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Abstract

Parameter estimation with non-ignorable missing data is a challenging problem in
statistics. The fully parametric approach for joint modeling of the response model
and the population model can produce results that are quite sensitive to the failure
of the assumed model. We propose a more robust modeling approach by considering
the model for the nonresponding part as an exponential tilting of the model for the
responding part. The exponential tilting model can be justified under the assumption
that the response probability can be expressed as a semi-parametric logistic regression
model.

In this paper, based on the exponential tilting model, we propose a semi-parametric
estimation method of mean functionals with non-ignorable missing data. A semi-
parametric logistic regression model is assumed for the response probability and a
non-parametric regression approach for missing data discussed in Cheng (1994) is used
in the estimator. By adopting nonparametric components for the model, the estimation
method can be made robust. Variance estimation is also discussed and results from a
simulation study are presented. The proposed method is applied to real income data
from the Korean Labor and Income Panel Survey.

Key Words: Exponential tilting; Not missing at random; Nonparametric regression.

∗Department of Statistics, Iowa State University, Ames, IA 50011, U.S.A.

1



1 INTRODUCTION

Missing data is frequently encountered in many areas of statistics. Statistical analysis in

the presence of missing data has been an area of considerable interest because ignoring the

missing data often destroys the representativeness of the remaining sample and is likely to

lead to biased parameter estimates. To account for the possible bias associated with missing

data, statistical modeling is used to predict the missing part of the data. This type of

modeling is challenging because it often depends on unverifiable assumptions. Finding a

good prediction model is a crucial part of the missing data analysis.

In practice, the prediction model depends on an auxiliary variable. We assume that the

auxiliary variable, x, is observed for the entire sample and only the study variable, y, is

subject to missingness. In this setup, the usual approach is to find the best prediction model

for y in terms of x. The prediction model can be used to predict the missing data if the

response mechanism is ignorable in the sense that the relationship between y and x in the

respondents also holds for the non-responding part of the sample. Nonresponse is ignorable

if the study variable, y, is independent of the response status variable, r, conditional on the

auxiliary variable x. Hence, it follows that nonresponse is non-ignorable if the probability

of y being missing depends on y itself, even after controlling for x. This situation exists, for

example, in surveys of income, where the nonresponse rates tend to be higher for low socio-

economic groups. If nonresponse is non-ignorable, standard nonresponse adjustments such

as stratification, reweighting, and imputation assuming an ignorable response mechanism

will fail to correct for the bias due to nonresponse.

Parameter estimation for non-ignorable nonresponse data is a challenging problem be-

cause the response mechanism is generally unknown and the parameters of the response

probabilities need to be estimated. In the likelihood-based method, the fully parametric ap-

proach involves joint modeling of the outcome and the response mechanism. Greenlees et al

(1982) and Diggle and Kenward (1994) used explicit models for the response probability to
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estimate the parameters. Baker and Laird (1988) and Ibrahim et al (1999) discussed maxi-

mum likelihood estimation of the parameters under non-ignorable missing data based on the

expectation-maximization algorithm. Molenberghs and Kenward (2007) provided a compre-

hensive overview of the fully parametric approaches to the analysis of non-ignorable missing

data. When the response mechanism is unknown, the identifiability of the parameters in the

response mechanism is difficult to check. Chen (2001) and Tang et al (2003) discussed iden-

tifiability conditions only under some limited situations. Furthermore, the fully parametric

approach is very sensitive to failure of the assumed parametric models (Little, 1985).

In this paper, we propose a novel approach for modeling non-ignorable nonresponse based

on the exponential tilting model, where the missing part of the data is modeled as an expo-

nential tilt of the model for the responding part. The tilting parameter, which characterizes

the tilt, determines the amount of departure from the ignorability of the response mecha-

nism. The exponential tilting model for non-ignorable nonresponse is similar in spirit to the

stratified Cox proportional hazards model considered in Scharfstein et al (1999), which was

used to model non-ignorable drop-out in the analysis of longitudinal data. A semi-parametric

logistic regression model with the tilting parameter is assumed for the response probability.

The behavior of the non-responding part is estimated by using the nonparametric regression

approach for missing data discussed by Cheng (1994). By adopting nonparametric parts

for the model, the estimation method can be made more robust. Unlike Scharfstein et al

(1999), we also consider the case where the tilting parameter is estimated, rather than known.

Asymptotic normality, including the
√
n-consistency, of the proposed estimator is derived

for the cases when the tilting parameter is estimated as well as known.

In Section 2, a basic setup is introduced. In Section 3, we propose a nonparametric

estimation method with known tilting parameters and discuss some asymptotic properties.

In Section 4, a semi-parametric estimation method using parametric estimates of tilting

parameters is discussed. A simulation study and a case study are given in Section 5 and 6,

respectively. Concluding remarks are made in Section 7.
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2 BASIC SETUP

Let (xi, yi) , i = 1, 2, · · · , n, be n independent realizations of continuous random variables

(X, Y ) from a distribution with joint distribution F (x, y), where xi is always observed and

yi is subject to missingness. We are interested in estimating θ = E (Y ). Let ri be the original

response indicator for yi, where ri = 1 if yi is observed and ri = 0 otherwise. We assume

that the response mechanism is

ri | (xi, yi) ∼ Bernoulli (πi) ,

where πi = π (xi, yi), and ri is independent of rj for any i 6= j. If πi does not depend on the

value of yi, then the response mechanism is called ignorable.

Under the ignorable response mechanism or missing at random (MAR) condition,

Pr (yi ∈ B | xi, ri = 0) = Pr (yi ∈ B | xi, ri = 1) , (1)

for any measurable set B. Thus, under MAR, the conditional distribution of yi given xi

among the nonrespondents is the same as the conditional distribution among the respondents.

Let f1 (yi | xi) be the conditional density of yi given xi and ri = 1, and let f0 (yi | xi) be the

conditional density of yi given xi and ri = 0. Under MAR, we have f1 (yi | xi) = f0 (yi | xi),

and a consistent estimator of θ can be obtained by

θ̂1 =
1

n

n∑
i=1

{riyi + (1− ri) m̂ (xi)} , (2)

where m̂ (xi) is a consistent estimator of m (xi) = E (yi | xi). The consistency of the estima-

tor (2) can be justified under the MAR condition.

If the MAR condition does not hold, then (1) does not hold and the estimator θ̂1 in (2)

is biased. Instead, one can use

θ̂2 =
1

n

n∑
i=1

{riyi + (1− ri) m̂0 (xi)} ,
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where m̂0 (xi) is a consistent estimator of m0 (xi) = E (yi | xi, ri = 0). In the absence of the

MAR condition, estimation of m0 (xi) is difficult because yi is not observed in the set of

nonrespondents.

To compute the conditional distribution given ri = 0, we use the following relationship:

Pr (yi ∈ B | xi, ri = 0)

= Pr (yi ∈ B | xi, ri = 1)× Pr (ri = 0 | xi, yi ∈ B) /Pr (ri = 1 | xi, yi ∈ B)

Pr (ri = 0 | xi) /Pr (ri = 1 | xi)
.

Thus, we can write the conditional distribution of the missing data given x as

f0 (yi | xi) = f1 (yi | xi)×
O (xi, yi)

E {O (xi, Yi) | xi, ri = 1}
, (3)

where

O (xi, yi) =
Pr (ri = 0 | xi, yi)
Pr (ri = 1 | xi, yi)

(4)

is the conditional odds of nonresponse. The expression (3) is a basis for computing the

conditional expectation, m0 (xi) = E (yi | xi, ri = 0).

Assume that the response probability model is a logistic regression model

π(xi, yi) ≡ Pr (ri = 1 | xi, yi) =
exp {g(xi) + φyi}

1 + exp {g(xi) + φyi}
(5)

for some function g (·) and parameter φ. The response probability model (5) is a semi-

parametric model in the sense that the component associated with xi, g(xi), is completely

unspecified and only the component associate with yi is parametrically modeled as φyi

with parameter φ. Under the response model (5), the odd function (4) can be written

as O (xi, yi) = exp {−g (xi)− φyi} and the expression (3) can be simplified to

f0 (yi | xi) = f1 (yi | xi)×
exp (γyi)

E {exp (γYi) | xi, ri = 1}
, (6)

where γ = −φ. Model (6) states that the density for the nonrespondents is an exponential

tilting of the density for the respondents. The parameter γ is the tilting parameter that

5



determines the amount of departure from the ignorability of the response mechanism. In

risk theory literature (Gerber and Shiu, 1994), transformation (6) is often called Esscher

transformation of f1 (yi | xi) indexed by parameter γ.

In (3), we need two models to compute the conditional distribution of the nonrespondent:

f1 (yi | xi) and Pr (ri = 1 | xi, yi). A consistent estimate of f1 (yi | xi), denoted by f̂1 (yi | xi),

can be non-parametrically estimated using a kernel estimator. Thus, in the exponential

tilting model (6), the only parametric component that needs to be estimated is γ∗ = −φ∗,

where φ∗ is the true value of φ in Pr (ri = 1 | xi, yi;φ∗) in (5). In some cases, such as with

planned missingness or a sensitivity analysis as described in Rotnitzky et al (1998), the

parameter γ∗ is assumed to be known. In the other cases, the parameter γ∗ has to be

estimated. To estimate the parameter, we often utilize a follow-up study where a further

attempt is made to obtain responses in a subset of the nonrespondents. In Section 3, the

theory is developed when γ∗ is known. In Section 4, we consider the case when γ∗ is estimated.

3 Nonparametric estimation

We first briefly discuss a nonparametric regression method for estimating m1 (x) =

E (y | x, r = 1). Let K(·) be a symmetric density function on the real line and let h = hn

be a smoothing bandwidth such that hn → 0 and nhn → ∞ as n → ∞. The nonparamet-

ric regression estimator of m1 (x) = E (y | x, r = 1) can be obtained by finding m̂ (x) that

minimizes ∑n
i=1 riKh (xi, x) {yi −m (x)}2∑n

i=1 riKh (xi, x)
, (7)

where Kh (u, x) = h−1K {(u− x) /h}. Note that (7) estimates the following quantity

E
[
r {y −m (x)}2 | x

]
= E

[
E
{

(y −m (x))2 | x, r = 1
}
| x
]
.

The function that minimizes (7) is

m̂1 (x) =
n∑
i=1

wi1 (x) yi, (8)
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where

wi1 (x) =
riKh (xi, x)∑n
j=1 rjKh (xj, x)

.

The weight wi1 (x) in (8) represents the point mass assigned to yi when m1 (x) is approx-

imated by
∑n

i=1wi1 (x) yi. The result of Devroye and Wagner (1980) can be used to show

that, under some regularity conditions,

p lim
n→∞

n∑
i=1

wi1 (x) yi =
E (rY | x)

E (r | x)
= E (Y | x, r = 1) . (9)

Cheng (1994) proved
√
n-consistency of θ̂1 in (2) with m̂(x) = m̂1(x) using the Kernel-based

regression estimator m̂1 (x) in (8) under ignorable missing data.

Under the non-ignorable missing setup described in Section 2 with an exponential tilt-

ing model (6), if the true value γ∗ were known, the nonparametric regression estimator of

m0 (x) = E (y | x, r = 0) would be

m̂0(x; γ∗) =
n∑
i=1

wi0(x; γ∗)yi, (10)

where the weight

wi0(x; γ∗) =
riKh(x, xi) exp(γ∗yi)∑n
j=1 rjKh(x, xj) exp(γ∗yj)

=
wi1 (x) exp(γ∗yi)∑n
j=1wj1 (x) exp(γ∗yj)

represents the point mass assigned to yi when m0 (x) is approximated by
∑n

i=1wi0 (x; γ∗) yi.

By the same argument for (9) ,

p lim
n→∞

n∑
i=1

wi0 (x) yi =
E {rY exp (γ∗Y ) | x}
E {r exp (γ∗Y ) | x}

=
E {π (x, Y )Y exp (γ∗Y ) | x}
E {π (x, Y ) exp (γ∗Y ) | x}

=
E {(1− π (x, Y ))Y | x}
E {1− π (x, Y ) | x}

= E (Y | x, r = 0) ,
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where π (x, y) = Pr (r = 1 | x, y). Using the nonparametric estimator m̂0(x; γ∗) in (10), a

nonparametric estimator of θ = E(y) is computed by

θ̂NP =
1

n

n∑
i=1

{riyi + (1− ri) m̂0 (xi; γ
∗)} . (11)

The following theorem, which is similar to Theorem 2.1 of Cheng (1994), presents some

asymptotic properties of the estimator in (11). A sketch of the proof is presented in Appendix

A.

Theorem 1 Assume that the response mechanism satisfies the semi-parametric response

model (5) with known parameter value φ∗. Under the regularity conditions described in

Appendix A, the nonparametric estimator θ̂NP in (11) with γ∗ = −φ∗ satisfies

√
n
{
θ̂NP − θ

}
→ N

(
0, σ2

1

)
(12)

where σ2
1 = V (ηi) and

ηi = m0 (xi) +
ri

π(xi, yi)
{yi −m0 (xi)} . (13)

By Theorem 1, since ηi = yi + {ri/π(xi, yi)− 1} {yi −m0 (xi)}, we have

σ2
1 = V (Y ) + E

[{
1

π (X, Y )
− 1

}
(Y −m0 (X))2

]
(14)

and the increase in variance due to missing data is

V
(
θ̂NP

)
− V

(
θ̂n

)
= n−1E

[{
π (X, Y )−1 − 1

}
(Y −m0 (X))2

]
≥ 0,

where θ̂n = n−1
∑n

i=1 yi. The variance increase is determined by two factors: the inverse

of the response probability and the squared error term {Y −m0 (X)}2. If the response

probabilities for some units are quite small, the variance increase can be quite large. If

π (X, Y ) does not depend on Y , σ2
1 in (14) reduces to

σ2
1 = V (Y ) +E

[{
1

π (X)
− 1

}
V (Y | X)

]
= V {E (Y | X)}+E

{
1

π (X)
V (Y | X)

}
, (15)
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which is equal to the result of Cheng (1994). Thus, Theorem 1 is an extension of the result

of Cheng (1994) to non-ignorable missing data. Wang and Rao (2002) also derived a result

similar to (15).

To estimate the variance of the nonparametric estimator θ̂NP , we need to estimate σ2
1 in

(14). A consistent estimator of σ2
1 is

σ̂2
1 =

1

n

n∑
i=1

η̂2i −

(
1

n

n∑
i=1

η̂i

)2

, (16)

where

η̂i = m̂0 (xi; γ
∗) +

ri
π̂i
{yi − m̂0 (xi; γ

∗)} , (17)

and π̂i is the estimated response probability of (5) with known γ∗. Writing

α (x; γ∗) = O (x, y) / exp (γ∗y) = (π(x, y)−1 − 1) exp (−γ∗y) ,

where O (x, y) is defined in (4), we have

E {rO(x, Y ) | x} = E (1− r | x) = α(x; γ∗)E {r exp (γ∗y) | x} .

Thus, under the semi-parametric logistic regression model (5) with known parameter γ∗ =

−φ∗, a non-parametric estimator of πi = π(xi, yi) can be obtained by π̂i = π̂i(γ
∗), where

π̂i(γ) = {1 + α̂ (xi; γ) exp (γyi)}−1 , (18)

and

α̂ (xi; γ) =

∑n
j=1(1− rj)Kh(xi, xj)∑n

j=1 rj exp (γyj)Kh (xi, xj)
.

The non-parametric estimator π̂i in (18) can be used to compute the pseudo-value η̂i

in (17). Note that the use of η̂i = m̂0 (xi; γ
∗) + ri {yi − m̂0 (xi; γ

∗)} is equivalent to the

naive variance estimator, which is well known to underestimate the variance. The inflation

factor π̂−1i in the residual part of η̂i properly reflects the increase of variance due to missing

data. The pseudo-values in (17) bear the same form as those in Carpenter, Kenward and

Vansteelandt (2006) under ignorable missing, and are also used for variance estimation in

Kim and Rao (2009).

9



4 Semi-parametric estimation

In many cases, tilting parameter γ∗ is unknown and has to be estimated. We now consider

a semi-parametric estimator of θ in the sense that we use a parametric component γ̂ for the

nonparametric estimation of m0 (x; γ) = E (Y | x, r = 0; γ). We consider two scenarios. The

first scenario is the case when the parameter estimate for γ∗ is computed from an independent

survey. The second scenario is when the parameter estimate is obtained from a validation

sample, which is a subsample of the nonrespondents.

In either case, the resulting semi-parametric estimator of θ is

θ̂SP =
1

n

n∑
i=1

{riyi + (1− ri) m̂0 (xi; γ̂)} , (19)

where m̂0 (xi; γ) is defined in (10). We first consider the scenario where γ̂ is estimated from

an independent survey. The following theorem presents some asymptotic properties of the

proposed estimator in (19) for this scenario. A sketch of the proof is in Appendix B.

Theorem 2 Assume that the conditions of Theorem 1 hold, except that φ∗ in the response

model (5) is known. Let θ̂SP be the semi-parametric estimator constructed in (19) for the

marginal mean of y with γ̂ satisfying

√
n (γ̂ − γ∗)→ N (0, Vγ) , (20)

and assume that γ̂ is independent of θ̂NP in (11).

Then, we have
√
n(θ̂SP − θ)→ N(0, σ2

2), (21)

where

σ2
2 = σ2

1 +H2Vγ, (22)

H = E
{

(1− r) (Y −m0 (X))2
}
,

and σ2
1 is defined in (14).
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Note that if γ̂ is exactly estimated, then Vγ = 0 and σ2
2 is equal to σ2

1. Thus, the second

term in (22), the increase in variance, is the cost from estimating γ. A consistent estimator

of σ2
2 is

σ̂2
2 = σ̂2

1 + Ĥ2V̂γ,

where σ̂1 is computed using (16), V̂γ is a consistent estimator of nV (γ̂), and

Ĥ =
1

n

n∑
i=1

(1− ri) σ̂2
0(xi),

with

σ̂2
0(xi) =

∑n
j=1 rjKh (xi, xj) exp (γ̂yj) (yj − m̂0(xj))

2∑n
j=1 rjKh (xi, xj) exp (γ̂yj)

.

A consistent estimator of σ2
1 using (16) can be computed by using the pseudo values

η̂i = m̂0 (xi; γ̂) +
ri

π̂i(γ̂)
{yi − m̂0 (xi; γ̂)} ,

where π̂i (γ) is defined in (18).

We now consider the case when a validation sample is randomly selected from the set of

nonrespondents and the responses are obtained for all the elements in the validation sample.

A consistent estimator γ̂ of γ∗ can be obtained by solving

n∑
i=1

(1− ri) δi {yi − m̂0 (xi; γ)} = 0, (23)

for γ, where δi is an indicator function that takes the value one if unit i belongs to the

follow-up sample and takes the value zero otherwise, and m̂0 (xi; γ) is defined in (10).

Using the estimated tilting parameter γ̂ obtained from (23), one can construct θ̂SP in

(19). The following theorem presents some asymptotic properties of the estimators using the

estimated tilting parameter obtained from (23). A sketch of the proof is in Appendix C.

Theorem 3 Assume that the conditions of Theorem 1 hold, except for the semi-parametric

response model in (5). Assume that the solution γ̂ to (23) exists almost everywhere. Let
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θ̂SP be the semi-parametric estimator constructed in (19) for the marginal mean of y using

γ̂ obtained by solving (23). Then, we have

√
n(θ̂SP − θ)→ N(0, σ2

3) (24)

where σ2
3 = V (η2i),

η2i = m̃(xi; γ0) +

{
δi
ν

(1− ri) + ri

}
{yi − m̃(xi; γ0)} ,

m̃(x; γ) = p limn→∞ m̂0(x; γ), ν = E(δ | r = 0) and γ0 is the probability limit of γ̂.

In Theorem 3, the response model (5) is not needed to show the result (24). The variance

σ2
3 can be written

σ2
3 = V (Y ) +

(
ν−1 − 1

)
E
[
(1− r) {y − m̃(x; γ0)}2

]
.

Thus, in the extreme case of ν = 1, we have σ2
3 = V (Y ).

Note that

m̃(x; γ) = p lim
n→∞

∑n
j=1Kh(x, xj)rj exp(γyj)yj∑n
j=1Kh(x, xj)rj exp(γyj)

=
E {r exp (γY )Y | x}
E {r exp (γY ) | x}

.

Thus, if the response model (5) is true, then γ0 = γ∗ and, by (24),

m̃(x; γ0) =
E {r exp (γ∗Y )Y | x}
E {r exp (γ∗Y ) | x}

=
E {(1− r)Y | x}
E {(1− r) | x}

= E(Y | x, r = 0) = m0(x).

Since

E
[
(1− r) {y − m̃(x; γ0)}2

]
≥ E

[
(1− r) {y −m0(x)}2

]
,

the variance σ2
3 in (24) is minimized when the assumed response model (5) is true. Thus,

the validity of the proposed estimator does not depend on the assumed response model and

the role of the response model (5) is to improve the efficiency.

For variance estimation, a consistent estimator of σ2
3 is

σ̂2
3 =

1

n

n∑
i=1

η̂22i −

(
1

n

n∑
i=1

η̂2i

)2

,
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where

η̂2i = m̂0 (xi; γ̂) +

{
δi
ν

(1− ri) + ri

}
{yi − m̂0 (xi; γ̂)} .

Instead of using θ̂SP in (19), one can use the observed values yi from both the respondents

and the follow-up samples directly to get

θ̂SP2 =
1

n

n∑
i=1

{riyi + (1− ri)δiyi + (1− ri) (1− δi) m̂0 (xi; γ̂)} . (25)

By (23), we have

θ̂SP2 =
1

n

n∑
i=1

{riyi + (1− ri)m̂0 (xi; γ̂)} = θ̂SP .

Thus, the extra information in the follow-up sample is fully incorporated in θ̂SP and there

is no efficiency gain in using θ̂SP2.

5 Simulation Study

To test our theory, we performed a simulation study. In the simulation, we considered

two models for generating (xi, yi). In model A, the sample of (xi, yi) is generated from

xi ∼ N(2, 1) and yi = 1 + 0.7xi + ei where ei ∼ N(0, 1). In model B, (xi, ei) are the same as

in model A but yi = 1 + 0.5(x− 2.5)2 + ei. In addition to (xi, yi), we also generated ri, the

response indicator variable, from Bernoulli distributions with probability πi. We considered

eight response models for πi:

(M1): (Linear Ignorable)

πi =
exp(φ0 + φ1xi)

1 + exp(φ0 + φ1xi)
,

where (φ0, φ1) = (−1.5, 1.0) for both models.

(M2): (Linear Non-ignorable)

πi =
exp(φ0 + φ1xi + φ2yi)

1 + exp(φ0 + φ1xi + φ2yi)
,
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where (φ0, φ1, φ2) = (−0.85, 0.3, 0.3) for model A and (φ0, φ1, φ2) = (−1.58, 0.5, 0.7)

for model B.

(M3): (Non-linear Non-ignorable: quadratic in x)

πi =
exp(φ0 + φ1xi + φ2x

2
i + φ3yi)

1 + exp(φ0 + φ1xi + φ2x2i + φ3yi)
,

where (φ0, φ1, φ2, φ3) = (−2.0, 0.3, 0.3, 0.3) for model A and (φ0, φ1, φ2, φ3) =

(−2.72, 2.72,−0.68, 0.7) for model B.

(M4): (Jump Non-ignorable)
πi = 0.5 if yi ≤ c

= 1.0 if yi > c
,

where c = 3.4 for model A and c = 2.5 for model B.

(M5): (Non-linear Non-ignorable: quadratic in y)

πi =
exp(φ0 + φ1xi + φ2yi + φ3y

2
i )

1 + exp(φ0 + φ1xi + φ2yi + φ3y2i )
,

where (φ0, φ1, φ2, φ3) = (−0.65, 0.1, 0.1, 0.1) for model A and (φ0, φ1, φ2, φ3) =

(−0.85, 0.1, 0.1, 0.3) for model B.

(M6): (Probit Non-ignorable)

πi = Φ(φ0 + φ1xi + φ2yi),

where Φ(·) is the cumulative density function of the standard normal distribution,

(φ0, φ1, φ2) = (−0.64, 0.1, 0.3) for model A and (φ0, φ1, φ2) = (−0.53, 0.1, 0.4) for model

B.

(M7): (Complementary log-log Non-ignorable)

πi = 1− exp {− exp(φ0 + φ1xi + φ2yi)} ,

where (φ0, φ1, φ2) = (−1.4, 0.3, 0.3) for model A and (φ0, φ1, φ2) = (−1.15, 0.3, 0.3) for

model B.
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(M8): (Non-linear Non-ignorable: interaction)

πi =
exp(φ0 + φ1xi + φ2yi + φ3xiyi)

1 + exp(φ0 + φ1xi + φ2yi + φ3xiyi)
,

where (φ0, φ1, φ2, φ3) = (−1.4, 0.1, 0.1, 0.3) for model A and (φ0, φ1, φ2, φ3) =

(−0.15, 0.1, 0.1, 0.1) for model B.

The missing scenarios considered above include one ignorable missing case (M1) and seven

different kinds of non-ignorable missing cases (M2)-(M8). The response rates are about 60%

in every combination of the two models and eight response mechanisms. Scenarios (M1)-

(M3) satisfy the response probability assumption in (5). Missing mechanisms (M4)-(M8),

which do not satisfy (5), were included to examine the robustness of our semi-parametric

estimators against failure of the assumed missing mechanism.

For each combination of the two models and eight missing scenarios above, Monte Carlo

samples of size n = 200 were independently generated B = 2, 000 times. In each of the

sixteen samples, we computed four point estimators:

1. θ̂n = n−1
∑n

i=1 yi: sample mean of y. Note that θ̂n is not used in practice because yi is

not available for ri = 0.

2. θ̂NA = n−1
∑n

i=1 {riyi + (1− ri)m̃0(xi)}: a naive estimator where

m̃0(x) =

∑n
i=1(1− ri)δiKh(x, xi)yi∑n
i=1(1− ri)δiKh(x, xi)

,

using only the follow-up data.

3. θ̂1: Cheng’s estimator in (2) with m̂(x) = m̂1(x) in (8). θ̂1 assumes that missing data

from the response mechanism are ignorable.

4. θ̂SP : the semi-parametric estimator in (19) using the estimated tilting parameter γ̂

obtained in (23). The follow-up rate used is 15%.
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The nonparametric Kernel regression estimator was computed using a Gaussian kernel

function with bandwidth h = σ̂xn
−1/5, where σ̂x is the estimated standard deviation of xi in

the sample. The estimated tilting parameter γ̂ was computed by solving the equation (23)

using a Newton-Raphson method.

< Table 1 around here. >

< Table 2 around here. >

Table 1 and Table 2 present the Monte Carlo relative biases and variances of the four

point estimators computed from the Monte Carlo samples of size B = 2, 000 for missing cases

(M1)-(M4) and (M5)-(M8) separately. Mean squared errors (MSE) are reported as well.

Comparing our semi-parametric estimator θ̂SP to Cheng’s estimator θ̂1, we found that

(i) under the ignorable missing mechanism (M1), although the relative biases in θ̂SP are

smaller than those in Cheng’s estimator, Cheng’s estimator has better performance in terms

of MSE since the missing mechanism is correctly specified; (ii) under all the non-ignorable

missing mechanisms (M2)-(M8), Cheng’s estimator as expected is much more seriously biased

than our semi-parametric estimator because Cheng’s estimator incorrectly assumes that

the response mechanism is ignorable. Although our semi-parametric estimator loses some

efficiency due to estimating γ̂, the serious biases in Cheng’s lead to much bigger MSE under

all the non-ignorable missing cases.

When comparing our semi-parametric estimator θ̂SP to the naive estimator θ̂NA, we found

that under all the circumstances our semi-parametric estimator performs better than the

naive estimator in terms of efficiency and MSE. The efficiency gain in the semi-parametric

estimator may be ascribed to the fact that in our semi-parametric estimator the respondent

data is used for estimating m0(x), while the naive estimator utilizes only the follow-up data

to estimate m0(x). It is also noteworthy that our semi-parametric estimator consistently

performs reasonably well even in situations when the assumed response probability models
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are wrong, i.e. (M4)-(M8). This robustness property is consistent with our finding in Theo-

rem 3 that the validity of the proposed estimator does not depend on the assumed response

model.

6 Empirical Study

In this section, the proposed semi-parametric estimators are applied to the Korea Labor

and Income Panel Survey (KLIPS). A brief description of the panel survey can be found at

http://www.kli.re.kr/klips/en/about/introduce.jsp. The data consist of n = 2, 506 regular

wage earners from the year 2008 sample. The study variable (y) is the average monthly

income for the current year and the auxiliary variable (x) is the average monthly income for

the previous year. The sample mean of (x, y) is (1.6643, 1.8504)× 106 Korean Won and the

sample correlation between x and y is 0.8144.

From the sample described above, we created artificial missing data by deliberately

deleting some of the y values according to the eight response models defined in Section

5. Specifically, we used (φ0, φ1) = (−1.13, 1.0) for (M1), (φ0, φ1, φ2) = (−1.5, 0.5, 0.7) for

(M2), (φ0, φ1, φ2, φ3) = (−2.15, 0.2, 0.5, 0.7) for (M3), c = 2.5 for (M4), (φ0, φ1, φ2, φ3) =

(−0.65, 0.1, 0.1, 0.2) for (M5), (φ0, φ1, φ2) = (−0.41, 0.1, 0.3) for (M6), (φ0, φ1, φ2) =

(−1.42, 0.1, 0.7) for (M7), and (φ0, φ1, φ2, φ3) = (−0.78, 0.1, 0.1, 0.3) for (M8). Each of the

eight response mechanisms with the specified parameter values above produced about 60%

response rates. Among the nonrespondents, 15% were randomly selected for follow-up sam-

ples. Thus, from the original data with sample size of n = 2, 506, we have about 1,504

respondents and 150 people who responded to the follow-up. Cheng’s estimator θ̂1 and our

semi-parametric estimator θ̂SP were computed using the real data with the artificial missing

values for each response probability model.

< Table 3 around here. >

Table 3 reports the differences between each point estimate and the “true” sample mean
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θ̂n = 1.8504 and the estimated standard errors of the point estimators for each of the missing

mechanisms. We used the variance estimation formula for θ̂SP from Section 4 and the esti-

mated variance of θ̂1 was computed following the approach in Cheng (1994). The estimated

mean errors θ̂1 − θ̂n based on Cheng’s estimator are consistently larger in magnitude than

θ̂SP − θ̂n based on our semi-parametric estimator under all the missing scenarios, including

the missing ignorable case (M1). This case study demonstrates the empirical effectiveness

of our semi-parametric estimator.

7 Conclusion

In the presence of missing data, estimation of θ = E(y) involves computing the conditional

expectation E(yi | xi, ri = 0). When the response mechanism is ignorable, Cheng (1994)

considered using a nonparametric estimator, m1(xi) = E (yi | xi, ri = 1), for E(yi | xi, ri =

0). If the response mechanism is not ignorable, then the exponential tilting model (6) can be

used to derive a consistent estimator of m0(xi) = E (yi | xi, ri = 0). If the tilting parameter

γ∗ is known in advance, a non-parametric estimator of m0(xi) can be obtained by m̂0(xi; γ
∗)

in (10). When the tilting parameter γ∗ is unknown, an estimating equation (23) can be

used to obtain γ̂, which can be used to construct semi-parametric estimators in (19) and

in (25). The asymptotic properties and the simulation and empirical results presented in

this paper show that the semi-parametric estimator provides satisfactory performances in

general. Extension to other parameters, such as the population variance, can follow naturally.

Extension of the theorems to cases where x is a d-dimensional vector, which is not discussed

in this paper, can also be made by choosing the bandwidth nhd → ∞ instead of nh → ∞.

However, as with any nonparametric kernel method, the proposed semi-parametric method

can show poor performance for the samples with small sizes or with some extreme missing

data patterns.

When a validation subsample is used to estimate the tilting parameters, we assume com-
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plete response among the elements in the validation subsample. If there is still missingness

in the validation subsample, the estimating equation (23) cannot be used to estimate γ∗ and

the proposed method is not applicable. In this case, a prior belief about γ∗ can be used,

as (20), using a Bayesian argument. Investigation of alternative methods for estimating γ∗,

including the Bayesian approach, is a topic for future research.
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Appendix

A: Proof of Theorem 1

Before deriving the asymptotic limit of θ̂, we need the following regularity conditions.

(C.1) The kernel function K(w) is a probability density function such that

(i) it is bounded and has compact support;

(ii) it is symmetric with σ2
k =

∫
w2K(w)dw <∞;

(iii) K(w) ≥ d1 for some d1 > 0 in some closed interval centered at zero.

(C.2) nh→∞ and nh4 → 0.

(C.3) E[y2] and E[exp(2γ∗y)] are finite.

(C.4)

(i) π(x, y) > d2 > 0 and p(x) = E[π(x, y)|x] 6= 1 almost surely.

(ii) The density of X decays exponentially fast.

(iii) m0(x) has bounded second derivative and satisfies

E[exp(γ∗y)|m′0(x)α′(x) + 0.5m′′0(x)α(x)|] <∞,

where α(x) = O(x, y)/ exp(γ∗y).

Proof: Write

θ̂NP = A+B + C (A.1)
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where

A = n−1
n∑
i=1

{rim1 (xi) + (1− ri)m0 (xi)} (A.2)

B = n−1
n∑
i=1

ri {yi −m1 (xi)} (A.3)

C = n−1
n∑
i=1

(1− ri) {m̂0 (xi)−m0 (xi)} .

By the classical central limit theorem,
√
n (A− θ) converges to the normal distribution with

mean 0 and variance V {rm1(x) + (1− r)m0(x)}. The term
√
nB converges to the normal

distribution with mean 0 and variance

E
{
r (Y −m1 (X))2

}
= E

{
π (X, Y ) (Y −m1 (X))2

}
.

For the C term, note that we can write

C = n−1
n∑
i=1

(1− ri)
∑n

j=1 rj exp (γ∗yj)Kh (xj, xi) {yj −m0 (xi)}∑n
j=1 rj exp (γ∗yj)Kh (xj, xi)

(A.4)

and

p lim
n→∞

∑n
j=1 rj exp (γ∗yj)Kh (xj, x)∑n

j=1Kh (xj, x)
= E {r exp (γ∗Y ) | x}

= E [rO (x, Y ) exp {g(x)} | x]

= {1− p (x)} exp {g(x)} ,

where O (x, y) is defined in (4) and p (x) = E (r | x). Thus,

p lim
n→∞

1

n

n∑
j=1

rj exp (γ∗yj)Kh (xj, x) = f(x) {1− p (x)} exp {g(x)} ,

where f(x) is the marginal density of X. Using the same argument for Theorem 2.1 of Cheng

(1994), it can be shown that
√
n (C − C∗) = op (1) , (A.5)
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where

C∗ = n−1
n∑
j=1

rj exp (γ∗yj) {yj −m0 (xj)}α (xj)

and

α (xj) = E
[
(1− r)Kh(x, xj) {1− p (x)}−1 exp {−g(x)} f−1(x) | xj

]
= exp {−g(xj)} .

Thus, we can write

C∗ = n−1
n∑
j=1

rjO (xj, yj) {yj −m0 (xj)}

= n−1
n∑
j=1

rj

{
1

π(xj, yj)
− 1

}
{yj −m0 (xj)} .

Thus, inserting (A.5) into (A.1), we have

√
n
{
θ̂NP − (A+B + C∗)

}
= op (1) .

Note that A+B+C∗ = η̄n, where η̄n = n−1
∑n

i=1 ηi with ηi in (13). Since ηi are independently

and identically distributed with mean E(ηi) = θ, we have

√
n (η̄n − θ)→ N

(
0, σ2

1

)
and (12) follows by the Slutsky theorem.

B: Proof of Theorem 2

Proof: Using the argument similar to the proof of Theorem 1,

θ̂SP = A+B + C∗ +W + op
(
n−1/2

)
, (A.6)

where A, B, and C∗ are defined in (A.2), (A.3), and (A.6), respectively, and W =

n−1
∑n

i=1(1− ri)[m̂0(xi; γ̂)− m̂0(xi; γ
∗)]. By a Taylor expansion,

W = (γ̂ − γ∗)′ 1
n

n∑
i=1

(1− ri)
∂m̂0(xi; γ1)

∂γ
,
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where
∂m̂0(xi; γ)

∂γ
=

∑n
j=1 rjKh(xi, xj) exp(γyj)y

2
j∑n

j=1 rjKh(xi, xj) exp(γyj)
− m̂2

0(xi; γ),

and γ1 is in the line segment between γ̂ and γ∗. Standard arguments used to derive the

asymptotic equivalence (A.5) can also be used to show that, as n→∞,

1

n

n∑
i=1

(1− ri)
∂m̂0(xi; γ1)

∂γ
→p E[(1− r){y −m0(x)}2|x]. (A.7)

Hence, W is asymptotically equivalent to (γ̂−γ)E[(1−r){y−m0(x)}2] and
√
nW converges

to N(0, H2Vγ). Due to the independence of γ̂, W is uncorrelated with (A,B,C∗) and the

result (21) follows.

C: Proof of Theorem 3

Proof: Writing

θ̂SP (γ) =
1

n

n∑
i=1

{riyi + (1− ri)m̂0(xi; γ)}+
1

n

n∑
i=1

(1− ri)
δi
ν
{yi − m̂0(xi; γ)} ,

we have θ̂SP (γ̂) = θ̂SP and

E

{
∂

∂γ
θ̂SP (γ) | γ = γ0

}
= 0 (A.8)

where γ0 is the probability limit of γ̂. According to Randles (1982), using
√
n (γ̂ − γ0) =

Op(1), we have

θ̂SP (γ̂) = θ̂SP (γ0) + op(n
−1/2). (A.9)

Writing

m̃(x; γ) = p lim
n→∞

m̂0(x; γ) =
E {r exp (γY )Y | x}
E {r exp (γY ) | x}

,

we have

θ̂SP (γ0) = n−1
n∑
i=1

{riyi + (1− ri)m̃(x; γ0)}+ n−1
n∑
i=1

(1− ri)
δi
ν
{yi − m̃(x; γ0)}+ U(γ0),
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where

U(γ0) = n−1
n∑
i=1

(1− ri) (1− δi/ν) {m̂0(xi; γ0)− m̃(xi; γ0)} .

Because

m̂0(xi; γ0)− m̃(xi; γ) =

∑n
j=1 rjKh(xi, xj) exp(γ0yj) {yj − m̃(xi; γ0)}∑n

j=1 rjKh(xi, xj) exp(γ0yj)
,

we can apply the same argument for (A.5) to the last term of U(γ0) to get

√
n {U(γ0)− U∗(γ0)} = op(1), (A.10)

where

U∗(γ0) = n−1
n∑
i=1

ri exp(γ0yi) {yi − m̃(xi; γ0)}α∗(xi)

and

α∗(xi) =
E {(1− r) (1− δ/ν)Kh(x, xi) | xi}

f(xi)E {r exp(γ0Y ) | xi}
.

Because E {δ | r = 0, x} = ν, α∗(xi) = 0 and (A.10) reduces to U(γ0) = op(n
−1/2). Therefore,

(A.9) reduces to

θ̂SP = n−1
n∑
i=1

{riyi + (1− ri)m̃(x; γ0)}+ n−1
n∑
i=1

(1− ri)
δi
ν
{yi − m̃(x; γ0)}+ op(n

−1/2),

which proves (24).
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Table 1: Monte Carlo relative biases, Monte Carlo variances, and Monte Carlo mean squared
errors of the four point estimators for missing scenarios (M1)-(M4) in the simulation study.

Missing

Mechanism Model Estimates θ̂n θ̂NA θ̂1 θ̂SP

(M1) A Relative Bias 0.0006 -0.0019 0.0157 -0.0008
Var. 0.0074 0.0220 0.0119 0.0201
MSE 0.0074 0.0220 0.0133 0.0201

B Relative Bias 0.0011 -0.0202 -0.0459 0.0006
Var. 0.0089 0.0247 0.0129 0.0234
MSE 0.0089 0.0258 0.0185 0.0234

(M2) A Relative Bias -0.0008 -0.0016 0.0542 0.0002
Var. 0.0075 0.0223 0.0107 0.0194
MSE 0.0075 0.0223 0.0276 0.0194

B Relative Bias 0.0007 -0.0174 0.1479 0.0070
Var. 0.0088 0.0219 0.0117 0.0176
MSE 0.0088 0.0227 0.0694 0.0177

(M3) A Relative Bias -0.0002 -0.0007 0.0641 0.0011
Var. 0.0074 0.0217 0.0117 0.0181
MSE 0.0074 0.0217 0.0354 0.0181

B Relative Bias -0.0001 -0.0351 0.1204 0.0010
Var. 0.0086 0.0240 0.0114 0.0201
MSE 0.0086 0.0273 0.0497 0.0201

(M4) A Relative Bias 0.0005 0.0021 0.0827 0.0011
Var. 0.0071 0.0174 0.0117 0.0162
MSE 0.0071 0.0174 0.0511 0.0162

B Relative Bias -0.0001 -0.0066 0.1085 0.0008
Var. 0.0086 0.0185 0.0132 0.0172
MSE 0.0086 0.0186 0.0443 0.0172
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Table 2: Monte Carlo relative biases, Monte Carlo variances, and Monte Carlo mean squared
errors of the four point estimators for missing scenarios (M5)-(M8) in the simulation study.

Missing

Mechanism Model Estimates θ̂n θ̂NA θ̂1 θ̂SP

(M5) A Relative Bias 0.0008 -0.0007 0.0865 0.0012
Var. 0.0078 0.0199 0.0111 0.0171
MSE 0.0078 0.0199 0.0542 0.0171

B Relative Bias -0.0005 -0.0103 0.1727 0.0033
Var. 0.0086 0.0185 0.0125 0.0164
MSE 0.0086 0.0188 0.0913 0.0164

(M6) A Relative Bias 0.0002 -0.0002 0.0836 0.0026
Var. 0.0078 0.0208 0.0106 0.0173
MSE 0.0077 0.0208 0.0509 0.0173

B Relative Bias 0.0001 -0.0153 0.1437 0.0082
Var. 0.0091 0.0223 0.0117 0.0180
MSE 0.0091 0.0229 0.0662 0.0182

(M7) A Relative Bias -0.0004 0.0018 0.0798 0.0032
Var. 0.0075 0.0215 0.0111 0.0178
MSE 0.0075 0.0215 0.0478 0.0179

B Relative Bias -0.0012 -0.0180 0.0972 0.0003
Var. 0.0087 0.0222 0.0123 0.0191
MSE 0.0087 0.0230 0.0372 0.0191

(M8) A Relative Bias 0.0002 0.0011 0.0979 0.0064
Var. 0.0079 0.0200 0.0111 0.0163
MSE 0.0079 0.0200 0.0664 0.0165

B Relative Bias -0.0013 -0.0277 0.0525 -0.0020
Var. 0.0087 0.0252 0.0114 0.0223
MSE 0.0087 0.0272 0.0187 0.0223
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Table 3: Estimated mean errors and estimated standard errors for the Cheng’s estimator
(θ̂1) and our semi-parametric estimator (θ̂SP ) in the case study.

Missing θ̂1 − θ̂n ŜE(θ̂1) θ̂SP − θ̂n ŜE(θ̂SP )

(M1) 0.0213 0.0219 0.0084 0.0256

(M2) 0.0570 0.0219 0.0089 0.0227

(M3) 0.0640 0.0224 0.0003 0.0223

(M4) 0.0568 0.0231 0.0255 0.0236

(M5) 0.0600 0.0224 -0.0018 0.0230

(M6) 0.0488 0.0222 -0.0133 0.0266

(M7) 0.0864 0.0222 0.0183 0.0229

(M8) 0.0465 0.0223 -0.0118 0.0231
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