H°-class. Therefore we have the following. 

Proposition 4.7. 1. The class DIM0 is 11°. 

2. For all A0-computable a G (0,1], DIM" is a 11®-class. 

3. For arbitrary a G (0,1], DIM" is a Ilg-cZass. 

The situation is slightly more complicated for strong dimension. By Theorem 3.14, we 

have 

Dim(X) < a <=> lim sup ^ n) < a 
n—*oo 

<=> (Vt)(3N)(Vn > ^ m) < (&(#) + l/t)n 

(Vk)(BN)(Vn, > ^)(3(^,t))|7r| < (â(N) + l/k)n, 

and U(ir) = X \ n in < t computation steps, 

where U is the fixed universal self-delimiting Turing machine used to define K. From this it is 

clear that DIM^" G II0. However, the "(3(TT,<))" quantifier is local to the defining predicate, 

so we have DIMg" G II", and in fact, it is a Il^SjJ-class. Also, 

Dim(X) > a 4=> lim sup —-—> a 
n—*oo 

(Vfc)(Y/V)(3n > N)K(X \ n) > (â(n) - l/k)n, 

so DIM^" is a H° [II0]-class. This establishes the following analogue of Proposition 4.7. 

Proposition 4.8. 1. The class DIMgtr is 11° [II0]. 

2. For all IS*®-computable a G [0,1), DIM"tr is a 11° [E°]-class. 

S. For arbitrary a G [0,1), DIM"tr is a 11°-class. 

In the remainder of this section we prove that the classifications in Propositions 4.7 and 

4.8 cannot be improved in their respective hierarchies. 
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4.3.1 Category Methods 

Recall that a class X is meager if it is included in a countable union of nowhere dense 

subsets of C, and comeager if its complement X is meager. The following lemma (implicit in 

Rogers [48, p341]) will be useful. 

Lemma 4.9. If X G an& % dense then X is meager. 

Proof. Suppose that X = (Jn Xn, Xn closed. Since X is dense, Xn contains no basic open set, 

hence Xn is nondense (i.e. its closure contains no basic open set), and % is a countable union 

of nondense sets. • 

The class RAND of Martin-Lof random sets can easily be classified with category methods. 

Theorem 4.10. RAND is a X°-class, but not a IT2-class. 

Proof. This is a well known result. The proof is analogous to the one in Rogers [48, p 341] that 

{% I X finite} is a £°-class but not a n°-class. Both RAND and its complement are dense, 

so by Lemma 4.9, RAND is meager. If RAND were a Il^-class, then again using Lemma 4.9, 

its complement would also be meager. This contradicts the fact that C is not meager. • 

As DIM0 and DIMgtr are dense H°-classes that have dense complements, an argument 

similar to the one used for Theorem 4.10 shows that they are not S^-classes. 

Theorem 4.11. The classes DIM0 and DIMgtr are not YQ-classes. 

We now develop category methods for the other DIM" classes. Following Schnorr [53], 

we call an unbounded nondecreasing function h : {0,1}* —> {0,1}* an order. For any super-

martingale d, the order h success set of d is 

Let d be a multiplicatively optimal constructive supermartingale (for example, d^) from 

Theorem 3.11). For every rational s, define the computable order hs(n) = 2(1~s)™. From 

A G C lim sup 
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Theorem 3.15 it follows that for any A Ç C, 

cdim(A) — inf{s G Q : A Ç Shs[d] )}. 

Lemma 4.12. For every rational s G (0,1), Sh° [d] is a comeager TTfj-r/fl.s.s. 

Proof. Notice that Shs  [d] G and Shs  [d] is dense. Now apply Lemma 4.9. • 

Lemma 4.13. For all a G (0,1], DIM" is meager. 

Proof. Let s < a. be rational. Lutz [31] showed that d^)(w) = 2(s-1)l1tild(îti) is an optimal 

constructive s-supergale. It follows that for any A G C, A G Sha [d] => dim(5) < a. Therefore 

DIM" Ç Shs, so DIM" is meager by Lemma 4.12. • 

Proposition 4.14. For all a G (0,1], DIM" is not a Il^-class. 

Proof. If DIM" G H®, then Lemma 4.9 implies that DIM" is comeager, contradicting Lemma 

4.13. • 

To strengthen Proposition 4.14 to show that DIM" is not S°, we now turn to Wadge 

reductions. 

4.3.2 Wadge Reductions 

Let A,B Ç C. A Wadge reduction of A to S is a function / : C —> C that is continuous 

and satisfies A = f~1(B)1 i.e., X G A <=> f(X) G B. Wc say that B is Wadge complete for 

a class F of subsets of C if B G T and every A G T Wadge reduces to B. As the classes of 

the Borel hierarchy are closed under Wadge reductions, Wadge completeness can be used to 

properly identify the location of a subset of C in the hierarchy. 

We now prove that DIM1 is Wadge complete for IT3. We will then give Wadge reductions 

from it to DIM" for the other values of a. 

Theorem 4.15. DIM1 is Wadge complete for Tl®. Therefore DIM1 is not a S®-cla,ss, and. in 

particular is not a £3 -class. 
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Proof. One could prove this by reducing a known Ilg-complete class to DIM1, e.g. the class 

of sets that have a limiting frequency of 1 's that is 0 (this class was proved to be Fig-complete 

by Ki and Linton [26]), but it is just as easy to build a direct reduction from an arbitrary 

Ilg-class. 

Let d be a multiplicatively optimal constructive supermartingale. Note that we have 

Let |Jfc As Ok,s be a Sg-class. Without loss of generality 0/,: s D Ofc s+1 for all k.s. We 

define a continuous function / : C —> C such that 

The image Y  =  f ( X )  is defined in stages, Y = |JS Ys, such that every initial segment of X 

defines an initial segment of Y. 

At stage 0 we define Yq to be the empty sequence. 

At stage s > 0 we consider X \ s, and for each k we define to be the largest stage t < s 

such that I [s£ (Let = 0 if such a t does not exist.) Define k to be expansionary 

at stage s if tk}S-i < Now we let k(s) = min{fc : k is expansionary at s}. There are two 

substages. 

Substage (a). First consider all strings a extending Vs_i of minimal length with d(cr) > 

2 fc(S) Ier', and take the leftmost one of these <J'S. Such u's exist because S2^ [d] is dense. If 

k(s) does not exist, let a = Ys_i. 

Substage (b). Next consider all extensions r • a of minimal length such that d(r [' 

S2"[d] c ... C 5^n[d] c S2ÏTT"[d] c ... C DIM1. 

(4.1) 

so that we have 

k s 
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i) < d(r \ (i - 1)) for every \a\ < i < |r|, and d(r) < |r|. Clearly such r exist, by 

direct diagonalization against d. Define Ys to be the leftmost of these r. This concludes the 

construction. 

So Ys is defined by first building a piece of evidence a that d achieves growth rate 2*(®)n 

on Y and then slowing down the growth rate of d to the order n. Note that / is continuous. 

If X G Ufc fls £>k,s, then for the minimal k such that X G f"|s OfciS, infinitely many pieces of 

evidence a witness that d achieves growth rate 2fc" on Y, so Y £ DIM1. On the other hand, 

if X £ Ufe Pig Ok,s then for every k only finitely often d(Ys) > 2*'ys' because in substage (a) 

the extension a is chosen to be of minimal length, so Y ^ S)lk [d]. Hence Y G DIM1. • 

As RAND is a Sg-class, we have the following corollary (which can also be proved by a 

direct construction). 

Corollary 4.16. (Lutz [31]) RAND is a proper subset of DIM1. 

In order to establish the existence of A^-computable sequences of any A^-computable 

dimension a G [0,1), Lutz [31] defined a dilution function ga : C —> C that is computable 

and satisfies dim(g«(X)) = a • dim(X) for all X G C. Applying this to any A°-computable 

Martin-Lof random sequence (which must have dimension 1) establishes the existence theorem. 

(We note that ga(X) has the same Turing degree as X. Since by the Low Basis Theorem 

of Jockusch and Soare [46, Theorem V.5.32] there are Martin-Lof random sets of low degree, 

we immediately obtain that there are low sets of any A°-computable dimension a.) As gQ 

is continuous, it is a Wadge reduction from DIM1 to DIM™ if a > 0. Combining this with 

the previous theorem, we have that DIM" is Wadge complete for 11° for all A^-computable 

A G (0,1). We now give a similar dilution construction that will allow us to prove this for 

arbitrary a G (0,1). 

Let X G C and let a G (0,1). Write X = $1X2X3... where |xn| = 2ra - 1 for all n, noting 

that \x\ • • • xn\ = n2. For each n, let 

a 
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and yn = Okn. We then define 

= 3:13/1^22/2 ' ' ' Zn2/n " -

Observe that fa is a continuous function mapping C to C. We now show that it modifies the 

dimension of X in a controlled manner. 

Lemma 4.17. For any X e C and a E (0,1), 

d i m ( f a ( X ) )  = a  • dim(X) 

and 

Dim ( f a ( X ) )  = a-Dim(X). 

Proof. The proof uses Theorem 3.14, the Kolmogorov complexity characterizations of dimen­

sion and strong dimension. 

Let w E fa(X). For some n, 

w = xwi • • • xn-iyn-\v, 

where v Ç xnyn. Then 

K(w) < K{xi • • -xn_i) + K(v) 

+K(ki) + • • • + K(kn-1) + O(l) 

< K(xi • • • xn-i) + 0(nlogn). 

Because 

(n-1): 
M > \x\y\ • - > 

a 

we have 

K(w) a • K(x\ • • • xn-i) | 0(nlogn) 

|w| |xi • - • xn_i| (re - 1)2 
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It follows that 

dim(/a(X)) < a liminf 
n—>oo \xi • • •ar„_i| 

K ( x \ n )  
= a lim inf 

n—»oo n 

= a • dim(X), 

where the first equality holds because the blocks xn are short relative to x,\ • • • x„_i. Similarly, 

Dim(/a(X)) < a • Dim(X). 

For the other inequality, we have 

K(x\ • • -xn_i) < K(w) + K(k\) H h K(kn-i) 

+0(1) 

<  K  ( w )  +  0 ( n  log n) 

and 

so 

Therefore 

, | ,| , , n2 (n +if 
M <  \ x i y i  •  - - X n y n I  <  1 - n <  

a a 

K ( w )  K ( x i  •  •  - x n - i )  -  Q ( n logn) 

|w| — 
a (n + l)2 

_  K ( x i  •  •  - x n - i )  (n - l)2 _ Q(nlogn) 

\xi • - • xn—i| (n + l)2 (n + l)2 

d i m ( f a ( X ) )  >  a  lim inf Xn ^ 
n^oo \Xi • • -X„_i| 

K ( x  \  n )  
= a lim inf 

n—>oo n 

— a • dim(X), 



81 

and analogously, Dim(/a(X)) > a • Dim(X). • 

The function fa establishes the completeness of DIM". 

Theorem 4.18. For all a G (0,1), DIM™ is Wadge complete for 11°. Therefore it is not a 

Eg-class, and in particular not a £3-class. 

Proof. By Lemma 4.17, fa is a Wadge reduction from DIM1 to DIM™. Therefore DIM™ is 

Wadge complete for 11° by composing fa with the reduction from Theorem 4.15. • 

As ga is also a Wadge reduction from DIM1,,, to DIM™tr, we have from Theorem 4.11 that 

DIM™tr is not a £°-class for all a G (0,1). We now prove that DIM™tr is not even £° for all 

[0,1). 

Theorem 4.19. For all a G [0,1), DIM™tr is Wadge complete for 11°. Therefore DIM™tr is 

not a S°-class, and in particular is not a £3 [H^]-class. 

Proof. The proof is similar to that of Theorem 4.15, but uses the Kolmogorov complexity 

characterization of strong dimension (Theorem 3.14). Let C = [Jfc f)s Ok>s be a E°-class and 

without loss of generality assume that Ok,s  5 %,s+i for all k,s. 

Let a G (0,1). (We will discuss the simpler case a = 0 later.) We define a continuous 

f u n c t i o n  /  :  C  — >  C  i n  s t a g e s  t h a t  w i l l  W a d g e  r e d u c e  C  t o  D I M " t r .  T h e  i m a g e  Y  =  f ( X )  

will be the unique sequence extending Y"s for all s. At stage 0 we define Y0 to be the empty 

sequence. 

At stage s > 0 we consider X  \  s, and define k ( s )  as in the proof of Theorem 4.15. There 

are three substages. 

Substage (a). First consider all strings p extending Ys_i of minimal length with K(p) > 

a\p\, and take the leftmost one of these p's. 

Substage (b). Next consider all strings a extending p of minimal length with K(a) > 

( a  +  j ^ y ) | c 7 | ,  a n d  t a k e  t h e  l e f t m o s t  o n e  o f  t h e s e  e r ' s .  I f  k ( s )  d o e s  n o t  e x i s t ,  l e t  a  =  p .  

Substage (c). Extend a with a block of 0's to obtain Ys  = crO'0"'2-Ier ' . 
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That is, to define Ys, we first select p to increase the Kolmogorov complexity rate to a. 

This ensures that Y will have strong dimension at least a. We then construct a piece of 

evidence a that Y has strong dimension at least a + • We finish Ys with a long block of 

O's to bring the Kolmogorov complexity down to a near-zero rate, so that the next stage will 

work properly. 

If X € C, then for the minimal k such that X e infinitely many prefixes a Ç Y 

satisfy K(a) > (a + |)|a\. Therefore Dim(Y) > a + so Y g. DIM™tr. 

Now let X $l C. Let a' > a be arbitrary, and choose k so that ^ < a' — a. Because X $ C, 

we have k(s) > k for all sufficiently large s. Let so be large enough to ensure k(s) > s and 

K(YS-1) < ^/|ys_i| + O(l) < a|Ys_i| hold for all s > SQ. Suppose that 

K ( w )  >  a ' \ w \ .  (4.2) 

holds for some w with Ys_i C w C Ys for some stage s > SQ. We then have that p is a proper 

extension of Fs_i. By choice of p and a and the fact that a' > a + ̂  > a + we must 

have w = p or a Ç w. We analyze these two cases separately. 

(i) w = p: Let p'  be the string obtained from p by removing the last bit. Then K{p)  < 

K(p') + 0( 1). By choice of p, we have K(p') < a\p'\. We also have K(p) > (a')\p\ by 

(4.2). Putting these three statements together yields 

«VI < «OI -1) + 0{ 1), 

which is a contradiction if \p \  =  |w| is sufficiently large. 

(ii) a Q w: Obtain a' from a by removing the last bit of a. Then we have 

<  # ( < / )  + # ( H - H )  +  o ( i )  

< K(a') + log(|u)| - |(T|) + O(l) 

< K(a') + 21og |cr| + O(l). 
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By choice of a,  K(a ' )  < (a  +  ̂ jy)|o"'|. These two facts together with (4.2) tell us that 

which is a contradiction for large |w| because |io| > \a\ and a' > a + ^y. 

Therefore, for all sufficiently long w Ç F, (4.2) does not hold. It follows that Dirn(F) < a.  On 

the other hand, there are infinitely many pQY with K(p) > a\p\, so Dim(Y) > a. Therefore 

Y E DIM:,. 

This shows that / is a Wadge reduction from C to DIM"tr. As C is an arbitrary Sg-class, 

this shows that DIM"tr is Wadge complete for 11°. 

The proof for the case a = 0 is similar, but simpler as substage (a) is omitted in the 

construction. • 

4.3.3 Ad Hoc Methods 

When classifying classes in the arithmetical hierarchy of reals there are several methods 

one can use. As we have seen, category methods are sometimes useful up to the second level, 

Wadge reductions are useful if the classification in the effective (lightface) hierarchy coincides 

with that in the classical (boldface) hierarchy, and sometimes (as in Proposition 4.1 ) one just 

needs something else. In particular when the level of the class in the effective hierarchy is not 

the same as the level in the classical hierarchy one often needs to resort to ad hoc arguments. 

One might think that the notion of effective Wadge reduction, or recursive functional, would be 

the proper notion to use in classifying classes of reals in the effective hierarchy. However, this 

notion is rarely useful for the following reason. Let X be a class without computable elements, 

such as the class of Martin-Lof random sets or the class of 1-generic sets. Then X cannot be 

proven to be complete for any level of the effective hierarchy by a recursive Wadge reduction 

/. For if X is recursive, then so is f(X), so we can never have X G C <=> f(X) G X. So 

we see that "easy" classes like C that contain recursive elements cannot be reduced in such a 

way to many "difficult" classes, which renders the notion rather useless. 
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We have left open the question whether DIMgtr is not in 11°, and whether DIM"tr is not 

in II3 for any Ay-computable a G [0,1). We have no answer to the second question, but we 

provide an answer to the first in the next theorem. We make use of the following lemma: 

Lemma 4.20. If X e n° is dense then there is a computable X € X. 

Proof. This is an easy finite extension argument. Suppose that X = {X : (Vm)(3k)Rx (m, k) j =  

1} € D® is dense. (Here Ris a computable predicate. Note that R does not have to be defined 

with oracles X that are not in X.) Given any initial segment r such that 

(Vn < m ) ( B k ) R T ( m ,  k )  [ —  1 ,  

we show how to compute an extension a • T such that 

(3fc)JZt7(m, k) 1= 1. (4.3) 

Because X is dense, there are X • r and k such that Rx(m, k) [— 1. Let u  be the use of this 

computation, i.e. the part of the oracle X used in it. Now define a = max{% f u, r}. Then 

a • r satisfies (4.3). 

Now it is clear that for every m we can compute appropriate extensions am such that 

X — (Jm am is computable and (Vm)(3fc)iî<Tm(m, k) |= 1, so that X 6 X. • 

Theorem 4.21. DIMgtr is not a Tl^-class. Hence it is properly [H°], 

Proof. Suppose that DIMgtr is H°. Then, since clearly DIMgtr is dense, by Lemma 4.20 it 

contains a computable real, contradicting that every computable real has strong dimension 0. 

• 

The results of this section are summarized in the following figure. 
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DIM™ 

a = 0 n ° - s °  

a E (0,1) n A% n§[E«] -

a — 1 n%[n?]-(2%un%) 

arbitrary a G (0,1) n ° - s °  

Classification Summary 

Open Question 4.22. Is it the case that DIM™tr is not in 11° for any A°-computable a G 

[0,1)? 
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5 RESOURCE-BOUNDED DIMENSION AND POLYNOMIAL-TIME 

REDUCTIONS 

Resource-bounded measure has been used very successfully to study polynomial-time re­

ductions within exponential-time complexity classes. Measure-theoretic arguments were the 

first to show that for all a < 1, every <£a_tt-hard language for exponential time is exponen­

tially dense [37]. The first plausible hypothesis on NP to separate the <m and <!^ reducibilities 

within NP came from resource-bounded measure [38]. 

The degrees and spans of languages and classes of languages under polynomial-time reduc­

tions have been studied by several researchers using resource-bounded measure. 

Definition. Let <r be a reducibility. For any class V of languages, let 

Pr(D) = {B C {0,1}* I (3A E D)B <? A} 

be the <r-lower span of T> and let 

Pr
_1(P) = { B C  {0,1}* | (3A G V ) A  < P B )  

be the <5?-upper span of V. For any A Ç {0,1}* we also define Pr(A) = Pr({A}) as the 

<r-lower span of A, P~1(A) = Pr({A}) as the <f-upper span of A, and 

d e g P ( A ) = ? r ( A ) n P - i ( A )  

as the < r -degree of A. 

Also of interest are the classes of hard and complete languages for a given complexity class. 
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Definition. For any complexity class T>, the class of <f-hard languages for V is 

%?(%) = {AC {0,1}* |DCP,.(A)} 

and the class of < r -complete languages for V is 

C?(Z)) =2) n-%?(?)). 

In this chapter we use resource-bounded dimension to investigate various polynomial-time 

spans and degrees as well as the hard and complete languages for various complexity classes. 

5.1 Small Spans in Scaled Dimension 

Juedes and Lutz [25] proved the following small span theorem for <m reductions in both 

E and in EXP. 

Theorem 5.1. (Juedes and Lutz [25]) Let A G {p,p2}. For every A G R{A), 

XPmM) I #(A)) = o 

or 

XP-1(A) I a(A)) = WPmX^)) = 0-

In particular, /u(deg^(A) | R(A)) = 0. 

That is, at least one of the upper or lower spans of A is small within R(A). Using a result 

of Bennett and Gill [6], Juedes and Lutz [25] noted that strengthening Theorem 5.1 from 

<m reductions to reductions would achieve the separation BPP / EXP. Pursuing this 

program, small span theorems for reductions of progressively increasing strength between <„ 

and have been obtained by Lindner [29], Ambos-Spies, Neis, and Terwijn [3], and Buhrman 

and van Melkebeek [10]. 
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Recall that resource-bounded dimension is capable of quantitatively distinguishing among 

the measure 0 sets. With regard to the measure 0 sets in Theorem 5.1, Ambos-Spies, Merkle, 

Reimann, and Stephan [2] proved the following. 

Theorem 5.2. (Ambos-Spies, Merkle, Reimann, and Stephan [2]) For every A G E, 

dim(degP (A) | E) = dim(Pm(A) | E) 

and 

dimp(degP (A)) = dimp(Pm(A)). 

In particular, as dim(E | E) = 1, the < m-complete degree for E has dimension 1 within E. 

This implies that replacing "//" by "dim" in Theorem 5.1 makes the statement for E no longer 

true. In other words, there is no analogue of the small span theorem for dimension in E. 

Dimension in E cannot distinguish between lower spans and degrees. 

In this section we use scaled dimension to investigate polynomial-time spans and degrees 

and further understand the contrast between Theorems 5.1 and 5.2. We show that the same 

dichotomy also occurs between the —3rd- and — 2nd-orders of scaled dimension. The main 

contribution is a strengthening of Theorem 5.1 to give a small span theorem for — 3rd-order 

scaled dimension. In contrast, we extend Theorem 5.2 to scaled dimension at orders i with 

W < 2. 

These results hold for scaled dimension in exponential space as well as in exponential time. 

As an application, we consider the scaled dimension of Cm(E), the class of polynomial-time 

many-one complete sets for E, within ESPACE. Let i G {—2,-1}. We extend a theorem 

of Lutz [32] and use it to show that determining the —1st or — 2nd-order scaled dimension 

of Cm(E) in ESPACE would derandomize BPP or separate P from PSPACE. In contrast, 

we also show that Cm(E) unconditionally has — 3rd-order scaled dimension 0 in ESPACE and 

—2nd-order scaled dimension 1 in E. 
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5.1.1 Scaled Non-Bi-Immunity and Compressibility 

In this section we introduce some classes involving scales, non-bi-immunity, and compress­

ibility by polynomial-time reductions and calculate their scaled dimensions. 

A Turing machine M is consistent with a language A Ç {0,1}* if for all x G {0,1}*, 

M ( x )  halts <=> M ( x )  =  A ( x ) .  

Let t be a time bound. The fast set of M with respect to t is 

Flj = {x G {0,1}* | timeM(z) < t(|%|)}. 

Recall that A is not DTIME(ï)-bi-immune if there is a machine M consistent with A such 

that Fl
M is infinite. 

Definition. For any time bound t, letX{t) be the class of all languages that are not DTIME(^)-

bi-immune. 

Let A Ç {0,1}* and / : {0,1}* —> {0,1}*. We say that / is a many-one reduction of A if 

there is some B Ç {0,1}* such that x G A -£=> f(x) G B. The collision set of / is 

c f  =  {si|(3j < i ) f ( s i )  =  f ( s j ) } -

Recall that A is compressible by <^TIME(4) -reductions if there exists an / G DTIMEF(t) that 

is a many-one reduction of A and has Cy infinite [25]. 

Definition. For any time bound t, let C(t) be the class of all languages that are compressible 

b y  < S - r e d u c t i o n s .  

The following theorem asserts that almost every language in E is DTIME(2cn)-bi-immune 

[42] and incompressible by <j^TIME(2 ^-reductions [25]. 
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Theorem 5.3. (Mayordomo [42], Juedes and Lutz [25]) For all c G N, 

^p(X(2™)) = MC(2™)) = 0 

and 

^(%(2"'))-^(C(2"')) = 0. 

The next two definitions introduce scaled versions of X ( t )  and C ( t ) .  

Definition. For any i € Z, a 6 [0,1], and time bound t, let 

= A ç {0,1}* 
( 3 M )  M  i s  c o n s i s t e n t  w i t h  A  a n d  

( 3 ° ° n ) # ( l ,  F f
M  \ n ) > n -  g , ( n ,  a )  

That is, Xa\t) consists of the languages that are not DTIME(<)-bi-immune in a particular 

strong way: for infinitely many n, all but gj(n, a) of the first n strings can be decided in less 

than t time by a consistent Turing machine. 

Definition. For any i G Z, a G [0,1], and time bound t, let 

C#) - A G {0,1}* 

In other words, C&\t) is the class of languages compressible by < 

(3/ G DTIMEF(t)) f is a many-one reduction of A 

a n d  ( 3 ° ° n ) # ( l ,  C f  \  n )  >  n  —  g i ( n ,  a )  

DTIME(t) -reductions where 

for infinitely many n, all but gi(n ,  a)  of the first n strings have collisions under some reduction. 

For a < 1, X^(2") ç X(2") and C^(2") ç C(2"), so Theorem 5.3 implies that %1')(2") 

and Ca\2n) have measure 0. We now refine this by calculating their scaled dimensions. 

Theorem 5.4. For all i G Z, c > 1, and a G [0,1], 

dimW(%W(2™)) = dimg)(cW(2™)) - a 
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and 

dim(')(xW(2"'=)) = dimg(cW(2"')) = a. 

Proof. We focus on the p-dimension portion of the theorem; the argument for p2-dimension 

is identical. If a = 0, this is trivial, so assume a G (0,1]. Let s,t > 0 be arbitrary rationals 

with s < a < t. It suffices to show that 

a < dimW(XW(2™)) < dimg)(CW(2™)) < f. 

The inequality dimp^(X^(2cn)) < dimp^(Ca^(2cn)) holds because of the inclusion Xa\2cn) Ç 

C^(2^). 

For the lower bound, let p be any p-computable measure, say computable in nk time. We 

def ine  a  language A inductively by lengths. Let s' G (s, a) be rational. The first [gi(2n,s')\ bits 

of A=n are set by diagonalization to minimize p. The remaining 2n — [51,(2", s')J bits are iden­

tically 0. More formally, if x is the characteristic string of A<n_i, we choose v G {0, l}Lsi(2n,s')J 

so that p(xv) is minimized, and let A=n have characteristic string _ Then A is 

easily in X^, \2 c n )  Ç 1^(2™). Let w C A, and let n be such that 2™ - 1 < \w\  < 2 n + 1  -  1. 

Then if |u>| < 2" — 1 + [gi(2n, s')J, we have 

Xi") < [ 2" - l)2-(M-(2"-i)), 

and if \ w \ > 2 n  -  1 +  [ g { (  2 n ,  s')J, we have 

X 4  <  x ^ r ( 2 " - i  +  ̂ ( 2 " , / ) j ) )  

p ( w  \ 2 n  - 1 )  
~ 22" —!+ LSi(2n,s')J — (2n —1) 

[ 2" - 1) 
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Therefore, in either case, 

l o g p ( w )  +  gi( \w\ ,s )  < l o g p ( w  \  2 n  -  I )  -  [gi( 2 n , s ' ) \  +  gi( \w\ ,s )  

< logp{w \  2" — 1) + gi(2 n + 1  — 1, s) — gi(2™, s ' ) .  

As gi{2™, s ' )  — g i (2 n + 1  — 1, s)  —> oo as n —> oo since s < s', it follows that 

lim logp(A \  n)  + gi{n ,s)  = -oo. 
71—>00 

Since p is an arbitrary p-computable measure, the contrapositive of Lemma 3.41(1) implies 

that  d imp ) (%«))  >  s .  

Now we prove the upper bound. Let A € Ca\2cn) by a function / G DTIMEF(2C"). 

Define a measure p inductively by p(A) = 1 and for all w G {0,1 }*,b G {0,1}, 

1. If f ( s i )  ^ f ( s \ w \ )  for all i  <  |w|, then 

p(w) 
p(wb) = 

2. Otherwise, let i — min{i < |w| | /(sj) = /(s|„,|)} and define 

p(wb) = < 
p (w)  if 6 = u; [i] 

0 if b ^ u>[i] 

Then for all w ç A, 

log p(w)  = -#(0 ,C f \ \w\)  

= #( i , c f  \  M) - \w\ .  
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Whenever #(1, C/ f n) > n - gi(n ,a ), we have 

gi{ n , t )  +  l o g  p ( A  \  n )  =  gi( n , t )  +  # { l , C f  \  n )  -  n  

This happens infinitely often, so 

lim sup gi( n , t )  + logp(A \  n )  —  o o  

because t > a. Also, p is computable in 0(|u;| • 2cl°sM) = 0(|w|c+1) time. Such a p can be 

defined for each A G Ca\2cn), so dimp^(Ca^(2cn)) < t follows by Theorem 3.45. • 

5.1.2 Small Span Theorem 

In this section we establish our small span theorem for scaled dimension. We begin with 

a simple, but important, lemma about the scales. 

Lemma 5.5. For all k > 1 and s,t G (0,1), g z { 2 n k ,  s )  =  0(52(2", t ) ) .  

Proof. We have 

and 

92 (2",f) = 2('°s2")' = 2"* = 22"°*". 

The lemma holds since (fclog n)s = o(t logn). • 

Juedes and Lutz [25] proved that the upper spans of incompressible languages are small. 

Specifically, for any language A G EXP that is incompressible by ^-reductions, they showed 

that pp2 (P™1(A)) = 0, and if additionally A G E, then //p(P~1(A)) = 0. The following 

theorem is a scaled dimension analogue of this. For any i 6 Z, let 

cEN 
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Theorem 5.6. Let a G (0,1). 

1. Let A € {p, pspace}. For any B G R{A) - ci^(poly), dim^"3^(P"1(B)) = 0. 

2. Let A G {p2,p2space}. For any B G R(A) - (poly), dim^"^(P^(B)) = 0. 

Proof. We first give the proof for A = p. Let B G E - C<^ (poly) and let M be a Turing 

machine that decides B in 0(2cn) time. Assume B <m C via / where / is computable in nk 

time almost everywhere. Then for all sufficiently large n, 

Z(B<») Ç (5.1) 

and 

|/(B<»)| > gi(2"+^ - l,a) > m(2",«), (5.2) 

with the latter holding because B $ d^(poly). 

Let r G N such that £ < a .  Define d  :  N —> N by d { n )  —  [n/rj. For each n  G N we define 

a measure pn : {0,1}* —> [0,1] by 

pn{ A) = 2~n 

and for all w G {0,1}* and b G {0,1}, 

1. If H < or [(Vz < 2n+1 - 1 )f{si) ± /(s|w|)], then 

pn(wb) = Pn^ . 

2. Otherwise, let i = min{i < 2n+1 - l| /(sj) — /(s|ui|)} and define 

I  P n ( w )  if b  =  B [ i ]  
pn{wb) = < 

[0 if b ^ B \ i \ .  

If |w| < 2d(n\ then pn(w) is computable in 0(|w|) time. If |w| > 2d^n\ we can compute pn(w) 

by using 2n+1 - 1 = 0{\w\n!d^) = 0(|tt>|r) computations of M and / on strings with length 
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at most n = 0(log |u>|). Therefore p n (w)  is computable in 0(|to|r(2clog I™' + (log |u>|)fc)) 

0(\w\r+c) time for all w G {0,1}*. 

Let w n  = C \  2 n k + 1  — 1 be the characteristic string of C < n k .  Then letting 

m (n) = {j < \w n \  |(Vi < 2n+1 - 1 )f(s i )  ± f( s j ) }  

we have 

By (5.1) and (5.2), we have 

m(n)<2" +1-1-91 (2", a) 

if n is sufficiently large. In this case, 

log Ai W > (2", a) - 2^(") - 2""+i - n.  (5.3) 

The function p : {0,1}* —> [0, oo) defined by 

p ( w )  —  ^  ̂  pn( 
n— 0 

W )  

for all w  is a measure by linearity. Notice that p ( w )  can be approximated to a precision of 

2~l in O(\w\r+Ol) time by adding the first I + 1 terms of the sum. 

Using (5.3), for all sufficiently large n,  we have 

g - 3 ( \ w n \ , s )  +  l o g  p n ( w n )  =  2™fc+1 +4-g3(2nk+1 - 1,1 - s) + log pn(wn) 

> m(2",«) - - 1,1 - a) - - TI. 

ByLemma5.5,#(2"*+i-l,l-s) = o(m(2",a)). Also, 2^") =2^ islittle-oofgi(2",a) = 
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2an because a > 1/r. Using these facts, it follows that 

limsup g_3(n, s) + logpn(C \ n) = oo. 
n—* oo 

Appealing to Theorem 3.45, we establish dimp^P"1^)) < s. As s > 0 is arbitrary, the 

A — p part of the theorem holds. The argument is identical for A = pspace. 

The proof for A 6 {p2,p2space} is very similar, so we only sketch the differences for 

A  —  p 2 .  L e t  B  6  E X P  —  C a \ 2 " )  a n d  l e t  M  b e  a  T u r i n g  m a c h i n e  t h a t  d e c i d e s  B  i n  0 ( 2 n ° )  

time. Assume B <m C via /. The measures pn and p are defined in the same way, except we 

u s e  a  d i f f e r e n t  f u n c t i o n  d { n ) .  F o r  t h i s ,  w e  l e t  r  >  l / a  a n d  d e f i n e  d ( n )  =  [ n £ J  w h e r e  e  =  1 / r .  

T h e n ,  i f  | w |  >  2 d ( n \  a s  b e f o r e  w e  c a n  c o m p u t e  p n ( w )  b y  u s i n g  2 n + 1  —  1  c o m p u t a t i o n s  o f  M  

and / on strings with length at most n = 0(log |iu|). Since 2n = 2(log2" )r = 0(2(losH)r); we 

can compute in 0(2C°sM)' - 2^^!)') = 0(2(bsM)""^) time. Instead of (5.3), we 

arrive at log pn(wn) > g2(2n, a) — 2d^ — 2"k+1 - n. The proof is completed in the same way 

u s i n g  t h e  f a c t  t h a t  2 d ^  —  0 ( 9 2 ( 2 " ,  a ) )  b e c a u s e  e  <  a .  •  

We are now ready to prove our small span theorem. 

Theorem 5.7. 

1. Let A G {p,pspace}. For every A G R(A), 

dim(1)(Pm(A) I R(A)) = 0 

or 

dim(-^)(p-\A) I #(A)) = dim^')(p-\A)) = 0. 

2. Let A G {p2,p2space}. For every A G R(A), 

dim(2)(Pm(A) I R{A)) = 0 
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or 

dim(-3)(p-i(A) | #(A)) - dim^(p-iM)) = 0. 

Proof. Let A 6 {p, pspace} and let A G /?,(A). We consider two cases. 

(I.) Suppose that 

Pm(A)n^(A)C Q cW(2"). 
aG(0,l) 

Then dim^(Pm(A) fl R ( A ) )  <  dim^(C^-*(2")) < a by Theorem 5.4 for all a  G (0,1), 

so dimW(Pm(A) | #(A)) = dirn^(Pm(A) n A(A)) = 0. 

(II.) Otherwise, there is an a G (0,1) such that 

P m ( A ) n ^ ( A ) g C ^ ( 2 " ) .  

Let B G Pm(A) n R( A) — Ca\2n). Then by Theorem 5.6, dim^ 3^(P~1(S)) = 0. Since 

PmV) Ç Pm^5). we have dim^3)(p-1(A)) = 0. 

Part 2 is proved in the same way. • 

Theorem 5.7 implies that there is a small span theorem for — 3rd-order scaled dimension, 

but it is stronger than the following. 

Corollary 5.8. For every A G R(A), 

dirn(-3)(Pm(A) |#(A)) =0 

or 

dim(-3)(p-\A) | #(A)) - dim^)(p-i(A)) = 0. 

Proof. This follows immediately from Theorem 5.7 using Theorem 3.39. • 

Theorem 5.1, the small span theorem of Juedes and Lutz [25], is also a corollary of Theorem 

5.7. This follows immediately from Lemma 3.38. 
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We also have the following regarding the scaled dimensions of the hard languages for EXP 

and NP. 

Corollary 5.9. 1. dim^(?&(EXP)) = dim^(%&(EXP)) = 0. 

G. ^DIM^(NP | E) > 0, MEN DIM^(M&(NP)) = 0. 

G. ^DIM^)(NP | EXP) > 0, MEN DIM^C%&(NP)) = 0. 

Proof. Let H G C£(E). Then also H G C&(EXP), so P^ ( H )  = Wg,(EXP). Since d i m ( P m ( H )  |  

E) = dimp(E) = 1 ,  Theorem 5 . 7  tells us that dim p ( H m(EXP)) = dimp(P~ 1 ( / f ) )  —  0 .  

Parts 2 and 3 follow from Theorem 5.7 using any NP-complete language A. • 

Juedes and Lutz [25] concluded from their small span theorem that every < m-degree has 

measure 0 in E and in EXP. From Theorem 5.7 we similarly derive a stronger version of this 

fact: every <m-degree actually has — 3rd-order dimension 0. 

Corollary 5.10. For every A Ç {0,1}*, 

dim(~3)(degP(A) | R(A)) = 0. 

Proof. If degP,(A) is disjoint from R(A), then dim^3)(deg^(A) | R(A)) = dimp_3^(0) = 0, so 

assume that there is some B G deg^(A) D R(A). Because deg^(A) — deg^(B) = Pm(B) n 

P^(B), we have 

DIM(-3)(DEGP (A) | J%(A)) < DIM^P^B) | ̂ (A)) 

and 

DIM(-")(DEGP (A) | #(A)) < DIM(-3)(P-I(G) | #(A)). 

By Corollary 5.8, we have either dim^-3^(Pm(B) | R(A)) — 0 or dW~3^(P~1(B) | JR(A)) = 0. 

Therefore dim^~3^(degP1(A) | R(A)) =0. • 
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The < m-complete languages for any complexity class has -3rd-order dimension in every 

E(A). 

Corollary 5.11. For any class V of languages, dim^~3^(Cm(î>) | R(A)) = 0. 

Proof. If Cm(£>) = 0, this is trivial. Assume Cm(T>) ^ 0 and let A G Cm{V). Then Cm(D) Ç 

degP1(A), so this follows from Corollary 5.10. • 

5.1.3 Lower Spans vs. Degrees in Orders -2 Through 2 

We now present some results that stand in contrast to the small span theorem of the 

previous section. We begin by showing that lower spans and degrees have the same scaled 

dimension in orders i with |i| < 2. 

Theorem 5.12. For any A G R(A) and -2 < i < 2, 

dimW(degP (A) | #(A)) - dirnW(Pm(A) | #(A)) 

and 

dim^(degP (A)) = dim^(Pra(A)). 

Proof. We write the proof for dimension in -R(p) = E; the rest of theorem is proved in the 

same manner. 

Let A G E be decidable in 0(2cn) time. By monotonicity, dim^'(degP1(A) | E) < 

dimW(Pm(A) | E). For the other inequality, let t > s > dimW(deg^(A) | E). By Lem­

mas 3.41 and 3.42, for some l G N there is an exactly n'-tirnc computable measure p satisfying 

lim sup gi (m,  s )  +  logp(C \  m)  — oo (5.4) 
m—> oo 

for all C G deg^ (A) fi E. 

Letting k > 1 be a natural number to be specified later, we define a padding function 

/: {0,1}* ^{0,1}* by 

/(%) = 0l=f-l=lz 
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for all x. Let R = /({0,1}*) be the range of /. 

Let B G Pm(A). We define another language B' as 

Then B' G degg1(A). Intuitively, B' is a language that is very similar to B but has A encoded 

sparsely in it. Define a function r : {0,1}* —> {0,1}* inductively by r(À) = A and 

r ( w b )  =  <  

r ( w ) b  if sH ^ R  

t ( w )  1  i f  S | „ j |  €  R ( ~ )  B '  

t{w)0 if s\w\ e R - B' 

for all w G {0,1}* and b G {0,1}. Notice that 

t ( B  \ n) = B '  \ n 

for all n. 

Define a measure 7 as follows. For all w G {0,1}* and b G {0,1}, 

7 ( w b )  =  

i { w )  
2 

p(r(w)b) 

if S^i G R 

Intuitively, 7 is designed to have performance on B that is similar to p's performance on B'. 

This is done by mimicking the conditional probabilities of p for strings that are not in R. 

Note that "f(w) can be exactly computed in 0(|u;| • (|w|' + 2(logltuDc)) = 0(|w|maxC'c)) time. 
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Let n G N  and let 2^n 1)fc+1 < m < 2nh+1 — 1. Then 

r %) 
log 7(5 \ m) = ^2 log 

l<i<m 
7(B M - 1) 

S i g R  S i E R  

E ' 0 % ( B B
r i - ) i ) - | { 1 - i - ' " | s ' € R } |  

1 <i<m 
S i g R  

Ki<m ' / 

= log p{B' \ m)-^2 2r' 
i—0 

= log p(B '  \  m)  -  2n+1 + 1. 

Now assume that gi (m,  s )  + logp(B '  \  m)  >  1. Then we have gi (m, t )  + log7(B \  m. )  >  1 if 

2"+1 + 9i (m,s )  <  g i (m, t ) .  (5.5) 

To establish 

limsupg i (m, t )  + log7(B  \  m)  >  1, (5.6) 
n—>oo 

it now suffices to show that (5.5) holds for all sufficiently large m. For each — 2 < i < 2, we 

now give an appropriate choice of k that yields this. 

• i — 2: Let k  >  1 f t .  Then g 2 ( m , t )  >  g 2 ( 2 ( - n ~ 1 ^ ,  t )  — , so 2n+1 = o(g2( m , t ) )  

because kt > 1. Also, g2(ni, s) = o(g2(m,t)) since s < t, so (5.5) holds when m is 

sufficiently large. 

• i = 1: Let k  =  2 .  Then g \ { m , t )  >  g i ( 2 ( - n ~ 1 ^ 2 , t )  = 2t(™~1)2, so 2"+1 = o(g2( m , t ) ) .  Also, 

9i(m, s) — o(gi(m,t)), so (5.5) holds for sufficiently large m. 

• i = 0: Let k  =  2 .  Then g o ( m , t )  >  g o ( 2 ^ n ~ ^ 2 , t )  =  t 2 f - n ~ 1 ^ 2 ,  so 2n+1 = o(go(m,t)). Also, 

g o ( m ,  s )  =  o ( g o ( m , t ) ) ,  s o  ( 5 . 5 )  h o l d s  f o r  s u f f i c i e n t l y  l a r g e  m .  
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• i = — 1: We have = m  +  l - g i (m, 1 — t ) ,  so (5.5) is true if 2n+1 + gi(m, 1 -i) < 

gi{m, 1 — s). Taking k - 2. this follows from the argument for i = 1 above since 

1 — s !> 1 — t. 

• i = -2: Just as in the i  =  -1 case, (5.5) is true if 2"+1 + <72 (m, 1 - t) < g 2 ( m ,  1 - s). 

Taking k > 1/(1 — s), this follows from the argument for i = 2 above since 1 — s > 1 — t. 

For each B G Pm(A), we have given a 0(nr"ax^,c')-time computable measure 7 such that 

(5.6) holds. By Theorem 3.45, dimW(Pm(A) | E) < t. As t > dim^^deg^A) | E) is arbitrary, 

this establishes dimW(Pm(A) | E) < dim^)(degP1(A) | E). • 

Theorem 5.12 has as a special case Theorem 5.2 that was proved by Ambos-Spies, Merkle, 

Reimann, and Stephan [2], 

Theorem 5.12 implies that Theorem 5.7 cannot be improved in one respect. For any 

i,j G Z, let SST[i,j] be the assertion that for every A G E, either 

dimW(Pm(A) I E) = 0 

or 

dimb)(p-i(A) | E) = 0. 

Let H G Cm(E). Then 

dim("2)(Pm(tf) I E) = dim<-2)(E | E) = 1, 

so dim^2^(degP1(fl") | E) = 1 by Theorem 5.12, which in turn implies 

dim(-2)(p-i(#) I E) = 1. 

Therefore, SST[i, j] is true only if i < -3 or j < -3. Theorem 5.7 asserts SST[1, -3], so the 

-3 in it cannot be improved to -2. 
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We have the following corollary regarding the classes of complete sets for E, EXP, and 

NP. 

Corollary 5.13. L e t  — 2 < i < 2 .  

1. dim®(C&(E) | E) = dim® (C& (EXP) | EXP) = 1. 

2. dim®(NP | E) = dim®(C&(NP) | E). 

3. dim®(NP | EXP) = dim® (Cm(NP) | EXP). 

fmo/. Let B € C&(E). Then C&(E) = deg& (#)nE, so dim(')(CP(E) | E) = dim(')(degP (Jf) | 

E) = dim®(Pm(if) | E) = dim® (E) = 1 by Theorem 5.12. The other statements follow 

similarly. • 

We can now observe a difference between the —3rd- and -2nd-order scaled dimensions 

regarding complete degrees. Corollaries 5.11 and 5.13 together with Theorem 3.39 tell us that 

for V e {E, EXP}, 

0 if i < -3 
dim(')(CP(D) | D) = 

1 if i > -2 

and 

0 
dim(')(CP (NP) |D)-< 

dim(j)(NP | V) ifi>-2. 

In Section 5.1.5 we will discuss the scaled dimension of Cm(E) within ESPACE. The 

following extension of Theorem 5.12 will be useful. 

Theorem 5.14. For all -2 <i <2, 

dim® (CP (E) | ESPACE) = dim®(E | ESPACE). 

Proof. We use the construction from the proof of Theorem 5.12. Let t > s > dim® (Cm(E) | 

ESPACE) and take an exactly n'-space computable measure p satisfying (5.4) for all C e 



104 

C m(E). Fix an A € C m(E). For any Be E, the set B' constructed from A and B is in C m(E). 

The arguments then show dim® (E | ESPACE) < t. • 

5.1.4 < f_tt-Lower Spans vs. < m-Lower Spans 

Theorem 5.12 is also true for most other polynomial-time reducibilities. (This fact was 

mentioned in [2] for Theorem 5.2 when it was proved.) To replace <m by <r in the theorem, 

we only need to have B' G degJ?(A) for the set B' that was constructed in the proof from 

B G Pr(A). In particular, Theorem 5.12 is true for the <f_tt reducibility. In this section we 

show that this holds because of another reason: the scaled dimensions of <^_tt-lower spans 

and <m-lower spans are always the same. 

The following proposition was used to show that a set is weakly <m-complete for expo­

nential time if and only if it is <j3_tt-complete. 

Proposition 5.15. (Ambos-Spies, Mayordomo, and Zheng [1]) Let A <f_tt B. Then there 

is a language C G P such that 

Â = (A n C) u (A" n c<) <p B. 

The idea of the following lemma also comes from [1], 

Lemma 5.16. Let i eh. Let C,C be classes of languages such that for any A G C, there is 

some C € R(A) such that Â = (A n C) U (Ac n Cc) G C. Then dim® (C) < dim® (C). 

Proof. We prove this for A = p. The other cases are proved by identical arguments. 

Let s  >  dim® ( C )  be rational and obtain p  computable in 0 ( n r )  time from Lemma 3 . 4 1  

such that 

limsupgi(n ,  s )  + logp(Â \  n)  — oo (5.7) 
n—>oo 

for all Â G C. 

Let A G C  and let C  G DTIME(nfc) such that Â  =  ( A  D C )  U (Ac H C c )  G C .  Define a 
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function r : {0,1}* —> {0,1}* by 

T ( W  i  =  
to[j] if Sj G C 

1  -  w [ j ]  i f  s j  g  C  

for each 0 < j < |iu|. Define another measure p' by 

/W = P(T(w)). 

Then for all n, 

Therefore 

p'(A \ n) = p(r(A \ n)) = p(Â \ n). 

lim sup s) + log p'(A \ n) = oo 

because of (5.7). As p' is computable in time 0(\w\ • (log \w\)k + |u>|r) = 0(\w\2 + |u;|r), it 

follows by Theorem 3.45 that dim® (C) < s. • 

We now show that the scaled dimension of a <m-lower span is always equal to the scaled 

dimension of the <f_tt-lower span. 

Theorem 5.17. Let V be a class of languages and let i 6 Z. Then 

dirng(PmCD)) = dim®(Pi_tt(D)) 

and 

dirn®(Pm(D) I a(A)) = dim®(Pi_tt(D) | #(A)). 

Proof. By Proposition 5.15, for each A G Pi-tt(T') there is a language C G P such that 

Â — (A fi C) U (Ac n Cc) G Pm(f)- Let C be the set of all such Â as A ranges over Pi_ tt(£>). 

Then by Lemma 5.16, 

d i m ® ( P <  d i m ® ( C ) .  
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As C Ç Pm(D) C Pi_tt(D), we also have 

dimg(C) < dirnW(Pm(D)) < dim®(Pi_M(D)), 

so the first equality holds. The proof for dimension in R(A) is analogous. • 

We can now give a stronger version of Theorem 5.12. 

Corollary 5.18. For any A 6 R(A) and -2 < i < 2, 

dirnW(PmM) | A(A)) = dimW(degP (A) | #(A)) 

Il II 

dimW(Pi_tt(A) | A(A)) = dimW(degP_^(/l) I A(A)), 

and similarly with dim® (• | i?(A)) replaced by dim® (•). 

Proof. From Theorems 5.12 and 5.17 we have 

dim®(deg& (A) | #(A)) = dirn®(Pm(A) | A(A)) = dim®(Pi_tt(A) | A(A)). 

By monotonicity, we have 

dim®(degP (A) | #(A)) < dim®(degP_^(A) | A(A)) < dim®(Pi_tt(A) | i!(A)), 

so the equalities displayed in the statement of the corollary are true. The proof for dim® (•) 

is analogous. • 

Theorem 5.17 also yields a strengthening of Theorem 5.7: the Pm(A) in it can be replaced 

by Pi_tt(A). In fact, it is also possible to replace the P~1(A) in Theorem 5.7 by Pj~itt(A) by 

extending Theorems 5.4 and 5.6 to deal with <f_tt-reductions. We omit the details. 
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5.1.5 The Scaled Dimension of Cm(E) in ESPACE 

Lutz [34] proved a small span theorem for nonuniform Turing reductions in ESPACE. This 

implies that Cm(E) has measure 0 in ESPACE. In Corollary 5.11 we saw that Cm(E) actually 

has — 3rd-order scaled dimension 0 in ESPACE. In this section we show that determining the 

—2nd- or — lst-order scaled dimension of Cm(E) in ESPACE would yield a proof of P = BPP 

orP/ PSPACE. 

The P = BPP hypothesis was related to the measure of E in ESPACE by Lutz [32]. 

Theorem 5.19. (Lutz [32]) If ji{E | ESPACE) ^ 0, then P = BPP. 

We will extend this result to scaled dimension. We now recall the tools Lutz used to prove it. 

Nisan and Wigderson [45] showed that BPP can be derandomized if there is a decision 

problem in E that requires exponential-size circuits to approximately solve. The hardness of 

a decision problem at a given length is the minimum size of a circuit that can approximately 

solve it. The details of the definition of this hardness are not needed in this paper; we only 

need to recall existing results regarding classes of languages with exponential hardness. 

Definition. Let Ha be the class of all languages that have hardness at least 2an almost ev­

erywhere. 

The aforementioned derandomization of BPP can be stated as follows. 

Theorem 5.20. (Nisan and Wigderson [45]) If there is an EC) Ha ^ 0 for some a > 0, then 

P = BPP. 

We will also need space-bounded Kolmogorov complexity. 

Definition. Given a machine M, a space bound s : N —> N, a language L Ç {0,1}*, and a 

natural number n, the ^-space-bounded Kolmogorov complexity of L=n relative to M is 

KSs
M(L=n) = min j|7r| M(ir,n) = XL=n in < s(2") space j, 

i.e., the length of the shortest program TT such that M, on input (TT, n), outputs the character­

istic string of Z-=n and halts without using more than s(2n) workspace. 
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Well-known simulation techniques show that there exists a machine U which is optimal in the 

sense that for each machine M there is a constant c such that for all s, L and n we have 

KS^(Z,=n) < KS%,(6=,.) + c. 

As usual, we fix such a universal machine and omit it from the notation. 

Definition. For each space bound s : N —> N and function f : N —> N define the complexity 

class 

KS'(/) = C {0,1}* | (V°°n)KS'(^) < /(n)}. 

Lutz showed that Ha has measure 1 in ESPACE (i.e., that Hr
a has measure 0 in ESPACE) if 

a < 1/3 by showing that languages not in Ha have low space-bounded Kolmogorov complexity. 

Lemma 5.21. (Lutz [32]) There exist a polynomial q and a constant c such that for all 

0 < a < f3 < 1, 

Ç KS?o.(2" - + 2^"). 

The class on the right in Lemma 5.21 has measure 0 in ESPACE [33]. The scaled dimen­

sions of similar space-bounded Kolmogorov complexity classes were studied in [23]. 

Theorem 5.22. (Hitchcock, Lutz, and Mayordomo [23]) For any i < — 1, polynomial q(n) = 

fi(n2), and a e [0,1], 

dimW(KS?J#(2",a)) | ESPACE) = a. 

Lemma 5.21 and Theorem 5.22 provide an easy upper bound on the -lst-order scaled 

dimension of in ESPACE. 

Corollary 5.23. 7/0 < a < 1/3, then 
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Proof. Let e > 0 and (3 G (a, 1 —  2 a ) .  Then for all sufficiently large n ,  

2^ c2^— -j- 2f3n <C 2n -}- 1 2^1_2a~e^n 

= 5i(2", 2a + e), 

so Lemma 5.21 implies Ç KS?0 (<?i(2™, 2a + e)). Therefore dim®1^#^ | ESPACE) < 2a + e 

by Theorem 5.22. • 

We can now state a stronger version of Theorem 5.19. The hypothesis has been weakened, 

but the conclusion remains the same. 

Theorem 5.24. If dW_1>(E | ESPACE) > 0, then P = BPP. 

Proof. Assume the hypothesis and let s — min{l/2, dim^_1^(E | ESPACE)}. Then by Corol­

lary 5.23, E g Hg/2i i-e-, E n H3/2 ^ 0. Therefore P = BPP by Theorem 5.20. • 

We now relate the scaled dimension of Cm(E) to the P = PSPACE and P = BPP problems. 

Theorem 5.25. For i G { — 2, -1}, 

dim® (CP (E) | ESPACE) < 1 =>• P ^ PSPACE 

and 

dim(l)(CP (E) | ESPACE) > 0 => P = BPP. 

Proof. From Theorem 5.14 we know that dim®(Cm(E) | ESPACE) = dim®(E | ESPACE). 

Also, dim^)(E | ESPACE) < 1 implies E ^ ESPACE which implies P ^ PSPACE [7]. This 

proves the first implication. The second one follows from Theorem 5.24 since dim® (Cm(E) | 

ESPACE) > 0 implies dim®1)(E | ESPACE) >0. • 

In other words, establishing any nontrivial upper or lower bound on dim®1) (Cm(E) | 

ESPACE) or dim®2)(Cm(E) | ESPACE) would derandomize BPP or separate P from PSPACE. 
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This is in contrast to the unconditional facts from Corollaries 5.10 and 5.13 that 

dim(-%P(E) | ESPACE) = 0 

and 

dim(-%P(E) | E) = dim(-%P(E) | E) = 1. 

5.2 Degrees of Arbitrary Dimensions 

Ambos-Spies, Merkle, Reimann, and Stephan [2] proved the following result asserting the 

existence of degrees with arbitrary dimensions in exponential time. 

Theorem 5.26. (Ambos-Spies, Merkle, Reimann, and Stephan [2]) For any A^-computable 

real number x € [0,1] there exists A G E such that 

dimp(degP (A)) = dim(degP (A) | E) = x. 

In this section we develop a proof of the following extension of Theorem 5.26. 

Theorem 5.27. For every pair of A®-computable real numbers x, y with 0 < x < y < 1, there 

exists A € E such that 

dimp(degP (A)) = dim(degP (A) | E) = x 

and 

Dimp(degP (A)) = Dim(degP (A) | E) = y. 

The proof of Theorem 5.27 is motivated by the analogous, but simpler, arguments used by 

Ambos-Spies, Merkle, Reimann and Stephan [2] to prove Theorem 5.26. Like most dimension 

calculations, our proof consists of separate lower and upper bound arguments. The results 
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from here through Lemma 5.34 are used for the lower bound. Lemma 5.35 uses Theorem 3.33 

to establish the upper bound. The proof of Theorem 5.27 follows Lemma 5.35. 

The following result is an exact dual of Theorem 5.2 and has an analogous proof. 

Theorem 5.28. For any A G E, 

Dimp(degP (A)) = Dimp(Pm(A)) 

and 

Dim(degP (A) | E) = Dirn(?m(A) | E). 

We will use randomness relative to a bias sequence to prove Theorem 5.27. A bias is a 

real number (3 G [0,1]. Intuitively, if we toss a 0/1-valued coin with bias /3, then (3 is the 

probability of the outcome 1. A bias sequence is a sequence (3 = (/3Q, f3\, 02, • • •) of biases. If /3 

is a bias sequence, then the (3-coin-toss probability measure is the probability on C defined 

by 
M-i 

l/(w) = (5.1) 
i=0 

where 0i(w) = (2(3{ - 1 )w[i\ + (1 - /%), i.e., j3i{w) = if w[i\ then /?* else 1 - /%. That is, // 

is the probability that S G C„, when S G C is chosen according to a random experiment in 

which for each i, independently of all other j, the ith bit of S is decided by tossing a 0/1-

valued coin whose probability of 1 is $. In the case where the biases -3, are all the same, i.e., 

/3 = (/3, [3, f3,...) for some (3 G [0,1], we write jjfi for and (5.1) simplifies to 

= (1 - (5.2) 

where #(6, w) is the number of times the bit b appears in the string w. The uniform probability 

measure on C is the probability measure n = /ià, for which (5.2) simplifies to 

Xw) = 2-W 



112 

for all w E {0,1}*. 

Definition. Let v be a probability measure on C. A z/-martingale is a function d : {0,1}* 

[0, oo) that satisfies the condition 

We will use resource-bounded notions of randomness that have been investigated by 

Schnorr [53], Lutz [33], Ambos-Spies, Terwijn, and Zheng [4], and others. 

Definition. Let v be a probability measure on C, and lett : N —> N. 

1. A sequence R E C is A-zv-random, and we write R € RAND"(A), if there is no A-

computable u-martingale that succeeds on R. 

2. A sequence R E C is t(n)-v-random, and we write R e RANDI/(<(n)), if there is no 

0(t(n))-time-computable u-martingale that succeeds on R. 

We write RAND^(i(n)) for RAND^(t(n)). We also say X) — 0 if there is a 0(t(n))-

d{w)u{w) = d(w0)v(w0) + d(wl)u(wl) 

for all w € {0,1}*. 

Note that a //-martingale is a martingale. If (i is a bias sequence, then we call a //j-

martingale simply a /3-martingale. 

time-computable /3-martingale that succeeds on X. 

Notation. Given a bias sequence (3 = (/%, /31;...), n E N, and S € C, let 

n—1 

2=0 

= limmf#n(/3), 
n—> oo 

H+0) = lim supifn(/3). 

We call H ((3) and H+{(3) the lower and upper average entropies, respectively, of /?. Also, let 
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where 

^(5) = (1 - S\i}) log lo§ J. 

for 0 < i < n. 

Note that Ln(/3),£o, • • •, £n-i are random variables with 

n—1 n—1 

i=0 i=0 

The following large deviation theorem tells us that Ln{(3) is very unlikely to deviate signifi­

cantly from this expected value. 

Theorem 5.29. For each S > 0 and e > 0, there exists a G (0,1) such that, for all bias 

sequences (3 = (ffo, /3\,...) with each G [5,1 — 5] and all n G Z+, if Ln{(3) and Hn{(3) are 

defined as above, then 

P[|6n(/3)-n#n(/3)| >en] <2a", 

where the probability is computed according to piP. 

The proof of Theorem 5.29 is given in [5]. 

Lemma 5.30. If 6 > 0 and (3 is an exactly n l-time computable bias sequence with each 

f3i G [5,1 — 8], then every sequence R G RAND /3(nfc+2Z+1) satisfies 

Ln0)(R) = nHn(f3) + o(n) 

as n —> oo. 

Proof. Assume the hypothesis. Let e > 0. For each n G N, define the set 

Y» = {S E C | , 

and let 

X; = {s e c | (3°°n)s e %.}. 
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It suffices to show that n^k+2i+i (Xe) — 0. 

For each n G N and w G {0,1}*, let 

_ ji^{Yn\Cw) if |io| < n 
^n(^) — 

dn(w[0..n — 1]) if |to| > n. 

It is easily verified that each dn is a /3-martingale. It is clear that Yn C 5"1 [drl\ for all n G N. 
OO 

Finally, by Theorem 5.29, the series ^n(A) is p-convergent, so the computable first Borel-
n=0 

Cantelli Lemma [33] (extended to j3 as indicated in [8]) tells us that X t  has p-measure 0. It 

can be verified that the resulting martingale is computable in nk+2l+l time, so //^+2i+i {Xe) — 

0. • 

Lemma 5.31. Assume that k, l G Z+
; S > 0, (3 is an exactly n l-time-computable bias sequence 

with each $ G Q A [5,1 — <5], s G Q A [0, oo), and d is an nk-time-computable s-gale. 

J. < #-(0, Men S°°[d] nRAND^+%+1) = g 

g. jfs < ^+(/3), Men %[d] DRAND^(n^+^ = 0. 

Proof. Assume the hypothesis. Define d' : {0,1}* —> [0, oo) by 

d(w) 
d'(w) = 

2*M^(%,) 

for all w G {0,1}*. Then d' is a /3-martingale, and d! is O(nfc+2,+1 )-time-computable. 

Let R G RAND/3(nfc+2Z+1). Then d' does not succeed on R, so there is a constant c > 0 

such that, for all n G N, if we write zn = R[0..n - 1], then d'(zn) < 2C, whence 

log d(zn) < c + sn + log /J,0(zn). 

It follows by Lemma 5.30 that 

logd(z„) < c + n[s - Hn0)] + o(n) 
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as n —y oo. Hence, for any e > 0, if we let 

I t  — {n G Z+ | s < Hn0) — e}, 

then log<j(zn) < c for all sufficiently large n G I(. We now verify the two parts of the lemma. 

1. If s < H~{f3), let e = ^ Then Ie is cofinite, so logd(zn) < c for all sufficiently 

large n G Z+, so R $ S°° [d]. 

2. If s < H+0),  let e = H+^~s. Then Ie is infinite, so logd(zn) < c for infinitely many 

n G Z+, so E ^ 5'^3
r[d]. 

• 

Our proof of Theorem 5.27 also uses the martingale dilation technique, which was in­

troduced by Ambos-Spies, Terwijn, and Zheng [4] and extended by Breutzmann and Lutz 

[8], 

Definition. The restriction of a string w € {0,1}* to a language A Ç {0,1}* is the string 

w \ A defined by the following recursion. 

1. X \ A = A. 

2. For w G {0,1}* and b G {0,1}, 

(wb) \ A — < 
(w \ A)b if s^i G A, 

w \ A if sH i A. 

(That is, w \ A is the concatenation of the successive bits w[i} for which Sj G A.) 

Definition. A function f : {0,1}* —> {0,1}* is strictly increasing if, for all I,I/£ {0,1}* ;  

%<%/=> /M < /W, 

where < is the standard ordering of {0,1}*. 
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Notation. If / : {0,1}* —> {0,1}*, then for each n G N, let nf be the unique integer such 

that f(sn) = snf. 

Definition. If f : {0,1}* —> {0,1}* is strictly increasing and (3 is a bias sequence, then the 

f-dilation of 0 is the bias sequence (3? given by pi = (3nf for all n G N. 

Observation 5.32. If f : {0,1}* —> {0,1}* is strictly increasing and A Ç {0,1}*, then for 

all n G N; 

- 1] = - 1] ! range(/). 

Definition. If f : {0,1}* —> {0,1}* is strictly increasing and d is a martingale, then the 

f-dilation of d is the function f~d : {0,1}* —> [0, oo), 

fd(w) — d(w [" range(f)). 

Intuitively, the /-dilation of d is a strategy for betting on a language A, assuming that d 

itself is a good betting strategy for betting on the language /_1(A). Given an opportunity 

to bet on the membership of a string y = f(x) in A, f'd bets exactly as d would bet on the 

membership or nonmembership of x in /-1(A). 

The following result is a special case of Theorem 6.3 in [8], 

Theorem 5.33. (Martingale Dilation Theorem - Breutzmann and Lutz [8]) Assume that (3 

is a bias sequence with each G (0,1), / : {0,1}* —> {0,1}* is strictly increasing, and d is a 

-martingale. Then f"d is a (3-martingale and, for every language A Ç {0,1}*, if d succeeds 

on f~1(A), then fd succeeds on A. 

Notation. For each k G Z+, define : {0,1}* —> {0,1}* by gk(x) = O'^lx. Note that 

each gk is strictly increasing and computable in polynomial time. 

Lemma 5.34. Assume that f3 is a bias sequence with each G (0,1), and R G RAND/3(n2). 

Then, for each k >2, g^(R) G RANDQ(nfc), where a = f39k. 

Proof. Let (3, k, and a be as given, and assume that % ' (R.) 0 RAND"(nfc). Then there is 

an nfc-time-computable «-martingale d that succeeds on g^1(R). It follows by Theorem 5.33 
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that g^d is a /3-martingale that succeeds on R. The time required to compute gk'd(w) is 

0(|u;|2 + |u/|fc) steps, where w' = w \ range(gk)- (This allows 0(|u;|2) steps to compute w' 

and then 0(\w\k steps to compute d(w').) Now |w'| is bounded above by the number of strings 

x such that \x\k + |x| + 1 < |s^| | = [log(l + |h>|)_|, so \w'\ < 21+1°g(1+M)'= . Therefore the time 

required to compute g^d(w) is 

0(|%;|2 + = 0(|u,|^) 

steps. Thus gk'd(w) is an n2-time computable /3-martingale, so R $ RAND^(n2). • 

Notation. From here through the proof of Theorem 5.27, we assume that a and (3 are A°-

computable real numbers with 0 < a < (3 < 1/2. It is well-known that a real number is 

Ag-computable if and only if there is a computable sequence of rationale that converge to 

it. Slowing down this construction gives polynomial-time functions â, /3 : N —> <Q such that 

lim â(n) = a and lim (3{n) = (3. We also assume that ^ < â(n) < /3(n) for all n. For each 
n—>oc n—* oo n 

n, we let 

{à(n) if n is even 

f3{n) if n is odd 

and define a special-purpose bias sequence 7 by 

In = «(log* n). 

Note that 7 is 0(n)-time-computable, t In < 7„ for all n, H~(7) — H(a), and H+(7) = 

%(/?). 

We now use the unpredictability characterizations from Theorem 3.33 to establish upper 

bounds on the dimensions and strong dimensions of lower spans of sequences random relative 

to 7. 
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Lemma 5.35. For each R E RAND^(n5), 

dimp(Pm(a)) < %(a) 

and 

Dimp(Pm(R)) < H{0). 

Proof. For now, fix a polynomial-time function / : {0,1}* —> {0,1}*. The collision set of f is 

cf = {j I < j)f( s i )  = f( s j ) } .  

For each n G N, let 

# C f ( n )  =  \ C f  D  { 0 , . . . ,  n  -  1 } | .  

We use / to define the predictors 

H b) = 

w[i]b(l - w[i]) l~b if |w| G C f  and i = min{j | f( s j )  =  /(s^)} 

and 

J ^ if kl ^ C'y 
?rf (w, b) = ' 

w [i]b(l - b if |w| G C f  and i = min{j | f(sj) = f(s\w\)} 

for all w G {0,1}* and b G {0,1}. 

For each S G C, we now define several objects to facilitate the proof. First, we let 
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that is, A?(S) is the language <m-reduced to S by /. Observe that for all w Ç Af (S), 

, H = kl - #C/(kD- (5-3) 

Recall the sequence of towers defined by tj by t o  = 1 and tj+\ =  2 t j .  For any j  G N and 

tj < n < tj+1, define the entropy quantity 

H L = ^(7n) 
i<n 

igCf and 

and the random variable 

^(S) = log 
i<n - 1], A/(g)[%|) 

i$.Cf and 1 

(Recall that if is the unique number such that /(sj) = s,..) We have 

1 

§1O6»f(A/(S)[0..i-l],A/(S)[i]) 
i&Cf 

= Ll(s) + 53 los — 
^ 7rfM/(g)[0..i-l],A/(g)M) , . 
nrliKt;.., ^ ' i£Cf and 

<L f
n{S)+ 52 log log* i lf 

i<n 
i^Cf and 

< Ln(S) + (tj-1 + 1) logO' - 1) 

< Ll(S) + (1 + log n) log* n, 

for all n. (Here we used the fact that 7* > for all i.) Finally, for any e > 0 and 9 G (0,1), 

define the set 

Je,Às) = (n I #cf(n) < (1 - 9)n and L f
n(S) > H[ + en} 
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of natural numbers. 

Claim. For any rational 9 € (0,1) and, e > 0, 

({3 | ^ /mite}) = 1. 

Proof of Claim. The argument is similar to the proof of Lemma 5.30. For each n G N, define 

the set 

if #C/(n) > (1 - 9)n 
Yn = 

and let 

{S | Ln(S) > Hn + en} otherwise, 

JQ = {S E C|(3°°n)g € 

To prove the claim, we will show that /ir5(Xe) = 0. 

For each n E N and w E {0,1}*, let 

fj?(Yn\Cw) if |iu| < n 

dn(w[0..n — 1]) if |w| > n. 

It is clear that each dn is a 7-martingale and that Yn Ç S1 [dn] for all n G N. 

Let SeC. For each n,j G N, let 

7™ = {if I i < n, i £ Cf, and log* i/ = j}. 

Also, define S+ = {i | S[i] = 1} and S = {i | <S[i] = 0}. Then, if n is large enough to ensure 

that log* if < 1 + log* n for all i < n, we have 

(log* n)+1 

L>(S) = E l4"n^|.o6^ + |4-nS-|.og— 
k=(log* n)-l  

For any n and k, write i(n,k) = |7£|. Let Tn be the set of all tuples (l-i,l0,h) satisfying 
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0 < lr < i(n, j + r) for — 1 < r < 1 and 

1 1 1 
rE l' loe + (•<".  3  + r)- lr) log j _ K(. + r) > Hi + 

where j = log* n. Then we have 

v'Vn) = E n ( i in'i + r))nU + rfd - Klj + r))"-"")-'-. 

We can write a similar formula for ^(Yn\Cw) when w A. From this it follows that the 

mapping (n,w) dn(w) is exactly computable in 0(n3) time. 

By Theorem 5.29, there exists S G (0,1) such that for all n G N with Yn ^ 0, we have 

^(y^) < < 2a*". 

It follows that the series dn(A) is p-convergent, so the polynomial-time first Borel-Cantelli 
n=0 

Lemma [33] (extended to 7 as indicated in [8]) tells us that /x^5(X£) = 0. • Claim. 

Let R G RAND^(ra5). Let e > 0 and 6 < H(a) be rational. Then by the above claim, 

Jge(R) is finite. That is, for all but finitely many n, 

#C/(n) > (1 - 6)n or L*n(R) < H[ + en. (5.5) 

Writing wn = Af(R)[0..n — 1], (5.5) combined with (5.3) and (5.4) implies that 

C l°s(-n:l,wn) <6n < H{a)n (5.6) 

or 

£log(7rf ,u;n) < Hi + en + ( 1 + log n) log* n. (5.7) 

As 
T j f  

lim sup—- <H(P), 
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it follows that 

limsup < W) + ,, 
n—>oc Tl 

If (5.6) holds for infinitely many n, then 

(5.8) 

f^(^,^(A))<M(a). (5.9) 

Otherwise, (5.7) holds for almost all n. Assuming 

i f f  
liminf—— < H(a), 

n—• oo n 
(5.10) 

in this case we have 

Z:'°s(7r/, ^(A)) < M(a) + , (5.11) 

We now verify (5.10). For each n, let m(n) = t2
n. Then for sufficiently large n, we have 

if < tn+1 for all i < m{n). Using the sets 1% from the proof of the claim, we then have 

jjf 
m(n) 

rm(n) %(4n)) 
j-m(n) 
n+1 H{n(n + 1)) 

< (tn + + m(n)'H(K(n + 1)). 

As tn — o(m(n)) and k(2n) -> a as n —> oo, we have 

liminf — < liminf g"(2n+1
1\ < H(a). 

n—>cc n n—»oo m(2n + 1) 

For each polynomial-time reduction /, we have defined and analyzed two predictors TTq 

and TT{. We now show how to combine all these predictors into a single predictor that will 

establish the lemma. 

Let {fj | j e N} be a uniform enumeration of all polynomial-time functions fj : {0,1}* —> 

{0,1}* such that fj(x) is computable in 0(2^ + j) steps. For any predictor p, define a 
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probability measure p,[p] by 

M-i 

fi[p]{w) = p{w[Q..i - l],w[i] 
i—0 

for all w € {0,1}*. For each m £ N and w G {0, l}m, let 

m-1 z 1 

j=o 

Then 

/4n+i(w0) + A4n+l(wl) - 2"^+^ + ^2-^+^) L[^i(W) + 
j=o ^ / 

tn , x 
+g-(2m+3) + ^g-(2j+3) 

m , , 
= 2-(^+2) + ̂ 2-(^+3) 

3=0 ^ y 

= 2-^+3) ^ + A4»(tu) - 2-(2™+D 

< ^3 + 0 _ 2-(2m+l) 

< 

Now define a predictor TT by 

=  P M « M )  

7r(w, 0) = 1 - 7r(w, 1). 

Then for ail w € {0,1}* and b G {0,1}, 

t^\w\+i (wb) 
n(w,b) > 
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For all w G {0,1}*, k € {0,1}, and j < |w|, we have 

|iu| — 1 
/2l0g(7T, w) = ^ log 

i=0 ir(w[0..i-l\,w\i}) 

< V lnr ~ ^]) 

V\w\{W) 
22J+3-M 

< 1°6—I 

2j + 3 + i + £ log( 7r^, w). 

For any j 6 N, it follows that 

f^(,r,AA(a))<M(/3) + E 

by using / = fj in (5.8). Also, since either (5.9) or (5.11) holds for / = fj, we have 

£ks(7r,AA(A)) <M(a) + e. 

As 7r is (exactly) polynomial-time computable, this establishes that 

Pm(A) = (A^(A) I ; e N} 

has p-dimension at most 7i(a) + e and strong p-dimension at most %(/3) + e by Theorem 3.33. 

As e > 0 was arbitrary, the lemma follows. • 

We now have the machinery we need to prove the main result of this section. 

Proof of Theorem 5.27. Let x and y be A®-computable real numbers with 0 < x < y < 1. 

Then there exist A°-computable real numbers a and (3 with 0 < a < (3 < i, H(a) = x, and 

7ï(f3) — y. Let 7 be the bias sequence defined from a and (3 above (just prior to Lemma 5.35). 

It is well-known [33, 4] that almost every language in E is 7^-7-random. In particular, there 
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exists a language A G RAND^(n5) PI E. By Theorems 5.2 and 5.28, it suffices to prove that 

dirnp(PmM)) - dim(PmM) I E) = 

and 

Dimp(?m(A)) - Dirn(Pm(A) | E) = 

By Lemma 5.35, then, it suffices to prove that 

dirn(PmM) | E) > M(a) (5.12) 

and 

Dim(Pm(A) | E) > H{(3). (5.13) 

Note that (5.12) is trivial if a = 0, and (5.13) is trivial if (3 = 0. If a > 0, let s G [0,M(a))nQ, 

and let d~ be an nfe-time computable s-gale. Similarly, if (3 > 0, let t G [0, H{(3)) fl Q, and let 

d+ be an nfc-time computable i-gale. It suffices to show that 

a > 0 => PmM) n E g (5.14) 

and 

/) > 0 => Pm(A) n E g %K]. (5.15) 

Let B = 9^3(A). It is clear that B G Pm(A) fl E. Also, by Lemma 5.34, B G RAND^'(nfc), 

where 7' = 79fc+3. Since 

s<M(a)-7f-(7)z=^-(Y), 

t<M(/3)=A'+(7) = ^+(7'), 

and 7' is 0(n)-time-computable, Lemma 5.31 tells us that a > 0 =>• B $ S°° [d~] and (3 > 0 => 

B ^ <5^.[d+]. Thus (5.14) and (5.15) hold. • 
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In light of Theorem 5.27, the following question concerning the relativized feasible dimen­

sion of NP is natural. 

Open Question 5.36. For which pairs of real numbers at,/3 E [0,1] does there exist an oracle 

A such that dimpA (NPA) — a and DimpA (NP"4) = (3? 

5.3 Reductions to Nondense Languages 

The hypothesis that NP does not have p-measure 0, written /np(NP) ^ 0, has been used 

extensively in computational complexity theory and has been shown to have many plausible 

consequences that are not known to follow from the weaker P ^ NP hypothesis. If yup(NP) ^ 0, 

then dinip(NP) = 1, but if //p(NP) = 0, dimp(NP) could be any number between 0 and 1. 

This means that the hypothesis that NP has positive p-dimension, written dimp(NP) > 0, is 

potentially weaker than /ip(NP) ^ 0. 

This positive dimension hypothesis on NP was used in [19] to extend the inapproximability 

result of Hâstad [16] for MAX3SAT. The main theorem of [19] asserts that if dimp(NP) > 0, 

then MAXSSAT is exponentially hard to approximate in that any approximation algorithm 

must either use exponential time or fail to approximate well on a set of exponential density. 

Theorem 5.37. (Hitchcock [19]) If dimp(NP) > 0, then any approximation algorithm A for 

the MAXSSAT optimization problem must satisfy at least one of the following. 

1. There is some 5 > 0 such that A uses at least 2n<S time. 

2. For all e > 0, A has performance ratio less than | + e on an exponentially dense set of 

satisfiable instances. 

Here we say that a language B Ç {0,1}* is (exponentially) dense if there is a 5 > 0 such 

that for all sufficiently large n, \B<n\ > 2"5. Let DENSE be the class of all dense languages. 

The following theorem asserts that the classes of languages reducible to nondense languages 

under reductions with a restricted number of queries has p-measure 0. 

Theorem 5.38. Let a < 1. 



127 

1. (Lutz and Mayordomo [37]) |UP (Pna_tt(DENSEc)) = 0. 

2. (Lutz and Zhao [39]) /ip (PnQ/2_T(DENSEc)) = 0. 

It seems difficult to extend Theorem 5.38 from p-measure to p-dimension. However, the 

following result is true. This was a key ingredient in the proof of Theorem 5.37. 

Theorem 5.39. (Hitchcock [19]) dimp (Pm(DENSEc)) = 0. 

In this section we use the unpredictability characterization of dimension to extend Theorem 

5.39 in two ways. Theorem 5.43 strengthens it from many-one reductions to conjunctive 

reductions. Before that, in Theorem 5.42, we give a related result for strong dimension. Both 

results make use of Theorem 3.33. The following two propositions about combining predictors 

will be useful in the proofs. 

Proposition 5.40. Let {7r; | I G N} be a family of predictors uniformly computable in 0(nk) 

time. Then there is a predictor it exactly computable in 0(nk+2) time such that for all l G N, 

for allw G {0,1}>', £ log(ir,w) < £ log(tt;, w) + c(l + 1), where c is a constant independent of I 

and w. 

Proof. Let / be computable in O ((I + r + |w|)fc) time such that 

If(l,w,b,r) - Tri(w,b)\ < 2~r 

for all l,r € N, w G {0,1}*, and b G {0,1}. We can assume that 

f(l,w,b,r) = k2~r 

for some 1 < k < 2r — 1 and that 

f{l,w,0,r) + f{l,w,l,r) = 1. 
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For any I € N, w E {0,1}*, and b G {0,1}, let 

TT n (w ,b)  =  < 

f(l,w,b, M) - 2"H if f(l,w,b, M) G (5,1) 

/(/, UI, 6, |W|) + 2-H if /(/, U;, 6, \w\) G (0, 

f(l,w,b, M) if f(l,w,b, |u;|) G {0, i, 1} 

Using the inequality 

log 4 < log - + 2 r+2 

for a; < x + 2 r when x > A, notice that 

M-i 
£log (717,1/;) < £log(7r;,u;) + ^ 2 z+2 < £log(7r/,w;) + 8. 

2=0 

For any l G N and tu G {0,1}*, let 

H-i 
Az(w) = %% 7T((w[0..2 - l],w[i] 

i=0 

For any m G N and w G {0, l}m, define 

m—1 

j= 0 

Then we have 

Pm+lM) + ̂ +i(wl) = 2-(2™+3) + T] + 2-(2™+3) + V] 2-^+^^(lul) 
j=0 3=0 
m. 

= 2~(2m+2) + ^2 2™(2j+3) fij (w) 
i=o 

= 2-(2™+3)(2 + Am(^)) + PmW) - 2-^+^ 

< PmW +2^+^(3-4) 

< PmM 
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for all w G {0, l}m. The predictor TT is defined by 

,(„,!) = 
P|iy| (^0 

7r(tt;, 0) — 1 - 7r(w, 1) 

for all w € {0,1}*. For any l G N, if |u;| > I, we have 

M-i ^ 

£"*(*,«,) = Eto8TWo..i_1],m[i|) 

y' (n(m|0-i - 1]) 

= log "0<A) 

/'luil (^) 
221+3 

- ^ÂW 
= £^(7r,,iu) + 2Z + 3 

< £log("7Tn, w) + 2/ + 11. 

As TT(U), 6) is exactly computable in time 0(\w\k+2), the proposition holds. • 

The following proposition allows us to only be concerned with individual languages when 

investigating the dimension of a class. This proposition is similar to one given by Ambos-Spies, 

Merkle, Stephan, and Reimann [2]. 

Proposition 5.41. Let C be a class of languages and let r G N. If for each A G C there is 

some predictor it a computable in 0(nr) time such that £ log(7TA, A) < s, then dimp(C) < s. 

Analogously, if for each A G C there is a predictor TTA computable in 0(nr) time satisfying 

£g°g(7TA, A) < s, then Dimp(C) < s. 

Proof. This follows from Proposition 5.40 because the family of predictors computable in 

0(nr) time is uniformly computable in 0(nr+1) time. • 

Now we come to the first main result of this section. Here we say that B is i.o.-dense if 
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there is a 5 > 0 such that for infinitely many n, \B<n\ > 2™5. Let DENSEi.0. be the class of 

all i.o. dense languages. 

Theorem 5.42. Dimp (Pctt(DENSEf0 )) = 0. 

Proof. Assume that A <£tt D G DENSEf0 via a reduction / that is computable in nr time 

almost everywhere. For each w G {0,1}*, define the set of strings 

:C= |J /(%). 
i:w[i]=\ 

Then if we define 

T = (J Tw, 
•wÇA 

we have T Ç D and A <J?tt T via /. In fact, T is the minimal set to which A is conjunctively 

reduced via /. This useful idea comes from [9]. 

Let k > 1 and let e = Define a predictor 7r for A as follows. 

• If /(s|to|) Ç Tw, then ir(w, 1) = 1 and n(w, 0) = 0. 

• Otherwise, i r (w, 0) = 1 — e and t t (w,  1) = e. 

That is, when predicting the membership of a string x in A, TT computes the portion of T 

that has already been determined by the previous strings. If all the queries for x are already 

known to be in T, then TT can be certain that x is a member of A. Otherwise, vr predicts with 

high confidence that x is not in A. 

Observe that if |u;| = n, ir(w,b) is computable in time 0(n(logn)r) = 0(n2). We will 

show that the strong log-loss rate of TT on A is at most |. By Proposition 5.41, this will imply 

that 

Dimp(Pctt(DENSE9J)<p 

As k > 1 is arbitrary, the theorem follows. 
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To compute the loss of TT on A we define an auxiliary sequence J by 

J[n\ = 1 <—> f{sn) Ç ^A[0..n-1] • 

Intuitively, J is the sequence of bits forecast by TT, and our goal is to show that J is close to 

A. We consider the following three cases for each j G N. 

(1) J\j] = 1: This implies that A[j} = 1 and log = log 1 = 0. 

(2) J[j} = 0 and A[j] = 1: Then log = lo§ 7 = log(fc + !)• 

(3) J [ j ]  = 0 and A[j} = 0: Then log n{A[oJ_ l lA[j]) = log ^ = log 

For each i G {1,2,3}, let #i(n) = {0 < j < n\ Case (i) holds for j} . Cases (1) and (3) are 

good for 7r. We will show that Case (2) is rare. 

More specifically, we claim that 

,imsup#îM = 0. 
n—*oo 

To see this, let a be the value of this limit superior, suppose that a > 0, and let 0 < a' < a. 

Whenever Case (2) holds for some j, we have f(sj) g T410.J-1] and A[j] = 1, so |TA[0 ^]| > 

|T4[O..J-I]|- This implies that |TA[0 é„J| > #2(71) for all n. We then have infinitely many n for 

which 

\TA{o..n]\> a 'n- (5.1) 

Suppose that (5.1) holds for some m where 2™ — 1 < m < 2n+1 — 1. Then 

l^[o. .2"+i_i]l > l?A[o..m]l > «'m > (5.2) 

Since nr bounds the lengths of /'s queries almost everywhere, we have 

^A[0..2n+1-l] Ç T<nr (5.3) 
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for all sufficiently large n as A[0..2n+1 — 1] is the characteristic string of A<„. Combining (5.2) 

and (5.3), we have 

|T<„r| >a'2" 

for infinitely many n. This implies that 

|T<n| > 2"^ 

for infinitely many n, so T £ DENSEi.a, a contradiction. Therefore we must have a — 0. 

Finally, we have 

f^(,r,A) = ^ 
n—»oo 71 

#i(«) • 0 + #2(n) • log(fc + 1) + #3(n) • log ^ 
= lim sup — 

n—KX) 71 

= bg(t + 1) limsup + log ttl lim sup ÉîM 
n—> oo ^ ft n—*oo 71 

^ , A; + l 1 2 

" t - tln2 ^ &' 

• 

We now extend the proof of Theorem 5.42 to show that a larger class has p-dimension 0. 

This is a strengthening of Theorem 5.39. 

Theorem 5.43. dimp (Pctt(DENSEc)) = 0. 

Proof. Assume that A <£tt D G DENSEC via a reduction / that is computable in a polynomial 

time bound q. For each n G N and w G {0,1}*, define the set of strings 

TW = IJ /W-
i>2n — l:w[i]=l 

Let k > 1 and let e = For each n G N, define a predictor nrl for A as follows. 

• If W > 2™ — 1, then: 
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- If /(s|uj|) Ç Tw \ then nn(w, 1) = 1 and nn(w, 0) = 0. 

- Otherwise, Trn(w, 0) = 1 — e and 7rn(w, 1) = e. 

• Otherwise, 7rn(w, 0) = nn(w, 1) = 

That is, 7xn behaves just like the predictor from the previous proof, except that it makes no 

prediction on strings of length less than n and ignores the queries these strings make. 

Let p(n) — n2 and let 5 > 0. Then for infinitely many n, we have 

ID<q(p(n))\ < 2" . (5-4) 

Letting vn — A[0..2p(n)+1 - 2], the characteristic string of A on {0, we have 

7^ Ç (5.5) 

for all n. 

Fix n and assume that (5.4) is true. Define a sequence by 

= i « /(«,) 5 1$ 

As in the previous proof, we consider the following three cases for each j where 2™ - 1 < j < 

2p(n)+i _ i (Here j ranges over the indices for the strings of lengths n through p(n).) 

(1) J(r%] = 1: This implies that A [ j ]  =  1 and log = log 1 = 0. 

(2) = 0 and A [ j ]  = 1: Then log Vn[A[o] _ l]Am = log(& + 1). 

(3) - 0 and A[j] = 0: Then log ,![,]) = 1% 4^-

For each % E {1,2,3}, let - {2" - 1 < ; < 2?W+i - 2 | Case (%) holds for ;} . Then, as 

in the previous proof, we have 

1^1 M) 
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Combining (5.6), (5.5), and (5.4), we have 

< 2< 

Now we can upper bound the log-loss of 7rn on vn whenever (5.4) holds: 

£log(7r„, vn) = (2n - 1) • log ^ + #^n) • 0 + #2n) • log(fc + 1) + #3n) • log 

< 2n + 2nô log(fc + 1) + \vn | - log 

<  y K | + 2 "  +  2 " \  
k 

As 7Tn(w,b) is computable in 0(\w\2) time, Proposition 5.40 yields a predictor TTA com­

putable in 0(|y;|4) time such that for all n where (5.4) holds, 

CXo^A,Vn) ^ 2 2" + 2nS + c(n + 1) 
|un| ™ k 2"2+1 - 1 

This happens infinitely often, so £log(7TA) < |-

Proposition 5.41 implies that 

dimp (Pctt(DENSE^)) < ^ 

as A is an arbitrary member of the class. This holds for all k > 1, so the theorem follows. • 

Theorem 5.43 can be immediately extended using the work done in Section 5.1.4. 

Corollary 5.44. dimp(Pi(Pctt(DENSEC))) = 0. 

Proof. By Theorem 5.17 we know that Pi_tt(Pctt(DENSEc)) and Pm(Pctt(DENSE0)) have 

the same p-dimension. Since Pm(Pctt(DENSEc)) = Pctt(DENSEc), the corollary follows from 

Theorem 5.43. • 

We now have a new proof of the following known result about hard languages for E. 

Corollary 5.45. (Watanabe [63]) Every <^ t t-hard language for E is dense. 
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Proof. Because dimp(E) = 1 and p-dimension is monotone, we have E g Pctt(DENSE6) by 

Theorem 5.43. • 
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