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1 OVERVIEW OF SMALL AREA ESTIMATION 

1.1 Introduction 

Sample surveys are a more cost-effective way of obtaining information than complete 

enumerations or censuses for most purposes. The surveys are usually designed to ensure 

that reliable estimators of totals and means for the population, pre-specified domains 

of interest, or major subpopulations can be derived from the survey data. There are 

also many situations in which it is desirable to derive reliable estimators for additional 

domains of interest, especially small geographical areas or small subpopulations. from 

existing survey data. The terms "small area" and "local area" are commonly used to 

denote a small geographical area, such as a county, a municipality or a census division 

and the term "small domain" is used to denote a small subpopulation. such as a specific 

age-sex-race group of people. In this discussion, these terms will not be differentiated 

and only "small area" will be used. 

For example, suppose there is a state-wide survey about the average household in­

come. Many cities in that state want to know the average household income for individ­

ual cities without conducting their own survey. .Naturally, they turn to the state-wide 

survey. However, sample sizes for these cities (small arezis) are typically small due to 

the size of cities. Therefore, the usual direct survey estimators of the average household 

income for such small areas, based on data only from the sample units in the area, are 

likely to yield unacceptably large standard errors (compared to the interesting statistic, 

the average household income) due to the small sample size in the area. This makes 
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it necessary to "borrow strength" from data related to the city of interest using some 

form of model-dependent estimator to find more accurate estimates for the given area 

or. simultaneously, for several areas. The potential sources for the related data sets can 

be divided into three groups: 

• .A.dministrative data known at the small area level or sample element level 

• Data measured for the same characteristics in other 'similar' areas 

• Data meaisured for the same characteristics in the same area in a previous sample or 

census. 

Classical survey sampling practitioners and Bayesians frequently disagree on the 

philosophical basis for estimation. But small area estimation is one area where these 

groups of statistician have a consensus on the need for model-dependent estimation. The 

idea is to relate similar small areas via supplementary data (e.g. census and admin­

istrative data) through explicit or implicit models. Ghosh and Rao (1994) provide an 

excellent review of many of the models found in the current literature and evaluate them 

in the light of practical considerations. 

.A . S  pointed out by Marker (1999), most of the small area estimation models can 

be identified as special cases of generalized linear regression. This paper will focus 

on discussion of multiple linear regression models that include both fixed effects and 

random area-specific effects. There are two types of such models according to the level 

of aggregation at which the models are developed. Following is a review of these two 

models and of the estimation procedures in the literature. 

1.2 Random effects model 

The random effects model was originally proposed for small area estimation by Fay 

and Herriot (1979). The basic model is an old one. See, for example, page 260 of Snedecor 

and Cochran (1956). For this type of model, area-level auxiliary data x, = (x,i,.... x,p)^ 
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are available. The small area parameters (e.g. small area totals and means) of interest, 

y,. are assumed to be related to a;, through the linear model: 

=  x j / 3  + b i ,  1 = 1  .m. (I.l) 

where xj" are known constants and the c, are known positive constants, j3  is the vector 

of regression parameters and the 6,'s are independent and identically distributed (iid) 

random variables with E(6,) = 0.\-''(6,) = cr^. In addition, normality of the random 

effects. 6,. is often assumed. 

We can not observe y, directly due to the constraint of budget. The direct estimators. 

Vj. are available through the sample and 

y ,  = 1/i + e,, i  =  (1.2) 

where the e,"s are sampling errors with E(e,ly,) = 0 and V'(e,li/i) = cr^,. The V, is a 

design unbiased estimator of t/, with unacceptably large variance, (t^,. It is customary 

in the survey literature to assume that are known. These assumptions may be quite 

restrictive in some applications. One such example is discussed in Chapter 2. VVe will 

discuss ways to relax these assumptions in later chapters. 

Combining (1.1) and (1.2). we obtain the model 

v; = xf/3 + z. 6, + e.. t = (1.3) 

which is a special case of the general mi.xed linear model. It is worthwhile to point out 

that e,"s in (1.3) are design-induced random variables and 6,"s are model-based random 

variables which are not observable. 

There are many extensions of model (1.3) in the literature. Some of the extensions 

will be discussed in later chapters. In the next three sections, we will limit ourselves 

to model (1.3) and present estimation approaches for point estimation of y, and for the 

measurement of uncertainty associated with the estimators. The three major approaches 
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T O  estimation for random effects models are empirical (estimated) best linear unbiased 

predictor (EBLUP). empirical Bayes and hierarchical Bayes. The EBLUP approach is 

also called the variance components approach in some literature. 

1.2.1 EBLUP Approach 

Recall that the random effects model (1.3) is a special case of the general mixed 

linear model 

Y = X/3 + Zb + e, (1.4) 

where X  and Z are known matrices, /3 is a vector of p  unknown parameters that have 

fixed values (fixed effects), and 6 and e are vectors of dimension q and n. respectively. 

T h e  b  a n d  e  a r e  u n o b s e r v a b l e  r a n d o m  v a r i a b l e s  ( r a n d o m  e f f e c t s )  s u c h  t h a t  E ( b )  =  

0. E{e) = 0 and 

b G  0 

e 0 R  

Usually. G  and R  depend on some parameter 6 .  

Given model (1-4). we wish to estimate some linear function of (3  and predict some 

linear function of 6. In other words, we want to find the BLUP of k'/3 + m'b. The 

acronym BLUP stands for "Best Linear Unbiased Predictor". The BLUP of fc'/3 + m'b 

is linear in the sense that it is a linear function of the data Y: unbiased in the sense that 

the average value of the predictor is equal to the average value of the quantity being 

predicted: best in the sense that it has minimum mean square error (MSE) within the 

class of linear unbiased predictors. Predictor is used to distinguish the statistic from 

estimators of fixed effects. There is some discussion about the appropriateness of the 

terminology "prediction", but it ha5 become common practice to "estimate" fixed effects 

and to "predict" random effects. Robinson (1991) gives an excellent summary of BLUP 

theory and examples of its application. 
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X'R-^X X'R-^Z /3 X'R- 'Y  

Z R - ' X  Z R - ^ Z  +  G '  b Z'R-^Y 

To study BLUP. we first assume that the model parameter 0  is known. We also 

assume that X and Z are full rank matrices. Henderson (1950) showed that the predictor 

of k'(3 4- m'b is k'0 + m'b. where /3 and 6 are any solutions to 

r'Y 
(1.5) 

The equation (1.5) is known as the "mixed model equation". /3 and b are called "mixed 

model solutions". Henderson et al. (1959) proved that any solution 0 to 

X'V- 'X0 =  X'V'Y.  ( 1 . 6 )  

where V = R+ZGZ' ,  is also a solution for/3 of (1.5). Henderson (1963) further proved 

that b = GZ'V~^{Y — X/3) is a solution for 6 of (1.5). In short, the BLUP estimator 

of k'(3 + m'b is given by 

k'0+ m'GZ'V-^{Y -  X0) .  (1.7) 

where (3  is defined in (1.6). Note that these results do not depend on normality, a 

result that is similar to that for the best linear unbiased estimators (BLUEs) of fixed 

parameters. 

Under model (1.3), we want to predict the small area parameter ?/j = x J /3  + z , b , ,  

which is a linear combination of fixed and random effects. For the random effects model 

( 1 . 3 ) .  

V = diag{z la l  +  . . . ,  +  c l^) .  

G  =  d i a g { a l  a l ) ,  and Z = d i a g { z i ,  -„). Taking k  = x, and m = 

(0 0,c..0, 0)^ with in the z-th position, the BLUP of y, = xj (3  +  z^bi  is 

vl'= xj'^xjh, (1-S) 

where the superscript H  stands for Henderson, 

0 = [ X ' V - ' X ]  'x'V-'Y = 
L«=l 

- 1  

^«.V;(rf<T^2 + cr2.) I 
. t = i  
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and 

', = =fcTUzfal + <TlrK (1.9) 

Rewriting (l.S) as 

yf =-nVi + (I - (1.10) 

we see that is a weighted average of the direct estimator Vj and the regression 

estimator xj(3. Thus, the BLUP takes proper account of between-area variation relative 

to the precision of the direct estimator. The BLUP is also design consistent in the sense 

that 7, -> 1 when the sampling variance 0, i.e., yf^ Yi = y, if 0. 

Henderson (1975) gave a general result for var{y^  — y )  =  MSE{y^ — y ) .  However, 

because Henderson's simplification process involves lots of matrix algebra, we use direct 

calculation to obtain Mi{9) = MSE{y^) = E{y^ — yi)^- Note that 

y" - yi = 7.v; + (1 - 7i)«r3 - y. 

= 7.v. + (1 - 'h)X J /3 - y,• + (1 - 7, ) x j (3-/3) 

= + Zibi + ej + (1 - - {xjl3 + Zibi){ 1 - '•u)xjfi 

= 7.e. + (7. - 1)^A + (1 - 7.)xr(3 - /3). (1.11) 

and 

cov{xJ(^  -  (3) .  7 ,6 ,  +  (7 . -  -  1)^,6.} 

= cov{xJ  [X'^V- 'X]  '  ̂ ®.V;(rM + alr ' - l re .  " (1 - 7.)-.6a 
1=1 

= [-l.icT x„7l ~ (zfcrl + air' 

= 0. (1.12) 

Following the notation of Prasad and Rao (1990) and by using (1.11) and (1.12), we 

have 

^ f y { 0 )  =  E ( y f  -  y .)2 =  g u { 0 )  +  5f2.(«), (1-13) 



where 

g u { 0 )  =  =  E  [7,y; + (1 - ' / , ) x j ( 3  -  y , ] '  (1.14) 

and 

92,(0) = (1 - 7.) « 

-1 
2^r X , .  ( l - l o )  

-1=1 

The term g2i{0) is due to the estimation of /3. 

The BLUP in (1.8) depends on the variance components and (Tj,, i  —  1,.... n?.. 

In the survey hterature. the sampling error %'ariances crl^.i = l....,m are customarily 

assumed to be known or to depend on some parameter .A.lso. al is unknown in 

practical applications. Various methods of estimating the unknown variance components 

0 = {crle'J are available. Several of these methods such cis Henderson's method 3. 

maximum likelihood (ML), and restricted maximum likelihood (REML). are derived for 

more general settings and yield asymptotically consistent estimators under reasonable 

regularity conditions. 

Replacing 0  with an asymptotically consistent estimator 0  in (1.9). we get the esti­

mator 

y" = + {\--i,)xj^, (1-16) 

w h e r e  y l '  is called the empirical BLUP or EBLUP estimator. Kackar and Harville (1984) 

showed that E[y^) = E{yi) if E{y") is finite, the elements of 0 are even functions of 

y and are translation-invariant (standard methods of estimating 0 satisfy these require­

ments). and the distributions of b and e are symmetric. The assumption of symmetric 

distribution is critical and is not always true in practice. 

Though the EBLUP yf' is unbiased under these regularity conditions, Mi{0), the 

MSE of yl^ — yi in (1.13), underestimates (sometimes severely) the MSE{yf — y,) due 

to the estimation of 0. Kackar and Harville (1984) showed that 

A/,(«) = E{yf-y.r=E(y^-y,f + E(yf-y^f 

=  +  E { ^  - y l ' f  (1.17) 
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if 6 and e are normal and B is translation-invariant. The second term in (1.17) is not 

t r a c t a b l e  i n  g e n e r a l .  B y  e x p a n d i n g  t h e  s e c o n d  t e r m  i n  a  T a y l o r  s e r i e s  i n  0  a b o u t  0 .  

Kackar and Harville (19S4) obtained a second-order approximation 

( y "  -  y " ?  =  [ y i d )  -  ? " ( » ) ! '  =  W O ' C ?  -  » ) ! ' •  

u'here d [ 0 ) '  =  d y ^ [ 0 ) l d 6 .  They then proposed that 

E\d{0)'{^ - e)Y = tr[A{e)E(0 - e)(B - b)% (i.is) 

where A { 0 )  is the covariance matri.x of d { B ) .  

Prasad and Rao (1990) proposed a further approximation to g^t given by 

53. =  t r [ A { 0 ) E ( B  -  e ) ( 0  -  0)'] =  i r [ { B ' V B E ( B  -  B ) ( B  -  0 ) ' ] ,  (1.19) 

u-here B  =  f(5(m'GZ'V"')/c>0,)',.... (^(m'GZ'V-')/a6'p)'] and m'GZ'V is de­

fined in (1.7). They also evaluated (1.19) for three small area models. A.s an example, 

the g3,{0) for model (1.3) when 0 = al is 

ff3.(<T2) = (1-20) 

Under some regularity conditions, the order of the neglected terms in the approxi­

mation (1.18) and (1.19) is o(m~') for large m. .-Mso. an estimator of 5i,(0) is obtained 

by adjusting gui^) fof its bicis to (9(m"'). .After considerable algebraic simplification. 

Prasad and Rao (1990) obtained 

E { g u ( 0 ) )  =  5 i . ( « )  + 5 3 . ( 0 )  +  o ( m - ' ) .  ( 1 . 2 1 )  

where g\t{0) is defined in (1.14) and gzi{0) is defined in (1.20). Therefore, an approxi­

mately unbiased estimator of MSEiy" — ?/,) with expectation correct to o(m~^) is 

M S E { y ^ )  =  g u { h ^ g 2 ^ ( B )  +  2fir3.(0)- (1-22) 

The bias of (1.22) is of lower order than m~^. Lahiri and Rao (1995) show that the 

approximation (1.22) is robust to departures from the assumption of normality of 6, 

under model (1.3). 
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1.2.2 Empirical Bayes approach 

From a Bayesian perspective, model (1-1) with normal errors gives the distribution of 

y  = { y i  i/m)^ conditional on /3 and cr^, and model (1.2) with normal errors gives the 

distribution of K = (V'l, YmV conditional on y  and 0 i .  Under these assumptions. 

we have conditional distributions 

exp 53(2rf)-^^2(y.-xf/3)' 
-<=1 

(1.23) 

and 

3c exp ^(2a,.)-'(V;-i/.)' . (1-24) 
. 1=1 

where oc means that the density hcis the specified form up to a constant of proportionality. 

If both /3 and 0 are known, we derive from (1-23) and (1.24) the posterior distribution 

o f  t h e  u n k n o w n  y  

f{y\y-0-0) oc exp ^(2ffi.)-'(y,-yf)^ 
. « = i  

w here 

yf = + 7.(Vi - /3), 2 = 1, m. 

(1.25) 

(1.26) 

and 7 j  and gu are defined in (1.9) and (1-14) respectively. Therefore, the posterior 

distributions of y,, z = 1, m, are independent normal distributions with mean yf 

and variance gu. Under quadratic loss, is the Bayes estimator of y,. 

When / 3  and 0  are unknown, we can estimate them from the marginal distribution 

of Y. That is, we estimate /3 by using (1.6) and estimate 0 by using ML. REML. or 

other procedures. We then substitute the estimators (3 and 0 in (1.26) and obtain the 

empirical Bayes estimator of y,. Note that is equal to the EBLUP estimator 

yl' in (1.12) if the same estimator for 0 is used. 

From a Bayesian perspective, the inference statements are conditional on the observed 

value Y. In other words, we draw conclusions about y in terms of f{y\Y). Under 
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quadratic loss. Eiyi\ Y )  and V a r { y i \ Y )  are the most important statistics. When /3 

and 9 are known, we can use (1.25) to obtain E{yi\Y) = yf and Var(yi\Y) — gi, 

since f{y\Y) = f{y\Y.l3,0). When /3 and 0 are unkno%vn. yf^ = E{yi\Y,/3.9) and 

git{j3.0) = Var{yi\Y.f3.6). Note that 

£ ( i / , | y )  =  E p g l E { y . \ Y . I 3 , 0 } ]  ( 1 . 2 7 )  

and 

V a r i y i \ Y )  =  E f ^  0 [ V ( y , \ Y ,  ̂ 3 . 0 ) ]  + V a r ^  g [ E { y i \ Y . / 3 , 0 ) ] ,  (1-2S) 

where Ej^ g and denote the expectation and variance with respect to the pos­

terior distribution of ^ , 0  given Y .  We can see that y f ^  is a reasonable approximation 

to the true posterior mean £"(^,11^). However, the estimated posterior variance gu{^.0) 

is only a good approximation to the first term of the right side of (1.28) and could 

severely underestimate the posterior variance Var{yi\Y). Therefore. gu{0.0) is not a 

good measure of V'ar(j/,|'K), the true variability of E{yi\Y). because it fails to account 

for the uncertainty about the unknown parameters  ̂and 0. 

The posterior distribution of /3 and 9  given Y  is not available because the prior 

distribution of (3 and 9 is not specified in the empirical Bayes approach. Therefore, we 

can not use (1.2S) to evaluate the posterior variance Var{yi\Y). Laird and Louis (19S7) 

proposed a bootstrap approach to get around this. Kass and Steffy (1989) proposed an 

asymptotic approximation to Var{yi\Y) by adding a positive correction term to account 

for the underestimation. This term depends on the observed information matrix and 

t h e  p a r t i a l  d e r i v a t i v e s  o f  y f  w i t h  r e s p e c t  t o  f 3  a n d  9 .  e v a l u a t e d  a t  t h e  M L  e s t i m a t e s  ( 3  

and 9. In a more recent result. Singh et al (1998) use Monte Carlo approximations for 

some of the error measures. 

If we want to evaluate the empirical Bayes estimates in the frequentist framework, 

MSE is a natural measure of uncertainty. This makes empirical Bayes and EBLUP 

essentially equivalent. Therefore, the empirical Bayes approach is only discussed briefly 
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in this paper. Morris (1983) offered a good introduction to the empirical Bayes approach 

with many applications. Ghosh and Rao (1994) provide a summary of results prior to 

1994 and Ghosh (1999) collects and unifies many recent results. 

1.2.3 Hierarchical Bayes approach 

In addition to the empirical Bayes model assumptions (1.23) and (1.24), the hierar­

chical Bayes procedure models the uncertainty of hyper-parameters by assigning a prior 

distribution to the model parameters (3 and 6 and derives the posterior distribution 

f { y \ Y ) -

To demonstrate the hierarchical Bayes approach under model (1.23) and (1.24), we 

assume that the prior distribution of /3 is uniform over RF and that 9 is known. Without 

loss of generality, we assume that X is full rank. The joint (improper) probability density-

function (pdf) of Y.y, and /3 is 

f { Y . y . j 3 )  oc exp 
1 

exp 
1 

- ^ ( y - X 0 Y G - \ y - X I 3 )  

(1.29) 

where R  ~  d i a g { a l ^ , . .. ,cr^^) and G  = d i a g [ z ^ a l . . .  Using the fact that 

( y  -  X ( i f G - \ y  -  X ( 3 )  =  y ^  [ G - '  -  G ' ' X { X ' ^ G - ' X ) - ' X ' ^ G ' " ]  y  

+  [ / 3  -  { X ' ^ G - ' X ) - ' X ' ^ G - ' y ] ' ^  ( X ' ^ G - ' X )  [ ( 3  -  { X ' ^ G ' ' X ) ' ' X ' ^ G - ' y l l . W )  

and integrating with respect to ( 3  in (1.29). one finds the joint (improper) pdf of Y  and 

y  to be 

f { Y . y )  oc exp 
1 

- L i ^ Y  - y f R - ' [ Y  - y )  

X exp [G-' - G-'XiX'^G'" X)''X'^G'"] y| . (l.:-

Letting S  =  R - ^  +  [G"' - G ~ '  X i X ' ^ G ' ^  X ) - '  X ' ^ G - ' ] ,  we have 

31 

{ Y  -  y f R - \ Y  - y )  +  y ' ^  [ G ' '  -  G - ' X i X ^ G - ' X ) ' ' X ' ^ G ' ' ]  y  
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= y ^ S y  -  2 y ^ R - ^ y  + R  ' Y  

=  { y -  S - ' R - ' Y ) ^ S { y  -  S ' ^ R - ^ Y )  + Y ' ^ { R - ^  -  R  ' R ~ ' ) Y .  (1.32) 

From (1.31) and (1.32), it follows that 

f { y \ Y )  oc exp 

with 

- \ { y  -  S - ' R - ' Y f S { y  -  S - ' R - ' Y )  (1.33) 

E { y \ Y )  =  S - ^ R ~ ^ Y - .  V a r { y \ Y )  =  S - K  (1.34) 

Write S = {R-' +G-^)- G'^XiX'^G-^ X)-^X^G-' and note that 

- E„„)-'/fE^^. (1.35) 

Letting Su,,.. = (fi-' +G-M"' = (/ - r)G,/f = X^G-'.Suu = X^G-'X. we have 

S-' = (/ -  r)G + (J -  r)x{x'^v-'x)-'x'^{i -  r) (i .36) 

and 

s ' R - '  =  r  +  ( /  -  r ) x ( x ^ v - ' x ) - ' x ^ v - ' .  ( 1 . 3 7 )  

whereT =  d i a g { - ; i  -/m) and V  =  d i a g { : ' ^ ( T ^  +  c r ^ i , . . . ,  +  C o m b i n i n g  { I . Z A )  

and (1.37). we have 

E i y \ Y )  =  S  ' R - ' Y  =  T Y  +  { I  -  T ) X 0 .  (1.3S) 

By (1.36) and (1.38), E { y i \ Y )  = and V a r { y ^ \ Y )  = M u  = M S E { y ^  —  V i )  when 

/3 is unknown with non-informative prior and 6 is known. Under quadratic loss, the 

hierarchical Bayes approach and the BLUP approach lead to the same estimation. 

When a f  is unknown, we should write f { y \ Y )  in (1.33) as f { y \ Y . c r l ) ,  E { y \ Y )  in 

(1.34) as E{y\Y,al). and Var{y\Y) in (1-34) as VaT{y\Y,al). Ghosh (1992) derived 

the closed form for f{(7^\Y) when has a non-informative prior on (0,oo) and Zi = 
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1. / = 1 m .  By applying one-dimensional integration to (1.34). we have the posterior 

distribution 

fiy\y) = J fiy\y-^l)ficri\y)d<Ti (1.39) 

When 0  is unknown, we have the general form of (1.39) 

fiy\y) =  I f{y\y-e)fiB\Y)d0. ( i . 4 0 )  

\v here f{ y \ Y . 0 )  is /(y|V) defined in (1.33). The posterior mean and variance of y  are 

then given by 

£;(!/.-|V) = £()[£(!/,•II',»)! (1-41) 

and 

V a r { y , \ Y ]  =  E 0 [ V [ y , \ Y  . 0 ) ]  +  V a r g [ E { y , \ Y  . 0 %  (1.42) 

where E { y \ Y ,  0 )  is E { y \ Y )  defined in (1.34) and V { y \ Y , 0 )  is V{y\y) defined in (1.34). 

The empirical Bayes procedure attempts to estimate the unknown model parameters 

(usually called hyper-parameters) from the marginal distributions of the observations 

b y  c l a s s i c a l  m e t h o d s  a n d  s u b s t i t u t e s  t h e  e s t i m a t e s  i n t o  t h e  e x p r e s s i o n s  f o r  E { y \ Y . 0 ) .  

The empirical Bayes and hierarchical Bayes approaches often lead to comparable results 

in the conte.xt of point estimation. When it comes to measuring the standard errors 

associated with these estimators, the hierarchical Bayes method has a clear edge over a 

naive empirical Bayes method. 

The idea of the hierarchical Bayes approach is straightforward. But the posterior 

distribution f{0\Y) in (1.40) usually does not have a closed form. Therefore, numerical 

evaluation is necessary and is computationaly intensive in many cases. There are many-

other ways to evaluate f{y\y)- One method is the Gibbs sampler advocated by Gelfand 

and Smith (1990). The Gibbs sampler is a Markov Chain Monte Carlo (MCMC) method 

that proceeds as follows. Suppose the random vector U = {Ui,... , Uk)'^ has been 

divided into k components or sub-vectors. Starting from an arbitrary set of values 



(tf* rfh. we draw ~ if^)- ~ fii'2Wl'KLf^ if^). 

(-V ~ f{i'3\if\u^lu!^\....if^), and so on. up to ~ /(C'fcKf \ .... C-'lL'i )• 

Thus, each component U ,  is updated conditional on the latest value of U  for the other 

components. .-Xfter n such iterations, we arrive at (C'I"K .... Under some mild 

conditions. Geman and Geman (1984) showed that ^1"') /(t'l-- • • - ^^'\-)-

To draw a sample of size ./ from the joint distribution Cf = (O'l,.... Uk)'^. we perform 

a large number of cycles, say n. until convergence. Then we discard the first n samples 

and treat = 1.....J} ais J simulated samples from the joint 

distribution of L/ = {b'\,.... Uk)^. 

To illustrate the application of the Gibbs sampler in obtaining f { y \ Y )  in (1.39). 

we use model (1.23) and (1.24). We further cissume that 0\ is known, the prior on 

(3 is noninformative, and the prior on cr^ is the inverse-gamma(a, 6) distribution with 

parameters q > 0 and u > 0. denoted by f{crl) oc exp[—a(cr^)'"'](cr^)~^'''*'^'. Therefore. 

f ( y . l 3 . a l \ Y )  oc f { Y \ y ) f { y \ 0 . < j l ) f { < T l )  

oc exp - \ ( Y  - y f R - ' ( Y  - y )  exp X 0 f G - ' [ y -  X ( 3 )  

X e.\-p[-a(a6^) ^Kcr^) (1.43) 

From (1.43), we can derive 

y, 1/3,<7^.'K ~ .V(7.V; + (1 -7i)^r^-5i.) z = l (1-44) 

and 

( 3 \ y . a l Y  ^  N { { X ' ' G - ' X ) - ' X ' ^ G - ' y . { X ' ^ G - ' X ) - ' ) ,  (1.45) 

where G  = d i a g { = 1 c r l , ..., z l ^ a l ) .  and 

a? I y, /3, K Inverse-gamma(ai, i/\) with parameters 
1 m ^ 

Qi =  -  ̂  -  x j + Q and i/, = ^ + i/. (1.46) 
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Following the Gibbs sampler algorithm, we can draw a sample of size J from 

f{y.f3.a1\Y). If we simply discard the information about /3 and from the sam­

ple. we obtain a sample of size J from the marginal distribution /(ylV"). The posterior 

mean and posterior variance of y are estimated by using the J simulated samples. 

1.3 Nested error regression model 

The nested error regression model for small area estimation was originally consid­

ered by Battese et al (1988). The model assumes that auxiliary information = 

(.r,ji is available for every element in the population (or at least for every ele­

ment in the sample) and that the population area totals of these variables are known. 

The variable of interest, y,j, is assumed to be related to a;,j through a nested error linear 

model; 

-f b i  +  e. j ,  j  =  L ....V,, i  =  I  m .  (1-47) 

where .Vj is the number of the elements in the z-th small area. Here e,j is independent 

of 6/t for all i.j. and k, and E(eij) = 0. V''(e._,) = = fc,jcrl with being known 

constants. Normality of the 6,'s and e,j's is often eissumed. The parameters of interest 

are usually the small area totals j/,-., or the means y, = . 

A sample of size n, is taken from the z-th area to make inference about y,. or y, . This 

model does not incorporate any sample design features. It is not appropriate for some 

complex sampling designs which have selection bias. However, it is possible to extend 

this model to account for such features. 

The matrix form of model (1.47) is 

y , = X i f 3 - i - b i l , + e , .  (1.48) 

where A", is yV, x p. and 1, are x 1 and 1, = (1,.... 1)^. Using superscript to 

denote the non-sampled elements and superscript 5 to denote the sampled elements, w-e 
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can partition (1.4S) as 

y' 
^ + 6. V  ef y. = 

y' 
= ^ + 6. 4-

y' i: e '  

Under model (1.49), suppose we are interested in estimating the small area means 

y,. Rewrite y, as 

y.. =/.yf+ (i-/.)y'- (i-50) 

where /, = y' and are the means for sampled and non-sampled elements 

respectively. Therefore, the estimation of y- is equivalent to prediction of ^ given the 

sampled data yf and auxiliary information Xi. However, the problem is not posed this 

way in most of the literature because the sample fractions /.'s are usually negligible. 

The estimated means of interest are defined to be 

y ,  = X ,(3 + b.;. (1 -51 )  

Parallel to the random effects model, there are three major estimation approaches to 

the nested error model. There are also many extensions of model (1.49) in the literature. 

We will limit ourselves to model (1.49) and present approaches for point estimation of 

y, and mecisurement of uncertainty associated with the estimators. 

First, we obtain the BLUP of X,f3 + bi based on sampled elements for the nested-

error model (1.49). For simplification, we assume that = 1 for all i and j. Thus. 

V ' ( e . j )  =  c r ^ .  . \ ' o t e  t h a t  V  =  d i a g { V  i , . . .  . V  m )  w i t h  V ,  =  c r ^ / n .  +  G  =  

diag{af.. .. .crl) for model (1.49) and Z = diagilm 

that - 7,(n,<T^)"'ln.l^_. where 

= + (1.52) 

Substituting V~' into (1.6), we get f3. Taking k = X, and m = (0,.... 0.1.0,..., 0)^ 

with 1 in the z-th position, we get the BLUP of xjf3 -h 6. by using Henderson's general 
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result (1.7 

{y^)" = - a::3]- (1-53) 

where X] is the mean of for the sampled elements. 

Rewrite (1.53) as 

(^)" = + (X. - X:)3] + (1 - 7.)X.3- (1-54) 

^ ^ 
Therefore, (yj is a weighted average of the synthetic estimator and the "survey 

regression" estimator yf + (X, — X,)/3. 

The EBLUP (yj is obtained by replacing crl and with consistent estimators al 

and in (1-54). Similar to (1.22) for estimator (1.16). the MSE for (y,) is 

M S E  |^(y,) ~ ~ ^ ^ 1-55) 

where 

gu =(1-56) 

52: = (X: - 7:X:)^(X^V-^A:)-HX. " 7.X:). (1.57) 

and 

53. = n-^ztiz^at + n-'alr^Variatat - ctat). (1.5S) 

For Bayes approaches, we assume that 6,- and e,_, are normal errors for all i and j. The 

empirical Bayes estimator (y.) for model (1.49) is the same as the EBLUP estimator 
-^EB 

fy,) though the naive variance estimator for (y,) may severely underestimate the 

true posterior variance V'ar(y,|V). 

When both cr^ and crl known, the hierarchical Bayes approach and the BLL^F 

approach lead to the same estimator. When crl and are unknown, priors are assumed 

for cr? and cr^ in the hierarchical Bayes approach. Datta and Ghosh (1991) derive the 

closed form for E{y^\Y,\), Var(y,|y, A), and f{X\Y), where A = . Therefore, 

the posterior mean and variance of y, given Y is available. Datta and Ghosh (1991) 
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also compare EBLUP. empirical Bayes. and hierarchical Bayes estimators and the cor­

responding MSE estimators by using the data from Battese. Harter and Fuller (19SS). 

1.4 Some extensions and recent development 

1.4.1 Multi-level model 

Holt and Moura (1993) extended model (1.49) to a multi-level model with random 

regression coefficients. Let Y' = vec{\'ij).i = 1 m : j  = l.....n, be the sampled 

data. The model is specified as 

(3, = ZjC + b,. (1.59) 

where 6. ~ Ap(0. $) for ? = 1,.... m with ^ unknown and 

V'ij = xJ/3,-I-e.j 2 = L....m;i = L...,ni, (1.60) 

where e.j are independent identical distributed A'(0 ,< t^) and 6 .  and e,j are independent 

for all i and j. We are interested in finding the estimates for /3- given the sampled data 
T  T  

Y ^ .  W e  are also interested in estimating the small area means { 3 ^  where X, is the 

p X 1 vector of population means of the auxiliary variables for the i-th small area. 

Note that model (1.59) and (1.60) incorporate both the unit level auxiliary infor­

mation a;,J and the area-level auxiliary information Z, into a single model. Holt and 
f 

Moura (1993) obtain the EBLUP of X, and a second-order approximation to the 

MSE of the EBLUP for the multi-level model (1.59) and (1.60). Vou and Rao (1999) 

study the multi-level model in a hierarchical Bayes framework and extend the model to 

more general multi-level models with unequal error variances. 

1.4.2 Models with discrete measurements 

When the measurements Vi_, are categorical or discrete and the small area quantities 

of interest are proportions or counts, the mixed linear models considered in Section 1.2 
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and Section 1.3 no longer apply. .An example is the model proposed by Jiang and Lahiri 

(1999): 

Pr(y;_, = l|p.j) = Pr{\\j = OIp .j) = 1 - p,j. (1.61) 

and 

logit{p,j) = Iog(p._,(l - P:j)"') = + 6,, (1.62) 

where 6, ~ .V(0,cr^). 
n,  

Let Y — (Utj) •. — (i/ij)i<j<ni^ and Vi. — ^ " ^0* Let 0q (/3g.(To) 
j=i 

be the vector of true parameters. When 9q is known, the best predictor (BP) of 6,. in 

terms of MSE. is given by 

£-(6.1^) = E{bi\Y,) 

= o-Q |y exp[o. - (2cr^)~'u^]t/u.| |y" u, exp[o. — (2cr2)"^ | 

= i/-(V;..«o}. (1-63) 

where o, = Vj.u, — /og[l + exp(X,j^ + u,)] and u, ~ A"(0.<7o). Therefore, the best 
j=i 

predictor for [ogit{p,j) is Xij/Sq + E{bi\Y,). 

.An empirical best predictor (EBP) of 6, is obtained by replacing the unknown pa­

rameter do by a consistent estimator 9. i.e. 

b, = rp{Yi..d). (1.64) 

Jiang and Lahiri (1999) obtain an approximation to the M S E  of the EBP with bias of 

order 0(777"'). They also discus the estimation of functions of fi.xed and random effects 

for this model. 

1.4.3 Time series model 

Rao and Yu (1992, 1994) proposed an extension of the random effects model to time 

series and cross-sectional data. The model is of the form 

=  y u  +  i  =  I , . . .  . m : t  =  I , . . .  , T ,  (1-65) 
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where e,, is sampling error. Let e, = (e,i ^itY- ;issume that e, ~ .\r(0,#, ). 

y,t = xjf (3 + V, + U;(. (1.66) 

where i\ .V(0, cr^), and u,t's are assumed to follow a common first order autoregressive 

process (.4/2(1)) for each i. i.e., 

"ts = i/?| < 1. (1.67) 

where tjj iV(0,(T^). 

Model (1.66) and (1.67) are used extensivly in the econometric literature. Rao and 

Yu (1992. 1994) obtain the EBLUP and hierarchical Bayes estimators and their stan­

dard errors under (1.65) and (1.66) and an .4/2(1) process uu. More complex models 

on the Uit can be formulated by assuming an autoregressive moving average (.'VRM.A.) 

process. But the resulting efficiency gains relative to use .4/2(1) process are unlikely to 

be significant. There are some alternative time series models for small area estimation. 

See e.g.. Pfeffermann and Burck (1990) and Ghosh et al (1996). 

1.5 Dissertation organization 

This dissertation is organized zis follows. In Chapter 2, a practical application of small 

area estimation in the National Resources Inventory (NRI) is presented. Several issues 

raised by this application are discussed in the following chapters. Chapter 3 derives 

an estimator for the MSE of the EBLUP when the small area sampling variances are 

dircctly estimated. In Chapter 4, small area estimation under a restriction is discussed. 

The bia^ of the EBLUP are assessed in Chapter 5 when the sampling errors are not 

normally distrbuted. Finally, the summarization of our results and the comparisons to 

other results in the literature are presented in Chapter 6. 
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2 AN EXAMPLE OF SMALL AREA ESTIMATION IN 

THE NATIONAL RESOURCES INVENTORY 

2.1 The U.S. National Resources Inventory 

The Iowa State Statistical Laboratory cooperates with the U.S. Natural Resources 

Conservation Service on a large survey of land use in the United States. The survey is 

a panel survey and was conducted in I9S2. 19S7. 1992. and 1997. 

The survey collects data on soil characteristics, land use. land cover, wind erosion, 

water erosion, and conservation practices. The data are collected by employees of the 

Natural Resources Conservation Service. Iowa State University has responsibility for 

sample design and for estimation. See Nusser and Goebel (1997) for a complete descrip­

tion of the survey. 

The sample is a stratified sample of all states and Puerto Rico. The sampling units 

are areas of land called segments. The segments vary in size, from 40 acres to 640 acres. 

Data are collected for the entire segment on items such as urban land and water area. 

Detailed data on soil properties and land use are collected at a random sample of points 

within the segment. Generally, there are three points per segment, but 40-acre segments 

contain two points and the samples in two states contain one point per segment. Some 

data, such as total land area, federally-owned land and area in large water bodies, are 

collected on a census basis external to the sample survey. The current sample contains 

about .300,000 segments and about 800.000 points. 

The sample size is such that direct estimates have acceptable variances for subdi­
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visions of the surface area called hydrologic units. Hydrologic units are. essentially, 

drainage areas for major streams. There are about 200 hydrologic units in the United 

States. The estimation procedure is designed to reproduce the correct acreage for coun­

ties where counties are important political subdivisions. There are about .3.100 counties 

in the United States. Because the sample must provide consistent acreage estimates 

for both counties and hydrologic units, the ba^ic tabulation unit is the portion of a 

hydrologic unit within a county. This unit is called a ffUCCO. There are about 5.000 

HUCCOs. Some HUCCOs are relatively small and may contain only one segment. Some 

are relatively large and contain more than 100 segments. 

2.2 Small area estimation 

In the National Resources Inventory, small area estimation is used in the estimation 

of area in roads and in the estimation of change in acres for urban and built-up areas. 

Urban land is divided into two categories on the basis of the size of the tract. We present 

the analysis for the change in the sum of the two categories of urban land acreage from 

1992 to 1997. 

2.2.1 Small area estimation model for urban change 

The urban area was determined for each year of the NRI survey. Let i'92kt and 

f '97t/ denote urban area in HUCCO I of county k in 1992 and in 1997 respectively. 

The quantity used in small area estimation for urban change is D^i = t'^97/..; — 6'92fc/. 

the direct estimated change from 1992 to 1997. The auxiliary information is the 1992 

population and 1997 population. Population data are only available for counties, not 

for HUCCOs. Therefore, we defined two variables 

= {U92,r'U92uP92, 

zki.2 = (t/92,.)-'C/92,.,(P97, - P92,.), 
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where l ^'lk is the urban acres in county k in 1992. P9'2k and P97fc are the populations 

of county k in 1992 and in 1997. respectively. We expect both variables to be positively 

related to the change in urban acres. Because a reduction in urban area is e.xtremely 

rare, we set the population change variable to a small positive number if the population 

change is negative. 

Some heavily urbanized areas have a large population and very little area in non-

urban uses that can be converted to urban use. Therefore the actual regression variables 

used in the analysis were constructed to recognize the availability of potentially convert­

ible land. The variables are 

Zki.i = Tnin{RiZki.i,^.bCki) 

-fc/.2 = Tnin{R2Zki,2,Q-oCki)-

where R j  \ s  the ratio of the total change in urban for the state to the sum of 'zki.i for the 

s t a t e ,  a n d  C w  i s  t h e  t o t a l  a r e a  a v a i l a b l e  f o r  c o n v e r s i o n  t o  u r b a n  u s e  i n  H U C C O  k l .  

In the sequel, we use the single subscript i in place of the double subscript kl as the 

index for the HUCCO. Our goal is to predict (/,. the unobservable true value of change in 

urban area. The distribution of D, is highly skewed. .\lso. the empirical results presented 

later show that the sampling variance V'(D,) is approximately proportional to 

This relationship is also shown in Figure 2.2. Therefore, a power transformation Vj = 

^0.375 jg used in estimation to stablize the variance components estimation. By-

choosing the power index equal to 0.37.5, we will show later that V'(V,) is not a function 

of E[Yx) anymore. .A. model for small area estimation is 

Vi = -f-X2,.'32 + (2.1) 

Yi = y.• +e., (2.2) 

where t/. = dP^-^'^.xn = z°f~^,X2i = rii is the number of sample points in the 7-th 

HUCCO, 6, is the area effect, e, is the sampling error, and (6,, e,).z = 1, 2, ..., m, are 
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independent vectors with a normal distribution. 

^ A' 

v v 0 
(2.3) 

/ 
VV'e designed the small area estimation procedure to be fully automated because 

estimates were to be constructed for about 5.000 small areas using more than fifty 

analysis units, where the typical analysis unit is a state. Therefore, we used relatively 

simple procedures in place of complicated procedures that might produce marginal gains 

in efficiency. One could design an iterative estimation procedure for 3i and /?2 in which 

the estimated between-area component of variance is used to estimate the covariance 

matrix of u, = We used a simple weighted least squares procedure where the 

weights were a function of n,. The estimator of (/Ji. /iJa)' is 

= H -1 

v 
5: nr°-X2.V; 

(2.4) 

\v 'here 

H = 

^ ^-0-25^2 \~*r,-0-25^ ^ \ 

E-O.25 \ ̂  —0.25 2 n. xux2^ > n. X2. 
\ . V / 

Because the variance of Vj is closely related to n, the procedure is close to estimated 

generalized least squares. Our model estimator of y, is 

y, — Xiij3i + X2ii32- (2.0) 

Let V { D i )  =  V { Y P \ ( r i ]  = V''(e^), where 77 = 0.375"' is the within HUCCO sample 

error variance. The sample variance V{Di) can be estimated directly from the sample 

data. However, the sample size is relatively small in some HUCCOs and, hence, the 

v a r i a n c e  o f  t h e  e s t i m a t e d  v a r i a n c e  i s  l a r g e .  T h e r e f o r e ,  a  m o d e l  w a ^  d e v e l o p e d  f o r  V { D , )  

to provide an improved sample variance estimator for small HUCCOs. 
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If we had a simple random sample of points with a zero-one indicator for urban 

ciiange. the sample variance of D, would be 

\-(D.) =  V( e : )  =  =  . \ r ^ n - ' P Q  =  N n : '  ( N P Q )  =  A'n-' (iVP) . (2.6) 

where .V is the population number of sample units. P  is the proportion of the units 

that change into urban, and p is the corresponding sample proportion. In our notation, 

D, = .\'p. Now is constant under proportional sampling. Thus. \''(Dt) should 

be proportional to E { D i )  =  i V P .  If P  were nearly constant, then n ~ ^  E  ( D , )  =  n ~ ^  I V P  

would be nearly constant too. This means that EiDi) would be almost proportional to 

n,. Therefore, it seems reasonable to approximate the variance of D, with a function of 

both n, and E (A)- The empirical results show that 

V-(A)=Ci A)]'•''. (2.7) 

where C \  is a constant to be determined, is a good approximation to the sample variance 

l'(D,). .A. plot of the direct variance estimator against the model variance estimator 

in (2.7) is also shown in Figure 2.2 of the next section. By Taylor approximation, the 

variance of e, is 

\/(e.) = =[E(A)f''''AM/(D.), (2.S) 

where A = r;"'. For A = 0.375. we have 

V{e,)=alnf--'\ (2.9) 

where a\. is a constant to be determined. Therefore. V'(e,) does not depend on E { Y t ) .  

Let V ( D,) be the directly estimated variance of D. from the sample data. The direct 

estimated variance of e, is 

V'(e.) = 0.96(D-)^^-''" A2\7(D.) (2.10) 
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where 0.96 is an empirical adjustment and D '  is an estimator of E  { D , } .  .An estimator 

of the within-area component of variance is 

where 

= 
1 if Ui > 2 

0 otherwise. 

.A.n estimator of the between-area component of variance is 

-1 

= j ̂  n,6i j ^ J.. 

(2.11) 

(2 .12 )  

w :here = (n-"-^"^)^ (v;-v:)2-V-(e.) 

The predictor of y, for the j-th HUCCO is 

y. = Vi + li {y't - y.) = 7<^i + (1 - 7.) y., (2.1.3) 

where 

^ /'„0.75c:2 , ^-0.25-^2 \-l „0.~5-2:2 _ C: 
;V — (n, -i-n, <7^.) n, CTf, — (cTi -h n- cr^.) - 1 ^ 2  \ ^ 2  

b • 

Under the model, the error in y, as an estimator of y, is 

y. - y. = 7 (^'i + e.) - u. + (1 - ~ii) ~ ,^1 ) + ̂ 2t(.^2 ~ A) 

(2.14) 

(2.15) 

where u, = If is treated as a fixed quantity and the possible covariance 

i^etween (e,, u,) and (,i?i./?2) is ignored, then 

^ {Ui ~yi} = [(1 —  { ( / 3 l .  : 3 2 } } ( X I , .  X 2 t ) ' .  

(2.16) 

The estimator (2.16) does not contain a contribution to the variance from estimating 

the variance components. 
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The predictor of change in total urban from 1992 to 1997 for HUCCO i is 

Z = y^. (2.17) 

The corresponding estimated variance of is 

V  [ d ,  -  </,} =(0.96)-HD-)^-25(0.375)-2V' (y. - yj . (2.18) 

For confidence limits of <f,, it is preferable to set limits for y, and then exponentiate 

those limits. 

The predictor di performs well overall, but poorly for a few small areas that are not 

consistent with the small area model. In other words, the predictor rf, performs poorly 

for the small areas where the regression model relating Y{ and the auxiliary information 

Xi does not fit well. To avoid this problem, Efron and Morris (1972) and Fay and Harriot 

(1979) suggested a compromise estimator which limits the difference between the small 

area estimator and the direct estimator by some multiple of the standard error of the 

direct estimator. Using this idea, we used the compromise estimator 

di, if — cf>i > dt — Di < 0i 

i{di-D.>0i (2.19) 

Di — <?,, if di — Di < —o,, 

• 0.5\ 
), as the small area estimator. 

The direct survey estimator for urban change acres Di has a large variance zis an 

estimator of the true urban change acres di in HUCCO i. Therefore, the small area 

estimator di is used to predict di. However, the direct survey estimator for state urban 

change acres D, is design unbiased for the true urban state change acres, and it 
i 

has relatively small variance. Hence, the survey estimator ^ ̂  D, is adequate for the 
t 

state urban change acres. It then becomes desirable to modify the individual HUCCO 

predictors di so that di is equal to the unbiased survey estimator Di. As a rough 
t t 

approach, a ratio adjustment is used to serve this purpose. 

di = < 

where 6, = max ( 2000, V { D . )  



The predictor y, is unbiased for y,- under normal errors. However. E {^) is not nec­

essarily equal to E (yf) = E {d^) by Jensen's inequality. The ratio adjustment described 

before can also partially adjust for this bias. Therefore, we do not make additional ad­

justments to correct the bias. We will discuss more about non-normal errors and ratio 

adjustment in Chapter 5. 

2.2.2 Results and model checks 

We present some plots and statistics for a set of HUCCOs in the state of Illinois. 

The analyses are for a preliminary data set. There are 163 HUCCOs in the state. The 

HUCCOs are divided into ten groups on the basis of the model predicted change in 

acres. The first group is the group of HUCCOs with (xi,, X2t) = (0.0). This is the group 

of HUCCOs with zero estimated change. There are either 15 or 16 HUCCOs in each of 

the remaining nine groups. 

Table 2.1 contains summary statistics for the grouped data. While the groups were 

ordered on the predicted change, the number of segments is generally larger for HUCCOs 

Table 2.1 Summary statistics for mean model 

HUCCOs 
in 

group 

Mean 
sample 

size 

Grou 3 mean 
t-stat 

HUCCOs 
in 

group 

Mean 
sample 

size >; Vi 
t-stat 

1 21 10.2 0.9 0.0 1.36 
2 15 20.3 5.4 4.0 1.25 
3 16 41.2 7.6 6.1 1.37 
4 16 65.8 5.3 7.S -2.14 
5 16 74.1 8.2 9.1 -0.65 
6 16 73.3 10.1 10.3 -0.14 
7 16 78.2 10.2 11.5 -1.22 
S 16 64.4 14.5 13.7 0.53 
9 16 75.9 18.1 17.2 0.43 

10 15 109.9 30.1 .30.2 0.10 
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Figure 2.1 Mean Model 

with larger changes. The fact that the mean model (2.1) fits quite well is demonstrated 

by agreement between the two columns Vj and y., where .y, is defined in (2.5). A plot of 

the two variables is shown in Figure 2.1. 

The t-statistics in the column "t-stat" in Table 2.1 were calculated the difference 

between the group means divided by the standard error of the difference. The standard 

error was calculated using the mean square of the individual differences. The sum of 

squares of the ten t-statistics is 12.27. This value can be compared to the 5% tabular 

value of 18.31 for the chi-square distribution with 10 degrees of freedom. The model is 

easily accepted on the basis of this test. The R} computed for the regression of V, on 

(.ri,. X2. ) is 0.79. 
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Figure 2.2 Variance Model 

Figure 2.2 is the plot of grouped means of [K(D,]® ° against the grouped means of 

The plot indicates that (2.7) is a reasonable approximation to the 

sample variance V[Di) = V(e^). 

Table 2.2 contains statistics for sample standard errors using the groups of Table 2.1. 

The column headed [V''(e,)]°-^ contains the group averages of the square root of V'(e,). 

where V'(e.) is defined in (2.10). The averages of (n~°"^^5^)°-^. which is our modeled 

estimator of V'(e,) is put in the adjacent column. The decrease as one moves 

down the column because the average sample size increcises. The entries in the column 

for were ratio adjusted so that the sum is equal to the sum of [V'(e,)]°'''. 

The t-statistics in the column "t-stat" in Table 2.2 were calculated cis the difference 



Table 2.2 Summary statistics for variance model 

IHICCOs Mean Croup mean Mean 
(Iroup in sample 

[v{c,)r 
t-stat of I'ifliciency 

group size [v{c,)r 
1 21 10.2 1.16 4.02 - 0.50 -

2 15 20.3 3.79 3.76 0.02 0.84 4.48 

3 16 '11.2 3.66 3.35 0.37 1.38 2.42 
4 16 65.8 1.76 3.16 -2.04 1.79 1.77 
5 16 74.1 2.98 3.10 -0.14 1.94 1.60 

6 16 73.3 3.63 3.14 0.33 1.93 1.62 
7 16 78.2 2.59 3.04 -0.86 2.06 1.48 

8 16 64.4 3.86 3.14 0.90 1.83 1.72 
9 16 75.9 5.79 3.07 1.34 2.06 1.49 
10 If) 109.9 3.89 2.92 2.38 2.45 1.19 
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between the means of [V''(e,)]°' and means of divided by the standard 

error of the difference. There are many direct estimates of zero in the first group, so 

that a comparison of [V''(e,)]®'' and for that group says little about model 

adequacy. The sum of squares for the other nine t-statistics associated with groups two 

through ten is 13.44. considerably less than the tabular \'alue of 16.92 for chi-square 

with nine degrees of freedom. Thus, there is no reason to reject the variance model. 

The root transformation has a strong variance stabilizing effect. The standard er­

rors of the original estimates of change for the largest group are about 3386 and the 

corresponding standard errors for the second group are about 110. 

In this particular state, the estimator of the between-HUCCO component of variance 

was negative. In the production version of the program we impose a lower bound of O.OOS 

on the ratio of to in the computation of 7. The lower bound means that the direct 

estimator in a HUCCO with 125 segments receives a weight of 0.5. 

Because the estimated value for af is zero, the estimated variance of the prediction 

error for yi was computed cis 

r- r ~  1  -0.25-^2 ^ (y: - yi} = 7. ". 

+ (1 - ^2.)V'{(/3l,,i32)}(Xj„X2,)'. (2.20) 

The seventh column of Table 2.2 contains the mean of the prediction standard errors, 

where the standard error is the square root of the model variance of the predictor 

computed with equation (2.20). The Icist column of Table 2.2 is the ratio of the fifth 

column to the seventh column. There are large estimated gains in efficiency from using 

the small area model, particularly for HUCCOs with a small number of segments. 
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3 MSE OF EBLUP WHEN SAMPLING ERROR 

VARIANCES ARE ESTIMATED 

3.1 Introduction 

The MSE estimator of y, in (2.16), which is derived from (1.13), contains a component 

for the estimation of but contains no contribution for the variability due to the 

estimation of the variance components. The refined MSE estimator defined in (1.22) 

contains a component for the estimation of the between-area and within-area variance 

components when the variance components depend on some parameter 0. To use (1.22). 

we need to derive gzi{0). We can not simply use g3i{0) defined in (1.20) because (1.20) 

is true only when 9 = af. In the example of Chapter 2, we model the sampling error 

variance (within-area variance components) in (2.9) as a function of the parameter 

cr^,. .-Mso. the between-area variance component depends on the parameter a^. Therefore, 

the form of g3i{0) is more complex than (1.20) because 0 = (cr^-cr^,)- We can use (1.19) 

to derive gzi{0) for the example of Chapter 2. 

Instead of assuming that the variance components depend on some parameter 0, 

.Arora, Lahiri and .Mukherjee (1997) modeled in a different way. For the nested error 

model, they assume that the cr^, are independent identically distributed with distribution 

where represents a gamma distribution with mean ^ and variance £/. 

They derived the empirical Bayes estimator and assessed the asymptotic properties of 

the estimator under the gamma model. 

In many practical applications, it is difficult to find a good model for the sampling 
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Figure 3.1 Variance Model for Colorado (Grouped) 

error variances a^-. Considering the sampling variance model for urban change described 

in Chapter 2. there are some states where the variance model does not work well. One 

such example is the state of Colorado. We group the data in the same way as in Chapter 

2: the first group is the group of HUCCOs with zero estimated change, other HUCCOs 

are divided evenly into nine groups. Then we calculate the t-statistics in the same way 

as in Table 2.2 for the variance model. The sum of squares for the nine t-statistics 

associated with groups two through ten is 404.87 for the state of Colorado. This number 

is considerably larger than the tabular value of 16.92 for chi-square with nine degrees of 

freedom. Thus, there is compelling reason to reject the variance model. To get a better 

idea about how different the direct variance estimator and modeled variance estimator 
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Figure 3.2 Variance Model for Colorado (Individual HUCCO) 

are. a plot that corresponds to Figure 2.2 for Colorado is shown in Figure 3.1. The plot 

on the HUCCO ba^is is Figure 3.2. 

In this chapter, we consider the EBLUP for y, obtained by replacing in (2.14) with 

the individual direct variance estimator 5^, and assess the impact on the predictors due 

to estimation of the within-area variances with 5^,. The approach outlined in Prasad and 

Rao (1990) is not appropriate for this problem because their approach involves proving 

that 

e - e  =  O p ( m - ° - = )  
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for a fixed dimension parameter 0 and proving 

E[d{9)'(9 - 9)Y = tr[{B'VBE(9 - 0)(9 - 0)'] + (3.1) 

where 

B = [d{Tn'GZ'V-'Ylde^ d{m'GZ'V-'Yfd6^\ 

and Tn'GZ'V~^ is defined in (1-7). If 's estimated individually, the dimension of the 

variance component parameter 0 = is m + 1. which is not fi.xed. and 

— cr^,)^ is not Op(m~°-^). Therefore, (3.1) does not hold. 

We will use a Taylor expansion to obtain an approximate MSE estimator of y,. Before 

we derive the MSE of the EBLUP estimators, we state two theorems that are frequently 

used in this chapter. 

Theorem 3.1 Lei Xn = (xin, • • • r )^ be the mean of a random sample of n vector 

random variables selected from a distribution function with mean vector zero and fi­

nite Bth moment. Consider the sequence and let pi, p^. • • • ,Pk be nonnegative 
k 

integers such that s = p,. Then 
1=1 

{0(n~°'®®) if s is even. 
. 

0{n o-='(^+i)). if s is odd. 

Proof: See page 242 of Fuller (1996). B 

Theorem 3.2 Let {Xn} be a sequence of k-dimensional random variables with cor­

responding distribution functions {/^n(®)}, c-^td let {/n(®)} be a sequence of functions 

mapping 3?^" into 3?. Let S € (O.oc). and define a = ^-'(1 -\-S). Assume that for some 

positive integers s and Nq: 

( i )  J  \ x  —  f i l ^ ^ d F n i x )  = where r„ 0 as n oo. 

( i i )  f \ U x ] \ ' * ' d F . { x }  =  O i l ) .  



37 

( H i )  f n '  ' " \ x )  i s  c o n t i n u o u s  i n  x  o v e r  a  c l o s e d  a n d  b o u n d e d  s p h e r e  S  f o r  a l l  n  g r e a t e r  

than Xq. where 
dP 

( i v j  f t  i s  a n  i n t e r i o r  p o i n t  o f  S .  

( v )  T h e r e  i s  a  f i n i t e  n u m b e r  h '  s u c h  t h a t ,  f o r  n  >  N o ,  

1/̂ '' '"'(a;)I < I\ for all x G 5. 

\ f n '  f o r p  =  -  L  

anc 

\ f n { t l ) \  <  A ' .  

Then 

f f ^ i x ) d F ^ { ^ )  =  A(/x) + 12 W + C>«)-
J = l  

where 

D ^ f ^ { t i ) { x -=Y.yl- - - ^ d x  ^  d x  1 ® = ' ' )  
., = 1.2 = 1 .p=l •'••• J = 1 

and. for s = 1.  it is understood that 

J  f r , i x ) d F n { x )  =  f n i t l )  +  0 ( r n ) -

The results also holds if we replace (ii) with the condition that the fn{^) uniformly 

bounded for n sufficiently large and assume that (i) and (Hi) hold for q = 1. 

Proof: See page 245-246 of Fuller (1996). B 

3.2 MSE of EBLUP under alternative states of knowledge 

Consider the random effects model 

y ;  =  x j / 3  +  Z i  b i  +  C i .  i  =  I , . . .  , m .  
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defined in (1.3) witli normal errors and unknown sampling error cr^,. If we use the 

individual direct estimators to obtain the EBLUP y;, we need an 

approximation for the M S E  of y,—yi. For simplicity, we will consider the case with z ,  =  

l.z = 1 m, where V'ar(6,) = zfaf. throughout this section. The same asymptotic 

results hold for general 

We first consider an ideal case: /3 and cr^ are known. The EBLUP of y, is 

=  - T i l - (3-2) 

where 7, = (u^ + We wish to derive 

M S E { y ^ - y , )  =  E  +  { I  -  ̂. ) x j ( 3  -  y . ] ^ }  

= £• {[(T.-- 1)6.-+ 

= E {(1 - 7.)'62} + 2 E  {(7. - l)7.6.e.} + E  { ^ f e , }  

= alE{{l-y,f}+al^E{^f}. (3.3) 

The cross-product term E {(7,- — l)7t'6;ei} is equal to zero because 6,- and e, are indepen­

dent of 7. with mean zero. 

We cissume that the i = 1,2,..., form a fixed sequence and i = 1.2,.... are 

unbiased estimators of and are independent of Y. We also assume that ~ Xicrl-

By the variance property of the x^-distribution, we have 

. (3.4) 

Since any moment of the x^-distribution exists, by Theorem 3.1, we have 

{ 0{d~°-^^] if 5 is even. 
(3.5) 

0{d jf _s is odd. 

We consider a sequence of estimators in which every di increases at a common rate d. 

where d —> 00. We treat 7, as function of Note that 0 < 7, < 1. Using Theorem 3.2 
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for the uniformly bounded case and a Taylor expansion to the third order. 

E{1.) = Eb, - {ctI + - al) 

] + 0{d-^) 

= 7. + [2al<Tt,{al + + 0{d-^) (3.6) 

and 

E{7?} = E[-^-2{al^al)-^at[al-al) 

+3(a,^ + + 0[d-' n 

= 7? + [6cr^o-^.(<^6 + (^li)~'']d-T^ + (3.7) 

by the results in (3.4) and (3.5). 

Combining (3.6) and (3.7), we have 

£{(1-7,)'} = £[1-27, +7?) 

= (l--,i)^ + (2,T.VJ,>j^-2<r.'.)(af + ^J)-'|i-'+C>(<;-'). (3.S) 

and 

l-<ir{7,) = £(i?)-27,£(7i) + 7,' = 2<TjVi(»|+<rJ)-V-'+0(<i-^). (3.9) 

By (3.7). (3.8), and (3.9), we have 

MSE{yf~y,] = <T,V,, + |2<7iVi(,Tj + a,', )-']<"'+0(<r'=) 

= crl~(i + (cr^ + crl)V'ar {^i}+0(d''}. (3.10) 

Comparing (3.10) with (1.14), we see that the second term of (3.6) is due to the estima­

tion of <7^,. 

.\ow. we further assume that cr^ is unknown, but continue to assume /3 is known. 

.An unbiased estimator of cTj is 
m  

- Si): (3.11) 
1 = 1  

where c,^. i = 1,.... m are positive fixed values such that Ci^ = 1. 
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Lemma 3.1 Consider the sequence ^ defined in (3.11) and 

77? ?> the number of small areas. .Assume the i = 1.2 form a fixed sequence. 

assume o^^..i =  1 . 2  are unbiased estimators of (T^,. and assume 5^, are independent 

of Y. .Assume that: 

( i )  (tI^ < Ci for all i. 

( i i )  c , m -  j  =  1. • • -. rn. are positive fixed values such that c ,m = 1 and Cim = 0(n?~'). 

(tii) d,a;^ ~ 

Then 

=0(""°") (312) 

for any integer 5  >  1 .  

Proof: Note that 

(oi -r -. • + < <7^ (cti + ... + a^) for any a, >0.2 = 1,.... g. and 5 > 1. (3.13) 

By assumption (ii). there exists C2 such that 0 < c,m < m~^C2- Using inequality (3.13) 

for 7 = 2. we have 

~2 ^21 ̂  _ 
^bO .m ~ ̂ b\ — Yi c,m[(V'; -xjl3f - al, - al 

1=1 

1=1  

+ 
•=I 

. (3.14) 

By condition (iii), ~ Therefore, all moments of (5^, — e.xist. The 

moments are multiples of the powers of cr^, and Given any .s fixed, there is a 

constant Czs such that E {(?«, — CTe,)^} < Czs for any i because (7^, < C\ for all i. Ifis 

even, by following the same argument as used in the proof of Theorem 3.1, we have 

m 
1 = 1 

= E m '^(^e.-o-c.) 
1=1 

= 0(m-"-5"), (3.15) 

ind 

: = 1 
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= E m 
t=l 

(3.16) 

By (3.14). (3.15). and (3.16), we have 

E  {kw .m -  = 0 { m  °-") .  

if.? is even. Ifis odd. then 5 + 1 is even. By Holder's inequality. 

It is possible for to take negative v'alues. We define S'bo.m — 0) 

practical use. 

Lemma 3.2 fn addition to the conditions of Lemma 3.1, assume that cr^ > 0. We have 

(3.17 

for any integer 5 > 1. 

Proof: We have 

Pi^bO.m < 0) = - ̂6 < -<^6) < PiWlo.m " <^6 I > <^6 ) 

< { a l ) - ' E  -  a l l ' }  (3.1S) 

by Markov's inequality. Therefore, Pi^lo.m ^ 0) = 0{m ®) for 5 > 1. by Lemma 3.1. 

Now 

= £l|Sj,.„-<T?r|5?„.„<0 |P(5S,,„<0) 

+ E[\Sm.„ - > Ol/'CSlo.m > 0) 

<  ( " i r <  0 )  +  £ { ! ? ? „ , „  -  tIY} = 0(m-"'). 

liy using Lemma 3.1 again. • 

Now an EBLUP of y, assuming ( 3  is known is yf^ = 7, Vi + (1 — 7, )xf/3. where 

7.- = (3=60.m + 60,m • (3.19) 
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W'e need to derive an estimator of 

M S E [ y ^  - y . )  =  E  { [ { ' i .  -  1)6, +7:e.f} 

= ^ {[("•: ~ + ili ~ + Si)]'} 

= E {[(7. - 1)6. + 7.e,]'} + £: {[(7. - 7.)(6. + e.)f } 

- r 2 E  {[(7,  -  1)6,- + 7.e,][(7: -  7i)(^>.- + e.)]} 

= '.al + E {[(7.  - 7.)(6. + e.)]2} + 2E {[(7,  - 1)6. + 7.e.][(7. - 7.)(6. + e,)]} . (3.20) 

We will evaluate the last two terms. To do this, we need E {(7,  — 7i )6^}, E {(7,  — 7,)^6^}, 

E {(7.  - 7.)^.e.}. E {(7.-  -  7.)^6.e,}, E {(7,  - 7.)e?}, and E {{7. -  7.)^ei}-

We will ignore the bias of S'fco.m = "^ax(0,a^^) because < 0) = 0{m~') for 

any > 1 and cr^ > 0 by Lemma 3.2. Let = max(m"^ °. (/~^). We have 

= 2a^c.m. (3.21) 

{(?60.^ -  ̂6)(?'. - } = 2<jl<jtM^^d-' ] = 0{r^). (3.22) 

and 
m 

E - "^If] = ~Yi + 0{r^). 
t = l  

m 
From now on. we will let V'(5bo.m) denote 2^^c^^(<Tj +cr^,)^- VVe also have that 

1=1 

+ Oir^). (3.23) 

We consider a sequence of estimators in which every (f, increases at a common rate d, 

where d —> oc and the number of small areas m —> cx:. We treat 7, defined in (3.19) as 

a function of 5^0 m ^.nd Note that 0 < 7, < 1. Using Theorem 3.2 for the uniformly 

bounded case and Taylor expansions to the third order, and by the results in (3.4). (3.5), 

(3.21), (3.22). (3.23), and Lemma 3.2, we have 

E  {(7.  -  7.)6-} = E  { { a l  +  -  c r l )  -  ( r l i a l  -  a l ) ] b f  
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+ (<^6^ + ̂ l)-'[~<yU^lo.r. - - <^1? 

+(^6 - <^c.)(^6\m - + 0(max( m"') 

= {al + + (0-6 + - '^W^y^'S-lo.m)] + 0{r^) 

= (<^6 + I^TjV^Vr' + cimicrt + - ̂^''(S'60.m)| + Oirm). (3.24) 

and 

E { a -  7,)'6r} = E { i a ^  + <rlr>U^Lm - <^1? 

+ - crl)i.'^l^ - + 0(max(c/-^m-'•")) 

= (c^b + + 0{rm). (3-2.5) 

Similarly, we have 

E  {(t. - l x ) e ] ]  = [crl + crl^)~^2al^ + cr^.) - ̂V'(3=^.;„)| 

^-^(r^). (3-26) 

^ {(7. - 7.)'e?} = {^l + <jl)-'2a% + ^l^'(^6o...)} + 0{r^). (3.27) 

VVe also have 

E {(7. - 7:)6.e.} = (cr? + (T^,)-^2c,^(T^(T^, 4- O(r̂ ). (3-2S) 

and 

E((7.-7.)%e.} = 0(r̂ ). (3.29) 

Combining (3.25). (3.27), and (3.29), we obtain 

E {[(7. - 7.)(&. + e.-)]^} = [2crtcrl^{al + cr^.) ^]cf, ^ + ̂ ^.(crt^ + cr;,) ^V'(?5o.„) + O(r^). 

(3.30) 

Combining (3.24). (3.26), and (3.28), vve have 

E {[(7. - 1)6,- + 7.e,][(7. - li){bi + e.)]} 

= (7. - 1)£: {(7. - l i ) b ] ]  + i r E  {(7. - 7.)e?} + (27. - l) E  {(7. - 7.)6.e.} 
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=  { e r f  ~  c r 2 j - ' 2 < T ^ c r ^ , [ - c r 2 c r ^ , c / - '  -  ( < t ^  +  c r ^ V ^ J c , ^  +  ̂ V i ^ b Q . m )  +  

+ [al + crl^y'^-lalal^ial - cr;.)c.m + O(r^) 

=  ( ^ 6  +  "  ' ^ l ) < ^ m  +  { ( T I  +  ( T , ^ , ) -  £ 7 ^  ) c , > „  +  ( 9 ( r ^ )  

= 0(r„) .  (3.31)  

By (3.20) .  (3 .30) .  and (3.31) ,  we have 

M S E ( y "  - y , )  =  7.0-e .  +  [2cr^V^.(<r6+cr,^.)-^]<"'  +cr^,(crf  V(S^60.m) +  O(rm).  (3 .32)  

m 
where E  c^^(<T^ +  <T^j)^.  Comparing (3.32)  with (3.10) .  we can see that  the 

1= I 
second term of  (3.32)  is  due to the est imation of  cr^,  and the third term of  (3.32)  is  due 

to the est imation of  a^.  

. \ote  that  

E  {(7. - 7i )^ } = E  { { ( t I  +  <7^ )-''[cr^.(5?o. m  -  < ^ b  f  

+ + 0 { r ^ )  

= (<^6 +  +  ̂ ^'' ' (^60.m)|  +  0{r^).  (3 .33)  

We write  E {(7.  — 7t)^} as  V''ar{7,}  by ignoring the order (9(max(( /~' ,  m~'))  bias  of  7 , .  

By (3.32) ,  we have 

M S E { y i  -  y i )  = 7.o-^.  +  (^^b +  + 0 { r m ) .  (3 .34)  

Final ly ,  we assume that  cr^,  0-^, ,  ^ =  l . . . . ,m.  and /3 are al l  unknown. To s implify 

the computation,  we do not  use the empirical  general ized least  squares est imator 

3  = (X^V~'x)- 'X^i>"V. (3.3.5)  

Instead,  we use the weighted leeist  squares (VVLS) est imator 

3o = {X'^W^Xr^X'^WrnY, (3-36)  
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w • here is a known fixed diagonal matrix and is chosen to be close to V . An 

estimator of is 
m 

Sl„ = Y. Cim[(V; - xjffof - Si]. (3.37) 
1=1 

where c^rn-i = 1 are positive fixed value such that c,m =  1. 

Lemma 3.3 Consider the sequence .. where is defined in (3.37) and m 

IS the number of small areas. Assume the i = 1.2, .... form a fixed sequence, assume 

=  1 . 2  are unbiased estimators of and assume are independent of Y. 

Assume that: 

(i) cr^, < Ci for all i. 

(ii) Ctm- 2 = 1 . - . . .  m .  are positive fixed values such that c, m  = 1 c,m = 0{m~^). 

( l i i )  d , 3 l  ~  

( i v )  lim =  m ~ ^ A i ,  a n d  lim m~^ X^Wjn'VWmX — A2 for some posi-
m—foc m-+oo 

f i v e  d e f i n i t e  m a t r i c e s  A i  a n d  A j -

Then 

for any integer s > 1. 

Proof: By inequality (-3.13). 
m m 

c,r„[( V; - xJ fS f  -  5=2,] + C,m[xJ  (3o -
1 = 1 

m 
-2^c.^(V;-xr/3)«J'(3o-/3) 

(3.3S) 

1—2 2I-' 

1 = 1  

< 3 

1=1 

s-l |~2 2I-' , os-l 
60,m -^.1+3 ^C.>n[®f(3o - /3)]' 

1=1 

+3 s— 1 -2^c,^(y; - a;f/3)®f(3o -/3) -
1=1 

Since 6 and e are normal errors, ~ .'Vp(0, K(/3o)). By condition (iv), 

\/(3o) = = 0(m-'). 

(3.39) 
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Xote that c,^ = 0 { m  '). If 5 is even, by following the same argument as used in the 

proof of Theorem 3.1. we have 

1=1 
=  0 { m - ^ ) .  (3.40) 

and 

= E 

-2^c.^(V;-xf/3)®f(3o-/3) 
:=l 

m  

-2 c,m{bi -h ei)xJ{^o - 13) 
1=1 

•} 
} (3.41) 

Combining Lemma 3.1. (3.40), and (3.41). the result follows (3.39). If 5 is odd. then 

.s• + 1 is even. By Holder's inequality, 

<  ( E  { l ^ l ^  -  ( E  =  O i m - " - ) .  m 

Remark: For any estimator /? of /?, Lemma 3.3 still holds if E  ( X { f 3  —  / 3 ) \  =  0 ( ^ 1 " ' ) .  

As previously mentioned, it is possible for to take negative values and we define 

-
6,rn max(crb^.O) in practical use. 

Lemma 3.4 Under the conditions of Lemma 3.3 and > 0. we have 

P ( S l „  < 0) = O ( m - )  

and 

for any > 1. 

(3.421 

Proof: Follows the same argument used in the proof of Lemma 3.2. 

Consider the random effects model 

Y i  =  x j  ( 3  +  b i  +  e , .  i = l , . . . , m ,  
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where 6, ~ A''(0. cr^), e, ~ A'(0.(Tj,). Let the estimator of /3 be defined in (3.36). 

the estimator of be defined in (3.37), and the estimator of cr^- be Now we 

consider the estimator 

y. = 7. Vt- + (1 - 7. )«r3o• (3-43) 

where 

7. = ( ) ~ ̂  ^l.m (3 -44) 

and 5^^ is defined in (3.37). The only difference between yi and the EBLUP y[^ is the 

estimator of /3 used. The y,- uses (Sq — X^Wj^Y as the estimator of (3. 

The EBLUP uses /3 = { X ^ V  X ) ~ ^  X ^ V  Y  as the estimator of j 3 .  If is 

chosen to be close to V~'. should be reasonablely close to V . Then /3q should 

be close to /3 and y, is close to y^. For y, defined in (3.43), we have the major theorem 

of this chapter. 

Theorem 3.3 Let there be a sequence of small areas i = 1.... .m. where the number of 

small areas m —>• oc. Assume <7^,, i = 1,2,..., and xj. i = 1,2,.... are fixed sequences. 

Assume ? = 1.2,..., with diC^^ ~ unbiased estimators of cr^,. Assume 

independent ofY = (V'l,.... V'm)^ for any m. Assume that: 

( i )  e v e r y  d ,  i n c r e a s e s  a t  a  c o m m o n  r a t e  d ,  w h e r e  d  o c .  

( i i )  a f  >  0. cr^, < Ci for all i, and x,j < Cj, for all i and j. 

( H i )  W t i , m  <  C - u j .  w h e r e  w , i ^ r n  a r e  t h e  d i a g o n a l  e l e m e n t s  o f W m -  f o r  a l l  i  a n d  m .  

( i v )  c ^ r n - i  =  w h i c h  a r e  t h e  w e i g h t s  i n  ( 3 . 3 7 )  s u c h  t h a t  c,m = 1.- posi­

t i v e  f i x e d  v a l u e s  a n d  C i m  =  0 { m ~ ^ ) .  

( v )  lim ( X ^ W m X ) ~ ^  = m ~ ^ A \ ,  a n d  lim m~^X^Wm.y^WmX = A2 for some posi-
m—fCC' m —•oc 

tive definite matrices Ai and A2. 

Let 7, be defined by (3.44)- Then 

£ {(7, - 7,)'} = +<Ti)-'2<Ti Ltd-' + \v{Sl„)\+0[r„). (3.45) 
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w h e r e  \  ' ( a l ^ )  = 2 cL(^6 + and = ma.x{m ^ Kd -). 
1= I 

Let t/i be defined by (3.43). Then 

A/5£(y. -y.) = E{(y. -y.)^} = al'u + {I --u?xJv(^o)^r 

+ [cl 4- crliWilz) + O(r^). (3.46) 

where V(3o) = iX'^W^X)-'{X'^W^VWrr.X){X'^W^X)-' and 

\/(7,) = (a^ + crl)-^2<T^, -

// i 7^ J, we have 

E  { { y ,  -  y i ) { y j  -  y j ) }  =  { I  - - ' ( j ) x J V { ^ o ) x j  +  0 { r m ) .  (3.47) 

Proof: By (3.4) and (3.5), we have 

EOl - = •2at,d-\ 

and 
/ 

0(d~°-^') if 5 is even. 
-'^l-r = \ 

0 { d  0-5(^+1)if 5 is odd. 

By Lemma 3.4, we have 

E {Krr, - ''l\'} =0(n.-»»'). 

We will ignore the bias of 5^^ because < 0) = 0 { m ~ ' )  for any s > 1 and ctj > 0. 

Let r^n = m a x { m ~ ^ - ^ . m ~ ^ d ~ ^ , d ~ ^ ) .  

E = 2cr^.(c,m</rM = C)(r„), 

and 

E U s i „  -  t ; } ' }  = K(sL) + O M  

m  

where Vi^lrr,) = 2 ̂  
t=i 
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We treat 7: defined in (3.44) as a function of and Note that 0 < 7. < 1. 

We use Theorem 3.2 to obtain the asymptotic results and do a Taylor expansion to the 

third order. Using this idea, we have 

+ + 0(r„ ) 

Therefore. (3.45) is true. 

Note that 

y. -Vx = (1 - 7.)«r(3o - /3) - (7.- - 7.)»r(3o - /3) + [(7. - 1 )6, + 7.e.] 

= (7. - 1)^.' + 7.e.- + (7.- - + e.) + (1 - 7.)«r(3o " 

+0p(max(m-'.m-°-5<f-°-^)) . (3.4S) 

and 

(y. - y.)' = [(1 - 7.)«r(3o - 0)Y + 2(1 - -n)xJ{^o - /3)[(7. - 1)6. + 7.e.] 

+[(7. - 7.)®r(3o - 0 ) ?  -  2(1 - 7.)®r(3o -/3)(7. - 7.)®r(3o - /?) 

-2(7. - 7.)«.^(3o - /^)[(7.- - 1 )^i + 7.e.] + [(7. - 1 )6t + 7.et]^. (3.49) 

For the first term in (3.49), we have 

£{((1 -7,)a:f(3c -/5)1'} = (1 - 7.)WV(3o)»,. (3-50) 

For the last term in (3.49), we have 

^ {[(7i — ^ {[(7t' — + I'i^i + ill ~ 7>)(^|' + 

= 7.<7-e. + E {[(7< - 7.)(6. + e,)]2} 

+ 2 E  {[(7. - 1)6; + 7.e.][(7< - 7.)(^>. + e.)]} . (3.51) 
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The 7, defined in (3.44) is not the same as the 7, defined in (3.19) because the estimators 

for cr^ are and respectively. However, by the method used in deriving (3.30) 

and (3.31), we can show that equations (3.30) and (3.31) still hold is replaced 

with o'h.m- That is 

^ {[(7. - + e.)]^} = [2cr^cr^.((T6 + "f- ) + O(r^) 

= (<^6 + <^«)V''(7.) + O(r^). (3.-52) 

and 

^ {[(O't - 1)^< + - lx){bi + e.)]} = 0{r^). 

Therefore, the expectation of the last term of (3.49) is 

E {[(7t- - 1)6.- + 7.e.]^} = 7.•o•e^ + i^b + + 0(rm). (3.-53) 

To prove (3.46) is true, we need to show the expectations of the other terms in (3.49) 

are of order 0(rm)- We will show that E |[x^(/3q — /3)][(7i — 1)6, + 7,e,]| = O(r^) as 

an example. By Taylor expansion, we have 

cov {(7.  -  7.)(6i  +  e,) .  (6j  +  ej)}  =  < 
0 { r m )  

0{d-').. ifz=J. 
(3.-54) 

By condition (iii) and (v). for sufficiently large m, 
p p 

(3.-5-5) 
1=1 j= \  

where auj is the ij-th element of matrix Ai. 

By the order results of (3.-54) and (3.55), we have 

1^ {[(7. - 7.)(6, + e.)][«J'(3o - /?)]} 

m  

= £[(7. - 7:)(6. + e,)'^xJiX'^W^Xr'xkiv,^:,mibk + e,.)] 
k = l  

< m ' ^ C ^ E  {(7.-  -  ii){bi + e,)^} + m~'C4 ̂  E {(7i - 7.)(^>fc + et)(6. + e,)} 
k^i 

=  m  ^ C 4 0 { d  ^ ) + m  ^(m - l)0(r„) = 0(r„) (3.56) 
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for any i and j. Note that 

ili — l )6i  +  = [(7,-  — 1)6,- + 7,61]  +  (7,-  — 7:)(6, + e.) .  

Also 

E {[xU^o - HM-U - 1)!'. + 7.=,]} = 0. 

because 

E {(^i + ^t)[(7i" ~ + 7i£t]} = 0. 

Therefore, 

E  [ x j ( 0 o  -  /?)[(7. - 1)6. + 7.e,]}| = \e  [^J (^o  - /3)[(7. - 7.)(6. + e.)]}| = O(r^). 

(3.57) 

Similarly, we can show 

E[[{'n-'n)^J{%-(3)Y) = 0{r^), (3.5S) 

E {[(7. - 7.)«r(3o - PWli - 1)6." + T.e,]} = 0(r„), (3.59) 

and 

E { [x j i ^o  -  ̂)(7. -  -  /S)l} = 0(r„) .  (3.60) 

Result (3.46) follows (3.49), (3.50), (3..57), (.3..58), (3..59), (3.60), and (3..53). 

To prove (3.47), we expand y.- — y,- in the form of (3.48) and get the expression for 

iVi ~ Ui)i.yj ~ U])- terms is 

(1 -7.)(i -7.)®r(3o-/5)(3o 

We have 

^{(1 -7.)(1 -7.)«r(3o -/3)(3O = (1 -7.)(1 
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So we only need to show that the expecatation of all the remaining terms are of order 

0(rm). After routine and lengthy calculation of the same type as we used to prove 

(•3.46). we can show that this claim is indeed true. Therefore, (-3.47) is true. • 

Remark: li d~- < then O(r^) = 0{max{m~^-^.Tn~^d~^ 

The convergence rate is fast under this situation. Even though d~^ > ©(m"'-"), Oirj^) = 

0{max{Tn~^-^. m~^d~^. d~^)} = o(m~^) as long as d~^ -= o(m~^). This means that (3.46) 

is the order o{m~^) asymptotic approximation to MSEiy. — yi). Last, if d~^ = 0(m~^). 

then we have 0{rm) = 0{m~^). The convergence rate is slower under this situation. 

Since we do not know a^, cr^i-.i = and /3. it is desirable to estimate 

M S E { y i  — yi) in (3.46). Simply replacing cTj  and in 7,cr^, with and yields 

an estimator of "ncr^i that underestimates because 

E {7.S=«} = 7.<7« - {<rl + 

~ ~ ''r {'fi) + 0{r^). (3.61) 

Therefore, an estimator of M S E { y i  —  y i )  in (3.46) with bias of order O(r^) is 

M S E i y ,  -  y.) = T.S^e. + (1 - 7.)^«r^'(3o)«t + (3-62) 

where 

+ Si)- ^ cL(5| + s?,)4 . (3.63) 

3.3 Simulation study 

small Monte Carlo study was conducted on the univariate model to investigate 

the properties of our approximations to MSE{y, — yi). Each Monte Carlo sample was 

constructed in the following w^ay. First, observations were generated to satisfy the model 

Ytj = fx + bi + e,j, j = 1, +1,2 = 1,... ,m, (3.64) 

+ O(r^) 



where 6, ~ iV(0. ctj). e,j ~ :V(0. ((i+ The random effects model for the small area 

mean is 

Y'i = /i + 6, + Str J = 1 . m .  (3.65) 

where 
d+l 

v; = v..  = (c/+i)-'^v; 
j=i 

d+l 
Ci = e,•. = (</+ 1) ' e,_, . 

j=i 

and e, ~ A'(0, cr^, )- The quantities we estimate are y, = ̂  + 6,-, i = 1..... m. 

To ease our programing effort, we set all <i, equal to d . one third of <7^, equal to cr^. 

one third of cr^, equal to l.5a^, and one third of a^- equal to 2al for a given We 

estimate the individually. We also set = /m- This leads to the ordinary least 

squares (OLS) estimator of (3. 

The unbicised estimator of <7^, is 

d-\-1 
a l ,  =  [ d + i r ' d - ' Y , { \ l - Y , ) \  

J = l  

where ~ Xd^et- The OLS estimator of is 

m 771 1 
p. = m-' ̂ v; = m-^{d+ 1)"^ Vij-

1=1 1=1 j=i 

We set c,m = m"^. The estimator for cr^ is 

91^ = max m~' ^[m(r7? - !)"'(>'; - . 

The predictor for y, is 

y.- = 7.^1 + (1 - 7i)M. (3.66) 

where 

, ^2 \-1^2 
A ( 6,771 ei/ 6,771" 
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By (3.46). an approximation to MSEiyi — y, ) with bicis of order where = 

.d~^), is 

M5E(y. - y,) = ~f,crl + (1 - 'nfial + )m-' + {a^ + }-^2atcrt_,d-^ 

+(cr^ + + 2cr^a-2 )m-', (.3.67) 

771 rn  

where 7, = (<72 + alr^cr^. cr]^ = m"' ̂  o-^.. and = m'^ ̂  cr^. . 

By (3.62). an estimator of M S E { y i  —  y i )  with bias of order 0 ( r m )  is 

M5£i(y. - y.) = + (1 - 7.)^(^L + 

+(^6'.. + +^ + (3.6S) 

In our simulation, we set fx = 10, cr^ = 1. and <t^ = 0.01,0.1,0.25. |, |, 1, 1.5, For 

each of the parameter settings, we generated 1000 samples for (t/. m) = (5, 36). (9. 36), 

(9. 99). (14. 99). and (14, 225). The results are reported in Table 3.1 through Table 3.5. 

Every table has the same format. The first column of the table contains the parameter 

T^. We have three distinct 7,. which are listed in the second column of the table. VV'^e 

divide the data into three groups according to the values of 7,. For each sample, the 

mean of the simulated MSE{yi — y,) for the G-th group is 

M S E { y i  -  y i ) c  =  ̂ r n ~ ^  "  V i f -
tec 

We calculate the mean of the 1000 simulated MSE{yi — yi)c for each group and the result 

i s  r e p o r t e d  i n  t h e  t h i r d  c o l u m n  o f  t h e  t a b l e .  T h e  c o r r e s p o n d i n g  t h e o r e t i c a l  M  S  E ( y , — y t ) c  

value defined in (3.67) is in the fourth column. 

For each sample, we compute M S E i { y ,  — y,) defined in (3.68) and the corresponding 

mean for the G-th group, which is 

MSEiiyi - yi)c = 3m~' ̂  MSEiiyi — y.). 
teG 



The mean of the 1000 simulated MSEi{yi — y.)G for each group is reported in the fifth 

column of the table. 

From these tables, we can see that the theoretical approximation to MSE{yi — y,) 

and simulated MSE{yi — yi) are very close to each other when cr~^al is not close to zero, 

even when d and m are small. When d and m are large, the theoretical approximation 

and simulated MSE{yt — yi) are almost identical. This indicates that (3.65) provides 

a reasonable approximation to the true MS Ely, — yi) when cr'^crl is not close to zero. 

When <7~'cr^ is close to zero, the theoretical approximation to MSE{yi — yi) is much 

larger than the simulated MSE{yi — y,). Note that when cr~^al is close to zero, is 

very small compared to and 5^^ = 0 with probability close to 0.5. If = 0. the 

estimator for y, is X/3 = Even if > 0 small, the estimator for y, is still close 

to /7. Therefore, the true MSE of y,- — yi should be close to + . However, 

the theoretical approximation to M S E ( y i  —  y i )  is close to erf + (cr^ + cr^i + 

In other words, the impact on MSEiy^ — yi) due to estimation of and is not as 

large cis that given by the Taylor expansion for small d. small m and small cr'^al-

Comparing the third column with the fifth column, we can see that M S E i [ y i  —y,) is 

close to the simulated MSE{yi — y, ) when cr'^cr^ is large if d and m are small and that 

MSEiiy, — y,) is close to the simulated MSE{yi — y,) when <7^ is moderately large or 

large if d and m are large, though MSEi{yi — y,) slightly underestimates the simulated 

MSE{yt — y,) in these cases. This indicates that MSEi{yi — yi) is a reasonable estimator 

of the true A/.?E(y. — y,) when cr'^cr'^ is large. 

3.4 Improved estimator for M S E { y i  —  y , )  

The estimator MSEi{yi — yi) \'ields an unsatisfactor}' approximation to the true 

MSE{yi — yi) when <T~^crl is small. Three factors contribute to the severe overestimation. 

First. MSEiiyi —yi) defined in (3.68) estimates the theoretical MSE{yi — y,-) defined in 
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(3.67), which overestimates the true MSE{y, — y.) when cr~^af is small. We cannot do 

much about the overestimation of the theoretical approximation. Second. severely 

overestimates due to truncation when is small. For example, the average of the 1000 

is 0.12 when af = 0.01. This overestimation of cr^ in turn leads to overestimation 

of MSEiiy, — y,). Third, 7t?£, does not underestimate 7,cr^. when cr'^a-'^ is small. 

Therefore, the adjustment made in (3.61) inflates M5£'i(y, — y,). For real data, we do 

not know and Therefore, we cannot determine when overestimates cr^ and 

7,5^, overestimates We need to tackle the overestimation from another angle. 

Note that MSEiiyi — yi) defined in (3.68) is a special case of (3.62). That is 

- y i )  = + (1 - 7.)^«r^'(3o)«. + + 5^«)^ar{7.}. 

To improve the estimator defined in (3.68), we need to deal with two issues. First, 

severely overestimates cr| due to truncation, which in turn leads to )V'ar{7,} 

overestimating (cr^ + al^)Var{^ii}. when cr'^cr'^ is small. We need to find a better esti­

mator to (o"^ -r the contribution due to the varibility of 7,. Second, 7.^^. 

overestimates 7.crj- when cr'^a^ is small and underestimates when (T~^~crl is large. 

It is not appropriate to simply use 7.?e, + to estimate 7tcr|j. We 

need to derive a better estimator to ')'icr'^,-

By (3.52), we have 

E {(7.  - 7.)^(^.- + e.)^} = (<Tt + cr^ )\/ar{7.}  -f O(r^). (3.69) 

Therefore, the + cr^,)V'ar{7,} term in (3.46) is due to the approximation to 

^{(7: — + Gi)^}. We will use the approximation employed by Dodd (1999) to 

estimate E  {(7,  -  7,)^(6,  + e,)^} directly instead of estimating [ a ^  + al^)Var{^ji]. 

The idea is to approximate the standard normal distribution by a set of points 

{(ct,u.-fc)}Li- "'here (ci,...,C9)^ = (-2.1,-1.3,-O.S.-0.5, 0. 0.5, 0.8,1.-3, 2.1 and 

(u'l,... .lUg)^ = (O.O6.3345, 0.080255, 0.070458. 0.159698, 0.252489, 0.159698, 0.07045S. 
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0.0S0255. 0.063345)^. Note that 

9 9 

y ] u'k = 1. y ^ Wkc[. = 0 for r = 1. 3. 5. 
/c=l l=k 

and 
9 9 

^ Wkcl = I. ^ zt-'fcct = 3. 
k = l  k = l  

Let 52^ be the non-truncated estimator of and let '-he truncated estimator 

of af. The is approximately normal distributed in large samples. Thus we can ap­

proximate the distribution of = max(0, 52^) with a truncated normal distribution. 

Let 

all. = ma.x{0.al^ -i- CkSbm)-

where Sf,m = estimated standard error of Then {( 

would be a reasonable approximation to the distribution of Suppose U ~ then 

i d - ' U ) ^  ~ (3.70) 

where = (0.953,0.2047), (^9,59) = (0.970,0.170). and (^^14,514) = (0.983,0.123). 

Note that d,a~^3^- ~ x%- Let 

^c,k = max (0, ifXH, + CkSd. faj,) ,  

where fid,, and are defined in (3.70). Then {(^etf ^'ould be a rezisonable 

approximation to the distribution of The covariance between and is Oir^n). 

Therefore, we can approximate the joint distribution of by these two indepen­

dent quantities. 

Note that 

cov {(6, -f- e,)^,a^. } = 0, 

and 

cov {(6,- -h = 2m-'(<7^ -h 
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Therefore. 

E {(6, + = oik-= ̂ l^k} = ^6.m + (^b(^bk - Km) + " (3-~U 

where a>, = [ViK,rr.)]~^['2Tn-HKm +Since 

E { m  - 7.)(6: + e . ) ? }  = E { E { [ { 1 .  - 7.)(6, + . 

an approximation to E {[(7,  — 7t)(6i + ̂ t)]^} is 

9 9 

E {[(7. - -n){bi + e.)]^} = w^Wkilijk - 7.)^[5|.„ + otbi^k " Km) + K]- (3-72) 
j=i fc=i 

where 

( x j k  —  { ( ^ b j  ^ e i k )  ^ b j  

and 
9 9 

7t' = ^' '^jWkitjk-
j = l k=l 

Now we derive a better estimator to "yicr^i- Let 

= y(K.m) max |0.min(1.0.6[V'(5^^)]"°-^S=^^)} . (3.73) 

The y'(Km) an estimator to the variance of that is zero if = 0 and is 

^  ( ^ 6 m )  ^ 6 m  g r e a t e r  t h a n  0 . 6 ~ ' [ V ' ( ctj  ^)]°"^. Thus it is a better approximation to 

the variance of when cr^ is small. 

Assume E ( x )  =  and E { y )  = f X y .  Then [(y)^ + uar(y)]~^[(x)(y) + c o v { x , y ) \  i s  a  

better estimator of fix than (y)~'x. Using this idea, an improved estimator of 7, <7^, 

is 

-7̂  = [{Km + K)^ + V'iKm) + 2C^-'(1 - 2777-^^,^]-' 

X [( Km + Ki )Km K + K ̂ (Km ) + Km 'KA- ( 3- 74 )  

where V'(K,m) defined in (3.73). This leads to the estimator 

M S E 2 { y i  -  y,) = nKi + (^ - 7;)^®^^'(^Q)^I 

+ £{[(7. -7.)(6. + e.)j2}, (.3.75) 
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where " is defined in (3.74) and E  {[(7t — 7t )(6,' e.)]^} is defined in (3.72). 

For our simulation study. xfV'(/3o)«i- = (^6.m + because we use the simple 

mean as the estimator of f i .  For each sample, we compute M S E 2 { y i  — yO defined in 

(3.75) and the corresponding mean for the G'-th group, which is MSE2{yt — i/:)c = 

377?"' .A/5£'2(^1 — Ui)- The mean of the 1000 simulated MSE2{yi — yi)G for each 

group is reported in the sixth columns of Table 3.1 through Table 3.5. From these 

tables, we can see that MSE2{yi — J/i) approximates both the simulated MSE{yi — y,) 

and theoretical MSEiyi — yi) much better than MSEi{yi — yi). While the overestimation 

at <7^=0 is still very large with MSE2{yi — yi), it is much smaller than the overestimation 

of M S E i{yi — yr) • For large values of cr^, the two procedures yield very similar estimates. 
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Table 3.1 Simulation study of .V/5£"(y, — y i )  ( d  =  b . m  =  36) 

Simulated Theoretical Estimated Estimated 
" 6  

M S E { y i  -  y i )  M S E { y i  -  I / , )  M S E i { y ,  -  y . )  M S E 2 { y r  -  y . )  

0.0099 0.104 0.183 0.615 0.222 

0.010 0.0066 0.114 0.140 0.489 0.243 

0.0050 0.126 0.118 0.419 0.257 

0.0909 0.193 0.244 0.598 0.273 

0.100 0.0625 0.20S 0.21S 0.507 0.304 

0.0476 0.223 0.203 0.453 0.323 

0.2 0.313 0.336 0.594 0.341 

0.250 0.143 0.342 0.336 0.547 0.388 

0.111 0.372 0.332 0.511 0.415 

0.3 0.409 0.426 0.594 0.404 

0.429 0.222 0.465 0.457 0.576 0.464 
1 0.176 0.497 0.470 0.569 0.504 

0.4 0.510 0.51S 0.605 0.490 

0.667 0.30S 0.594 0.589 0.637 0.575 

0.25 0.657 0.628 0.656 0-630 

0.5 0.609 0.612 0.648 0.604 

1.000 0.4 0.753 0.734 0.744 0.730 

0.333 0.823 0.810 0.819 0.832 

0.6 0.700 0.704 0.706 0.706 

1.500 0.5 0-S73 0.888 0.880 0.891 

0.429 1.020 1.020 1.010 1.040 

0.7 0.757 0.791 0.792 0.795 

2.333 0.609 1.030 1.050 1.030 1.040 

0.53S 1.230 1.250 1.210 1.230 
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Table 3.2 Simulation study of M S E { y i  —  y i )  { d  =  9 , m  =  36) 

<^6 7i 
Simulated 

MSE{y, - y.) 

Theoretical 

M S E { y i  —  y i )  

Estimated 

MSEiiyi - y.) 

Estimated 

M S E 2 ( y ,  -  y i )  

0.010 

0.0099 0.099 0.1S3 0.487 0.214 

0.010 0.0066 0.104 0.140 0.405 0.231 0.010 

0.0050 0.108 0.118 0.361 0.242 

0.100 

0.0909 0.180 0.243 0.486 0.260 

0.100 0.0625 0.189 0.217 0.428 0.284 0.100 

0.0476 0.209 0.202 0.398 0.299 

0.250 

0.2 0.289 0.330 0.503 0.310 

0.250 0.143 0.317 0.331 0.465 0.344 0.250 

0.111 0.323 0.329 0.445 0.365 

0.429 

0.3 0.404 0.414 0.524 0.386 

0.429 0.222 0.448 0.446 0.524 0.438 0.429 

0.176 0.476 0.461 0.530 0.474 

0.667 

0.4 0.485 0..5G1 0.562 0.478 

0.667 0.308 0.559 0.572 0.606 0.555 0.667 

0.25 0.611 0.612 0.634 0.607 

1.000 

0.5 0.582 0.590 0.615 0.586 

1.000 0.4 0.704 0.708 0.721 0.704 1.000 

0.333 0.775 0.783 0.790 0.787 

1.500 

0.6 0.675 0.678 0.687 0.691 

1.500 0.5 0.848 0.855 0.8.56 0.862 1.500 

0.429 0.972 0.979 0.974 0.988 

2.333 

0.7 0.765 0.765 0.771 0.781 

2.333 0.609 1.010 1.010 1.000 1.010 2.333 

0.53S 1.190 1.200 1.180 1.200 
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Table 3.3 Simulation study of M S E { y i  —  y ^ )  (d = 9 ,  m  =  99) 

^2 Simulated Theoretical Estimated Estimated 
7t 

M S E { y ,  -  y.) M5E(y.-y.) M S E i i y i  -  y i )  M S E 2 i y ,  -  y.) 

0.0099 0.049 0.073 0.218 0.129 

0.010 0.0066 0.049 0.057 0.189 0.135 

0.0050 0.048 0.049 0.173 0.1.38 

0.0909 0.136 0.147 0.246 0.177 

0.100 0.0625 0.139 0.139 0.228 0.189 

0.0476 0.143 0.135 0.219 0.196 

0.2 0.248 0.252 0.301 0.261 

0.250 0.143 0.263 0.260 0.304 0.285 

0.111 0.271 0.264 0.305 0.299 

0.3 0.350 0.350 0.366 0..352 

0.429 0.222 0.389 0.383 0.396 0.395 

0.176 0.409 0.399 0.412 0.421 

0.4 0.456 0.450 0.454 0.458 

0.667 0.308 0.523 0.516 0.520 0.533 

0.25 0.561 0.554 0.558 0.580 

0.5 0.551 0.550 0.550 0.559 

1.000 0.4 0.658 0.660 0.659 0.677 

0.333 0.749 0.730 0.733 0.761 

0.6 0.644 0.649 0.645 0.653 

1.500 0.5 0.810 0.815 0.810 0.827 

0.429 0.941 0.931 0.924 0.952 

0.7 0.737 0.744 0.739 0.744 

2.333 0.609 0.972 0.979 0.967 0.980 

0.538 1.150 1.160 1.140 1.160 
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Table 3.4 Simulation study of M S E { y t  — j/t) ( d  = 14. m = 99) 

^2 Simulated Theoretical Estimated Estimated 
<^6 I t  

M S E i y ,  -  y.) M S E ( y i  -  y i )  M5Ei(y.-y.) M S E 2 { y i  -  y - . )  

0.0099 0.047 0.073 0.201 0.121 

0.010 0.0066 0.045 0.057 0.175 0.125 

0.0050 0.044 0.049 0.162 0.126 

0.0909 0.129 0.147 0.2.33 0.168 

0.100 0.0625 0.131 0.139 0.217 0-177 

0.0476 0.135 0.134 0.209 0.181 

0.2 0.246 0.249 0.286 0.246 

0.250 0.143 0.261 0.258 0.290 0.265 

0.111 0.266 0.262 0.292 0.276 

0.3 0.350 0.345 0-357 0.336 

0.429 0.222 0.3S0 0.378 0.386 0.374 

0.176 0.397 0.395 0.402 0.396 

0.4 0.448 0.443 0.444 0.440 

0.667 0.30S 0.511 0.508 0.508 0.507 

0.25 0.556 0.546 0.547 0..550 

0.5 0.542 0.540 0.533 0.5.34 

1.000 0.4 0.648 0.648 0.637 0.640 

0.333 0.727 0.718 0.705 0.712 

0.6 0.643 0.637 0.637 0.638 

1.500 0.5 0.801 0.800 0.798 0.801 

0.429 0.912 0.914 0.912 0.918 

0.7 0.735 0.733 0.731 0.7.30 

2.333 0.609 0.954 0.962 0.960 0.960 

0.5.3S 1.130 1.140 1.1.30 1.1.30 
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Table 3.5 Simulation study of M S E { y t  —  y i )  { d  =  14, m = 225) 

n-2 Simulated Theoretical Estimated Estimated 
ft 

M5£(y. - y.) M S E { y i  -  y i )  M S E i i y i  - y i )  M S E t i y i  -  y.) 

0.0099 0.027 0.038 0.111 0.077 

0.010 0.0066 0.026 0.031 0.099 0.078 

0.0050 0.025 0.027 0.093 0.078 

0.0909 0.110 0.116 0.150 0.126 

0.100 0.0625 0.112 0.114 0.144 0.130 

0.0476 0.112 0.113 0.141 0.132 

0.2 0.225 0.224 0.238 0.230 

0.250 0.143 0.239 0.236 0.249 0.246 

0.111 0.243 0.242 0.2.54 0.255 

0.3 0.327 0.325 0..327 0.328 

0.429 0.222 0.362 0.358 0.360 0.364 

0.176 0.378 0.376 0.379 0.385 

0.4 0.431 0.427 0.425 0.427 

0.667 0.308 0.501 0.490 0.488 0.494 

0.25 0.536 0.528 0.527 0.535 

0.5 0.527 0.528 0.528 0.530 

1.000 0.4 0.632 0.633 0.633 0.638 

0.333 0.704 0.701 0.703 0.711 

0.6 0.625 0.628 0.622 0.623 

1.500 0.5 0.792 0.787 0.776 0.780 

0.429 0.897 0.899 0.886 0.893 

0.7 0.723 0.726 0.724 0.724 

2..3.3.3 0.609 0.947 0.952 0.946 0.948 

0.53S 1.120 1.130 1.120 1.120 
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4 ESTIMATION UNDER A RESTRICTION 

4.1 Introduction 

VV'e are considering estimation in the situation where the direct survey estimator V'j 

for small area i has a large variance as an estimator of y, due to small sample size. 

However, the direct survey estimator of the total across small areas is often satisfactory. 

In the example of Chapter 2, the direct survey estimator for urban change acres D, has a 

large variance as an estimator of the true urban change acres </, in HUCCO i. However, 

the direct survey estimator for state urban change acres design unbiased for 

the true urban state change acres, and it has relatively small variance. 

Therefore, it is desirable to put a restriction on the weighted total of the small area 

estimators such that the weighted total of the small area estimators is equal to the the 

weighted total of the direct survey estimators. Equivalently. we can put the restriction 

on the weighted mean of the small area estimators. Thus, we want to adjust the small 

area estimators such that 
m  m  

= (4.1) 
1=1 1=1 

m  

where u;, >0.2 = l,---,m. are the weights, = 1, and is the adjusted small 
1=1 

m  

area estimator. Usually the u,',- are the sampling weights such that ^ u-'iY] is an unbiased 
1=1 

estimator of the population mean. One heuristic approach is to make a ratio adjustment 
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where Vi^ is the EBLUP of y,. This adjustment was made in Chapter 2. The disadvantage 

of this approach is that it is hard to assess the bias and variance of 

Pfeffermann and Barnard (1991) proposed an alternative approach. The mixed model 

equation for the random effects model defined in (1.3) is 

(4.3) 
X"E-'X X ' E ; ' Z  (3 x"s;'Y 

Z'Ef'A- z n - ' z  +  Sj-' b Z"E-'Y 

where = diag{cr^y. • • - cr: and S6 = diag{z\(Tl. • -2 „2 ' " "m 6 i Let y  =  ( y f ^ .  •  •  •  . y l  

denote the BLUP estimator of y = (yi, • • • We have 

y" = X (3 + Zb. (4.4) 

where (3 and b are any solutions to the mixed model equation (4.3). Note that finding 

a solution to the mixed model equation (4.3) is equivalent to finding a solution to the 

minimization problem 

min {(r - X ( 3 -  Z b f i : ; ' { Y  - X 0 -  Z b )  +  b ' ^ Y . l ' b ]  .  
(3,b 

(4.5) 

To make (4.1) hold. Pfeffermann and Barnard (1991) proposed the modified estimator 

y = X0 " + Zb . 
M •M 

(4.6) 

where (3 and 6 are any solutions to the minimization problem (4.5) with f3 and 6 

subject to the constraint 
m  m  

+ r.6.) = (4.7) 
1=1 1=1 

This leads to the estimator 
m  

y^' = yf + coi'(yf ,y.)[V'ar(y.)]-'[^u-vV'j - y.], (4.S) 
j=i 

TTL 
where y. = ^^u.',yf^. They did not give the expression for c o v { y ^ , y _ )  and V a r { y _ )  in 

1= 1 
their paper. They gave the formula for E  {(/?', 6')'(/3'. 6')} when the variance components 

parameters are known. They did not give a formula for MSE{y'^' — yi) in their paper. 
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The PfefTermann-Barnard (1991) approach is a natural way to make the estimator 

y-y satisfy (4.1). The derivation of (4.S) relies on the fact that b can be treated as 

a fi.xed parameter. When there is no restriction, Henderson (1950) showed that we 

can solve the mixed model equation (4.3) and estimate b as a. fixed parameter. How­

ever. (4.7) puts a constraint on the random vector 6. The constraint (4.7) makes the 

distribution of 6 a degenerate one. Thus, the variance structure of b is changed and 

\  ' a r { b )  ̂  d i a g { z \ ( T l  c^cr^). The underlying model assumptions about the random 

effects model (1.3) have been changed by the constraint. It is not clear that the estima­

tion of 6 as a fixed parameter is still justified. 

In light of this fact, we consider restriction (4.1) as an adjustment problem instead 

of a constraint problem proposed by PfefFermann and Barnard. Suppose we have the 

small area estimator To make the final estimator satisfy (4.1), we allocate the 
m  m  

difference u :  J  Y  J  ; j y j  to the small area estimators y,, z = 1. - - • . m. according to 
7 = 1  j = l  

a rule. We define the modified (adjusted) estimator 

=  V i  +  a .  ' j V j  
L j = l  J = 1 

(4.9) 

where = 1. Clearly, the modified estimator satisfies (4.1). 
1=1 

The estimator defined in (4.2) is an estimator of the form in (4.9) since 

-1 

/ m  ^  

(4.10) 
\ j = i  J  \ j = i  j = i  /  

The estimator defined in (4.8) is also of the form (4.9) though the estimator is derived 

from a constraint minimization problem. .An estimator similar to (4.8) proposed by 

Battese, Harter and Fuller (1988) is 

T  - 1  

^ J ] V a T { y ^ )  
.j=i 

u J i V a r { y ^ )  I  -  ) • 
\ j = i  j = i  /  

(4.11) 
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Isaki. Tsay and Fuller (1999) imposed the restriction by a procedure that, approx­

imately. constructed the best predictors of ttz — 1 quantities that are estimated to be 
m  

uncorrelated with ^ Let w  =  (u'l, • • • , and 
: = 1 

E = Sfc + S, = V'ar(y). (4.12) 

Let S be the estimator of S and let C = AT. where 

dm-i = ^ 0^ _ i  Im-i ^  

The modified estimator of y  is 

=  Y  -  C ~ ' B C { I m  -  f )(K - A:3). (4.13) 

where F = S5S . and 

B = i  ^  ( 4 . 1 4 )  
V Oni —1 I m — l y 

Isaki, Tsay and Fuller argued that the estimator in (4.13) gave the BLUP of the m—l 
m  

quantities orthogonal to when variance components parameters are known, but 
t = l 

no other theoretical justification was provided for the particular choice of a-m-i-

Let H  = C ^ BC{Im — r), Vp be an estimator of the contribution to the variance 

due to estimating /3. fZaa be an estimator of the contribution to the variance due to using 

Sf, to estimate St, and f244 be an estimator of the contribution to the variance due to 

using Se to estimate Se- Isaki et. al. also proposed an estimator of var - y} as 

{Im - " H)' + + C~'BC(HX%X'H' + ̂ 33 + ̂ 44)CBC"\ 
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For the random effects model defined in (1-3). S = diag{z^a^ - 2  ̂ 2  + cr: 

r = diagi^i. • • -. 7m)- and 7 ,  = { z f a ^  + -'^fter some matrix operation, we can 

rewrite (4.13) in component form, rather than matrix form, as 

-1  

y^' = Vf 

=  y "  +  

j=i 
m  

"^uj^VariY]) 
Lj=i 

A V'ar(V;) ( - II '-vyf • (4-15) 
0=1 j=i 

Therefore, the modified estimator in (4.13) also has the form of (4.9). 

4.2 Best linear unbiased estimator under a restriction 

VVe want to find the "best" linear unbiased estimator for y  that satisfies restriction 

(4.1). .lust as in the derivation of BLUP. we first assume the parameters for the variance 

components are known. Let R[y) denote the collection of all linear unbiased estimators 

that satisfies (4.1). Suppose the BLUP of y = (i/i. • • •, j/m)^ is = {y^. • • • .VmV 

y "  ^  R i y ) -

First of all. we need to define the meaning of "best". We cannot obtain the BLLiP 

for all yi,i = I m anymore. Consider a family of estimators y^^\ where 

•H 

5!" = 
y. 

77^^ a-yi + <^1 
Lj=i j=\ 

if z 7^ i. 

if i = j. 
(4.16) 

In other words, y'"^' is the estimator in which the z-th component is the BLLP of 

y, but the j-th component is the BLUP of j/j plus u,\~^ multiplied by the difference 
m  m  

I . It is easy to see that y^-*' G R { y ) -  For any y^^ € R{y)- there is 
Lj = i J = l 
at least one component ^  y f f  since y^ ^ R-iv)- Therefore. 

V a r { y k  -  y k )  >  V - y ^ )  =  V a r { y ^  -  y ^ )  (4.17) 
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for any j k because yjf is the BLUP of yk- This indicates that no estimator can be 

found in R{y) with smallest prediction variance for every component. There is always 

another estimator in R{y) with smaller prediction variance for a.t lea^t one component. 

.Since it is impossible to compare estimators in R { y )  component-by-component to 

find the best estimator, some kind of overall criterion is desirable. .A. natural choice is 

to find y'^' E R{y) that minimizes 

m 

i = l  

where the are positive weights. Usually, depends on the variance 

components. To obtain a general result, we do not specify now. We will discuss the 

choice of tpt later. We give the major theorem of this chapter. 

Theorem 4.1 Assume the random effects model 

Y'i = xj(3 -f Zibi + e,. I = 1..... m. 

where the b, have independent identical distributions with mean zero and variance af. the 

e, havt independent distributions with mean zero and variance cr^^. and b = {b\ 

is independent of e = (ei,. ... e^)^- Assume Zi, . and are known and(3 is unknown. 

Let y^ be the BLUP of yi defined in (1.8). Let 

(m m \ 
H-I9) 

j=i j=i / 

where a, = j fixed weights of (4-1)- Then y^^ = 

{y^^.. . .,y'^)^ is the unique estimator among all linear unbiased estim.ators that satis­

fies (4-1) ond minimizes criterion (4-18). 

Proof: Let F6^[ya) denote the collection of all estimators that have the form 

(m m \ 
^ ^ ) • (4-20) 
j=i j=i / 
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where = 1. Clearly, R^ i y a )  's a subset of R i y ) .  We first find the best estimator 
t=i 

in f^iya)- For any y^ € f^iVa)- let 

f { a i .  
1=1 

= 

1=1 
iVi^ — Vi) ^ ) 

J=1 J = l  

Note that 

E M  - y . ) { Y , - y ^ ) ]  

|(7: - + 7.e. + (I - 7.)«r(3 - - 7j)[(6j + Cj) - x](^ - /3)]| = cov 

where 7j is defined in (1-9). We have 

cov {(1 - 7.)xr(3 - - 7.)[(6. + e,) - ̂ [(3 - /3)]} 

= u.v(l - 7.)(1 - 7.)cou {x]{X'V-'X)-'X'V-'{b + e). (6, + e , ) ]  

-^j(l - 7j )(l - 7:)«rV'(3 - /3)a;J" 

= u,v(l - 7,)(1 - 7.) {x]{X'V-'X)-'X% - xJ{X'V-'X)-'x]] = 0. 

where Z, is the vector with the f-th element equal to one and others equal to zero. Also. 

cov {(7i - + 7.e.. u.-j(l - 7j)[(^j + Gj) - - /3)]| 

= cov {(7, - 1)6, + 7.e.- h j { b j  + C j ) }  = 0. 

where/z, =u.v(I -7,) [l - {af + alr'xJiX'V Xr'xJ]. 

This leads to 

E  H y f '  -  !/,)(Vj - )] = 0. 

Therefore. 

(•4.21) 

/(a,,. . . ,am) = ̂  <^iE{y" - y,f + V  
1=1 

E'-vfn - 5f) 
.3 = 1 

51 
i = l  
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(.'sing Lagrangian multiplier methods to minimize /(ai Um) subject to the restriction 
771 

= 1. we obtain the system 
1=1 

2a.v. V' ( ^ =0- 2 = 1- m. 
.j=i j=i 

The solution to the linear system subject to the restriction u>',ai = 1 is 
i=l 

I. - ( ^ 

-1 
-I .2 \ „-l . (4.23) 

t=i 

Therefore, defined in (4.19) is an estimator of the form (4.20) and minimizes criterion 

(4.IS). 

Let y  be any linear unbieised estimator of y  that satisfies (4.1), i.e.. y  € R ( y ) -  By 

standard results for BLUP (See, for example. Robinson (1991) and Harville (1976)), we 

have 

cov{y" - y,,yi -y^) =0. 

This leads to 

£(y, -  y , f  =  £(yf -  y.)^ +  £(y.- -  y f f .  (4.24) 

Therefore, 

mm m 
Q i y )  =  Yl-y-)' = Y1 

t=i 1=1 t=i 

m T»i 
Since y satisfies (4.1). w-e have For the y'^^ defined in (4.19), 

1=1 1=1 

1^' = ) = y^ + «« 
j=i j=i Lj=i 

. By (4.22), we have 

Q ( y " )  = X;-  y . f  +  v - i/f) [ £ 
1 = 1 J=1 1=1  

1 = 1 
{m m 

J=1 ) 1=1 
Ev=.-",' 

- 1  

-I, ,2 \ ,_-l, , 
• ' Yi 

1=1 
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t = l {m 1 /  ^ 

-1 

(4.26) 

Note that 

m m 

u-vu-'fccot' {(pj - yf). { y k  - V k ) ]  
I J  = 1  ) J=l f c = l  

mm f ^ \  ̂ 
< 51X] ujjUJkgjQk = I ^ ̂•.^. 1 , 

j=i fc=i \i=i / 
(4.27) 

w here = yJVar{yj — t/^). By Cauchy's inequality. 

E -va < E ̂ r'-M E V.9? E 
, «=I i=l 1 = 1  t = l  

(4.28) 

Combining (4.26). (4.27) and (4.28), we have 

m 

- y ^ )  
L t = l  

- 1  

>v-^E-',(a-!?f)MEi=.''-' 
1=1 

Therefore, we have shown that Q [ y )  > Q { y ' ^ ) -

To show the uniqueness of we need to check when the inequalities (4.27) and 

(4.28) become equalities. Inequality (4.27) becomes an equality if and only if 

V j  -  y f  =  +  c j  ( y i  -  y " )  (4.29) 

for some constants c® and c^.j = 2,..., m. Inequality (4.28) becomes an equality if and 

onlv if 

- y/v~^y/^ = 0. 

or. equivalently. 

.Also. 

H'"ar(y, - y " )  =  v ] u : ^  ^ V a r i y ^  -  yf) rWi 

i = l  1 = 1  

(4.30) 

(4.31) 
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Combining (4.29). (4.30). and (4.31). we have that the equality holds if and only if 

(/j = y-y. Thus, we have shown that is the unique linear unbiased estimator that 

satisfies (4.1) and minimizes criterion (4.IS). • 

Remark 1. If the variance component parameters are unknown, we replace the variance 

components with the estimated variance components, just as in EBLUP. This leads to 

the modified estimator 

m  m  

5f' = y"+ 
j = l  j = l  

where is the EBLUP defined in (1.16). 

Remark 2. With a different choice of we have a different estimator that minimizes 

the criterion (4.18). If v't = we have the ratio estimator defined in (4.10). Since 

Vi could be less than zero and it is not reasonable to have negative we can see 

that the ratio adjustment is not always a good choice. If = u;,[cou(yf', y.)]~', where 
m  

y = have the estimator (4.8) derived by Pfeffermann and Barnard (1991). 
j=i 

The estimators in (4.11) and (4.15) are estimators when the variance components are 

unknown. When = Wo.r{y^)\~^. we have the Battese. Harter and Fuller estimator 

of (4.11). The Isaki. Tsay and Fuller estimator in (4.15) results from = [V'ar(Vi)]~'. 

Therefore. Theorem 4.1 provides a unified way to derive the estimators described in this 

chapter. 

Since the "'best" estimator depends on the used in the criterion (4.18). we want 

to find a reasonable choice of v':- To get an insight into the problem, we first assume 

all the variance component parameters to be known. We argue that = [V'ar(Vi)]~' 

is the most reasonable choice by showing the properties of the corresponding modified 

estimator. Let C = AT. where 

T  =  
( . \ 

UJ 

^ Om —I ITn~\ y 
(4.33) 
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flm-i = (a2.---,am)'= (w^Eu;) * ^ 0,n_i /^_i ^ Sw. 

m 
Let y  = and observe that C Y  =  (V. Vj — 02^ V'm — h m Y ) ' .  Note that 

1=1 
V; — a.y. i = 2 m are uncorrelated with Y. i.e., (V' 2  — ^2^ Vm — Qm^)' is a basis 

for the space that is orthogonal to V in the space spanned by Y. We want to estimate 
m 

y .  Equivalently. we can estimate C y  = [ y ,  1/2 — 0-2^ ym — ^my)'• where y = E 
: = 1 

When there is no restriction, the BLUP of C y  is 

C y  = ^ C Y  - C { I m - T ) { Y  -  X ' ^ )  = C y .  (4.34) 

m 
Let c'l be the first row of C ,  c \ y  = y = To impose the restriction (4.1) on C y .  

i = l  
m  

we only need to replace c \ y  with and use BLUP to estimate the other m — 1 
1=1 

quantities in C y .  This leads to the modified estimator 

C y ' '  =  C Y -  B C ( I m  -  r)(r - X ^ ) .  (4.35) 

where B  is defined in (4.14). To obtain the modified estimator for y .  we multiply 

equation (4.35) by C on both sides to obtain 

y ^  =  Y  -  C  ' B C H ^  -  D i Y  -  X 0 ) .  (4.36) 

This estimator does not depend on the choice of basis in the space that is orthogonal 

to V in the space spanned by Y. Suppose (52.... .5^)' is another basis in the space that 

is orthogonal to >7- in the space spanned by Y. There is an invertible matrix Si such that 

(.•>2 - • • •, -s^)' = Si (>2 — <22 v.. .  . . Y m  —  O m Y ) ' .  In other words, (>'.52, Sm)' = S C Y .  

i  1 Om-l 
where S  =  I • Letting Cj = S C  and following the same argument, we 

^ Om-i Si 
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have 

y f  =  Y  - C - ' B C , { I ^ - T ) { Y  -  X 0 )  

=  Y  - C B C { I ^ - T ) { Y  - X f i )  =  y ^ ' .  (4.37) 

because C^^BCi = C S~^BS~^C — C ^BC. Therefore. (4.36) is derived by ap­

plying the restriction and making estimation based on the information from the space 

that is orthogonal to V. 

There are exactly m  —  I  linearly independent BLUPs in any m — 1 dimensional 
m 

subspace spanned by Y that does not contain Y = ^ ]cj,V,. Let Cm-iY be the space 
1=1 

spanned by the m — 1 linearly independent BLUPs and let Ca = • Similar 

to the derivation of in (4.36), we can impose the restriction (4.1) by using the linear 
m  

combination of u>', Vj and the m — 1 BLUPs to construct the modified estimator y^. 
1 = 1 

First, w e  estimate C a V  by replacing c \ y ,  the BLL'P of the first quantity of C a y ,  
m 

« i t h  and use BLUP to estimate the other tti — 1 quantities in CaV- This is 
: = 1 

represented by 

C^a' = CaY - BCailm - r){Y - X^). (4.3S) 

Then we multiply the estimator of CaV by to obtain the estimator of y 

g-a'' = y -  Ca'BCailrr .  -  r)(K -  X0).  (4.39) 

It is possible to derive some linear unbiased estimators for y  by using less than m  —  I 

linearly independent BLUPs in the space spanned Y. Obviously, these estimators are 

less efficient than the estimators in the form of (4.39). Therefore, the question, "which 

estimator for y is the most reasonable estimator?" is equivalent to the question, "which 

n? — 1 BLUPs are the most reasonable choice for constructing the restricted estimator?" 
m  

If we interpret restriction (4.1) as meaning that Y — ^^UiY, is the best estimator for 
i = l  

m  

y = should choose to evaluate the m — 1 components that are orthogonal 
1=1 



lo This indicates that the estimator in (4.36) is the most reasonable estimator. 

Therefore, = [V'Gr(V'i)]~^ is the most sensible choice for When the variance 

components are unknown, we replace the variance components with the corresponding 

estimated value. This leads to the estimator in (4.15). 

We want to say a few more words about the estimators in the form of (4.39). Let a 

be the first column of and let 

y" = (yf yi,)' = |v - (/„ - r)(y - x3)]. 

Then 

=  V  - C a ' B C a { I n . - T ) { Y  - X 0 )  

=  [ Y -  { I m  -  r)(y - x3)] - Ca'(/m - B ) C a { i m  - r)(y - x^) 

=  y "  - a u j \ I ^ - T ) { Y  - X h  
m  m  

j=i j=i 

because C a i t m  —  B ) C a  =  [ C a i ^ ^  —  B ) ] [ ( / m  —  B ) C a ]  =  a u j ' .  In other words, any 

estimator of the form (4.39) can be written in the form of (4.20). On the other hand, any 

estimator of the form (4.20) can be written in the form of (4.39) by letting Ca = AaT. 

where 

0,jn — l — io.2: • • • • • 

Therefore. (4.20) and (4.39) are just different representations of the same family of 

estimators. 

4.3 The MSE of the modified estimator 

When the variance component parameters are known, we argued in Section 4.2 that 

the estimator defined in (4.36) is the most reasonable estimator satisfying restriction 
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(LI). If the variance components are unknown, we replace the variance components 

with the corresponding estimated values. This leads to the modified estimator in (4.1.5). 

If we replace in (4.15) with 

Vi = li^'t + (1 

which is defined in (.3.46). and replace Var{Yi) with Var{Yi). we have 

m m 
K" = - j,)). (4.41) 

J = l  J = l  

For M S E { y i ^  — y.), we have the following theorem corresponding to the Theorem .3..3 

in Chapter 3. 

Theorem 4.2 Let the random effects model 

Y, = xj (3 + bi + Ct, 7 = 1 m, 

where bi ~ A'(0,cr^). e, ~ .\'(0,(t|,). hold. Assume there is a sequence of small areas 

i = 1 772. inhere the number of small areas m —>• oc. Assume = 1,2,.... and 

x j . i  = 1,2...., are fixed sequences. .Assume 5^,, z = 1,2...., with dia^^ ~ 

unbiased estimators of Assume are independent of Y  =  (Vi,...,V^)^ for 

a n y  m .  . A s s u m e  t h a t :  

( i )  e v e r y  d ^  i n c r e a s e s  a t  a  c o m m o n  r a t e  d ,  w h e r e  d  — ¥  00 .  

( i i )  a l  > 0, cr^, < Ci for all i, and x^j < for all i and j. 

( H i )  X L \ t , m  <  C ' u .  f o r  a l l  i  a n d  m .  w h e r e  t h e  d i a g o n a l  e l e m e n t s  o f W m -

( i v )  c , m - i  =  l, . . . . m ,  t h e  w e i g h t s  i n  ( 3 . 3 7 ) ,  a r e  s u c h  t h a t  =  1, are positive 

f i x e d  v a l u e s  a n d  C t m  =  0 { m ~ ^ ) .  

( v )  lim and lim m ^ W  ^ m X .  = A 2  for some posi-
m—fee m—foo 

tivc definite matrices A \  and A2. 

( v i )  t h e  u , ' i . i  =  l . . . . , 7 7 2 ,  which are the weights in (4-i)- u ; , -  = 1. 



Let a, = ^ u-'j \ "ar( Vj)] 'ij, V'ar(V',). i = 1 m. Then 
j=i 

:V/5E(yf^ - y.) = 7:0-s. + (1 - + (<^6 +<7«)^-''(7.) 

+2a,(l — 7,)£' {(7t — 7t)(6i' + Ci)^} 

+2^.(1- 7 . )  [ x J { X ' ' W ^ X r ' X ' ^ W r ^ V l ^ . - a : J V { 0 o ) X ' ' L  
m  

+ ̂ 1 ~ + ^ej) + (^b + <^ej)^'^(7j) + ^ {(7j — lj)ibj + ej)"}] 
J=l 

+«:- [/3:XV'(3o)^'"'- - 2Z^X(X^W^^X)-ia:^1^„VZ,] 4- O(r^). (4.42) 

w h e r e  l^. = [u;i(l — 71),... .^m( 1 — 7m )]^. = max(m~'-^, m~^d~^.d—2), and 

E {(7. - 7.)(6. + e.)^} = ('76+cr,2,)"^2<TjV^-<-'-(cr2 + c72 ^-V^^.VXS^6.m) + 2c.>nO-e.- (4-43) 

// i ^ j. we have 

E  { { y t '  -  y , ) { y f  -  y,)} = d - 7.)(i - y ,)xJV{ ^ o ) ^ j  

+d.(l - {(7,- - 7.)(6,- + e.)^} + 0^(1 - 7j)£' {(7^ - 7j)(6j + e_,)^} 

+<i,( 1 — -,.) x J i X ' ^ W m X ) - '  X '  W r r ^  V l ^  -  x j  V { ^ o  I r  \-l vT 

+a , ( l  - 7 , )  \x ] {X'^W^X)- 'X^'WmVl^  -  x]v (^o)X' ' l .  

m  

+a.aj — 7j)^ + *^1]) + i^l + + E {{~fj — 7j)(^j + 
j=i 

+a.a, \llXVi^o)X''lu:-2llX{X'^W^X)-'X'^W^VlJ +0(rm). (4.44) 

Proof: Note that 

(yf^ - y.)^ = (y. - y.) + ««X!~ 
j=i 

m  

= (y. - y.)^ + 2(2, ^u.-j(y.- - y.)(Vj - y j ) - h d  ' t ( > j  -  y j ) ( > A . -  -  yt)-
J=I J=1 /k=l 

and because the moments are finite, we have 

m  

M S E { y ^ - y , )  =  A/5E(y. - y.) + 2a. ̂  u-vcou {(y. - y,),(>}-y,)} 

m  m  



so 

.•kcov {{Yj -Uj). (Vfc -yk)} • 
j=i fc=i 

(4.45) 

By (.3.46) in Theorem 3.3. we have 

MSE{y. - y.) = + (1 - 'nfxJVi/3o)x, + {<t^ + <t,^.)V(7.) + C»(r„ (4.46) 

where 

Because = 1 by condition (vi), there are at most a finite number of tj, with 

= 0(1) and = 0(1). All other u;,- = 0 { m ~ ^ ) .  Therefore. 

^u:jO{rm} = O(r^) 
j=i 

and 

EE ujjUkOirm) = O(r^). 
J  =  l  k = l  

Because af > 0 and cr^,- < Ci for all i by condition (ii). we have 

0 < crl < Var{Y'j) = + C'l-

m  

If there is some o-'j such that u;, = 0(1), then = 0(1) and 
j=i 

- 1  

(4.47) 

(4.4S) 

a. = 
Lj= i  

ti;,V'ar(Vi) <0(1). 

Ifu,-, = 0(m ') for i = l,...,m, note that > m ^ because tt;, = 1. Hence, 

m  m  

u.'^V'ar(yj) > > cr^m'^ and 

j=i 

j=i }=i 

|a.i = 
L j = i  

Therefore, 1g,| = 0(1). 

LJiVar(Y,) 
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By (4.47). (4.48). and |a,| = 0(1), if we have an order O(r^) approximation to 

each component of the second and the third terms of (4.45), we have an order O(r^) 

approximation to MSEiyf'' — t/.). We first approximate cov {(y. — y,). (Vj — y,,)}. Recall 

that 

.y. - Ui = [(7. - 1)^. + 7.e.] + (1 - - &)- ill - 7.)«r(3o - /3) 

= (7. - 1)6. + 7,e. + (7.- - + e.) + (1 - (3o " 

+0p (max(m~'.m~°'^(f~°'^)) . (4.49) 

and 

[Y] - yj) = (1 --j)[bj + e, - a;J(3o " ̂ )] " (7j - lj)[bj + Cj - ®J(3o " ̂ ) \ -  (4-50) 

By Taylor expansion, we have 

cov { ( 7 ,  —  7 ,  ) ( 6 , -  +  e , ) .  [bj +  £ _ , ) }  —  <  
0(r„) if z j. 

E  {(7. - 7.)(^. + e , y }  + 0 { r ^ ) .  if i  =  j .  

(4.51) 

where E { ( 7 ,  — + e,)"} is defined in (4.43). By (3.56), we have 

£:{[(7. - 7.)(6. + e.)][®J(3o -/3)]} = O(r^) 

for any i and j. Therefore, 

cov | [ ( 7 .  - 1)6, + 7.e,], (1 - lj)[bj + Cj - a;J(3o " /^)]} 

= cov I[ ( 7 .  - 1)6. + 7 .e.], (1 - 7 _ ,  )[6_, + e_, - a;J(3o " /^)]} 

+ C O V  |(7. - 7.)(6, + e,). (1 - 7j)[6_, + e_, - xJ'(3o - /3)]} 

=  0  +  (1 -  7j )cof { ( 7 .  -  7 . ) ( 6 .  + e.J, ( 6 _ ,  +  e_,)) 

- ( 1  -  -,j)cov | ( 7 . -  -  7 i ) ( 6 .  +  e . ) . a ; J " ( 3 o  -  / 3 ) }  

O(r^) if z ^ J. 

E  {(7. - 7<)(6. + e,)^} + 0 { r m )  if i  =  j .  
(4.53) 
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We also have 

cov [ x j (3o - ̂)- [b: + e, - x](3o - /3)]} 

(4-54) = \ x J { X T W ^ X ) - ' x , x v , , , ^ { a l + a l ^ )  -  xfV'(3o)®. 

where V(0o) = {X'^WmX)-'{X'^W^VW^X){X'^WmXyK By using (3.55) and 

(3.56). we have 

cov |(^. - 7.)«J"(3O -/3).(1 --fj)[bj + ej -«J(3o -/3)]} = c>(r^). (4.55) 

The derivation of (4.55) is quite long. Heuristically. we can look at the problem in the 

following way. By condition (v) and (4.54). 

c o v  [ x j i ^ o  -/3),(1 -  l j ) [ b j  + e ,  -  arJ(3o " ̂ )]} = 0(m-'). (4.-56) 

Since £(7. - 7.) = O i d - ' ) .  c o v  {(7. - 'u)xJ{^o " /3)- (1 " '(:)[bj + e, - xJ{^o " Z?))} 

should be of order 0{m~^d~^) = 0(rm). Similar arguments (or direct calculation) lead 

to 

cou |[(7. - 1)6, + 7.e.], (7j - lj)[bj + - xJ'(3o - 0)]\ = 0(r„). (4.57) 

cov |(1 - - scJ(3o -/3)]} = C>(r^). (4.5S) 

and 

cov | ( 7 .  - -n)xJ(Po -  ̂)-ill - + (3o - /3)]} = 0{rm). (4.59) 

By (4.53). (4.54). (4.55), (4.57). (4.58), and (4.59), we have 

cov {{y, - y,).iYj - yj)} = (1 - -fj) [xJi^^^rnX )~^ XjlUj^^rnicTb + ajj) 

-x'[Vi^o)^j]+0{rrn) (4.60) 

if i ^ j and 

cov {(y, - y,), (Yi — y,)} = (1 - 7i) [xJ^(X^W^X)~'x,Wi,,r„(cr^ +'^ej) 

-xfV(^o)x,] +E{(7.-7.)(b. -he,)'}-hO(rm) (4.61) 
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if 7 = J .  By (4.47). (4.60). and (4.61). 

m  

^^cov {(y. - y.)- (Vj - yj)} 
j=i 

m  
= (1 -  x J V ( 3 o ) ^ j  

j=i 

+ E  {(7: ~ l i ) { b i  +  Ct)^} +  0 { r m )  

= (1 -7.) x J { X ' ^ W m X r ' X ' ^ W ^ V l ^ . - x i V { ^ o ) X ' l r  + C>(r„). (4.62) 

where Zu- = [^'1(1 — 7i )• - • - 1 — 7m)]'^-

.\ow we appro.xinnate cov {(Vj — yj), (V^ — y k ) } -  By (4.50), we have 

O') - Fj) = (1 - 7j)[^j + Sj - «J(3o - /3)] - il] - - «7(3o - /3)]-

Note that 

coi^ {[6, + e, - xJ'(3o - /3)], [6fc + e, - xl{% - /9)]} 

- x]{X'^WmX]-'^XkWkk.rr.{<jl + ) 

-xl{X''W^X)-'x,w,,.m{cr! + al^)] . if j ̂  /c 
= (4.63) 

(<^6 +'^ej) +®JV'(3o)®j 

if j = /c. 

cov 

cov 

{ [ 6 j  +  C j  -  a ; [ ( 3 o  -  l 3 ) ] A l k  -  l k ) [ b k  +  - ® [ ( 3 o  -  f ^ ) ] }  

O i v m )  \ {  j  ̂  k ,  

E {(7j - 7j )(^j + ej)2} + O(r^) if j = /c. 

{(7j - 7j)[6J + Sj - «J(3o - /3)]. (7fc - 7<:)[i<: + Cfc - (3o - /3)]} 

O(r^) ifj^^Ar, 

+ ̂ e.)^'(7<) + C>(^m ) if 3 = 

(4.64) 

(4.65) 
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By (4.63). (4.64). and (4.65). we have 

cov {(Vj - yj),(Vi - yk)} = (1 - 7j)(l - I k )  [ - x J i X ' ^ W ^ X y ^XkWkk.micrl + 

+ al)) + xJV{Po)xJ^ + 0{r^) (4.66) 

if j ^ k and 

COL- {(V- - y,) .  (v; - y,.)} = (1 - 7^)2 [(^2  ̂  ^ V(3o)®. 

- 2 x J { X ' ^ W m X ) - ^ X j U ' j j , m { ( T b  +  C T ^ j )  

+(<^6 + ̂ ej)^(7j) + E {(7j — lj)ibj + Cj)^}] + 0{rjn) (4.67) 

if i ^ j. By (4.48), (4.66), and (4.67), 

m  m  

'^ujjujkcov {{Yj - yj), (Yk - yh)} = lZ.XVi0o)X'^lu.-
j = l h=l 

m  
- • 2 l l X { X ' ' W ^ X ) - ' X ^ W ^ V l ^  +  -  i j ?  [ { a l  + a l )  

j=i 

+(^6+0^^(7.) + - 7,)(6, + e,)'}] + O(r^). (4.6S) 

rhere = [u.'i(l - 7[) ,.^'m(l - The M S E { y ^ ^  - y , )  of (4.42) follows (4.45). w 

(4.46). (4.62). and (4.68). 

To prove (4.44), note that 

m 
E {iy^y - y.)(yf - yj)} = {(y. - y.)(yj - yj)} + a.'^u.-kcov {(y. - y.), (v;. - yk)} 

t = l  

m  

{ { y j  - y j ) A >fc - yfc)} 
k = l  

m  m  

+a.dj EE u;fcu;fc,cor {(Yk - yk) A Vjt, - yt,)} • (4.69) 
k = i  f c i = i  

The £ {(y;^^ - yr){y')' - y^)} of (4.44) follows (4.69). (4.62). (4.68). and (.3.47) of Theo­

rem 3.3. • 

Remark 1. It is easy to verify that the laist four terms of (4.42) are all of order 0(m~'). 

Therefore, y^^ — y, is of order 0-p{m~^-^). 
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Remark 2. If a, = 0 ( m ~ ^ ) .  the second term of (4.42) is of order Oir-m) because 

E  { ( 7 j  —  +  e _ , ) ^ }  i s  o f  o r d e r  0 { d ~ ^ ) .  

Remark 3. Generally, the third term of (4.42) 

2a. ( i  - 7 : )  ^ J { X ' ' W ^ X r ' X ' ' W ^ V l ^  - xfV-(3o)A'^^ =  0 { m - ' ) .  

However, it is negligible in many practical situations because xJV{I3q)X^Iw is close to 

xJ{X^Wr„X)~^X^WmVluj- We can see this by noting that 

cor {(1 -  -i,)xji0 - /3), (1 -  'i,)[{b, + e,) - xj(3 - /3)]} = 0. 

where ( 3  =  ( X ^ V X )  ^ X ^ V Y  is the GLS estimator. We also note that the third term 

of (4.42) is due to 

cov {(1 - - , ) x j {0o - /3), (1 - l j ) [ b j  +  e ,  -  x j i ^ o  -  /3)]} .  

Therefore, the third term of (4.42) should be negligible if the WLS estimator /3o is close 

to the GLS estimator /3. 

4.4 Simulation study 

We will use the settings of the simulation study in Chapter 3 in the simulation for 
m  m  

the restricted estimator. The restriction that we use is m~' E = m -E  Vj, which 
t=i 1=1 

m  

means for i = 1 m. We use ii. = [^(^6 + replace 
j=i 

m  

a, = [^~^(cr^ + Theorem 4.2. We treat (i, as fi.xed values so that we 

can use (4.42) of Theorem 4.2 to get the order 0{rm) approximation to MSE{y^ ' — y,) 

for our simulation study. The second term of (4.42) is of order O(r^) in the simulation 

set up by Remark 2 of Theorem 4.2. We also have 

m 
a ?  -  7 , ) ^  [ ( c l  + <7^)1/(7,) +  E  )  

J = 1 
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because u:, = n? '. V'(7j) = 0 { d  '). and E  { { i j  —  - r  C j ) ' }  = 0 { d  '). How-
m  

ever, when d  is small. 7_,)^ [(cr^ + o-^j)V ' (7j)  • +  E  —  ~ j ) i b j  -r  e^)^}] is much 
j=i 

larger than 

a' J 2 - ' j i ^ - ' i : f i c r l  +  ' r l ) + l l X V 0 o ) X ' ' l u , - 2 l l X { X ' ' W r r . X ) - ' X ' ' W ^ V l , ,  
Lj = l 

which is the 0 { m  M part of the fourth and fifth terms of (4.42). Therefore, we do not 

simply eliminate 

m  

^u,7(l - [(<rj + 4)V(7j) + E{i%- + e,)'}] 
J = l 

in MSE[yf^ — y,) because it is an order 0(rm) term in our simulation set up. We still 

include the order 0{m~^d~^) part of this term, which is 

2i-'53(1 +-y). 
j=i 

in M  S  E { y f ^  ~ y i ) .  This leads to an order 0 ( r m )  theoretical approximation to M S Eiy^'^ — 

MSEir!" -y,) = MSEiy,-y, 

+2a,(l - 7.) 

+a? 

j=i j=i j=i 
2 

- 2  

.7 = 1 J J=1 
^^(1 ~ + ̂ e j )  + 
J = 1 

m m  r n  ^  

-2m-' 5^(1 - 7j ) 5] <71 + 2d-' 5^(1 - [• . 
J=1 J=l 

.A.n estimator to MSE{y^^ — yi) is 

j=i 

M S E { y f '  -  y . )  =  M 5 E 2 ( y .  -  y . )  

+2a.(l -7.) m ^ ^ ^(^5 + 1 - 7j) 
j = l  J=1 J = 1 

(4.70) 
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- r a f  - 2  

J = I 
E d  - 7 . )  
.J=l  J=I 

-2m-" 1 - 7j ) ^ 5i + 2</-' 1 - 7, fOl + 7,) }• . 
J=1 J=1 

(4.71; 
7 = 1 

where MSE2{yt — y,) is defined in (3.72). 

The simulation results are reported in Table 4.1 through Table 4.5. These tables are 

similar to the tables in Chapter 3. For comparison purposes, both the unrestricted and 

restricted simulation MSE are reported in the tables. 

From these tables, we can see that the simulated M S E  of the restricted estimator 

is very close to the simulated MSE of the unrestricted estimator. The inflation in the 

M S E  d u e  t o  t h e  m o d i f i c a t i o n  i s  a l m o s t  n e g l i g i b l e  ( l e s s  t h a n  0 . 0 0 5 ) .  F o r  l a r g e  d  a n d  m ,  

there is no visible difference between the two MSE. The theoretical MSE approximates 

the simulated MSE very well except for very small cr^. The estimated MSE also yields 

a very good estimator of the simulated and theoretical MSE except for very small erf. 

Considering the facts that the adjustments we made to the MSE due to the restriction 

are quite small, and that the theoretical and estimated MSE in Chapter 3 yield good 

approximations to the simulated MSE. these two observations are not surprising. 
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Table 4.1 Simulation study of M S E { y f ^  —  y,) ( d  = 5.m = 36) 

^2 Unrestricted Restricted Theoretical Estimated 
li 

Simulation M S E  Simulation M S E  M S E  M S E  

0.0099 0.104 0.104 0.183 0.223 

0.010 0.0066 0.114 0.114 0.140 0.246 

0.0050 0.126 0.128 0.119 0.260 

0.0909 0.193 0.193 0-245 0.275 

0-100 0.0625 0.20S 0.209 0.220 0.308 

0.0476 0.223 0.225 0.205 0.328 

0.2 0.313 0.313 0-337 0.344 

0.250 0.143 0.342 0.343 0.339 0.392 

0.111 0.372 0.375 0.337 0.421 

0.3 0.409 0.409 0.427 0.407 

0.429 0.222 0.465 0.466 0.460 0.468 

0.176 0.497 0.499 0.475 0.511 

0.4 0.510 0.510 0.520 0.493 

0.667 0.308 0.594 0.594 0.593 0.580 

0.25 0.657 0.658 0.633 0.638 

0.5 0.609 0.608 0.614 0.608 

1.000 0.4 0.753 0.753 0.737 0.737 

0.333 0.823 0.825 0.814 0.S41 

0.6 0.700 0.700 0.705 0.710 

1.500 0.5 0.873 0.873 0.890 0.897 

0.429 1.02 1.020 1.020 1.050 
1 

0.7 0.757 0.757 0.792 0.798 

2.333 0.609 1.030 1.020 1.050 1.050 

0.538 1.230 1.230 1.250 1.240 
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Table 4.2 Simulation study of A/5£'(yf' — y,) {d = 9 . T n  =  36) 

-> Unrestricted Restricted Theoretical Estimated 

Simulation M S E  Simulation M S E  M S E  M S E  

0.0099 0.099 0.0987 0.183 0.212 

0.010 0.00662 0.104 0.104 0.140 0.227 

0.00498 0.108 0.109 0.119 0.238 

0.0909 0.180 0.180 0.244 0.257 

0.100 0.0625 0.189 0.191 0.218 0.280 

0.0476 0.209 0.212 0.204 0.295 

0.2 0.289 0.289 0.331 0.307 

0.250 0.143 0.317 0.318 0.333 0.340 

0.111 0.323 0.325 0.331 0.361 

0.3 0.404 0.405 0.415 0.384 

0.429 0.222 0.448 0.449 0.448 0.434 

0.176 0.476 0.477 0.464 0.469 

0.4 0.485 0.485 0.503 0.475 

0.667 0.308 0.559 0.559 0.574 0.551 

0.25 0.611 0.612 0.615 0.602 

0.5 0.582 0.581 0.591 0.583 

1.000 0.4 0.704 0.705 0.710 0.700 

0.333 0.775 0.776 0.786 0.781 

0.6 0.675 0.675 0.679 0.689 

1.500 0.5 0.848 0.848 0.857 0.857 

0.429 0.972 0.972 0.981 0.981 

0.7 0.765 0.765 0.765 0.778 

2.333 0.609 1.010 1.010 1.010 1.000 

0.538 1.190 1.190 1.20 1.190 
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Table 4.3 Simulation study of M S E { y f '  —  y i )  { d  =  9 . m  =  99) 

o Unrestricted Restricted Theoretical Estimated 
^6 it 

Simulation M S E  Simulation M S E  M S E  M S E  

0.0099 0.049 0.049 0.073 0.127 

0.010 0.0066 0.049 0.049 0.057 0.1.32 

0.0050 0.048 0.049 0.050 0.135 

0.0909 0.136 0.136 0.148 0.174 

0.100 0.0625 0.139 0.1.39 0.140 0.185 

0.0476 0.143 0.143 0.135 0.192 

0.2 0.248 0.248 0.252 0.257 

0.250 0.143 0.263 0.263 0.261 0.280 

0.111 0.271 0.272 0.265 0.294 

0.3 0.350 0.350 0.351 0.348 

0.429 0.222 0.389 0.389 0..383 0.389 

0.176 0.409 0.409 0.401 0.415 

0.4 0.456 0.456 0.451 0.453 

0.667 0.308 0.523 0.524 0.516 0.526 

0.25 0.561 0.562 0.555 0.572 

0.5 0.551 0.552 0.551 0.554 

1.000 0.4 0.658 0.658 0.660 0.669 

0.333 0.749 0.749 0.731 0.751 

0.6 0.644 0.644 0.649 0.648 

1.500 0.5 0.810 0.810 0.815 0.818 

0.429 0.941 0.942 0.932 0.940 

0.7 0.737 0.737 0.745 0.739 

2.333 0.609 0.972 0.972 0.980 0.971 

0.538 1.150 1.150 1.160 1.150 
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Table 4.-4 Simulation study of MSE{yf^ — y,) ((/ = 14. m = 99) 

-^6 ' f t  
Unrestricted 

S i m u l a t i o n  M S E  

Restricted 

S i m u l a t i o n  M S E  

Theoretical 

M S E  

Estimated 

M S E  

0.010 

0.0099 0.047 0.047 0.073 0.121 

0.010 0.0066 0.045 0.045 0.057 0.125 0.010 

0.0050 0.044 0.045 0.050 0.126 

0.100 

0.0909 0.129 0.129 0.147 0.169 

0.100 0.0625 0.131 0.131 0.139 0.177 0.100 

0.0476 0.135 0.135 0.1.35 0.182 

0.250 

0.2 0.246 0.246 0.2.50 0.246 

0.250 0.143 0.261 0.261 0.2.59 0.266 0.250 

0.111 0.266 0.266 0.263 0.277 

0.429 

0.3 0..350 0.350 0.346 0.337 

0.429 0.222 0.380 0.380 0.379 0.375 0.429 

0.176 0.397 0.397 0.396 0..398 

0.667 

0.4 0.448 0.447 0.443 0.440 

0.667 0.30S 0.511 0.511 0.508 0.508 0.667 

0.25 0.556 0.556 0.547 0.551 

1.000 

0.5 0.542 0.543 0.541 0.535 

1.000 0.4 0.648 0.649 0.649 0.642 1.000 

0.333 0.727 0.728 0.719 0.713 

1.500 

0.6 0.643 0.643 0.638 0.639 

1.500 0.5 0.801 0.801 0.800 0.802 1.500 

0.429 0.912 0.912 0.915 0.919 

2..333 

0.7 0.7.35 0.735 0.7.33 0.731 

2..333 0.609 0.954 0.954 0.962 0.961 2..333 

0.53S 1.130 1.1.30 1.140 1.130 



92 

Table 4.5 Simulation study of MSE{y^'' — y, ) {d = 14. m = 225) 

n 
' f i  

Unrestricted 

S i m u l a t i o n  M S E  

Restricted 

S i m u l a t i o n  M S E  

Theoretical 

M S E  

Estimated 

M S E  

0.010 

0.0099 0.027 0.027 0.0.38 0.077 

0.010 0.0066 0.026 0.026 0.031 0.078 0.010 

0.0050 0.025 0.025 0.027 0.078 

0.100 

0.0909 0.110 0.110 0.116 0.126 

0.100 0.0625 0.112 0.112 0.114 0.1.30 0.100 

0.0476 0.112 0.112 0.113 0.1.32 

0.250 

0.2 0.225 0.225 0.224 0.230 

0.250 0.143 0.2.39 0.239 0.236 0.246 0.250 

0.111 0.243 0.244 0.242 0.255 

0.429 

0.3 0.327 0.327 0.325 0.328 

0.429 0.222 0.362 0.363 0.358 0.364 0.429 

0.176 0.37S 0.378 0.376 0..3S5 

0.667 

0.4 0.431 0.431 0.427 0.428 

0.667 0.308 0.501 0.501 0.490 0.494 0.667 

0.25 0.536 0.537 0.528 0..5.36 

1.000 

0.5 0.527 0.527 0..528 0.530 

1.000 0.4 0.6.32 0.632 0.633 0.6.39 1.000 

0.333 0.704 0.704 0.702 0.712 

1.500 

0.6 0.625 0.625 0.628 0.623 

1.500 0.5 0.792 0.792 0.787 0.781 1.500 

0.429 0.897 0.897 0.899 0.894 

2.333 

0.7 0.723 0.723 0.726 0.724 

2.333 0.609 0.947 0.947 0.952 0.948 2.333 

0.53S 1.120 1.120 1.130 1.120 
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5 THE EFFECTS OF NONNORMAL ERRORS 

5.1 Introduction 

The results of Chapter 2 through Chapter 4 are all ba^ed on normal sampling errors. 

The formulas for the MSE of the EBLUP estimator are slightly different if the sampling 

errors are not normally distributed because V'ar(5^, — cr^-) is different. Lahiri and Rao 

(1995) discussed the robustness of the MSE estimator with non-normally distributed 

6.. We will study the robustness of the MSE estimator we derived in Chapter 3 with 

respect to non-normal sampling errors in this chapter. 

.Another impact of non-normal sampling errors is that the EBLUP is biased if the 

sampling errors are not symmetrically distributed. For the random effects model, we 

consider the estimator defined in (3.43) 

y• = 7- V; + (1 _ )a;^3o • (5-1) 

where 7 .  = (5^6^ + ^e:)~^ ̂ fc.m •: which is defined in (3.44). The only differ­

ence between y, and the EBLUP is the estimator of /3 used. The y, uses 

(3q = (X^VVn^X)"'as the estimator of 13. The EBLUP uses /3 = 

[X'^V X)~'X^V Y as the estimator of /3. If the Wm is chosen to be close to 

V~\ should be reasonably close to V . For simplicity, we will discuss the bias 

of y,. which has been discussed extensively in Chapter 3 and Chapter 4, instead of the 

bias of the EBLUP yf^. Note that 

s, = i.y. + (1 - + (t, - 7,)(v-; - xf/S) - (7. - 7.)xr(3o - n) (5.2) 
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Since 

E  +  { I  - ' u ) x J ^ o }  =  

the possible bias of y, is 

^ {(7. - 7.)(V; - x j 0 )  -  (7. - 7.j®r(3o - /3)} • (5.3) 

We will assess this bias for non-symmetric sampling errors e.. z = 1,.... m in this chapter. 

5.2 Approximation to bias for iioii-normal sampling errors 

We use Taylor e.Kpansion to get an approximation to the bias of y, defined in (5.3). 

W'e assume that the conditions of Theorem 3.3 hold except the assumptions about the 

distributions of 6; and e,. We assume that 6,, f = 1,. . .. m are independent and identically 

distributed (iid) symmetric random variables with E{bi) = 0. V'(6.) = and finite 

eighth moment. We assume the e,-'s are independent and identicalh' distributed sampling 

errors with £'(e,) = 0. V'(e,) = cTj,. and finite eighth moment. We also assume that all 

6, are independent of all e,. By Taylor expansion, we have 

E {(7. - 7.)(V; - «r/3)} = E {(a^ + <7^ )"^KV^6.m - <76) -

+ - 'y].? 

+ (^6 - -  <7e^)](^> + + 0 { r m )  

= E - cr^) - )] 

+{<^1 - <^e.)(^6.m - - c^e.)]e.} + O(r^). (5.4) 

In the sequence of samples defined in Chapter 3, 5^. = Op(l) and 5^, — cr^, = Op(</~°-^). 

It is desirable that E{(a^, — order 0{d~^). However, this is not necessarily 

true for any and e,. We will consider the following scenario. For each small area 

i. we observe \\j,j = 1, + 1. The Vij have common mean y, and independent 
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sampling error where e , j  =  { d ,  + 1)H' and i '  h;is mean zero and variance 

We assume that i '  has finite fifth moment. Let «:3i = E { e ^ j ) . j  = 1 c/, + 1. We 

have K3j = £" {(t/, + 1 = 0 { d ) .  Let K5, -= E { e ' ^ j ) . j  = 4- 1- VVe have 

K5. =  E  |(<f, +  1)3I  =  0 [ d z )  =  0 { d } ) .  In other words. Vi_, = xjie,j. Let Y\ = V',. = 

d, +1 d.-h 

( - f  1 )  ^ ^ Vtj and G-i — — (i/i -j- 1) E e. j ,  which has mean zero and variance 
j=i j=i 

<7^, = {di + The random effects model is 

V; = y, + e,. (5.5) 

yi = aeJ/3 + b,. (5.6) 

The unbicised estimator of cr^, is 

rf. + l ti. + l 
d l = {d, + ir'd-' 5 3 ( v;, - v;)2 = (d, +1)-'<-' X^(e., - e,)\ 

J = l  J = l  

W e  have 

^ - crlt)e.} = E { a l e ^ }  

=  { d ,  +  l ) - ' d - ' E  | ( ^  e ^ , ) e .  -  { d ,  +  l)e^| 

{(it-T-1 fii + l 
(</,+ l)-'52e;-(rf,+ l)-2^e?^ 

J=1 7=1 

= {di + 1) ^K3,. (5-7) 

and 

^ = rn-^E {(S=^. - cr^Je,} = m'^ld, + (5.S) 

Since |k3.| = 0{d), we have 

E{Ol,-al)e.} = Oid-') (5.9) 

and 

E{{3l^-al)e.} =Oim-'d-'). (5.10) 
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Xoto that 

E {(^e, - ^ + cr^.e.} 

( /d.+l \2 ^d. + l \ 
= {d; + 1) "c/, -£• < ~ ^ ^ 

—'2cr^^{d^ + 1) ^K.zi-

Let c,j = (c/, + l)~3e,j. Since have finite fifth moment, we have 

•' d,+l \ 

( d ,  +  1 ) " '  e . j J  = 0(J-3) 

by Theorem 3.1. Therefore, 

( d ,  +  l ) - y - ' £ { ( d , - h l ) ' e f }  =  d - ' ( d ,  +  l ) ^ £  

=  d - - ( d ,  +  l ) J O { ^ / - ^ )  =  0 { d - ^ ) .  

(it + l 

J=t 

.\ote that 

((/, + I \ /(f, + I \ /(f, H-Ic/, -f-1 \ 

£  4 j  4 j  

2 

=  +  1 )  - 1  

. J = 1 

/<i. + l ''tf, +1 d.-k-l 

E 4  E 4  E E  
. j=i j=i 

and 

-f-1 

.j = l 

t^, + l 

^  1  1  5 1  )  ^ '  f  -  ^ ^  2  (  ̂  
.J = l / J V. \j = I / j = l 

= 2d{{dt + l)<7'e,«3i + /vsf 

and 

M ( E  

tfi4-l \ / (ix-\-\ 
2 

. J=1 
H I ^ 

j = l fcjtj 
=  W ,  +  l ) - £  2  5 3  

cf, + 1 ^ y'cf, + 1 
2 

.;=i 
(£, +1 

EE 
j = l k-^] 

= 2(<;. + l)-'£^;^eJe?^ 
j = l t^ej 

— 2di{di + 
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Therefore. 

^ d ,  T - I X "  / d , - r \ .  

(d, + 1) \ I I "i" ^) ( 53 f  
. j = i  J  \ j = i  

'a. + I \ ^ 
= (J. + l)-^-^^ { (1 -2((f. + 1)"') 

. j=i 

-2w,+ i ) -  x:4  
\ j = l  /  \ j = l  

ij A: I ^ 

= 2c/, + 1) + d.^ '{d-i + 1) ^ ( d i  - l)K:5t. (5.15) 

By (5.11), (5.12), and (5.15). we have 

£• {(^'= - = -^al,d-'[d, + 1)-'K-3. + d-\d, + l)-\d, - 1)KS, + 0{d-^). (5.16) 

Since ^3, = 0 { d )  and Ks, = 0 { d } ) ,  we have 

E { { a l - a l f e , ]  = 0 { d - ^ ) .  (5.17) 

We also have 

^  -  '^6)(^r: "  <.)e.} =  r u ' ^  E  {(?;, - C^eJ^C,} = (9(m-'</-^). (5.IS) 

and 

^ {(S'b.m - <^6)"e.} = {(a^, - crl^?e,] = Oim'^d-^). (5.19) 

By (5.4). (5.7). (5.S). (5.16), (5.18). and (5.19). we have 

^ {(7. - 7.)(V; - x J f B ) }  = -(cTj- + a l y ' ^ a l E  { ( a l  - c r l ) e , }  + O(r^) 

= —((/,+ l) ^{<7^ + <7^,) + 0{rm). 

where V m  = 0 { m a x { m ~ ^ d ~ ^ .  d ~ ^ ) ) .  

By (3.55). we have 

p p 

X k W k k . m  < m 'C^( EE ̂2ij )^kk^Tn — ^-1 
1 = 1  j  =  l  



9S 

for some constant C4. Therefore. 

|^{(7. -7.)a:J(3o -/3)}| 

m 

^ [ ( 7 .  -  +  e , ) ]  
fc=l 

<  m - ^ C 4 E  |{(7. -  ' u ) { b i  + e.)}l + m ' ^ C ^  ̂  E  i{(7,- -  7,)(6fc +  efc)}| 

= 0{m~^ d~^) -\- m~^ {vn — ].)0{Tn~^ d~^) = 0{Tn~^ d~^). (5.21) 

Hence, an order (9(r^) approximation to the bias in (5.3) is 

-{d. + + alr^alK^.. (0.22) 

5.3 Simulation study 

We use the settings of the simulation study in Chapter 3. The only difference is that 

e,j is not normally distributed. In this section. e,j ~ (</-f I )°'^6~°'^<Tc,(x3 — 3). which 

hcis mean zero and variance (d + 1)0"^,. We set one third of the equal to 1.0. one 

third of the <7^, equal to 1.5, and one third of the equal to 2.0 and generate samples 

for al — 0.1.0.25. 1.1. 1. 1.5. 5. For each of the parameter settings, we generated 1000 

samples for {d.m)= (5, 36). (9, 99), and (14. 225). 

The samples are used for two purposes. The first purpose is to assess the bias of y. 

under non-normal sampling errors. The theoretical approximation to the bias defined 

in (5.22) is 

B  = - 4 [ 6 { d + l ) ] - ' - ' ( a l  +  a l r ' a l a l .  (5.23) 

.An estimator of the theoretical approximation is 

B  = -4[6(rf + + S i r '  s i . (5.24) 

We have three distinct cr^.. We divide the data into three groups according to the 

vahies of cTg,. For each sample, we compute the mean of the simulated biases of y, for each 
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of the three groups, the theoretical bias defined in (5.23) for each of the three groups, 

and the estimated biases defined in (5.24) for each of the three groups. VVe then compute 

the mean of the 1000 samples for these values. VVe also compute the variance of the 1000 

samples of the simulated bias of y,. VVe want to determine if the simulated "bias" is really 

a bias and is not due to the random variation. For = (5.36.0.1.1). the 

mean of the simulated bias of y, is -0.0647 and the corresponding standard error is 0.007. 

The t-statistic is 9.IS. Therefore, the simulated bias of y, is significantly different from 

zero. Similarly, the t-statistic is 10.66 for {d.m. = (5,36,0.25.1). VVe computed 

a test for all the {d.m.crl.cr^^) combinations. The conclusion is that the bias of y, is 

significantly different from zero. 

We discussed in Chapter 4 that the ratio adjusted estimator described in Chapter 2 

is in the same family of restricted estimators as yf'^ defined in (4.41). These restricted 

estimators make an adjustment such that the (weighted) sum or mean of the adjusted 

small areas estimators is equal to the direct survey estimator of the total or mean for 

a larger area. .Another feature of restricted estimators such as is that the restric­

tion removes most of the bias in the small area estimator y.. VVe made this claim in 

Chapter 2. For each sample, we compute the mean of the simulated biases of y-^'. the 

restricted estimator of y,, for each of the three groups. VVe then compute the mean and 

variance of the 1000 simulated biases of yf^. The t-statistic for bias of y^^ is 0.915 when 

{d.m. (7^. = (5.36.0.1.1) and is 1.34 (c/. m. cr^, ) = (5.36,0.25.1). There are a 

few cases where the t-statistic for the bias of yf^ is significantly different from zero. For 

example, the t-statistic is 3.3S for [d.m.cr^.cr^^) = (9.99.2.33,2). So we can not claim 

that y^' is an unbiased estimator of y.. However, the bias of yf^ is much smaller than 

that of y,. 

The means of the simulated biases of y,, theoretical bias of y,, the estimated biases 

of y,. and the simulated biases of yf^are shown in Figure 5.1 through Figure 5.3. Each 

Figure corresponds to a {d.m) combination and consists of three plots. The first plot is 
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for = 1; the second plot is for = 1.5; and the third plot is for = 2. In each 

plot, the mean values are plotted against the values of 

.\'ote that the bias appro.ximation defined in (5.22) does not depend on m explicitly. 

From these figures, we can see that the theoretical bias defined in (5.22) is a reasonable 

approximation to the simulated bias even for d = 5. For d = 14. the simulated biases are 

verv close to the theoretical biases and the estimated biases. The following observations 

are reasonable if we keep (5.22) in mind. The bias decreases when d increases. For a given 

erf. and {d.m), the bias increases first then decreases as cr^ increases. The claim that 

the restriction removes most of the bicis in the small area estimator y, is also supported 

by these figures. We can see that the simulated biases of the restricted estimator is 

very close to zero from these figures. 

The second purpose of the simulation study is to assess the impact of the bias on the 

MSE{yi — y,) when sampling errors are not normally distributed. .-X naive approximation 

to the MSE for non-normal sampling errors is 

M S E x(y, - y,) = - h  MSE{y, - y.). (5.25) 

where B is defined in (5.23) and M5£'(y, — y,) is defined in (3.67). .A.n estimator of 

MSEsiy, - y.) is 

M S E x i y ,  -  y.) = -f :V/5£2(y. - y.)- (5.26) 

where B  is defined in (5.24) and M S E 2 [ y i  — y i )  is defined in (3.75). 

For each sample, we compute the mean of the simulated M S E  of y, for each group. 

We also compute the theoretical MSE defined in (5.25) and the estimated MSE defined 

in (5.26) for each of the three groups. We then compute the mean of the 1000 samples 

for these values. 

First, we assess the impact of the bias on the MSE{yi — yi). The square of the 

simulated bias is less than 4% of the simulated AiSE{yi — y,). Therefore, the contribution 

to MSE{y, — yi) due to the bias of y, is small. If we use the restricted estimator yf"' to 
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estimate y,. which is an almost unbiased estimator of y,. the MSEiy'^ — y,) is slightly-

larger than MSE(yt — y,). The y, is a better estimator of y, in terms of MSE than y;^'. 

However, the bias becomes a concern if we are also interested in estimating y, = 

-i-vyi- An example is the NRI. The direct survey estimator Vj is not in the oflRcially 

relejised XRI data. The Y', is replaced by the small area estimator. If we use y, as the 

small area estimator for all areas, then .N'RI users will get the biased estimator of y,-

y = '-he bias of y is not negligible compared to MSE{y — y.). To see 

this, we let u,-, = and compute the simulated bias, y — y., for the 1000 samples. 

We also compute the simulated variance of y — y, for the 1000 samples. The simulated 

MSE{y — y.) is defined to be the sum of the square of the simulated bicis and the 

simulated variance of y — y.. We also compute the mean of V' — y. and variance of 

) — y . where V' - YlTLi~ results are reported in Table 5.1. 

From this table, we can see that the bias remains at about the same level as m  increases. 

However, the variances of y — y. and V' — y. decrease as m increases. The square of the 

simulated bias using y to estimate y. ranges from 20% to 200% of the variance of y — y . 

The percentage increases cis m increases. The restricted estimator should be used to 

remove the overall bias. 

To cissess the robustness of the M S E { y ,  — y,) when sampling errors are not normally 

distributed, we also computed the mean of the simulated MSE with normal errors for 

each of the three groups from Chapter 3. The ratios of the theoretical MSE. estimated 

MSE. and the simulated MSE with normal errors to the simulated MSE of non-normal 

errors are computed and the results are shown in Figure 5.4 through Figure 5.6. Each 

Figure corresponds to a {d,m) combination and consists of three plots. The first plot is 

for = 1: the second plot is for = 1.5: and the third plot is for <7^, = 2. In each 

plot, the ratios are plotted against the values of cr^. 

From these plots, we have the following observations. The naive theoretical M S E  

is slightly larger than the simulated MSE for normal errors, in general. The naive 
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theoretical X f S E  underestimates the simulated M S E  for non-normal errors when 

is small and overestimates the simulated MSE for non-normal errors when af is large. 

The simulated MSE for normal errors underestimates the simulated MSE for non-

normal errors when cr^ is small. The maximum underestimation is less than 15% and 

the underestimation decreases as al increases. For large cr^. e.g.. cr^ = | and the 

simulated M S E  for normal errors is very close to the simulated M S E  for non-normal 

errors. Therefore, our approximation to MSE{yt — y,) based upon normal errors is quite 

robust with respect to non-normal sampling errors. The estimated MSE for non-normal 

errors is slightly smaller than the simulated MSE for normal errors except for very small 

< j ^ .  T h e  e s t i m a t e d  M S E  f o r  n o n - n o r m a l  e r r o r s  a l s o  u n d e r e s t i m a t e s  t h e  s i m u l a t e d  M S E  

for non-normal errors except for very small cr^. The underestimation is usually between 

2% and 10% and the underestimation decreases as cr^ increases. 
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Table 5.1 Comparison of Monte Carlo Bias and MSE of y — y, (1000 sam­
ples) 

( d . J T i ^ c r l )  
Mean of 

- y. 

Variance of 

y. - y. 

MSE of 

y. - y. 

Mean of 

y - y .  

Variance of 

y - y .  

1 5.36.0.100 -0.0672 0.0454 0.0499 0.01094 0.0402 

5.36.0.250 -0.0S76 0.0485 0.0562 0.00551 0.0424 

5.36.0.429 -0.1178 0.0480 0.0619 0.001694 0.0411 

5,36,0.667 -0.13SS 0.0453 0.0646 0.00259 0.0419 

5.36,1.000 -0.1501 0.0422 0.0647 -0.00120 0.0414 

5.36.1.500 -0.1588 0.0418 0.0670 -0.00660 0.0423 

5.36.2.333 -0.1463 0.0380 0.0594 -0.00602 0.0398 

1  9.99.0.100 -0.0568 0.0177 0.0209 -0.00120 0.0150 

1  9.99.0.250 -0.0763 0.0175 0.0233 0.00175 0.0149 

9.99.0.429 -0.1027 0.0172 0.0277 0.00211 0.0153 

9.99.0.667 -0.1261 0.0158 0.0317 -0.00247 0.0148 

j  9.99.1.000 -0.132 0.0137 0.0311 0.00104 0.0141 

9.99.1.500 -0.1335 0.0148 0.0326 -0.00156 0.0143 

1  9.99.2.-333 -0.1290 0.0149 0.0315 -0.00458 0.0152 

14.225.0.100 -0.0393 0.0084 0.0099 0.00043 0.0070 

14.225.0.250 -0.0694 0.0077 0.0125 -0.00209 0.0070 

1 14.225.0.429 -0.0915 0.0073 0.0157 -0.00317 0.0068 

14.225.0.667 -0.0100 0.0069 0.0169 0.00303 0.0067 

r  14.225.1.000 -0.1124 0.0065 0.0192 -0.00017 0.0066 

14,225.1.500 -0.1159 0.0065 0.0200 -0.00107 0.0070 

1  14.225.2.333 -0.1033 0.0061 0.0168 0.00422 0.0063 
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Figure 5.1 Monte Carlo bias of y, when { m . d )  =  (36.5) and e, are centered 
,y| distribution with variance cr^,. The plots are for cr^, = 1. 1.5, 
and 2, respectively. 
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Figure 5.2 Monte Carlo bias of y, when { m . d )  =  (99,9) and e, are centered 
distribution with variance The plots are for cr^, = 1,1.5, 

and 2, respectiveh". 
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Figure 0.3 Monte Carlo bias of y, when { m . d )  = (225,14) and e, are 
centered xl distribution with variance The plots are for 
cr^, = 1.1.5. and 2, respectively. 
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Figure 5.4 Monte Carlo M S E  ratio when { m . d )  =  (36,5) and e, are 
centered X'§ distribution with variance cr^,. The plots are for 
(Tj, = 1, 1.5, and 2, respectively. 
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Figure 5.5 Monte Carlo M S E  ratio when ( m . d )  =  
centered \3 distribution with variance cr^,. 
a^- = 1,1.0, and 2. respectively. 

(99.9) and e, are 
The plots are for 
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Figure 5.6 Monte Carlo M S E  ratio when ( m ^ d )  = (225,14) and e, are 
centered ^3 distribution with variance The plots are for 

= 1.1.5, and 2, respectively. 
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6 SUMMARY 

The random effects model for small area estimation is 

y, = xj(3 + Zi b,. (6.1) 

where y, are unobservable small area means and 

y'i = Vi + e. = + r, 6, + e,. i = L • • •. m. (6.2) 

where V. are direct survey estimators, xj are known constants and the r, are known 

positive constants. /3 is the vector of regression parameters, the 6,"s are independent and 

identically distributed random variables with E{bi) = 0 and V'(6,) = <7^, and the e,'s are 

sampling errors with ^(e.iy,) = 0 and V'(e,|y,) = We are interested in estimating 

the small area means y,, z = 1 rn. The empirical best linear unbiased predictor 

(EBLUP) is 

yf" =7.V; + (1 -7.)xr3. (6.3) 

where 

^ = {X'^VXyx'^VY, (6.4) 

= + (6.5) 

is the estimator of and is the estimator of 

In this dissertation, a practical application of EBLUP small area estimation in the 

National Resources Inventory, a large land survey of the nation's non-federal land area, 

is described. Several estimation issues raised by this application are discussed cis moti­

vation for the theoretical investigation of small area estimation. 
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For small area estimation, we not only need to estimate the small area statistics (/, 

but also need to derive the MSE of the small area estimators. Prasad and Rao (1990) 

proposed an approximation to MSE{yf^ — y,) when the unknown variance components 

depend on a fixed number of parameters. Lahiri and Rao (1995) use simulation to show 

that the approximation proposed by Preisad and Rao is robust to departures from the 

assumption of normality of A, under the random effects model (6.2) when the sampling 

variances cr^j are known. 

In many practical applications, the are unknown and estimated. If the estimates 

depend on a fixed number of parameters, we can use Prasad and Rao's appro.ximation 

M S E i y f "  - y.) = + (1 - V { ^ ) x ,  +  t r [ ( B ' V B E { 0  -  0 ) { d  -  0 ) ' ] .  (6.6) 

where 

V(3)=(A'^VX)-'. 

B  =  [ d - f i / d e i . . .  . . d f j d e p ] .  

and is the vector with /-th element equal to 7, and other elements equal to zero. 

However, it is difficult to find a good model for the estimator of sampling error vari­

ances (7^, in many applications. So we consider the EBLUP for y, b\' using the individ­

ual direct variance estimator from each small area. The derivation procedure of the 

MSE{yf^ — yi) in (6.6) outlined in Prasad and Rao (1990) is not appropriate for this prob­

l e m  b e c a u s e  t h e  d i m e n s i o n  o f  t h e  v a r i a n c e  c o m p o n e n t  p a r a m e t e r  0  =  ( a ^ .  c r ^ j , . . . .  ) ^  

is 771-1-1. which is not fixed. We studied the estimator 

y. = 7.V; + (1 - (6.7) 

where = { X ' ^ W ^ X r ' X ' ^ W ^ Y .  W m  is a known fixed diagonal matrix, and 7, = 

{a'l -r By using a Taylor expansion, we have 

M S E ( y ,  - y,-) = + (1 " 7. f x f  V'(3o)®. 

-f-(cr^ 4-cr^,) V (7,) -f 0(rm), (6.S) 



where 

V--(3o) = {X''W^Xr'iX^W^VWmX)iX''WmXr\ 

B  =  [ d f i / d e i . . . . . d y , / d 6 j , ] .  

V(7.) = 

= (cTfc + {^b^'i^l) + cr«^(^6.m)} • (6.9) 

and 0 { r m )  = m a . K ( m ~ ^ ' ' , m ~ ^  d ~ ^ , d ~ ^ ) .  We also derived E  {(y, —  y t ) { y j  —  J / ^ ) } -

Ignoring the fact that the dimension of B is not fixed and using Prasad and Rao's 

approximation (6.6) by letting 0 = (c^.Cei have 

M S E { y f ^  -  y . )  =  c r ^ V ^  +  ( 1  "  ^ ' ( 3 ) a : .  +  ( c ^ f c  +  

-2<7fcV^-cou(56-„,,?,^.)} . (6.10) 

Since 2cr^cr^ic0v(a^= 0{rm). we omitted this term in our approximation. There­

fore. our result is a generalization of Prasad and Rao's approximation when the are 

estimated individually. 

Simulations are used to study the properties of the theoretical approximations. The 

simulations in other literature, such cis that of Laird and Louis (1987), Prasad and Rao 

(1990). and Lahiri and Rao (199.5). assume the cr^, are known constants. The only 

unknown variance parameter in their studies is (T^. In our simulation, are unknown 

parameters. When 7, = (cr^ + very small, there is a severe overestimation of 

MSE[y'^ — y,) by simply replacing the parameters in the variance expression with their 

estimators. .An estimator of MSE(yi — yi) is developed that is superior to the related 

estimators in the literature when 7, is small. Both our simulation and other simulations 

in the literature show that the bias of the variance estimator is smaller for larger 7,.  

In practical applications, it is often desirable that the weighted total of the small area 

estimators be equal to the the weighted total of the direct survey estimators. Therefore. 
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il is necessary to put a restriction on the weighted total of the small area estimators in 

many situations. A criterion that unifies the derivation of several restricted estimators 

is proposed. The estimator, denoted by that is the unique best linear unbiased 

estimator satisfying the criterion is derived. .\n approximation to MSE{y^^ — y,) is 

presented. Simulation results indicate that the estimator of the mean square error yields 

a reasonable appro.ximation to the true mean square error. 

The EBLUP is a biased estimator of y, if the sampling errors e, are not symmetrically 

distributed. The approximate bieis of y, for the non-symmetrically distributed e. is 

derived. We used simulations to demonstrate that the restricted estimator reduces 

the bias for non-symmetric sampling errors. We also used simulation to assess the 

robustness of the theoretical and estimated MSE{yi — y.) when sampling errors e, are 

not normally distributed. For the particular choice of e, that have a centered chi-

square distribution with three degrees of freedom (i.e. the mean is zero), our simulation 

results indicate that the theoretical MSE underestimates the simulated MSE when 

i s  s m a l l  a n d  o v e r e s t i m a t e s  t h e  s i m u l a t e d  M S E  w h e n  c r ^  i s  l a r g e .  T h e  e s t i m a t e d  M S E  

underestimates the simulated MSE except for very small cr^. The underestimation 

is usually between 2% and 10% and the underestimation decreases as increases. 

Therefore, our approximation for MSE{yi — y,) based upon normal errors is robust with 

respect to non-normal sampling errors e,. 
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