# Summary of Thermo–Time Domain Reflectometry Method: Advances in Monitoring In Situ Soil Bulk Density

# Yili Lu

College of Resources and Environmental Science China Agricultural Univ. Beijing China 100193

### Xiaona Liu

College of Environment and Safety Taiyuan Univ. of Science and Technology Taiyuan, China 030000

### Meng Zhang

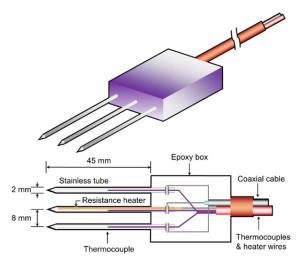
College of Resources and Environmental Science China Agricultural Univ. Beijing China 100193

## Joshua Heitman

Soil Science Dep. North Carolina State Univ. Raleigh, NC 27695

## **Robert Horton**

Dep. of Agronomy Iowa State Univ. Ames, IA 50011


### **Tusheng Ren\***

College of Resources and Environmental Science China Agricultural Univ. Beijing China 100193 Soil bulk density  $(\rho_b)$  is a key indicator of soil compaction and soil health that relates to water infiltration, plant rooting depth, nutrient availability, and soil microbial activity. Under field conditions,  $\rho_b$  usually varies with time and depth because of agronomic practices, root growth, and environmental processes (e.g., rainfall events, wetting/drying, and freezing/thawing). The traditional technique (i.e., the coring method) for determining  $\rho_b$  has the problems of destructive sampling, labor intensive, and is unable to capture the spatial and temporal variations. In a chapter of the recent Methods of Soil Analysis book, we present a review of the theory, instrumentation, and procedures of the thermo–time domain reflectometry (thermo-TDR) technique for monitoring in situ  $\rho_b$  (Lu et al., 2017).

A thermo-TDR sensor (Fig. 1) measures soil thermal properties and water content ( $\theta$ ) concurrently by integrating the functions of the heat-pulse and TDR sensors. The method employs available models that relate heat capacity (C) or thermal conductivity ( $\lambda$ ) to soil texture,  $\theta$ , and  $\rho_b$ . With the prior information of sand/clay fractions and specific heat of soil solids,  $\rho_b$  is estimated inversely from  $\theta$  and C or  $\lambda$  measurements made with thermo-TDR sensors. Laboratory and field tests have shown that the relative errors in  $\rho_b$  estimates are generally within 10%. The new method provides in situ and continuous  $\rho_b$  measurements with no calibration requirement, thus offers the potential for studying coupled heat and water processes in deformable soils where  $\rho_b$  changes with time and depth.

# **REFERENCES**

- Liu, X.,T. Ren, and R. Horton. 2008. Determination of soil bulk density with thermo-time domain reflectometry sensors.Soil Sci. Soc. Am. J. 72:1000–1005. doi:10.2136/sssaj2007.0332
- Lu, Y., X. Liu, M. Zhang, J. Heitman, R. Horton, and T. Ren. 2017. Thermo-time domain reflectometry method: Advances in monitoring in situ soil bulk density. Methods of Soil Analysis 2. doi:10.2136/msa2015.0031



# **Core Ideas**

- Thermo-TDR technology is used for obtaining soil bulk density.
- Soil water content and thermal properties are monitored simultaneously.
- Bulk density is estimated by using thermal property models.

Fig. 1. Schematic view of the configuration for the Liu et al. (2008) thermo-TDR sensor. The drawings are not to scale.

Soil Sci. Soc. Am. J. doi:10.2136/sssaj2018.01.0053 Received 26 Jan. 2018. Accepted 28 Mar. 2018. \*Corresponding author (tsren@cau.edu.cn). © Soil Science Society of America. This is an open access article distributed under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)