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ABSTRACT

Linear viscoelasticity offers a minimal framework within which to construct a causal model for wave
propagation in absorptive media. Viscoelastic media are often described as media with memaory. that
is. the present state of stress is dependent on the present strain and the complete time history of
strain weighted by time convolution with an appropriate time-dependent stress relaxation modulus.
An axisymmetric. displacement-based finite element method for modeling pulsed ultrasonic waves in
linear. homogeneous viscoelastic media is developed that does not require storage of the complete time
history of displacement at every node. This is accomplished by modeling the stress relaxation moduli
as discrete or continuous spectra of decaying exponentials. The viscoelastic finite element method
serves as a test hed for studying three inverse methods for recovering time dependent longitudinal
moduli from pulsed ultrasonic waves transmitted through a slab of viscoelastic material with properties
known a priori. Specifically. two existing inverse methods called propagator methods. denoted here
as the two-slab method and slab-substitution method. are modeled and compared to show relative
advantages and disadvantages of both. Both methods require attenuation and wave speed as a function
of frequency derived from transmitted wave data for inversion and recovery of modulus data. Several
different variables such as measurement location and source radius are varied to discern those variables
that have greatest influence on accuracy of reconstructed moduli. [t is found that an increase in source
aperture radius causes the greatest improvement in modulus accuracy. Another novel inverse method
known as wave splitting 1s applied to numerical data generated by the finite element test bed. Wave
splitting requires a time-dependent transmission kernel for recovery of a viscoelastic modulus rather
than frequency-dependent attenuation and wave speed. [t is shown that in principle wave splitting
can recover the material modulus with data derived from a simulated ultrasonic experiment. but it 1s
not as robust as the other two frequency-domain inverse methods studied. [ts main drawback is that
transmission kernel data required for inversion must be known for the same thickness of viscoelastic slab
implying that pulses with relatively high center frequencies must be propagated through slabs whose

thickness is only appropriate for low frequency measurement. Material attenuation quickly reduces
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transmitted waves at high frequencies to unacceptably low levels when propagated through thick stabs
appropriate for pulses centered at lower frequencies. [n general. the finite element method has been

utilized as an effective tool for comparing alternative inverse methods.



CHAPTER 1 INTRODUCTION

Overview: Role of Numerical Simulation

Material property measurement is a fundamental area of basic and applied research. Precise and
accurate knowledge of material properties has been and continues to be a key to solving important
technological challenges. Many examples of technologically important materials exist such as the space
shuttle tiles that efficiently dissipate relatively large amounts of heat and allow safe re-entry of the orbiter
and graphite-epoxy composite materials that make airplanes and other structures stronger and lighter.
Designing new materials requires measurements of material properties and usually some trial and error.
Accurate measurement methods can reduce the iteration time in material design by reducing uncertainty
in measured properities. Therefore. hand in hand with material property measurement is the study of
measurentent methods themselves. Active research in measurement methods includes development of
practical experimental methods and theoretical development of new measurement methods. \ working
definition of a measurement method is a complete algorithm that takes measurable experimental data.
applies signal processing. and produces an estimate of desired material properties.

An important and often essential mid-step between theory and experiment is a numerical study of
new measurement methods. Assuming there exists a numerical model which accurately captures the
essential physics of a proposed experimental arrangement. important questions about method feasibility
can bhe posed and insight gained by exercising such a model. With a numerical model one can start
from the most ideal and experimentally unrealistic scenario and incrementally impose more realistic
conditions. At each step results show what parameters have greater or lesser effect on a measurement
method’s ability to estimate correctly a material property. In many cases there is more than one way to
obtain the same information. A computer model or "test bed" facilitates comparison of competing meth-
ods. From another point of view numerical sitnulation can indicate what is necessary technologically
for 2 measurement method to succeed.

Measurement of mechanical material properties with ultrasonic waves is one active area for measure-

ment method research and is a central subject of this dissertation. Generally. ultrasonic measurement



methods are inverse methods. that is. input and output are known and informarion that characterizes
the material under test (MUT) is estimated from knowledge of input and output. Specifically. an in-
cident wave is generated by a transducer and a scattered wave is received by a different or the same
transducer. Material properties are then estimated by some sort of comparison of a reference wave with
a scattered wave. \ scattered wave may be reflected from or transmitted through a material under test
and a reference wave may be either an incident wave or a wave reflected from or transmitted through
a material medium whose properties are well known—a reference material.

A comparison of reference wave with scattered wave usually involves computer signal processing
of sampled data. Signal processing algorithms are derived from theory that is assumed to represent
accurately essential physics of an experimental arrangement. [n the case of ultrasonic wave propagation.
basic theory takes the form of a three dimensional. partial differential wave equation with appropriate
boundary conditions and initial conditions. This presents an important point. that is. a measurement
or inverse method is derived from a “forward model” of the measurement process. \ forward model
implies that input. material under test and input/material interaction are known: therefore. an output
is predictable. [Usually. the more accurate the forward model the better one can assess the feasibility
of an inverse method derived from it.

[n summary. numerical simulation has an important role to play in modeling new materials as well
as new methods to measure their properties. A computer model can serve as test hed where ideas
can be tested quickly and cheaply and discarded if they appear unfeasible. Competing ideas can be

compared and contrasted as more experimental reality 1s incorporated into the maodel.

Dissertation Research

Overview

This dissertation s in part a numerical feasibility study of a relatively new inverse method. wave
splitting/invariant embedding (WS). and the comparison of WS with more traditional inverse methods
for material property measurement denoted here as "propagator methods.” These inverse methods
are applied to measurement of viscoelastic moduii in linear. homogeneous and isotropic viscoelastic
media. Another important part is the development of a finite element test bed for ultrasonic wave
propagation in viscoelastic media. The numerical test bed is found to be interesting in its own right for
studying ultrasonic wave propagation in linear. absorptive media. The test bed grew out of difficulties

in arranging an appropriate experimental set-up for measuring viscoelastic moduli. In retrospect. a test



bed approach is a realistic way to estimate feasibility of these inverse methods from the point of view
of time. flexibility and cost.

Original inspiration for this study arose from the relative success of two proof of principle electro-
magnetic experiments [15. 16]. [n these experiments materials were placed inside a coaxial transmission
line and certain properties were determined from impulse response functions. that is. time dependent
reflection and transmission kernels. Response functions were recovered from measurements of plane
waves incident upon. reflected from and transmitted through the MUT. In the first experiment [L6]
an inhomogeneous permittivity profile was reconstructed as a function of distance along the coax from
reflection data. In the second experiment [13] the time dependent susceptibility of a homogenous.
dispersive liquid was reconstructed as a function of time from transmission data. Material properties
determined in these experiments were considered reasonable compared with previously known material
properties measured with other experimental techniques [17]. Thus far no analogous experimental stud-
ies have been conducted utilizing ultrasonic waves and wave splitting inverse theory for determining
mechanical properties of materials. This point begged the question: "can wave splitting inverse meth-
ads be successfully applied to ultrasonic measurement of mechanical properties”” [t is this question
thar has motivated a numerical feasibility study. The feasibility study necessitated development of an
appropriate numerical test bed. For comparison propagator inverse methods are studied in parallel
as an alternative to wave splitting. Wave splitting is a general inverse method that is applicable to
inhomogeneous media. but places relatively stringent requirenients on the input data for the inverse
algorithm. Propagator methods are relatively robust methods for recovering moduli and they exploit
the pulsed narure of ultrasonic waves

An initial question was whether to study wave splitting tor ultrasonic wave propagation in non-
dispersive inhomogeneous. isotropic elastic media analogous with the experiment in [16] or homoge-
neous. isotropic viscoelastic media analogous with the experiment in [15]. Several factors influenced the
choice of the latter. A major factor was that many technologically relevant materials such as polymeric
solids and liquids are well modeled by linear. homogeneous and isotropic viscoelasticity theory: there-
fore. successful inverse methods may have broader application. \ wealth of linear viscoelastic modulus
data exists on polymeric materials [13] as compared with inhomogeneous elastic media: therefore. re-
alistic values for material properties are available for input to a test bed. Also. the wave splitting
inversion algorithm for viscoelastic moduli s relatively simple as a result of material homogeneity. An-
other point s that ultrasonic wave propagation in layered. continuously inhomogeneous elastic media

results in continuous mode coupling between shear and longitudinal modes. that is. wave propagation



is relatively more complicated and corresponding WS inversion algorithms are more complicated {11].

The main point was to determine a simple test case and study it under controlled conditions that moclel

essential physics of realistic experimental situations and determine feasibility of carrying out an actual

experiment.

Research questions

A set of questions are presented that form the core of the numerical study. During investigation of

these questions many other questions arose and some of these are illuminated in the text but are not

enumerated here. Each question is prefaced to place it in context.

HI.

Narrow-band stimulil vs. broad-band moduli

[t is well known that moduli transition from a low frequency or viscous region to a high frequency
or elastic region over at least three decades in frequency for simple supercooled liquids [19] and
as much as ten or more decades of frequency for some polymers [13]. On the other hand. average
ultrasonic measurement equipment may have at most two decades of useful frequency bandwidrh
[10]. therefore. a complete modulus frequency spectrum cannot be measured under a single set of
experimental conditions. How can data from several band-limited experiments be combined to
vield a transmission kernel suitable for input into existing one-dimensional WS inverse algorithms
for viscoelastic longitudinal modulus reconstruction” How does modulus reconstruction with
wave splitting compare with modulus reconstruction with propagator methods with respect to

accuracy and ease of use when data from several band-limited experiments are combined”

Multi-dimensional waves vs. 1D inverse algorithms

[n practice. ultrasonic waves are generated that are inherently multi-dimensional. In contrast.
WS and propagator inverse algorithms are one dimensional. How is modulus reconstruction
affected when data from multi-dimensional wave propagation serves as input for one-dimensional

inverse algorithms?

Measurable data vs. ideal data

Data necessary for reconstruction of a viscoelastic modulus with WS is a time-dependent trans-
mission kernel. For frequency-domain propagator methods the necessarv quantity for modulus
recovery is called a "propagator.” Propagators are not directly measurable. Measurable data that
are closely related to propagators quantities are incident. reflected and transmitted displacements

at elastic/viscoelastic or acoustic/viscoelastic interfaces. but these displacements usually cannot



be directly measured either. [n most cases. measurable quantities are total mechanical displace-
ments at interfaces. such as an elastic/air interface. after the displacement has propagated away

from the viscoelastic slab.

With a numerical test bed one can study effects on modulus reconstruction caused by measure-
ment of displacement at positions that are not ideal. On the other hand. a test bed allows record-
ing displacement at ideal locations and comparing modulus reconstruction with data recorded
at ideal and non-ideal locations. [deal does not imply that recorded displacement is that due to
a pure plane wave. but only that the location of measurement is more desirable. How is quality
of reconstructed moduli affecred by utilizing displacements data measured at relatively non-
ideal positions? Can simple techniques be defined to improve reconstruction when displacement

recorded at such non-ideal positions are employved™”

[V. Experiment design

An advantage of a numerical test bed that models essential physics such as finite aperture effects.
band-limiting. viscoelasticity. etc.. is that a variety of experimental configurations can be inves-
tigated in a relatively short amount of time. I[nsight gained by testing many different scenarios
can suggest actual experimental arrangements which may have a greater chance of experimental
success. What are “best case” experimental arrangements for measuring a realistic longitudinal

modulus with the inverse methods studied?

These questions represent some of the more important issues pertaining to feasibility of the specific
inverse methods studied. These questinns motivated developnient of a finite element model for ultrascnic
wave propagation in viscoelastic media. Questions pertinent to test bed development such as choice of
relevant models for viscoelastic moduli and modeling acoustic media such as water. ete.. are presented

in appropriate chapters.

Outline

The finite element method for axisymmetric ultrasonic wave propagation in viscoelastic media is
developed in Chapter 2. An existing elastodynamic program is modified to incorporate time dependent
bulk and shear moduli. Time domain convolution of nodal displacement with moduli is inherent in the
formulation and requires storing time histories of each nodal displacement. Special attention is paid
to developing a recursive method for storing nodal displacement histories. With this recursive method

ouly one extra array representing one previous time step is required for storing nodal displacement



histories. Chaprer 2 voncludes with example calculations.

Details of wave splitting and propagator inverse methods are developed in Chapters 3 and 1. respec-
tively. while Chapters 5 and 6 are results chapters. [n Chapter 5 a simulation of a viscoelastic polymer
solid in a water bath is presented. This represents a basic experimental arrangement for ultrasonic
spectroscopy of solids. The water is an essential coupling medium between a solid under test and an
ultrasonic transducer. Reconstruction of a longitudinal modulus with propagator and wave splitting
methods ts presented. The FEM test bed generates data for the inverse methods. Various physical ar-
rangements are studied to ascertain how certain parameters affect longitudinal modulus reconstruction.
[n Chapter 6 propagation of ultrasonic waves in viscoelastic materials with multiple relaxation times
i5 presented. An important point to be made in Chapter 6 is that relatively few decaying exponentials
with different relaxation times are necessary to approximate a material with a continuous spectrum of
relaxations when source spectra are relatively narrow compared with moduli spectra. Conclusions and

further work are discussed in Chapter 7.

Contributions

Two main contributions are development of a numerical finite element model for pulsed ultrasonic
waves in linear viscoelastic media and a feasibility study of one-dimensional inverse methods for re-
construction of LHI viscoelastic moduli under simulated but realistic experimental conditions. The
simulated conditions include. but are not limited to: realistic frequency spectra and functional forms
of bulk and shear moduli. finite aperture sources that exhibit non-planar effects. sources with rela-
tively narrow frequency bandwidths and nicasured data that does not immediately correspond to data
required for reconstruction. These conditions have been incorporated into a transient finite element
numerical model. The finite element program is a ‘numerical experiment’ which includes some of the
important wave physics that exists in actual ultrasonic experiments. Listed below are a set of more

specific contributions. The dissertation:

e demonstrates how realistic models for linear viscoelastic (dispersive) materials are incorporated

into finite element modeling of transient wave phenomena:

e shows difficulties encountered when wave splitting methods are employed for modulus reconstruc-

tion:

o demonstrates relative robustness and ease of use of propagator methods.



CHAPTER 2 VISCOELASTICITY: THEORY AND MODELING

Introduction

A basic introduction to linear viscoelasticity s given assuming infinitestmal. {inear deformation.
Several textbook level sources exist that describe linear viscoelasticity of which two. Christensen [§]
and Ferry [13]. are primary sources. Following the introduction a detailed description of the finite
element method for ultrasonic waves is given with its adaptation to linear viscoelasticity. The chapter
concludes with several example calculations to demonstrate the finite element model’s capabilities and

validity.

Linear Viscoelasticity

Linear viscoelastic material properties are time dependent whereas LHI elastic and Newtonian-
viscous material properties are constants with respect to time. For comparison. stress/strain relations

for LHI elastic [4]. viscous 9] (neglecting thermodynamic pressure) and viscoelastic media [¥] are.

respectively.
. .2
Tu = d,‘_,([\ - E(;)Skk 1'-2(;5,J (2.1}
) . .
T, = 9d,(n — E’),)b'kg + 21,5, (2.2)
?) . .
L, = dij (KN — q(}') * Ski + 20 = Sy (2.3)

where i. j. k= 1. 2. 3and T;;. 5;; and 5;; represent stress. strain and rate of strain tensors. respectively.
Strain dependence on (r.y. =.t) has been suppressed. Strain is related to displacement by

L
Sip = 5 (uig +u] (2.4)

assuming infinitesimal displacement. Bulk and shear viscosities are represented by 7, and n,. respec-

tively. The viscoelastic strain/stress relation is [49]

o1 l : l . -
5,'_,' :O,’j(g)-B—gJ)*Tkk-{»-:z.]t’[}J. (.)))



Bulk and shear relaxation moduli. creep compliances and their interrefationships for viscoelasticity are

K(t) = bulk relaxation modulus. (Pa). (2.6)

Git) = shear relaxation modulus. {Pa). {2.7)

B(t) = bulk compressibility or (2.%)

bulk creep compliance. (Pa)~!. {2.9)

J{t}) = shear creep compliance. (Pa)~!. (2.10)

[N «B[(t) = tH{t)(s). (2.11)
(G« JI(t) = tH{t)(s). (2.12)
[f egl(t) = /}t F(t = s)g(s)ds. (2.13)

where H(t) is the Heaviside or unit step function. Lamé parameters. A\(t) and pu{#). are related to bulk
and shear relaxation moduli by g(t) = GG(t) and M¢t) = K(t) - ;=;(_}'(().

An important consequence of time dependent material properties is the capacity of viscoelastic
media to store and dissipate mechanical energy. In coantrast. elastic media store energy. but Jo not
dissipate energy and viscous media dissipate energy. but do not store it. Polymers are an example of
a broad class of materials that are modeled as linear and nonlinear viscoelastic media with respect to
macroscopic mechanical properties [13].

Viscoelastic materials have ~fading memory™. that is. the present state of stress is dependent on
the current strain and all previous-time strain weighted by convolution with time dependent stress
relaxation moduli. Fading memory is demonstrated by integrating convolutions in the stress/strain

relation. eq. 2.3. by parts which gives

*)
Ty = 8y(Ry = 3G,)S% + 26,85,
. *) . .
+0i (N — %G) « Skk +2G * Sy, (2.14)

where K, = K(t = 0) and G, = G{t = U) and subscript ~g” stands for “glassy™ or elastic modulus.
At short times (¢ = 0%) viscoelastic materials respond to applied strain as if they were purely elastic
with moduli A, and G, and at later times total stress is dependent on present and past strain. Fading
memory Is achieved if rates of change of stress relaxation moduli are continuously decreasing functions
of time [3]. that is.

i[’f{ or |G <{A‘l or ‘C; for  ta >t > 0. (2.15)

t=t, t=t,

s far as 1s known measured relaxation moduli have never violated this “fading memory hypothesis.”



A single decaying exponential is a simple prototype for relaxation moduli. \ssuming exponential

decay. moduli satisfying fading memory have the form

Kit) = [Ke+ (K, - K)e /™| H{p) (2.16)
Gty = [G.+1G, — Gje™ ™ H(b) (2.17)
Mty = K(t)+ é(’;u) (2.18)

where subscript “e” implies equilibrium or long-time modulus and rx and 7 are not necessarily equal.
A new stress relaxation modulus is defined. M(t). hereafter called the longitudinal modulus because it

15 associated with longitudinal wave propagation. .\ longitudinal creep compliance. V(). is defined by
(M« N](t) = tH(L). (2.19)

For a viscoelastic solid (. > 0 and for a liquid G. = 0. The shear creep compliance! for a simple

exponential type solid and fluid are. respectively.

I TR S N .-

J) = [(;’ ‘((-"y c;-)' ]H(l) (2.20)
l t

Ity = [—,-+—] H(t) (2.21)
(.r:] Ne;

5, . . . . . - .
where 75 = ,%'.-G > 7; is called retardation time and g¢; is shear viscosity given by [3]
.

(84
(B
—

.
NG = / Gis)ds = Gy 1
9

Under a constant shear stress a viscoelastic fluid eventually reaches a state of How that is represented
by the term proportional to time. ¢, in eq. 2.21. From eq. 2.20 it can be shown that there exists a short

and long time correspondence between limiting values of modulus and compliance. that is.

. 1
- S — -, l)b
lim g0 = = 22
. 1 o
[h_’nl J) = J.= o (2.24)

Similar relationships exist between (A (¢). B(¢)) and (M (¢). X ()). respectively.
Relaxation moduli in the frequency or Fourier domain can be derived by first taking the Laplace

transform of eq. 2.3 and assuming zero initial conditions for strain. 5;;{z.y. z.0) = 0. The result is

S S - -
T = 8y (sK = 55G) Sk + 25G S, (2.

1354
[
D]
—

! The creep compliances are easily derived using Laplace transform methods on eq. 2.12.
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where the Laplace domain variable. s. is taken with the bulk and shear modulus and =~~~ implies

Laplace rranstorm. The moduli become

sK(s) = K.+[K, - K.] Tl;:\—,f (2.26)
sG(s) = G.+[G, -G.]—"—. (2.27)
| + 57

Upon setting s = o the Fourier domain relaxation or dynamic moduli become

Kio) = K.+ (K, -K.) [M} 2.98)

I + (wrg)?

(2.29)

Glo) = G=+(Gg—cf)[w]

l + (JT(’;)"’
- -~ ! -
with A'(x) = s[\'(s)' and similarly for G(«) (= 7 implies frequency domain). For increasing
STl
angular frequency storage moduli. A'(«) and G'(«). approach elastic limits. &', and (7). respectively.
whereas loss moduli. A"(%) and ("(<). approach zero for both high and low frequencies.

Stress relaxation moduli with simple exponential decay are qualitative models of real viscoelastic
materials. Most real marerials cannot be modeled accurately by moduli with a single characreristic
relaxation time. [n fact. most materials have a broad. continuous spectrum of relaxation times [13]. For
example. polvmers consist of molecular chains built of basic monomer units with or without sidechains or
branches [13]. Molecular chains have length scales that range from intermolecular scales to the order of a
complete polymer chain. Rotation. vibration and translation exist on all length scales. Associated with
these motions are relaxation processes with time scales that can range over many orders of magnitude.
Relaxation occurring at many different time scales 1s modeled by continuous distributions of relaxation

tinies called relaxation spectrums. For example. the shear modulus can be written

Gty = [G.+(G, =GO} H(L) (2.30)
Glw) = G.+(Gy—Gag(w) (2.31)
with
g(t) = / hg(rye™/"dr (2.32)
0
3 i T 9 e
_f[(.u) = /0 ,IG(: )md: (l;-{)

where 4(f) is called the shear relaxation function and hg(7) is the shear relaxation spectrum or spectral

density. The spectrum is normalized such that

= /N he(r)dr. (2.3-1)
0



Ll

Note that eq. 2.32 15 an integral equation of the first kind. rherefore. determining h{7) is an ill-posed
problem and any relaxation spectrum estimated from experiment is not unique. .\ more common form
of eq. 2.32 is

q(t) = ln(lO)/“ rhe(7)e™ " d(log 7) (2.35)

where ~“In” implies natural logarithm and -log” implies logarithm of base ten. Clearly. this integral
must be truncated at short and long relaxation times.

There are two functions that are often used to fit measured stress relaxation data. They are known
as the Kohlrausch-Williams-Watts (KW W) or “stretched exponential™ function (time domain) (53] and

the Havriliak-Negami (HN) function (frequency domain) [21]. They are. respectively.

Ouwu(t) = e Hit)  0< <1 (2.36)
I

”I" - = - - s
[} ( ) [l + (Iw'l-h" )(l]

0<.~<1 (2.37)

where. for example. g(f) = Oeww () or {w) = Brn(«). These functions do not form a Fourier transform
pair. but they do have similar behavior in time and frequency [1. 2]. Obviously. when a. 3.5 = | both
functions reduce to single characteristic relaxation time model. When 0 < n. 7.+ < | these functions
can be described by continuous spectrums of relaxation times. The spectral densities for these relaxation

functions are. respectively.

I (1) . ‘
ThigalT) = —— %sm(r.}/\')[‘(.ik + 1) (J:)"H'l {2.38)
R !
r = — (2.39)
Thuww
i £ s
Than(t) = —— — (2.10)
T ot + 204 cos(am) + L] 77°
o = tan~! —Mﬂ' (2.4}
£ + cos(aw)
r = T/Thn. (2.-12)
For 3 = 0.5 the spectral density reduces to
rhku-w(‘.){dzu.:') . '—‘_f-?/4fkw"~ (2{-;)
1T

Alvarez [1] has shown that for 0.10 < J < 0.95 there exist a. ¥ and 7hn/%uwe > | such that
the resulting HN stress relaxation function is a “best fit” to the KWW stress relaxation function. In
other words. for a given KWW function defined by .3 there is a HN function defined by a and ~ with

corresponding mh, > Tkee that best approximates the KWW function. [n particular. for J = 0.5 the
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Figure 2.1 Spectral density functions for corresponding KWW relaxation func-
tions. 3 = 0.5 and 3 = 0.35 (not shown). and their approximate
HN functions: (e.~) = {(0.8091.0.5105). man/Tkwnw = 29174 and

(a.v) = (0.6TH.0.40TH). Thn/Teww = 33827, respectively [1]

best fit parameters are (a.5) = (0.3091.0.5105) with 3, /7w = 2.917L The spectral densities are
superimposed in Fig. 2.1 along with another pair. (n.~) = (0.6T41. 04071, 7/ Tewn = 33827, that
approximates the KWW relaxation function with .3 = 0.35. Figure 2.2 shows relaxation functions.
g(t) and g(«). derived from spectral densities shown in Fig. 2.1. The relaxation function for a single

exponential is plotted for comparison.

Wave Propagation in Viscoelastic Media

For comparison the wave equations for displacement in LHI elastic and viscoelastic media are.

respectively.

MUYV - u-GCGUV xVUxu = pu (2.-44)

Mc¥V.0a-G«UxVUxu = pu {2.49)
or after integrating eq. 2.45 by parts gives

[.ug + .\71*] TV -u— [G, + C;x] T x T x u = pii. (2.16)
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Figure 2.2 Stress relaxation functions (g(t). k(f) or m(t)). corresponding to
spectral density functions in Fig. 2.1. compared with a simple ex-

ponential relaxation: time domain. (a): frequency domain. (b)
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Total displacement. u. can be subdivided into two displacements:
u=w + u,. (2.47)

A longitudinal displacement. w;. propagates with wave speed ¢, = \/m and has the property
V' xw = 0. Similarly. a shear displacement. u,. propagates with wave speed ¢,, = \/67; and has the
property \ -u, = 0.

Assuming total displacement is independent of (z.y) and varies only in (:z.¢) (plane wave) eq. 2.145

decouples into two one-dimensional wave equations

Medly = pdlu (2.13)

Gedi, = pdiu,. (2.19)

The polarization of longitudinal displacement. «; (u.). is in the direction of propagation. z. and the
g : p S
polarization of shear displacement. u, (u.). is transverse to the direction of propagation. r. \ssuming

zero initial conditions. Laplace domain homogeneous solutions to these equations have the form

o (z.5) = Fr (s)e ™5 £ By (s)eTr /s {2.530)

with
als) = (2.51)
c(s) = {2.52)

Letting 5 = io gives a frequeney-dependent complex wave speed.
The real and imaginary parts of inverse complex wave speed ecuate to inverse real wave speed and
t=] -

real attenuation. respectively. Specifically.

l _ L _ ﬂ{(.‘-) -

c{w) - ci(«) ! - (2.53)
_ e y e

- \/.w' T+ M (2.54)

i M+ M (M| =M T
] a2 (2:53)
= 2 s (8 —iain (8
= l ‘[| cos 5)~ 1sin 3
wxhec( > (2.57)

o) = [T ()

= al«) =

N



5}

where tan(8) = W”/M’ and | M| = VMZT+ M [49]. Replacing M(w) with (/(<) and subscript -
with ~s” gives wave speed and attenuation for shear waves. [t is important to note that no specific
form of frequency (time) dependence (e.g.. single exponential) was assumed in deriving wave speed
and attenuation: they are general for LHI media. The real and imaginary components of the complex

modulus. ¥/ (<). in terms of the wave speed and attenuation are given by the following:

1 . =3
M) = RK'+-G' =pc” | —m—— (2.59)
( 3 g L+ 3%
4 y 2.3
ML) = R"+=G" =pc’ — (2.60)
3 1+ 3
He) = L‘“)‘Lﬂ (2.61)

These relationships are important for propagator inverse methods because they are a link between
measurables. wave speed and attennation. and modulus.

Time dependent material properties naturally give rise ro frequency dependent wave speed and
attenuation. hence dispersion. \s a sound pulse propagates dispersion causes the pulse to undergo
amplitude decay and temporal lengthening or spreading. By defining material properties directly in the

time domain causality s easily and clearly enforced.

Viscoelastic Finite Element Method

The finite element method (FEM) is well established as a general numerical method for solving
partial differential equations with prescribed boundary and initial conditions {22, 21]. No exhaustive
literature review of finite elements for transient wave propagation is given. [nstead. specific reference is
made to work [34. 56. 60] that is the genesis of the computer program adapted and used for modeling
LHI viscoelastic media. The transient finite element method provides a useful “test bed” for studyving

various aspects of ultrasonic wave propagation such as non-plane wave effects under contolled conditions.

Functional minimization

Previous elastic wave propagation studies employved energy functional minimization as an indirect
method for solving the underlying displacement wave equation for isotropic 7. 33. 35. 37. 38. 59} and
anisotropic [62] materials. [f a functional exists whose Euler equations are the governing wave equation
then minimizing the functional is equivalent to solving the wave equation directly.

For linear viscoelasticity Oden and Reddy [37] have presented a general energy functional for spatially

dependent material properties. Their general functional simplifies to the following for homogeneous and
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isotropic materials [7]:

E{u.t) = potential energy + Kinetic energy

—work done by external forces

= Plu.t)+ K(u.f) — Wiut) (2.62)
| e . .
= 3 [Si. Tylp + Siu,. g = [T wila (2.63)
where
14
[yl = / / flx.t = r)g(x. 7)drdl” {(2.61)
QJu
- &
fglya = / / fix.t = r)g(x. 7)drdS. (2.65)
a2 du

and T'(r.:z.t) represents externally applied traction forces (Neumann boundary conditions) on rhe
surface of the solution domain. JQ. It has been shown that minimization of this functional (J E(u.t) = ())
with respect to displacement. u. recovers the viscoelastic wave equation. eq. 2.45 [37].

The finite element matrix equation for axisvmmetric waves in viscoelastic media is developed by

first writing stress. strain and displacement relations in matrix form [62]:

- ] ™ 7
Ser d- 0
b_: 0 L): 1
= (2.66)
25, d. O u
Soo | | J
[ S +3G RK-3G 0 NKN-3iG [ ]
T;; N - %Cr I + ‘;(l' U N~ i‘(r o T
= ) x (2.67)
T.. 0 0 & 0 25,
Tss R-3G K-3¢ 0 K+3G Soo
or
S = du (2.68)
T = C«5. (2.69)

These relations are true for any element in Q: therefore. consider a single element with solution re-
gion Q¢ and boundary d9Q¢. Radial and axial displacements at any point within the e’th element are

approximated by a four-node quadrilateral finite element.

4
wi(n€.8) = D> N UL = N, (2.70)

1=t



i

e
wi(n.&.0) = D NnOUL() = N7 (2.71)
=1
with
N,o= [V Ve Ve V) (2.72)
02 = U000 (2.73)
o= [[?v[--fz-[-.:x-{-.;-;]r (2.7°4)

= - (2.75)
u 0 N, ||
or
ut = N[F (2.76)

where (I°7,.[77,) are the time dependent displacements at the quadrilateral vertices. (rf.:%). and N, (7. )

are bhilinear shape functions:

Vitg.) = ll=n(l-9) (2.77)
Na(n.§) = Til-ml+9). (2.7%)
Va(n.€) = L+l +9). (2.79)
Vir) = e ml-9) (2.40)

with local or “natural” coordinates —1 < n.§ < L. The coordinates, (rf. z%). of a point inside of an

element in terms of local coordinates and the global vertex coordinates. (rf. z7). are. respectively.

4
P = D N =N, (2.31)
=1
K3
Fn& = Y N9E=N, = (2.82)
=l
or in matrix form
= (2.84)
= 0 A, i
= = NI (2.84)

(subscript “v” implies quadrilateral vertex point).
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With these substitutions and B® = A° V. eq. 2.63 reduces to

e - L pe ree T e e -2 A T =
Efu.t) = (B C.CeB ]+ 5NN
S (VS LR (2.85)
and the variation of £%(u.¢) gives
SES(u.t) = 0
lr . - =3 L -] 2
SR LNy il IR V: s NGy I
e (AR e LIl IS (R e LI i
2 e 20— - T lo-
o (VAR R A
= [w )BT« B® Lﬂ]n +p7 [or=)T AT Lf]

Assuming (6777)7 is arbitrary the matrix equation for a single finite element follows

with initial conditions

[ntegrating by parts gives

M+ RS+ K« =R

N7 (2.36)
M+ R < =R (2.47)
5 = [*(t=0) (2.88)
o= Ct=0). (2.39)

(2.90)

that represents a set of nearest-neighbor coupled mass points connected by springs with damping. The

mass. stiffness and surface traction matrices are. respectively.

i[-.‘.'

and integration over o is represented

er”/ NTN r*(n. €)Jdnds (2.91)
Q!
2% [ (B5YTC® BT ro(n. &) JdndS (2.92
Qe
/ NTTeds (2.93)
ane
by 2x. Integration of the individual matrix elements is usually

accomplished using a two dimensional Gauss quadrature [22]. The Jacobian. ./. maps integration over

utfinitesimal area. drd=. to infinitesimal area dnd§:

> -4
Onr

Op=®

J =

(’)E re¢

c')ng

= l':),,l‘:f)e:= —i),,:”(')gr’. (2‘)4\
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Elemental mass. stiffness and surface traction are assembled to form global matrices. The resultant
global matrix equation has the same form as the elemental equation. eq. 2.90. except superscript e is

dropped.

Time dependent stiffness matrix

[f the term A =% in eq. 2.90 is neglected. the elemental (global) matrix equation for elastic waves is
recovered. Assumiing bulk and shear relaxation moduli have different time dependence. ( is separated
into two matrices such that £(¢) and g(¢) are factored out:

[ ] [

Lot 3 -3 0 -3
L Lot y -2 1 0 -3 y
¢ o= ARk + | 7 S AGH! (2.95)
00 00 0 0 1 0
Lot | -5 -5 0 5 |
= k() + Chal) (2.95)

with AR = R, — K. and AG =G — G.. The time dependent portion of the stiffness becomes

K = [2:/ (_’)r(_";\-ﬁ_‘r’(r;.E)./(h/d.S] k(t)
ne

+ ['m / (E.’)FCT;EF('/-E)JJW(IE] (1) (2.97)
= Kick(t) + K5a(). (2.95)

therefore.
Ko el = K5 Jke 0] (1) + K5 (9« C7]00) (2.99)

L 3
or

RS0 = (Kk + K5) [f«7] ) (2.100)

if k(t) = g(¢) = f(¢). that is. time dependence of shear and bulk relaxation is the same.

The term [f*f_g] (¢) implies f(l) 15 convolved with each member of the column matrix {7°(¢t).
that is. the total radial and axial displacement components at each node point. Convolution requires
knowledge of the complete time history of the nodal displacements. ({75.(5;). and relaxation moduli
time functions. k(¢) and ¢(¢). Such a requirement implies storing two complete displacement time
histories for every node in the finite element domain Q. Clearly this procedure will quickly consume
available computer memory limiting the size of the physical domain that can be modeled as well as the

length of computation time of the solution.
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Fortunately. with moduli approximated by a spectrum of decaying exponentials. it has been shown
that only data from the previous one or two time steps need be retained [27. 36. 17]. Assume k(t) =

y(t) = f(t) and

ey = /N h(r)e=t" d(log ) (2.101)
by

~ / h(r)e=t!" d(log ) (2.102)

A(r) = In(l0)rh(7) (2.10:3)

where Tnin = 10" and Tmer = 10° and

)
1:/ h(7)d(log 7). (2.104)

The convolution term is integrated numerically assuming individual nodal displacements. represented

by u(t). are piecewise continuous in time:

L — kAt
u(t) =~ up+ { At_\ } [teg et ~ w] (2.105}
for kAL <t < (k+ L)AL
A = 0.0.2.....n=1
tmar = nAt

then

ot n=1l k+1.3¢ i
/ fls)u(t — s)ds =~ Z/ f(s)[un-k
: L

i k=g 7KL
(s — kAt
At

} (tn k-1 — lln_k]} ds. (2.106)

After substituting eq. 2.102 and integrating with respect to s. eq. 2.106 reduces to

[f* u] (t) = nf/b [a(T)tn—k + b(7T)un_s—1] e ¥/ d(log ) (2.107)
k=0 Y ¢

a(r) = —h(7) [1 + S—Z (7 - 1)] (2.108)

br) = h(r) [1 +(1+ i) (707 - 1)] . (2.109)

Now approximating integrals over log r by trapezoidal rule and interchanging the summations gives

m n-1i
[f' « u] GEDY {Z [af ttak + bittn—k—1] e-'*-"/"-} (2.110)

=0 (k=0



where
5 m
/ a(mye 3" f(log =) = Zafe“‘""‘”"' (2.111)
] T
/_.‘b(r)ﬁ"'\"/‘d(logr) . ;bff' e/ (2.112)
al. b = §"Pa(n). ;"Ph(w) (2.113)
0" = Aflogr) [1 - é(o‘,»(, +o’.,,,)} ) (2.114)

[f the relaxation spectrum. A(7). is assumed to he a finite sum of exponentials. that is.

hir) = Zu',o'(r—r,) (2.115)
1=t
1 = Zu‘, (2.116)
=t
then
.- ) m
/ a(m)e ¥ d(log 7)) = Zaif-*‘—\‘/"- (2.117)
- r=t)
=N m '
/ b(r)e > "d(logr) = Zb,-f‘*-"/-'- (2.11%)
. 1=¢}
. by = a(n). b(w) (2.119)
and

m n-1
[f: u] (t) = Z {Z {aitn s + blu,,_;\._L]r"""\‘t/'.'} ) (2.120)

1=t A=t}

At time-step n define
n—1

Iny = Z [“tun—k +b; Un-k—[]E-kAl/'.' (2.121)

k=0

where : =0 .1. 2.....m. [t follows that

lyy = 0

i = [aiuy + biug) + [e™ >

[y = [(liu'_'-f-b,'ul]-i-[“e'-\‘/"-

lni = [aiwn +bus_}+ [n_“.e-—\t/?. (2.122)

or

Iy = [afttn + bjun_y] + Lo e ™7 (2.123)



if A(7) 15 a continuous distribution. Letting u(f) = [° and [,, — [] gives

L= [l + 6005 ]+ Loy (2.124)

If h(r) # he(7) then k(t) # ¢(t). therefore. define _[fl‘;’ and _[_,(l"f:

7

L = (ol + oM ]+ L e (2.125)
i = 0.L2...mg (2.126)
L7 = (el + 670 ]+ L e (2.127)
to= 0.1.02..... me (2.128)

where mg is not necessarily equal to me;. This is the desired recursion result that only requires storing
and updating the one-dimensional (global) matrix [, _,. Each element of the ‘recursion matrix’ is a
single number corresponding to the accumulated time history of every nodal displacement. «, and u..
convolved with the time dependent moduli that exist at that spatial node point. This recursion result
allows the total convolved time history of displacement at each node point to be written in the following

manner:

myg mg meg
L {Z"f"‘}ﬁ + {Zbi"}a:_[ + YLD

=0 1=f) t1=1)

(2.129)

Mo me; M
G Ge ., it e . Ge -/
-[-n § a, [—:x A § bx [_n—‘."' E Ln—llf

=0 r=t} =)

(2.130)

Resri o~ Tl v

(2.131)

——

Global FEM matrix equation: discrete time

The global system matrix. eq. 2.90 (denoted by dropping superscript “e”). is discretized in time

using a central difference scheme for .

P =0

V] [Cas =20, +£n—l] : (2.132)

Subscript “n” implies evaluating the quantity at ¢t = nA¢. for example. ', = {(nAt).
The global mass matrix. M. is diagonalized using an empirical procedure known as “mass lumping”
[62]:

aM; if 1=
up ! / (2.133)

t)

0 ifi#j
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Zx Z] “['J

a = (2.134)

Z: 'l[“
[nverting the diagonalized mass matrix requires simply inverting each diagonal element. Combining the

central difference approximation and the diagonalized mass matrix with eq. 2.90 gives

. . . o -1 . -
Capy = 2, -0, = A [MP]T (K 7, -R,}
—A2 (MO TR IF + K0 (2.135)

Neglecting the second line of this equation recovers the original elastic equation.

For time marching solutions to remain bounded a stability condition must be satisfied. For bilinear
quadrilateral finite elements employved in this study. Flanagan and Belytschko [14] have derived the
following sufficient stability condition:

*)
At < — (2.136)

iy /g
24
1 a oy pa-
g = .—‘72 E Q;‘J (.3.[.;1)

=1 y=t

1| (ro—=ry) {ra—r1) (ry—ra) (ry—rg)
Q = - HoE T ! (2.138)
(24 —=2) (21— 23) (22—=24) (23— =1)
where (r;. z;) are the coordinates of the finite element vertices and .4 is the area of the element. For a

square and rectangular quadrilateral with side length d or d; and d4. respectively. this stability condition

reduces to

d
At < (2.139)
- \/§L'1:,
l
At < ——— (2. 140)
Cg T{+T:,'

Numerical studies [60. 61] have shown that for square quadrilaterals with dy = d» = d the condition

/
At & (2.141)
Cly

results in stable finite element solutions. This condition implies that the time step must be smaller
than the time for the longitudinal wave to traverse the distance « or the shorter of the two distances

d; and da.

Wave Propagation Examples

A set of examples are presented that will illustrate concepts presented in this chapter. These

examples will establish confidence in the finite element method for computing transient waves in linear



viscoelastic media.
As a first example consider a viscoelastic half-space with simple exponential moduli as described in
egs. 2.16. 2.17 and 2.13. Assume that 7 = 77 = r and the asymptotic wave speeds and moduli have

the following values [43]:

(¢eq.cse) = (3100.0) m/5 (shear) (2.142)
(erg.cre) = (6300.3150) m/s (longitudinal) (2.1-13)
(My. M) = (peiy.pei.)
= (107.2.26.8) GPa (2.1-41)
(Gg.G.) = (pcly.pel)
= (25.9.0)GPa (2.115)
(N, K.) = (M, - 1—:—()}. M, - %(j,)
= (31.3.26.8) GPa (2.116)
p o= 2700 kg/m>. (2.147)

In the elastic limit (v — x) the shear and longitudinal wave speeds are typical of aluminum [2Y].
A plane wave source is defined on the half-space surface with the following time dependent surface
P p g p

traction:

T(z:=0¢t) = Zyu.(z=0.1t) (2. 1-1)

-

- [l — COs (’1_‘*.“[)] cos{wnt) 0 < opt < btm
u-fz=0.y = ; - - 2,101

0 otherwise

<

where 15 Zi, = pery. This functional form is chosen because it represents a realistic narrow band-
width source typical of a piezoelectric transducer. The relation between surface traction. T.(0.¢). and

displacement. u.(0.¢). 1s exact in the elastic limit but the exact viscoelastic relation is
T:(z=0.8) =[M «d.4:] (== 0.¢). (2.150)

For purposes of demonstration the difference in surface traction definition is unimportant. The problem
geometry and source time dependence for fy = LMHz are plotted in Fig. 2.3.

Figure 2.4 shows the frequency dependent magnitude of the source compared with the normalized
longitudinal modulus. m(w). and normalized plane wave attennation and wave speed. n(w) and ¢;(w).
for three different fundamental source frequencies. fo = 0.1. 1. 10MHz. In this case 7 = s-ps so that

«7 =1 at f = IMHz. At each of these frequencies transient displacement at points along the axis of
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Figure 2.3 Geometry of plane wave test problem. (a): time dependence of

source surface traction and displacement. (b) (fy = LMHz)

symmetry are plotted in Figs. 2.5(a). (b) and (c). respectively. The source radius is relatively large
{ka x 100) so that only the plane portion of the transmitted wave is present at the positions where
the displacement is recorded. The square symbols indicate the relative 1-D attenuation. ¢~**. The
attenuation is computed at the source center frequency and the propagation distance is noted in the
fisure. The exact and FE results are almost indistinguishable. The theoretical attenuation and wave

speed are

ar(0.1 MHz) = 0.27 Np/em or 235 dB/em (2.151)
ar(l MHz) = 3.12Np/em or 27 dB/em (2.152)
ar{10 MHz) = 3.73 Np/m or 32dB/cm (2.153)
(0.1 MHz) = 3293 m/s (2.154)
ca(l MHz) = 3581 m/s (2.155)
a(l0 MHz) = 6290 m/s. (2.156)

The temporal wave spreading due to frequency dependent wave speed is relatively weak in comparison
to attenuation.

If the fundamental frequency of the source is held fixed and relaxation time is varied from short
to long relative to the period of the fundamental frequency. Ty = fl—u then computed displacement
approaches the elastic limit. see Fig. 2.6. In this case the source aperture is finite with radius « = 5mm

(ka ~ 5)and the source traction is uniform across the entire aperture radius.
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Figure 2.4  Source spectrum magnitude compared with normalized longitudinal
modulus. m{s) = m’+im” . (a). and normalized attenuation. n(<).
and wave speed. ¢;(«). (b). versus frequency. log,y( f Hz)
Finite element axial displacements excited by a finite aperture source. a = Smm (ka = 3). are

shown in Fig. 2.5(d). In this case the medium has a continuous distribution of relaxation rimes.
The FE displacements are compared with a Laplace-Hankel transform domain solution that has been
inverted numerically to recover axial displacement at a chosen point as a function of time [43]. The finite
element and Laplace-Hankel results are essentially identical. Similar correspondence exists for off-axis
radial and axial displacement [43]. In Fig. 2.53(d) axial displacement. u.. at (r. =) = (0. 10} is shown
for a material with an HN spectral distribution (denoted HN(a) in figure) that is a ~“best-fit” for a KWW
spectral distribution with 3 = 0.5 [l]. For .3 = 0.5 the KWW spectral density is known in closed form:
therefore. 1t can by used directly in an FE calculation. Also shown is axial displacement for an HN
spectral distribution (denoted HN(b) in figure) that is a best-fit for a KWW spectral distribution with
3 =0.35. See Fig. 2.1 for plots of actual spectral distributions. The KWW characteristic relaxation
tine is pw = ._,I?;zs and the corresponding HN characteristic relaxation times are 7, = 291747y

for 3= 0.5 and mhn = 3.3827 7w for 3 = 0.35.

Summary

A brief introduction to linear viscoelasticity has been given. Specifically. models for relaxation
spectra. KWW and HN spectra models. appropriate for real viscoelastic media have been described.

With relaxation spectra in mind a finite element model for ultrasonic wave propagation in viscoelastic
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Figure 2.6  Finite element axial displacement at (r. z) = (0. 10)mm for increas-

ing relaxation time

media is developed that incorporates the distributional nature of relaxation processes. The chapter
concludes with several FE examples of mechanical waves in simple. single-exponential media as well
as media with a relaxation distribution. FE results are compared with an inverse Laplace-Hankel
transform calculation and shown to be equivalent. These simple examples and comparisons establish
initial confidence in the finite element method’s ability to model accurately transient ultrasonic wave

propagation in linear viscoelastic media.
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CHAPTER 3 WAVE SPLITTING INVERSE METHODS

Introduction

A description of wave splitting/invariant embedding forward and inverse methods for viscoelastic
media 15 presented. Reformulation of the one-dimensional wave equation for LHI viscoelastic media
via wave splitting is developed. Wave splitting is a general method of wave field decomposition and is
not limited to homogeneous media [10]. .\ general derivation of the differential invariant embedding
equations follows wave splitting. Embedding equations interrelate one-dimensional scattering operators.
Their form is general and applicable to other models of material properties such as non-dispersive.
inhomogeneous niedia. but a splitting matrix specific to the material property model considered is
required.

Following development of wave splitting and embedding equations. concrete repesentations for the
reflection and transmission operators in terms of kernels are defined. Wave splitting results and embed-
ding equations combine with scattering kernels to produce a set of integro-differential equations in time
and space for the scattering kernels. The space-time PDE’s for the reflection and transmission kernels
would usually form the basis of the forward and inverse algorithms. but because the viscoelastic medium
i5 homogeneous exact Laplace domain reflection and transmission kernels can be derived via a simple
bounce diagram. An elegant forward algorithm is developed from the Laplace domain kernels. The
forward method was first described by Fuks {15] for the analogous dispersive electromagnetic case and
is adapted here to the viscoelastic case. The inversion method for recovery of the viscoelastic modulus
is an ingenious method first described by Karlsson [26] that relies soley on the transmission forward

model and knowledge of the transmission kernel derived from experiment.

Wave Splitting

Wave splitting is the decomposition of a total wave field into two components that propagate in

opposite directions along some defined or preferred direction. In one-dimensional wave splitting for
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longitudinal (shear) mechanical waves. the total wave fields are displacement. u(z.t) {rn). and stress.
T(z.t) (.N/m?* or Pa). The split fields are (au*.u~) where superscript =+~ implies propagation in the
positive z-direction and ~—" implies propagation in the negative =-direction. The split fields are often
referred to as ~forward and backward.” ~up and down™ or -left and right™ propagating waves.

Before wave splitting is introduced the wave equation for («. T} is formulared as a first order system.
[n preparation for this formulation. define the normalized longitudinal stress relaxation modulus. m(¢).

and the normalized creep compliance. n(t). by

m(t) = ¥, (3.1)
n(t) = \\(’:) (3.2)
with the relation
[nxm](t) =t (3.3)
The stress/displacement relation is
T(z.1) = med.i(z.) (3.1)
or after applyving n « ¢, to both sides
d-u(z.t) = n«T(z.) (3.3)
= [l+n=]T(=.t). {3.6)

Note that stress is normalized by M,. Finally. the wave equation in terms of stress and displacemenr is
. L. "y -
a.T(=.t) = (_—,Ju(:.t) (3.7)
or rewritten as a first order system the wave equation becomes

u 0 L 0 n= u u
. = S+ =(A+B) . (3.8)
T (Z)" 0 0 0 T T
Observe that if matrix B is neglected the one-dimensional elastic wave equation for LHI media is

recovered. For reference. the wave equation written strictly in terms of displacement is

m«diu(z.t) = —l,—,ii(:.t) (3.9)

or after operating with n * d, on both sides and integrating by parts it becomes

Qu(z.t) = C—l,_,ii(:.z)+%m&(:.t). (3.10)



3t

In order ro split the total fields. (u. T). into left and right propagating fields. («¥.u7). a change of

basts is assumed. that is.

u ] ut
= E—l (3.11)
T J T
ut ] u
=P . (3.12)
u” | T

Substituting eq. 3.11 for (u.T) in eq. 3.8 and rearranging gives

ut . . ut
d: ={pAp ' +PBP "} : (3.13)
u- u-
From the chain rule for derivatives there should be a rerm proportional to d.P~'. but J.P™' =0

because the viscoelastic medium is assumed homogeneous.

Define matrices D= P A P~ " and E = P B P~'. A transformation is sought that will diagonalize
- or. in other words. will decouple left and right propagating waves in an LHI elastic medium. [n this
context P A P71 is a similarity transformation from - to D where P™! is a matrix whose columns are

the etgenvectors of 4 and D is a diagonal matrix of eigenvalues of 1. [t follows that

. l l
Pl = (3.1:0)
- (%) (%)
- o
| — (%
P = (C)_l (3.15)
L (%)
and
34
- 0
D = () | (3.16)
0 (%)
—-nxd, n«g
E = ggf;l:} ‘ ‘ (3.17)
|l -ncd Axo
where

(.)r -1 _ t ' . )
[(7) f] (z)cho f(s)ds. (3.18)

assuming initial conditions for all field variables are zero [10]. Collecting these results together. an

equivalent formulation for the 1-D wave equation. eq. 3.13. is

ut a J ut
), - (3.19)

u- -~ J u-



where
. I . L.
Jy = —a = —[2+n«d (3.20)
2c
J = = = —nxd. (3.21)
2c

With this reformulation of wave propagation in LHI viscoelastic media. wave splitting is complete.

Invariant Embedding

The split field equations. eq. 3.19. represent local -at-a-point” dvnamical relations for left and right
propagating fields in an LHI viscoelastic medium. [n contrast. a set of four linear scattering operators

can be defined that relate incident and scattered fields for a viscoelastic slab of miacroscopic thickness:

ut(h) T (a.b) R~ (a.b) ut(a) 22)
= (3.22
u~{a) R¥(a.b) T~ (a.h) w”(h)
ut(a)
= S{a.b) (33.23)
w~(b)

where "¢” and "b" indicate the boundaries of the slab and dependence on time. *t". has been suppressed
{see Fig. 3.1). [t is assumed that for = < « and : > b the material is LHI elastic media. Scattering
operators are defined for a thin slab of thickness Az and for a composite slab of thickness Az + L.

respectively. where L = (b — a) is the original slab thickness:

- o :
S{u—Aza) = (¢ — Az qy (.24
- 'R'+ T- -
[ 7+ ®r-] )
S(a— Az b) = {a — Az.b). {3.25)
- 'R‘:- T- -

where [-] (¢ — A:.a) implies the operators are evaluated at (e ~ A:.a). etc. Scattering operators are
assumed to be time translation invariant and independent of incident fields. but the precise relationships
which connect these operators to material properties and to each other are to be determined.
[nvariant embedding shows how to derive operator interrelationships. The idea is to embed the
original slab in a slab which is slightly longer by Az and derive the scattering operators for the new.
slightly longer. slab in terms of the operators for the original slab. eq. 3.22. and the dynamical relations.
eq. 3.19. When A:x goes to zero the result is a set of differential equations for the scattering operators

and ultimately for the operator kernels.
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ut{a) T nw*(b)

b
+
bl
I

u”(a) T- u~(h)

a b z

Figure 3.1 Flow graph representation of scattering process

The goal 15 to find mathematical relations that link scattering operators for the original. thin and
composite slabs. To begin a thin slab is added to the original slab at "a” so that the composite slab

extends from ¢ — Az < = < bh. For the moment consider only the thin slab. \ssume the fields at

: =a — A: are related to fields at ~a” by a first order Taylor’s series expansion about = = .
utla —Az) = u¥(d) —d.uT{a)A:z (3.26)
u {a—-2A3z) = u(a)—d.-u"{a)Ax. (:3.27)
whete d.u™(a) = JuT/dz|,_,. With the dynamical relations. eq. 3.19. the terms d.u=(a) in the
Tavlor’s series expansion can be replaced so that
ut{a— Az} = u¥{d) = Az (au(a) + Ju~(a)) (33.28)
u (a—Az) = u(a) =~ A:(vuT(a) +du"(a)}). (:3.29)

[t is assumed that each operator. (a..J.~.d). is evaluated at a. Solving for u~(a — Az) and u*(a) and

neglecting terms of order (A z)* and higher. the scattering matrix for a thin slab becomes

ut(a) 1+ Aza A-J ut(a — A:)
u~{a— A\z) -Azxy 1—-Az w” (a)
ut(a — Az)
= Sla-A:a) . (3.31)

u~ (a)
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A scattering matrix for the composite slab is created from eq. 3.22 and eq. 3.30 by eliminating u=(a).
neglecting terms (Az)? and higher and preserving operator ordering. The scattering operator matrix
for the composite slab is

Sla— Az by = S(a— Az.a) ~S(a.b). {3.32)
The symbol. "«". denotes a special algebraic composition or product of the subslab scattering operators
known as a “star product’ or "Redheffer star product’ in the wave splitting literature [33]. This sort of
composition also appears in basic textbooks on microwave circuits [13] often set in terms of intermediate
matrices known as chain ot T-matrices that relate fields at "b” to fields at "a” and rice versa. The

components of S(a — Az.b) are

THa-A:zb) = TH(L-RIR*) T (3.33)
R¥(a-A:b) = RE+TIRT (1-RIRY) T (3.3-4)
R™(a—-2d:zb) = RT+T*RI(1-R*R3)”' T (3.35)
T a=Azb) = T{(L-R*R3)™'T- (3.36)

Terms 7= and R denote scattering operators of the original slab. T*(a.b} and R¥(a.b). eq. 3.22.
respectively. and 75 and 'Ri denote scattering operators of the thin slab. 7={¢ — Az.a) and R*(a —

Az a). eq. 3.30. respectively.

l

Substitute for 75 and R with corresponding terms in eq. 3.30 and expand terms of the form (-)~

as a series retaining factors to first order in Az, The composite scattering operators become

THa—-Azb) =~ T+ A:(Tra+TTIRY) (3.37)
R¥(a—Azb) = RY=A:z(~+dRT —R¥a - RTIRY) (3.3%)
R (a-2Az.b) x R+ NzTH3T"~ {3.39)
T (a=2Azb) = T~ =A:z(0T~ -R*YIT™). (3.40)

Upon passing to the limit Az — 0. the first of these equations. eq. 3.37. becones

+ Tty — \~ N7+
lim T {a.b)-TH(a - Az b) - d?' — Tta— THIR* (3.41)
Az =0 A da

where d/da implies variation with respect to the left-hand boundary. a. or
aT+ _ IT*(=.b)
da d=

In summary. the embedding equations for the scattering operators with respect to variation of the

(3.42)

<=d

left-hand boundary. ~¢”. are
aTt

5 —T+ta-THIR* (3.43)




IR+ .
: r,)‘" = 5 +dRT = R*a—RTIR* (3.41)
IR~

0:1 = —T*J4T" (3.13)
T = .
((')a = 0T~ —R*3T"- {33.46)

with (a. J.+.d) evaluated at a and (TT.R*.R~.T ") are evaluated at (a.5). .\ similar set of embedding
equations exist for variation of the right-hand boundary. b [10]. Equations 3.43-3.46 are a general set
of operator/material property relationships for one dimensional scattering independent of incident and
scattered fields. A concrete representation for the scattering operators is neccessary to derive integro-

differential equations for the operator kernels from eqs. 3.43-3.46.

Scattering kernels and kernel equations

[nitially assume that the viscoelastic slab s impedance matched to the elastic mediaat : = e and . =
b. respectively. An impedance match exists when the longitudinal (shear) acoustic impedance of each
elastic medium. Z;, = p.ci.. is equal to the high frequency acoustic impedance of the viscoelastic slab.
Zie = PreClye = VPee My An impedance matched condition implies reflections from the viscoelastic

slab approach zero as frequency approaches infinity. Concrete representations for impedance matched

scattering operators for a wave incident upon the slab from the left at = = a are
u”(z.t) = RY(z.L.t)u™(z.t) (3.47)
-t
= RY(z. L.t —s)u™(z.5)ds (3. 18)
0
w Lt +r{z)/2) = Tz L.bju™(z.1) 13.-49)
ol
= d(zjut(z.t) -+-/ TH(z. L.t —s)u™(z.5)ds. {3.50)
0
where
™z} = 2L - )/t (3.51)
(l(:) = e-ix.,r(:y/-{ (,;32)
dn
ng = - (3.53)
ot t=0

Explicit forms of scattering operators have been derived by Kristensson [31] from arguments based
on time translation invariance and causality. An LHI viscoelastic slab impedance matched at both
boundaries has symmetry with respect to waves incident at the left or right boundary: therefore.

R-=R*=RandT-=T+=T.
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With scattering operators represented in terms of kernels. embedding equations for the kernels

can be derived from eqs. 3.43-3.16. Embedding equations for reflection and transmission kernels are.

respectively:

(2¢10.0: — 4R

R(=.L.0)
R(L.L.t)

f:.‘l.’)"

R(=.L.t)}

t=Tiz—

2c0.0.T

T(=z.L.0)

T(L.L.t)

—d [(1 = Re)(L — Rx)A] 0<:<L
—A+ngRR—R«R|+i«[2R—R«R)
!

-ny

1

dldn—dn«R+n«T—-n+«Re«T] 0O0<:<L

din+ [T —-dR-T«R|+n«[T —dR-T « R]
l . [ . y

—ITf:)(l(:) [n.) - I(m))'}

Q.

{3.54)

The fourth term in eq. 3.54 is a jump discontinuity in R(z. L.¢) across the characteristic line. t = 7(3).

When = = 0 then ~(0) is the round trip time through the viscoelastic slab for the wavefront. Until

one round trip the reflection kernel is equivalent to a reflection kernel of a viscoelastic half-space. The

detailed derivations of these kernel equations is given in Karlsson [26] and will not be repeated here.

Karlsson [26] gives Laplace transform solutions to egs. 3.5 and 3.55. This is possible because the

viscoelastic medium is assumed homogeneous. Alternatively. Laplace domain scattering kernels are

easily derived from a bounce diagram approach (see Appendix ). The Laplace transform kernels are

R(z.L.s}) =

T(z.L.5) =

1 - ,:Z.’(s)d'.’(:)e—srl‘:lﬁ—éu|

I:(,) [ l —(12(:)6—..‘?1;,6_““ ]

I — ,I'_’(s)d'.’(:)e-sr{:pe—i;iay

PR [ L~ #(s) J s

3

d(z)e P2 (L= F(s)R(z. L.s)]| = d(=)

s7(=) ( T 1) - ém,,-(:)

sn(s) —1
Vsa(s) + 1
- \/sm(s)
L+ /sm(s)

(3.56)

(3.59)

(3.60)

(3.61)



The term r(s) is the displacement reflection coefficient for an impedance matched viscoelastic half-space.
The Laplace transform of the normalized creep compliance. sa(s). comes from the Laplace transform

of the modulus/compliance relation:

nem = (3.62)
.. L .
=>nm = - (3.63)
52
- L .
sn = —. (3.64)
sm

An analogous set of Laplace domain kernels for an impedance matched slab of dispersive. electromag-
netic media are presented by Fuks [15]. He showed how to invert the Laplace transform kernel equations
via three intermediate variables. Their time domain kernel equations represent a forward model and
form the basis of an inverse algorithm. The inverse algorithm is an ingenious method originally derived
by Karlsson [26] that only requires detailed knowledge of the transmission kernel. In experimental
work performed by Fuks [15] it was observed that the reflection from a dispersive fluid (an alcohol) is
dominated by -hard reflection” or reflection due to high frequency impedance mismatch: therefore. the
reflected field appeared as a scaled version of the incident field and was unsuitable for recovery of the
time dependent susceptibility kernel. \(¢). analogous to n(t). Fuks found that the transmitted field
was relatively more sensitive to the dispersive nature of the alcohol. The transmitted wave appeared
highly distorted compared with the incident field and consequently provided relatively more information
about the dispersive properties of the alcohol. Fuks showed that recovery of the susceptibility kernel
with transmission data only was stable and resulted in a good estimate of susceptibility [26].

The equations for the forward model based on the inverse Laplace transform are presented and their
derivation is detailed in Appendix \. The time dependent reflection and transmission kernel for the

slab. R and T. and the reflection kernel for a halfspace. r(t). are. respectively:

RO.L = )+ S S+ Dm) (reree—c)(eree) 3.65)
1=1)

TO-LY = elt)—dreR-cur=R. (3.66)

r(t) = %(ix(t)—'.’h*r—h:rx r) (3.67)

r(d) = éizq (3.68)

The equations for b(¢). e(t) and v(¢) are

ro (A(t) = it * 1 — Rgr(t)) (3.69)

>
=
—
=
]
1) -

.

an o~ L L 3.7
) = —3dablt) = e = (th) (3.70)
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c(t) = dir(t) +2dye xr+exeer
where

m = rlz=10)

dy

i

d(z=0)

n(t = 0).

11

ngy
The term S(m) 1s a time translation operator defined by
S(m)f(t) = f(t —m).

A flow chart of the forward problem is presented in Fig. 3.2.

Scattering kernels for impedance mismatch

(3.71)

For any realistic experimental situation there will be impedance mismatches at both the front and

back wall giving rise to “hard’ reflection and transmission coefficients. The longitudinal displacement

reflection and transmission coefficients for the front wall. z = 0. and back wall. = = L. are. respectively.

+ Z’) - an
!‘,)' = _—
Zy+ 2w
+ — Lot
ty = l+r;
ry = -rJ
ty = l+ry
+ Z"r - ZL
ry = o/
Z.. + 2y
+ _ .
7 = U=+ L
- _ +
rp = -rj

Iy = l+rf

(3.76)

where superscripts "+~ and ~—" refer to the direction of the incident field upon which these scalar

quantities operate (see Fig. 3.3).

If a hard reflection only exists at the back wall then two new scattering operators. R, and T5. must

be defined to take this into account. Similarly. if both front and back wall hard reflections exist then two

more scattering operators must be defined. Ry and T;. These operators have been defined previously

and discussed in detail elsewhere by Karlsson [26] and Fuks [15]. The operators are defined to be

Rout(0.8) = ridiS(m)ut(0.t)+ [Rb * u+] {0.¢)

Tout(0.8) = tfdaut(0.t) + ] [T; « u*] (0.t)

(3.84)

(:3.85)
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Figure 3.2 Flow chart for the forward problem: the impedance matched case.

(a). and the impedance mismatched case. (b)
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Figure 3.3 Pictorial representation of hard” scattering coefficients

and
Rpa™(0.) = Y a,S(Um)ut(0.0) + [Ry « u*] (0.1) (3.86)
J=4
Truti0.t) = t,TtZ:qubJ.S(jﬂ,)lz+(O.l)+[,’,"t;_" [Ty «nu™](0.t) (3.87)
=t
where
an = rf
4 = {:[Jr:d;‘;
a; = rirfdia- j=23040
by = 1 {3.83)

bj = ryrfdgbio j=l23..

The terms a; and b; with dy = | represent the terms that would exist if the viscoelastic slab were purely
LHI elastic and impedance mismatched with respect to the LHI elastic halfspaces for = < 0 and z > L.
respectively.

Fuks [15] has shown how to relate operators R,. Ts. Ry and T; to impedance matched operators

R and 7 with a star product. When operators are replaced with their kernel representations a set of



41

delayed Volterra integral equations of the second kind result. The matched front wall and mismatched

back wall kernel equations are

Ry = R-r{[R«R-R«Rs
+8(7) [((FEV AR +2rFda T+ rf T = T (3.%9)
T, = T+rfdiR+rfR=«T,. {3.90)

and for impedance mismatch at both front and back wall the Volterra equations are

™

Ry = Ry=rfRy«Ry—rirfdiS(m)Ry ~ri Y a;S(jm)R, (3.91)
J=t
N~

—[-! = n, - I’U"'[t/ x Tf, - P(TI'Z([,";S( T())T! - l’:([u Z bJ.S(qu))R;, (-;()2)
J=u

where dependence. (0. L.t). has been suppressed.

Scattering kernels: initial values and discontinuities

[nitial values and discontinuities of the scattering kernels for viscoelastic media are essentially the
same as for the dispersive electromagnetic case [15]. They are summarized here for completeness.
Following from the previous section the initial values for the reflection and transmission kernels are.

respectively.

r0) = R(0) = Ru(0) = llfz., (33.93)
R0 = (1= (rF P )R,(0) {3.04)
T(0) = «(0)= —E,—,,d,, [ﬁ,, - %(izq)'{l (3.93)
T,(0) = T(0)+rfdoRs(0) (3.96)
T;(0) = T,(0) = rfdoRs(0). (3.97)

At multiples of one round trip through the slab there are finite jumps which occur in the reflection and
transmission kernels. There are no jumps in r(t) and T(¢}. one jump in R(t) and T,(¢) at t = 7. two
jumps in Ry(t) at t = ry. 27. and infinitely many jumps in Re(¢) and Tp(t) at 8 = jmy j=1.2.3. ...
The notation [R(j)] = R(jm}) — R(jr; ) is employed in what follows to denote a jump at ¢ = j=). It

follows that

L.
[R(T())] = —Illg(la (3.98)

[R(m)] = [R(ra)l + (r])*doR(0) + 2rf doT(0) (3.99)
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[Ro(2m)] = (rfdy)*[R(m)] (3.100)
[n(ﬁ)jl = PZ![{)[R(T‘))I ({[Ol)

and finally for Ry and Ty

(Re(ma)l = (L =rian)[Re()] = ry rfdiRp(0) = rf ay Ry(0) (3.102)
(Ry2m)] = (L= rfan)(Ru(2m)] = rf rfd3[Ry(m)]

—ry ay[Ry(7)] = ri a2 Ry(0) (3.103)
[RrUm)] = (rada)[Rp((J = V)] = rg ay—a[Ra(270)]

—rFa, 1 [Re(m0)] — rFajRy(0)  j=3.4.5.... (3.101)
(Tr(ma)] = rido[Re(m)] + [Th(0)] + rfai TH(0) (3.105)
[Tyl = rido[Ry(Um)] + ria,—i[To(m)] + rfa; Th(0) (3.106)

J=2304

For the inverse method the quantities dy. 7). r,,:'. rZ' and Ty (0) are assumed known. [n the numerical
experiments to follow dy and 7 are estimated from pulse transmission at asymptotically high frequency
and rf is estimated from pulse reflection at high frequency. I[n cases to follow rf = —r] and 7t} =
L—(rf)? The term T;(0) is relatively difficult to estimate from measured data: therefore. it is neglected
in most cases. Estimates of ny and ny follow trom eqs. 3.32 and 3.97. respectively: therefore,

4 .
iIu = ——In [({‘]] (-;l()l-)

o}

iy = In,-,—z,—,;lr;m,—-t(mdn)"T_,(m. {3.108)

The inverse algorithm requires ng. ny and Ty(¢).

The inverse algorithm employed was originally derived by Karlsson [26]. He observed that the
equation which relates Tf(¢) to n(t) is a linear mapping from n(t) to T;(¢) so that in discretized form
the mapping is

Tr(JAt) = 4 + B;jn(jAt) (1.109)

where 4; and B; are independent of 7i(jA¢) but are dependent on n from earlier times. Fuks [15]
states without proof that the reason for the mapping is that convolutions and additions are the only
operations involved. This observation allows the forward algorithm to be emploved as a basis for the
inverse algorithm in the following manner: two dummy values for ii(j\t) are chosen. i, and iy, then

the direct problem is solved to find dummy values for transmission kernels. Ty, and Tys. for ¢ = jAL
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The values of 4, and B; are determined from the system of two equations and two unknowns for each
Jj=1.2.3....\V. that is from
Tf,‘ = .‘lj =+ BJ n,

Ty = A, + B,i.

The last step is to estimate the true value of n(j At} from eq. 3.109 with the values of .1, and B, just
obtained. [t is assumed that nq is known so n(jA¢) is determined by integrating n(jA¢). Specific finite
difference equations for 4; and B; are very involved according to Karlsson [26]. The details are bevond

the scope of this study. The algorithm for the inversion is as follows:
Given: my. do. rf. Tr(0) and Ty i=1.2.3....V
Compute ny and ny from given information
Let ¢; = 0.9 and ¢» = =0.01
Do i = 1.V (¥ = number of time steps)
n;, = n,_,
Nyg =Ny
n, = niog + (A

Solve direct problem for Ty, ,

ﬁ, = L'Iﬁ,_l + 2
ngy = Ng

ng =g+ (A/2) [ + iy

Solve direct problem for Ty, 4

Compute coefficients

B: =(Tfia — Tris)/(nia — i)

Ai=Tpiw — Bini 4



Solve for the “true’ value of n,

n = (Tr, — i)/ Bi

[ntegrate n, to get n;
fl, = 7.1,..[ + (..\t/’.l) [l’i, + ﬁ,‘_[]
End do.

The values for ¢, and c¢» are not critical. The validity of the approach is tested in Chapter 5 with wave

data generated by the finite element method.

Scattering kernels: examples

The scattering kernels just presented are best interpreted by calculating and displaying kernels for
some spectfic examples. For an example it 15 reasonable to assume a simple. single-exponential model

for a viscoelastic medium:

M) = [.\1: + (M, - .\1,);”“] H(t) (3.110)
where
p = 1000 ky/m® {3.111)
{. = 1700 m/s (3.112)
t, = 2500m/s {3.113)
M, = pl?=2389GPa (3.114)
M, = plV}=625GPa {3.115)

These limiting moduli are representative of a polvmeric material that is a solid at room temperature.
The relaxation time. . and the length of the viscoelastic slab. L. are variables in the calculations.

As an example. reflection and transmission kernels. (R. Ry,. Ry) and (T. T5. Ty ). are shown in Fig. 3.4
for a slab thickness of L = 5mm and a relaxation time of = = lus. Most notable are the jumps in
the reflection kernels. Fig. 3.4(a). occurring at times equal to multiples of one round trip through the
slab. For the impedance matched slab there is one jump in R at one round trip (dus). In theory. Ry
and T; have jumps at every round trip but after about three round trips through the slab the jumps

are negligible. [n Fig. 3.5 kernels are plotted for L = 3mm and increasing relaxation time.  [n this
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Figure 3.5 Reflection kernels. R;. and transmission kernels. T;. in (a) and (b).

respectively, for various relaxation times. 7. and L = 3mm
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case initial values of kernels approach zero as relaxation time increases representing the approach to an
essentially elastic regime. The elastic limit is achieved when = — x then M(¢) — M,

The effect of decreasing slab thickness is demonstrated in Fig. 3.6. In this case the transmission
kernels have reduced initial amplitude and faster overall decay for decreasing slab thickness for the

specified relaxation time.  [ntuitively this is reasonable because the attenuation and wave spreading

15 25
= 5mm - — L = S5mm
o = 3mm : 2 eee L = 3mm
— 10 = Imm o —-L = Imm
=] =
e s 15
1 =
c 5 s
3 X
= 510
S a
T o 5
H g °
-5 | [ 1 | | 0 ‘
1] 2 4 6 8 10 12 10 12
time, us lime, us
{a) (b)

Figure 3.6 Reflection kernels. R;. and transmission kernels. Ty. in (a) and (b).

respectively. for various slab thicknesses. L. and = lus

inherent in a viscoelastic medium have a cumulative effect on waves as they propagate: therefore. there
will be relatively less overall effect on a transmitted wave if the slab is thinner. A less intuitive result is
demonstrated in Figs. 3.7 and 3.3, Figure 3.7 shows that for a fixed relaxation time the transutission
kernel has a maximum at time zero for a given slab thickness. [t is possible that a wave transmitted
through a slab with thickness such that its transmission kernel is maximum at time zero can carry
relatively more information about the viscoelastic nature of the slab. [n other words there may exist an
optimal slab thickness for measuring viscoelastic moduli. Figure 3.8 shows the same characteristic. but
in this case the slab width is held constant and the relaxation time is varied. In this case one notices
that as the relaxation time decreases the peak of the reflection kernel becomes centered around one
microsecond. One microsecond is approximately the difference in time delay for a wave to traverse the
slab at asymptotically high and low frequencies. that is. (5mm) - (1/1.Tkm/s — 1/2.5km/[s) = 0.9dus
where the limiting high frequency wave speed i1s 2.5km/s. These effects are made more clear when these
kernels are convolved with an incident wave.

A model incident wave is plotted in Fig. 3.9(a) that is representative of a band-limited ultrasonic
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Figure 3.7 Transmission kernels. T;. for various Figure 3.3 Transmission kernels. T;. for various

slab thicknesses. L. and = = 100ns. relaxation times. 7. and L = 5mn.

demonstrating maximum in T for a demonstrating maximum in Ty for a

specific slab thickness. L = lmm specific relaxation time. v = 30ns
pulse. The pulse’s normalized frequency spectrum magnitude is plotted in Fig. 3.9(b) along with

normalized attenuation and wavespeed for a single-exponential viscoelastic medium with different re-
laxation times. As relaxation time lengthens attenuation and wavespeed curves move to the left or
lower frequency and the incident wave magnitude lies more in the slab’s high-frequency elastic region
where little wave spreading and attenuation occur. Figures 3.10(a)-(c} show reflected waves and Fig-
ures 3.10(d)-(f) show transmitted waves for various relaxation times. Specifically. Figs. 3.10(a) and
(d) show the portion of reflected and transmitted field that are due strictly to the hard reflection and
transmission coefficients. (l'(fL.t”#L). from eqs. 3.86 and 3.87: no convolutions are involved. only scalar
multiplication.  Figures 3.10(b) and (e) are reflected and transmitted portions of the field arising from
convolution with Ry and T;. respectively. The strongest reflection and transmission with respect. to Ry
and Ty occurs when + = 0.lus and the incident wave spectrum lies in the transition region between
the viscous or low frequency region and the glassy. elastic or high frequency region (see Fig. 3.9(b)).
Figures 3.10(c¢) and (f) are total reflected and transmitted fields. that is. they are sums of hard and
convolutional or soft reflections and transmissions.

Figure 3.11 shows the shift in dominance from the directly transmitted wave. t7t7 dyut(0.t). to
the ‘indirect’ wave. ta"t‘[’_’Tf * ut(0.t). when relaxation time shortens from r = 300ns to r = 50ns.
Ultimately. when relaxation time becomes short enough attenuation again decreases and the wave
propagates relatively unattenuated in the slab’s low frequency or viscous region. This point is made

more clear in Chapter 4 when propagator inverse methods are discussed.
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Figure 3.9 Example of incident waveform. (a). and normalized frequency spec-
trum compared with normalized attenuation and wavespeed (curves
with symbols) versus relaxation time. (b)
Summary

Wave Splitting methods are a unique method for reformulating transient wave propagation from
a second order hyperbolic PDE in terms of total displacement into an equivalent system of first or-
der PDE’s with left and right propagating waves. This decomposition naturally leads to definitions
for reflection and transmission operators and thetr respective kernels. Wave splitting and invariant
embedding allow formulation of integro-differential kernel equations that interrelate transmission and
reflection kernels and marerial properties. Dne to homogeneity of the viscoelastic medinm. Laplace
domain retlection and transmuission kernels can be derived. A time-domain torward model for reflection
and transmission is developed tfrom Laplace domain kernels and is solved by finite difference methods.
The forward-model kernel equations provide a well posed relationship between material properties and
kernels or system impulse response functions. By an ingenious method due to Karlsson [26]. the forward
model becomes a basis for an inverse method that utilizes transmission kernel. T;{¢). The inversion
method has been demonstrated in a proof-of-principle experiment on a dispersive electromagnetic ma-
terial [15] where the time dependent susceptibility. ¢ (). was recovered. The susceptibility is analogous
to the rate of change of the normalized creep compliance. n(t}. Unfortunately. application of this wave
splitting inversion method to the viscoelastic case is subject to severe technological constraints that are

made more clear in subsequent chapters.
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Figure 3.10 Reflected fields: hard. (a): soft. (b): total. (¢): transmitted fields:
hard. (d): soft. {e): total. (f). for slab thickness L = 3mm
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CHAPTER 4 PROPAGATOR INVERSE METHODS

Introduction

Wave splitting methods require knowledge of system input and output: therefore. measurement of
an incident wave s required which is not easily accomplished in most practical experimental situations.
Recovering viscoelastic moduli from the transmission kernel also requires knowledge of attenuation at
asymptotically high frequency. that is. knowledge of dy as well as ny and 7). ~Asymptotically high
frequency’ is not a well defined concept for real materials. All measurement apparatus has a limit to its
shortest measurable time scale: therefore. requiring certain quantities be known at time equal to zero
ts practically impossible. To know material properties at a given time scale requires a measurement
technique with time scales of the same order. Viscoelastic materials generally have time scales that
span several orders of magnitude. More practical techniques for estimating moduli relate attenuation
and wave speed measured over a frequency bandwidth to the real and imaginary components of the
frequency-domain modulus. Several measurements with overlapping bandwidths can be combined to
construct a composite modulus.

Methods described in this chapter are called propagator methods.” Propagator refers to the expo-
nential propagator. exp(Z%z). that is a mathematical description of wave propagation from one point
to another. Three propagator methods are described that rely on measurement of transmitted waves
analogous to the wave splitting method. The methods in the order that they are described are the two-
slab method. the slab substitution method and the Hankel transform method. [n the two-slab method
transmission measurements are made on two slabs of different thicknesses. For the slab substitution
method a transmission measurement is made with and with out the slab in the propagation path. A
calibration reflection measurement is required for the slab substitution method. Finally. the Hankel
transform method specifies that the transmitted wave be measured with a point-like receiver along a
radial line from the beam center. The measured signal is then integrated along this radial line effectively
removing dependence on the radial coordinate. The Hankel transform method is combined with the

first two methods. [t is not a distinctly separate method. but it is another way to collect and process
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data to remove beam spreading effects.

The basic theory for the two-slab and slab substitution method is one dimensional. A 1-D theory
gives the simplest relation between measurable data and attenuation and wave speed. Propagator
methods have been applied experimentally in a number of studies for solids [20. 23. 30. 32. 55. 63] and
liquids {25. 50]. Pure plane waves do not exist in ultrasonic experiments. Real waves undergo decay due
to geometrical spreading. An approximate diffraction correction is often included with one dimensional
theory to account for the beam spreading [23. 30]. [n other cases the correction is ignored entirely
[20. 32} or some argument is offered to justify neglecting it [55. 63]. With the finite element test bed.
numerical experiments are performed under controlled conditions with known material properties to

test the validity of the one-dimensional theories with and without a diffraction correction.

Two-Slab Method

Assume a purely one dimensonal system with an ultrasonic source positioned a distance. L. to the
left of a viscoelastic slab of thickness L as in Fig. -L.1. A receiver is situated to the right of the slab at
distance Lo, [n most cases the slab is a solid and the medium to the left and right of the slab is a Huid.
usually water. .\n ultrasonic pulse is launched from the source. passes through the slab and arrives at
the receiver. This process 1s repeated on a second slab of the same material with a different thickness.
L +AL. where AL can be positive or negative. The description of this process in the frequency domain

is the following:

Apte) = el F TR e L g () (1)
Appar() = eTmwbemdbi TRl b | () (1.2)
where
Tule) = ewle)+i= (+.3)
Hw) = “‘*”*‘c(:) (4.4)
) = g (45)
If(e) = z:i(;zﬂ) (+46)
Zy = PuCe (+.7)
Z(«) = pé(«) (+.3)

Ap(w)eforie) (-L.9)

e
~
—_

t.

I
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Figure 4.1 Geometry for two-slab and slab substitution methods

Arrar(«) = Apsap(w)erdesae {(-£.10)

0 B W On LN (4.11)

The terms. 4,(«) and Az(«) and Apoaz (<) represent the Fourier transforms of the incident pulse.
subscript “i". and the received or transmitted pulse with slab of length L and L + AL. respectively,
“w({«) and («) are the propagation factors for water and the slab and '[-];*(.4) and ff(..;) are the
transmission coefficients at the left and right interface. respectively. The term Lo — AL implies that the
transducers are not repositioned when the second slab is placed between them. In practice it may be
necessary to reposition the receiver in order to bring the received signal within the digitizing window
when a second slab is placed in the propagation path or when the slab is removed completely [32]. The
wave speed in water is usually assumed independent of frequency to a relatively high frequency when
operating at a given temperature,

cw = 1500 m/s. (4.12)
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The attenuation increases with the square of the frequency:
" _
(W) = agf” (-£.13)

where ay = (21.20 £ 0.05) 107 5*/em for distilled water at 25°C [50].
To recover the attenuation and wave speed from the useful bandwidth of the measurement system.

the ratio of 7.1z to A is taken which gives

Apearle _—
L+ar(«) = pttw=mvial (t.1:)
Ar(s)
— elr]w—'!l'wl,'ALE“"(t—t)AL (ll:))
where
.l[_.‘.AL(-V) - ﬁ\u,‘—vl\mi\AL (l“)’)
Ap(«)
2L (<) arctan 3 (Aecar/Ar) CELT)
[LEAVA T = & d N R
R(eear/AL)
1 1
= .g(-————) AL (-L.18)
Cru ’-‘(-“')

Attenuation and wave speed of the slab follow from the magnitude and phase angle:

I Arrar(=) 1
ale) = aule) - gpln| A (1.19)
(o) = — (-1.20)

[ _ Twoariw!
<AL

Accurate determination of slab attenunation and wavespeed depends on accurate knowledge of the water
attenuation versus frequency and wavespeed which is assumed constant at the measurement temper-
ature. [f the receiving transducer’s original position. L.. is adjusted to compensate for the length
difference of the second slab. AL. then the effects of the water can be eliminated. For example. if the
second slab is longer than the first slab then AL is positive and the receiving transducer must move to
the right in Fig. 4.1 when the second slab is inserted. The corresponding attenuation and wavespeed

simplify to

A S re oA ) ..
alv) = _\Lln .(0) (-1.21)
w) = -2 (1.22)

oaL(«)

Diffraction corrections

Equations 1.1 and 1.2 are valid for one-dimensional plane waves. Plane waves do not decay due to

geometric spreading. [n contrast waves produced by axisyinmetric finite apertures have a complex sound



field composed of planar and non-planar waves that decay with distance from their source. For a plane
piston source the non-planar effects emanate from the rim or edge of the transducer. ~Edge waves™ are
a source of diffraction or beam spreading for on-axis propagating displacement. Diffraction correction
factors have been derived that account for geometric decay of waves in an approximate manner when
included in egs. 4.1 and 4.2. Diffraction correction coefficients have been described in a number of
works [3. 6. 28. 39. 41. 51. 52| and employed in ultrasonic forward-scattering models [48] and recently
in experimental measurement situations [23].

Diffraction corrections are derived from knowledge of the pressure field due to a circular plane-piston
source with finite radius "a’. The piston resides in an infinite rigid baffle and oscillates with angular
frequency « (see Fig. 4.2). The amplitude of the speed of the piston’s harmonic motion is {y and the
piston radiates into an LHI acoustic medium. for example water. with wave speed ¢,.. Rogers and Van

Buren [39] give the equation. originally derived by Lord Rayleigh. for the pressure field due to a piston

a
—>
-« z-axis
z
circular circular
piston surface of
integration
infinite
rigid baffle
z=0

Figure 4.2 Geometry for diffraction correction calculation of a piston trans-

mitter



sourece as

P(r.:.x) =

wpali T exp [—ik(r® + rj = 2rrgcos(fy) + =7)?
1 po )/ / exp [—ik(r® + r3 ry cos(fg) ) ],-(,(lh)lloO (-1.23)

2% :3]‘/—'

{r*+ ri —2rrocos(fn) +
where the term (---)'/2 is the distance between the field point. (r.0. z). and the source point. {ry. 6. 0).
From Williams [51] the average acoustic pressure over a disk of radius a that is coaxial with and a

distance = in front of the piston source is given by
k. _l :/- il l
(P(z.2)) = pocn Vo | e77° = —/ exp [—-11\(-' + da® cos® (£))*] sin®(r)de| . (.4.24)
0

Assuming a pressure sensitive receiver exists that has an output proportional to the average pressure
over its face then the diffraction correction. D(:.4). for such a receiver with radius a (equal to the
radius of the transmitter) is defined as the ratio of the average pressure to that of an ideal plane wave.
11

Pyfz. o) = poclie™

) o [2
D(z.&) =(P(z.4) /Py(s.w) =1 — ir k:/ exp [-i/:(:"' +-lt12(3052(.t))1/"’] sin”(r)dr. (-1.25)
0 -

"

Rogers and Van Buren [39] showed that in the limit k« — x the diffraction correction in eq. 4.25

becomes
D™(S) = 1 — ™9 [ fo2x/5) + iy (27/5)] (-+.26)
where 5 = 27e, :/wa® = z\, /d® and .Jy and J; are Bessel functions of order zero and one. respectively.

[t 15 not obvious how to incorporate diffraction corrections into eqgs. 1.1 and 1.2 because corrections
have been derived assuming no intervening slab of material between transmitter and receiver. Thomp-
son [1§] and Jeong [23] both employ a limiting form of the diffraction correction. eq. .26, for cases
involving propagation through one or more materials. They assume diffraction corrections. D™ (S). for

a propagation path with slabs of thickness L and L + AL. respectively. placed between the transducers

are. respectively,

Di\' = Dx(b'w + 5[.) (¥17)
DZ:+¢_\L = Dx(.S',U + 5L +5az) (-+.28)
where
Sw = (L[ - L )(er [ -7.-.,] (t )())
£

. zll .

St = Le(w) [T} (-£.30)
“a=

Sar = {e{w) —cw)AL [%] . (-£.31)
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Attenuation in water and the slab is neglected in D™(5) but is accounted for in the propagator
terms. e =tLi+let qnd e7L  respectively. Notice that e(<) is required to compute 5. but (<) is one of
the unknowns to be measured. This point is taken up in Chapter 5.

Diffraction corrected received signals. denoted by superscript "D’. become
AP(w) = DY AL(w) (1.32)
APiar(«) = Diiardriar(w). (-1.33)

In a real measurement actual measured signals correspond to .»if(.«;) and .~(’LJ+_\,_(.«') for two different
slab lengths. The goal is to remove beam spreading to recover effective plane wave signals. This is
accomplished by dividing measured signals by appropriate diffraction corrections. The extent to which
beam spreading can be removed and material properties recovered via plane wave theory is one theme
of this work and is facilitated by an FEM test bed.

The equations for attenuation and wave speed. eqgs. .19 and +4.20. including diffraction corrections

become
L "'i?' .\L/-'igl
<) = ap(w} - —In T"-——- (-£.34)
AL DT ar /D
Cur R ¥t
(.'(..u') = I—_—:“m.- (-l.»;»’))
«ML
where
op(«) = arctan 3 (Divar/DE) (-£.36)

P ~ oo

R(Dryar/07)

Figure 1.3 shows exact diffraction correction. D. eq. 1.25. versus ¥ for increasing ka compared with
correction. D™, eq. -1.26. valid for ka — x. For ka greater rhan about twenty exact and limiting

diffraction corrections are practically indistinguishable.

Slab Substitution Method

Slab substitution requires removing the slab under test and replacing it with a "known™ material.
that is. a material whose properties are relatively well characterized versus frequency and temperature.
The usual test situation is a solid slab immersed in water. \When the slab is removed water takes the
place of the slab. This technique is more common than the two-slab method [23. 32. 63].

The slab substitution method is described by the following equations:

Ap(w) = e WwbaTe b e ule g, () (4.37)
L

dwlw) = e wibitlatl) ) (-.38)
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where 1, (<) represents the Fourier transform of the received signal when water (or other known fluid)

replaces the slab. The ratio A;/ A, is

Al et
L() — Tz-'rtf-el‘n.-'”!l- ([.3())
A (W)

= |TFTf|ewrernemmiont e (Zo-a)L (41.10)

where the magnitude and phase angle are

1L("‘) ~4 g =t 1)
| =TT et (40
o{«) = arctan -%} . (-1.-12)
= or(<) +or(s) (-1.-13)

'\} (T-{»'[;-é-)
or(«) = arctan -W’I%ﬁ} (-1.41)

l l

(DL(.‘;) = - (('— - ﬁ) L ("l.‘-'_))

Usually media on the left and right side of the slab are the same: therefore. transmission coefficient
L Sy ? .

terms can be written in terms of the reflection coeffcient: T/ T = 1 — (R})”. Attenuation and wave

speed are recovered from the magnitude and phase angle of the ratio of the signals. with and without

the slab. in the following manner:

i Ap(w)/ A (<)
a4} = aule)=7ln M—' (1. 16)
- (RY)Y|
e(w) = Ty ,_‘wj_“'a_w. (1.17)
- -HL

A reflection measurement is necessary to estimate the reflection coefficient. R . as compared with the
two-slab approach where only transmission data are required.
Analogous to the previous section. diffraction corrections can be incorporated into the attenuation

and wave speed relationships for the slab substitution method. I[n this case diffraction corrections are

DF = D™(Su+5u) (1-48)
Dy = D%(Sw +Set) (1.19)
with
2x
Sw = (Li+Lae, [—] (4.50)
wd=
2%
Si = Lc(.‘;)[ q] (+.51)
“wa-

.)‘—I
Swr = Lew [ ~ ')] - (4.52)
a
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Received signals with diffraction correction are

A2

DX (<) (1.53)

DY A (<) (4.5:1)

wo-

A2

and attenuation and wave speed with correction are

A}/ Awla
ale) = aw(.‘;)-%ln | f(‘ )/ i )'_ (4.55)
U= (RD)*||1 D3/ Dy
olw) = l_%‘;far_'m! (4.56)
-
where

3 (DY /DY) ——

op = arctan (-£.57)

R(Dx /DY)

As was mentioned previously. a reflection measurement is required to estimate R . This is usually
accomplished by making a “calibration” reflection measurement [32]. Calibration requires measuring a
reflected signal from a material whose impedance is relatively well known. for example aluminum or

fused quartz. The calibration reflection coefficient is

Ly = 2o -
R’T.-:ul = ZL - ‘; (»l.-’)&)
w = =q

with Z, and Z.;; assumed known. The reflected signals. subsript r. with diffraction correction are

AP e} = DremTeliRy A (W) { 1.59)
AZEM L) = DEeTebiRE (<), (1.60)

Diffraction correction. DZ" is evaluated at §;, = 2L;c¢, [2,—‘/.'.'(13]. Upon dividing "{rD.Ll by .'irD_[’:“ the

unknownu reflection coefficient is

RY(w ‘.i"D-Ll('“.) + )
Flw)= | RE L (4.61)
'_lT.Ll (-u')

Notice that the calibration reflection coefficient is not considered a function of frequency.

Hankel Transform Method

Diffraction corrections that have been described are an approximate method to account for geometri-
cal spreading and decay of waves emitted from a finte aperture transmitter. These corrections transform
the original one-dimensional theory into an approximate axisymmetric theory. Another approximate

method is described that effectively integrates out the radial dependence of an axisymmetric field via a
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Hankel transform. When the transform parameter. . is set to zero the Hankel transformed equations
revert to one-dimensional equations. The set of transmission equations without diffraction correction
presented for the two-slab. eqs. ‘1.1 and 1.2, and slab substitution method. eqs. .37 and 1.38. can be
used directly except that the transmitted wave must be collected along a radial line outward from the
beam axis. The method is dependent on how well the receiver approximates a point receiver relative to
transmitter beam width and diameter.

The viscoelastic wave equation for displacement is
M«VV-u-GeV xTU xu=pa. {1.62)

The shear relaxation modulus i1s (7(¢) and the longitudinal relaxation modulus is M(¢) = K'(¢) + %G(t)
where A'(t) 1s the bulk relaxation modulus. [f only longitudinal waves are of interest then neglecting

the second term on the left hand side simplifies the wave equation to
M«TUY . a=pu {-1.633)

With this approximation all shear wave phenomena are neglected within the viscoelastic slab. On
the other hand this approximation simplifies the scattering process because all longitudinal to shear
and shear to longitudinal mode conversions that occur at slab/water interfaces are eliminated. The

appropriate displacement wave equation for water. the immersion Huid. is
K.YY u=p.u (-1.6-4)

where water is aasumed inviscid. compressible and lossless.

A Laplace Hankel transform for a time dependent. axisymmetric function is given by

~ e

FEs)=CH [firD]] = / / flr.Hrd, (r&)e ™" drds (14.63)
a Jo

where v is usually a positive integer or zero [42]. A Laplace-Hankel transform of order zero and one of the

axial and radial components of the vector wave equation. respectively. replaces dependence on radial

coordinate. r. and time. £. with transform parameters £ and s. respectively. Resultant transformed

equations are

Lal] = pstal () (-£.66)

all = pstal (r) (4.67)

where it is assumed that u.(r.z.0) = a-(r.z.0) = 0. After decoupling the radial and axial components

these equations become

o?a? = [s'-’+§] il (z) (-1.68)
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9%l = [s-u’—] i (r) {1.69)

where 1) = a(€.z.5). 4l = al(€. :.5) and ¢ = sM/p. The honiogeneous solution for i is

i€ 2.8) = F.l(E.s)e73 7+ B (& 5)ets (1.70)
3, = €+ 82/ (4.71)
From eqs. 1.66 and -1.67 it can be shown that d.1! = —€i?: therefore
c - 7. . -
gle. s s) = = [E.u(gs)e= - B:_,(s..,-)e-“':] . (4.72)

Subscript = denotes z-component of displacement and subscript wl. 5. and w2 denote water half-spaces
and slab. Coefficients £ and B denote forward and backward (left and right) moving waves. respectively.
A similar set of equations for water can be written assuming that ¢, — ¢, (5).

Reflection and transmission coefficients for both interfaces of the Huid-slab-fluid system are easily
determined by enforcing continuity of axial displacement and pressure. p(£.z.s) = sM (il + 0. aly.
at interfaces = = 0 and : = L. Note that this definition of pressure is different by a minus sign from
usual definitions: it is analogous with definition of stress in elasticity. Acoustic impedance of the slab
is defined to be minus the ratio of pressure to particle speed. sa’. for waves propagating in the +:

direction or

BEs)  pes N
_T_— = —-=. (l { .i)
su?(&.z.s) 35
Figure 1.4 gives a pictorial representation of the fluid-solid-Huid system.  The displacement reflection

and transmission coeffictents at the intertaces are

(Pus/ ) = (pss/3y)

R7(E.5) = - - (4.74)
(pusf e} + (pss]Is)
= 2 ,,,.s/.;w) < _
THEs) = \2 = L+ RF(E.s) (4.75)
: (pu5/de) + (pes/ 3) :
. pes .}, - -
TZ-(E’) = (pe3/3:) =1- R(T(fs) (+.76)

(Pw "'/310) + (/)ss/';:)
When s — iw and § = 0 eqs. 4.70. 4.72-4.76 revert to one-dimensional equations equivalent to those

presented for the two-slab method. When £ = 0 the Hankel transform of u_(r. z. ) is simply
e
u?(z.t) =/ u.(r.z. t)rdr (4.77)
0

where .Jy(0) = L: therefore. radial dependence of the field is etfectively eliminated. Assuming an ideal

point receiver. displacement is recorded as a function of time at a = = constant plane in front of
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Figure 1.4 Pictorial representation of fuid-solid-fluid system

the transmitter for successive radial positions. Assuming a relatively well collimated beam. a limn
in radial direction can be defined bevond which the field is considered negligible. The radial integral
is approximated at each time step by summing over recorded displacements. The result is a function
dependent only on time. u?(z.t) — u(t). Equations for attenuation and wave speed without diffraction
correction that were developed previously in the two-slab. eqs. .19 and 4.20. and slab substitution

method. eqs. 4.46 and 4.47. can be employved directly if. for example. A7 (<) = u’(<) in eq. 4.1

Summary

Two different transmission methods for recovering viscoelastic moduli have been presented: the
two-slab method and the slab substitution method. A third method. a Hankel transform method with
& = 0. utilizes the same set of fundamental equations as the two-slab and slab substitution methods
but requires that a received signal be collected with a point-like receiver and integrated along a radial
line from the beam axis. The first two methods have been used in practice with and without diffraction
corrections while the Hankel transform method is untried as far as is known. [n practice diffraction
corrections are applied in an ad Itb manner. Within a finite element test bed material properties are
known a priori: therefore. a numerical experiment is conducted to compare known material properties

with material properties recovered with proposed inverse methods. The goals of such a numerical
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experiment are to visualize the fields as theyv propagate throughout the system and to show under
what conditions inverse methods give material properties within acceptable engineering tolerance. The

ultimate hope is that such insight can suggest modifications to real experimental systems.



CHAPTER 5 MODULUS MEASUREMENT WITH INVERSE
METHODS

Introduction

One-dimensional and axisvmmetric wave propagation results are presented for a model of a water-
immersion through-transmission system for determining longitndinal viscoelastic moduli. M{t) = K{t)+
%G(t). of solid polymers. First. a set of [-D results for the two-slab method are presented and serve
as a benchmark for comparison with axisymmetric results that follow. Next. a standard correction for
geometric beam spreading known as the “diffraction correction’ is discussed. Most realistic measurement
systems employ finite diameter receivers as well as finite diameter transmitters. Finite aperture trans-
mitters produce waves that undergo beam spreading or diffraction as they propagate away from the
transmitter. In addition. finite aperture receivers effectively average Helds incident upon their face. To
account for beam spreading. a diffraction correction is applied to the received signal. Ideally. diffraction
correction removes decay due to geometric spreading leaving only intrinsic losses due to the material
itself. With a FE test bed finite aperture receivers that average incident fields can be simulated to
demonstrate systematic errors that are introduced into measurement of material properties. For each of
the simulated measurement methods: two-siab. slab substitution and wave splitting. a finite aperture
receiver 15 modeled. but a diffraction correction is applied in the two-slab case only. For stmplicity
moduli with single-exponential time dependence are emploved. Although a simple exponential model is
an unrealistic model for real viscoelastic materials it does contain all essential physics and is sufficient
to exercise multiple frequency-bandwidth techniques. Also the frequency bandwidth of the source is al-
ready smaller than the low to high frequency transition region of a simple exponential moduli: therefore,
a broader moduli spectrum would just require more sources with overlapping bandwiths and essentially

nothing more about various measurement methods’ efficacy would be demonstrated.
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Preliminaries

Recall that the bulk and shear moduli for a single-exponential material are given by the following:
K(t) = [1\; + (K, - k) e'[/"} H(t) (5.1)
Gty = [Gg (G, - (';._)e-‘/"] H(t). (5.2)

Relaxation times for the bulk and shear modulus are assumed equal. Limiting wave speeds and moduli

far the slab are:

L. 1, = 1700. 2500 m/s (5.3)
Vie. Vig = 0. 1000 m/s (5.4)
ps = L1000 kg/m® {5.5)
G. = pti=0Pa (3.6)
G, = p V), =1GPa {5.7)
K. = p, (l . %L,-_) =2.25GPa i5.8)
K, = p, <l,; - 5‘3;) =6.25 GPa {5.9}
Ty = X.75ns. (5.10}

The equilibrium shear modulus. G.. is set to zero as a model for an amorphous. uncross-linked solid
polymer. [t is also valid for a viscoelastic liquid. The choice of relaxation time is made clear in Fig. 5.1.
With this choice of relaxation time. normalized attenuation and wave speed make their transition
from: low to high frequency centered within the range of source spectrums. Obviously this is a contrived
choice made to fit the current FEM's ability to model dispersive wave propagation for center frequencies
commonly available in off-the-shelf transducers.

A viscoelastic slab s considered immersed in water. Water has attenuation that is proportional to
the square of frequency. a,(f) = awof°. to relatively high frequency (~ | GHz) while wave speed is

essentially constant. A set of viscoelastic material parameters that model this behavior are

Vie. Viy = 1500. 1750 m/s (5.11)
1, = 0m/s (3.12)
pe = 1000 kg/m? (5.13)
G = 0Pa (5.14)

K., = P,L23=2.25Gpa (5.15)
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K, Pa L;; =3.06 GPa {5.16)

+.21 ps. (3.17)

Notice that the shear modulus is zero: therefore. water is modeled as an inviscid. compressible “vis-
coacoustic” fluid. Figure 5.2 shows absolute attenuation and wave speed to 300MHz. For comparison
-"x,,,ufg is alsou pluiir:ll wlere

17 (A,; = K.)7me
200 V2

= 20.0(107 %) Np/(mHz"). (5.18)

Qpqg =

For one-dimensional calculations water attenuation is included.

The five center frequencies for the frequency bands that span the transition region in the model
material are f, = L. 3.16. 10. 31.6. 100 MHz. respectively. For each frequency a set of numbers
that define finite element calculations are given in Table 5.1. The time increments satisfv the stability
criterion. At < h/V;, where Ar = Ax = h. For the given frequencies the number of elements per longi-
tudinal wavelength in water is about 60 and ranges from 63-100 for the viscoelastic solid depending on
center frequency. Fifteen elements per wavelength is usually sufficient. but because computer resources
were not a limitation and numerical dispersion is desired to be a minimum a relatively large number of

elements per wavelength was chosen.
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Two-Slab Method: One Dimension

The model parameters given in Table 5.1 are used for calculating transient displacement transmit-
ted through a slab of various thicknesses. Figures 5.3 and 5.4 show transmitted displacement at the
right-most boundary. L; + L. of the slab and at a distance. L + L + L+. beyvond the slab representing
propagarion throngh water to a2 receiver. [n this case an ideal receiver records displacement at the
water/vacuum interface. For a plane wave normally incident on a traction free interface the surface dis-

placement is twice the incident displacement: therefore. dividing recorded displacement by two recovers

the incident field. Distance L. is kept constant which translates into moving the receiver to the right to

Table 5.1 Parameters for FE calculations at each center frequency
L fo (MHz) h (pm) At (ns) Ly {pum) L Lo (pm) L (,umu
1.0 25.0 8.0 7500.0 7500.0 1000-3000
3.16 3.0 2.3 2400.0 2400.0 196-3000
10.0 2.5 0.8 750.0 50.0 100-800
31.6 0.8 0.25 240.0 240.0 19.6-300
100.0 0.25 0.08 5.0 7.0 10-80
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Figure 5.3

compensate for tncreased slab thickness. A visual comparison of waveformsat Ly + L and Ly + L + L+

in Figs. 5.3 and 5.4 shows that for frequencies and propagation distances chosen losses in the water are

negligible: therefore. water losses will be neglected in all subsequent axisymmetric calculations.
Recovery of attenuation. wave speed. frequency and time dependent moduli proceeds as described

in Fig. 5.5. Figures 3.6 and 5.7 show recovered attenuation and wave speed for transmitted waves

recorded at Ly + L and Ly + L + L. respectively. For each frequency bandwidth attenuation and

wave speed were determined with three different combinations of transmitted waves shown in Figs. 5.3
and 5.4 corresponding to three seperate slab thicknesses. Also shown is the percent difference between
numerical and exact values for each frequency bandwidth. In all cases and for all combinations the

percent difference is less than five percent except at band edges where the first null occurs in the wave’s
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frequency spectrum on either side of center frequency. These results demonstrate that in principle the
FE model can serve as test bed for ultrasonic wave propagation in linear viscoelastic media and that
numerical errors can be kept within respectable “engineering tolerance” (< 5%.).

Ultimately. it is the time dependent longitudinal relaxation modulus that is of interest. Figure 5.3
shows reconstruction of the time dependent modulus from the frequency dependent modulus recovered
from the one-dimensional wave propagation model. Specifically. Fig. 5.3(b) compares the reconstructed
modulus when the frequency dependent modulus is truncated at the highest frequency ( finar = 157MHz)
of measurement and when the frequency dependent modulus is extended to fin.r = LGHz by assuming
the real part of the modulus. M'(v). at finar is equal to M’ at the highest frequency of measurement
and imaginary part. M "(s). goes to zero linearly above the highest frequency of measurement. When
fmar = 157MHz there is clearly some ripple in the time dependent modulus and deterioration is greatest
at small time which s equivalent to high frequency. When f,,. = IGHz ripple is negligible and there
15 less short-time deterioration.

In Fig. 5.8(c) the modulus is approximated by excluding some of the five frequency bands. [n one
case the lowest and highest frequency bands have been dropped which correspond to center frequencies
Jo = L and 100MHz. In this case almost no change is noted in the time dependent modulus. Fig. 5.3(d).
In the other two cases the three highest bands and three lowest bands have been dropped. When
the three highest bands are dropped short time response is clearly degraded but long time response
15 adequate. The opposite 1s true when the three lowest bands are dropped. Generally. loss of low
frequency information destroys important overall trends in the data whereas loss of high frequency
information imposes small ripples in the data. \ccurate measurements of low frequency informaticn
15 essential. Approximating the frequency dependent modulus outside its measured range is equivalent
to imposing a priort knowledge about its behavior in those frequency ranges. [finterest is in a limited
frequency range then making reasonable assumptions outside of this range may have negligible effect on
a forward model. Making such assumptions is akin to knowing the appropriate time/frequency scales

of interest.

Understanding Diffraction Corrections

In all real experimental situations where basic material properties are to be determined. for example.
wave speed and attenuation. ultrasonic transmitters and receivers have finite radius. [n general. it is
advantageous to have a relatively large transmitting aperture. Assuming the transmitter behaves like

an ideal piston. it will produce a plane wave region on the axis of symmetry that can be exploited
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Ll.

. Given: raw time trace of transmitted wave at source center frequency. f,

. Window in time the first transmitted pulse without internal re-reflections (if possible)

FFT the windowed transmitted wave and calculate spectrum. g (<)

. Window the useful frequency bandwidth of transmitted wave spectrum

Repeat steps |-l for a slab of different thickness to obtain .»iL.&._\L (<)

. Compute attenuation and wave speed:

<AL

L ALsar(«)
a(s) = ——In|——=——1}. () = = ————
¥(<) ﬂ’ o) {«) oaslo)

AL

. Compute estimate of modulus for useful bandwidth centered at fi:

: L1 1=
W) = R 4G =t |
3 i+
1 Y 2.3
I el =
a(ec{w)
Hw) = ———

. Repeat steps 2-7 for another f,

. Combine modulus estimates for various bandwidths to form an overall estimate

Extend low and high frequency modulus data to zero frequency and 1GHz. respectively
Compute estimate of time domain modulus (IFFT):

M) = FH[M(w)]

Figure 5.5 Data processing for modulus recovery with two-slab propagator

method in one dimension
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Figure 5.6 Recovered slab attenuation. (a). wave speed. (¢). and percent
difference from exact. |b) and (d). for dispiacement recorded at

right-most solid-fluid boundary. L

for plane wave-like measurements. A large radius receiving aperture (ka > 1) coaxially aligned with
the transmitter intercepts a portion of the transmitted field. Usually. by the time the transmitted
field reaches the receiver. edge waves emanating from the rim of the transmitter have become "mixed
up” with the central plane wave region. The wave striking the receiver is a complex combination of
plane and edge waves. To account for this “diffraction’ or "beam spreading’ in an approximate manner
a diffraction correction is often employed. The diffraction correction assumes there exists a pressure
sensitive receiver. for example a piezoelectric transducer. that effectively averages incident pressure.
While it is not clear that a piezoelectric transducer exactly averages incident pressure it is at least

a reasonable assumption. A transient finite element method provides an excellent test bed to study
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Figure 5.7 Recovered slab attenuation. (a). wave speed. (c). and percent dif-

ference from exact. (b) and (d). for dispiacement recorded at L+ L+

diffraction (beam spreading). diffraction corrections and effects of both of these things on material
property measurement.

For model situations considered a displacement vector is computed in the acoustic fluid instead
of scalar acoustic pressure because a displacement-based FEM is directly compatible with the usual
displacement FE formulation for an elastic or viscoelastic medium. The usual diffraction correction is
derived assuming a pressure field radiated by a piston source in an infinite rigid baffle: therefore. it is of
interest to know how significant is the difference when a diffraction correction is applied to the average
received displacement. (u.(r.z.t)). instead of the pressure. (p(r.z.t)) = A%V -u(r.z.¢)!. [n what

follows diffraction corrections for pressure and axial displacement are compared directly. In addition

!Csually the pressure is defined to be positive in compression, that is. p(r.z.t) = =RV - u(r.z.t). but in cases
considered here it is chosen to be postive in tension analogous to stress.
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Figure 5.8 Frequency dependent modulus. (a) and (¢). and corresponding time

dependent moduius. (b) and (d)

the received pressure averaged over a receiving aperture is compared with received axial displacement.

u:(r.z.t). averaged over the same aperture. Both are computed with the finite element method in an

axisymmetric mode. Average received pressure (axial displacement) is compared with an equivalent

diffraction corrected plane wave. A diffraction correction derived specifically for axial displacement is

given and applied. Finally. average received pressure (displacement) is diffraction corrected to account

for or "divide out” geometric beam spreading in order to recover a plane wave field. Examples are given

for waves in a homogeneous acoustic half-space.



Acoustic Pressure and Displacement FE Models

The finite element model is easily adapted for modeling pressure fields due to a piston source [36].
A P gp P

The displacement wave equation can be written as
R S .. -
R+ qu YW -u+ GV u=pu. (5.19)
When A = —f—,G and u.(r.:z.t) = 0 the resulting equation for u.(r.=.t) is formally analogous to the
acoustic pressure with Ay = (. that is. let p(r.z.¢) = u.(r.z.t) then
[\'!V:!p = pyp. (5.20)

For a one dimensional model pressure and axial displacement propagating in the positive =-direction
are related by

p(z.t) = =Zru.(z.t). {5.21)
that is. pressure and displacement are related by a time derivative. For ease of comparison pressure
and axial displacement are forced to have the same time variation. For an acoustic displacement model

set ¢ =0 and Ay = R then

RyVV -u=psa (5.22)
with ¢y = \/Ky/py.
Average pressure (axial displacement) over a receiver of radius. b. located at axial position. =. is
defined by
[ o= b
wirzly = — / pir. = rdrdd (9.23)
w6 J, 0
N
= %/ p(r.z.t)yrdr (5.24)
b Jy
g N L ' o
X —.._,Zip;(iAr. 2.ty - Tp_v(.\ Ar st} {5.25)

1=1

where b = V. Ar and trapezoidal rule is emploved to approximate the integral. The same formula is valid
for average axial displacement by replacing p(r.z.t) with u.(r.z.t). Average pressure (displacement)
at a chosen axial distance. z. and receiver radius. b. is easily computed and output as the FEM marches
in time. [n addition. the FE model can be set to run in a plane wave mode. The plane wave output
can then be modified by an appropriate diffraction correction and compared with the average pressure
or axial displacement already computed.

Figures 5.9 and 5.10 show pressure and displacement wave fields radiated into an acoustic half space

~

due to a plane piston source on the Huid surface. The source has a radius. @ = 2.5mm (ka =~ 10).



pressure

Figure 5.9 Acoustic pressure in fluid half-space for t = 6. 12. 18us for source

radius. @ = 2.5mnm. and center frequency. fy = [MHz

and a center frequency. fy = LMHz. Three different times are superimposed to clearly demonstrate
beam diffraction. A simple visual comparison shows the similarity between pressure. Fig. 5.9. and
axial displacement. Fig. 5.10(a). Differences are noticeable in the amplitude of the edge wave. For the
displacement FE model a smooth roll-off of applied surface force at the aperture edge is necessary to
suppress spurious shear modes that are generated at the source edge when the source is an ideal piston
[44]. These modes are only a problem in a displacement-only FE fluid model when the shear modulus is
zero. Roll-off has eliminates shear modes and reduces amplitude of longitudinal edge waves: therefore.
some of the difference in amplitude between edge waves for pressure and axial displacement is due to

this smoothing at the source edge.

Comparison of diffraction corrections

A rigid baffle is defined by u.(r.0.t) = f(t) when r < a and u;(r.0.t) = 0 when r > a. The pressure
diffraction correction. eq. 1.23. for the case when transmitter and receiver have the same radius. a = b.

and the transmitter is an ideal piston placed in a rigid baffle is

- O N -
D(z.u) = 1- —/ e~ =) sin?(r)de (5.26)
T Jo

g(r) = /z? + 4da® cos®(r). (3.27)
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Figure 5.10 Axial. (a). and radial. (b) displacement in fluid half-space for
t = 6. 12, 18us for source radius. ¢ = 2.53mm. and center fre-

quency. fo = [MHz
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When ka > | and u = b this equation becomes (eq. 4.26) [5. 39]
DN(S) = = ¥ h(27/)S) + i1 (27/5)] (5.23)
S = :\d°. (5.29)
The equation for D™(5) is widely used because of its simplicity. Williams [52] extended this simple

result to higher order. His result is

_ . A ] A4 -
D¥(z.x) = 1—e-'<{(1—;) [Ju(o+z./1(a')]+z:-h(6)} (5-40)
A= g (531)
<)’
n o= (E (5.32)
¢ o= 5;[\/:'-'4.4(12—:]. (5.33)

A comparison of this slightly more complicated result with the exact integral expression. eq. 3.29. shows
that it is almost indistinguishable from the exact equation for all cases tested. The more common result.
eq. 5.29. is compared with the exact diffraction correction for cases considered. For the case when ¢ = b

Williams [32] has derived the following formula:

} 2 2 T/2 €—xk|q|_:\—-:» "
D(z..) = [l. (-l—,] - ﬁ—/ ———sin~(2r)dr (5.3:4)
2 I T g
q(r) = 2 +{a —~b)? + dabcos?(r). (3.33)

where [l.a"’/b"’] implies 1 for b < a and a*/b° for b > a.

A diffraction correction for axial displacement. u.(r.:z.t). with pressure release or traction free

boundary conditions on the fuid surface (u (r.0.4) = f{{) r < a and p(r.0.4) = 0 r > u) is casily
derived from a velocity potential given by Archer-Hall [3].
1 S O ‘os(r) — a’ -
ofr.z.u} = .—0‘{6—"'4—_/ e tkais [ar:Ob('[) 5 jld.l.‘} {5.36)
tk ™ Jo q(z) L q°(r) = ==
q(r) = J/r*+a®> —arcos(c)+ :* (5.37)
where u.(r.z.») = 0.0/iw and V) = iul%. After taking a derivative with respect to :. averag-

ing axial displacement over the radius of the receiver and dividing by a plane wave of displacement.
u.(s.w) = —L5e~* the result is a diffraction correction for axial displacement for traction free bound-

ary conditions:

] . b 7 - . a2
Dd(:'-‘;) = [l. a_,.] + ‘_..:}_2/ / e—xkitl{!]-‘:_‘ l(;)f(.l.') [a"l'::()z.()l) ~‘,(l ] rd_tdr (.‘-)38)
n Q o} [/ q-= -— -

_ : q(r) L =
fle) = [l - =t zk,,(;)] (5.39)
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where subscript "d” implies displacement and ¢{c) is a given by eq. 5.37. Double integration is approx-
imated with 4 x 4-point double Gaussian integration over a patch in the rr-plane with one hundred
patches in the r and r directions. respectively.

Figures 5.11 and 5.12 compare pressure and axial displacement diffraction corrections. eqs. 5.29.
5.35 and 5.39. respectively. for a source with center frequency. f; = [MHz. and radius. a = 2.5mm.
transmitting into water. For this case ka = [0 which is relatively small so that significant diffraction
effects exist for axial distances considered. In Fig. 3.11 the source and receiver have equal radii (a = b)
and distance between transmitter and receiver is varied. In Fig. 5.12 separation distance is held constant
and ratio of receiver and transmitter radii. §/a. is varied. An important point demonstrated by these
plots is that relatively small variations in magnitude exist between pressure and axial displacement
diffraction corrections. When @ = & the simple formula for ka — x. eq. 3.29. appears completely
adequate as an approximation for exact cases.

Figure 5.13 represents a ‘forward™ application of a diffraction correction. that i1s. a plane wave is
"adjusted” by a diffraction correction to make it equivalent to a field of a finite aperture source averaged
over a finite aperture receiver. Figure 5.13(a) is a plane wave computed with the FEM and plotted
versus increasing distance from the source. [n Fig. 5.03(b) FE axisvmmetric pressure and axial
displacement averaged over a receiver with @ = b are compared. When pressure and axial displacement
are forced to have the same time dependence theyv are almost indistinguishable for cases considered. [n
Figs. 5.13(c)-(e) averaged FE axial displacement is compared with a plane wave adjusted by a diffraction
correction for axial displacement. pressure (exact) and pressure (ka — x}. respectively. In each case
differences are slight and diminish with distance from the source. Other cases were compared when
a # b and a similar level of correspondence was noted. The only noticeable differences occur as distance
to the source goes to zero.

In principle the inverse of the diffraction correction is applied to a measured axisymmetric field to
remove or “divide out’ beam spreading and return the field to a plane wave. Any attenuation not due
to beam spreading can then be recovered with plane wave techniques described previously. A simple
test case for diffraction removal is presented in Fig. 5.14 where fluid bulk modulus is time dependent

(viscoacoustic).  For this calculation the following parameters were set:
Vie. Yy, = 1500, 1750 m/s (5.40)

p = 1000 kg/m? (5.41)

r = 3.73ns. (5.42)
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Figure 5.1-4(a) compares a plane wave calculation with attenuation with a corresponding axisymmetric
wave along the :z-axis. Additional decrease in amplitude due to beam spreading is apparent. Fig-
ure 5.14{b) shows an axisymmetric wave after a diffraction correction has been applied. Clearly. heam
spreading has been removed and the axisvmmetric wave has been returned to an equivalent plane wave
traveling tn an attenuating material. The attenuation and wave speed. Fig. 5.1-{c)-(d). are recovered
with a one dimensional method such as the two-slab method previously discussed. This simple test
case 1s representative of experimental methods for measuring mechanical properties of viscoelastic Hu-
ids [25. 50]. Recording the wave at two different positions corresponds to a receiving transcducer that
has been repositioned relative to the transmitter. Both receiver and transmitter are immersed in the
viscoelastic fluid which is a simpler measurement compared with measurement of a viscoelastic solid.
[n the case of a solid it must be immersed in fluid (water) to ensure adequate and consistent coupling
of ultrasound into the specimen. To be studied in succeeding sections are systematic errors that occur
tn material property measurement when a diffraction correction is applied to an axisyvmmetric wave
that has undergone transmission through a fluid-solid-fluid system that includes partial reflections at

interfaces.

Two-Slab and Slab-Substitution Inverse Method Results

In this section. the longitudinal stress relaxation modulus of a viscoelastic slab is reconstructed
from transmitted ultrasonic waves with two-slab and slab-substitution propagator methods. The slab
is assumed to be immersed in water and is defined to have material properties as given in eqs. 3.3, 5.4
and 5.5. The real and imaginary components of the frequency domain modulus are calculated from
wave speed and attenuation. The wave speed and attenuation are the quantities computed directly
from transmitted displacement with relevant equations from Chapter 1 on propagator inverse methods.

First. a brief discussion of data processing is presented then a discussion of results follows.

Data processing

Figures 5.15 and 3.16 give an outline of the scheme for transforming recorded wave data at a given
source center frequency. fy. into an estimate for the longitudinal modulus with two-slab and slab-
substitution methods. respectively. [t has been noted previously that diffraction corrections require
wave speed as a function of frequency for calculation. but wave speed is unknown in principle unknown.
Typically. a reasonable estimate of wave speed at center frequency is obtained from comparing the

difference in time of arrival for some prominent feature of the transmitted wave for two different slab
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thicknesses. for example. Wave speed estimated in this way is assumed to be constant over the useful
bandwidth at a given center frequency. For calculations here wave speed is taken to be the exact
wave speed at center frequency. see Table 5.2. In addition the slab-substitution method requires a
reflection measurement to estimate a slab’s reflection coefficient. Rg’(w). It 1s assumed that the reflection
coefficient is a real constant and is approximated by the magnitude of the exact reflection coefficient at

center frequency (see Table 3.2):

- Ze = Z o)l

x (5.13)
0 Zu.' +|Z*(fn)|

Ziifo) = /o M(fo) (5.44)
Zy = P Cr - (-)ri)

There are a variety of different variables such as source and receiver radius that could be varied
to show their influence on modulus reconstruction. A select few are chosen that are considered most
influential. They are aperture radius given in terms of ka. data measurement location. diffraction
correction and slab thickness. For each method attenuation and wave speed are estimated over a band
of frequencies centered at fi. A simple method of concatenation s emploved to create composite
attenuation and wave speed curves. \Where bandwidths overlap a simple average of the two curves
is taken. Resultant composite curves may have sharp jumps at the overlaps. Some method of data
smoothing could be applied but this was not attempted. Because the source is band limited attenuation
and wave speed do not extend down to zero frequency. If the frequency domatn modulus were simply
set to zero below its low frequency limit. about 100kHz. then the reconstructed time domain modulus
would be severely degraded because low frequencies contain general overall trends of the data. With a
priort knowledge of viscoelastic materials it is reasonable to extend low frequency data directly to zero
frequency assuming data at zero frequency is equal to data at 100kHz. A similar argument is made for
high frequency data. In this case the last high frequency data point. at about 157MHz. is extended to
IGHz. The choice of 1GHz is arbitrary.

For axisymmetric calculations Table 5.3 gives mesh spatial parameters. Basically. spatial step sizes
were doubled compared with earlier one-dimensional calculations so that spatial domains of sufficient
extent could be modeled without interference from unwanted reflections from sidewalls. For a given
source aperture radius the outside wall in the radial direction was set to four times the aperture radius
to ensure no reflections from sidewalls interfered with recorded wave forms. The largest mesh contained
960 x 456 four-node quadrilateral elements (437.760 elements) and a total of 378.345 displacement

variables.
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L. For diffraction correction assume wave speed has been estimated at f;

2. Given: raw time trace of transmitted wave at f, and averaged over radius. a

3. Window in time the first transmitted pulse without internal re-reflections (if possible)
4. FFT the windowed transmitted wave and calculate spectrum. :l-?(..;)

5. Window the useful frequency bandwidth of transmitted wave spectrum

6. Repeat steps 2-5 for a slab of different thickness to obtain A?_,, ()

Compute and apply diffraction correction. eq. 5.30. to remove geometric wave spreading:

DY, = D5(Se +SL)
S ear = DF(Se + 5L+ Y1)
Als) = AD(«)/ D
Arsar(e) = ADesr(0)/ DS eas

8. Compute attenuation and wave speed:

I Arear(«)] , <AL
() = = —In | 2L (w) = ————
() AL Ap(w) | ‘ oar(«)

9. Compute estimate of modulus for useful bandwidrh centered at fy:

W) = K+ he = per | L2 E
<) = R +-=-G =pc
3 p [t + 52
; Y 2.3
ML) = KT+ G = e -—]
3 LL[ + -7"1_J
n(w)e{w)

3(<)

10. Repeat steps 2-9 for another fy
11. Combine modulus estimates for various bandwidths to form an overall estimate
12. Extend low and high frequency modulus data to zero frequency and [(GHz. respectively

13. Compute estimate of time domain modulus ([FFT):

M) = FoU[M(w)]

Figure 5.15 Data processing for modulus recovery with two-slab propagator
method including diffraction correction for axisymmetric case
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L. Assume reflection calibration has been performed to recover Ry = |R¥ (fa)l at fo

2. Given: raw time trace of transmitted wave at f) and averaged over radius. a

3. Window in time the first transmitted pulse without internal re-reflections (if possible)
4. FFT the windowed transmitted wave and calculate spectrum. .~i?(.‘;)

5. Window the useful frequency bandwidth of transmitted wave spectrum

6. Repeat steps 2-5 for the case with stab removed to obtain A2(.)

7. Compute attenuation and wave speed (assume phase angle. or. of R} is zero):

| [A2(2)/ A2 (L) e
0w :——l n N N ) = —m—m——————
RtV I TRy T E] ) | = ZeSLier

3. Compute estimate of modulus for useful bandwidth centered at f;:

1 L] 1=3
M) = R +=-CG=pc | ——
) 3 g 1+ 3

1 - 2.3
M"s) = R"+=G" =pc —
2 1+ "

He) =

Y. Repeat steps 2-3 tor another fy
10. Combine modulus estimates for various bandwidths to form an overail estimate
Ll. Extend low and high frequency modulus data to zero frequency and lGHz. respectively

12. Compute estimate of time domain modulus (IFFT):

My = FU[M(«)]

Figure 5.16 Data processing for modulus recovery with slab-substitution prop-

agator method for axisyvmmetric case (no diffraction correction)




Table 5.2

Wave speed and reflection coefficient at center frequency. fy

| fo (MHz) | ai(fo) (m/s) | RE
1.0 1706.0 -0.06412
3.16 1752.0 -0.07713
10.0 2013.0 -0.1472
3.6 2383.0 -0.228-
100.0 2487.0 -0.2473

Table 5.3 Parameters for axisvmmetric FE calculations at each center fre-
quency
| fo (MHz) | h (um) At (ns) Ly (um) | Latum) | Lgm ]

1.0 50.0 13.0 7500.0 700.0 1000.0.  7000.9
3.16 16.0 5.76 2400.0 2:400.0 196.0.  2496.0
10.0 5.0 1.8 750.0 750.0 100.0.  700.0
316 1.6 0.576 240.0 240.0 49.6. 249.6

100.0 0.5 0.18 5.0 .0 10.0. 70.0

Discussion of results

With each FEM run one can easily generate megabytes of output. Plots in this section have been
“distilled” from much larger amounts of data. Each composite modulus includes numerical approximation
errors from data processing routines as well as from the finite element method itself. Intimately entwined
with numerical errors are “systematic errors’ defined to be those aspects of the total recorded wavetorm
whose sole source is beam spreading. Beam spreading is essentially the main source of corruption in
recovered moduli. [n order to reduce numerical approximation errors. a relatively large number of
elements per wavelength have been utilized within the constraints of available computer resources and
time.

In what follows Figs. 5.17-5.20 refer to data recovered from a two-slab method and Figs. 5.21-5.2:4
refer to data recovered from a slab-substitution method. In each case the first and second set of four
plots are attenuation and wave speed. The final two sets of four plots for each case are frequency and
time-domain longitudinal moduli.

Figures 5.17 and 5.18 show wave speed and attenuation recovered from transmitted axial displace-

ment from two slabs of different thickness. Transmitted fields were averaged over an aperture whose
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radius equals the source radius. Averaging simulates a piezoelectric transducer of finite radius whose
output voltage and current are proportional to the average total axial field incident upon its face. Re-
sults for two different source radii are shown. ka = 10. 50. and for two different measurement locations:
water/slab interface. L| + L. and backwall/vacuum interface. L{ + L + L+. There is some improvement
in attenuation and wave speed estimates between LOMHz and 100MHz when data is collected at the
backwall/vacuum interface. but increasing aperture radius of source and receiver (ka = 50) clearly gives
the greatest improvement in accuracy of reconstructed properties especially for attenuation. Recording
waves at the backwall/vacuum interface simulates a receiver in the water bath while recording waves

at the water/slab interface represents a receiver abutting or actually attached to the slab.
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Figure 5.17 Two-slab method: reconstructed and exact longitudinal wave at-
tenuation versus frequency for waves recorded at the water/slab
interface with k¢ = 10. 30. (a) and (b). respectively. and the
backwall/vacuum interface with ka = 10. 50. (¢) and (d)
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Figure 5.18 Two-slab method: reconstructed and exact longitudinal wave
speed versus frequency fur waves recorded at the water/slab in-
terface with £« = 10. 50. {a) and (b). respectively. and the back-

wall/vacuum interface with ka = 10. 30. (¢) and (d)

Attenuation and wave speed recovered with and without diffraction correction is also shown in
Figs. 5.17 and 5.13. Again improvement is relatively slight in comparison with increasing aperture
radius. [f overall distance between source and receiver doubles or triples then a diffraction correction
could be more important because decay due to beam spreading increases with distance. Results suggest
that for pulsed measurements it is beneficial to keep source and receiver as close together as possible
as long as re-reflections do not overlap. For continuous wave measurements close proximity of source
and receiver can introduce systematic errors in measurements that are caused by standing waves set up
between source and receiver.

Possible causes for the large discrepancy in recovered attenuation could be internal re-reflections
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corrupting recorded waves when the slab is at its thinnest {L = 10um at 100MHz). This cause is
riuled out for two reasons. First. attenuation at f; = [00MHz is about a; = 0.012V P/uin and the
reflection coefficient is about |R}| = 0.2475: therefore. upon one roundtrip through the slab a wave
is reduced in amplitude by (0.2475)%exp(—2-0.012 - 10) = 0.04818 or. in other words. a re-reflection
is only about 3% of the directly transmitted wave. This is not enough to account for the nearly 60%
increase in attenuation. Besides. if extra attenuation was due in some way to internal re-reflections
then the same effect should appear in axisymmetric cases when aperture width increases and in one
dimensional results. but in both cases discrepancies are less than or on the order of 3% as shown in
Figs. 5.6(b} and 5.7(b). Numerical approximation error is also an unlikely source because there are
at least twenty elements per shear wavelength in the slab at L00MHz. Another possible source of
systematic error is shear/longitudinal mode coupling inside the slab at the slab/water interface giving
rise to axial displacements on the slab surface that do not correspond to displacements due to purely
plane wave modes. If this is true then the effect is reduced for increasing aperture radius because such
mode coupling occurs farther out from the axis of symmetry near the “edge’ of the ultrasonic beam’s
inner plane wave region. As the axial displacement is averaged over the receiver. mode coupling effects
are weighted less overall relative to the plane wave portion of the field when the aperture is wider. A
check on this possibility is left for further work.

The two components of longitudinal modulus are computed from attenuation and wave speed es-
timates. The best correspondence between exact and estimate occurs for measurement at the back-
wall with ka = 50 as seen in Fig. 5.19(d). [n general it appears that discrepancies in attenuation
are smoothed when computing the modulus. [n fact. when frequency dependent moduli are inverterd
to obtain their time dependent counterparts the resulting moduli. Fig. 5.20. all capture the general
decaying-exponential trend of the data. For the worst case. Fig. 5.20(a}. one might estimate the short-
time limiting modulus to be about 7GPa instead of 6.25GPa which is about a 12% increase.

Figures 5.21 and 5.22 show estimates from attenuation and wave speed for the slab-substitition
method for two different thicknesses of the slab. Diffraction corrections were not applied in these
cases. Recall that a wave is recorded at the same location with or without the slab placed in the
propagation path between source and receiver. A visual comparison of attenuation estimated with a
two-slab method. Fig. 53.17. and a slab-substitition method. Fig. 3.21. suggests that the two-slab method
offers an improved estimate of high frequency attenuation in all cases. [t appears that whatever the
cause of gross discrepancies in attenuation and wave speed. compare Figs. 5.18 and 5.22. the effect is

partially “cancelled out” when ratios of complex amplitudes are taken for waves transmitted through
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wall/vacuum interface with ka = 10. 50. (c¢) and (d)
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two slabs of different thicknesses. [f one is to use a slab-substition method then Figs. 5.21 and 5.22
imply that a slab thickness should be chosen so that transmitted waves undergo significant attenuation.
For example. at 100MHz L,n;n, = 10um and Ly, = 7T0um so that one-way attenuation of a transmitted
wave amplitude is exp(—a;Lm;:n) = 0.3369 and exp(—a¢ Lmar) = 0.4317. respectively. Attenuation and
wave speed estimates are generally improved when the thicker slab is employed. .\gain. in spite of
greater dicrepancies at higher frequencies the frequency and time-domain moduli. Figs. 5.23 and 5.24.
respectively. all show reasonable agreement with the exact curve. Reasonable implies that a model for
the modulus. if extracted from any of the estimates. would fall within about five or ten percent of the
exact modulus both in amplitude and rate of decay. This may not be accurate enough to determine
what molecular mechanisms are causing relaxation but it is generally accurate enough for engineering
forward models. In terms of ease of use the slab-substitution method is favored because it requires only

one slab per frequency band.

Hankel Transform Inverse Method Results

The Hankel transform method. described in Chapter 1. is not a distinctly different method for
recovering material properties. but it does represent a different method of data collection. Rather than
a receiver with a radius similar to that of the transmitter. assume a relatively small ‘point-like’ receiver
that can be scanned along a radial outward from the axis of symmetry. The receiver stops at discrete
points along the radial and records axial displacement as a function of time. Recorded displacements
are summed to approximare a Hankel transform given below. For a finite aperture transmitter there
will be some radius (.\VAr) bevond which continued scanning yields relatively negligible displacement
and at that point further outward scanning ceases. In practice such a device would be approximated by
a small piezoelectric hydrophone or a laser beam from a laser interferometer. These devices can have
small but finite radius. Effects of finite receiver radius are not considered here but is left for further
work. The two propagator methods. two-slab and slab-substitution. are re-examined with wave data
collected that approximates a Hankel transform of order zero with transform parameter. . set to zero:

S
ul(z.t) = / u.(r. z. tyrdr (5.46)
’ N .

~ (Ar)? Ziu:(iAr.:.t)#%—u_.(.\'.lr.:.t) . (5.47)

i=l
In principle all radial dependence of the wave is integrated out: therefore. only a plane wave remains

and no diffraction correction is required.
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Data processing

The finite element method 1s a full field method. that is. at any time step displacement is computed
at all node points in the mesh. This fact makes calculating an approximate Hankel transform straight-
forward. At each time step axial displacement along a chosen radial is summed according to eq. 5.-47
and the result is output to a file. Resulting time traces for Hankel transformed axial displacement are
processed according to procedures described in Figs. 5.15 and 3.16 except that a diffraction correction

1S not necessary.

Discussion of results

Figures 5.25 and 5.27 show attenuation and wave speed recovered at water/slab and backwall/vacuum
interfaces with two-slab and slab-substitution Hankel transform methods. respectively. Previous results
show that a smaller transmitter radius degrades accuracy of recovered quantities more relative 1o a
larger aperture: therefore. it is sufficient to study the case when ka = 10. Compare Hankel transform
results with previous two-slab results. Figs. 5.17(a). (¢) and 5.13(a). (¢). and slab-substitution results.
Figs. 5.21(a). (c) and 5.22(a). {c). respectively. For the two-slab Hankel transform method there is clear
improvement in reconstructed attenuation and wave speed especially at high frequencies. The deviation
in attenuation in Fig. 5.25(a) is assumed to be due to an internal re-reflection contaminating the first
transmitted pulse. Notice that both water/slab and backwall/vacuum interface results in Fig. 5.25(¢a)
and (b) are indistinguishable to within a line-width suggesting any deviations from exact values are sys-
teniatic errors arising {rom sources other than measurement location. For the siab-substitution method.
Fig. 5.27. there is some improvement in high frequency attenuation and wave speed but large discrepan-
cies still remain. A close comparison of Figs. 5.27(a) and (b) and Figs. 3.27(c) and (d) reveals that for
two different measurement locations the reconstructed attenuation and wave speed are nearly identical.
Discrepancies are reduced when a thicker slab is employed suggesting that whatever causes systematic
errors between exact and recovered attenuation is suppressed more as the total attenuation. aL. in-
creases. A more thorough investigation of these differences is left for further work. Figures 5.26(a) and
5.28 show frequency-domain moduli and Figs 5.26(b) and 5.29 show time-domain moduli. A general
observation is that a slab-substitution Hankel transform method with a thicker slab and a two-slab
method with or without Hankel transform processing gives frequency and time-domain moduli with

practically the same quality. at least in a visual comparison.



longitudinal modulus, {GPa)

longiludinal modulus, (GPa)

99

water/slab interface, ka=10

log,q(freq.)

(a)

backwall/vacuum interface, ka=10

logq(freq.)

(¢)

Figure 5.23 Slab-substution method:

modulus versus frequency

water/slab interface, ka=50

°
&
E
2
E
2
3
=
g
Sl
i | [Nt
5 6 7 8 9
log,o(freq.)
(b)
8
backwall/vacuum interface, ka=50
T — exact
3 6 b— ... L"- P et e
g - Iﬂnu p(‘(?;/ ST
g /o/." :
E ‘- ya
E -'.—..'::.—.""—’//
b=
£ Z2N
H P
\
Ny T
5 6 7 8 9
log,g(freq.)
(d)

reconstructed and exact longitudinal

for waves recorded at the water/slab

interface with ka = 10. 30. (a) and (b). respectively. and the

backwall/vacuum interface

with ka = 10. 50. (¢) and (d)



longitudinal modulus, (GPa)

longitudinol modulus, (GPa)

7
ﬁ water/slab interface, ka=10
6 b —— exact
\ ----- Lria
513 = b
N
AN
-\
4 \\
3 e
2 l | 1 |
0 10 20 30 40 50
time, (ns)
(a)
7
backwall/vacuum interface, ka=10
6 ﬁ_ —— exact
Y — -
k! —— b
S\
u..\
41— \\
.-'\t-“.‘\»..,
3 SR e e
0 10 20 30 40 50

time, (ns)

{c)

Figure 5.24

Slab-substution method:

100

longitudinal modulus, (GPa)

longitudinal modulus, (GPa)

50

7
water/slab inferface, ka=50
6 — - axact
\\\ _____ L
5 _i_\ = b
.._:-\
4 \\
Ly P e
2 1 | | |
0 10 20 30 40
time, (ns)
(b)
7
backwall/vacuum interface, ka=50
6 {L —— exact
n e -
5 _?i_\\ == b
N
AN
41— -"E\\
s
3 — \‘\‘\—_\ -
2 , | ! ! !
0 10 20 30 40 50
time, (ns)
(d)

reconstructed and exact longitudinal

modulus versus time for waves recorded at the water/slab inter-

face with k¢ = 10. 50. (a) and (b). respectively. and the back-

wall/vacuum interface with ka = 10. 50. (¢} and (d)



10t

15 28
< ka=10 - ka=10
é -— exact A NEE— T 26 |— . exact
= ---- water/slab ~ = ---- water/slab —_—
& 10 — —_ backwall/vacuum / B 24 |— . backwail/vacuum //
2 & /
/ =2 L
£ / g /
o
5 51— g 20 |—
: / -
E % R
< 0 1l | [ T 16 | 1 |
5 6 7 8 9 S 6 7 8 9
log,q(freq.) logyq(freq.)
(a) (b)

Figure 5.25 Two-slab Hankel transform method: reconstructed and exact lon-
gitudinal wave attenuation and wave speed. (a) and (b}. respec-
tively. versus frequency for waves recorded at the water/slab and

backwall/vacuum interface with ka = L0

Wave Splitting Inverse Method Results

Propagator inverse methods described above can recover attenuation and wave speed versus fre-
quency from transmitted wave data. From attenuation and wave speed a frequency dependent modulus
is computed. Attenuation and wave speed cannot be recovered with a single measurement over a
frequency band sutficiently wide enough to reconstruct. ultimately. the ime dependent relaxation mod-
ulus. A time domain modulus is computed from its frequency domain counterpart via an inverse Fourter
transform. The inverse Fourier transform requires knowledge of the modulus over a broad frequency
spectrum relative to the source bandwidth at a particular center frequency. fy: therefore. a series of
measurements at different center frequencies and slab thicknesses are required so that a composite mod-
ulus can be created as a function of frequency. This paradigm is fundamental and must be employed
for recovery of data necessary for wave splitting inverse algorithms.

[n contrast with propagator methods. wave splitting inverse methods require time domain reflection
and transmission kernels. For homogeneous and isotropic viscoelastic media the specific wave splitting
inverse algorithm described in Chapter 3 requires a transmission kernel for a single slab thickness. As
in propagator methods the same restrictions apply for recovery of the frequency dependent transmis-

sion kernel. that is. a piece of the kernel is determined over a frequency band with a slab thickness
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appropriate for that particular range of frequencies. Unfortunately. a slab thickness appropriate for
measurements at a center frequency of one megahertz is at least one order of magnitude greater than
the thickness appropriate for a center frequency of one hundred megahertz considering the specific at-
tenuation (material parameters) chosen for the model problem. This presents a unique challenge not
encountered with propagator methods. Transmission kernel data measured at several different slab
thicknesses must be converted to an equivalent transmission kernel valid for one overall slab thickness.
[n other words. if a slab thickness of one millimeter is appropriate for measurement at one megahertz
and one tenth of a millimeter is appropriate for one hundred megahertz then transmission kernel data
measured at one hundred megahertz must be translated to a thickness of one millimeter or vice versa.
Only when all data is translated to the same thickness can the transmission kernel be estimated. Trans-
lating transmission kernel data from one slab thickness to another is explored under conditions of finite
source and receiving aperture and location of measurement. As before transmitted waves are averaged
over the receiver aperture to simulate a piezoelectric transducer. [t is shown that a reasonable estimate
for the time domain transmission kernel is obtained for a relatively thick and thin slab. respectively.
but only the transmission kernel for a thin slab is suitable for recovery of the time domain relaxation

modulus. Reasons for this point and overall discussion of the results conclude this section.
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Data processing

Examples of time domain transmission kernels are shown in Chapter 3. \ distinguishing feature
of transmission kernels with front and back wall impedance mismatch. T (0. L.t). are finite jumps at
times corresponding to multiples of a wave's round trip time through the slab. r;,. In principle. all
of the round trips must be accounted for. but in practice only the first round trip is utilized because
higher order internal reflections are usually highly actenuated compared to the first transmitted wave
and because greater deviation fromn a plane wave accumulates in higher order transmitted waves. From
the definition of the scattering operator. Ty. in eq. 3.37 with front and backwall impedance mismatch.

the first round trip through the slab (f =0) is
ut (L.t + /2 = Trut(0.t) = l{;’ttd,w*’(ﬂ.t} + t,*,’tz [Tf * u*'] {0.¢). (5.4%)

Upon Fourier transforming this equation the transmission kernel is written formally as

) L.
T (0.L.w) = = +7}(0.L..~')—do (5.-19)
(7
l at(L.s) - -
= ——_— —dy. DY
e [zl‘:‘(O.J)] " (5-20)

From a simple bounce diagram approach (see appendix. eq. A.12) the frequency domain transmission

and reflection operators for times less than one round trip through the slab are written by inspection:

Tr0.L.w) = €5 (HF (<)dy Py(w) (5.51)
Ry(0.L.<) = Fi (<) (5.52)
where subscript ~.V' implies normalized slab propagator (see appendix. eq. A.6) and “f™ and 6" imply

front and backwall. The ‘t’s are front and backwall impedance-mismatched transmission coefficients.

Assuming material on etther side of the viscoelastic slab is water the term t-,j'.!(..;)[zb(.‘;) becomes

(3 (I (<) = L= (7] («)° (5.53)
where
- Zu. - Z_ue(*) - -
KA A 54
Zyelw) = Pue M () (5.59)
Zy = Pulw. (5.56)

The wave propagator. Py («). has the form

pel)
-1
~—

PV(.U) - e_u.,u(w)—fxx)l.e—iwl.(l/c(wi—l/\/}q) (.)
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where

lim a(s) = ax (5.58)
»lim-c(.‘.) = . (9.59)

Finally. the desired frequency dependent transmission kernel for the first transmitted wave is

R 1 : ~, B

Ti(0. L. o) = ————— (Ll = (FT (&))" Vda Py ()| — dy. .60

10 L) = iy (1= ()P o P = o (5.60)

The zero and infinite frequency limits are

lim T4(0. L..) ! [(1 (F+ (0))?)da] —d. (5.61)
Lo = —_— —\r - ( - BB

amn L—(r])? T4 0N = do ’

lim T;(0.L..) = 0. (5.62)

Figure 5.30 outlines steps for recovery of a relaxation modulus from a transmission kernel valid for one
effective slab thickness. L g. created from transmission kernels determined at different thicknesses and

frequency bands.

*Star product” for combining transmission kernels

In Chapter 3 an algebraic composition or product of operators. called a star product. was introduced.
[t is an essential building block for invariant embedding methods and a key to constructing general one-
dimensional integro-differential equations for reflection and transmission kernels. Equations 3.33-3.36
are the star product operator equations for addition of a thin slab at the left most interface of an
existing slab.

In general. the star product of two operator scattering matrices is given in eq. 3.32 and repeated

here with subscipt “1” and 2" denoting slab one and slab two. respectively.

Sipr =8 =8, (5.6.3)
The appropriate star product for combining transmission operators for two slabs. eq. 3.33. is
-1
+ - p+ - s
T =Ts [l ~RiAR7| i (5.6:4)

Due to the spatial symmetry of the viscoelastic slab Ry, = 'Rfl and superscipts can be dropped. The
transmission operators and kernels are known to be functions only of frequency: therefore. operator

ordering can be ignored. With these simplifications the transmission kernel star product becomes

Tra Ty

IS AL A ST 5.65
l-Rp1Rsa (5.6)

Trisn =
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For cases to be considered the Ty, = Ty 2 and R, = R/a. that is. operators for the same slab are
combined to yield a transmission operator in the frequency domain for a slab twice the original thickness.

Equation 5.65 becomes

7_}(0.2[...‘;) = (T7(0.L.2))*

=20 (5.66)
L= (R;(0.L.=))?

[n order for this star product to be practically useful some approximations must be made. As was done

for the slab-substitution method. the reflection operator is approximated by the reflection coefficient at
Rp(0.L.s) = Ff = Ry |s,: theref

foor Re(0.L.2) = ry g (fo) = R lt,: therefore.

Tr(0.2L.4) = _____(71}(—0“2:)))
0

where R} is sclected from Table 5.2 for the relevant f;.

The star product method can be continued. in principle. to obtain an equivalent transmission kernel
for a slab of thickness 3L. L. 5L. etc. When finished the transmisson kernel must be recovered for
input into the inverse algorithm. For a star product of )" identical slabs the transmission operator and
kernel are. respectively.

_ - (7}(0.[,...;))-’

. -L.-o' .(‘8
Ts(0.jL.<) (L= (RT)2p (5.68)
. . 1 : . -
T70.jL.w) = m?}(o.ﬂ.;) — (dy)? (3.69)

(do} = emdmom/d = pmvasl (5.70)

Of course combining two transmission operators to obtain the transmission operator of a slab twice as
thick. for example. begs the question “can the transmission operator for a slab with half the thickness.
L/2. be obtained from a transmission operator for slab with thickness L?° Under current conditions
and assumptions the answer is ves. With eq. 5.67 the transmission operator for a slab with thickness L

15

TH0. L/2.2) = /[ = (RE)IT7(0. L) (5.71)
and the corresponding transmission kernel is

!

Ty(0.L/2.w) = ———=T;{0.L/2.4) = (dy)'/* (5.72)
l—(rg)"
(d())l/'.’ = e—'«lcc[‘/'-’. (5.73)

In general. for halving the original slab °j times the resulting transmission kernel is

- ; l 2 2 1/2' ] s 2’ ey - -
TH0.L/Y. &) = -l-_—(r;-),-_,[]_'[[l-(ﬁg)-}" ][T{(O.L..‘;)]l/ — [do]? (5.74)
2 i=1

[do]'T* = em=Ll¥ (5.75)
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The term. ri. is the front-wall "hard’ reflection coefficient defined by eq. 3.76. It is assumed that

r,f; x Rg!!\,zlou_\(f{z in all cases.

Discussion of results

Table 5.4 gives estimates for high-frequency wavefront attenuation. dy. when L = 1QQum and f; =
100MHz. Estimates for dy versus aperture radius confirms again that increasing aperture radius relative
to wavelength gives the greatest improvement in accuracy of measured quantities. Figures 5.31 and 5.:32
show frequency domain transmission kernels that have been created by translating transmission kernel
fragments recovered within each frequency band to an effective slab length. L . and then combining
translated fragments together to form a complete kernel. Where there is overlap in kernel fragments
at band edges the fragments are simply averaged together. For each frequency band the actual slab
thickness is given in Table 5.5 with the corresponding L g at the top of each column. For example.
at fy = 100MHz the transmission kernel was translated from an actual slab thickness of 100um to an
effective slab thickness of lmm by application of eqs. 5.63-5.70. a ten-fold increase in slab thickness
(j = 10). For translating from a lmin thick slab to a 0.125mm slab requires application of eqs. 5.7
and 5.73 with j = 3. a decrease in slab thickness of eight times.

When kernel data are translated to L.g = linm as in Fig. 5.31. the resulting time-domain trans-
mission kernels in Figs. 5.31(b) and (d} immediately reveal several important points. [gnoring for the
moment deterioration in the recovered kernel due to various systematic effects such as aperture width.
the kernels have a peak at about 200ns. This implies that an incident wave convolved with any of these
kernels to produce a transmitted wave will be delayed in time relative to the incident wave by about
200ns plus. of course. the time delay for the wavefront to traverse the slab. 7,/2 = 1400ns. or about
600ns in total. The low frequency limiting wave speed is 1700/m/s and the time delay across the slab
for a wave traveling at this speed is about 53%ns. The main point is that the slab is a filter and is
effectively eliminating high frequencies from transmitted waves. While this is not a surprising result it
has profound consequences for recovering the relaxation modulus. In contrast Fig. 3.32 shows frequency
and time domain transmission kernels for an effective slab length of 0.125mm. In particular notice the
difference in short-time response of Figs. 5.32(b) and (d) compared with Figs. 5.31(b) and (d). The
kernels for L.g = 0.125mm peak near time zero as opposed to 200ns for kernels with Log = lmm.
As time goes to zero in Figs. 5.31(b) and (d) the kernels show increased oscillation due to loss of high
frequency information. Figure 3.33 demonstrates the effect that slab thickness has on frequency and

tine response of the transmission kernel. In Fig. 5.33(a) normalized magnitude spectra for L g = L
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*®

10.

12.

L3.

4.

. Assume water’s acoustic impedance. Z,.. and slab thickness. L. are known then estimate
r¥ and d, from a transmission measurement at the highest available frequency (100MHz

in this case)

. From rj =~ Ry (fo = 100MHz) (see Table 5.2) estimate Vi, and 7 and from dy estimate
a~ = afo = I00MHz) and nq

3. Given: raw time trace of transmitted wave. ut{L.¢). at fy and averaged over radius. «

. Window in time the first transmitted pulse without internal re-reflections (if possible)
. FET the windowed transmitted wave and calculate spectrum. a*(L. %)
. Window the useful frequency bandwidth of transmitted wave spectrum

. Repeat steps 2-6 for the incident wave. u*{0. ¢). recorded with slab removed at the position

of the slab’s front interface

. Compute estimate of transmission kernel:

= l l—l+(L-d-)]
Tr(0.L.&) = - —dy.
A S [ )

where 7}(0. L.oy=a*(L..)/a*(0.4)

Repeat steps 2-8 for another source center frequency. f. and appropriate slab thickness.

L

Translate all transmission kernel estimates for various bandwidths and slab thicknesses

to one effective slab thickness. L_g. by means described in the text
eff- M2

. Cotbine transinission kernel estimates transiated to one effective siab thickness to torm

an overall estimate of the transmission kernel versus frequency

Extend low and high frequency transmission kernel data to zero frequency and LGHz.

respectively

Compute estimate of time domain transmission kernel (IFFT):
Tp(0. Lo t) = FU[Tr(0. Logg- )]

With wave splitting inverse algorithm estimate time domain relaxation modulus. M (¢).
with T/(0. Legr- t). do. ri. Loff- puw. cw and p, as inputs. specifically: (pw.cu.ps. riy =
Hg- (Hg. Leﬂ') = To. (du. Tg) = ng. and (do I'(T. 0. Ng. TI(O Leﬂ‘.O)) = ny

Figure 5.30 Data processing for time domain relaxation modulus recovery from

estimated transmission kernel for an effective slab thickness. Log
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Estimates from FEM calculations for wavefront attenuation. dy. in-
finite frequency attenuation. a~.. and derivative of normalized creep
compliance at short time. ng. for fy = 100MHz and L = 100um:
exact values for computing percent difference are dy, = 0.2926.
ay = 1229 Np/mm and nq = 61.44(10%)s~! (b.w.. w.. v.. and

s. denote backwall. water. vacuum and slab. respectively)

L radius l interface I dn l dy A% a~. (Np/mm) l . A% ng {Ms™1) ng A% J
w./s. 0.1795 387 17.12 39.3 R7.15 41.3
ke =10 o T o | 303 CED) 572 0% 44 60.2
. w./s. 0.2834 -3.16 12.61 2.62 62.44 1.63
ka =50 e T 0 .73 12.77 3.92 63.20 236
Table 5.5  Actual slab thicknesses. L. for corresponding center frequency. fy.

and effective slab thickness. Logr

Log = tmm | Log =0.125mm
| fo (MHz) L (um) L (um)
1.0 1000.0 1000.0
3.16 496.0 196.0
10.0 250.0 250.0
3.6 249.6 249.6
100.0 100.0 62.5
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exact kernels for and 0.125mm are plotted along with the magnitude spectrum of the relaxation modulus.
The kernel spectrum for Imm becomes negligible even before the modulus has reached its low to high
frequency transition region. On the other hand the kernel spectrum for 0.125mm has a non-zero overlap

with the modulus through the high frequency regime at 100MHz.
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Figure 5.33 Wave splitting inverse method: comparison of transmission ker-
nels for Lo = 0.125. lmm with relaxation modulus: normalized

magnitude spectra. (a). short-time behavior. (b)

Figure 5.33(b) shows the first one hundred nanoseconds of the modulus and two exact transmissions
kernels. Recall that the wave splitting inverse algorithm reconstructs a relaxation modulus progressively
from time zero: therefore. quality of the short-time portion of the transmission kernel directly influences
short-time quality of the reconstructed modulus. If the short-time portion of the transmission kernel is
sensitive to small changes. for example noise. then it is difficult to obtain an accurate reconstruction of
the modulus for short time. With this regard the kernel for Log = 0.125mm has the advantage that its
short-time features are emphasized. A more insightful point is that essential time scales inherent in the
kernel for L g = 0.125mm is commensurate with time scales of the modulus whereas time scales of the
kernel for L.g = lmm is at least an order of magnitude greater. [n other words important time domain
features of the kernel for the thinner slab occur on approximately the same time scale as decay of the
modulus. but just the opposite is true for the kernel for the thicker slab. A consequence of the this
disparity in time scales is that no estimate for the time-domain modulus could be recovered with the
wave splitting algorithm from approximate kernels shown in Figs. 5.31(b) and (c). Several attempts to
“help” the algorithm failed. Only with the exact kernel would the inverse algorithm produce a modulus.

On the other hand. Fig. 5.34 shows the estimates for the modulus obtained with approximate kernels



L4

7 7
T 6 — exact = — exact
3 Y -—-- water/slab S § Y -~ water/slab
:._: 5 [\ — -~ backwail/vacuum =5 — — backwall/vacuum
w 4 X ka=10, L,,=0.125mm w 41 ka=50, L,,=0.125mm
=) Y 3
3 Yoo ] A
sl N e -
£ \\\ = S e o ey
S22 NuuTe 52
o NS T =]
51 Te—— - -
e 0T T T 2

0 | f | | 0 | L | 1

0 20 40 60 80 100 0 20 40 60 80 100
time, (ns) time, (ns)
(a) (b)

Figure 5.34 Wave splitting inverse method: reconstructed and exact longitu-
dinal relaxation modulus versus time for waves recorded at the
water/slab and backwall/vacuum interface and L,g = 0.125mm
for ka = 10. (a). and for ka = 50. (b)

presented in Figs. 5.32(b) and (d). The algorithm had no difficulty producing modulus estimates. but
clearly the approximate kernels for ka = 50 produced much better modulus estimates especially in

long-time response.

Summary

Three methods for measurement of viscoelastic properties are compared and contrasted: two propa-
gator methods (two-slab and slab-substitution) and a novel method denoted as wave splitting. Anorher
method. the Hankel transform method. is applied to propagator inverse methods and shown to improve
recovered attenuation and wave speed for the smaller aperture. ka = 10. The finite element method
serves as a numerical test bed for illustrating effects of variables such as aperture radius. measurement
location. etc.. on longitudinal modulus reconstruction. Results show that propagator inverse methods
are more robust in terms of collection of measurable data and are not restricted to a single slab thick-
ness. On the other hand. it is shown that. in principle. wave splitting inverse methods can recover
moduli if transmission kernel data measured at various slab lengths is translated to a single equivalent
slab length. It is shown that a transmission kernel with decay time on the order of the decay time of the
modulus is necessary for recovery of a time-domain modulus with the wave splitting inverse algorithms.

This point implies a transmission kernel for a thinner slab with thickness appropriate for measurements
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at the highest available frequencies (~ 100MHz) is required for modulus recovery. It is evident from
results in all cases that aperture width has the greatest effect on accuracy of the reconstructed mod-
ilus especially for high frequencies. Surprisingly. a modulus reconstructed with wave data recorded
at the water/slab interface is generally less accurate at high frequencies than a modulus reconstructed
with data taken at the backwall/vacuum interface. Another surprise is that an often used diffraction
correction provides almost negligible improvement in estimating moduli from wave data that includes
decay due to beam spreading. Earlier in this chapter it is demonstrated that diffraction corrections
could effectively remove decay due to geometric beam spreading from a wave propagating in a single
homogeneous acoustic medium. [n situations where distances between source and receiver are much

greater than considered here. diffraction could be more significant: therefore. a diffraction correction

could be more important.
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CHAPTER 6 VISCOELASTIC MEDIA WITH MULTIPLE
RELAXATIONS

Introduction

A simple single-exponential model for viscoelastic moduli manifests most of the relevant properties
of real materials and is sufficient for studying questions posed in previous chapters. However. forward
modeling of real materials requires a model that incorporates multiple relaxation mechanisms. [n
general. materials have moduli that are best represented by a continuous spectrum of relaxation times
[13].

In a numerical model a continuous spectrum is usually approximated by a discrete sum of decaying
exponentials (a Prony series). There are at least two ways to approximate a continuous spectrum of
relaxations with a Prony series model. The first assumes a spectrum composed of a finite sum of Dirac
delta functions with appropriate amplitudes and translations. for example.

N,
han(7) % Y Ad(r = 7). (6.1)

=1
[ntegration over the spectrum is reduced to a finite sum of decaying exponentials. The second method
assumes the spectrum is piecewise linear. then integration over the spectrum is accomplished with the
trapezoidal rule. [n this case the spectrum is effectively a Prony series but with amplitudes defined
by the width of the chosen intervals of integration. Both of these methods are described in detail in
chapter 2. Example calculations with both methods follow.

One question that is studied is "how many relaxation times are necessary in a forward model to
approximate accurately a continuous spectrum for a given source bandwidth?” The answer will depend
on relative bandwidth between modulus and source. A particular representative example is chosen with
parameters described in Chapter 2. For the first method a continuous spectrum is approximated by a
discrete sum of exponentials beginning with a single exponential. [n each subsequent run the discrete
relaxation spectrum is increased incrementally by one relaxation mechanism. that is. by adding one

decaying exponential. As more relaxations are added. waves are recorded at a particular location and
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convergence of the wave is observed as the number of relaxation mechanisms increases. This approach
is repeated for a second method except that the number of integration intervals is increased in each
run. s the number of exponentials or integration intervals is increased. it is shown that computed
waveforms converge to the same result for both methods. Finally. a short section follows that describes

the computation time required for a given number of relaxations and elements in a mesh.

Approximate Models for Continuous Relaxation Spectra

As described in a previous Chapter 2. two common models for viscoelastic moduli are the KWW

and HN functions: they are. respectively.

O (t) = e’ (1) <3< 1 (6.2)
L

—_ _ 0<a. <L 6.3
L+ (iw7hn ] = (6-4)

Oin(<) = 1-

These functions do not form a Fourier transform pair. but both of these functions are derived from
continuous distributions of relaxations or relaxation spectra (see Chapter 2). The KWW function Is
a time domain relaxation function and is also known as a “stretched exponential function.” The HN
function is a frequency domain function first introduced by Havriliak [21] for modeling relaxation in
dielectric materials.

Alvarez [1. 2] has described approximate interconnections between the KWW and HN functions. [n
particular for various values of the KWW parameter. J. he has optimized the HN parameters. (n.=).
such that the HN function is a "best fit” for the KWW function with given 3. He has summarized
values for 7 and corresponding values for {a.<) in a useful table. For each set of (7:a. <) he also gives
the ratio between the characteristic relaxation times. Thn/Tkww . For calculations here 7, = 37ns.
(. %) = (0.3091.0.5105) and mhnp = 2.91747%ww. which is a2 model for a KWW function with J = 0.5
and e & 300ns. The relaxation spectra are shown in Fig. 6.1 and normalized moduli and source
spectrum are plotted in Fig. 6.2.

Approximating a continuous spectrum of relaxations with a discrete sum of exponentials requires
a method of optimizing for unknown amplitudes and characteristic relaxation times. The discrete
spectrum is represented by relaxation times and amplitudes. (7. 4;). and is a model for the continuous

spectrutnt by, (7) (eq. 2.40). The discrete modulus in time and frequency is

N
Op(t) = D AT H(t) (6.-4)

=1
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N, .
t Ty s =
fy(w) = Z_:l S e (6.5)
where
N,
A=t (6.65)
=1
and 7y < ™ < ... < 7y,. The subscript 'p” denotes Prony series. Given N, exponentials there are 2.V,

unknowns to fit. .\ modified Levenberg-Marquardt algorithm (SNLSLE) available in the public domain

software library known as SLATEC! was emploved to fit the real part of the normalized relaxation

modulus. m’(<). computed with given HN parameters. to m’(~) compured with the frequency-domain

Prony series model. eq. 6.53.

A reasonable initial guess is required for convergence. An optimization

utilizing both real and imaginary components of m(w) or m'”(+) alone vielded no significant differ-

ence in computed amplitudes and relaxation times. For reference normalized components of the (HN)

longitudinal modulus. eq. 6.3. are

M(w) -

M,

cos™ (@) cos(~vo)

m' () M, — M. - [[ + cos (g—’_‘_) (.4.’7')0]" (6.7)

" .‘["(.«') cos’(o) Sin(“,o) .
“ = 5 8
) My =M, [L+cos (4F) (w7)?] (6.8)
o = arctan sin (%) (w7)” (6.9)

ISLATEC is a software library of mathematical subroutines in FORTRAN that was created by researchers at Sandia

National Laboratory. Albuquerque. New Mexico.
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Figure 6.3 Relaxation spectra: continuous versus discrete for increasing num-

ber of exponentials in discrete spectra (lines are guides for the eve)

Figure 6.3 shows graphically the optimized results for increasing .V,. The lines are provided as guides
for the eve. As the number of exponentials increases. discrete spectra slowly approach the continuous
spectrum in shape and magnitude. Table 6.1 lists actual amplitudes and relaxation times.

Approximations to the continuous HN spectrum for the second method are shown in Fig. 6.4 where
N, designates the number of points in a piecewise linear approximation and V. — 1 is the number of
intervals.  Actual integration points are given in Table 6.2, No special optimizarion was applied ro
determine location of points or number of intervals. Other integration schemes such as Simpson’s rule
or (iaussian quadrature were also considered. but will be left for further work.

Real and imaginary components of normalized longitudinal modulus. m(+). are shown in Fig. 6.5
computed with optimized parameters given in Table 6.1 for v, = 1. 2. 3. The bumpy appearance of the
modulus for .V, = 2. 3 occurs because the relaxation times in the discrete spectrum are so relatively far
apart that their overlap can be discerned. [n spite of this waves computed with .V, = 3 are practically
equivalent to waves computed with a discrete spectrum having .V, = 10. Wave speed and attenuation
for various .V, compared with a continuous HN spectrum are shown in Fig. 6.6. Attenuation plotted
in Fig. 6.6(b) shows that. for a Dirac delta spectrum. attenuation approaches a finite limit at high

frequency whereas attenuation for an HN spectrum is not bounded for increasing frequency. The reason



Table 6.1
No=1
#(nos) | A
L[ 628.1 | 1000 |
Np =2
# | © (ns) A
L] 3054 | 0.3598
2] TI6 | 0.6402
.\'p =13
#] nns) | A
L 6.215 | 0.1720
2] 1350 | 04315
3| 1307 0.3965
Ny =
#| nins) | A
L 1673 | 0.09331
2 | .10 0.2283
3] 3655 | 01634
1| 2440. 0.2100
\, =5

7 (ns) [ A

#
1 0.6816 | 0.06026
2] 1339 | 0.1416
3| 1264 0.2972
4 TILA 04107
3] 5491 0.09019

Discrete spectra for increasing .V,. see Fig. 6.3

.Vp =8 .\'p =9
| # 7 (ns) A # 7 (ns) A
L 0.3130 | 0.0403+4 L 0.06940 | 0.01783
2 5520 | 0.09416 2 0.8247 | 0.03313
3 14947 | 0.1939 3 6.127 | 0.07388
1] 302.1 0.3633 1 3-4.63 0.1368
5| 1290. 0.2667 5 1663 0.2523
6 | 126-40. 0.04053 6 6:46.4 03385
T2k 0.1162
N, =T 3 14260, 0.02135
%] 7 (ns) 1, 9 | 159700. 0004542
t 0.1853 | 0.03109
2 2,927 | 0.06998 V=10
3 2169 | 0.1398 # m(ns) | 4
v 1473 0.2632 t 0.02931 | 0.01035
5] 6393 0.3607 2 0.2453 | 0.02049
6| 2745. 0.1168 3 1321 | 0.03852
7 | 30790. 0.0 1843 1 7920 | 0.07100
3 27T Do
N, =3 6 1705 | 0.2492
#| ns) | A T 650.3 0.3359
L 0.06840 | 0.01782 8| U.1156
9 03219 | 0.03829 9 L4470, 0.02165
3 6.148 0.07412 10 | 165100. 0.004447
4 34.94 0.1379
5| 1693 0.2573
6| 676.7 0.3470
T 2390. 0.1093
3 | 32280. 0.01766
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Figure 6.4 Relaxation spectra: continuous versus piecewise linear for increas-

ing number of integration intervals

Table 5.2 Points. V.. that define numerical integration intervals of continuous
™

spectra. see Fig. 6.4

N.=3 | N. =10
#| = (ns) A, | # | =mns) | .4
[ 6.281 | 0.04014 ! 0.06281 | 0.003954
2| 628.1 | 0.2800 2 0.3963 | 0.01275
3 | 62810. 0.003006 3 2500 | 0.02735
1 15.78 0.05913

N.=6 5 99.54 0.1322
#| = (ns) | A 6 623.1 0.2800
L 0.009954 | 0.002782 T 3963 0.03995
2 0.3963 | 0.01275 3 | 25000. 0.006621
3 15.78 0.05913 9 | 157800. 0.001397
4 6231 0.2800 10 | 995400. 0.0003102
5| 25000. 0.006621
6 | 995400. 0.0003102
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for this is that contributions to high frequency attenuation come from the small but non-zero tail in
the relaxation spectrum for decreasing relaxation time. For comparison low and high frequency limits

of a Dirac delta spectrum and an HN spectrum are. respectively.

3 i \
. Cy - ~ ) . .
lim a(<) = =5 Aimi| <= (Dirac delta) (6.10)
w0 2c? ;
R = / i=l
. ( AT
lim !.!(..) = .)— .'1‘— (6[[)
- — _cg — i
| =1
22 o
1 (. — g 2 . -t REY . R
timats) = | L") sin (55) wmm| <1+ 1) (6.12)
. CL-; - C; . .;v(_):l- l =~ N .
lim af{s) = — sm( - ) —7 - 0<~ a<l). {6.13)
= 25 2/ =

When v = a = | attenuation limits for an HN spectrum revert to a Dirac delta spectrum with a single
relaxation.

For low frequencies HN attenuation behaves as &!*" with 0 < a < |. This suggests that wirth
proper choice of parameters an HN spectrum could be a model. over a limited frequency range. for
materials with power law attenuation. that is. a(<) = ay?. 1 < y < 2. Mammalian tissue is an
example of such a material [12]. Wismer [5] presents finite element results for pulsed acoustic pressure
wave propagation in materials with power law attenuation. Her numerical work was motivated by
theoretical studies on time domain PDE’s for lossy media with power law attenuation (Szabo [45. 16]).
Wismer’'s method utilizes a Z-transform to convert a pressure wave equation including attenuation from
frequency domain to discrete time. In her approach a power law attenuation model. transformed to
discrete time with the Z-transform method. requires a series expansion that is shown to diverge. but
reasonable results were obtained if only a small number of terms (< 7) are included in the expansion.
[n comparison. methods for lossy wave propagation developed here show no romputational instability

or signs of divergence for increasing number of exponential terms.

Model Calculations

A computational domain with oaly one material type is assumed. Material properties are given
in eqs. 3.3. 5.1 and 5.5 with spectral properties described in this chapter. A finite aperture source is
assumed with fo = 1OMHz. ¢ = 300um and ka = 13. Grid spacing is Ar = Az = 5um and the time
step is A¢ = 1.8ns. The number of elements in the mesh is 300 x 500 = 250. 000 and the total number

of unkowns is 2 x 501 x 301 = 502.002. Under these conditions there are about thirty-four elements
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pet shear wavelength—more than adequate to model shear wave propagation accurately.

Figures 6.7 and 6.3 show axial displacement recorded at four different positions along the z-axis.
[n each plot the solid line represents a wave computed with a Dirac delta spectrum that contains ten
relaxations (see Table 6.1). For comparison waves are also computed with .V, = 1. 2. 3. When \V, =3
the wave is almost indistinguishable from that computed with NV, = 10. With just one relaxation the
model cannot capture appropriate rates of decay of the longitudinal wave and especially the shear wave
which appears at late time in each figure. With .V, = 2 the computed waveform is a fair approximation
to the case with V, = [0 and = = 230. 300um. but correspondence deteriorates with increasing distance
from the source. In all cases the same results hold for off axis positions but are not shown.

Figure 6.9 compares waves computed with a Dirac delta spectrum. .V, = 10. and spectral density
integrated by trapezoidal rule with increasing number of integration intervals. V. = 3. 6. 10 (see
Table 6.2 and Fig. 6.4). With V. = § the Dirac delta and integrated spectral density produce waves
indistinguishable to within a line width. A trade off is that six exponentials are required for an integrated
spectral density while only three exponentials were required for convergence of the Dirac delta spectrum.
Further work will investigate other methods for spectra integration that require fewer exponentials to

achieve convergence.

Computer Run-Time Information

The computer employed for all axisymmetric calculations was a Silicon Graphics Power Onyx with
eight 194 MHz MIPS-R10000 CPU’s and 2048 Mbytes of random access memory. The computer is owned
jointly by the Condensed Matter Physics group. lowa State University. and the Scalable Computing
Laboratory in Ames Laboratory. Although the Onyx is capable of running multiprocessor parallel code.
it serves as a research computer for many users (~ 13) running serial programs. A\ sertes of timing runs
was made for increasing number of elements and relaxation times. The results are shown in Fig. 6.10.
The time represented along the ordinate axis is total time spent in the system® and not the total
clock-on-the-wall running time which is largely dependent on the number of users at any given moment.

Programs were submitted and run under a queuing system known as DQS>.

2The UNIX function for run time measurement is ‘time.’
3DQS is an experimental batch queuing system developed at the Supercomputer Computations Research Institute at

Florida State University.
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Summary

Real viscoelastic materials have a continuous distribution of relaxation times. Relaxation distribu-
tions are modeled by a finite sum of decaying exponentials. In one case a distribution is modeled by
a Dirac delta spectrum whose amplitudes and relaxation times are optimized in a least squares sense
to fit a continuous HN distribution. With another closely related method a continuous spectrum is
integrated with a trapezoidal rule. but no optimization was attempted for this case. A representative
calculation is presented showing that as little as three decaying exponentials are required to model accu-
rately ultrasonic wave proagation in a medium assumed to have a continuous HN relaxation spectrum.
No instability or divergence of the computed solution was observed in any of the calculations. A section
is included that describes the actual computer emploved for calculation and in-system run times for

various mesh sizes and relaxation spectra.



CHAPTER 7 CONCLUDING REMARKS AND FURTHER WORK

Accurate and robust numerical forward models such as the finite element method running on
presently available computers have forged complete industries and active areas of research. for ex-
ample. computational mechanics. With recent introduction of teraFLOP computers and petaFLOP
computers on the drawing board. computational science and engineering is quickly carving out its own
unique niche from within the traditional theorist/experimentalist paradigm. True three dimensional
modeling with suffucient resolution to provide important insight into field/material interaction is now
possible for many problems and soon to be a reality for others such as time-domain wave propagation
problems.

With accurate forward models and powerful computers. new methods for material property mea-
surement wil be tested more quickly to determine feasibility. and existing methods can be modeled
to determine optimal experimental arrangements. [n this vein an investigation of inverse methods for
recovery of linear. viscoelastic moduli from ultrasonic waves is presented. A system consisting of vis-
coelastic solid immersed in a water bath is modeled with a time-domain finite element method to study
effects of certain variables on the accuracy of the reconstructed moduli. [n principle present states of
stress. strain and displacement in a viscoelastic medium require knowledge of these variables for all
previous time. Numerically this fact implies storing displacement history for each node in the finite
element mesh. A method is presented where time dependence of bulk and shear nioduli is modeled as
a finite sum of decaying exponentials. When this is done it is shown that only displacement data from
one previous time step needs to be retained to account for displacement time history at a point. The
FEM visoelastic model is tested against an inverse Laplace-Hankel transform method and is shown to
give equivalent results for all cases considered.

The viscoelastic finite element method is employed as numerical test-bed for studying two existing
inverse methods. two-slab and slab-substitution. and one new and novel method called wave splitting.
With the FEM as a test bed it is shown that in principle all three methods can provide estimates of

the longitudinal modulus. but two-slab and slab-substitution methods are clearly more robust because
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they do not require measured data for a single slab thickness. For the former two propagator methods
increasing source and receiver aperture diameter improves accuracy of reconstructed moduli.

Further work will focus mainly on developing the FEM forward model to accomodate more general
geometric domains. At the present only regions that are topologically equivalent to rectangular regions
can be modeled but geometries encountered in usual nondestructive testing situations include non-
simply connected regions. On another front the code will be ported to a parallel computing environment
such as a PC-cluster or workstation cluster. \ parallel environment is appropriate for attempting full
three dimensional calculations. On vet another front more sophisticated models for material properties
will be developed. One type of material of immediate interest is a finite element model of materials
such as metals with microscopically random properties. at least random about some mean value. Such

a model could serve as a test bed for ultrasonic wave propagation in stochastic media.



APPENDIX: DERIVATION OF LAPLACE-DOMAIN SCATTERING
KERNELS

Due to spatial homogeneity of the viscoelastic slab a simple bounce diagram model is sufficient to
derive Laplace domain reflection and transmission kernels. A prototype bounce diagram is shown in
Fig. A.l. Assume a wave is incident on the slab at "la’ with Laplace domain amplitude of one (i.e.
Dirac delta in time). The slab is assumed impedance matched to the elastic half spaces at : = 0. L.

respectively. Reflection and transmission coefficients for a viscoelastic half-space are. respectively.

S sn(s) -1
r(s) = Ve TR (A1)
(s) = L+F(s) (A.2)

A wave incident upon either of the two elastic half-spaces from within the slab experiences a retlection

of —rF{s} and a transmission of | — r(s). The wave propagator for the slab is

é(y) = (1()[3.;)(.5')p.\'(.5') (.\.»”
dy = d(z=0)=¢ "0/ (A1)
Pys) = e~*™/* (A.5)
’5\(’) - 4—/‘;!‘5!/.’ (\ ())
™ = 7’(:::()):22—£ (A7)
-

- = L.
b(s) = sm [\/sn(s) - l] — M0 (\\.3)
ny = n{t)|e=o. (A9

where subscript *N” implies ‘normalized.” For a non-viscoelastic slab Py(s) equals one. identically.
By inspection the total Laplace-domain reflection kernel is
R(s) = 2a+3a+4da+3a+...

= F+A(F - 1)P%|1

[+
= F4 R = 1)P? i[ ] (A.10)
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L— P
I —r2pP2
The total transmission kernel is
T(s) = Za+3a+ta+

= (1 _;-)pg (78] (A.12)
= “—"’LP. (A.13)
I —repe

For [s| — x the transmission kernel as written does not approach zero. To eliminate the “high frequency”

asymptote and to remove inherent time delay. redefine the transmission kernel as follows:

T(s5) — o370/ ['f(.,-) -,1.,;'"'/'-’} : (A1)
therefore.
- tl __ g2 p.{—s.’.,/'_'
Iis) = lr—)F'-'Pf"-’ —dy (A.15)
= d()e—h"’/z [1 —FRJ —dy. {A.16)
Define
t(s) = FP(s)e*™ (A7)
= AdEoh (A8

then the reflection kernel. eq. A.10. can be rewritten in the following manner:
. ~
Ris)= 7+ Y [FF— ] [fe] e tiem, (A.19)
=u
The inverse Laplace transform. R(¢). is

R(E) =r(t) + ) S((i+ Do) [rerse —][sr =] (A.20)
i=0

where r(t) = £7![f] and v(¢) = £L7'[¢] and S(7) is a delay operator: S(ma)f(t) = f(t — o).

Define

L] = n (A.21)
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or sn = | + n. The half space refiection coefficient becomes

;—__,__Vl'i";'—l
Vi+n+l

and
1+ 7

[+l';l=
| —

1

Rationalizing the denominator of eq. A.23 gives

2o l+a+n
i

;=

or. after eliminating the square root. it becomes

After rearranging and collecting terms the result is

IF—n+20F —nr = 0
= dr(t)—n(t)+2necr—nsrxr = 1.
Define
Cli] = a
= sa—ng

then the inverse Laplace transform of #(s) s found as follows:

/;(») = 57y [V sn — l] - éilr)ﬂ)

T L.
= 57y [\/ l+n- l} = 5N0m

l: N
= 87 [;n(l—-r)] - 50T
= “—;) [(afl - f.l() + h()) - (5;1 — h() + l.ll))’: - h()]
T or: T. .
= ?[n—nr-nurj
— b(t) = ?[ﬁ(t)—ﬁ*r—hor(t)].

From the transmission kernel equation. eq. A.16. define

é(’:) = (lofi =h12 d()

(A.26)

(A.29)

(\30)

(A.31)

(A.32)

(\.33)



then

i

¢ - éd,,f =h12y b

= -é [6 + do} 0,b

| S S
= —Ei(),b - :E(IJ)(),b

l l
—EJI)b(t) - 2—[6 * (H))

= e(t)

With eq. A.33 the transmission kernel. eq. A.16. is inverted as follows:

T(s) = ¢F—[f+dy]FR
= Tit) = e{ty—dyr«R—c«r«R.
Finally. ¢(s) is inverted as follows:
is) = Fdieh

= FF+do]

¥}

) - - -
= dyF+ 2dyéF + €

= () = dir(t)+2dpesr+ewexr

(A3

(A.35)

(A.36)

(A37)

(A3

(A.39)

A detailed derivation of the time domain reflection and transnission kernels. R(f) and T(¢). for an

isotropic viscoelastic slab has been given. Intermediate variables, b(¢). (¢). r{t) and r(t). facilitate the

derivation. These results are analogons to the electromagnetic case presented in Fuks {15].
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Figure A.l Bounce diagram for a viscoelastic slab
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