
An Accountability Scheme for Oblivious RAMs

Ka Yang∗, Jinsheng Zhang∗∗, Wensheng Zhang∗∗, and Daji Qiao∗

∗Department of Electrical and Computer Engineering
∗∗Department of Computer Science

Iowa State University

Abstract. In outsourced data services, revealing users’ data access pattern may
lead to the exposure of a wide range of sensitive information even if data is en-
crypted. Oblivious RAM has been a well-studied provable solution to access pat-
tern preservation. However, it is not resilient to attacks towards data integrity
from the users or the server. In this paper, we study the problem of protecting
access pattern privacy and data integrity together in outsourced data services,
and propose a scheme that introduces accountability support into a hash-based
ORAM design. The proposed scheme can detect misconduct committed by ma-
licious users or server, and identify the attacker, while not interfering with the
access pattern preservation mechanisms inherent from the underlying ORAM.
This is accomplished at the cost of slightly increased computational, storage, and
communication overheads compared with the original ORAM.

1 Introduction

Along with the increasing popularity of outsourcing data services to remote cloud
servers, arise also security and privacy concerns. Although encrypting data content has
been a common practice for data protection, it does not eliminate the concerns, be-
cause users’ data access pattern is not preserved and researchers have found that a wide
range of private information could be conveniently revealed by observing the access
pattern [1]. To address this issue, more and more efficient designs [2–14] have been de-
veloped to implement oblivious RAM (ORAM) [15], which was originally proposed for
software protection but also is a provable solution to data access pattern preservation.

Existing ORAM designs, however, share a common problem which may limit their
practical application. Specifically, these designs all assume that the outsourced data is
accessible to trusted users only and the storage server is curious but honest; hence,
they are not equipped with any protection against attacks towards data integrity from
the users or the server. Unfortunately, such assumptions are unrealistic in practice. For
example, a company may export its financial records to a cloud storage. While it may
want to share the financial data with its stake holders, it is critical to protect the integrity
of the data and hold a user or the storage server accountable if data is altered.

To deal with the above problem, it is highly desirable to introduce accountability
support into ORAM. However, existing accountability solutions cannot be readily ap-
plied because of the conflicting goals of these two types of mechanisms: preserving
access pattern privacy in ORAM requires data blocks to be frequently re-encrypted and
re-positioned, which however can easily conceal the traces that are needed for detecting
misbehavior and identifying attackers.

In this paper, we propose an accountable ORAM scheme, which is developed on
top of a hash-based ORAM design such as [15]. The scheme can detect misconduct
by malicious users or server and identify the attackers, while not interfering with the
access pattern preservation mechanisms inherent from the underlying ORAM. The goal
is achieved through a combined leverages of Merkle hash tree [16], digital signature and
group signature [17] techniques, as well as a delicate design of the data block format.
With our scheme, selected traces of accesses are properly recorded for the purpose of
attack detection but without revealing the private information of innocent users that
shall be kept confidential to protect their access pattern privacy.

Security analysis and overhead evaluation have been conducted. The results show
that the proposed scheme has achieved the goals of accountability of users and the
server’s behavior and preservation of data access pattern privacy, at the cost of slightly
increased computational, storage, and communication overheads.

The rest of the paper is organized as the follows. Section 2 presents the related
work. Section 3 describes the system model and Section 4 explains the building blocks
of the proposed scheme. The proposed scheme is elaborated in Section 5. Section 6
and Section 7 present the security analysis and overhead analysis respectively. Finally,
Section 8 concludes the paper.

2 Related Work

Oblivious RAM (ORAM), first proposed by Goldreich and Ostrovsky [15], is a well-
known technique to hide the pattern of a user’s accesses to an outsourced data stor-
age. Following it, various schemes [2–14] have been proposed to improve the perfor-
mance of ORAM in terms of data access latency, storage overhead and communica-
tion/computational complexity.

While ORAM is becoming more and more practical in terms of performance, there
are security issues that need to be addressed before ORAM can be widely adopted in
practice. There are only a few existing works that address these practical security con-
cerns under the framework of ORAM. For example, in [18], the problem of access
right delegation was studied. It proposes a scheme with which the data owner can del-
egate controlled access to third parties for the outsourced dataset, while preserving full
access pattern privacy. However, this scheme can only be applied to the square-root
ORAM [15], which is inefficient in terms of communication overhead. In another ex-
ample, a write-once-read-many ORAM (WORM-ORAM) was proposed in [19], which
enables the data owner to offer a read-only data service to third parties. It proposes a
zero-knowledge proof based scheme to verify the integrity of the encrypted data in a
write-once-read-many setting. However, it imposes expensive communication and com-
putation overheads upon the regular ORAM, which also makes the scheme impractical.

Different from existing works, we study user and storage server accountability in
this paper, which is an important security feature required by most data sharing ser-
vices. We propose a scheme that adds user and storage server accountability to existing
ORAM schemes while ensuring the access pattern privacy provided by the ORAM. To
our knowledge, this is the first work that attempts to introduce accountability to ORAM.

The proposed scheme introduces low overhead and can be integrated with most of the
existing hash-based ORAM schemes.

3 System Model and Design Goals

In this paper, we study a system where an owner of a dataset outsources the data to a
remote server and allows a group of users to read (but not modify) the data. In order to
hide the users’ access pattern from the storage server, the owner is assumed to follow a
hash-based Oblivious RAM (ORAM) design to deploy the data on the server, which is
further explained in Section 4.1.

We assume the dataset owner is trusted while the server and the authorized users
could be misbehaving. Specifically, a user may attempt to attack the integrity of data
blocks through modification, replacement, addition, or deletion. However, we assume
the user will not attack the access pattern preservation mechanism, for its own benefit.
One the other hand, the server may attempt to attack both data integrity and the access
pattern preservation mechanism. Also, we do not consider the collusion between the
server and any user.

The design goals of the proposed scheme include: (i) preserving the users’ access
pattern of the dataset; (ii) detecting attacks launched by a user towards data integrity,
and upon detection, enabling the dataset owner to identify the attacking user; and (iii)
detecting attacks launched by the server towards data integrity or data access pattern
preservation mechanisms (i.e., the underlying ORAM scheme).

4 Preliminaries

In this section, we explain the three building blocks of our proposed scheme: Oblivious
RAM, group signature, and Merkle hash tree.

4.1 Oblivious RAM

The proposed scheme is designed to be atop and integrated seamlessly with most of
the hash-based ORAM schemes. In general, a hash-based ORAM scheme works in the
following way. At the server, the outsourced data are stored as a set of equal-sized
data blocks and all data blocks are organized in a hierarchical storage structure. At
each layer of the hierarchy, real data blocks and dummy data blocks are encrypted and
obliviously stored in hash tables (e.g., buckets in [5, 6, 9, 10, 15] or cuckoo hash table
in [4–6, 9, 10]) for future lookup. Typically, there are two major operations in ORAM:
data query and data shuffling. During a data query, the user retrieves one or more data
blocks from each layer based on the hash functions. Among the retrieved data blocks,
only one of them is the actual target. At the end of each query, the target data block is
re-encrypted and uploaded to the top layer of the hierarchy. As data queries proceed,
the shuffling process is triggered periodically to protect access pattern privacy and avoid
layer overflow. The shuffling process essentially re-positions all data blocks into a lower
layer in an oblivious manner. Please refer to [2–10] for details of the ORAM operations.

In the rest of this paper, we choose the seminal hash-based ORAM scheme proposed
by O. Goldreich and R. Ostrovsky [15] as the underlying ORAM scheme. This is be-
cause this ORAM scheme proposes a framework for other hash-based ORAMs; hence,
integration of the proposed scheme with this ORAM scheme can be easily extended to
other hash-based ORAMs (as to be explained in Appendix 2).

4.2 Group Signature

Group signatures [17] are often used to allow each member of a group to anonymously
sign a message on behalf of the group. Typically, there is a group manager who is
in charge of membership management and has the ability to reveal the identity of the
signer in the event of disputes. In general, a group signature scheme has the following
properties:

– Traceability: Given any valid signature, the group manager should be able to trace
the user who generated the signature.

– Anonymity: Given a message and its signature, the identity of the individual signer
cannot be determined without the group manager’s secret key.

– Unlinkability: Given two messages and their signatures, it cannot be determined if
the signatures were generated by the same signer.

– Non-framing: Even if all other group members (including the manager) collude,
they cannot forge a signature of an innocent group member.

To leverage the group signature mechanism without delving into its implementation
details, we assume that a group signature scheme provides the following primitives: (We
use prefix “G” to differentiate group signature from regular digital signature, which is
also used in the proposed scheme.)

– G-Sigu(m): To generate the signature for message m with the secret key of group
member u.

– G-V erify(s,m, p): To verify whether signature s was generated by a valid group
member for message m using the public key p.

– G-Open(s,m): To reveal (by the group manager) the identify of the group member
who generated signature s for message m.

In the proposed scheme, the owner of the dataset acts as the group manager and
each user is a unique member of the group. Moreover, the storage server is given the
public key so that it can verify the group signature carried in each data block; details
will be explained in Section 5.

4.3 Merkle Hash Tree

A Merkle hash tree [16] is typically used to allow efficient verification of the integrity
of a large set of data. In a Merkle hash tree, the leaves are hashes of data blocks and
each interior node (including the root) is the hash of its children nodes. The root of a
Merkle hash tree is called the root hash, and the set of hash values that are needed to
calculate the root hash from a leaf node is called the co-path (denoted as S) from the
leaf node to the root. For example, in Fig. 1, the co-path for data block D1 from the leaf
node h0−1 to the root h2−1 is S1 = {h0−2, h1−2}.

h0-1 = H(D1) h0-2 = H(D2) h0-3 = H(D3) h0-4 = H(D4)

h1-1 = H(h0-1|h0-2) h1-2 = H(h0-3|h0-4)

h2-1 = H(h1-1|h1-2)

Fig. 1. A Merkle hash tree for verifying the integrity of data blocks D1-D4 (H is a hash function).

5 Proposed Design

This section presents the intuitions and detailed design of the proposed scheme.

5.1 Scheme Overview: The Intuitions

Built on top of a hash-based ORAM such as [15], our proposed scheme has the ultimate
goal of user and server accountability and data access pattern preservation, which is
attained through accomplishing each of the following more specific subgoals:

(G1) The content of each data block shall not be modified by any user or server. If the
modification occurs, it shall be detected and the user or server committing the
modification shall be identified.

(G2) After a query or shuffling process, the set of data blocks that a user uploads to the
server shall be the same as the set downloaded earlier. If a user fails to do so, the
misconduct shall be detected and the user shall be identified.

(G3) When being uploaded, data blocks shall be placed properly to the buckets decided
by the underlying ORAM; that is, the position of each data block shall be deter-
mined by a designated hash function. If a user fails to do so, the misconduct shall
be detected and the user shall be identified.

(G4) The server shall execute the underlying ORAM algorithm honestly. Particularly,
when a user uploads a data block to the server, the block shall be placed to the
layer and bucket specified by the user; the server shall inform the user of the
number of queries to ensure that data shuffling can be conducted according to
the timing required by the underlying ORAM. If the server fails to do so, the
misconduct shall be detected.

Accomplishment of Subgoal (G1) To accomplish subgoal (G1), the proposed scheme
employs both digital signature and group signature mechanisms. More specifically, to
export a data block to the server, the dataset owner (i) generates a digital signature for
the plain-text content of the data block using a private key known only to itself, (ii)
encrypts the data content together with the digital signature and a random nonce, (iii)

generates a group signature for the entire block, and (iv) include them as part of the data
block and upload to the server.

After a user downloads a data block from the server, it performs the following steps.
Firstly, it verifies whether the group signature is valid; if not, the server is detected to
have committed a misconduct and the process is aborted. Secondly, the user decrypts the
block to obtain the plain-text data content and its digital signature, and checks whether
the digital signature is valid by using the public key published by the dataset owner;
if the digital signature is invalid, it is detected that the user who last accessed the data
block has modified the data content, and the identity of the malicious user can be traced
out by the dataset owner based on the group signature associated with the block.

If both signatures are valid, the user proceeds to (i) access the data content, (ii) re-
encrypt the data content together with the same digital signature but with a different
random nonce, (iii) generate a new group signature for the entire block, and (iv) upload
the updated data block back to the server. Upon receiving a data block from a user, the
server checks whether the group signature is valid; if not, the user is detected to have
committed a misconduct.

Accomplishment of Subgoal (G2) During a query or shuffling process, it is challeng-
ing to ensure that a user always uploads the same set of data blocks that it downloaded
from the server, while the user is allowed to re-encrypt the data and change the order
between blocks. To address this issue, we propose a solution that leverages the collab-
oration between users and the server, and utilizes the Merkle hash tree mechanism.

Specifically, the proposed solution requires each data block (denoted as Di) to in-
clude three extra fields: (i) block hash field (denoted as ci), (ii) root hash field (denoted
as ei), and (iii) auxiliary information field (denoted as e′i). Initially, both ei and e′i are
set to empty, and ci is set to the hash value of the plain-text data content together with
a random nonce.

During a query or shuffling process, a user needs to download a set of data blocks.
The server constructs a Merkle hash tree using the block hash fields of these blocks as
leaf nodes, and computes the root hash value of the tree. When the set of blocks are
uploaded to the server later, it is required that the root hash field of each block shall be
set to the root hash value computed by the server. Moreover, the auxiliary field of each
block Di shall contain (i) an encrypted version of the random nonce which was used
when Di was last accessed, and (ii) the co-path Si of hash values needed to calculate
the root hash from block Di.

These requirements are critical to accomplish subgoal (G2) because they enable the
server and the user who will next access these blocks to collaboratively check whether
the uploaded set is the same as the downloaded set. More specifically:

– For any of the uploaded blocks, say Di, the user who next access it will check
whether it belongs to the set of the downloaded blocks, by checking whether the
root hash value stored in ei is the same as the one computed using the data content
of Di and the hash values in Si.

– The server checks all the uploaded blocks to ensure that all blocks carry the same
root hash value for other users to check, and the auxiliary values are different for
different blocks so that all the uploaded blocks are distinct.

If no violation is found in the above collaborative check, it indicates that each uploaded
block belongs to the downloaded set and all uploaded blocks are distinct; furthermore,
considering that the number of downloaded blocks is the same as the number of up-
loaded blocks, the downloaded and uploaded sets must be identical. If there is a viola-
tion, the user who uploads the blocks must have committed attacks, and its identity can
be traced out by the dataset owner based on the group signatures that the user left with
the blocks.

Accomplishment of Subgoals (G3) and (G4) With the above solutions to subgoals
(G1) and (G2) in place, the solutions to subgoals (G3) and (G4) become straightforward.

To ensure that a data block is placed properly according to the underlying ORAM,
our scheme requires the user to include the position information (i.e., layer and bucket)
as part of the block before generating a group signature. Next time when another user
accesses the block, it performs the following checks. (i) It first checks whether the
group signature is valid. (ii) Then, it checks whether the block is indeed placed at the
position specified in the block. (iii) Finally, the user decrypts the block, extracts its ID,
and applies the designated hash function to check whether the position of the block is
consistent with the output of the hash function.

To ensure that data shuffling is performed according to the timing required by the
underlying ORAM, users and the server collaborate to maintain a counter to keep track
of the number of queries that has been processed. Initially, the counter is set to 0 and a
group signature is generated by the dataset owner for the concatenation of the counter
value and the content of the first block at the top layer. Later on, during each query
process, the querying user retrieves the counter and the associated group signature from
the server. Note that, the user should also retrieve every block at the top layer during
the query process. Hence, it can verify the validity of the retrieved counter value. Based
on the authenticated counter value, it can decide whether shuffling should be performed
according to the underlying ORAM. After a query completes, the user increments the
counter by one and re-generates a group signature for the concatenation of the new
counter value and the new content of the first block at the top layer, and stores the
above information back to the server. This way, the server cannot cheat on the counter
value because (i) it cannot generate valid group signatures by itself, and (ii) it cannot
replay an old counter value and an old group signature as the first block at the top layer
is updated after every query. Also note that, if a user does not update the counter hon-
estly, the misbehavior can be detected and reported by the server.

Integrating the above solutions that accomplish subgoals (G1)-(G4), we obtain the
whole scheme, as elaborated in the following subsections.

5.2 System Initialization

System initialization is conducted by the owner of the dataset. It consists of four op-
erations: selection of system parameters, preparation of data blocks, uploading of data
blocks to the storage server, and user authorization. In the following, we will elaborate
these operations. Particularly, when describing how to prepare data blocks and how to
upload data blocks, the data format and storage structure will also be introduced.

Selection of System Parameters Let n be the total number of data blocks exported to
the storage server; for simplicity, n is assumed to be a power of 2. The dataset owner
selects the following system parameters:

– k: the system key used to encrypt plain-text data content of blocks;
– K−, K+: the pair of private key (K−) and public key (K+) for generating and

verifying digital signatures, respectively;
– H(x): a hash function that randomly maps one or a sequence of integers to an L-bit

integer, where L is a security parameter;
– hl(x, y) for l = 1, · · · , log n: a set of hash functions, where each hl(x, y) hashes a

pair of positive integers x and y ∈ {1, · · · , n} to an integer in {1, · · · , 2l}.
– One group public key and a set of group private keys prepared for users: the group

private keys can be used for generating group signatures, while the group public
key can be used for verifying group signatures.

Among the parameters, only K+ and the group public key are disseminated to the
public, while the rest are kept secret either solely known to the dataset owner or shared
between the owner and the users authorized to access the dataset.

Preparation of Data Blocks Each exported data block has a unique ID which is an
integer belonging to set {1, · · · , n}. We use Di,t to denote a data block of ID i and time
stamp t. The actual content (i.e., plain-text data) that has been encrypted and embedded
in Di,t is denoted as di. More specifically, Di,t has the following format:

Di,t = ⟨d′i,t, ci,t, ei,t−1, e
′
i,t−1, li,t, bi,t, si,t⟩, (1)

where the fields are explained below.

– d′i,t is a one-time encryption of the concatenation of di and its digital signature
generated by the owner, i.e.,

d′i,t = Ek(ri,t, di, SigK−(di)), (2)

where ri,t is a random nonce, Ek(X) is the symmetric encryption of X with key
k, and SigK−(di) is a digital signature generated for di.

– ci,t (i.e., block hash field) is a one-time hash of di, i.e.,

ci,t = H(ri,t, di). (3)

– ei,t−1 (i.e., root hash field) is the root hash of a Merkle hash tree that was con-
structed when Di,t was last accessed (for simplicity, we use t − 1 to denote the
time stamp when Di,t was last accessed). The leaf node of the Merkle hash tree
were the block hash fields of all the blocks downloaded together with Di,t during
the last access.

– e′i,t−1 (i.e., auxiliary information field) is a one-time encryption of the hash tree
information that is needed to calculate root hash ei,t−1. Specifically,

e′i,t−1 = Ek(ri,t−1, Si,t−1), (4)

where St−1,i denotes the co-path of hash values needed to calculate ei,t−1, as afore-
defined in Section 4.3.

– li,t and bi,t: the layer and bucket of block Di,t in the storage hierarchy.
– si,t is a group signature of the entire block, i.e.,

si,t = G-Sigu(d′i,t, ci,t, ei,t−1, e
′
i,t−1, li,t, bi,t), (5)

where u is the ID of either the dataset owner or a user authorized to access the data
block, and G-Sigu(X) stands for a group signature generated by u for X .

Initially, the time stamp t is set to 0, both ei,−1 and e′i,−1 are set to empty, li,t is
initialized to log n, and bi,t is initialized to hlogn(0, i).

Uploading of Data Blocks to the Storage Server All the data blocks are stored to a
hierarchy of layers according the underlying ORAM. Specifically, the hierarchy consists
of log n layers. Each layer l (1 6 l 6 log n) includes 2l buckets and each bucket can
contain logn blocks. Hence, the server stores (2n− 2) log n data blocks in total, which
includes n real data blocks that contain meaningful data exported by the owner.

The other (2n − 2) log n − n data blocks in the hierarchy are called dummy data
blocks. They simply contain random stuffing data. To generate a dummy data block,
the owner randomly generates some data content, and then creates the data block in the
same format as the real data block. To help quick identification of a dummy data block,
the owner may put a special dummy tag (for example, integer 0 if all real data blocks
have IDs greater than 0) at the beginning of the dummy block’s content. Each dummy
data block Dj,t is initialized with t set to 0, ej,−1 and e′j,−1 set to empty, and lj,t and
bj,t set to some layer and bucket such that all dummy data blocks fill up the storage
locations not occupied by the real data blocks.

After the data blocks have been initialized, they are uploaded to the server. In ad-
dition, the owner also uploads to the server the initial value 0 of the counter Cq that
keeps track of the number of queries having been processed, and its associated group
signature which is generated over the concatenation of Cq and the content of the first
block at the top layer.

User Authorization For each user that is authorized to access the data blocks, the
dataset owner provides the symmetric key k, the public key K+, the group public
key, a distinct group private key, and the hash functions H(x) and hl(x, y) for l =
1, · · · , logn.

5.3 Query Process

To retrieve a target data block with ID T , a user performs the following operations.

(Q1) Both buckets at the top layer are retrieved. If the target data block is found in the
buckets, the flag found is set to true. Otherwise, found is set to false.

(Q2) Counter Cq is retrieved together with its associated group signature, from the
server. If the group signature is found to be consistent with the value of Cq , let
m = Cq + 1; otherwise, server misconduct is detected and the process aborts.

(Q3) For each layer i from 2 to log n, the following is performed:
– If found = true, a bucket is selected uniformly at random from the layer

and all the data blocks in the bucket are retrieved.
– If found = false, all data blocks in bucket hi(⌊m/2i⌋, T) are retrieved. If

target block is found in the retrieved blocks, found is set to true.
(Q4) The user needs to validate all retrieved data blocks, access the content of the target

data block, re-format all the retrieved data blocks, and finally upload them to the
server. More specifically, this step involves the operations of validating, updating,
and uploading, as explained in the following.

Validating Without loss of generality, suppose the user retrieves q data blocks in a
query, denoted as D1,t1 , D2,t2 , · · · , Dq,tq . These blocks are validated as follows.

(V1) Verification of digital signature: For each Di,ti , d
′
i,ti

is decrypted to obtain di and
its digital signature, and the signature is verified with public key K+. This step
checks if the data content of the block is unaltered.

(V2) Verification of ci,ti : For each Di,ti , the correctness of ci,ti is verified by checking
if it is equal to H(ri,ti , di).

(V3) Verification of ei,ti−1: For each Di,ti , e
′
i,ti−1 is decrypted to obtain ri,ti−1 and

Si,ti−1. The correctness of ei,ti−1 is verified by checking if it is equal to the
root hash computed based on ci,ti−1 = H(ri,ti−1, di) and the hashes included in
Si,ti−1.

(V4) Verification of placement of Di,ti : Suppose the block retrieved from bucket b
of layer l (l > 1). It is checked whether li,ti = l and bi,ti = b. Also, if the
block is not a dummy, the block ID i is extracted and then it is verified whether
b = hl(⌊m/2l⌋, i).

If any of the above verification fails, the user stops the query process and informs the
owner of the potential tampering of the data blocks.

Updating After the validation succeeds and the target data has been accessed, the user
updates each of the retrieved blocks Di,ti to Di,ti+1 as follows.

(U1) A Merkle hash tree is built with c1,t1 , c2,t2 , · · · , cq,tq as leaf hashes. The root
hash of the tree is stored in ei,ti of each Di,ti+1 for i = 1, · · · , q.

(U2) For each i = 1, 2, · · · , q, the following operations are also conducted:
– A new nonce ri,ti+1 is picked randomly;
– d′i,ti+1 = Ek(ri,ti+1, di, SigK−(di));
– ci,ti+1 = H(ri,ti+1, di);
– e′i,ti = Ek(ri,ti ,Si,ti), where Si,ti is obtained from the Merkle hash tree built

in (U1);
– According to the underlying ORAM, target block DT,tT and a dummy block
Dj,tj randomly picked from the top layer swap their positions, that is, lT,tT+1 =
lj,tj , bT,tT+1 = bj,tj , lj,tj+1 = lT,tT and bj,tj+1 = bT,tT ; for any other
block Di,Ti , its placement remains unchanged, that is, li,ti+1 = li,ti and
bi,ti+1 = bi,ti ;

– The user u generates a group signature si,ti+1 = G-Sigu(d′i,ti+1, ci,ti+1,
ei,ti , e

′
i,ti

, li,ti+1, bi,ti+1) and attaches the signature to Di,ti+1.

Uploading After each retrieved data block Di,ti has been updated to Di,ti+1, the block
should be uploaded back to the server at layer li,ti+1 and bucket bi,ti+1. The order in
which the blocks are uploaded is arbitrary. Also, the value of Cq is incremented by one
and a new group signature is generated for the concatenation of the new Cq and the
new content of the first block at the top layer; then, these two are also uploaded to the
server. If the new value of Cq is a multiple of 2l for certain l ∈ {1, · · · , logn} but not
a multiple for any 2l

′
where l′ > l, a shuffling process for layer l should be conducted

by this user. The shuffling process is elaborated in Appendix 1.

Server Operations Upon receiving an uploaded block Di,ti+1, the server needs to
check whether (i) the block has a valid group signature; (ii) the root hash value carried
by the block, i.e., ei,ti , is the same as the root hash of the Merkle hash tree constructed
when the blocks were downloaded during the previous access; and (iii) the value in
auxiliary field e′i,ti is different from that of other blocks.

6 Security Analysis

In this section, we present the security analysis of the proposed scheme. We firstly
explain that the proposed scheme ensures the same access pattern privacy offered by
the underlying ORAM. Then we show that any misconduct committed by malicious
users or the server can be detected and the identity of the intruder can be traced.

6.1 Access Pattern Privacy

Theorem 1. The proposed scheme provides the same level of access pattern privacy as
the underlying ORAM.

Proof Sketch: Due to space limitation, we only provide an informal sketch of the
proof. Firstly, the proposed format of the data block, which consists of d′i,t, ci,t, ei,t−1,
e′i,t−1, li,t, bi,t, and si,t, does not leak additional information to the server. In other
words, the data re-encryption semantics remain intact. Secondly, the modified query and
shuffling processes do not break the randomness and obliviousness of the underlying
ORAM. For example, in the modified query process, the target data block is swapped
with one of the dummy data blocks at the top layer; this is indeed equivalent to the
query process of the original ORAM, which uploads the target data block to the top
layer while the data block at its original location essentially becomes a dummy.

⊓⊔

6.2 User Accountability

We now show that any misconduct by a malicious user will be detected either by the
server or by the honest user who next accesses the modified data block. Note that, in the
following analysis, we assume that the server always performs the validating operations
honestly as described in Section 5.3. The detection of server misbehavior is analyzed in
Section 6.3.

Modification Attacks As the user does not have access to the private key K−, any
arbitrary modification to the data content will be detected due to the presence of digital
signature SigK−(di) in each data block Di,ti , and the user who last accessed the data
block is identified as the attacker through G-Open(si,ti , di).

Replacement Attacks Even though a malicious user cannot modify the content of a
data block arbitrarily, it may replace data content of a block Di,ti with data content of
another block Dj,tj . In this case, data content di is essentially lost and the digital sig-
nature SigK−(di) alone cannot detect such type of misconduct. Our proposed scheme
deals with replacement attacks as follows.

If a malicious user simply replaces d′i,ti in Di,ti with d′j,tj from Dj,tj (or d′i/j,t′
i/j

where t′i < ti and t′j < tj), without replacing other parts in Di,ti , this can be detected
via (i) a mismatch between d′i,ti and its hash value ci,ti , or (ii) a failed Merkle hash tree
verification for d′i,ti based on ei,ti−1 and e′i,ti−1.

Instead, a malicious user may replace d′i,ti , ci,ti , ei,ti−1, and e′i,ti−1 in Di,ti with
their counter parts from Dj,tj . This can be detected too as the server would observe
two data blocks with the same auxiliary information field e′i,ti−1 and hence reject the
uploading operation and identify the user as the attacker through G-Open(sj,tj , dj).

Misplacement Attacks A malicious user may place a data block in the wrong bucket
and/or layer of the storage hierarchy. This attack may be detected in one of the follow-
ing ways: (i) the position of the block is inconsistent with the hash of its ID using the
designated hash function; or (ii) the data block cannot be found at the specified bucket.
In the latter case, the server may work with the dataset owner to scan the storage hierar-
chy to locate the misplaced block and identify the attacker through group signature of
that block.

Addition/Deletion Attacks In the proposed scheme, during a query or shuffling, as
the server always checks to ensure that the set of downloaded data blocks and the set of
uploaded data blocks are identical, any addition/delection attacks can be detected and
rejected by the server.

6.3 Server Accountability

In this section, we first explain how the proposed scheme detects the server misbehavior
when it does not perform the required validating operations when a user uploads data
blocks to the server.

– If the server does not verify the group signature of a data block, the misconduct
will be detected as soon as an honest user finds that a data block carries an invalid
signature.

– If the server does not verify the root hash ei,ti and/or the auxiliary information field
e′i,ti of a data block, the misconduct will be detected when an honest user finds that
a data block is not what it wants (i.e., a mismatch of the data block IDs); in other
words, a replacement attack has passed through the server without being detected.

The server may also launch attacks in an active manner, including modification of
data blocks and disruption of the underlying ORAM. Modification of data blocks can
be detected as the server cannot generate a valid group signature, while disruption of
the underlying ORAM can be detected by the user via validating li,ti , bi,ti , and si,ti .

7 Overhead Analysis

We now present the overhead analysis of the proposed scheme. In this paper, we only
show the extra storage, communication and computational overhead that are added to
the underlying ORAM scheme.

7.1 Storage Overhead

Server Overhead Extra storage overhead on the server is introduced as a result of
expanding data block. For each data block Di,ti , the extra storage overhead includes
ri,ti , SigK−(di), ci,ti , ei,ti−1, e′i,ti−1, li,ti , bi,ti and si,ti . Table 1 shows a practical
example, where n = 230 real data blocks are in the system. We assume each hash
value is of 32 bytes and the group signature si,ti takes 230 bytes. Thus, each of ri,ti ,
SigK−(di), ci,ti , and ei,ti−1 is of 32 bytes. li,ti and bi,ti store layer and bucket number.
Since there are log n layers and at most n buckets on one layer, li,ti is of log logN bits
and bi,ti is of logN bits. e′i,ti−1 introduces a larger overhead, because it stores the
information that corresponds to a path from root to leaf in the Merkle hash tree. In the
worst case, the Merkle hash tree may contain n log n data blocks (i.e., when the entire
database is shuffled) thus e′i,ti−1 stores at most log(n log n) hash values. But in practice,
this is still a small amount of extra overhead. For example, assuming n = 230 and each
hash value is of 32 bytes, the size of e′i,ti−1 is 32 log(n log n) bytes, which is less than
1.1 KB. Considering that a data block is typically 64 KB or 256 KB, the extra overhead
is less than 2 KB, which is acceptable in practice.

Table 1. Storage overhead (n = 230) per block

ri,ti SigK−(di) ci,ti ei,ti−1 e′i,ti−1 li,ti bi,ti si,ti
32 bytes 32 bytes 32 bytes 32 bytes ≤ 1.1 KB ≤ 1 byte 4 bytes 230 bytes

User Overhead A user also needs an extra storage space to store the hash values to
construct the Merkle hash tree. In a query process, the number of leaf nodes in the
Merkle hash tree is O(log2 n), which in turn requires the user to store O(log2 n) hash
values. This is a small amount of overhead compared to the memory space available
on a typical user device. For example, assuming n = 230 and each hash value is 32
bytes, the storage overhead for storing the Merkle hash tree is around 60 KB, which is
comparable to the size of a data block. Note that during a shuffling process, there could
be as many as O(n log n) leaf nodes in a Merkle hash tree. However, as explained in

Appendix 1, the Merkle hash tree is pre-computed by the server and the user only needs
to verify the Merkle hash tree information it retrieves; hence, no storage overhead is
introduce for this process.

7.2 Communication Overhead

Downloading Ignoring the extra overhead caused by the increase of data block size,
the downloading communication overhead is exactly the same as that of the original
ORAM scheme.

Uploading For a query process, our proposed scheme has a bigger uploading com-
munication overhead than the original ORAM scheme, as the user needs to upload all
retrieved O(log2 n) data blocks back to the server. For a shuffling process, however, our
proposed scheme does not introduce extra uploading overhead compared to the origi-
nal ORAM scheme. Consequently, the amortized communication overhead (which is
O(log3 n) or O(log4 n), depending on the choice of the sorting algorithm) is not differ-
ent for the two schemes.

7.3 Computational Overhead

Server Overhead During a query or shuffling process, the server needs to perform
the following extra computations: (i) calculation of a Merkle hash tree, which needs
O(n logn) hash computations in the worst case; (ii) verification of group signature for
each data block, which can be O(n log n) in the worst case. Note that, both of the above
calculations can be parallelized on the server. Hence, the computation overhead intro-
duced by the proposed scheme should not be an obstacle for the massively parallelized
cloud computing platforms.

User Overhead For each data block Di,ti retrieved in a query or shuffling process,
a user needs to perform the following extra computations: (i) verification of digital
signature SigK−(di); (ii) verification of ci,ti in the old data block and generation of
ci,ti+1 for the new data block, both of which are hash computations; (iii) decryption
of e′i,ti−1 and re-encryption of e′i,ti ; (iv) verification of Merkle hash tree root e′i,ti−1,
which is composed of a sequence of hash computations; (v) verification of placement
of Di,ti , which is one hash computation; and (vi) verification of group signature si,ti .
Using a modern pairing-based cryptography library such as PBC library [20], each of
the above computations can be done efficiently from several milliseconds to several
hundreds of milliseconds.

8 Conclusions

In this paper, we propose an accountable ORAM scheme, which is developed on top
of a hash-based ORAM design such as [15]. It can detect misconduct committed by

malicious users or server and identify the attacker, while not interfering with the ac-
cess pattern preservation mechanisms inherent from the underlying ORAM. The goal
is achieved through a combined leverages of Merkle hash tree, digital signature and
group signature techniques, as well as a delicate design of the data block format. Re-
sults of security analysis and overhead evaluations show that the proposed scheme has
achieved the goals of accountability of users and the server’s behavior and preservation
of data access pattern privacy, at the cost of slightly increased computational, storage,
and communication overheads.

References

1. M. Islam, M. Kuzu, and M. Kantarcioglu., “Access pattern disclosure on searchable encryp-
tion: ramification, attack and mitigation,” in NDSS, 2012.

2. P. Williams, R. Sion, and B. Carbunar, “Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage,” in Proc. CCS, 2008.

3. P. Williams and R. Sion, “Usable private information retrieval,” in Proc. NDSS, 2008.
4. B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Proc. Crypto, 2010.
5. M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of outsourced data via

oblivious ram simulation,” in Proc. ICALP, 2011.
6. M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Oblivious ram simu-

lation with efficient worst-case access overhead,” in Proc. CCSW, 2011.
7. P. Williams and R. Sion, “Single round access privacy on outsourced storage,” in Proc. CCS,

2012.
8. ——, “Privatefs: A parallel oblivious file system,” in Proc. CCS, 2012.
9. E. Kushilevitza, S. Lu, and R. Ostrovsky, “On the (in)security of hash-based oblivious ram

and a new balancing scheme,” in Proc. SODA, 2012.
10. M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Privacy-preserving

group data access via stateless oblivious ram simulation,” in Proc. SODA, 2012.
11. E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with o((logn)3) worst-case

cost,” in Proc. ASIACRYPT, 2011.
12. E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious ram,” in Proc. ASIACRYPT,

2011.
13. E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas, “Path oram:

An extremely simple oblivious ram protocol,” in Proc. CCS, 2013.
14. E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud storage,” in Proc.

S&P, 2013.
15. O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious ram,” in

JACM’96, 1996.
16. R. Merkle, “A digital signature based on a conventional encryption function,” in Proc.

Crypto, 1987.
17. D. Chaum and E. van Heyst, “Group signatures,” in Proc. EUROCRYPT, 1991.
18. M. Franz, P. Williams, B. Carbunar, S. Katzenbeisser, A. Peter, R. Sion, and M. Sotakova,

“Oblivious outsourced storage with delegation,” in Proc. FC, 2011.
19. B. Carbunar and R. Sion, “Write-once read-many oblivious ram,” Trans. Info. For. Sec.,

vol. 6, no. 4, Dec. 2011.
20. B. Lynn, “On the implementation of pairing-based cryptosystems,” Ph.D. dissertation, Stan-

ford University, 2008.

Appendix 1 Shuffling Process

Essentially, the shuffling process for layer l is to obliviously reposition and reformat
all the blocks residing at layers 1,· · · , l such that: (i) after the shuffling, each bucket
contains the same number (i.e., log n) of blocks; (ii) each real data block Di,ti is placed
to bucket hl(

Cq

2i , i) of layer l, where Cq is the afore-mentioned counter keeping track of
the number of queries that have been processed. Incorporating accountability mecha-
nisms, the detailed operations are as follows. An example where l=2 is shown in Fig. 2.

~
~

~Layer 1 Layer 2

~

D1

~

~

D2

~

~

~

D4

D3

Buffer ~ D1 ~ D2 ~ D4 ~ D3 ~

Data blocks from two layers are merged. Each data block’s Merkle hash tree information is attached.

Buffer
1,

~

3,

D1

1,

~

1,

D2

2,

~

3,

D4

4,

~

4,

D3

0,

~

2,

~

3,

~

The user augments each data block with a tag from [0, 4].

Buffer
3,

D1

1,

D2

0,

~

3,

D4

4,

D3

2,

~

3,

~

4,

~

log nlog nlog n

1,

~

log n

Data blocks are obliviously sorted.

Buffer
3,

D1

1,

D2

0,

~

3,

D4

4,

D3

1,

~

2,

~

3,

~

4,

~

log n log nlog nlog n

0,

~

0,

~

Scan the blocks and leave exactly logn blocks with tag j, for each j from 1 to 2i

Buffer
3,

D1

1,

D2

0,

~

3,

D4

4,

D3

1,

~

2,

~

3,

~

4,

~

log n log nlog nlog n

~

~
~

~
~

~

Layer 1 Layer 2~ ~ ~

D1

D4

D2

D3

Obliviously sort the buffer, put each data block to its bucket.

Fig. 2. Example of the shuffling process. Each bucket has logn data blocks. We use the symbol
∼ to represent one or more adjacent dummy data blocks.

(S1) The server merges all the data blocks at layers 1, · · · , l to a shuffling buffer, builds
a Merkle hash tree with the block hash fields of these blocks as leaf nodes, and
calculates the root hash. Then, for each block Di,ti in the buffer, the corresponding
Si,ti is attached to the block, and the root hash value is saved to field ei,ti−1 of the

block. After this, the following five steps are performed by the user who conducts
the shuffling process.

(S2) In this step, the user scans (i.e., downloads, processes and re-uploads back) the
blocks in the shuffling buffer, one by one. More specifically, after a block Di,ti

has been downloaded, the validity of the attached Si,ti and ei,ti−1 is first checked
as follows: (i) If this is not the first downloaded block, it is checked if ei,ti−1 is
the same as the root hash saved in the previously downloaded blocks; (ii) The root
hash is re-computed based on ci,t1 and Si,ti to check if it is the same as ei,ti−1.
If either of the checks fails, the server is detected to be misbehaving. Then, the
block is further processed as follows to obtain Di,ti+1 of different appearance:
(i) A new nonce ri,ti+1 is picked uniformly at random from {0, · · · , 2L − 1}.
(ii) e′i,ti is updated to Ek(ri,ti+1, Si,ti) to save an encrypted version of Si,ti . (iii)
A tag Ti is assigned to indicate which bucket the block should reside after the
shuffling. Particularly, if the block is a real data block of ID i, Ti = hl(Cq/2

l, i);
otherwise (i.e., the block is a dummy block), Ti is picked from {0, · · · , 2i} such
that, after the assignment has been performed for all the dummy blocks in the
buffer, log n dummy blocks are assigned with tag j for each j = 1, · · · , 2i while
the rest dummy blocks are assigned with tag 0. (iv) The tag Ti is encrypted and
saved in field bi,ti+1; that is, bi,ti+1 = Ek(ri,ti+1, Ti). And li,ti+1 are all set to
l. (v) d′i,ti+1 is re-computed as Ek(ri,ti+1, di, sigK−(di)), and ei,ti = ei,ti−1 to
save the root hash value. (vi) the group signature is re-computed for the whole
block.

(S3) In this step, the user conducts an oblivious sorting for all the blocks in the shuffling
buffer, based on the tags carried by the blocks. As a result, the blocks are placed in
the shuffling buffer according to the ascending order of their tags, and for blocks
of the same tag, the real data blocks are placed before dummy blocks.

(S4) Again, the user scans the blocks in the shuffling buffer, one by one. This time, the
tags of some dummy blocks are adjusted to ensure that, for each j = 1, · · · , 2l,
exactly log n (real or dummy) data blocks are assigned with tag j, while other
dummy blocks are assigned with tag 0. Based on the sorting result of Step 2, the
tag adjustment can be conducted as follows by using a temporary counter: For
each j = 1, · · · , 2l, when the first block with tag j is scanned, the counter is
initialized to 1. Later on, when a block of the same tag is scanned, the tag of the
block remains unchanged and the counter is incremented by 1, if the counter is
smaller than log n; otherwise (i.e., the counter is equal to log n), the block should
be re-tagged with 0.

(S5) In this step, the user conducts another oblivious sorting for all the blocks in the
shuffling buffer, based on the tags carried by the blocks. As a result, the blocks
are placed in the shuffling buffer according to the ascending order of their tags;
for blocks of the same tag, however, the data blocks are placed randomly.

(S6) In this step, a third scan is performed in this step to specify the new location of
each block in the shuffling buffer. Specifically, according to the order produced
by Step 4, the blocks are placed into the buckets from layer 1 to layer l and from
bucket 1 to bucket 2j for each layer j. Also, for each block Di,ti+1, the li,ti+1 and
bi,ti+1 fields save its assigned layer number and bucket number; the e′i,ti+1 field

just contains an encrypted version of its Si,ti (without random nonce) to allow the
server to check if the block carries a unique e′i,ti+1 value.

Note that, similar to the download and upload operations in the query process, the user
needs to check the integrity of the content and placement of each block every time
when it is downloaded to detect if the server has misbehaved, and the server also needs
to check the integrity of a block every time when it is uploaded; specially, in the last
time when all data blocks are uploaded back to buckets, the server needs to check if the
uploaded set is the same as the downloaded set.

Appendix 2 Integration with General Hash-Based ORAMs

For the sake of simplicity, we use a specific ORAM [15] to explain the proposed
scheme. However, the proposed scheme can also be extended to work with other hash-
based hierarchical ORAM scheme. The high level insights of the proposed scheme is
to add validation information to each data block and verify these information collabo-
ratively between the server and the users, without interfering with the original ORAM
operations. The proposed scheme can be integrated with any hash-based ORAM as long
as:

– The extended data format proposed in the scheme does not give the server non-
negligible advantages in inferring users’ access pattern in the ORAM scheme.

– During a regular query, the ORAM scheme still operates successfully if the user
puts all retrieved data blocks back to the server, in the way as explained in Sec-
tion 5.3.

– During the shuffling process, the re-hashing algorithm and the underlying oblivious
sorting algorithm still works if no new dummy data blocks are added as explained
in Appendix 1.

Many existing ORAM schemes [2–10] satisfy these requirements. Note that there
also exist other ORAM schemes [11–14] that are not hash-based. How to achieve user
accountability in these ORAM schemes will be studied in our future work.

