
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 1 of 9

UAV Swarm Control:
Calculating Digital Pheromone Fields with the GPU

Bryan Walter, Adrian Sannier, Dirk Reiners, James Oliver
Virtual Reality Applications Center
Iowa State University, Ames, Iowa

bryan.walter@gmail.com, sannier@iastate.edu,
dreiners@iastate.edu, oliver@iastate.edu

ABSTRACT

Our future military force will be complex: a highly integrated mix of manned and unmanned units. These
unmanned units could function individually or within a swarm. The readiness of future warfighters to work
alongside and utilize these new forces depends on the creation of usable interfaces and training simulators.
The difficulty is that current UAV control interfaces require too much operator attention and common
swarm control methods require expensive computational power. This paper begins with a discussion on
how to improve upon current user interfaces and then reviews a swarm control method, the digital
pheromone field. This method uses digital pheromones to bias the movements of individual units within a
swarm toward areas that are attractive and away from areas that are dangerous or unattractive. Next, a
more efficient method for performing pheromone field calculations is introduced, one that harnesses the
power of the GPU (graphics processing unit) in today's graphics cards by reshaping the ADAPTIV swarm
control algorithm into a form acceptable to the GPU's pipeline (Parunak et al, 2002). The GPU ADAPTIV
implementation is tested in scenarios that involve up to 50,000 virtual UAVs. When compared to its
counterpart CPU implementation, the GPU version performed over 30 times faster than the CPU version.
This gain translates directly into lower costs for training the future warfighter today and fielding the
swarms of tomorrow. Finally, this paper presents a vision of how to combine these new interface ideas and
performance enhancements into an effective swarm control interface and training simulator.

ABOUT THE AUTHORS

Bryan E. Walter is a dual major candidate for PhD degrees in Human Computer Interaction and Mechanical
Engineering at Iowa State University. Bryan received his MS and BS in Mechanical Engineering from Iowa State
University and anticipates graduation in December 2005. His professional interests include vehicle simulation, vehicle
teleoperation, immersive command and control, and virtual reality.
Adrian V. Sannier is Stanley Professor of Interdisciplinary Engineering in the department of Industrial, Manufacturing
and Systems Engineering at Iowa State University. He also serves as Associate Director of the Virtual Reality
Applications Center. His research focuses on human/computer interfaces, immersive visual interfaces and their
application to human performance and training for complex tasks, and internet-based collaboration and the implications
of pervasive computing.
Dirk Reiners is an assistant professor for Computer Science at Iowa State University. He is a member of the Human-
Computer Interaction Initiative and the project lead of the OpenSG Open Source scene graph system. His interests
cover a wide array of topics in interactive 3D graphics, from software systems through efficient interaction methods for
complex data sets to large-scale cluster-based displays. He has a PhD from the Technical University of Darmstadt and
can be reached at dreiners@iastate.edu.

James H. Oliver is Associate Professor of Mechanical Engineering and Director of the Virtual Reality Applications
Center at Iowa State University. He also serves as director of the Human Computer Interaction graduate program. His
research interests span modelling, graphics, simulation, and interface technologies, and their application in science and
engineering.

This is a manuscript of an article from The Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology 3 (2006): 167, doi:10.1177/154851290600300304.
Posted with permission.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 2 of 9

UAV Swarm Control:
Calculating Digital Pheromone Fields with the GPU

Bryan Walter, Adrian Sannier, Dirk Reiners, James Oliver

Virtual Reality Applications Center
Iowa State University, Ames, Iowa

bryan.walter@gmail.com, sannier@iastate.edu,
dreiners@iastate.edu, oliver@iastate.edu

INTRODUCTION

The military has a clear picture of the force it
would like to field in the coming decades and
this image has a single prevailing theme: the
integration of manned and unmanned units. The
addition of unmanned units will decrease the
danger soldiers face in direct combat, and the
DoD (Department of Defense) roadmap calls for
an immediate and sustained increase in the use of
unmanned units, starting with unmanned aerial
vehicles (UAVs) (2002). By 2012, the DoD
roadmap projects that F-16-sized UAVs will
perform a complete range of combat and combat
support missions, including Suppression of
Enemy Air Defenses (SEAD), Electronic Attack
(EA), and even deep strike interdiction. UAVs
specialize in missions commonly categorized as
“the dull, the dirty, and the dangerous.”

Furthermore, the DoD roadmap requires that a
single operator be able to control a UAV swarm.
However, for this goal to be realistic, one of two
research paths must be chosen and followed.
Either the UAVs in the swarm will be totally
autonomous and therefore require no human
supervision, or the human interface to the swarm
will need to be radically different from current
UAV interfaces, which require multiple pilots for
a single UAV. This paper makes the case for the
second path and then elaborates on how to
improve upon the current state of the art. The
paper introduces two major research challenges:
one a more efficient way to control the UAVs,
and the other a superior way to monitor and
manage a swarm’s progress and minimize the
number of operators needed. It then presents
methods for attacking each challenge, the results
currently obtained, and a discussion of the future
research direction.

MOTIVATION

The Predator (the most common UAV in active
duty) requires at least two operators, one to fly

the plane and the other to mange the camera
mounted on it. More commonly, four people
man the craft because controlling it is such a
taxing task. The four people break off into teams
of two and alternate controlling and resting using
an interface like the one shown below (Figure 1).

Figure 1. Predator ground control station

One of the main reasons the Predator is taxing to
operate is that the field of view afforded to the
pilot is poor, resulting in a loss of situational
awareness. Situational awareness, knowledge of
location and what is occurring near that location,
is critical when operating a vehicle in a hostile
environment. According to a recent report on the
loss of Predator aircraft during missions:

“A good number of them were lost due to
operator error, since it is hard to land the
UAV. The operator has the camera pointing
out the front of the plane, but he really has
lost a lot of situational awareness that a
normal pilot would have of where the
ground is and where the attitude of his
aircraft is.” (Charles et al, 2001)

Predator operators liken piloting it to flying as
though looking through a soda straw (Grant,
2002). If it takes at least two people to control
one Predator it would take thousands of people
to control one swarm of a thousand Predators.
Clearly, this situation must be improved for

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 3 of 9

swarm control to be possible. This fact is
reinforced by the DoD roadmap since it states
that the ground control station must evolve as
UAVs grow in autonomy. Specifically, UAV
swarms “must be controllable by non-specialist
operators whose primary job is something other
than controlling the UAV.” This demands “a
highly simple and intuitive control interface …
and the capability for autonomous vehicle
operation of one or more vehicles being
controlled by a single operator” (USDoD, 2002).

These requirements can not be met by current
technologies. One reason is that current UAVs
require too much operator attention, and this
problem will be partially solved by UAVs with
more autonomous flight capabilities. These
future UAVs will be capable of flying to a given
set of coordinates while automatically avoiding
collision. However, even with such advanced
UAVs, they will still require human supervision
to know where to go and to confirm sensitive
actions. As a result, further improvement of
UAV ground control stations will be necessary
as they are inadequate for controlling and
monitoring the progress of a swarm of UAVs.

Due to the difficulty of maintaining situational
awareness, it is tempting to suggest that people
should not be involved in the control of UAVs.
This argument calls for completely autonomous
UAVs capable of taking off, flying their mission,
taking pictures of or striking a target, and then
landing -- all without human input. While not
entirely technologically feasible at present, it
may be a viable path for future UAV research
and development. In fact, some UAVs are
already capable of taking off, flying a specified
path, and landing on their own (Adams, 2003).
The trouble comes in the execution of the
mission, be it either strike or reconnaissance. If
this task is left entirely to the computer on the
UAV, commanders will be unable to focus their
swarm to rapidly changing areas of interest in the
case of reconnaissance, and they will be unable
to decide which targets get attacked in the case
of strike. The latter case is of particular concern,
because a glitch in the software a UAV uses to
decide whether a building is an enemy HQ or a
hospital could result in civilian casualties.
Additionally, autonomous UAVs could confuse
friendlies with enemies if their software fails.

These concerns have been expressed before and
most recently in the New York Times article
“Who do you trust: G.I. Joe or A.I. Joe”

(Johnson, 2005). This article outlines the dangers
of letting artificial intelligence (A.I.) decide
everything by taking the human out of the loop.
Some might argue that if the A.I. were flawless
than there would be no issue. However, it is
unrealistic to expect flawless A.I. anytime soon
and perhaps ever. After all, humans still make
false positive errors, and we are still much better
at pattern recognition and high level decisions
than computer A.I. As a result, it seems that a
human must be in the loop of control, be it for a
single UAV or an entire swarm of them.

A human in the loop of swarm control requires
three things. First, the human must have access
to the control algorithm used by the swarm to
enable either direct or indirect control. Second,
the human must be able to monitor the swarm’s
progress on a global level without getting caught
up in the state of individual units of the swarm
since there are far too many to monitor.
Furthermore, there will be hundreds or thousands
of UAVs in a swarm, making direct individual
communication with all of them expensive.
Third, the operators must be trained adequately
to manage swarms. This calls for a simulator to
prepare commanders for swarm control.

In short, what is needed is a system that has
simple controls with relatively uncomplicated
units that perform their tasks without knowledge
of the entire system, but whose combined actions
exhibit complex aggregate behavior. Further, a
simulation of this system must be made available
to potential operators well in advance of swarm
deployment to ensure the warfighter’s readiness.
Additionally, swarming UAVs should be kept as
simple as possible to minimize costs and to
enhance their robustness in the field. Despite this
pressure toward simplicity and expendability,
these groups of UAVs will still be required to
perform complex tasks as a whole. While this
may sound daunting, nature has provided a
template for accomplishing these requirements in
social insects such as ants. A swarm control
algorithm can be created by making analogies
between UAVs and social insects.

A key concept of insect-inspired swarm control
is pheromones. Pheromones can be thought of
as markers to tell units whether an area is
attractive or unattractive for future exploration.
In this way, UAVs can use local pheromone
levels to determine which direction they should
go. With such an algorithm, the commander
could change simple parameters relating to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 4 of 9

pheromones to influence the movement of the
swarming UAVs. For this control to be effective,
the commander needs a clear understanding of
the entire battlefield and what the swarming
UAVs should focus on. A fundamental challenge
with insect-inspired algorithms is that they are
computationally expensive for large fields.

A strategy explored in this paper for improving
the performance of insect-inspired algorithms
stems from recent developments in graphics
programming. Modern graphics cards in
commodity PCs have become complex enough
to require their own processing unit. This unit,
commonly called the graphics processing unit
(GPU), is a parallel vector calculator. Until
recently, the GPU had a fixed functionality – it
took vertices in world coordinates, converted
them to screen coordinates and applied the
appropriate color to the pixel. However, now
there are two steps in the pipeline that can be
programmed, ushering in a new set of algorithms
that use the GPU for non-graphics calculations.
To run an algorithm on the GPU it must be
turned into a fragment program, often requiring
that it be written differently than if it were
designed for the CPU because some of the GPU
pipeline is still fixed. The GPU deals in pixels,
vertices and textures so an algorithm must be
modified to fit this paradigm.

GPU performs vector calculations much more
efficiently than the CPU. This advantage stems
from intense innovative pressure from the video
game industry as well as the power of its specific
design. Since the GPU does not have to handle
general computation, its components can be
optimized to calculate vector equations.
Furthermore, today’s GPUs have 16-24 parallel
pipelines per card to perform these calculations
(Harris et al, 2002). When these advantages are
combined, GPUs can provide a considerable
performance advantage. For example, a 3.06
GHz Intel Pentium 4 with Hyperthreading can
perform six gigaflops with a memory bandwidth
of 5.96 GB/s. In contrast, an ATI Mobility
Radeon 9700 can perform 25.6 gigaflops with a
memory bandwidth of 12.8 GB/s (Fernando et al,
2004). Further, each currently costs around $170.

This paper presents a vision for a system of
systems that harnesses the power of the GPU to
enable a simulation of human-in-the-loop UAV
swarm control. Eventually, this vision could be
expanded to control UAV swarms in the field.
This vision involves a swarm of semi-

autonomous UAVs under the indirect control of
an operator. This swarm will be controlled with
an insect-inspired algorithm. Each UAV in the
swarm will be small and expendable while still
providing invaluable reconnaissance by being
able to locate threats and targets with on-board
sensors and computers. This reconnaissance will
be displayed in a virtual world representation of
the battlefield (Walter et al, 2004). Further, the
commander will directly manage a small number
of large F-16 sized striker UAVs using the same
virtual world. These strikers wait for orders to
eliminate threats or targets. Additionally, the
commander would be deployed near the field in
a vehicle to minimize communication delay with
the swarm. The swarm would gather
information about the battlefield with only minor
input from the commander. The striker UAVs
would then use this information to determine the
best path to the desired target or threat set by the
commander. Finally, the commander would
monitor this striker and could take over control
at any time.

Sound like science fiction? While all of this is
not currently technologically feasible, it is not far
off the technological horizon. Prototypes and
simulations of these future control systems can
yield valuable insights on future operator
interfaces. In fact, it is crucial that these future
control systems be explored now, not only to
spur UAV swarm development, but also to start
training people on how to interact with swarms.

BACKGROUND

There are two main streams of research
discussed in this paper that are important to
implementing the vision of an advanced swarm
control interface: swarm control and battlefield
visualization. This section first covers battlefield
visualization by discussing our prior work in this
area: the Virtual Battlespace. Then it covers an
accepted insect-inspired swarm control method,
Adaptive control of Distributed Agents through
Pheromone Techniques and Interactive
Visualization (ADAPTIV) (Parunak et al, 2002).

Virtual Battlespace

The Virtual Battlespace immerses users in a
virtual environment that provides them with
greater context and awareness of the units under
their control as well as the overall mission. By
integrating radar tracks and UAV video feeds,
the virtual world can provide up-to-date access to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 5 of 9

the latest real time battlefield information. The
virtual world is constructed from a mix of a
priori information and real time sensor feeds to
act as an organizing context for the operator. The
result is a mixed reality system in which real
world video and radar tracks augment a dynamic
virtual world. Using real world data to augment
the virtual world is an inversion of the more
typical paradigm of augmented and mixed reality
where virtual information is used to enhance real
world data and imagery.

The research into Virtual Battlespace originated
in 2000 when a research team at Iowa State
University’s Virtual Reality Applications Center
(VRAC) began work with the Air Force
Research Lab’s Human Effectiveness Directorate
and the Iowa National Guard’s 133rd Air
Control Squadron. The goal of this preliminary
version of the Virtual Battlespace was to develop
an immersive VR system for distributed mission
training. It was demonstrated at I/ITSEC in
2002. Virtual Battlespace integrates information
about tracks, targets, sensors and threats into an
interactive virtual reality environment that fuses
the available information about the battlespace
into a coherent picture that can be viewed from
multiple perspectives and scales (Knutzon et al,
2003). Visualizing engagements in this way is
useful in a wide variety of contexts including
historical mission review, mission planning, pre-
briefing, post-briefing and live observation of
mission training scenarios (Knutzon et al, 2004).

Figure 2 shows the Virtual Battlespace. The blue
triangular wedges are aggregate units that each
represent a squadron of aircraft. The red and
white circles represent high threat areas near a
SAM site. The commander can use this visual
cue to see when units are in danger. The green

 Figure 2. The Virtual Battlespace

wedge illustrates the sensor range of the lead
aggregate’s radar. Using this visual cue, the
commander can determine what that unit can see
on its radar. The commander is given more
information with a billboard display that shows a
compass, a map, and a traditional radar display.

The Virtual Battlespace can be displayed with a
variety of display devices, from a traditional
computer monitor, to a completely immersive
VR device such as Iowa State University’s C6.
The C6, shown in Figure 3, is a six-walled
CAVE display device with each wall consisting
of a 10’x 10’ stereoscopic screen (Iowa State,
2005). Recently, VRAC researchers received a
$2.8 million grant to work with Air Force Office
of Sponsored Research to continue development
on the Virtual Battlespace for UAV control.

Figure 3. C6 Display Device

ADAPTIV

Social insects provide a template for swarm
control as they can have a complex aggregate
behavior despite being simple creatures. An
individual termite does not know engineering or
physics or even what its fellow termites are
doing, but a swarm of tropical termites can build
complex multi-level mounds that can be five
meters tall and weigh ten tons (Parunak et al,
1997). These mounds have impressive overall
rigidity, are made from a material that is fire
resistant, and contain enough rooms and
passages to house the brood and all of its food
reserves. Individual ants gather together to
perform complex social tasks such as aphid
farming. These farming ants protect a herd of
aphids (smaller insects) from predators so they
can milk them of their honeydew (Holway et al,
2002). Also, most ant species form invisible
roadways called “ant highways,” where columns
of ants follow one another without the aid of
street signs or painted lanes. These complex
behaviors are accomplished via pheromones.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 6 of 9

Pheromones are chemicals produced in different
flavors. Insects release them into the air to use
as markers with each flavor conveying its own
message. One chemical compound might signal
food while another might signal danger. Insects
use pheromone flavors to communicate with
their fellows. If an ant finds food, it drops a
pheromone that tells other ants, “food this way.”
As this pheromone reaches the receptors of other
ants, they can use it to go to the food source.

Pheromone-based swarm control algorithms for
man-made units have been explored by other
researchers. Most pheromone-based algorithms
use the concept of digital pheromones, data
markers that are passed between units in a swarm
with a network instead of being carried by the
wind. The unit’s pheromone receptors are
packet readers. While in nature, the environment
facilitates pheromone movement and interaction;
in computer swarm control algorithms, some
other entity must facilitate these pheromone
activities. In this case, a global data structure
serves that function. This data structure, a grid of
all present pheromone flavors and intensities,
called the pheromone field, is considered to be
external to the units in the swarm.

ADAPTIV is a pheromone-based swarm control
algorithm that uses a hex grid for its pheromone
field. Each cell consists of a set of numbers that
represent the magnitudes of the different
pheromone flavors. The flavors represent the
presence, as detected by the unit, of different
things of interest, such as threats or targets.
Alternatively, the flavor can be used to enable
swarm dispersion. This type of pheromone flavor
is called UAV repulsion pheromone and is
dropped at the current location of the unit in the
swarm. The threat and repulsion pheromones are
unattractive while the target pheromone is
attractive. ADAPTIV contains three steps:
• update the pheromone field
• propagate pheromones
• move the units in the swarm

The first step updates the strength of the
pheromones at each field cell with Equation 1. It
is a vector equation with each of its components
corresponding to a unique pheromone flavor.

S(t+1,p) = E*S(t,p) + R(t,p) + Q(t,p) (1)

Equation 1 states that the pheromone strength (S)
at cell location p at time t+1 is equal to the S
currently there (at time t) times the evaporation

coefficient (E) plus any pheromones added to
this cell from units in the swarm (R) at time t
plus pheromones that have propagated from cell
p’s neighbors (Q). E is a constant between zero
and one and it represents the percentage of
pheromone that remains within a cell after
evaporation. This evaporation is important as it
makes pheromones linger for only a short period
after the target of interest is gone, automatically
keeping the known state of the world up to date.

Two variables, R and Q, must be known in order
to calculate S in Equation 1. When a unit finds
something in cell p it places a pheromone of the
appropriate flavor in the p location of R. R is
cleared each time since it represents new
pheromones input into the system. Pheromones
dropped in R are added to the current value
making pheromones of the same flavor at the
same location additive. With R in hand, only Q
is left unknown. The calculation of Q is done in
step two of the algorithm by using Equation 2.

Q(t+1,p) = ∑ [F/N(p’)*(R(t,p’)+Q(t,p’))] (2)

Equation 2 describes pheromone propagation and
is the weighted sum of pheromones from each
cell’s neighbors. The p’ in Equation 2 denotes
the location of a nearest neighbor of cell p. N(p’)
is the number of nearest neighbors that cell p’
itself has. In the case of a non-ending hex grid
N(p’) would always be six. F is the propagation
coefficient with possible values ranging from
zero to one. This coefficient is the percentage of
pheromones at a cell that will propagate to its
nearest neighbors. In Equation 2, Q represents
new pheromones added to cell p by its
neighbors. The value of Q would then be the
sum of the individual contributions of each of p’s
nearest neighbors, hence the sum in Equation 2.
The part inside the sum is the contribution of
each nearest neighbor. This contribution,
dampened by the propagation coefficient F, is
split equally among its nearest neighbors. As a
result, F/N(p’) of the newly inputted pheromones
(given by R and Q) in cell p’ propagate to cell p.

The third step of ADAPTIV is to move the units
in the swarm using the pheromone field. In
ADAPTIV, each unit in the swarm uses roulette
selection to determine where to go next. The bin
lengths for this roulette selection are determined
by the local pheromone levels. There is one bin
for each of the cell’s nearest neighbors and that
bin is made longer by the magnitude of attractive
pheromone flavors and shortened by the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 7 of 9

magnitude of repulsive pheromone flavors. In
this way, the swarming units move somewhat
randomly with a preference for attractive cells.
ADAPTIV was tested in 2002 in simulated
scenarios and was found to be capable of
enabling swarm control (Parunak et al, 2002).

GPU IMPLEMENTATION

As mentioned in the motivation, current graphics
hardware is programmable. There are two
separate levels in transforming 3D geometry into
an image that can be programmed: the vertex and
the pixel level. For our algorithm (and for non-
graphics uses of GPUs in general) the pixel level
is more interesting, as most of the computational
power of a GPU is concentrated here. Using a so
called fragment program the operations that
calculate the final color triplet (independent red,
green and blue components) from the input data
like application-defined attributes or texture
images can be changed as needed. The problem
is reformulating a general algorithm in a form
that is suitable for the vertex-stream- and pixel-
oriented programming model of a GPU.

The first step in converting ADAPTIV is to
represent a pheromone fields as a 2D texture.
The different color channels in the texture are
used to represent the different pheromone
flavors; red for threats, green for targets and blue
for UAV repulsion pheromone. Equations 1 and
2 can then be turned into fragment programs.

The first rendering step in the calculation of
Equation 1 is to draw a screen-filling polygon
with the fragment program enabled. The program
includes Equation 1 using texture reads to get
access to pheromone data. Both the S and Q
fields are stored within textures, but the R values
are not because the R pheromone may or may not
be in a particular cell since it only exists if a
UAV drops an input pheromone into that cell.
Further the location of introduced pheromones
can change rapidly. Therefore the R pheromones
are not stored in a texture that would need to be
updated on the CPU every step; rather they are
additively drawn as points of the appropriate
color (based on the pheromone flavor discovered
by the UAV at that location). The first step fills
the frame buffer with colors corresponding to
pheromone levels E*S+Q. The second rendering
step adds the R pheromones by enabling a simple
additive blending mode and then drawing
colored points at each UAV location. Finally, the
frame buffer is saved to the S texture.

ADAPTIV’s next step, pheromone propagation,
uses Equation 2 converted to a fragment
program. First, the previous Q values are put
into the frame buffer by drawing a screen-filling
polygon with the Q texture. Then points are
drawn where UAVs drop pheromones and the
current color is copied to the Q texture. This
texture, containing R(t,p’) + Q(t,p’), is then used
to calculate Q(t+1,p) with a fragment program
version of Equation 2 applied to a screen-filling
polygon. The implementation of this fragment
program is made easier by making the borders
off-limits to UAVs, threats, and targets. This
restriction results in all cells having eight nearest
neighbors, making N(p’) = 8. Since N(p’) and F
are constant, they can be taken out of the sum
and the same fragment program can be used for
the entire screen-filling polygon.

The third step of the ADAPTIV algorithm,
roulette selection, involves a more complex
fragment program. To perform roulette selection,
a point is drawn for each UAV with the roulette
selection fragment program active. These points
are drawn in a line for efficient collection of the
results since only a small subset of the frame
buffer needs to be retrieved after running the
fragment program. A different random number,
UAV sensitivities, and nearest neighbor cell
positions are also sent to the fragment program
as vertex attributes.

The main task of the roulette selection program
is to calculate the length of the bin for each of
the cell’s eight nearest neighbors and then select
one of them. It accomplishes this task by using
the color of S at each nearest neighbor of the
UAV to create a corresponding bin length. A
passed-in vector, called the PherSen vector,
contains the UAV’s sensitivity to each of the
pheromone flavors. Since red and blue channels
represent repulsive pheromones, these two
components of PherSen are negative. A direct
result of this is that cells that contain more green
than red or blue will be considered “better”
choices. However, both the amount of each
color present and the magnitude of the
components in PherSen determine how much
“better” a nearest neighbor cell is over the others.
The length of each of the bins is determined by
the dot product of the color vector at a cell with
the PherSen vector. The higher the magnitude of
the numbers in PherSen, the longer (or shorter if
the number is negative) the bins get.
Additionally, there is a constant value called the
“shift” added to each bin length. The purpose of

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 8 of 9

the shift is to make cells empty of pheromones
(black cells) somewhat attractive. Without a
shift, black cells would have a bin length of zero
and have no chance of selection.

With all the bin lengths calculated, biased
roulette selection can be performed. The random
number between zero and one is multiplied by
the total bin length. Then, the fragment program
selects the first bin it finds whose cumulative
length (based on the sum of all the bin lengths
that came before it) exceeds the random number.
The location of the cell whose bin was chosen is
then returned in the red and green channels of the
pixel. After all selections are done, a sub-texture
containing the positions is read from the frame
buffer. These positions are then assigned to the
corresponding UAV. The UAVs then try to
reach the positions and the process is repeated.

RESULTS

To assess the performance of the GPU version of
the ADAPTIV algorithm, it was compared with a
CPU version. The time for one execution of all
three ADAPTIV algorithm steps was recorded
for certain combinations of battlefield size and
UAVs in the swarm. The battlefield size,
measured in rows and columns of the pheromone
field was tested at sizes 64x64, 128x128,
256x256, 512x512, and 1024x1024. The
number of UAVs in the swarm was tested at 5,
50, 500, 5000, and 50,000. In each case, 120
data points were gathered. The test computer
had a 3GHz Intel Pentium 4 with Hyper-
threading and an ATI Mobility Radeon 9700.

In the cases where swarm size was investigated,
the battlefield size was 128x128. Figure 4 shows
the results for these cases. The GPU’s
performance advantage was found to grow
slowly with increasing swarm size. At 5 UAVs
the GPU was 30 ms (1.8x) faster and by 50,000
UAVs the GPU was 55 ms (2.7x) faster.

In the cases where battlefield size was
investigated, swarm size was kept constant at
4000 UAVs. Figure 5 shows those cases. The
GPU’s performance advantage was found to
grow quickly with increasing battlefield size.
For example, at a size of 64x64, the CPU is
actually faster by 5 ms (1.2x) but by a size of
128x128 the GPU is faster by about 43 ms (1.4x)
and at a size of 1024x1024 the GPU is faster by
about 440 ms (34.8x). The results of these test
cases show that the GPU algorithm outperformed

its CPU counterpart in almost all combinations
of swarm size and battlefield size.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 5000

Number of UAVs

Ti
m

e
(s

)

Figure 4. Performance vs. Swarm Size

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Number of Rows or Cols

Ti
m

e
(s

)

Figure 5. Performance vs. Battlefield Size

SWARM CONTROL SIMULATOR

The GPU ADAPTIV algorithm and the Virtual
Battlespace can be combined into a powerful
training simulator. This simulator will require
only two networked commodity level PCs.
Because of the performance advantage of the
GPU ADAPTIV algorithm, one computer with a
128M graphics card can simulate the behavior of
a virtual UAV swarm of 50,000+ units in real-
time with a time step of 0.1 seconds. The second
computer would then run the Virtual Battlespace
and the UAV swarm would be represented
within the virtual world. Further, the pheromone

CPU

GPU

CPU

GPU

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2078 Page 9 of 9

field (represented by the S texture) could be
overlaid on the terrain in the Virtual Battlespace.

One user interface in the swarm simulator would
allow the commander to manipulate the behavior
of the swarm by changing its aggressiveness in
exploring the battle and identifying threats and
targets. Changes input into this interface would
send a network communication to the computer
running the swarm to modify the PherSen values
of the UAVs to ones that have been seen to
produce the desired behavior. Immediate feed-
back on likely loss of aircraft due to the behavior
setting could be displayed. This estimate of loss
would come from prior runs with those settings.

A second interface provided to the commander
through the Virtual Battlespace would be the
pheromone field modifier tool. It would allow
the commander to drop pheromones of a
particular flavor into the field within an area
designated by a user-defined rectangle. The
pheromone flavor could designate the area that is
off-limits to the swarm or it could represent a
strong attraction, pulling the swarm to that area.
This tool would allow the commander to directly
manipulate the movement of the entire swarm.
Further, the evaporation and propagation
parameters for these new pheromones could be
set from within the Virtual Battlespace. Different
battlefield and swarm combinations could be
easily developed and used in the simulator to test
trainees in a variety of missions. Additionally, it
would be straightforward to collect performance
data that could later be used to analyze the
commander’s decisions utilizing the swarm.

In conclusion, fusing the Virtual Battlespace
with the GPU ADAPTIV algorithm would create
an ideal swarm control simulator. The Virtual
Battlespace is flexible enough to handle new
scenarios over varied terrain with minimal
modification meaning that trainees could be
tested in a variety of missions potentially
involving both manned and unmanned units.
Furthermore, with the inclusion of the
ADAPTIV algorithm, missions involving a
simulated UAV swarm would be easy to set up.
This simulated UAV swarm would enable
operators to be trained on how to interact with a
swarm well before one can be deployed in the
field. Additionally, since the swarm movements
are simulated on the GPU, less expensive
computing power is needed to run the simulator.
All of this combines to make an effective yet
affordable swarm control training simulator.

FUTURE WORK

The UAV research group at VRAC will continue
developing the prototype of the swarm control
simulator described in the previous section. We
hope this work will uncover opportunities to
improve the system beyond the vision laid out in
this paper and will help in bringing UAV swarm
control and its training closer to reality.

REFERENCES

Adams, Charlotte (2003). UAVs That Swarm,

Avionics Magazine. Retrieved October 2004 from
http://www.defensedaily.com.

Charles L. Barry and Elihu Zimet (2001). UCAVs
Technological, Policy, and Operational
Challenges, Defense Horizons, Number 3, Center
for Technology and National Security Policy,
National Defense University.

Fernando., R., et. al. (2004). GPU Gems, Addison-
Wesley, N-Vidia Corporation.

Grant, Rebecca (2002). Reach-Forward, Air Force,
Journal of the Air Force Association, vol. 85.10.

Harris, M., et. al. (2002). Physically-Based Visual
Simulation on Graphics Hardware, Department of
Computer Science at North Carolina University,
Graphics Hardware.

Holway, D., et. al. (2002). “The Causes and
Consequences of Ant Invasions”, Annual Review
of Ecological Systems, Vol. 33.

Iowa State University Virtual Reality Applications
Center Website (2005), Visited June 2005 at
www.vrac.iastate.edu.

Johnson, George (2005). Ideas & Trends: Who Do
You Trust: G.I. Joe or A.I. Joe? New York Times.
Retrieved Feb. 2005 from www.nytimes.com.

Knutzon, J., Walter, B., Sannier, A., Oliver, J. (2003).
Command and Control in Distributed Mission
Training: an Immersive Approach, NATO
Symposium on Critical Design Issues for the
Human-Machine Interface, Prague.

Knutzon, J., Walter, B., Sannier, A., Oliver, J. (2004).
An Immersive Approach to Command and
Control, Journal of Battlefield Technology, Vol.
7, No. 1, pp. 37-42.

Parunak, Van Dyke (1997). Go to the Ant:
Engineering Principles from Natural Multi-Agent
Systems, Altarum Institute, Annals of Operations
Research, Vol. 75.

Parunak, V., Purcell, M., O,Connell, R. (2002). Digital
Pheromones for Autonomous Coordination of
Swarming UAVs, American Institute of
Aeronautics and Aerospace.

US Department of Defense (2002). Unmanned Aerial
Vehicles Roadmap 2002-2027. Retrieved June
2003 from
www.acq.osd.mil/usd/uav_roadmap.pdf.

Walter, B et al, (2004). VR Aided Control of UAVs.
3rd AIAA Unmanned Unlimited Technical
Conference, Paper AIAA 2004-6320, Chicago.

