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ABSTRACT

The National Resources Inventory (NRI) is a large-scale longitudinal survey conducted to

assess trends and conditions of nonfederal land. A key NRI estimate is year-to-year change

in acres of developed land, where developed land includes roads and urban areas. In 2003,

a digital data collection procedure was implemented replacing a map overlay. Data from

an NRI calibration experiment are used to estimate the relationship between data collected

under the old and new protocols. A measurement error model is postulated for the rela-

tionship, where duplicate measurements are used to estimate one of the error variances. If

any significant discrepancy is detected between new and old measures, some parameters that

govern the algorithm under new protocol can be changed to alter the relationship. Parame-

ters were calibrated so overall averages nearly match for the new and old protocols. Analyses

on the data after initial parameter calibration suggest that the relationship is a line with an

intercept of zero and a slope of one, therefore the parameters currently used are acceptable.

The paper also provides models of the measurement error variances as functions of the pro-

portion of developed land, which is essential for estimating the effect of measurement error

for the whole NRI data.

KEY WORDS: Area sampling; Generalized least squares; Longitudinal survey; Measure-

ment error.
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1. INTRODUCTION

During a long-term monitoring study, advances in theory and methodology for collecting

data occur. Changing data collection procedures can reduce measurement error and other

nonsampling errors. For example, the introduction of computer assisted self-administered

interviewing (CASI) has been shown to increase reporting accuracy for studies involving

sensitive topics (Tourangeau and Smith 1996). Since measuring change is one of the primary

objectives of longitudinal surveys, the effect of changing survey mode needs to be measured.

Experiments have been built into surveys to estimate the impact of changes to data col-

lection procedures on data. Schräpler et. al. (2006) describe advantages and disadvantages

of switching from personal interviewing to CASI interviewing and report on an experiment

focusing on irregular observations and nonresponse rates with mixed modes. Schenker et. al

(1993) describe an imputation procedure used to generate time series when the codes for the

Census industry and occupation questionnaire changed in 1980. The experiment consisted of

recoding a subset of 1970 data and modeling the change. A third example is an experiment

to estimate the effect of questionnaire design and format change for the race and Hispanic

origin questions in the 2000 US Census. Martin et. al. (2005) compared data collected under

different formats in 2000.

We provide details of an experiment that accounts for errors-in-variables when replicate

observations on a unit are possible. Replicate observations were taken under a new protocol

at the same time on a sample of elements. The replication allows estimation of measurement

error variances for new and old procedures. The experiment and analysis are described in the

context of a protocol change in the National Resources Inventory (NRI). The procedure can

be adapted to other longitudinal surveys involving physical measurements. Our study is sim-

ilar to instrument calibration and measurement error studies such as gage repeatability and

reproducibility experiments (Vardeman and VanValkenburg 1999) common in engineering.

Our model accounts for time dependency of measurement errors induced by the longitudinal

data structure and collection protocol. Many calibration problems rely on a gold standard,
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but our study permits measurement error in the current measuring device.

Section 2 describes the NRI and the developed land measurement protocols. Section 3

provides details on the measurement error experimental design. Section 4 contains analyses

of the relationship between measurements under new and old protocols. Section 5 includes

an analysis of measurement error variances under new and old protocols. Section 6 contains

some concluding remarks.

2. NRI BACKGROUND

The NRI is a large-scale monitoring program designed to assess status, condition, and

trends of soil, water, and related resources on nonfederal land (Nusser and Goebel 1997).

Current reports are for the 48 coterminous states. Data are used for evaluation of public agri-

culture policy and allocation of funds to environmental programs. Much of the NRI data are

observed via photograph interpretation. Prior to 2003, photograph interpretation was per-

formed on a transparent overlay on an aerial photograph. After 2003, the photographs were

digitized and interpreted on a computer. Along with the change to digital imagery, a new

protocol was created for determining area devoted to developed land. In 2003, determina-

tions were made using both protocols on every segment. A calibration study was conducted

using 2003 data to assess the impact of the protocol change and whether adjustments to the

new protocol are needed. A calibration study was required because determinations under

the new protocol were not independent of the previous 2003 determinations and because

determinations under both protocols had measurement error.

The NRI survey has a stratified two-stage design with approximately 300,000 area seg-

ments in the basic NRI sample. For the central United States excluding Texas and for most

western states, the strata are defined by the Public Land Survey (PLS) System. For states

under the PLS, a stratum is defined to be a two mile by six mile block, which is one-third

of a township. Typically, two half-mile by half-mile blocks, called segments, are selected
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within a stratum. Within each selected segment, three points are selected using a restricted

randomization procedure to ensure geographic spread. Segment level observations are made

on the areas devoted to built-up areas, roads, streams, and small water bodies. We refer to

structures and the maintained area around structures as urban land, roads and railroads as

roads, and the combination of urban land and roads as developed land.

NRI data were collected at 5-year intervals from 1982 to 1997 and yearly starting in

2000. A subset of about 40,000 segments in the 1997 sample are observed every year. The

remaining segments are rotated in and out of data collection with about 35,000 segments

observed in most years.

The change in the developed land observation protocol deals with assigning area to resi-

dences. The protocol for residential areas from 1982 through 2003 involved the data gatherers

delineating the area around residences considered as urban. The boundary of an area poly-

gon was delineated using a hand planimeter on a transparent overlay placed over an aerial

photograph. Under the new protocol, data gatherers create a cross using a mouse click on

the roof of all of the residences on a digital photograph displayed on a computer monitor. A

computer program generates a hexagon centered on each cross on the digitized photograph.

Two hexagons are linked if the distance between their boundaries is below a specified thresh-

old. If four or more hexagons are linked, the area of the hexagons is considered developed

land. An area entirely enclosed by linked hexagons or other delineated built-up areas, called

an enclosure, is considered built-up if the enclosed area is below another specified threshold.

Roads are delineated by choosing a line thickness and tracing the road or by delineating the

area within the road boundary. Nonresidential urban areas are delineated using a digitized

vertex version of the old protocol. Any linked residence hexagons within some tolerance

of a nonresidential polygon are considered built-up. Small water bodies are delineated like

nonresidential urban areas and small streams are delineated like roads. The protocols for

collecting road, nonresidential urban area, small water body, and small stream data are the

same for previous and current data collection except that delineation is done on a computer
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rather than on a transparent overlay.

[FIGURE 1 ABOUT HERE]

Figure 1 is output of the program that translates crosses into hexagons and links polygons

for an example segment. The light grey linear polygons are delineated roads. The grid of

roads in the top of Figure 1 are related to a future residential area. The dark polygons are

delineated nonresidential areas. Hexagons are associated with residences with the center of

a hexagon being the location where a data collector placed a cross. A circle surrounds each

hexagon. Hexagons are linked if the center of one hexagon is in the circle of another hexagon.

The set of three residences in the top left of Figure 1 do not contribute to the total built-up

area of the segment. If the nonresidential polygon below the three residences was touching

one of the hexagons, the three residential hexagons would contribute to the total built-up

area. The total area of developed land for the segment in Figure 1 is the sum of the area for

roads, dark hexagons, and delineated polygons.

The intent of the protocol change is to reduce the measurement error in urban area de-

terminations. Marking residences is a more repeatable process than delineation, because the

boundary of a delineated area is subject to data gatherer discretion. Roads and nonresiden-

tial urban areas involve a decision on what portion of the land is maintained. Therefore,

roads and nonresidential determinations remain at the discretion of the data gatherer. Any

change in the measurement error distribution for delineations of roads and nonresidential

determinations is due to changes in the quality of data collection materials or the switch to

digital data collection.

The data from the NRI calibration experiment are used to estimate the relationship

between data collected under the old and new protocols. If the relationship is not a line with

an intercept of zero and a slope of one, parameters in the program that translates crosses

into areas will be modified. The parameters of the program are the size of the hexagons,

the distances needed to link hexagons and polygons, and the number of linked polygons

needed to count as built-up land. Adjusting the parameters changes the relationship between
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observations made under the new and old protocols. Another objective of the experiment is

to provide an estimate of the relative contribution of the measurement error variance to the

total variance of an estimator of total developed land.

3. EXPERIMENT DESIGN

The calibration experiment was designed with replicates for measurement error variance

estimation. The NRI data gatherers have access to previously collected data. Therefore,

the measurement error is assumed to be correlated over time. The data collection procedure

was designed to reduce the correlation between two observations made on the same segment

in 2003. Four people are involved in data collection under the new protocol. The first two

people make observations for 2001 using the available 1997 materials. The third person

and fourth person make observations for 2003, where the third person uses 2001 materials

from the first data gatherer and the fourth person uses 2001 materials from the second data

gatherer.

A fifth person made a determination for 2003 under the old protocol. Eight data collectors

are grouped together. For each eight segments, four data collectors are randomly selected

to work on the first four segments and the complement set of data collectors are assigned

to work on the second set of four segments. A Latin square design was used to assign the

four segments to the four data collectors such that each data collector performed each of

the four observation types once. Some control was made across groups of eight segments to

ensure mixing of data collectors into the groups of four. A working assumption under this

design is that the two observations under the new protocol made in 2003 are independent

and are also independent of the observation made under the old protocol. The independence

assumption is justified by the inclusion of the intermediate data collector between the 2003

data collector and the original 1997 data collector.

Photograph interpretation occurs at three Remote Sensing Laboratories (RSLs). The
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RSLs are called West, Central, and East. Each RSL collects data on states in the region of

the RSL. Training of data gatherers occurs at each RSL. Differences between data collection

techniques can arise due to differences in geography and personnel at the RSLs. Therefore,

the segment selection and analysis were conducted by RSL region.

Segments for the experiment were selected based on geography and 2003 measurements

under the previous protocol. Segments were divided into groups based on the area of de-

veloped land and area of small water and small streams. Segments completely covered with

water, federal land, or developed land are not interesting for the experiment because the

residence protocol need not be applied. Therefore, segments classified as 100% urban, 100%

federal, or 100% water were not included in the study. Segments with a change in urban,

water, or roads from 2001 to 2003 under the old protocol were selected with certainty for

the Central and West RSLs. Segments with change usually have development occuring,

which can make implementing the new protocol more challenging than for segments without

change. A subset of segments in these categories were selected with certainty for the East

RSL. The remaining segments were divided into strata (i) presence of developed land but

no change in developed land from, (ii) presence of water but no change in water from and

no developed land, (iii) and no water and no developed land in the segment in 2001 and

2003. Within each category, segments were sorted geographically and a systematic sample

was selected. The West RSL had 607 segments, the Central RSL had 1055 segments, and

the East RSL had 1036 segments, for a total of 2698 segments.

Twenty-seven segments containing federal land were removed from the analysis dataset.

Because the boundary of federal land within a segment was not determined in the experiment,

it was impossible to determine if the developed land areas were on federal land. Seventy-seven

segments where all three calibration experiment observations for 2003 have no developed

land were removed from the analysis dataset. Including segments with no developed land or

all developed land in the analysis would increase the evidence that observations under the

new and old protocol estimate the same quantity, possibly masking some departures near

8



the extremes. Developed land areas were converted into proportions by dividing built-up

determinations by digitized segment size.

4. ESTIMATION OF THE MEAN FUNCTION

In this section, we postulate measurement error models to estimate the mean functions

of the new and old determinations. We calibrate the new procedure to the target of the

old procedure in order to gain consistency in trend estimators. The dataset used for this

analysis is from the West RSL and contains 503 segments. Protocol calibration and analysis

conducted for the East and Central RSLs gave similar results to the West analysis, but East

and Central RSL results are not presented here.

Let Yji be the proportion of developed land in segment i made by observer j (j = 1

or 2) under the new protocol and let Xi be the proportion of developed land in segment i

under the old protocol. The mean of Xi is 0.231 (0.011) and the mean of 0.5(Y1i + Y2i) is

0.232 (0.011). The numbers in parenthesis are standard errors throughout the paper. The

correlation between Xi and 0.5(Y1i + Y2i) is 0.954.

The proposed model for the 2003 data is a segmented linear model with a slope break at

0.5, that is

Xi = xi + ui, (1)

Yji = η0 + η1xivi + 0.5η1(1− vi) + η2(xi − 0.5)(1− vi) + eji, (2)

vi =

 1 xi < 0.5

0 xi ≥ 0.5,
(3)

xi ∼ (µx, σ
2
x), (4)
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and 
ui

e1i

e2i

 |xi ∼

0,


σ2

ui 0 0

0 σ2
ei 0

0 0 σ2
ei


 , (5)

for all i and j = 1, 2, where xi is the long run average of repeated observations under the

old protocol for segment i, µx and σ2
x are the mean and the variance of xi’s selected into the

sample, and ui and eji are measurement errors on segment i under the old and new protocols,

respectively. In this model, the slope before x = 0.5 is η1 and the slope after x = 0.5 is η2.

The errors for different segments are assumed to be independent. From the experimental

design, we assume e1i, e2i and ui are conditionally uncorrelated from each other for each

segment i. The measurement error variances, σ2
ei and σ2

ui, represent the variances of errors

in repeated measurements on segment i in 2003 under the new protocol and old protocol,

respectively. The measurement error variances are likely a function of the proportion of

developed land in the segment, xi. Note that x = 0.5 provides a good chance to detect a

trajectory change, although other break points would work.

Because xi in (3) is not observed an iterative method of estimation was implemented.

First a linear model without the slope break was introduced, that is

Xi = xi + ui, (6)

Yji = β0 + β1xi + eji, (7)

the moments of the errors are defined in (5), and the xi sample moments are as defined in

(4). To estimate the parameters, we define the observation vector

Zi = (Z1i, Z2i, Z3i) = (Xi, 0.5[Y1i + Y2i], 2
−0.5[Y1i − Y2i]). (8)

The Zi representation has a less complex covariance matrix than (Xi, Y1i, Y2i) since the
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sample variance of Z3i is a direct estimator for the average measurement error under the

new protocol and Y1i + Y2i is uncorrelated with Y1i − Y2i. Let the sample covariance matrix

of Z be

m = (n− 1)−1
∑
i∈A

(Zi −Z)′(Zi −Z), (9)

where A is the set of indices in the calibration sample. Under the model, the sample covari-

ance matrix has expectation

E(m) =


σ2

x + σ2
a,u β1σ

2
x 0

β1σ
2
x β2

1σ
2
x + 0.5σ2

a,e 0

0 0 σ2
a,e

 , (10)

where σ2
a,u and σ2

a,e denote the averages of σ2
ui and σ2

ei, respectively. The term in the second

row and second column of (10), for example, is the expectation of the sample variance of

β0 + β1xi + 0.5(e1i + e2i). Denote the element in row r and column c of matrix m by mrc.

By (10), the method of moments estimators are

β̂1 = m−1
12 (m22 − 0.5m33), (11)

β̂0 = Z2 − β̂1Z1, (12)

σ̂2
x = (m22 − 0.5m33)

−1m2
12, (13)

σ̂2
a,e = m33, (14)

σ̂2
a,u = m11 − σ̂2

x, (15)

and

θ̂ = σ̂−2
a,eσ̂

2
a,u. (16)

The method of moments estimators are derived by solving for the parameters in the equation
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m = E(m), noting that the number of parameters to be estimated matches the number of

nonzero components in (10). The θ̂ is an estimator of the ratio of the average error variance

of the old protocol to the average error variance of the new.

Parameter estimates using estimators (11)-(16) are

(β̂0, β̂1, σ̂
2
x, σ̂

2
a,e, σ̂

2
a,u, θ̂) = (0.0011, 0.998, 0.0556, 0.00086, 0.00498, 5.8),

(0.0032) (0.015) (0.0044) (0.00022) (0.00058) (2.0).

Standard errors were estimated using a delete-1 segment jackknife, where the jackknife

weights are those of simple random sampling. The intercept under this model is not statis-

tically significantly different from 0 and the slope is not statistically significantly different

from one. The error variance under the old protocol is estimated to be 5.8 times the error

variance under the new protocol.

Using these estimated parameters, xi was estimated for each observation using an esti-

mated generalized least squares (EGLS) estimator. The vector (Z1i, Z2i− β̂0) is regressed on

(1, β̂1)
′ using weights equal to the inverses of σ̂2

a,u and σ̂2
a,e, where (β̂0, β̂1) are the previously

estimated coefficients. That is,

x̂i = ŵ1Z1i + ŵ2(Z2i − β̂0)/β̂1 (17)

where ŵ1 = σ̂−2
a,u/(σ̂

−2
a,u + 0.5β̂2

1 σ̂
−2
a,e), and ŵ2 = 0.5β̂2

1 σ̂
−2
a,e/(σ̂

−2
a,u + 0.5β̂2

1 σ̂
−2
a,e).

With an estimator for vi, we can estimate our original segmented model (1) - (5) that

allows for a shift in the slope at x = 0.5. To ease the computation of the correction matrix

when adjusting for the effect of measurement errors in regression estimators, we rewrote the

original split line model in terms of Xi as a function of yi, which is the long run average of

repeated observations under the new protocol for segment i. The model is

Yji = yi + eji, (18)
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Xi = δ0 + δ1yivi + 0.5δ1(1− vi) + δ2(yi − 0.5)(1− vi) + ui, (19)

and the moments of the errors are defined the same as (5). The indicator variable, vi, is

replaced by an estimator v̂i by substituting x̂i for xi in (3). The simple regression of Z1i

(i.e. Xi) on Gi = (1, Z2iv̂i + 0.5(1− v̂i), (Z2i− 0.5)(1− v̂i)) produces biased estimators of the

parameters because Z2i is measured with error (Fuller 1987, p. 4). We adjust the equation

defining the regression estimators to account for the effect of measurement error. Let A1

denote the part of the sample where v̂i = 1 and A2 denote the part of the sample where

v̂i = 0. The bias corrected regression estimator is

[
δ̂0, δ̂1, δ̂2

]′
= (G′G− C)−1(G′Z1), (20)

where

C =


0 0 0

0 C1 0

0 0 C2

 , (21)

C1 =
∑
i∈A1

0.25(Y1i − Y2i)
2, (22)

and

C2 =
∑
i∈A2

0.25(Y1i − Y2i)
2. (23)

See Fuller (1996, p. 103). The simple regression of Z1i on Gi would have a denominator of

G′G in (20), which contains Z2
2i terms. The expectation of Z2

2i is

E(Z2
2i) = E[yi + 0.5(e1i + e2i)]

2

= E(y2
i ) + 0.5σ2

ei.
(24)

The terms C1 and C2 remove the 0.5σ2
ei terms from the expectation of the denominator of

the regression equation since E[0.25(Y1i−Y2i)
2] = 0.5σ2

ei. The resulting regression coefficient

has approximately the expectation of regressing Z1i on (1, yiv̂i +0.5(1− v̂i), (yi−0.5)(1− v̂i)).
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Under the model described in (18) and (19), the sample covariance of Z can be used

to estimate the average error variances once the regression coefficients are obtained. The

estimator for σ2
a,e is m33 from (14). An estimator for σ2

a,u is obtained by combining estimators

from A1 and A2.

To estimate the error variances, let mv be the sample covariance matrix of (Z1, Z2) for

data with v̂i = 1 and m1−v be the covariance sample covariance matrix of (Z1, Z2) for data

with v̂i = 0. The expectations of the sample covariance matrices are

E{mv} =

 δ2
1σ

2
vy + n−1

1

∑
i∈A1

σ2
ui δ1σ

2
vy

δ1σ
2
vy σ2

vy +
∑

i∈A1

(2n1)
−1σ2

ei

 (25)

and

E{m1−v} =

 δ2
2σ

2
1−v,y + n−1

2

∑
i∈A2

σ2
ui δ2σ

2
1−v,y

δ2σ
2
1−v,y σ2

1−v,y +
∑

i∈A2

(2n2)
−1σ2

ei

 , (26)

where n1 is the size of A1, n2 is the size of A2, σ
2
vy is the variance of yi in A1, and σ2

1−v,y is

the variance of yi in A2. Method-of-moments estimators for σ2
vy and σ2

1−v,y are

σ̂2
vy = δ̂−1

1 mv,12 (27)

and

σ̂2
1−v,y = δ̂−1

2 m1−v,12, (28)

where (δ̂1, δ̂2) is the estimator from (20). An estimator for σ2
a,u is

σ̂2
a,u = (n1 + n2)

−1(n1{mv,11 − δ̂2
1σ̂

2
vy}+ n2{m1−v,11 − δ̂2

2σ̂
2
1−v,y}). (29)
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Estimates for the parameters of model (18)-(19) are

(δ̂0, δ̂1, δ̂2, σ̂
2
a,e, σ̂

2
a,u, θ̂) = (0.0012, 0.985, 1.045, 0.00086, 0.00454, 5.3),

(0.0033) (0.027) (0.064) (0.00022) (0.00077) (1.7),

where standard errors were computed using a delete-1 segment jackknife.

The intercept δ̂0 is not statistically significantly different from zero and both the slopes,

δ̂1 and δ̂2, are not statistically significantly different from one. The estimated σ̂2
a,u and θ̂ are

smaller than the corresponding estimates from model (6)-(7), but the difference in estimates

is not large.

We computed an approximate F-test of

Ho : (δ0, δ1, δ2) = (0, 1, 1) (30)

versus

Ha : (δ0, δ1, δ2) 6= (0, 1, 1). (31)

The test statistic was

(3SSF )−1497(SSR− SSF ), (32)

where SSF is the residual sum of squares from estimating the split line model of (18)-(19)

and SSR is the residual sum of squares from fitting the model with the constraints of the null

hypothesis. The denominator degrees of freedom of 497 is n− 6, where the 6 is the penalty

for estimating (δ0, δ1, δ2, σ
2
x, σ

2
a,e, σ

2
a,u) and three is for difference in number of parameters

between the full and reduced models. The F statistic is 0.52, which when compared to F

distribution with 3 and 497 degrees of freedom results in a p-value of 0.67. Therefore, we

accepted the reduced model of

Yji = yi + eji, (33)

Xi = yi + ui. (34)
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Figure 2 contains both the fitted split line (solid) and a (0, 0) to (1, 1) reference line

(dashed). We divide the data set into 10 bins with an equal number of observations up to

rounding from data sorted by x̂i values. The bins are useful for display and provide groups

for determining linear departures other than a split at xi = 0.5. Figure 2 shows the mean

of Z2 versus Z1 in each bin. The binned means lie closely around the lines, indicating the

reduced model ((δ0, δ1, δ2) = (0, 1, 1)) suffices for describing the data.

[FIGURE 2 ABOUT HERE]

Collectively, the result of the F-test and the evidence in Figure 2 suggest that the rela-

tionship between data collected under the old and new protocols is a line with an intercept

of zero and a slope of one. Under the reduced model, the estimated average error variances

can be obtained using Equations (13) to (15), where the coefficients β0 and β1 in (10) are

replaced by 0 and 1, respectively. The estimates are

(σ̂2
x, σ̂

2
a,e, σ̂

2
a,u, θ̂) = (0.0555, 0.00086, 0.00498, 5.8),

(0.0042) (0.00022) (0.00058) (2.0).

A large difference between the mean of Z1 and the mean of Z2 within a bin indicates a

lack of fit for the corresponding region on the line. We tested whether the mean of Z1 is

statistically significantly different from the mean of Z2 within each bin using an approximate

t-test (Table 1). The t-statistics were constructed as bias adjusted Beale ratios to account for

skewness (Tin 1965). The t-tests provide evidence that the observations under the new and

old protocol differ for segments with little developed land. However, misfitting the function

near xi = 0 will have a small effect on total estimates. Part of the difference between new

and old protocols is attributable to the bias in the calibration sample selection. Segments

without developed land in 2003 under the old protocol were not selected unless they contained

water features. Therefore, the occurrence of a segment without developed land under the old

protocol and developed land under the new protocol is much less frequent in our sample than

the occurrence of a segment with developed land under the old protocol and no developed
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land under the new protocol. This fact can be expected to bias the estimated relationship

between old and new protocol observations when xi is near 0. Further, the differences in the

small bins are primarily due to differences in road areas and boundary urban areas. The

new protocol is the same as the old protocol for road measurements, and hence, changing

the computer program will not affect the differences due to roads. Urban areas on the

boundary of the segment present a problem for the new protocol, since data collectors no

longer create polygons for residential areas or note houses outside of a segment. Also, recall

that observations with zero on both determinations are not included in the analysis. The

binned mean tests are mostly in agreement with the conclusion from the split line F-test.

Therefore, parameters in the program that translates crosses into areas under new protocol

are accepted for the West RSL.

[TABLE 1 ABOUT HERE]

5. ESTIMATION OF THE VARIANCE FUNCTION

5.1 Estimating the Variance Function

The calibration experiment provides the opportunity to estimate the effect of measure-

ment error on NRI estimators. In order to extend the variance results to a larger set of data

than the calibration data set, we need a functional form for the measurement error vari-

ance. The reason for this requirement is that the calibration experiment sample is partially

a purposive sample of NRI segments. If the measurement error variance is a function of xi,

then the estimates of the average variances depend on the set of xi chosen for the calibration

experiment. Modeling the variance functions is difficult due to a few extreme differences

between observations made on the same segment. Model assumptions presented below are

made to construct estimators of the measurement error variance functions. However, the as-

sumptions are not believed to be true for all of the data, nor would many standard diagnostic

procedures be possible to check the validity of assumptions.
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The expectations of the squared deviations Z2
3i and (Z1i − Z2i)

2 were estimated as a

function of xi. Two assumptions are put on the functional form of variances. One constraint

is that the functions are symmetric around 0.5. The underlying assumption is that delin-

eation of developed land when the true proportion is 40% is of the same level of difficulty as

when the true proportion is 60%. In other words, the delineation of an area in a particular

segment requires the same effort as the delineation of the complement of the area. The

second assumption is that the measurement error variance function for the new protocol

is proportional to the measurement error variance function for the old protocol. A plot of

Z−2
3i (Z1i−Z2i)

2 versus xi is flat except near zero and one, providing evidence for the second

modeling assumption.

Plots of the sample variances of Z2
3i and (Z1i − Z2i)

2 against the means of Z2
3i and

(Z1i − Z2i)
2 using the bins of Figure 2 show that the variance of the squared deviations

increases as the mean of the squared deviations increases. A working assumption for modeling

is that the variances of centered Z2
3i and (Z1i − Z2i)

2 are proportional to [E(Z2
3i)]

2 and

[E(Z1i − Z2i)
2]2, respectively. This working assumption is that of a constant coefficient of

variation model, commonly used to model data with increasing variances. The constant

coefficient of variation assumption is used to provide weights for generalized nonlinear least

squares estimation.

Initial models were fit to the squared deviations. The distribution of the squared devia-

tions conditional on x are highly right skewed. Due to the skewness, the fitted functions were

poorly estimated. Transformations of the data were explored to find a suitable transforma-

tion. The square root transformation of squared deviations decreased the effect of skewness

in the data enough to make the least squares solution reasonable. The working models in

the transformed scale are

E|Z3i| = γ0 + γ1(0.5
2.5 − |xi − 0.5|2.5) := gi, (35)
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and

E|Z1i − Z2i| = κ(γ0 + γ1(0.5
2.5 − |xi − 0.5|2.5)) = κgi, (36)

which are symmetric around 0.5 and proportional to each other. In fitting the model, the

estimated proportion, x̂i, was used as a proxy for xi. Since the model is not linear in

coefficients, the Gauss-Newton algorithm was used to obtain the nonlinear generalized least

squares fit. The estimating equations were weighted by an initial estimate of gi and κ.

The use of weights comes from the constant coefficient of variation working assumption.

The 2.5 power was determined primarily by comparing the fit across powers p = K/2 for

K = 1, 2, . . . . The residual mean squared error was used as a fit statistic. The distributions of

the absolute deviations are well approximated by the distributions of a multiple of χ2
1 random

variables. Therefore, we compared the residual mean squared errors to 2, the variance of

a χ2
1 random variable. The 2.5-power model gave the residual mean squared error of 2.06,

which was the mean squared error closest to 2 for the powers we considered and the behavior

of the standardized residuals was similar across values of x̂i. The estimated coefficients of

the variance functions and their delete-1 segment jackknife standard errors are

(κ̂, γ̂0, γ̂1, θ̂) = (3.55, 0.00212, 0.129, 5.8),

(0.31) (0.00030) (0.012) (2.7).

In order to estimate θ̂, the ratio of the error variance in the previous protocol to the error

variance of the current protocol, the variance functions in (35) and (36) were converted back

to squared scale. We ratio adjusted the fitted functions so that the average of the squared

fitted functions is the same as the average of Z2
3i and (Z1i − Z2i)

2. Let

R1 =

(
n∑

i=1

ĝ2
i

)−1 n∑
i=1

Z2
3i (37)
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and

R2 =

(
n∑

i=1

κ̂2ĝ2
i

)−1 n∑
i=1

(Z1i − Z2i)
2, (38)

where ĝ2
i is the square of the estimated function in (35). Estimators for the mean of the

squared deviations are

Ê(Z2
3i) = σ̂2

ei = R1ĝ
2
i (39)

and

Ê(Z1i − Z2i)
2 = 0.5σ̂2

ei + σ̂2
ui = R2κ̂

2ĝ2
i . (40)

An estimator of the ratio of measurement error variances, θ = σ−2
ei σ

2
ui, is

θ̂ = R−1
1 R2κ̂

2 − 0.5, (41)

which is derived by solving (39) and (40) for σ̂−2
ei σ̂

2
ui. Estimators (39) and (40) can also be

derived under the working assumptions of V (|Z3i|) = R?
1g

2
i and V (|Z1i − Z2i|) = R?

2κ
2g2

i ,

where R?
1 and R?

2 are constants. Equation (39) and (40) are the estimators that would be

derived by replacing the terms in

E(Z2
3i) = (E|Z3i|)2 + V (|Z3i|) (42)

and

E[(Z1i − Z2i)
2] = (E|Z1i − Z2i|)2 + V (|Z1i − Z2i|) (43)

with the corresponding moment estimators, where V̂ (|Z3i|) = R̂?
1ĝ

2
i and V̂ (|Z1i − Z2i|) =

R̂?
2κ̂

2ĝ2
i .

Standard errors were computed using a delete-1 segment jackknife variance estimator.

The estimated θ of 5.8 is near the estimate using the average variances when fitting the

mean function earlier. The estimated variance of the ratio of variances is not well estimated

in any of our results due to the skewness in the distribution, which explains the discrepancy
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between standard errors of θ estimators. In order to see the two fits of (39) and (40) on

the squared scale, we plot the fitted functions of squares and standardize them to the same

scale (Figure 3). The fitted functions track the binned means of Z2
3i and (Z1i−Z2i)

2 well for

low proportions of developed land area. The functions slightly underestimate the average

measurement error variance for low proportions of developed land and overestimate for large

proportions of developed land. The eighth binned mean of Z2
3i is far smaller than expected

under the model. However, fitting the anomaly and the other binned means would require a

much more complicated functional form. Overall, the model fits the data reasonably well on

the squared scale for a relatively simple functional form and the model furnishes adequate

results.

[FIGURE 3 ABOUT HERE]

5.2 Discussion About the Estimation of the Variance Function

The parameter estimators for the variance functions do not include adjustments for bias

caused by measurement error. Adjustments would involve specifying higher order moments

for eji and ui. The estimated variance function can be used to compute a regression bias

adjusted estimator of xi. See Carroll and Stefanski (1990) and Fuller (1987, pp. 20-25).

From (17), an approximation to the centered variance of x̂i is

V̂ {x̂i − xi} = ŵ2
1σ̂

2
u,i + ŵ2

2σ̂
2
e,i/2, (44)

where we know that ŵ1 and ŵ2 are Op(n−1/2) estimators of their associated constants. A

regression adjusted estimator of xi is

x̃i = Z1 + (σ̂2
x + V̂ {x̂i − xi})−1σ̂2

x(x̂i − Z1), (45)

where Z1 is the average of Xi. Estimator (45) is a shrinkage of x̂i toward the mean of Xi.

If the estimate for measurement error variance is zero, then x̂i is the same as x̃i. Estimator
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(45) uses an assumption of normally distributed data.

The parameters of (35) and (36) were estimated using x̃i in place of x̂i in the nonlinear

generalized least squares. The estimates using x̃i are

(κ̂, γ̂0, γ̂1) = (3.55, 0.00211, 0.129),

(0.31) (0.00030) (0.012),

which are very close to the estimates using x̂i. The congruence of estimates indicates that

the effect of measurement error on the variance function estimators is small.

With the functional form of the measurement error variance, we are able to extend

the variance results to a larger set of data than calibration data. Define equation (39) as

f(xi) = σ2
ei = R1g

2(xi). In order to estimate σ2
ei in the future using an observation under the

new protocol, Yi, we expand f(Yi) around xi. By taking expectations, we obtain

σ2
ei =

E(f(Yi))

1 + 0.5f ′′(ξi)
, (46)

where ξi is between xi and Yi. An estimator of σ2
ei is

σ̂2
ei =

f(Yi)

1 + 0.5f ′′(Yi)
, (47)

where ξi in the denominator is replaced by Yi.

The σ̂2
ei can be use to estimate the fraction of the variance due to measurement error in a

total estimator. Let the estimator of developed land in a particular state be T̂L =
∑

iwiSiYi,

where Si is the digitized area size for segment i and wi are design weights from NRI sampling.

The variance of measurement error in the acres of developed land for a segment of size Si

is S2
i σ

2
ei. Let V̂ ar(T̂L) be an estimator of the variance of T̂L, where the finite population

correction is ignored. The proportion of the total variance of the estimator attributed to
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measurement error under the new protocol can be estimated with

∑
iw

2
i S

2
i σ̂

2
ei

V̂ ar(T̂L)
. (48)

Also, the σ̂2
ei can be used to correct the bias in the regression estimation. The correction is

similar to that of the bias correction in the mean function estimation.

6. DISCUSSION

The parameters used to translate marked residences into developed area have been ad-

justed during data collection and analysis. The parameters used in this article for the

West RSL provide encouraging results that estimators under the new and old protocol coin-

cide within an acceptable tolerance. Adjustments to the protocol have been attempted for

the discrepancy between measurements when the proportion of developed land is very low.

Specifically the number of linked houses needed to count toward developed land were reduced

to three and the distance for linking houses was reduced. However, the adjustments did not

solve the lack of fit problem near xi = 0. Analysis related to the effect of segment size and

regional differences was conducted with separate parameter estimation for small, medium,

and large segments and for mountain, Pacific northwest, and arid regions. Regional effects

were small and segment size did not impact results. Similar procedures are used to examine

the relationship between observations under the new and old protocols for the Central and

East RSLs. Different program parameters were set for the Central and East RSLs.
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Table 1. Approximate t-test for the Differences Between Z1 and Z2 Over Ten Bins

Bins 1 2 3 4 5
mean of Z1 0.008 0.027 0.045 0.083 0.109
mean of Z2 0.004 0.020 0.037 0.076 0.127

t-value 4.31 2.70 1.82 1.17 -2.21
Bins 6 7 8 9 10

mean of Z1 0.172 0.249 0.350 0.487 0.775
mean of Z2 0.187 0.255 0.355 0.495 0.756

t-value -1.49 -0.32 -0.25 -0.55 1.45
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Figure 1. Example segment with hexagons and delineated built-up polygons. Hexagons are
centered on residence, road polygons appear as lines, and nonresidential areas are irregular
shaped polygons.
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Figure 2. Fitted split line model with binned Z1 and Z2 means. The solid line is the fit of
the split line model and the dashed line is a straight line from (0,0) to (1,1).
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Figure 3. Fitted Variance Function of 2.5 power with binned standardized Z2
3 and

(Z1−Z2)
2 means. Z2

3 means are plotted with circles and (Z1−Z2)
2 means are plotted with

triangles.

29


