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ABSTRACT 

Our future military force will be complex: a highly integrated mix of manned and unmanned units. These 
unmanned units could function individually or within a swarm.  The readiness of future warfighters to work 
alongside and utilize these new forces depends on the creation of usable interfaces and training simulators. 
The difficulty is that current UAV control interfaces require too much operator attention and common 
swarm control methods require expensive computational power.  This paper begins with a discussion on 
how to improve upon current user interfaces and then reviews a swarm control method, the digital 
pheromone field. This method uses digital pheromones to bias the movements of individual units within a 
swarm toward areas that are attractive and away from areas that are dangerous or unattractive.   Next, a 
more efficient method for performing pheromone field calculations is introduced, one that harnesses the 
power of the GPU (graphics processing unit) in today's graphics cards by reshaping the ADAPTIV swarm 
control algorithm into a form acceptable to the GPU's pipeline (Parunak et al, 2002).  The GPU ADAPTIV 
implementation is tested in scenarios that involve up to 50,000 virtual UAVs. When compared to its 
counterpart CPU implementation, the GPU version performed over 30 times faster than the CPU version. 
This gain translates directly into lower costs for training the future warfighter today and fielding the 
swarms of tomorrow.  Finally, this paper presents a vision of how to combine these new interface ideas and 
performance enhancements into an effective swarm control interface and training simulator. 
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INTRODUCTION 

 
The military has a clear picture of the force it 
would like to field in the coming decades and 
this image has a single prevailing theme: the 
integration of manned and unmanned units.  The 
addition of unmanned units will decrease the 
danger soldiers face in direct combat, and the 
DoD (Department of Defense) roadmap calls for 
an immediate and sustained increase in the use of 
unmanned units, starting with unmanned aerial 
vehicles (UAVs) (2002).  By 2012, the DoD 
roadmap projects that F-16-sized UAVs will 
perform a complete range of combat and combat 
support missions, including Suppression of 
Enemy Air Defenses (SEAD), Electronic Attack 
(EA), and even deep strike interdiction. UAVs 
specialize in missions commonly categorized as 
“the dull, the dirty, and the dangerous.”  
 
Furthermore, the DoD roadmap requires that a 
single operator be able to control a UAV swarm.  
However, for this goal to be realistic, one of two 
research paths must be chosen and followed.  
Either the UAVs in the swarm will be totally 
autonomous and therefore require no human 
supervision, or the human interface to the swarm 
will need to be radically different from current 
UAV interfaces, which require multiple pilots for 
a single UAV.  This paper makes the case for the 
second path and then elaborates on how to 
improve upon the current state of the art.  The 
paper introduces two major research challenges: 
one a more efficient way to control the UAVs, 
and the other a superior way to monitor and 
manage a swarm’s progress and minimize the 
number of operators needed.  It then presents 
methods for attacking each challenge, the results 
currently obtained, and a discussion of the future 
research direction. 
 

MOTIVATION 
 

The Predator (the most common UAV in active 
duty) requires at least two operators, one to fly 

the plane and the other to mange the camera 
mounted on it.  More commonly, four people 
man the craft because controlling it is such a 
taxing task.  The four people break off into teams 
of two and alternate controlling and resting using 
an interface like the one shown below (Figure 1). 
 

 
Figure 1. Predator ground control station 

 
One of the main reasons the Predator is taxing to 
operate is that the field of view afforded to the 
pilot is poor, resulting in a loss of situational 
awareness.  Situational awareness, knowledge of 
location and what is occurring near that location, 
is critical when operating a vehicle in a hostile 
environment.  According to a recent report on the 
loss of Predator aircraft during missions: 
 

“A good number of them were lost due to 
operator error, since it is hard to land the 
UAV. The operator has the camera pointing 
out the front of the plane, but he really has 
lost a lot of situational awareness that a 
normal pilot would have of where the 
ground is and where the attitude of his 
aircraft is.” (Charles et al, 2001) 

 
Predator operators liken piloting it to flying as 
though looking through a soda straw (Grant, 
2002). If it takes at least two people to control 
one Predator it would take thousands of people 
to control one swarm of a thousand Predators.  
Clearly, this situation must be improved for 
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swarm control to be possible.  This fact is 
reinforced by the DoD roadmap since it states 
that the ground control station must evolve as 
UAVs grow in autonomy.  Specifically, UAV 
swarms “must be controllable by non-specialist 
operators whose primary job is something other 
than controlling the UAV.” This demands “a 
highly simple and intuitive control interface … 
and the capability for autonomous vehicle 
operation of one or more vehicles being 
controlled by a single operator” (USDoD, 2002). 
 
These requirements can not be met by current 
technologies.  One reason is that current UAVs 
require too much operator attention, and this 
problem will be partially solved by UAVs with 
more autonomous flight capabilities.  These 
future UAVs will be capable of flying to a given 
set of coordinates while automatically avoiding 
collision.  However, even with such advanced 
UAVs, they will still require human supervision 
to know where to go and to confirm sensitive 
actions.  As a result, further improvement of 
UAV ground control stations will be necessary 
as they are inadequate for controlling and 
monitoring the progress of a swarm of UAVs.   
 
Due to the difficulty of maintaining situational 
awareness, it is tempting to suggest that people 
should not be involved in the control of UAVs.  
This argument calls for completely autonomous 
UAVs capable of taking off, flying their mission, 
taking pictures of or striking a target, and then 
landing -- all without human input.  While not 
entirely technologically feasible at present, it 
may be a viable path for future UAV research 
and development.  In fact, some UAVs are 
already capable of taking off, flying a specified 
path, and landing on their own (Adams, 2003).  
The trouble comes in the execution of the 
mission, be it either strike or reconnaissance.  If 
this task is left entirely to the computer on the 
UAV, commanders will be unable to focus their 
swarm to rapidly changing areas of interest in the 
case of reconnaissance, and they will be unable 
to decide which targets get attacked in the case 
of strike.  The latter case is of particular concern, 
because a glitch in the software a UAV uses to 
decide whether a building is an enemy HQ or a 
hospital could result in civilian casualties.  
Additionally, autonomous UAVs could confuse 
friendlies with enemies if their software fails.   
 
These concerns have been expressed before and 
most recently in the New York Times article 
“Who do you trust: G.I. Joe or A.I. Joe” 

(Johnson, 2005). This article outlines the dangers 
of letting artificial intelligence (A.I.) decide 
everything by taking the human out of the loop.  
Some might argue that if the A.I. were flawless 
than there would be no issue.  However, it is 
unrealistic to expect flawless A.I. anytime soon 
and perhaps ever.  After all, humans still make 
false positive errors, and we are still much better 
at pattern recognition and high level decisions 
than computer A.I.  As a result, it seems that a 
human must be in the loop of control, be it for a 
single UAV or an entire swarm of them. 
 
A human in the loop of swarm control requires 
three things.  First, the human must have access 
to the control algorithm used by the swarm to 
enable either direct or indirect control.  Second, 
the human must be able to monitor the swarm’s 
progress on a global level without getting caught 
up in the state of individual units of the swarm 
since there are far too many to monitor.  
Furthermore, there will be hundreds or thousands 
of UAVs in a swarm, making direct individual 
communication with all of them expensive.  
Third, the operators must be trained adequately 
to manage swarms. This calls for a simulator to 
prepare commanders for swarm control.  
 
In short, what is needed is a system that has 
simple controls with relatively uncomplicated 
units that perform their tasks without knowledge 
of the entire system, but whose combined actions 
exhibit complex aggregate behavior.  Further, a 
simulation of this system must be made available 
to potential operators well in advance of swarm 
deployment to ensure the warfighter’s readiness.  
Additionally, swarming UAVs should be kept as 
simple as possible to minimize costs and to 
enhance their robustness in the field. Despite this 
pressure toward simplicity and expendability, 
these groups of UAVs will still be required to 
perform complex tasks as a whole.  While this 
may sound daunting, nature has provided a 
template for accomplishing these requirements in 
social insects such as ants.  A swarm control 
algorithm can be created by making analogies 
between UAVs and social insects.   
 
A key concept of insect-inspired swarm control 
is pheromones.  Pheromones can be thought of 
as markers to tell units whether an area is 
attractive or unattractive for future exploration.  
In this way, UAVs can use local pheromone 
levels to determine which direction they should 
go.  With such an algorithm, the commander 
could change simple parameters relating to 
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pheromones to influence the movement of the 
swarming UAVs. For this control to be effective, 
the commander needs a clear understanding of 
the entire battlefield and what the swarming 
UAVs should focus on. A fundamental challenge 
with insect-inspired algorithms is that they are 
computationally expensive for large fields. 
 
A strategy explored in this paper for improving 
the performance of insect-inspired algorithms 
stems from recent developments in graphics 
programming.  Modern graphics cards in 
commodity PCs have become complex enough 
to require their own processing unit.  This unit, 
commonly called the graphics processing unit 
(GPU), is a parallel vector calculator.  Until 
recently, the GPU had a fixed functionality – it 
took vertices in world coordinates, converted 
them to screen coordinates and applied the 
appropriate color to the pixel.  However, now 
there are two steps in the pipeline that can be 
programmed, ushering in a new set of algorithms 
that use the GPU for non-graphics calculations.  
To run an algorithm on the GPU it must be 
turned into a fragment program, often requiring 
that it be written differently than if it were 
designed for the CPU because some of the GPU 
pipeline is still fixed.  The GPU deals in pixels, 
vertices and textures so an algorithm must be 
modified to fit this paradigm.   
 
GPU performs vector calculations much more 
efficiently than the CPU.  This advantage stems 
from intense innovative pressure from the video 
game industry as well as the power of its specific 
design.  Since the GPU does not have to handle 
general computation, its components can be 
optimized to calculate vector equations.  
Furthermore, today’s GPUs have 16-24 parallel 
pipelines per card to perform these calculations 
(Harris et al, 2002).  When these advantages are 
combined, GPUs can provide a considerable 
performance advantage.  For example, a 3.06 
GHz Intel Pentium 4 with Hyperthreading can 
perform six gigaflops with a memory bandwidth 
of 5.96 GB/s.  In contrast, an ATI Mobility 
Radeon 9700 can perform 25.6 gigaflops with a 
memory bandwidth of 12.8 GB/s (Fernando et al, 
2004). Further, each currently costs around $170.      
 
This paper presents a vision for a system of 
systems that harnesses the power of the GPU to 
enable a simulation of human-in-the-loop UAV 
swarm control.  Eventually, this vision could be 
expanded to control UAV swarms in the field.  
This vision involves a swarm of semi-

autonomous UAVs under the indirect control of 
an operator.  This swarm will be controlled with 
an insect-inspired algorithm.  Each UAV in the 
swarm will be small and expendable while still 
providing invaluable reconnaissance by being 
able to locate threats and targets with on-board 
sensors and computers.  This reconnaissance will 
be displayed in a virtual world representation of 
the battlefield (Walter et al, 2004).  Further, the 
commander will directly manage a small number 
of large F-16 sized striker UAVs using the same 
virtual world.  These strikers wait for orders to 
eliminate threats or targets. Additionally, the 
commander would be deployed near the field in 
a vehicle to minimize communication delay with 
the swarm.  The swarm would gather 
information about the battlefield with only minor 
input from the commander.  The striker UAVs 
would then use this information to determine the 
best path to the desired target or threat set by the 
commander.  Finally, the commander would 
monitor this striker and could take over control 
at any time.   
 
Sound like science fiction?  While all of this is 
not currently technologically feasible, it is not far 
off the technological horizon. Prototypes and 
simulations of these future control systems can 
yield valuable insights on future operator 
interfaces.  In fact, it is crucial that these future 
control systems be explored now, not only to 
spur UAV swarm development, but also to start 
training people on how to interact with swarms. 
 

BACKGROUND 
 
There are two main streams of research 
discussed in this paper that are important to 
implementing the vision of an advanced swarm 
control interface: swarm control and battlefield 
visualization.  This section first covers battlefield 
visualization by discussing our prior work in this 
area: the Virtual Battlespace.  Then it covers an 
accepted insect-inspired swarm control method, 
Adaptive control of Distributed Agents through 
Pheromone Techniques and Interactive 
Visualization (ADAPTIV) (Parunak et al, 2002). 
 
Virtual Battlespace 
 
The Virtual Battlespace immerses users in a 
virtual environment that provides them with 
greater context and awareness of the units under 
their control as well as the overall mission.  By 
integrating radar tracks and UAV video feeds, 
the virtual world can provide up-to-date access to 
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the latest real time battlefield information. The 
virtual world is constructed from a mix of a 
priori information and real time sensor feeds to 
act as an organizing context for the operator. The 
result is a mixed reality system in which real 
world video and radar tracks augment a dynamic 
virtual world.  Using real world data to augment 
the virtual world is an inversion of the more 
typical paradigm of augmented and mixed reality 
where virtual information is used to enhance real 
world data and imagery.   
 
The research into Virtual Battlespace originated 
in 2000 when a research team at Iowa State 
University’s Virtual Reality Applications Center 
(VRAC) began work with the Air Force 
Research Lab’s Human Effectiveness Directorate 
and the Iowa National Guard’s 133rd Air 
Control Squadron.  The goal of this preliminary 
version of the Virtual Battlespace was to develop 
an immersive VR system for distributed mission 
training. It was demonstrated at I/ITSEC in 
2002. Virtual Battlespace integrates information 
about tracks, targets, sensors and threats into an 
interactive virtual reality environment that fuses 
the available information about the battlespace 
into a coherent picture that can be viewed from 
multiple perspectives and scales (Knutzon et al, 
2003). Visualizing engagements in this way is 
useful in a wide variety of contexts including 
historical mission review, mission planning, pre-
briefing, post-briefing and live observation of 
mission training scenarios (Knutzon et al, 2004). 
 
Figure 2 shows the Virtual Battlespace. The blue 
triangular wedges are aggregate units that each 
represent a squadron of aircraft.  The red and 
white circles represent high threat areas near a 
SAM site.  The commander can use this visual 
cue to see when units are in danger.  The green 
 

 Figure 2. The Virtual Battlespace 

wedge illustrates the sensor range of the lead 
aggregate’s radar.  Using this visual cue, the 
commander can determine what that unit can see 
on its radar.  The commander is given more 
information with a billboard display that shows a 
compass, a map, and a traditional radar display. 
 
The Virtual Battlespace can be displayed with a 
variety of display devices, from a traditional 
computer monitor, to a completely immersive 
VR device such as Iowa State University’s C6.  
The C6, shown in Figure 3, is a six-walled 
CAVE display device with each wall consisting 
of a 10’x 10’ stereoscopic screen (Iowa State, 
2005).  Recently, VRAC researchers received a 
$2.8 million grant to work with Air Force Office 
of Sponsored Research to continue development 
on the Virtual Battlespace for UAV control. 
 

 
Figure 3.  C6 Display Device 

 
ADAPTIV 
 
Social insects provide a template for swarm 
control as they can have a complex aggregate 
behavior despite being simple creatures. An 
individual termite does not know engineering or 
physics or even what its fellow termites are 
doing, but a swarm of tropical termites can build 
complex multi-level mounds that can be five 
meters tall and weigh ten tons (Parunak et al, 
1997).  These mounds have impressive overall 
rigidity, are made from a material that is fire 
resistant, and contain enough rooms and 
passages to house the brood and all of its food 
reserves.  Individual ants gather together to 
perform complex social tasks such as aphid 
farming.   These farming ants protect a herd of 
aphids (smaller insects) from predators so they 
can milk them of their honeydew (Holway et al, 
2002). Also, most ant species form invisible 
roadways called “ant highways,” where columns 
of ants follow one another without the aid of 
street signs or painted lanes. These complex 
behaviors are accomplished via pheromones. 
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Pheromones are chemicals produced in different 
flavors.  Insects release them into the air to use 
as markers with each flavor conveying its own 
message.  One chemical compound might signal 
food while another might signal danger.  Insects 
use pheromone flavors to communicate with 
their fellows.  If an ant finds food, it drops a 
pheromone that tells other ants, “food this way.”  
As this pheromone reaches the receptors of other 
ants, they can use it to go to the food source.   
 
Pheromone-based swarm control algorithms for 
man-made units have been explored by other 
researchers.  Most pheromone-based algorithms 
use the concept of digital pheromones, data 
markers that are passed between units in a swarm 
with a network instead of being carried by the 
wind.  The unit’s pheromone receptors are 
packet readers.  While in nature, the environment 
facilitates pheromone movement and interaction; 
in computer swarm control algorithms, some 
other entity must facilitate these pheromone 
activities.  In this case, a global data structure 
serves that function. This data structure, a grid of 
all present pheromone flavors and intensities, 
called the pheromone field, is considered to be 
external to the units in the swarm.   
 
ADAPTIV is a pheromone-based swarm control 
algorithm that uses a hex grid for its pheromone 
field.   Each cell consists of a set of numbers that 
represent the magnitudes of the different 
pheromone flavors.  The flavors represent the 
presence, as detected by the unit, of different 
things of interest, such as threats or targets.  
Alternatively, the flavor can be used to enable 
swarm dispersion. This type of pheromone flavor 
is called UAV repulsion pheromone and is 
dropped at the current location of the unit in the 
swarm.  The threat and repulsion pheromones are 
unattractive while the target pheromone is 
attractive.  ADAPTIV contains three steps:  
• update the pheromone field  
• propagate pheromones 
• move the units in the swarm   

 
The first step updates the strength of the 
pheromones at each field cell with Equation 1.  It 
is a vector equation with each of its components 
corresponding to a unique pheromone flavor.   
 

S(t+1,p) = E*S(t,p) + R(t,p) + Q(t,p)    (1) 
 
Equation 1 states that the pheromone strength (S) 
at cell location p at time t+1 is equal to the S 
currently there (at time t) times the evaporation 

coefficient (E) plus any pheromones added to 
this cell from units in the swarm (R) at time t 
plus pheromones that have propagated from cell 
p’s neighbors (Q).  E is a constant between zero 
and one and it represents the percentage of 
pheromone that remains within a cell after 
evaporation.  This evaporation is important as it 
makes pheromones linger for only a short period 
after the target of interest is gone, automatically 
keeping the known state of the world up to date.  
 
Two variables, R and Q, must be known in order 
to calculate S in Equation 1.  When a unit finds 
something in cell p it places a pheromone of the 
appropriate flavor in the p location of R.  R is 
cleared each time since it represents new 
pheromones input into the system.  Pheromones 
dropped in R are added to the current value 
making pheromones of the same flavor at the 
same location additive.  With R in hand, only Q 
is left unknown.  The calculation of Q is done in 
step two of the algorithm by using Equation 2. 
 
Q(t+1,p) = ∑ [ F/N(p’)*(R(t,p’)+Q(t,p’))]   (2) 

 
Equation 2 describes pheromone propagation and 
is the weighted sum of pheromones from each 
cell’s neighbors.  The p’ in Equation 2 denotes 
the location of a nearest neighbor of cell p.  N(p’) 
is the number of nearest neighbors that cell p’ 
itself has. In the case of a non-ending hex grid 
N(p’) would always be six.  F is the propagation 
coefficient with possible values ranging from 
zero to one.  This coefficient is the percentage of 
pheromones at a cell that will propagate to its 
nearest neighbors. In Equation 2, Q represents 
new pheromones added to cell p by its 
neighbors.  The value of Q would then be the 
sum of the individual contributions of each of p’s 
nearest neighbors, hence the sum in Equation 2.  
The part inside the sum is the contribution of 
each nearest neighbor.  This contribution, 
dampened by the propagation coefficient F, is 
split equally among its nearest neighbors.  As a 
result, F/N(p’) of the newly inputted pheromones 
(given by R and Q) in cell p’ propagate to cell p.  
 
The third step of ADAPTIV is to move the units 
in the swarm using the pheromone field.  In 
ADAPTIV, each unit in the swarm uses roulette 
selection to determine where to go next.  The bin 
lengths for this roulette selection are determined 
by the local pheromone levels.  There is one bin 
for each of the cell’s nearest neighbors and that 
bin is made longer by the magnitude of attractive 
pheromone flavors and shortened by the 
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magnitude of repulsive pheromone flavors.  In 
this way, the swarming units move somewhat 
randomly with a preference for attractive cells.  
ADAPTIV was tested in 2002 in simulated 
scenarios and was found to be capable of 
enabling swarm control (Parunak et al, 2002).   
 
GPU IMPLEMENTATION 
 
As mentioned in the motivation, current graphics 
hardware is programmable. There are two 
separate levels in transforming 3D geometry into 
an image that can be programmed: the vertex and 
the pixel level. For our algorithm (and for non-
graphics uses of GPUs in general) the pixel level 
is more interesting, as most of the computational 
power of a GPU is concentrated here. Using a so 
called fragment program the operations that 
calculate the final color triplet (independent red, 
green and blue components) from the input data 
like application-defined attributes or texture 
images can be changed as needed. The problem 
is reformulating a general algorithm in a form 
that is suitable for the vertex-stream- and pixel-
oriented programming model of a GPU. 
 
The first step in converting ADAPTIV is to 
represent a pheromone fields as a 2D texture.  
The different color channels in the texture are 
used to represent the different pheromone 
flavors; red for threats, green for targets and blue 
for UAV repulsion pheromone.  Equations 1 and 
2 can then be turned into fragment programs.  
 
The first rendering step in the calculation of 
Equation 1 is to draw a screen-filling polygon 
with the fragment program enabled. The program 
includes Equation 1 using texture reads to get 
access to pheromone data.  Both the S and Q 
fields are stored within textures, but the R values 
are not because the R pheromone may or may not 
be in a particular cell since it only exists if a 
UAV drops an input pheromone into that cell.  
Further the location of introduced pheromones 
can change rapidly.  Therefore the R pheromones 
are not stored in a texture that would need to be 
updated on the CPU every step; rather they are 
additively drawn as points of the appropriate 
color (based on the pheromone flavor discovered 
by the UAV at that location).  The first step fills 
the frame buffer with colors corresponding to 
pheromone levels E*S+Q. The second rendering 
step adds the R pheromones by enabling a simple 
additive blending mode and then drawing 
colored points at each UAV location. Finally, the 
frame buffer is saved to the S texture.  

ADAPTIV’s next step, pheromone propagation, 
uses Equation 2 converted to a fragment 
program.  First, the previous Q values are put 
into the frame buffer by drawing a screen-filling 
polygon with the Q texture.  Then points are 
drawn where UAVs drop pheromones and the 
current color is copied to the Q texture.  This 
texture, containing R(t,p’) + Q(t,p’), is then used 
to calculate  Q(t+1,p) with a fragment program 
version of Equation 2 applied to a screen-filling 
polygon.  The implementation of this fragment 
program is made easier by making the borders 
off-limits to UAVs, threats, and targets.  This 
restriction results in all cells having eight nearest 
neighbors, making N(p’) = 8.  Since N(p’) and F 
are constant, they can be taken out of the sum 
and the same fragment program can be used for 
the entire screen-filling polygon.   
 
The third step of the ADAPTIV algorithm, 
roulette selection, involves a more complex 
fragment program. To perform roulette selection, 
a point is drawn for each UAV with the roulette 
selection fragment program active.  These points 
are drawn in a line for efficient collection of the 
results since only a small subset of the frame 
buffer needs to be retrieved after running the 
fragment program. A different random number, 
UAV sensitivities, and nearest neighbor cell 
positions are also sent to the fragment program 
as vertex attributes.   
 
The main task of the roulette selection program 
is to calculate the length of the bin for each of 
the cell’s eight nearest neighbors and then select 
one of them.  It accomplishes this task by using 
the color of S at each nearest neighbor of the 
UAV to create a corresponding bin length.  A 
passed-in vector, called the PherSen vector, 
contains the UAV’s sensitivity to each of the 
pheromone flavors.  Since red and blue channels 
represent repulsive pheromones, these two 
components of PherSen are negative.  A direct 
result of this is that cells that contain more green 
than red or blue will be considered “better” 
choices.  However, both the amount of each 
color present and the magnitude of the 
components in PherSen determine how much 
“better” a nearest neighbor cell is over the others.  
The length of each of the bins is determined by 
the dot product of the color vector at a cell with 
the PherSen vector.  The higher the magnitude of 
the numbers in PherSen, the longer (or shorter if 
the number is negative) the bins get.  
Additionally, there is a constant value called the 
“shift” added to each bin length.  The purpose of 
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the shift is to make cells empty of pheromones 
(black cells) somewhat attractive.  Without a 
shift, black cells would have a bin length of zero 
and have no chance of selection.   
 
With all the bin lengths calculated, biased 
roulette selection can be performed.  The random 
number between zero and one is multiplied by 
the total bin length.  Then, the fragment program 
selects the first bin it finds whose cumulative 
length (based on the sum of all the bin lengths 
that came before it) exceeds the random number.  
The location of the cell whose bin was chosen is 
then returned in the red and green channels of the 
pixel.  After all selections are done, a sub-texture 
containing the positions is read from the frame 
buffer.  These positions are then assigned to the 
corresponding UAV.  The UAVs then try to 
reach the positions and the process is repeated.    
 

RESULTS 
 
To assess the performance of the GPU version of 
the ADAPTIV algorithm, it was compared with a 
CPU version.  The time for one execution of all 
three ADAPTIV algorithm steps was recorded 
for certain combinations of battlefield size and 
UAVs in the swarm.  The battlefield size, 
measured in rows and columns of the pheromone 
field was tested at sizes 64x64, 128x128, 
256x256, 512x512, and 1024x1024.   The 
number of UAVs in the swarm was tested at 5, 
50, 500, 5000, and 50,000.  In each case, 120 
data points were gathered.  The test computer 
had a 3GHz Intel Pentium 4 with Hyper-
threading and an ATI Mobility Radeon 9700.   
 
In the cases where swarm size was investigated, 
the battlefield size was 128x128. Figure 4 shows 
the results for these cases. The GPU’s 
performance advantage was found to grow 
slowly with increasing swarm size.  At 5 UAVs 
the GPU was 30 ms (1.8x) faster and by 50,000 
UAVs the GPU was 55 ms (2.7x) faster.   
 
In the cases where battlefield size was 
investigated, swarm size was kept constant at 
4000 UAVs.  Figure 5 shows those cases. The 
GPU’s performance advantage was found to 
grow quickly with increasing battlefield size.  
For example, at a size of 64x64, the CPU is 
actually faster by 5 ms (1.2x) but by a size of 
128x128 the GPU is faster by about 43 ms (1.4x) 
and at a size of 1024x1024 the GPU is faster by 
about 440 ms (34.8x).  The results of these test 
cases show that the GPU algorithm outperformed 

its CPU counterpart in almost all combinations 
of swarm size and battlefield size.   
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Figure 4. Performance vs. Swarm Size 
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Figure 5. Performance vs. Battlefield Size 

 
 

SWARM CONTROL SIMULATOR 
 

The GPU ADAPTIV algorithm and the Virtual 
Battlespace can be combined into a powerful 
training simulator.  This simulator will require 
only two networked commodity level PCs.  
Because of the performance advantage of the 
GPU ADAPTIV algorithm, one computer with a 
128M graphics card can simulate the behavior of 
a virtual UAV swarm of 50,000+ units in real-
time with a time step of 0.1 seconds.  The second 
computer would then run the Virtual Battlespace 
and the UAV swarm would be represented 
within the virtual world.  Further, the pheromone 
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field (represented by the S texture) could be 
overlaid on the terrain in the Virtual Battlespace.   
 
One user interface in the swarm simulator would 
allow the commander to manipulate the behavior 
of the swarm by changing its aggressiveness in 
exploring the battle and identifying threats and 
targets.  Changes input into this interface would 
send a network communication to the computer 
running the swarm to modify the PherSen values 
of the UAVs to ones that have been seen to 
produce the desired behavior. Immediate feed-
back on likely loss of aircraft due to the behavior 
setting could be displayed.  This estimate of loss 
would come from prior runs with those settings.   
 
A second interface provided to the commander 
through the Virtual Battlespace would be the 
pheromone field modifier tool.  It would allow 
the commander to drop pheromones of a 
particular flavor into the field within an area 
designated by a user-defined rectangle.  The 
pheromone flavor could designate the area that is 
off-limits to the swarm or it could represent a 
strong attraction, pulling the swarm to that area.  
This tool would allow the commander to directly 
manipulate the movement of the entire swarm.  
Further, the evaporation and propagation 
parameters for these new pheromones could be 
set from within the Virtual Battlespace. Different 
battlefield and swarm combinations could be 
easily developed and used in the simulator to test 
trainees in a variety of missions.  Additionally, it 
would be straightforward to collect performance 
data that could later be used to analyze the 
commander’s decisions utilizing the swarm.    
 
In conclusion, fusing the Virtual Battlespace 
with the GPU ADAPTIV algorithm would create 
an ideal swarm control simulator.  The Virtual 
Battlespace is flexible enough to handle new 
scenarios over varied terrain with minimal 
modification meaning that trainees could be 
tested in a variety of missions potentially 
involving both manned and unmanned units.  
Furthermore, with the inclusion of the 
ADAPTIV algorithm, missions involving a 
simulated UAV swarm would be easy to set up.  
This simulated UAV swarm would enable 
operators to be trained on how to interact with a 
swarm well before one can be deployed in the 
field. Additionally, since the swarm movements 
are simulated on the GPU, less expensive 
computing power is needed to run the simulator.  
All of this combines to make an effective yet 
affordable swarm control training simulator. 

FUTURE WORK 
 

The UAV research group at VRAC will continue 
developing the prototype of the swarm control 
simulator described in the previous section.  We 
hope this work will uncover opportunities to 
improve the system beyond the vision laid out in 
this paper and will help in bringing UAV swarm 
control and its training closer to reality. 
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