This dissertation has been 64-3898 microfilmed exactly as received

SHARP, Brooks Martin, 1937-
SOLVENT EXTRACTION S'TUDY OF THE SYSTEM MONAZITE RARE EARTH
NITRATES - NITRIC ACID - WATER - TRIBUTYL PHOSPHATE.

Iowa State University of Science and Technology Ph.D., 1963
Engineering, chemical
Oniversity Microfilms, Inc., Ann Arbor, Michigan

SOLVENT EXTRACTION STUDY OF THE SYSTEM MONAZITE RARE EARTH NITRATES - NITRIC ACID - WATER - TRIBUTYL PHOSPHATE

by

Brooks Martin Sharp

> A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Chemical Engineering

Approved:

Signature was redacted for privacy.
In Charge of M\&jor Work
Signature was redacted for privacy.
Head of Major Department
Signature was redacted for privacy.
Dear ${ }^{\text {bf }}$ Gradtate College

Iowa State University
Of Science and Technology Ames, Iowa

1963

TABLE OF CONTENTS

Page
NOMENCLATURE x
SUMMARY xii
INTRODUCTION 1
PREVIOUS WORK 4
Thermodynamic Equilibrium Constant Approach 4
Empirical Approach 8
METHOD OF CALCULATION 11
Equilibrium Phase Calculation 11
Sample calculation 21
Application to Multistage Calculations 24
VERIFICATION OF MODEL 29
CONCLUSIONS 53
RECOMMENDATIONS FOR FUTURE WORK 55
BIBLIOGRAPHY 57
ACKNOWLEDGMENTS 63
APPENDIX A. ANALYTICAL PROCEDURES 64
APPENDIX B. EQUILIBRIUM DATA 66
APPENDIX C. MATHEMATICAL ANALYSIS OF PINCH 78
APPENDIX D. DIGITAL COMPUTOR PROGRAMS 89

LIST OF TABLES

Page
Table l. Comparison of experimental and predicted compositions and concentrations for Simulated Column Experiment I33

Table 2. Comparison of experimental and predicted compositions and concentrations for Simulated Column Experiment II39

Table 3. Comparison of experimental and predicted compositions and concentrations for Simulated Column Experiment III

Table 4. Comparison of experimental and predicted compositions and concentrations for Simulated Column Experiment IV50

Table 5. Equilibrium data for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

Table 6. Equilibrium data for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

Table 7. Equilibrium data for the system $\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

Table 8. Equilibrium data for the system $\operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

Table 9. Equilibrium data for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ -$\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

Table 10. Equilibrium data for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}-$ $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

Table ll. Equilibrium data for the $\operatorname{system} \operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}-$

$$
\begin{equation*}
\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O} \tag{77}
\end{equation*}
$$

Table 12. Molalities of solutes 1 and 2 in organic streams of ideal cascade

Table 13. Array of values of K_{t} for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ aq. and X_{La}

Table 14. Array of values of K_{t} for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ aq. and $X_{P r}$
Table 15. Array of values of K_{t} for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{t}\right)$ aq. and X_{Na}
Table 16. Array of values of K_{t} for the system $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ aq. and $X_{S m}$

94
Table 17. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)$ aq. and $X_{\text {La }}$
Table 18. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)$ aq. and $X_{P r}$

96
Table 19. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)$ aq. and $X_{N d}$

97
Table 20. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)$ aq. and $X_{S m}$
Table 21. Array of values of K_{t} for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ org. and $Y_{\text {La }}$

Table 22. Array of values of K_{t} for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ org.
and Y_{Pr}
Table 23. Array of values of K_{t} for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ org. and $Y_{N d}$
Table 24. Array of values of K_{t} for the system $\operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ org. and $Y_{S m}$
Table 25. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)_{\text {org. }}$ and $Y_{\text {La }}$

103
Table 26. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)$ org. and $Y_{P r}$

104
Table 27. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)_{o r g}$. and $Y_{N d}$
Table 28. Array of values of $\mathrm{K}_{\mathrm{HNO}}^{3}$ for the system $\begin{array}{lll}\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O} \text { as a function of } \\ \left(\mathrm{M}_{\mathrm{t}}\right)_{\text {org. }} \text { and } \mathrm{Y}_{\mathrm{Sm}} & \end{array}$

LIST OF FIGURES

Page
Figure l. Nitric acid distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the organic phase at $\left(M_{t}\right)$ org. equal to 3.014

Figure 2. Nitric acid distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the organic phase at $\left(M_{t}\right)$ org. equal to 3.5

Figure 3. Total distribution coefficient for $\operatorname{RE}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the organic phase at ($\left.M_{t}\right)_{\text {org. equal to } 3.0}$

Figure 4. Total distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the organic phase at $\left(M_{t}\right)_{\text {org. }}$ equal to 3.5

Figure 5. Nitric acid distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the aqueous phase at $\left(M_{t}\right)$ aq. equal to 5.0

Figure 6. Nitric acid distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the aqueous phase at $\left(M_{t}\right)$ aq. equal to 7.0

Figure 7. Total distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the aqueous phase at $\left(M_{t}\right)_{\text {aq. }}$. equal to 5.0

Page

Figure 8. Total distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-$
$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of
the composition of the aqueous phase at
$\left(\mathrm{M}_{\mathrm{t}}\right)_{\text {aq. equal to } 7.0} \quad 19 \mathrm{~b}$
Figure 9. Separation factor between $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ and $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}$ for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-$ TBP - $\mathrm{H}_{2} \mathrm{O}$ systems as a function of concen- tration of the organic phase 20
Figure 10. Cascade I 25
Figure 1l. Cascade II 25
Figure 12. General information pertaining to Simulated Column Experiment I 32
Figure 13. Stagewise aqueous rare earth oxide compo- sition for Simulated Column Experiment I 35
Figure 14. Stagewise organic rare earth oxide compo- sition for Simulated Column Experiment I 36Figure 15. Stagewise organic rare earth oxide andnitric acid concentrations for SimulatedColumn Experiment I37

Figure 16. Stagewise aqueous rare earth oxide and nitric acid concentrations for Simulated Column Experiment I37
Figure 17. General information pertaining to Simulated Column Experiment II 38
Figure 18. Stagewise aqueous rare earth oxide compo- sition for Simulated Column Experiment II 41
Figure 19. Stagewise organic rare earth oxide compo- sition for Simulated Column Experiment II 42
Figure 20. Stagewise organic rare earth oxide andnitric acid concentrations for SimulatedColumn Experiment II43
Figure 21. Stagewise aqueous rare earth oxide and nitric acid concentrations for Simulated Column Experiment II 43
Figure 22. General information pertaining to Simulated Column Experiment III 44
Figure 23. Stagewise aqueous rare earth oxide compo- sition for Simulated Column Experiment III 46
Figure 24. Stagewise organic rare earth oxide compo- sition for Simulated Column Experiment III 47
Figure 25. Stagewise organic rare earth oxide and nitric acid concentrations for Simulated Column Experiment III 48
Figure 26. Stagewise aqueous rare earth oxide and nitric acid concentrations for Simulated Column Experiment III 48
Figure 27. General information pertaining to Simulated Column Experiment IV 49
Figure 28. Stagewise aqueous rare earth oxide and nitric acid concentrations for Simulated Column Experiment IV 51
Figure 29. Stagewise aqueous rare earth oxide compo- sition for Simulated Column Experiment IV 51
Figure 30. Stagewise organic rare earth oxide and nitric acid concentrations for Simulated Column Experiment IV 52
Figure 31. Stagewise organic rare earth oxide compo- sition for Simulated Column Experiment IV 52
Figure 32. McCabe-Thiele representation of "pinched" total molality 80
Figure 33. Cascade I 90
Figure 34. Cascade II 90
Figure 35. Cascade III 90
Figure 36. Cascade IV 90
Page
Figure 37. Principal variable names 107
Figure 38. Flow diagram, Program I 112
Figure 39. Fortran statements, Program I 113
Figure 40. Flow diagram, Program II 117
Figure 41. Fortran statements, Program II 118
Figure 42. Flow diagram, Program III 122
Figure 43. Fortran statements, Program III 123
Figure 44. Flow diagram, Program IV 128
Figure 45. Fortran statements, Program IV 129

NOMENCLATURE

The following three paragraphs are explanatory notes on the nomenclature used in this thesis.
(1) All molalities are expressed in terms of the nitrate group associated with the solute in question. For example, a solution containing one kilogram of water and one molecular weight (324.9 gms.) of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ would be three molal $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$.
(2) For a doubly subscripted quantity, the first subscript is the solute subscript and the second subscript is a "location" subscript, referring to the phase, stream, or stage with which the quantity is associated.
(3) If used as a subscript S, R, and F denote that the quantity subscripted refers to a stream in an extraction cascade. If used as a variable S, R, and F denote the solvent flow rate in a stream in an extraction cascade. In the text, a reference to stream R_{n} or S_{n} denotes a reference to the stream as a whole.

M - molality, moles of a solute per kilogram of solvent
K - distribution coefficient, ratio of molality of a solute in an organic phase to molality of the solute in the equilibrium aqueous phase
β - separation factor, ratio of two distribution coefficients

X - ratio of molality of a solute in aqueous solution to total molality of the solution
x - ratio of molality of a rare earth solute in aqueous solution to total rare earth molality of the solution

Y - ratio of molality of a solute in organic solution to total molality of the solution
$y \quad$ - ratio of molality of a rare earth solute in organic solution to total rare earth molality of the solution

S - flow rate of solvent in an organic stream, kgm. TBP/ unit time

- flow rate of solvent in an aqueous stream, $\mathrm{kgm} . \mathrm{H}_{2} \mathrm{O}$ / unit time

F - flow rate of solvent in a feed stream, kgm. $\mathrm{H}_{2} \mathrm{O}$ /unit time
T - total number of solutes
α - flow rate ratio, S / R
Subscripts
i,j - arbitrary solute
t - total solutes present, expressed as equivalents of nitrate

RE - total rare earth nitrate solutes present
La - lanthanum nitrate
$\operatorname{Pr} \quad$ - praseodymium nitrate
Nd - neodymium nitrate
Sm - samarium nitrate
HNO_{3} - nitric acid
n - arbitrary stage in extraction cascade
org. - organic phase
aq. - aqueous phase

SUMMARY

Using single stage equilibrium data for the systems shown below, plus the assumption of mutual immiscibility of water and tributyl phosphate (TBP), a calculation method was developed to give the stagewise conditions in a cascade of equilibrium stages with all species present in the flow streams.

$$
\begin{array}{rl}
\text { I } & \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O} \\
\text { II } & \mathrm{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O} \\
\text { III } & \mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O} \\
\text { IV } & \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O} \\
\text { V } & \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O} \\
\mathrm{VI} & \mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O} \\
\mathrm{VII} & \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

The calculation method was checked via a series of simulated column experiments. The agreement between predicted and experimental stagewise conditions was considered reasonable, and the calculation is considered useful for engineering work.

As the calculation is tedious and time consuming, digital computor programs were written for the IBM 7074 to calculate the stagewise conditions in cascades of interest. It is hoped these programs will be useful in design and optimization studies.

INTRODUCTION

The elements of atomic number 57 to 71 are commonly known as the rare earths or lanthanides. They occur in nature as rather complex mixtures, and due to their chemical similarity are quite difficult to separate. The term rare earths is a misnomer, and these elements represent a potentially rich source of metals. The abundance, industrial potential, physical properties, and chemistry of the rare earths have been discussed extensively in the recent literature (1,2,3,4, $5,6,7$) and will not be elaborated on here.

Spedding and Powell (8) have developed ion exchange techniques which have been used at the Ames Laboratory of the Atomic Energy Commission and by several chemical companies to prepare the pure lanthanides in industrial quantities. The work discussed in this thesis is a continuation of a long term project sponsored by the Chemical Engineering Division of Ames Laboratory to investigate the application of solvent extraction to the separation of the rare earths. It is thought that either a solvent extraction process or a combination of solvent extraction and ion exchange might possess certain advantages over the present process, such as more continuous operation and larger throughputs per dollar of capital investment.

Specifically, the purpose of this research was to propose and verify a calculation method to give the stagewise conditions
in a multistage cascade operating with the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-$ $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$. If considered desirable, as was the case, the method was to be programmed for digital computor calculation.

The basic problem in this project, as in many projects of this type, was to develop a method of calculating the conditions in one equilibrium phase with the contacting equilibrium phase completely specified. Because of the large number of solutes present it is practically impossible to systematically investigate the equilibrium of the system of interest over the range of composition and concentration encountered in a solvent extraction cascade. Therefore the basic approach was to use experimentally determined equilibrium data for contributing systems to predict the equilibrium of the more complex system of interest.

The function of the nitric acid is threefold. The solvent, $T B P$, has a relatively high viscosity and a specific gravity approximately equal to that of water (about 0.98 at $20^{\circ} \mathrm{C}$.). These characteristics have led to slow phase separation and emulsion formation in the past. The inclusion of nitric acid promotes rapid phase separation and inhibits emulsion formation. Also, the separation factors between the rare earth nitrates have been found to increase with increasing nitrate concentration of the system. The inclusion of nitric acid allows high nitrate concentrations without the
phase separation and emulsion problems mentioned above. On the debit side of the discussion, nitric acid is also extracted by TBP and complicates the system as an extra solute which must be considered.

PREVIOUS WORK

The first study of solvent extraction separation of the rare earths was made in 1937 by Fischer et al. (9). Since that time a large number of systems have been investigated, primarily by single stage "shakeups", and often using radioactive rare earth tracers. Typical studies are (10,11,12,13, 14,15). The field has also been reviewed extensively (16,17, 18,19).

In recent years most workers have followed one of two distinct approaches. The more fundamental approach has been based on the thermodynamic equilibrium constants for postulated complexing reactions between the solutes in the aqueous phase and the organic extractant. In contrast, several workers have approached the problem from a pragmatic point of vıew, obtaining equilibrium data for simple systems and then making approximations to extrapolate the available data to systems of interest. These two approaches are considered in more detail in the following sections.

Thermodynamic Equilibrium Constant Approach

Many thermodynamic studies have been reported in the literature, typical studies being (20,21,22,23,24,25). In general, the conclusions were that the extraction of many
solutes such as nitric acid and rare earth nitrates from aqueous solution by TBP may be considered the result of a reaction of the type

$$
\begin{equation*}
\left.\left.\mathrm{M}_{(\mathrm{aq.})}^{+\mathrm{a}}\right)+\mathrm{aX}_{(\mathrm{aq.})}^{-}+\mathrm{bTBP}_{(\text {org. })}^{\rightleftarrows} \mathrm{MX}_{\mathrm{a}} \cdot \mathrm{bTBP}_{\text {(org.) }}\right) \tag{1}
\end{equation*}
$$

where b is the solvation number, that is, the number of TBP molecules complexed with one molecule of the extracted compound. For the rare earth nitrates b has been established to be three, and for nitric acid b is usually taken as one, although for nitric acid solubility considerations show such a simple picture to be impossible. That is, the solubility of nitric acid in TBP grossly exceeds the theoretical maximum as given by complete formation of $\mathrm{HNO}_{3} \cdot T B P$ in the organic phase. The present trend $(26,27,28)$ is to consider the nitric acid extraction as an initial formation of $\mathrm{HNO}_{3} \cdot \mathrm{TBP}$ followed by solubility of excess acid in the complex.

Rozen and Khorkhorina (29) have approached the equilibrium of the system $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}-\mathrm{HNO}_{3}-\mathrm{TBP}$ plus diluent $-\mathrm{H}_{2} \mathrm{O}$ by a consideration of the proposed complexing reactions
$\mathrm{UO}_{2(\text { aq. })}^{++}+2 \mathrm{NO}_{3(\text { aq. })}^{-}+2 \mathrm{TBP}$ (org.) $\rightleftarrows \mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{TBP}$ (org.) and

$$
\begin{equation*}
\mathrm{H}_{\text {(aq.) }}^{+}+\mathrm{NO}_{3 \text { (aq.) }}^{-}+\mathrm{TBP} \text { (org.) } \rightleftarrows \mathrm{HNO}_{3} \cdot \mathrm{TBP} \text { (org.) } \cdot \tag{3}
\end{equation*}
$$

The equilibrium constant values for these reactions plus
material balances make possible a calculation of the equilibrium organic concentrations if the aqueous concentrations are known. Several questionable assumptions are, however, necessary. No activity data are available for the reactants in the organic phase and so the activity coefficients of all organic constituents (the free TBP and the solvated complexes) are assumed to be unity. Activity measurements of uranyl nitrate in aqueous solution and of nitric acid in aqueous solution are available (30), but no justification is given by the authors for their use of these activity data for mixtures of uranyl nitrate and nitric acid. Also, as pointed out previously, the proposed reaction involving nitric acid is inadequate over the allowable nitric acid concentration range.

Jury and Whatley (31) have written a digital computor subroutine based on the equations of Rozen and Khorkhorina to calculate equilibrium points in the system discussed above. They do not compare their results with distribution data. Referring to their calculated distribution curves the authors conclude "Beyond the insipid observation that these curves seem to follow the behavior of what is known about the system, there is no quantitative criteria available for evaluating their accuracy". Although many of their calculated distributions appear reasonable, it is to be noted that under some conditions such as low values of the TBP concentration and high
values of the uranyl nitrate concentration the equations predict negative values of the solvent phase nitric acid concentration, which is, of course, impossible.

Olander (32) has written a digital computor program for multistage, multicomponent cascade design making use of equations of the form of Equation 1 alternating with material balance calculations. He assumed:
(1) unit activity coefficients for all species,
(2) complete dissociation of the solutes in the aqueous phase, and
(3) no competing side reactions.

The first two assumptions are certainly in error to some undetermined extent, and the third is open to question. His program is for a center fed cascade and involves a multiple trial and error, the extract and raffinate conditions first being assumed and then working toward the center stage by stage from both ends with a match at the feed point the criteria of correct choice of the end streams. He states that it is impossible at present to estimate activity coefficients of mixed electrolytes containing more than two solutes and also to estimate the activity coefficients of the complexes and the unbound TBP in the organic phase. Consequently his calculation must be regarded solely as an order of magnitude approximation to the true number of theoretical stages.

Empirical Approach

Weaver et al. (33) produced better than a kilogram of 95% pure gadolinium oxide starting with a mixture of rare earth oxides containing about 30% gadolinium oxide. They used a 60:40 mixture of TBP in a hydrocarbon diluent and extracted a highly acidified solution of the rare earth nitrates many times in both batch extractions and counter-current extractions in a York Scheibel column. Their approach was primarily trial and error, empirically adjusting the operating conditions from extraction to extraction.

Peppard and Mason (34) report several simulated column extractions of milligram quantities of mixed rare earths. The aqueous phases were either acidified chloride or nitrate solutions and the organic extractant was TBP either undiluted or mixed with a light hydrocarbon diluent. No design procedure was given. In each case they obtained two enriched fractions, the light rare earths preferring the aqueous and the heavies preferentially extracting into the organic.

A series of reports by Michigan Chemical Corporation (35, $36,37,38,39,40,41,42,43$) describe the bench and pilot plant scale separation of yttrium from the rare earths and the division of the rare earths into a light enriched and a heavy enriched fraction. Some work was also done in attempting to strip lanthanum from a rare earth and yttrium mixture. The
solvent used in the latter study was monododecyl phosphoric acid plus hydrocarbon diluent and the aqueous phase acidified chloride or acetate solutions of the rare earths. In some cases a chelating agent was added to the aqueous strip. Yttrium of 98% purity was obtained.

At Ames Laboratory of the Atomic Energy Commission Bochinski (44) demonstrated the partial separation of the rare earths. He distributed the acid free nitrates between undiluted, water equilibrated TBP and water. He developed a design procedure based on two assumptions concerning the equilibrium distribution of the system. They are:
(1) an average equilibrium curve may be used for all mixtures of the rare earths and
(2) the separation factors between the rare earths are independent of the composition of the rare earth solutes and a function only of the total concentration of solutes present in an equilibrium stage. Bochinski then "pinched" the total solute concentration, thus by assumption 2 holding the separation factors constant. He based his calculations on an oxides per liter basis.

Using Bochinski's method Schoenherr (45) set up a pilot plant separation run. Because of the aforementioned phase separation and emulsion formation problems he acidified the system with nitric acid. The stages were preloaded with a fixed nitric acid concentration, the feed and strip were also
at this acid concentration, and the organic was pre-equilibrated with an aqueous of the specified acidity. Under these conditions it was hoped that the acid concentration in the system would remain constant and Bochinski's method could be used to predict the stagewise rare earth compositions and concentrations. This condition was not realized and it was found that the acid, if included, must be considered as a solute. Schoenherr (46), Sharp (47), and Dinnin (48) then collected distribution data for various acidified systems, the object being to predict the equilibrium of the complex acidified systems of interest.

The project described in this thesis is essentially a continuation of this work carried out at the Ames Laboratory. After a consideration of the state of development of the field of thermodynamic chemistry applied to concentrated, multicomponent ionic solutions, it was the opinion of the author that an empirical approach of this type was more likely to yield a realistic design procedure than the thermodynamic equilibrium constant approach.

METHOD OF CALCULATION

In this section the proposed calculation method will be discussed in detail. The data used in the calculation method are single stage "shake-up" distributions for the systems

| I | $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ |
| ---: | :--- | :--- |
| II | $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ |
| III | $\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ |
| IV | $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ |
| V | $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$, |
| VI | $\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$, |
| VII | $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$, | The data for systems $I, I I, V, V I$, and VII were collected by the author by the method described in detail by Sharp (47). The bulk of the data for systems III and IV were taken from the work of Schoenherr (46), supplemented to a small degree by work of the author. A complete compilation of the equilibrium data used is given in Appendix B.

Equilibrium Phase Calculation

The method to be discussed in this section is the calculation of all concentrations of one equilibrium phase with all concentrations of the contacting phase specified. The general procedure was:
(1) to obtain values of K_{t} and $\mathrm{K}_{\mathrm{HNO}}^{3}$ by interpolation using data obtained from the contributing two solute systems and then use the defining equations

$$
\begin{align*}
& \mathrm{K}_{\mathrm{t}}=\left(M_{t}\right)_{\mathrm{org}} /\left(M_{t}\right) \mathrm{aq} \tag{4}\\
& \mathrm{~K}_{\mathrm{HNO}_{3}}=\left(\mathrm{M}_{\mathrm{HNO}_{3}}\right) \mathrm{org} . /\left(M_{\mathrm{HNO}_{3}}\right) \text { aq. } \tag{5}\\
& M_{\mathrm{RE}}=M_{t}-M_{\mathrm{HNO}_{3}} \tag{6}
\end{align*}
$$

to calculate the total molality, HNO_{3} molality, and the rare earth molality of the unspecified phase, followed by
(2) the use of separation factors between the rare earths obtained from data for the contributing three solute systems in one of the equations

$$
\begin{align*}
& \left(M_{i}\right)_{\text {org. }}=\frac{\left(M_{R E}\right)_{o r g} \times \beta_{i-\operatorname{Pr}} \times\left(M_{i}\right)_{a q .}}{\sum_{i=1}^{T}\left(\beta_{i-\operatorname{Pr}} \times\left(M_{i}\right)_{a q .}\right)} \tag{7}\\
& \left(M_{i}\right)_{\text {aq. }}=\frac{\left(M_{R E}\right)_{a q .} \times\left(M_{i}\right)_{o r g} .}{\beta_{i-\operatorname{Pr}} \times \sum_{i=1}^{T}\left(\left(M_{i}\right)_{o r g .} / \beta_{i-\operatorname{Pr}}\right)} \tag{8}
\end{align*}
$$

to calculate the rare earth molalities of the unspecified phase. Equations 7 and 8 follow directly from the definition of separation factor and are applicable, of course, only to the rare earths present.

Considering this calculation in more detail, the data from systems I, II, III, and IV were processed to give a series of plots of K_{t} and $\mathrm{K}_{\mathrm{HNO}}^{3}$ versus the composition of an equilibrium phase with the total molality of the same phase as parameter. Typical plots are shown in Figures 1 through 8. A complete compilation of the values from these plots is given in A_{i} pendix D.

The separation factors from systems V, VI, and VII were plotted versus the total molality of the organic phase as shown in Figure 9. In each case the rare earth separation factors are seen to be, to a good approximation, a function of the total nitrate molality of the equilibrium organic phase and relatively independent of the phase composition. This observation parallels Bochinski's (44) observation of the acid free system. The curves of Figure 9 were fitted to straight lines by the least squares method to give

$$
\begin{align*}
& \beta_{\mathrm{La}-\mathrm{Pr}}=0.8187-0.1106\left(\mathrm{M}_{\mathrm{t}}\right)_{\mathrm{org}} . \tag{9}\\
& \beta_{\mathrm{Nd}-\mathrm{Pr}}=1.0448+0.09874\left(\mathrm{M}_{\mathrm{t}}\right)_{\mathrm{org}} . \tag{10}\\
& \beta_{\mathrm{Sm}-\mathrm{Pr}}=-0.3795+0.9214\left(\mathrm{M}_{\mathrm{t}}\right)_{\text {org }} . \tag{11}
\end{align*}
$$

These correlations were assumed to hold with (M_{t}) org. greater than 1.75 .

At this point a gross assumption was made. It was assumed that Equations 9, 10, and 11 would hold also in the five

Figure 1. Nitric acid distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ HNO_{3} - TBP - $\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the organic phase at $\left(M_{t}\right)_{\text {org. }}$. equal to 3.0

Figure 2. Nitric acid distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ HNO_{3} - TBP - $\mathrm{H}_{2} \mathrm{O}$ systems as a function of the com$\frac{p}{3.5}$ ition of the organic phase at $\left(M_{t}\right)$ org. equal to 3.5

Figure 3. Total distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the organic phase at $\left(M_{t}\right)$ org. equal to 3.0

Figure 4. Total distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the organic phase at $\left(M_{t}\right)$ org. equal to 3.5

Figure 5. Nitric acid distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the aqueous phase at $\left(M_{t}\right)_{\text {aq. }}$ equal to 5.0

Figure 6. Nitric acid distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-$ TBP $-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the aqueous phase at $\left(M_{t}\right)$ aq. equal to 7.0

Figure 7. Total distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the aqueous phase at (M_{t}) aq. equal to 5.0

Figure 8. Total distribution coefficient for $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of the composition of the aqueous phase at $\left(M_{t}\right)$ aq. equal to 7.0

Figure 9. Separation factor between $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ and $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}$ for $\mathrm{BE}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ systems as a function of concentration of the organic phase
solute system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-$ TBP - $\mathrm{H}_{2} \mathrm{O}$. The limitations of such a sweeping assumption may only be ascertained empirically, therefore the usefulness of the approximation must be judged by the comparison with experimental results in the Verification of Model section.

Sample calculation

A sample calculation is now given to illustrate this method. It was assumed that an equilibrium organic phase has the following concentrations:

$$
\begin{aligned}
& \left(M_{t}\right)_{\text {org }}=3.0261 \\
& \left(M_{\mathrm{HNO}_{3}}\right)_{\text {org }}=2.3590 \\
& \left(M_{\mathrm{La}}\right)_{\text {org. }}=0.0397 \\
& \left(M_{\mathrm{Pr}}\right)_{\text {org }}=0.0460 \\
& \left(M_{\mathrm{Nd}}\right)_{\text {org }}=0.0706 \\
& \left(M_{\mathrm{Sm}}\right)_{\text {org }}=0.5108 \\
& \left(M_{\mathrm{RE}}\right)_{\text {org }}=0.6671
\end{aligned}
$$

From these data were calculated
$\mathrm{Y}_{\mathrm{HNO}_{3}}=\left(\mathrm{M}_{\mathrm{HNO}_{3}}\right)_{\text {org. }} /\left(\mathrm{M}_{\mathrm{t}}\right)_{\text {org. }}=2.3590 / 3.0261=0.7796$,
$Y_{\text {RE }}=\left(M_{R E}\right)_{\text {org. }} /\left(M_{t}\right)_{\text {org. }}=0.6671 / 3.0261=0.2204$,
$y_{\text {La }}=\left(M_{\text {La }}\right)_{\text {org. }} /\left(M_{\text {RE }}\right)_{\text {org. }}=0.0397 / 0.6671=0.0595$,
$y_{\operatorname{Pr}}=\left(M_{\operatorname{Pr}}\right)_{\text {org. }} /\left(M_{\text {RE }}\right)_{\text {org }}=0.0460 / 0.6671=0.0690$
$y_{N d}=\left(M_{N d}\right)_{\text {org } .} /\left(M_{\text {RE }}\right)_{\text {org }}=0.0706 / 0.6671=0.1058$
$y_{\text {Sm }}=\left(M_{\text {Sm }}\right)_{\text {org. }} /\left(M_{\text {RE }}\right)_{\text {org }}=0.5108 / 0.6671=0.7657 \quad$.
To obtain the value of K_{t} it was first assumed that all the rare earth nitrates present were $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$. That is, $\mathrm{Y}_{\mathrm{RE}}=$ $Y_{\text {La }}=0.2204$. Then, by straight line interpolation between the total molality parameters of Figures 3 and 4, a value of K_{t} was obtained that would hold for the case of $\left(M_{t}\right)$ org. $=$ 3.0261 and $Y_{R E}=Y_{L a}=0.2204$. This was $K_{t}=0.4031$. Exactly the same procedure was then followed to get values for K_{t} assuming, in succession, that all the rare earths present were $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}$, and $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}$. To then get the K_{t} used in the calculation each K_{t} derived from the assumption of only one rare earth solute was multiplied by the fraction of the rare earths present as that particular solute. In other words, the contribution from the $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ system to the final value of K_{t} was assumed to be equal to the value of K_{t} for the $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ system multiplied by y_{La}. Or arithmetically, the contribution was $(0.4031) \times(0.0595)=$ 0.0240. The sum of the four contributions was then the value of K_{t} used.

Exactly the same procedure, using Figures 1 and 2 was then used to get a value of $\mathrm{K}_{\mathrm{HNO}}^{3}$ for the case in question.

The values so obtained were

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{t}}=0.5200 \\
& \mathrm{~K}_{\mathrm{HNO}_{3}}=0.6114
\end{aligned}
$$

The values of $\left(M_{t}\right)_{\text {aq. }},\left(M_{H_{N O}}\right)_{\text {aq. }}$, and $\left(M_{R E}\right)_{\text {aq. }}$. were then calculated from Equations 4,5 and 6 to be

$$
\begin{aligned}
& \left(M_{t}\right)_{\text {aq. }}=\left(M_{\mathrm{t}}\right)_{\mathrm{org} .} / \mathrm{K}_{\mathrm{t}}=3.0261 / 0.5200=5.8194 \\
& \left(M_{\mathrm{HNO}_{3}}\right)_{\mathrm{aq} .}=\left(M_{\mathrm{HNO}_{3}}\right)_{\mathrm{org} .} / \mathrm{K}_{\mathrm{HNO}_{3}}=2.3590 / 0.6114=3.8584, \\
& \left(M_{\mathrm{RE}}\right)_{\mathrm{aq} .}=\left(M_{\mathrm{t}}\right)_{\mathrm{aq} .}-\left(M_{\mathrm{HNO}_{3}}\right)_{\mathrm{aq} .}=5.8194-3.8584=1.9610
\end{aligned}
$$

$$
\text { Using }\left(M_{t}\right)_{\text {org. }}=3.0261 \text { the separation factors were }
$$

calculated as

$$
\begin{aligned}
& { }^{\beta_{\mathrm{La}-\mathrm{Pr}}=0.4840} \\
& \beta_{\mathrm{Nd}-\mathrm{Pr}}=1.3436, \\
& { }^{\beta_{\mathrm{Sm}-\mathrm{Pr}}=2.4087},
\end{aligned}
$$

Note that, by definition, $\beta_{\operatorname{Pr}-\operatorname{Pr}}$ is equal to 1.0 .
The rare earth molalities of the aqueous phase were then calculated by Equation 8 as follows:

$$
\begin{aligned}
\sum_{i=1}^{T}\left(\left(M_{i}\right)_{\text {org. }} / \beta_{i-\mathrm{Pr}}\right)= & \left(M_{\text {La }}\right)_{\text {org. }} / \beta_{\text {La-Pr }}+\left(M_{\mathrm{Pr}}\right)_{\text {org }} / \beta_{\mathrm{Pr}-\mathrm{Pr}}+ \\
& \left(M_{\mathrm{Nd}}\right)_{\text {org. }} / \beta_{\mathrm{Nd}-\mathrm{Pr}}+\left(M_{\mathrm{Sm}}\right)_{\text {org. }} / \beta_{\mathrm{Sm}-\mathrm{Pr}}, \\
\sum_{i=1}^{T}\left(\left(M_{i}\right)_{\text {org }} . / \beta_{\text {i-Pr }}\right)= & 0.0397 / 0.4840+0.0460 / 1.0000+ \\
& 0.0706 / 1.3436+0.5108 / 2.4087
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=1}^{T}\left(\left(M_{i}\right) \text { org. } / \beta_{i-\mathrm{Pr}}\right)=0.3926 \\
& \left(M_{\text {La }}\right)_{\text {aq. }}=\frac{\left(M_{\text {RE }}\right)_{\text {aq. }} \times\left(M_{\text {La }}\right)_{\text {org. }} .}{\beta_{\text {La- } \operatorname{Pr}} \times \sum_{i=1}^{T}\left(\left(M_{i}\right)_{\text {org. }} / \beta_{i-P r}\right)} \\
& =\frac{(1.9610)(0.0397)}{(0.4840)(0.3926)}=0.4097
\end{aligned}
$$

and in exactly the same manner

$$
\begin{aligned}
& \left(\mathrm{M}_{\mathrm{Pr}}\right)_{\text {aq. }}=0.2298, \\
& \left(\mathrm{M}_{\mathrm{NQ}}\right)_{\text {aq. }}=0.2625, \\
& \left(\mathrm{M}_{\mathrm{Sm}}\right)_{\text {aq. }}=1.0592,
\end{aligned}
$$

If the reverse calculation had been desired, the same procedure would have been followed, first using plots of the type portrayed in Figures 5, 6, 7, and 8 to get K_{t} and $\mathrm{K}_{\mathrm{HNO}_{3}}$, calculating then $\left(M_{t}\right)_{\text {org. }},\left(M_{H_{N O}}\right)_{\text {org. }}$, and ($\left.M_{R E}\right)_{\text {org., }}$, and then, after calculating the separation factors, using Equation 7 to calculate the rare earth molalities.

Application to Multistage Calculations

It was desired to apply the model to the calculation of the stagewise conditions in an ideal multistage cascade. Referring to Figures 10 and 11 it is seen that if any point on

Figure 10. Cascade I

Figure 11. Cascade II
the operating line is known, that is, if two streams passing each other are completely defined, the conditions for any number of stages may be calculated "backwards" through the column if the operating line equation is known. The direction such a calculation would follow is shown by the dashed arrows in Figures 10 and ll. Obviously, but to ensure clarity, the calculation would be composed of alternating applications of the equilibrium model and the operating line.

In the present work, the assumption of mutual immiscibility of water and TBP was made. Writing a general operating line for the cascade pictured in Figure 10 gives

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lll}
\left(M_{i}\right)_{S_{0}} & x & S_{0}
\end{array}\right]+\left[\left(M_{i}\right)_{R_{n}}\right.} & x
\end{array} R_{n}\right]=\left[\begin{array}{lll}
\left(M_{i}\right)_{S_{n-1}} & x & S_{n-1}
\end{array}\right]+.
$$

By the assumption of mutual immiscibility $S_{0}=S_{n-1}$ and $R_{n}=$ R_{1} and so the subscripts may be deleted, and after rearrangement

$$
\begin{equation*}
\left(M_{i}\right)_{R_{n}}=\alpha\left(M_{i}\right)_{S_{n-1}}-\alpha\left(M_{i}\right)_{S_{0}}+\left(M_{i}\right)_{R_{1}} \tag{13}
\end{equation*}
$$

The assumption of mutual immiscibility of water and TBP was felt to be justified. The solubility of TBP in water is very low, on the order of tenths of a gram per liter, and the solubility of water in TBP does not exceed approximately six percent by weight. Because the solvent is normally equi-
librated with water before use, the assumption of constant water content does not introduce a large error.

Using the proposed equilibrium model and operating lines of the form of Equation 13 several calculations of the stagewise conditions in various cascades were carried out. The procedure was to arbitrarily choose the end conditions, either R_{1} and S_{0} for the cascade in Figure 10 , or R_{0} and S_{1} for the cascade in Figure ll, and then to proceed as explained previously. The purposes of these calculations were to obtain a "feel" for the possible separations that could be made with the system and to select several predictions for experimental verification.

At this point an unexpected problem arose. In several of the calculations the total molality was "pinched" at a high value. This was done to impress high separation factors on the system, since, with the equilibrium model proposed the separation factors increase with increased total concentration. In each case in which this was done the individual concentrations also quickly "pinched". When the end conditions and flow ratio were chosen so that the total concentration changed from stage to stage no such "pinch" of the individual solutes was calculated.

The study of this "pinch" based on the limit of a sequence that can be written describing the molality of a general component in successive streams of a cascade is an inter-
esting problem the author has not been able to solve completely. A discussion of this approach is given in Appendix C.

As the stagewise calculation is quite tedious and time consuming, four digital computor programs were written for various cascades of interest. These programs were compiled and debugged on the IBM 7074. Although some calculations were made with each program they are intended primarily for future use in design and optimization studies, and as guides for further programming. A complete discussion of these programs is given in Appendix D.

VERIFICATION OF MODEL

A specification of the source and method of preparation of the materials used in the experimental phase of this project follows:

Tributyl phosphate Commercial grade TBP, obtained from Commercial Solvents Corporation, was pre-equilibrated with distilled water before use as the solvent. The TBP was stored in contact with a water phase to ensure equilibrium.

Nitric acid Reagent grade nitric acid was used in all laboratory work.

Rare earth nitrate solutions The oxides of La, Pr, Nd , and Sm, 99.9 percent pure, were obtained from the ion exchange group of the Ames Laboratory of the Atomic Energy Commission. Stock nitrate solutions of each rare earth were prepared by dissolving the oxides in boiling, concentrated nitric acid. After complete reaction, the excess nitric acid was boiled off and distilled water added. All feed solutions for the simulated column experiments were prepared by mixing these stock solutions, reagent grade concentrated nitric acid and distilled water.

As mentioned previously, the simulated column technique was used to obtain experimental stagewise conditions for comparison with the predicted values. Briefly, a simulated column experiment is a batchwise approximation to a continuous counter-
current cascade. The error in the approximation may be made arbitrarily small by increasing the number of cycles the experiment is run. The mechanics and mathematical demonstrations involved will not be gone into here as this technique has been discussed extensively by Scheibel ($49,50,51,52$).

Four of the prediction calculations discussed in the Method of Calculation section were chosen for simulation. The experiments were carried out in laboratory glassware at room temperature, using $1 / 100$ horsepower laboratory stirrers for the mixing steps. A minimum of two minutes mixing and three minutes settling time was maintained for each contact.

Along with the phases from the final cycle, the leaving aqueous phase from each cycle was retained and analyzed as a check on the approach to steady state. In all cases the number of cycles was felt to be sufficient.

All organic and aqueous phases from the final cycle were analyzed for total oxides, nitric acid content, and rare earth composition. The analytical methods used are discussed in Appendix A.

A complete compilation of the experimental conditions and the final experimental-predicted comparisons from these four simulations is given on pages 32 to 52. In each case, the first figure gives all pertinent experimental conditions, including the simulation pattern and the continuous cascade being simu-
lated, and is followed by both tabular and graphic experimen-tal-predicted concentration and composition comparisons.

Figure 12. General information pertaining to Simulated Column Experiment I

Table l. Comparison of experimental and predicted compositions and concentrations for Simulated Column Experiment I

	$\begin{aligned} & \text { Weight ot } \\ & \mathrm{La}_{2} \mathrm{O}_{3} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \text { exp. pred. } \end{aligned}$	$\begin{aligned} & \text { Weight o\% } \\ & \mathrm{Pr}_{6} \mathrm{O}_{11} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \text { exp. pred. } \end{aligned}$	$\begin{aligned} & \text { Weight o } \\ & \mathrm{Nd}_{2} \mathrm{O}_{3} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \text { exp. pred. } \end{aligned}$	$\begin{aligned} & \text { Weight \% } \\ & \mathrm{Sm}_{2} \mathrm{O}_{3} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \text { exp. pred. } \end{aligned}$	Grams total oxides per gram of solution exp. pred.	Grams HNO_{3} per gram of $\frac{\text { solution }}{\text { exp. pred. }}$
R_{1}	32.332 .3	25.225 .3	25.625 .0	17.017 .3	0.1910 .195	0.0390 .037
R_{2}	30.029 .5	26.824 .8	25.025 .6	18.220 .1	0.2080 .211	0.0550 .053
R_{3}	28.029 .2	25.424 .5	25.925 .4	20.721 .0	0.2060 .208	0.0600 .060
R_{4}	28.829 .3	24.724 .4	25.725 .3	20.821 .1	0.2040 .207	0.0620 .062
R_{5}	28.429 .3	26.424 .4	25.425 .2	19.821 .0	0.2040 .207	0.0620 .062
R_{6}	29.929 .3	25.224 .4	25.025 .2	19.921 .0	0.2030 .207	0.0620 .063
R_{7}	29.729 .3	24.824 .4	25.425 .2	20.221 .0	0.2020 .207	0.0620 .063
R_{8}	29.129 .3	24.424 .4	28.825 .2	17.821 .0	0.2020 .207	0.0620 .063
R_{9}	29.229 .3	24.824 .4	26.525 .2	19.521 .0	0.2020 .207	0.0620 .063
R_{10}	30.129 .3	24.924 .4	26.025 .2	18.921 .0	0.2050 .207	0.0620 .063
R_{11}	29.029 .3	24.924 .4	26.525 .2	19.621 .0	0.2040 .207	0.0620 .063
S_{1}	12.113 .1	22.421 .6	28.428 .8	37.136 .6	0.0880 .088	0.0540 .054

Table 1 (Continued)

	Weight \% $\mathrm{La}_{2} \mathrm{O}_{3}$ in total oxides	Weight \% $\begin{aligned} & \mathrm{Pr}_{6}{ }^{0} 11 \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \end{aligned}$	Weight \% $\mathrm{Nd}_{2} \mathrm{O}_{3}$ in total oxides	Weight \% $\mathrm{Sm}_{2} \mathrm{O}_{3}$ in total oxides	Grams total oxides per gram of solution	Grams HNO_{3} per gram of solution
	exp. pred.					
S_{2}	8.010 .0	19.919 .1	28.827 .4	43.343 .5	0.0850 .083	0.0710 .074
S_{3}	9.49 .6	18.818 .6	28.126 .7	43.845 .2	0.0820 .080	0.0760 .080
S_{4}	9.39 .5	19.118 .5	27.526 .6	44.145 .4	0.0810 .078	0.0780 .082
S_{5}	9.49 .6	19.018 .5	27.126 .6	44.545 .4	0.0800 .078	0.0780 .083
S_{6}	10.09 .6	18.718 .5	27.026 .6	44.445 .3	0.0810 .078	0.0780 .083
S_{7}	10.19 .6	19.018 .5	27.226 .6	43.645 .3	0.0800 .078	0.0780 .083
S_{8}	$7.5 \quad 9.6$	20.518 .5	28.326 .6	43.745 .3	0.0810 .078	0.0780 .083
S_{9}	10.29 .6	19.018 .5	26.026 .6	44.845 .3	0.0810 .078	0.0770 .083
S_{10}	8.29 .6	19.818 .5	27.526 .6	44.545 .3	0.0810 .078	0.0770 .083

Figure 13. Stagewise aqueous rare earth oxide composition for Simulated Column Experiment I

Figure 14. Stagewise organic rare earth oxide composition for Simulated Colum Experiment I

Figure 15. Stagewise organic rare earth oxide and nitric acid concentrations for Simulated Column Experiment I

GRAMS SOLUTE / GRAM SOLUTION

Figure 16. Stagewise aqueous rare earth oxide and nitric acid concentrations for Simulated Column Experiment I

TOTAL NUMBER OF CYCLES - 10
VOLUME $\mathrm{B}_{\mathrm{O}} /$ INJECTION $=30.0 \mathrm{ml}$. VOLUME $\mathrm{S}_{11} /$ INJECTION $=245.2 \mathrm{ml}$. VOLUME F/INJECTION $=215.6 \mathrm{ml}$.

$$
\overline{\text { CONTINUOUS CASCADE }}
$$

, FLOW RATE RATIO $=\alpha=8.0$
, CONCENTRATION $\mathrm{R}_{\mathrm{O}}: \mathrm{M}_{\mathrm{HNO}}^{3}$ $=0.00, \mathrm{M}_{\mathrm{RE}}=0.00$
, CONCENTRATION $\mathrm{S}_{11}: \mathrm{MHNO}_{3}=0.00, \mathrm{M}_{\mathrm{RE}}=0.00$
, CONCENTRATION $\mathrm{F}: \mathrm{MHNO}_{3}=6.66, \mathrm{M}_{\mathrm{RE}}=11.69$
SIMULATED .

Figure 17. General information pertaining to Simulated Column Experiment II

Table 2. Comparison of experimental and predicted compositions and concentrations for Simulated Column Experiment II

	$\begin{aligned} & \text { Weight \% } \\ & \text { La }_{2} 0_{3} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \text { exp. pred. } \end{aligned}$	$\begin{aligned} & \text { Weight \% } \\ & \mathrm{Pr}_{6} \mathrm{O}_{11} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \end{aligned}$		Weight \% $\mathrm{Nd}_{2} \mathrm{O}_{3}$ in total oxides		Weight \% $\mathrm{Sm}_{2} \mathrm{O}_{3}$ in total oxides exp. pred.	Grams total oxides per gram of solution		Grams HNO_{3} per gram of solution
R_{1}	7.311 .2	10.4	9.5	11.4	12.1	70.967 .3	0.052	0.058	0.1390 .136
R_{2}	14.619 .9	12.9	11.7	11.9	13.2	60.655 .2	0.072	0.076	0.1680 .167
R_{3}	26.431 .0	15.0	12.3	10.5	12.6	48.244 .1	0.087	0.092	0.1720 .171
R_{4}	37.443 .4	14.7	11.5	8.6	10.9	39.334 .2	0.103	0.108	0.1650 .164
R_{5}	50.655 .4	12.0	9.8	7.0	8.7	30.426 .0	0.122	0.126	0.1520 .151
R_{6}	62.865 .8	9.8	7.9	4.2	6.7	23.219 .6	0.140	0.145	0.1360 .136
R_{7}	72.974 .0	7.5	6.1	2.6	5.1	17.014 .9	0.163	0.166	0.1170 .119
R_{8}	82.380 .0	3.4	4.6	1.2	3.9	13.211 .4	0.184	0.186	0.1020 .104
R_{9}	81.384 .4	6.1	3.6	2.5	3.1	10.18 .9	0.204	0.207	0.0880 .090
R_{10}	86.487 .8	5.8	2.8	1.9	2.4	5.87 .0	0.220	0.228	0.0760 .077
F	83.081 .2	2.9	3.0	0.8	3.0	13.212 .8	0.235	0.238	0.1530 .156
S_{1}	0.03 .8	5.7	5.9	10.8	9.7	83.580 .6	0.023	0.024	0.1080 .107

Table 2 (Continued)

	$\begin{aligned} & \text { Weight \% } \\ & \mathrm{La}_{2} \mathrm{O}_{3} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \text { exp. pred. } \end{aligned}$	$\begin{aligned} & \text { Weight \% } \\ & \mathrm{Pr}_{6} 0_{11} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \end{aligned}$		$\begin{array}{r} \text { Weigh } \\ \mathrm{Nd}_{2} \mathrm{O}_{3} \\ \text { tota } \\ \text { oxid } \\ \hline \text { exp. } \end{array}$	$\begin{aligned} & \text { it \% } \\ & \text { in } \\ & \text { in } \\ & \text { les } \\ & \hline \text { pred. } \end{aligned}$	Weight \% $\mathrm{Sm}_{2} \mathrm{O}_{3}$ in total $\frac{\text { oxides }}{\text { exp. pred. }}$	$\begin{aligned} & \text { Gram } \\ & \text { oxid } \\ & \text { gram } \\ & \text { lu } \\ & \hline \text { exp } \end{aligned}$	total ser of $\mathrm{so}-$ ion pred.	$\begin{aligned} & \text { Grams } \mathrm{HNO}_{3} \\ & \text { per gram of } \\ & \text { solution } \\ & \text { exp. pred. } \end{aligned}$
S_{2}	3.45 .6	7.1	6.8	11.9	10.3	77.677 .3	0.029	0.031	0.1240 .122
S_{3}	6.59 .0	8.2	7.8	12.5	10.9	72.872 .3	0.032	0.035	0.1270 .126
S_{4}	10.514 .1	8.9	8.4	12.4	10.8	68.366 .7	0.034	0.037	0.1290 .127
S_{5}	18.620 .7	9.2	8.3	11.2	10.2	61.060 .7	0.037	0.040	0.1280 .126
S_{6}	25.528 .3	9.3	7.8	10.5	9.3	54.654 .6	0.040	0.044	0.1260 .125
S_{7}	36.336 .1	7.4	6.9	9.9	8.2	46.548 .8	0.044	0.047	0.124 .0 .122
S_{8}	45.443 .4	5.7	6.0	8.4	7.1	40.543 .5	0.047	0.052	0.1210 .119
S_{9}	51.249 .8	5.4	5.1	7.5	6.2	35.938 .8	0.052	0.056	0.1170 .116
S_{10}	50.755 .5	5.0	4.4	$5 \cdot 7$	5.5	38.634 .6	0.057	0.062	$0.115 \cdot 0.114$

Figure 18. Stagewise aqueous rare earth oxide composition for Simulated Column Experiment II

Figure 19. Stagewise organic rare earth oxide composition for Simulated Column Experiment II

Figure 20. Stagewise organic rare earth oxide and nitric acid concentrations for Simulated Column Experiment II

Figure 2l. Stagewise aqueous rare earth oxide and nitric acid concentrations for Simulated Column Experiment II

Figure 22. General information pertaining to Simulated Column Experiment III

Table 3. Comparison of experimental and predicted compositions and concentrations for Simulated Column Experiment III

	Weight \% $\mathrm{La}_{2} \mathrm{O}_{3}$ in total oxides	$\begin{aligned} & \text { Weight o } \\ & \mathrm{Pr}_{6} \mathrm{O}_{11} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \end{aligned}$		Weight \% $\mathrm{Nd}_{2} \mathrm{O}_{3}$ in total oxides		Weight \% $\mathrm{Sm}_{2} \mathrm{O}_{3}$ in total oxides		Grams total oxides per gram of solution		Grams HNO_{3} per gram of solution	
	exp. pred.	exp.	pred.								
S_{1}	65.866 .8	10.5	11.4	11.5	12.1	12.3	9.7	0.049	0.060	0.044	0.031
S_{2}	43.747 .4	12.8	12.8	16.7	16.7	26.8	23.1	0.050	0.061	0.098	0.083
S_{3}	29.128 .5	10.7	11.1	17.0	17.4	43.3	43.1	0.039	0.046	0.137	0.128
S_{4}	26.919 .6	7.1	8.2	13.5	14.1	52.5	58.1	0.032	0.035	0.156	0.154
S_{5}	17.017 .8	6.7	6.7	10.2	11.3	66.0	64.3	0.030	0.030	0.163	0.166
R_{1}	79.679 .3	8.2	8.3	7.4	7.2	4.9	5.3	0.118	0.127	0.025	0.016
R_{2}	77.873 .7	9.3	9.7	5.2	9.4	7.7	7.3	0.163	0.183	0.081	0.055
R_{3}	64.564 .3	10.2	10.4	11.3	11.6	13.9	13.6	0.158	0.174	0.148	0.122
R_{4}	61.858 .7	8.7	9.4	9.9	11.3	19.5	20.6	0.139	0.151	0.199	0.182
R_{5}	62.458 .8	7.8	8.3	8.6	9.5	21.2	23.4	0.130	0.136	0.223	0.216
R_{6}	63.960 .4 .	7.1	7.8	7.5	8.4	21.4	23.4	0.126	0.128	0.232	0.232

Figure 23. Stagewise aqueous rare earth oxide composition for Simulated Column Experiment III

Figure 24. Stagewise organic rare earth oxide composition for Simulated Column Experiment III

\section*{| Z |
| :--- | :--- | :--- | :--- |}

Figure 25. Stagewise organic rare earth oxide and nitric acid concentrations for Simulated Column Experiment III

Figure 26. Stagewise aqueous rare earth oxide and nitric acid concentrations for Simulated Column Experiment III

SIMULATION PATTERN

TOTAL NUMBER OF CYCLES - 10
TOTAL NUMBER OF CYCLES - 10
, FLOW RATE BATIO $=\alpha=1.0$
VOLUME R / INJECTION = 54.2 ml.
VOLUME R / INJECTION = 54.2 ml.
, CONCENTRATION $\mathrm{R}_{\mathrm{o}}: \mathrm{M}_{\mathrm{HNO}_{3}}=4.97, \mathrm{M}_{\mathrm{RE}}=7.15$
, CONCENTRATION $\mathrm{S}_{6}: \mathrm{M}_{\mathrm{HNO}_{3}}=0.00, \mathrm{M}_{\mathrm{RE}}=0.00$
CONTINUOUS CASCADE BEING SIMULATED

Table 4. Comparison of experimental and predicted compositions and concentrations for Simulated Column Experiment IV

	$\begin{gathered} \text { Weight \% } \\ \mathrm{La}_{2} \mathrm{O}_{3} \text { in } \\ \text { total. } \\ \text { oxides } \\ \hline \end{gathered}$	$\begin{gathered} \text { Weight } \neq 0 \\ \mathrm{Pr}_{6} \mathrm{O}_{11} \text { in } \\ \text { total } \\ \text { oxides } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Weight \% } \\ & \mathrm{Nd}_{2} \mathrm{O}_{3} \text { in } \\ & \text { total } \\ & \text { oxides } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Weight \% } \\ \mathrm{Sm}_{2} \mathrm{O}_{3} \text { in } \\ \text { total } \\ \text { oxides } \\ \hline \end{gathered}$	Grams total oxides per gram of solution		Grams HNO_{3} per gram of solution	
	exp. pred.	exp. pred.	exp. pred.	exp. pred.	exp.	pred.	exp.	pred.
S_{1}	7.09 .1	17.919 .0	21.821 .8	53.450 .0	0.052	0.050	0.136	0.142
S_{2}	6.99 .1	17.919 .0	22.321 .9	52.950 .1	0.053	0.050	0.135	0.142
S_{3}	7.19 .1	18.219 .2	22.722 .2	51.949 .5	0.054	0.052	0.132	0.138
S_{4}	7.710 .1	19.720 .7	25.123 .6	47.545 .7	0.059	0.058	0.122	0.127
S_{5}	14.316 .0	24.524 .7	27.625 .2	33.634 .1	0.067	0.067	0.088	0.090
R_{0}	34.0	25.8	20.4	19.8		0.191		0.149
R_{1}	33.434 .0	23.925 .8	20.720 .4	22.019 .9	0.193	0.191	0.147	0.149
R_{2}	33.233 .9	24.225 .8	21.720 .5	21.019 .9	0.194	0.192	0.145	0.147
R_{3}	33.533 .6	25.925 .9	21.920 .7	18.819 .7	0.197	0.196	0.138	0.140
R_{4}	34.834 .3	25.826 .6	22.021 .1	17.418 .0	0.204	0.204	0.118	0.117
R_{5}	36.438 .9	24.627 .1	21.820 .1	17.213 .9	0.185	0.188	0.072	0.071

Figure 29. Stagewise aqueous rare earth oxide composition for Simulated Column Experiment IV

Figure 30. Stagewise organic rare earth oxide and nitric acid concentrations for Simulated Column Experiment IV

Figure 31. Stagewise organic rare earth oxide composition for Simulated Column Experiment IV

CONCLUSIONS

1. The calculation method developed for the multistage multisolute system gave good agreement with experimental data from four simulated column experiments. The conditions for each of the four simulated column experiments were quite different, and the agreement between predicted values and experimental data was believed to be a valid test of the method.
2. The assumption made that the separation factor between two rare earth nitrate solutes was a function only of the total molality of the organic phase, when $\left(M_{t}\right)$ org. was greater than l.75, was found to give surprisingly reliable results. The reason for the validity of this assumption is not known, but it appears to be a good approximation.
3. The digital computor technique for deriving distribution coefficients from a series of arrays was accurate and convenient. The technique makes it possible to use experimentally determined equilibrium data directly in the computor solution rather than introduce the data in terms of a mathematical correlation.
4. The digital computor programs for stage by stage calculations should make it possible to carry out various studies on the effects of process variables, such as the effect of acidity of an internal feed stage on recovery in an
end stream, etc. Such studies without the use of machine calculations would be prohibitively time consuming.
5. The flame spectroscopic analytical technique developed by the analytical chemistry group headed by Dr. V. A. Fassel of the Ames Laboratory of the Atomic Energy Commission has been found to give reliable results for each of the rare earths used in this study. The fact that lanthanum can now be determined directly, rather than by difference, is a significant scientific advance in studies of this type.

RECOMMENDATIONS FOR FUTURE WORK

There are several logical extensions of the present work, the most straightforward being an incorporation into the calculation method of systems with a greater number of rare earth nitrate solutes.

Assuming that it was desired to incorporate a rare earth nitrate solute denoted $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ into the method it would be necessary to acquire single stage equilibrium data for the systems $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Pr}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ by the methods described by Sharp (47). These data could then be processed in the manner described in the Method of Calculation section, and the calculation for the six solute system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}$ - $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ would follow exactly the steps also given in that section. Also, the modification of the computor programs for the six solute system would be completely straightforward, as no changes would be made in the logic flow as described in Appendix D.

Such incorporation might be a worthwhile program if it was desired to apply this work to the design of ore processing equipment.

An interesting computor extension would be the writing of a program for a center fed cascade, the calculation to
start from both ends from an initial assumption of end conditions, and, continuously modifying the end concentrations, repeat the calculation a large number of times, endeavoring to match all concentrations at the feed stage.

There are also possibilities of using the existing computor programs, plus others that could be written, in various optimization studies. Because of the large number of variables such a project would probably have to have a statistical basis, and would probably be primarily of academic interest.

BIBLIOGRAPHY

1. Vickery, R. C. Chemistry of the lanthanons. London, Butterworths Scientific Publications. 1953.
2. Spedding, F. H. and Daane, A. H., eds. The rare earths. New York, N. Y., John Wiley and Sons, Inc. 1961.
3. Kleber, E. V., ed. Rare earth research. New York, N. Y, The Macmillan Company. 1961.
4. Gibson, J. A., Miller, J. F., Kennedy, P. S., and Rengstorff, G. W. P., eds. Compilation of the properties of the rare earth metals and compounds. Columbus, Ohio, Battelle Memorial Institute. 1959.
5. Berard, Michael F. The discovery and development of the lanthanon rare earths. U. S. Atomic Energy Commission Report IS-447 (Iowa State Univ. of Science and Technology, Ames. Inst. for Atomic Research). 1962.
6. Mintern, R. A. New uses for the rare earths. New Scientist 285: 225-227. 1962.
7. Spedding, F. H. Rare earths. Intern. Sci. Technol. 4: 39-46. 1962.
8. Spedding, F. H. and Powell, J. E. Methods for separating rare earth elements in quantity as developed at Iowa State College. Am. Inst. of Min. Engr. Trans. 200: ll311135. 1954.
9. Fischer. W., Dietz, W., and Jubermann, O. Ein neues Verfahren zur Trennung der selten Erden. Die Naturwissenschaften 25: 348. 1937. (Original available but not translated; abstracted in Chem. Abstr. 32: 2859. 1938).
10. Appleton, D. B. and Selwood, P. W. Fractional partition of rare earths. Am. Chem. Soc. J. 63: 2029. 1941.
11. Templeton, Charles C. The distribution of rare earth nitrates between water and n-hexyl alcohol at 25°. Am. Chem. Soc. J. 71: 2187-2190. 1949.
12. Topp, A. C. Liquid-liquid extraction of neodymium and samarium nitrates. U. S. Atomic Energy Commission Report ORNL-1409 (Oak Ridge National Lab., Tenn.). 1952.
13. Topp, A. C. and Weaver, Boyd. Distribution of rareearth nitrates between tributyl phosphate and nitric acid. U. S. Atomic Energy Commission Report ORNL-1811 (Oak Ridge National Lab., Tenn.). 1954.
14. Peppard, D. F., Mason, G. W., Muier, J. L. and Driscoll, W. J. Fractional extraction of the lanthanides as their di-alkyl ortho phosphates. J. Inorg. Nucl. Chem. 4: 334-343. 1957.
15. Gruzensky, W. G. and Engel, G. T. Separation of yttrium and rare-earth nitrates with the solvent extraction system tri-n-butylamine-3 methyl-2-butanone. Met. Soc. of American Institute of Mining, Metallurgical, and Petroleum Engineers Trans. 215: 738-742. 1959.
16. McKay, H. A. C. and Healy, T. V. Tri-n-butyl orthophosphate (TBP) as an extracting solvent. In Bruce, F. R., Fletcher, J. M., and Hyman, H. H., eds. Progress in nuclear energy. Series III: Process chemistry. Vol. 2. pp. 546-556. New York, N. Y., Pergamon Press. 1958.
17. Blake, C. A., Baes, C. F., Jr., Brown, K. B., Coleman, C. F., and White, J. C. Solvent extraction of uranium and other metals by acidic and neutral organophosphorus compounds. U. N. Intern. Conf. Peaceful Uses At. Energy, 2nd., Geneva, 1958 Proc. 28: 289-298. 1958.
18. Peppard, D. F. Fractionation of rare earths by liquidliquid extraction using phosphorus-based extractants. U. S. Atomic Energy Commission Report TID-13573 (Technical Information Service Extension, AEC). 1961.
19. Marcus, Y. Solvent extraction of inorganic species. Chem. Rev. 63: 139-170. 1963.
20. Healy, T. V. and McKay, H. A. C. The extraction of nitrates by tri-n-butyl phosphate (TBP). II. The nature of the TBP phase. Faraday Soc. Trans. 52: 633-642. 1956.
21. Scargill, D., Alcock, J., Fletcher, J. M., Hesford, E., and McKay, H. A. C. Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates. II. Yttrium and the lower lanthanide nitrates. J. Inorg. Nucl. Chem. 4: 304-314. 1957.
22. Peppard, D. F., Driscoll, W. J., Sironen, R. J., and McCarty, S. Nonmonotonic ordering of lanthanides in
tributyl phosphate-nitric acid extraction systems. J. Inorg. Nucl. Chem. 4: 326-333. 1957.
23. Hesford, E. and McKay, H. A. C. The extraction of nitrates by tri-n-butyl phosphate (TBP). III. Extraction at trace concentrations. Faraday Soc. Trans. 54: 573-586. 1958.
24. Hesford, E., Jackson, E. E., and McKay, H. A. C. Tri-n-butyl phosphate as an extracting agent for inorganic nitrates. VI. Further results for the rare earth nitrates. J. Inorg. Nucl. Chem. 9: 279-289. 1959.
25. Marcus, Y. Extraction of tracer quantities of uranium (VI) from nitric acid by tri-n-butyl phosphate. J. Phys. Chem. 65: 1647-1648. 1961.
26. Collopy, T. J. and Blum, J. F. Spectrophotometric evidence for complex formation in the tri-n-butyl phosphate-water-nitric acid system. J. Phys. Chem. 64: 1324-1327. 1960.
27. Collopy, T. J. and Cavendish, J. H. Equilibrium constants for the system tri-n-butyl phosphate-water-nitric acid. J. Phys. Chem. 64: 1328-1330. 1960.
28. Kinney, Patric John. An infrared study of the tributyl phosphate-nitric acid-water solvent extraction system. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1963.
29. Rozen, A. M. and Khorkhorina, L. P. On the thermodynamics of extraction by tributyl phosphate. U. S. Atomic Energy Commission Report AEC-tr-4058 (Technical Information Service Extension, AEC): 389-410. 1960.
30. Robinson, R. A. and Stokes, R. H. Electrolyte solutions. New York, N. Y., Academic Press, Inc. 1955.
31. Jury, S. H. and Whatley, M. E. Equilibrium calculation in the system: uranyl nitrate, nitric acid, water, TBP, and kerosene diluent using the Oracle. U. S. Atomic Energy Commission Report CF-59-8-122 (Clinton Labs., Oak Ridge, Tenn.). 1959.
32. Olander, D. R. Tributyl phosphate solvent extraction column design. Ind. Eng. Chem. 53: 1-5. 1961.
33. Weaver, Boyd, Kappleman, F. A., and Topp, A. C. Quantity separation of rare earths by liquid-liquid extraction. I. The first kilogram of gadolinium oxide. Am. Chem. Soc. J. 75: 3943-3945. 1953.
34. Peppard, Donald F. and Mason, George W. Separation of rare earths by solvent extraction. United States Patent 2,955,913. Oct. 11, 1960.
35. Penrod, James Q. Separation of yttrium and the rare earths by liquid-liquid extraction. U. S. Atomic Energy Commission Report TID-6420 (Technical Information Service Extension, AEC). 1958.
36. Lockwood, D. A. Separation of yttrium and the rare earths by liquid-liquid extraction. U. S. Atomic Energy Commission Report TID-11081 (Technical Information Service Extension, AEC). 1958.
37. Lockwood, D. A. Separation of yttrium and the rare earths by liquid-liquid extraction. U. S. Atomic Energy Commission Report TID-11083 (Technical Information Service Extension, AEC). 1958.
38. McCowen, D. Separation of cerium from the organic phase in the liquid-liquid extraction system. U. S. Atomic Energy Commission Report TID-11087 (Technical Information Service Extension, AEC). 1958.
39. Morton, John R. Evaluation of the York-Scheibel liquidliquid contactor for the preparation of a yttrium concentrate for ion exchange column feed. U. S. Atomic Energy Commission Report TID-11088 (Technical Information Service Extension, AEC). 1958.
40. Penrod, James Q. Pilot plant studies on the separation of yttrium and the rare earths by continuous countercurrent liquid-liquid extraction. U. S. Atomic Energy Commission Report TID-11089 (Technical Information Service Extension, AEC). 1958.
41. Lincoln, Patrick A. Separation of yttrium from rare earth concentrates by liquid-liquid extraction. U. S. Atomic Energy Commission Report TID-11094 (Technical Information Service Extension, AEC). 1959.
42. McCowen, L. D. Separation of yttrium and the rare earths by liquid-liquid extraction. U. S. Atomic Energy Commission Report TID-11095 (Technical Information Service Extension, AEC). 1959.
43. McCowen, L. D. The removal of lanthanum oxide from a yttrium oxide concentrate by means of liquid-liquid extraction. U. S. Atomic Energy Commission Report TID11096 (Technical Information Service Extension, AEC). 1959.
44. Bochinski, Julius H. Separation of individual rare earths by liquid-liquid extraction from multicomponent monazite rare earth nitrates. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1954.
45. Schoenherr, R. U. Research Notebook No. 331 ROS-1. (Manuscript) Ames, Iowa, Document Library, Institute for Atomic Research. 1956.
46. Schoenherr, Roman Uhrich. Prediction of equilibria for rare earth nitrate-nitric acid-tributyl phosphate systems. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1959.
47. Sharp, Brooks Martin. Equilibrium of the system lanthanum nitrate-praseodymium nitrate-nitric acid-watertributyl phosphate. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1960.
48. Dinnin, Michael Robert. Equilibrium distribution studies of dysprosium nitrate-erbium nitrate-nitric acid-tributyl phosphate systems. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1960 .
49. Scheibel, Edward G. Fractional liquid extraction. Relation between batchwise and continuous countercurrent extraction. Ind. Eng. Chem. 43: 242-245. 1951.
50. Scheibel, Edward G. Fractional liquid extraction. Approach to steady state conditions. Ind. Eng. Chem. 44: 2942-2944. 1952.
51. Scheibel, Edward G. Calculation of liquid-liquid extraction processes. Ind. Eng. Chem. 46: 16-24. 1954.
52. Scheibel, Edward G. (Batchwise fractional liquid extraction): calculation of deviation from steady state. Ind. Eng. Chem. 46: 43-43. 1954.
53. Boole, George. A treatise on the calculus of finite differences. 3rd ed. London, MacMillan and Co. 1880.
54. Brand, Louis. Advanced calculus. New York, N. Y., John Wiley and Sons, Inc. 1955.

63

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Dr. Morton Smutz for his guidance and encouragement during the author's graduate work.

Special thanks are also due the analytical chemistry group headed by Dr. V. A. Fassel of the Ames Laboratory of the Atomic Energy Commission, and specifically to Dr. Arthur D'Silva and Mrs. Constance Butler for their outstanding cooperation and work on the rare earth oxide analyses associated with the experimental phase of this project.

APPENDIX A. ANALYTICAL PROCEDURES

Weighed samples of each equilibrium phase were analyzed. The solutes in the organic samples were transferred to aqueous solution prior to analysis. This was accomplished by contacting the organic samples a minimum of three times with distilled water. The aqueous phases were combined and analyzed in the same manner as the aqueous phase samples.

For the determination of total rare earths the aqueous sample was diluted to approximately 200 ml . with distilled water, brought to a boil on a hot plate, and the rare earths completely precipitated with a saturated solution of oxalic acid. The oxalates were filtered and converted to the oxides at approximately $870^{\circ} \mathrm{C}$. in a muffle furnace. The weight of the oxides was determined on an analytical balance.

The composition of the final rare earth oxide sample was determined by a flame photometric method developed by members of the analytical chemistry group headed by Dr. V. A. Fassel of the Ames Laboratory of the Atomic Energy Commission.

To determine the nitric acid content, the samples were diluted to approximately 200 ml . and the rare earths present precipitated by addition of an excess of saturated potassium ferrocyanide. The nitric acid content was then determined by titration with standardized sodium hydroxide. An automatic titrater was used and the end point was taken at a pH of 8.7.

It was found that the nitric acid content of aqueous solutions of nitric acid and potassium ferrocyanide diminishes with time. This was thought to be due to oxidation by the acid. To obtain satisfactory analyses for the nitric acid it was necessary to titrate the aqueous solutions of nitric acid, potassium ferrocyanide, and precipitated rare earth ferrocyanides within about 15 minutes after addition of the potassium ferrocyanide solution.

APPENDIX B. EQUILIBRIUM DATA

Table 5. Equilibrium data for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-$ TBP - $\mathrm{H}_{2} \mathrm{O}$

	Aqueous phase			Organic phase		
	$\begin{aligned} & \text { Grams of } \\ & \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{La}\left(\mathrm{NO}_{3}\right)^{\prime} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
1	0.127	0.065	0.808	0.026	0.075	0.899
2	0.170	0.087	0.743	0.035	0.095	0.871
3	0.204	0.112	0.684	0.037	0.113	0.849
4	0.258	0.147	0.595	0.037	0.143	0.820
5	0.309	0.173	0.519	0.035	0.161	0.804
6	0.169	0.036	0.796	0.051	0.054	0.896
7	0.214	0.050	0.736	0.061	0.070	0.869
8	0.278	0.064	0.658	0.074	0.087	0.839
9	0.351	0.082	0.567	0.078	0.112	0.810
10	0.419	0.093	0.488	0.078	0.134	0.788
11	0.070	0.099	0.831	0.011	0.090	0.899
12	0.089	0.131	0.781	0.014	0.115	0.871
13	0.111	0.173	0.716	0.015	0.140	0.845
14	0.142	0.229	0.629	0.013	0.170	0.817
15	0.162	0.283	0.555	0.012	0.191	0.798
16	0.032	0.126	0.842	0.004	0.097	0.898
17	0.046	0.166	0.789	0.006	0.121	0.873
18	0.055	0.232	0.713	0.005	0.154	0.841
19	0.072	0.288	0.640	0.006	0.177	0.817
20	0.089	0.343	0.568	0.005	0.194	0.801
21	0.211	0.013	0.776	0.094	0.027	0.880
22	0.272	0.020	0.709	0.114	0.037	0.849
23	0.342	0.025	0.633	0.131	0.049	0.819
24	0.432	0.031	0.537	0.145	0.066	0.789
25	0.226	0.006	0.768	0.116	0.014	0.869

Table 5 (Continued)

	Aqueous phase			Organic phase		
	Grams of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ per gram of solution	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
26	0.287	0.009	0.704	0.140	0.021	0.839
27	0.360	0.010	0.631	0.169	0.024	0.807
28	0.457	0.012	0.531	0.191	0.034	0.776
29	0.091	0.399	0.511	0.006	0.195	0.799
30	0.102	0.444	0.454	0.008	0.213	0.779
31	0.180	0.332	0.488	0.016	0.209	0.775
32	0.195	0.363	0.443	0.020	0.223	0.757
33	0.110	0.507	0.383	0.016	0.267	0.717
34	0.338	0.210	0.453	0.038	0.187	0.775
35	0.511	0.036	0.453	0.143	0.089	0.768
36	0.531	0.019	0.450	0.7 .77	0.061	0.763
37	0.457	0.111	0.432	0.071	0.156	0.773
38	0.529	0.051	0.420	0.120	0.115	0.765
39	0.358	0.229	0.413	0.042	0.198	0.760
40	0.461	0.138	0.402	0.065	0.170	0.765
41	0.208	0.432	0.360	0.035	0.253	0.712

Table 6. Equilibrium data for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-$ TBP $-\mathrm{H}_{2} \mathrm{O}$

	Aqueous phase			Organic phase		
	$\begin{aligned} & \text { Grams of } \\ & \text { Pr(NO } \left.)_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
1	0.079	0.134	0.787	0.022	0.108	0.870
2	0.099	0.179	0.721	0.027	0.133	0.841
3	0.130	0.237	0.634	0.028	0.160	0.812
4	0.158	0.287	0.554	0.030	0.179	0.792
5	0.173	0.332	0.495	0.034	0.195	0.771
6	0.146	0.087	0.766	0.050	0.087	0.864
7	0.187	0.113	0.700	0.061	0.103	0.836
8	0.245	0.150	0.605	0.067	0.130	0.803
9	0.294	0.184	0.522	0.065	0.153	0.782
10	0.328	0.211	0.461	0.069	0.168	0.763
11	0.230	0.041	0.729	0.102	0.055	0.842
12	0.268	0.065	0.667	0.108	0.075	0.817
13	0.336	0.085	0.579	0.116	0.095	0.789
14	0.409	0.101	0.489	0.116	0.117	0.768
15	0.455	0.115	0.430	0.116	0.133	0.752
16	0.467	0.143	0.390	0.113	0.151	0.763
17	0.258	0.022	0.720	0.137	0.036	0.828
18	0.328	0.027	0.646	0.167	0.040	0.793
19	0.416	0.032	0.552	0.185	0.050	0.765
20	0.491	0.040	0.470	0.183	0.067	0.750
21	0.536	0.051	0.412	0.170	0.088	0.742
22	0.269	0.011	0.720	0.164	0.020	0.816
23	0.343	0.012	0.645	0.198	0.021	0.781
24	0.437	0.019	0.544	0.211	0.032	0.757
25	0.522	0.018	0.459	0.219	0.038	0.743
26	0.184	0.372	0.444	0.043	0.209	0.749
27	0.349	0.241	0.410	0.081	0.180	0.739
28	0.195	0.401	0.404	0.055	0.220	0.725
29	0.352	0.270	0.378	0.091	0.192	0.717
30	0.064	0.103	0.834	0.017	0.094	0.889

Table 6 (Continued)

	Aqueous phase			Organic phase		
	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
31	0.124	0.066	0.809	0.040	0.072	0.888
32	0.172	0.039	0.789	0.069	0.054	0.877
33	0.208	0.014	0.778	0.113	0.026	0.860
34	0.224	0.007	0.770	0.139	0.014	0.847
35	0.201	0.424	0.375	0.068	0.226	0.706

Table 7. Equilibrium data for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-$ $T B P-\mathrm{H}_{2} \mathrm{O}$

	Aqueous phase			Organic phase		
	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	```Grams of solvent per gram of solution```	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
1	0.301	0.017	0.681	0.185	0.025	0.790
2	0.352	0.021	0.627	0.201	0.029	0.770
3	0.377	0.023	0.600	0.207	0.032	0.762
4	0.355	0.019	0.626	0.205	0.028	0.767
5	0.458	0.023	0.519	0.222	0.037	0.742
6	0.483	0.026	0.491	0.218	0.043	0.739
7	0.454	0.093	0.454	0.142	0.110	0.748
8	0.427	0.076	0.498	0.151	0.091	0.757
9	0.397	0.081	0.522	0.144	0.091	0.764
10	0.370	0.074	0.556	0.146	0.081	0.773

Table 7 (Continued)

	Aqueous phase			Organic phase		
	Grams of $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}$ per gram of solution	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Nd}\left(\mathrm{NO}_{3}\right) \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
11	0.348	0.071	0.581	0.145	0.078	0.778
12	0.325	0.068	0.607	0.141	0.073	0.786
13	0.295	0.060	0.645	0.135	0.068	0.797
14	0.287	0.060	0.653	0.134	0.068	0.798
15	0.350	0.207	0.444	0.093	0.163	0.744
16	0.346	0.178	0.476	0.093	0.150	0.757
17	0.312	0.178	0.510	0.085	0.147	0.768
18	0.295	0.164	0.591	0.087	0.138	0.776
19	0.284	0.159	0.557	0.085	0.135	0.780
20	0.262	0.152	0.586	0.083	0.124	0.793
21	0.238	0.134	0.628	0.084	0.113	0.804
22	0.225	0.130	0.644	0.082	0.109	0.809
23	0.204	0.384	0.411	0.073	0.206	0.722
24	0.200	0.341	0.459	0.059	0.198	0.744
25	0.183	0.324	0.493	0.049	0.191	0.761
26	0.172	0.290	0.538	0.043	0.179	0.778
27	0.169	0.286	0.545	0.042	0.177	0.781
28	0.154	0.264	0.582	0.040	0.167	0.794
29	0.142	0.236	0.622	0.040	0.156	0.804
30	0.133	0.227	0.640	0.038	0.152	0.809
31	0.151	0.446	0.404	0.064	0.227	0.709
32	0.151	0.398	0.451	0.050	0.211	0.740
33	0.140	0.376	0.485	0.040	0.202	0.758
34	0.134	0.343	0.523	0.034	0.192	0.774
35	0.129	0.331	0.541	0.032	0.187	0.781
36	0.119	0.306	0.576	0.029	0.179	0.792
37	0.111	0.277	0.612	0.028	0.168	0.804
38	0.100	0.254	0.645	0.028	0.162	0.811
39	0.144	0.353	0.503	0.036	0.195	0.768
40	0.270	0.236	0.494	0.066	0.167	0.767

Table 7 (Continued)

Aqueous phase				Organic phase		
	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
41	0.330	0.191	0.479	0.084	0.152	0.764
42	0.463	0.057	0.480	0.173	0.078	0.749
43	0.453	0.055	0.492	0.176	0.077	0.747
44	0.367	0.125	0.508	0.112	0.124	0.764
45	0.265	0.217	0.518	0.068	0.160	0.772
46	0.143	0.331	0.527	0.036	0.189	0.775
47	0.535	0.062	0.403	0.179	0.096	0.726
48	0.468	0.138	0.394	0.133	0.144	0.724
49	0.404	0.183	0.413	0.120	0.155	0.725
50	0.211	0.423	0.366	0.091	0.226	0.683
51	0.238	0.475	0.287	0.132	0.250	0.618
52	0.596	0.005	0.399	0.273	0.007	0.720
53	0.512	0.055	0.434	0.182	0.085	0.733
54	0.436	0.147	0.417	0.121	0.146	0.733
55	0.273	0.339	0.388	0.091	0.205	0.704
56	0.231	0.441	0.328	0.112	0.235	0.653
57	0.335	0.257	0.408	0.096	0.182	0.723
58	0.473	0.115	0.412	0.140	0.132	0.728
59	0.529	0.047	0.424	0.194	0.079	0.727
60	0.223	0.478	0.299	0.125	0.242	0.633
61	0.201	0.009	0.790	0.124	0.018	0.858
62	0.175	0.030	0.795	0.082	0.043	0.875
63	0.126	0.059	0.815	0.046	0.066	0.888
64	0.061	0.097	0.843	0.018	0.088	0.894
65	0.265	0.014	0.721	0.166	0.023	0.811
66	0.225	0.043	0.732	0.112	0.055	0.834
67	0.163	0.085	0.752	0.064	0.083	0.853
68	0.079	0.137	0.784	0.026	0.107	0.867
69	0.202	0.111	0.687	0.073	0.102	0.825
70	0.100	0.181	0.719	0.035	0.128	0.837

Table 8. Equilibrium data for the system $\operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-$ TBP - $\mathrm{H}_{2} \mathrm{O}$

	Aqueous phase			Organic phase		
	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	```Grams of solvent per gram of solution```
1	0.487	0.029	0.484	0.226	0.047	0.727
2	0.447	0.030	0.523	0.228	0.037	0.735
3	0.386	0.027	0.587	0.225	0.031	0.744
4	0.341	0.023	0.637	0.217	0.027	0.756
5	0.307	0.020	0.672	0.207	0.026	0.767
6	0.313	0.022	0.665	0.208	0.026	0.766
7	0.277	0.018	0.705	0.194	0.023	0.783
8	0.248	0.016	0.737	0.177	0.018	0.805
9	0.400	0.108	0.492	0.160	0.098	0.742
10	0.376	0.096	0.528	0.163	0.086	0.751
11	0.324	0.087	0.589	0.159	0.076	0.765
12	0.282	0.072	0.646	0.154	0.066	0.781
13	0.261	0.063	0.676	0.148	0.063	0.789
14	0.259	0.071	0.670	0.146	0.063	0.791
15	0.234	0.059	0.707	0.136	0.057	0.808
16	0.178	0.043	0.779	0.102	0.049	0.850
17	0.269	0.283	0.448	0.113	0.161	0.726
18	0.261	0.260	0.480	0.104	0.156	0.740
19	0.230	0.228	0.542	0.092	0.142	0.766
20	0.205	0.196	0.599	0.088	0.129	0.783
21	0.188	0.179	0.633	0.088	0.123	0.790
22	0.176	0.174	0.650	0.083	0.120	0.798
23	0.162	0.159	0.680	0.081	0.113	0.807
24	0.142	0.140	0.718	0.072	0.102	0.826
25	0.129	0.432	0.439	0.090	0.197	0.657
26	0.123	0.402	0.475	0.074	0.189	0.684
27	0.119	0.344	0.537	0.056	0.176	0.768
28	0.103	0.294	0.604	0.047	0.164	0.789
29	0.099	0.283	0.618	0.046	0.160	0.794
30	0.094	0.271	0.636	0.044	0.153	0.803

Table 8 (Continued)

	Aqueous phase			Organic phase		
	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
31	0.085	0.243	0.672	0.041	0.148	0.811
32	0.055	0.142	0.804	0.026	0.108	0.869
33	0.222	0.291	0.487	0.097	0.165	0.739
34	0.217	0.280	0.503	0.093	0.160	0.747
35	0.213	0.269	0.518	0.089	0.156	0.754
36	0.202	0.245	0.553	0.085	0.147	0.769
37	0.222	0.292	0.486	0.095	0.166	0.739
38	0.219	0.285	0.497	0.092	0.162	0.746
39	0.214	0.270	0.516	0.088	0.158	0.754
40	0.204	0.244	0.553	0.082	0.151	0.767
41	0.129	0.526	0.345	0.126	0.222	0.653
42	0.200	0.383	0.418	0.114	0.188	0.698
43	0.278	0.268	0.454	0.116	0.161	0.723
44	0.422	0.130	0.448	0.156	0.116	0.728
45	0.484	0.064	0.452	0.202	0.073	0.725
46	0.541	0.043	0.416	0.222	0.065	0.713
47	0.579	0.007	0.416	0.277	0.009	0.714
48	0.101	0.597	0.302	0.138	0.248	0.614
49	0.075	0.088	0.837	0.032	0.080	0.888
50	0.113	0.066	0.821	0.052	0.067	0.882
51	0.163	0.034	0.803	0.092	0.047	0.862
52	0.194	0.014	0.792	0.132	0.022	0.847
53	0.144	0.093	0.763	0.075	0.081	0.844

Table 9. Equilibrium data for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

	Aqueous phase				Organic phase			
	$\begin{aligned} & \text { Grams of } \\ & \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \left.\mathrm{HNO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of solvent per gram of solution
1	0.075	0.130	0.019	0.776	0.025	0.069	0.036	0.870
2	0.142	0.065	0.19	0.774	0.054	0.035	0.037	0.873
3	0.057	0.096	0.051	0.796	0.014	0.036	0.066	0.885
4	0.106	0.049	0.049	0.797	0.027	0.018	0.067	0.887
5	0.029	0.055	0.093	0.824	0.005	0.015	0.087	0.893
6	0.057	0.027	0.089	0.827	0.010	0.008	0.087	0.895
7	0.119	0.205	0.036	0.639	0.031	0.108	0.056	0.805
8	0.233	0.098	0.033	0.636	0.072	0.059	0.058	0.811
9	0.086	0.152	0.089	0.673	0.017	0.058	0.098	0.828
10	0.168	0.074	0.087	0.671	0.034	0.031	0.102	0.833
11	0.052	0.080	0.161	0.707	0.007	0.024	0.131	0.838
12	0.092	0.040	0.160	0.707	0.013	0.013	0.131	0.843
13	0.178	0.300	0.054	0.468	0.026	0.127	0.091	0.757

Table 9 (Continued)

	Aqueous phase				Organic phase			
	$\begin{aligned} & \text { Grams of } \\ & \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{La}\left(\mathrm{NO}_{3}\right)^{\prime} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \left.\mathrm{HNO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \text { solvent } \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$
14	0.334	0.145	0.050	0.417	0.064	0.078	0.096	0.763
15	0.126	0.233	0.142	0.500	0.013	0.065	0.143	0.779
16	0.247	0.112	0.138	0.503	0.031	0.036	0.148	0.785
17	0.069	0.132	0.256	0.544	0.006	0.026	0.176	0.792
18	0.144	0.273	0.176	0.407	0.013	0.072	0.167	0.748
19	0.289	0.130	0.171	0.409	0.031	0.041	0.171	0.757
20	0.086	0.154	0.328	0.433	0.007	0.039	0.203	0.752
21	0.167	0.076	0.325	0.433	0.015	0.021	0.207	0.756

Table 10. Equilibrium data for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

	Aqueous phase				Organic phase			
	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of $\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}$ per gram of. solution	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
1	0.074	0.126	0.021	0.780	0.032	0.071	0.035	0.861
2	0.064	0.033	0.087	0.816	0.018	0.012	0.083	0.888
3	0.211	0.105	0.039	0.645	0.092	0.060	0.053	0.795
4	0.048	0.102	0.151	0.699	0.014	0.036	0.119	0.830
5	0.146	0.328	0.059	0.467	0.042	0.130	0.083	0.745
6	0.148	0.079	0.236	0.538	0.028	0.022	0.167	0.783
7	0.266	0.137	0.195	0.402	0.055	0.045	0.166	0.734
8	0.088	0.182	0.301	0.429	0.017	0.056	0.190	0.737

Table 11. Equilibrium data for the system $\operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}-\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$

	Aqueous phase				Organic phase			
	$\begin{aligned} & \text { Grams of } \\ & \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution	$\begin{aligned} & \text { Grams of } \\ & \mathrm{Pr}\left(\mathrm{NO}_{3}\right)_{3} \\ & \text { per gram } \\ & \text { of } \\ & \text { solution } \end{aligned}$	$\begin{gathered} \text { Grams of } \\ \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \\ \text { per gram } \\ \text { of } \\ \text { solution } \end{gathered}$	Grams of HNO_{3} per gram of solution	Grams of solvent per gram of solution
1	0.073	0.118	0.022	0.787	0.033	0.079	0.033	0.855
2	0.064	0.025	0.088	0.824	0.020	0.010	0.082	0.888
3	0.221	0.087	0.040	0.652	0.090	0.072	0.049	0.789
4	0.052	0.083	0.154	0.711	0.013	0.047	0.116	0.825
5	0.176	0.288	0.062	0.474	0.031	0.159	0.075	0.735
6	0.158	0.062	0.236	0.545	0.027	0.035	0.159	0.779
7	0.265	0.108	0.220	0.408	0.043	0.071	0.162	0.724
8	0.102	0.154	0.311	0.433	0.013	0.090	0.173	0.723

APPENDIX C. MATHEMATICAL ANALYSIS OF PINCH

In this section an attempt to determine mathematically the generality of the "pinch" properties of the multicomponent, multistage calculation discussed in the body of this report is presented. The treatment is quite incomplete, however, the results indicate that the "pinch" of solute concentrations may be general over a wide range of system parameters. The cascade portrayed in Figure 10 was considered.

The approach used was to combine the defining equation of separation factor with a material balance and write an equation for the molality of solute j in organic stream S_{n}. Remember that the calculation to be considered is applied to the end of the cascade, first defining the solvent (S_{0}), the raffinate $\left(\mathrm{R}_{1}\right)$, and the flow ratio (α), and then working back through the cascade toward the feed.

By definition

$$
\begin{equation*}
\left(\beta_{j-P r}\right)_{n}=\frac{\left(M_{j}\right)_{S_{n}} /\left(M_{j}\right)_{R_{n}}}{\left(K_{P r}\right)_{n}} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(K_{P r}\right)_{n}\left(\beta_{j-P r}\right)_{n}\left(M_{j}\right)_{R_{n}}=\left(M_{j}\right)_{S_{n}} \tag{15}
\end{equation*}
$$

Summing each side of Equation 15 over the solutes in the system get

$$
\begin{equation*}
\left(K_{P r}\right)_{n_{i=1}}^{T}\left(\beta_{i-P r}\right)_{n}\left(M_{i}\right)_{R_{n}}=\sum_{i=1}^{T}\left(M_{i}\right)_{S_{n}}=\left(M_{t}\right)_{S_{n}} \tag{16}
\end{equation*}
$$

Substituting Equation 16 into 15 get

$$
\begin{equation*}
\left(M_{j}\right)_{S_{n}}=\frac{\left(M_{t}\right)_{S_{n}}\left(\beta_{j-P r}\right)_{n}\left(M_{j}\right)_{R_{n}}}{\sum_{i=1}^{T}\left(\beta_{i-P r}\right)_{n}\left(M_{i}\right)_{R_{n}}} \tag{17}
\end{equation*}
$$

Writing a material balance over the right hand end of the cascade gives

$$
\begin{align*}
& {\left[\left(M_{j}\right)_{R_{1}} \quad x \quad R_{1}\right]+\left[\left(M_{j}\right)_{S_{n-1}} \times S_{n-1}\right]=} \\
& {\left[\left(M_{j}\right)_{S_{0}} \times S_{0}\right]+\left[\left(M_{j}\right)_{R_{n}} x R_{n}\right] \text {, }} \tag{18}
\end{align*}
$$

and assuming immiscible solvents

$$
\begin{equation*}
\left(M_{j}\right)_{R_{n}}=\alpha\left(M_{j}\right)_{S_{n-1}}+\left(M_{j}\right)_{R_{1}}-\alpha\left(M_{j}\right)_{S_{0}} \tag{19}
\end{equation*}
$$

Substituting into Equation 17 get

$$
\begin{equation*}
\left(M_{j}\right)_{S_{n}}=\frac{\left(M_{t}\right)_{S_{n}}\left(\beta_{j-P r}\right)_{n}\left[\alpha\left(M_{j}\right)_{S_{n-1}}+\left(M_{j}\right)_{R_{1}}-\alpha\left(M_{j}\right)_{S_{0}}\right]}{\sum_{i=1}^{T}\left(\beta_{i-P r}\right)_{n}\left[\alpha\left(M_{i}\right)_{S_{n-1}}+\left(M_{i}\right)_{R_{1}}-\alpha\left(M_{i}\right)_{S_{0}}\right]} \tag{20}
\end{equation*}
$$

The assumptions of "pinched" total molality and constant separation factors were now applied. The general situation in which the total molality is "pinched" at a high value is shown on a McCabe Thiele diagram in Figure 32. The equations to be considered below apply to the circled section on the drawing, that is to the "pinched" stages. The fact that the following equations assume a "pinch" in stage 1 causes no loss in generality, as in a case in which the total molality of

[^0]several of the right hand stages is not constant stage 1 may be chosen as the first stage in which the organic molality attains its "pinch" value.

For this equilibrium model the stream and stage designations of the total molalities and separation factors may be deleted, and also, for convenience $\left(M_{i}\right)_{n}$ will be inserted for $\left(M_{i}\right)_{S_{n}}$ and so
$\left(M_{j}\right)_{n}=\frac{\alpha M_{t} \beta_{j-P r}\left(M_{j}\right)_{n-1}+M_{t} \beta_{j-\operatorname{Pr}}\left[\left(M_{j}\right)_{R_{1}}-\alpha\left(M_{j}\right)_{S_{0}}\right]}{\alpha_{i=1}^{T} \beta_{i-P r}\left(M_{i}\right)_{n-1}+\sum_{i=1}^{T} \beta_{i-\operatorname{Pr}}\left[\left(M_{i}\right)_{R_{1}}-\alpha\left(M_{i}\right)_{S_{0}}\right]}$
Note that for specified end conditions and a specified "pinch" value of the total molality Equation 21 gives the molality of solute j in stream S_{n} as a function of the molalities of all solutes in stream S_{n-1}. By letting $n=1,2,3$, ----, a sequence was generated which gives the molality of solute j in successive organic streams in terms of the system parameters. If the sequence could be shown to converge to a non-zero value the "pinch" would be proven general. The author has written a large number of terms of the sequence but has not been able to write the general term.

For the special case of $T=2$, that is two solutes, an analytical treatment of the general equation was developed and the limit taken. This case is now discussed. For convenience it was assumed that stream S_{0} is pure solvent. This is not
necessary but simplifies the following equations algebraically. For this case, denoting quantities that pertain to the two solutes by the subscripts 1 and 2

$$
\begin{equation*}
\left(M_{1}\right)_{n}=\frac{M_{t} \beta_{1-P r}\left(M_{1}\right)_{n-1}+\left(M_{t} / \alpha\right) \beta_{1-P r}\left(M_{1}\right)_{R_{1}}}{\left[\beta_{1-P r}\left(M_{1}\right)_{n-1}+\beta_{2-\operatorname{Pr}}\left(M_{2}\right)_{n-1}\right]+(1 / \alpha) \sum_{i=1}^{2} \beta_{i-\operatorname{Pr}}\left(M_{i}\right)_{R_{1}}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(M_{2}\right)_{n}=\frac{M_{t} \beta_{2-P r}\left(M_{2}\right)_{n-1}+\left(M_{t} / \alpha\right) \beta_{2-\operatorname{Pr}}\left(M_{2}\right)_{R_{1}}}{\left[\beta_{1-P r}\left(M_{1}\right)_{n-1}+\beta_{2-P r}\left(M_{2}\right)_{n-1}\right]+(1 / \alpha) \sum_{i=1}^{2} \beta_{i-P r}\left(M_{i}\right)_{R_{1}}} \tag{23}
\end{equation*}
$$

These equations are of exactly the same form. By use of finite difference techniques they were solved for the molalities of the solutes as a function of the system parameters and stage number, and the limit taken as n becomes large. This technique is now illustrated by solving Equation 22 and then a numerical example given.

For the two solute case with "pinched" total molality

$$
\begin{equation*}
\left(M_{1}\right)_{n-1}+\left(M_{2}\right)_{n-1}=M_{t} \tag{24}
\end{equation*}
$$

and so substituting into Equation 22 get

$$
\begin{equation*}
\left(M_{1}\right)_{n}=\frac{M_{t} \beta_{1-P r}\left(M_{1}\right)_{n-1}+\left(M_{t} / \alpha\right) \beta_{1-P r}\left(M_{1}\right)_{R_{1}}}{\left(\beta_{1-P r}-\beta_{2-P r}\right)\left(M_{1}\right)_{n-1}+\beta_{2-P r} M_{t}+(1 / \alpha) \sum_{i=1}^{2} \beta_{i-P r}\left(M_{i}\right)_{R_{1}}} \tag{25}
\end{equation*}
$$

Now let

$$
\begin{aligned}
& a_{1}=M_{t} \beta_{1-P r} \\
& b_{1}=\left(M_{t} / \alpha\right) \beta_{1-P r}\left(M_{1}\right)_{R_{1}}, \\
& c_{1}=\beta_{1-P r}-\beta_{2-\operatorname{Pr}} \\
& d_{1}=\beta_{2-P r} M_{t}+(1 / \alpha) \sum_{i=1}^{2} \beta_{1-P r}\left(M_{i}\right)_{R_{1}}
\end{aligned}
$$

Substitution into Equation 25 and simplification gives

$$
\begin{equation*}
\left(M_{1}\right)_{n}\left(M_{1}\right)_{n-1}+\alpha_{1}\left(M_{1}\right)_{n}+\theta_{1}\left(M_{1}\right)_{n-1}+\gamma_{1}=0 \tag{26}
\end{equation*}
$$

with

$$
\begin{aligned}
& a_{1}=d_{1} / c_{1} \\
& \theta_{1}=-a_{1} / c_{1} \\
& \gamma_{1}=-b_{1} / c_{1}
\end{aligned}
$$

At this point it is to be noted that the limit of $\left(M_{1}\right)_{n}$ as n becomes large can be determined without solving Equation 26. This can be done by recognizing that if a "pinch" takes place $\left(M_{1}\right)_{n}=\left(M_{1}\right)_{n-1}$. If this substitution is made in Equation 26 and the resulting quadratic solved for $\left(M_{1}\right)$ n two roots are obtained, one of which must be discarded on physical grounds.

Alternatively, Equation 26 is a Ricatti difference equation and may be reduced to a linear difference equation with constant coefficients by the substitution

$$
\begin{equation*}
\left(M_{1}\right)_{n-1}=\left(v_{1}\right)_{M}\left(v_{1}\right)_{n-1}-\alpha_{1} \tag{27}
\end{equation*}
$$

For the methods of solution the reader is referred to Boole (53) and Brand (54).

After substitution and simplification get

$$
\begin{equation*}
\left(v_{1}\right)_{n+1}+E_{1}\left(v_{1}\right)_{n}+F_{1}\left(v_{1}\right)_{n-1}=0 \tag{28}
\end{equation*}
$$

with

$$
\begin{aligned}
& E_{1}=\theta_{1}-\alpha_{1} \\
& F_{1}=\gamma_{1}-\alpha_{1} \theta_{1}
\end{aligned}
$$

A trial solution of the form $\left(V_{1}\right)_{n}=z^{n}$ gives the characteristic equation

$$
\begin{equation*}
z^{2}+E_{1} Z+F_{1}=0 \tag{29}
\end{equation*}
$$

and so

$$
\begin{equation*}
z=\frac{-E_{1} \pm\left(E_{1}^{2}-4 F_{1}\right)^{0.5}}{2} \tag{30}
\end{equation*}
$$

To complete the solution it was necessary to know the nature of the roots of the characteristic quadratic. For all calculations considered the roots were real and distinct. The author has attempted to prove that the discriminant of the quadratic is positive by expanding it in terms of the original system parameters. A proof has not been possible and so it was assumed that this is the case and the roots are real and distinct.

Let

$$
G_{1+}=\frac{-E_{1}+\left(E_{1}^{2}-4 F_{1}\right)^{0.5}}{2}
$$

and

$$
G_{1-}=\frac{-E_{1}-\left(E_{1}^{2}-4 F_{1}\right)^{0.5}}{2}
$$

Then the solution of Equation 28 is

$$
\begin{equation*}
\left(v_{1}\right)_{n}=C_{1} G_{1+}^{n}+C_{2} G_{1-}^{n} \tag{31}
\end{equation*}
$$

with C_{1} and C_{2} constants, and the solution of Equation 26 is

$$
\begin{equation*}
\left(M_{1}\right)_{n}=\frac{C_{1} G_{1+}^{n+1}+C_{2} G_{1-}^{n+1}}{C_{1} G_{1+}^{n}+C_{2} G_{1-}^{n}}-\alpha_{1} \tag{32}
\end{equation*}
$$

The limit of Equation 32 was taken by noting that the roots are real and distinct. Then necessarily either $\left|G_{1+}\right|>$ $\left|G_{1-}\right|$ or $\left|G_{1+}\right|<\left|G_{1_{-}}\right|$. Assuming that $\left|G_{1_{+}}\right|>\left|G_{1_{-}}\right|$the numerator and denominator of the fraction on the right hand side of Equation 32 was divided by G_{1+}^{n} giving

$$
\begin{equation*}
\left(M_{1}\right)_{n}=\frac{C_{1} G_{1+}+C_{2} G_{1-}\left(G_{1-} / G_{1+}\right)^{n}}{C_{1}+C_{2}\left(G_{1-} / G_{1+}\right)^{n}}-\alpha_{1} \tag{33}
\end{equation*}
$$

and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(M_{1}\right)_{n}=G_{1+}-\alpha_{1} \tag{34}
\end{equation*}
$$

It should be noted at this point that the algebraic combinations of system parameters $a_{1}, b_{1}, c_{1}, \alpha_{1}, \alpha_{1}, \theta_{1}, \gamma_{1}$, $E_{1}, F_{1}, G_{1+}, G_{1-}$ all refer to solute l. Corresponding expressions for solute 2 may be obtained by interchanging the solute subscripts in the defining equations. Exactly the same treatment was applied to Equation 23. Alternatively, the limit of the differences of the molalities in successive
stages, that is $\left[\left(M_{1}\right)_{n+1}-\left(M_{1}\right)_{n}\right]$ and $\left[\left(M_{2}\right)_{n+1}-\left(M_{2}\right)_{n}\right]$ may be shown to approach zero as n becomes large.

As a numerical example the following values were chosen:

$$
\begin{aligned}
& \alpha=1.0 \\
& M_{t}=3.50 \\
& \beta_{1-\mathrm{Pr}}=0.43 \\
& \beta_{2-\mathrm{Pr}}=1.00 \\
& \left(M_{t}\right)_{R_{1}}=8.00 \\
& \left(M_{1}\right)_{R_{1}}=4.00 \\
& \left(M_{2}\right)_{R_{2}}=4.00
\end{aligned}
$$

Using these values

$$
\begin{aligned}
& G_{1_{+}}=-3.472, \\
& G_{1-}=-15.344 \\
& \alpha_{1}=-16.175 \\
& G_{2+}=15.344 \\
& G_{2-}=3.472 \\
& \alpha_{2}=12.675
\end{aligned}
$$

were calculated. The limits of $\left(M_{1}\right)_{n}$ and $\left(M_{2}\right)_{n}$ were then calculated to be

$$
\lim _{n \rightarrow \infty}\left(M_{1}\right)_{n}=-15.344+16.175=0.831
$$

$\lim _{n \rightarrow \infty}\left(M_{2}\right)_{n}=15.344-12.675=2.669$
Using alternate material balances and the chosen equilibrium model the stagewise values shown in Table 12 were calculated for this numerical example.

Table 12. Molalities of solutes 1 and 2 in organic streams of ideal cascade

	S_{0}	S_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}
M_{1}	0.0000	1.0520	0.8820	0.8429	0.8340	0.8320	0.8315	0.8314
M_{2}	0.0000	2.4480	2.6180	2.6571	2.6660	2.6680	2.6685	2.6686

The stagewise concentrations "pinch" rather rapidly to the limiting values. Note however that this is not an independent check of the validity of the process, as the equation which was used to solve for and take the limit of the molalities is simply a generalization of the stage by stage calculation used to determine the stagewise concentrations in the preceeding table. This result indicates only that the solution of Equations 22 and 23 by finite difference techniques and the limiting process were carried out correctly.

Two comments should be made concerning the preceeding treatment. First the form of the solution is dependent on the
assumption of real and distinct roots of the characteristic quadratic. As pointed out previously, this has been true in all specific cases studied but no proof has been given. Secondly, it may be that the derived result, that is "pinched" concentrations of the individual solutes under the assumptions made and the situations considered, is or should be intuitively obvious from simple material balance considerations. No definite conclusion has been reached concerning this second statement.

APPENDIX D. DIGITAL COMPUTOR PROGRAMS

The calculation which is discussed in the body of this thesis to give the stagewise conditions in a cascade of equilibrium stages was programmed in the Full Fortran Language for the IBM 7074 digital computor for four cascades of interest. These cascades are shown in Figures 33, 34, 35, and 36 with the direction of calculation denoted by dashed arrows.

In the computor operation the values of K_{t} and $\mathrm{K}_{\mathrm{HNO}}^{3}$ were derived by straight line interpolation in two dimensional arrays prepared from the parametic plots of K_{t} and $\mathrm{K}_{\mathrm{HNO}}^{3}$ versus equilibrium phase composition discussed in the Method of Calculation section. These two dimensional arrays are shown in Tables 13 through 28. All non-zero values in these arrays were taken from plots of the type depicted in Figures l through 8. The zero values have no physical meaning but were inserted for convenience in making "branches" in the programs.

The principal variable names used in the programs are given in Figure 37. A compilation of the four programs is given in Figures 38 through 45. In each case the logic flow is diagrammed and is followed by the Fortran program. The program designation corresponds to the cascade designation in Figures 33, 34, 35, and 36.

Table 13. Array of values of K_{t} for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ aq. and X_{La}

$\mathrm{X}_{\text {La }}$	$\left(M_{t}\right)_{\text {aq }}$.						
	3.0	4.0	5.0	7.0	10.0	13.0	16.0
0.00	0.713	0.640	0.580	0.478	0.382	0.330	0.296
0.05	0.695	0.626	0.569	0.475	0.382	0.329	0.298
0.10	0.676	0.612	0.560	0.471	0.382	0.328	0.299
0.15	0.659	0.598	0.550	0.468	0.382	0.326	0.299
0.20	0.643	0.586	0.541	0.464	0.382	0.325	0.299
0.25	0.628	0.575	0.533	0.460	0.381	0.324	0.298
0.30	0.614	0.564	0.524	0.456	0.380	0.322	0.297
0.35	0.601	0.554	0.516	0.452	0.378	0.320	0.295
0.40	0.589	0.545	0.508	0.448	0.376	0.318	0.293
0.45	0.578	0.537	0.501	0.443	0.374	0.316	0.289
0.50	0.568	0.529	0.494	0.438	0.371	0.314	0.285
0.55	0.559	0.523	0.487	0.433	0.369	0.311	0.281
0.60	0.549	0.516	0.481	0.428	0.366	0.308	0.276
0.65	0.541	0.511	0.474	0.423	0.363	0.306	0.271
0.70	0.533	0.506	0.469	0.417	0.359	0.303	0.266
0.75	0.526	0.500	0.464	0.412	0.355	0.301	0.259
0.80	0.521	0.495	0.460	0.407	0.349	0.296	0.252
0.85	0.518	0.491	0.456	0.401	0.336	0.288	0.244
0.90	0.519	0.489	0.455	0.396	0.331	0.278	0.236
0.95	0.524	0.491	0.454	0.389	0.319	0.266	0.226
1.00	0.534	0.497	0.456	0.384	0.303	0.248	0.217

Table 14. Array of values of K_{t} for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ aq. and X_{Pr}

X_{Pr}	$\left(M_{t}\right)_{\text {aq }}$.						
	3.0	4.0	5.0	7.0	10.0	13.0	16.0
0.00	0.713	0.640	0.580	0.478	0.382	0.330	0.296
0.05	0.702	0.628	0.571	0.476	0.388	0.331	0.298
0.10	0.690	0.617	0.564	0.474	0.383	0.332	0.299
0.15	0.679	0.608	0.556	0.470	0.383	0.332	0.299
0.20	0.668	0.601	0.550	0.468	0.385	0.331	0.299
0.25	0.659	0.595	0.545	0.465	0.384	0.330	0.298
0.30	0.650	0.588	0.540	0.462	0.383	0.330	0.297
0.35	0.642	0.583	0.535	0.460	0.382	0.328	0.296
0.40	0.634	0.578	0.532	0.458	0.381	0.327	0.295
0.45	0.627	0.574	0.529	0.455	0.380	0.325	0.294
0.50	0.622	0.570	0.526	0.453	0.378	0.324	0.292
0.55	0.616	0.566	0.525	0.451	0.376	0.322	0.290
0.60	0.612	0.565	0.523	0.450	0.374	0.320	0.288
0.65	0.608	0.563	0.523	0.450	0.373	0.317	0.285
0.70	0.605	0.562	0.523	0.449	0.370	0.315	0.282
0.75	0.600	0.562	0.523	0.449	0.368	0.312	0.000
0.80	0.601	0.564	0.524	0.448	0.365	0.309	0.000
0.85	0.605	0.570	0.527	0.449	0.361	0.306	0.000
0.90	0.615	0.582	0.535	0.450	0.358	0.302	0.000
0.95	0.631	0.599	0.547	0.451	0.354	0.298	0.000
1.00	0.657	0.619	0.567	0.454	0.350	0.294	0.000

Table 15. Array of values of K_{t} for the system $\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ aq. and X_{Nd}

$\mathrm{X}_{\text {Nd }}$	$\left(M_{t}\right)_{\text {ad }}$.						
	3.0	4.0	5.0	7.0	10.0	13.0	16.0
0.00	0.713	0.640	0.580	0.478	0.382	0.330	0.296
0.05	0.702	0.626	0.570	0.476	0.383	0.332	0.301
0.10	0.693	0.615	0.562	0.474	0.385	0.335	0.303
0.15	0.683	0.605	0.555	0.471	0.386	0.337	0.305
0.20	0.673	0.597	0.550	0.469	0.387	0.338	0.305
0.25	0.664	0.593	0.547	0.467	0.387	0.338	0.306
0.30	0.656	0.587	0.544	0.465	0.388	0.338	0.306
0.35	0.649	0.585	0.542	0.463	0.388	0.338	0.306
0.40	0.643	0.583	0.541	0.461	0.388	0.337	0.305
0.45	0.637	0.582	0.540	0.460	0.387	0.336	0.305
0.50	0.631	0.582	0.540	0.459	0.386	0.335	0.303
0.55	0.626	0.582	0.540	0.458	0.385	0.335	0.302
0.60	0.622	0.583	0.542	0.457	0.382	0.333	0.300
0.65	0.620	0.585	0.544	0.457	0.380	0.330	0.298
0.70	0.620	0.587	0.546	0.457	0.337	0.329	0.295
0.75	0.620	0.591	0.548	0.457	0.374	0.326	0.000
0.80	0.623	0.597	0.552	0.460	0.370	0.324	0.000
0.85	0.628	0.605	0.556	0.463	0.366	0.320	0.000
0.90	0.640	0.615	0.562	0.466	0.362	0.314	0.000
0.95	0.660	0.627	0.568	0.464	0.358	0.307	0.000
1.00	0.697	0.643	0.577	0.457	0.352	0.000	0.000

Table 16. Array of values of K_{4} for the system $\operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ aq. and X_{Sm}

X_{Sm}	$\left(M_{t}\right)_{\text {ag }}$.						
	3.0	4.0	5.0	7.0	10.0	13.0	16.0
0.00	0.713	0.640	0.580	0.478	0.382	0.330	0.296
0.05	0.706	0.635	0.576	0.480	0.388	0.335	0.309
0.10	0.699	0.630	0.573	0.479	0.391	0.339	0.316
0.15	0.693	0.628	0.570	0.479	0.394	0.342	0.323
0.20	0.687	0.625	0.569	0.479	0.396	0.345	0.327
0.25	0.681	0.622	0.567	0.479	0.398	0.348	0.332
0.30	0.675	0.620	0.566	0.480	0.399	0.350	0.335
0.35	0.672	0.619	0.565	0.480	0.399	0.350	0.338
0.40	0.668	0.618	0.566	0.480	0.399	0.351	0.341
0.45	0.666	0.619	0.566	0.481	0.398	0.351	0.343
0.50	0.665	0.619	0.568	0.483	0.396	0.351	0.344
0.55	0.665	0.621	0.570	0.480	0.395	0.350	0.000
0.60	0.667	0.623	0.573	0.486	0.394	0.348	0.000
0.65	0.670	0.625	0.577	0.488	0.393	0.346	0.000
0.70	0.674	0.630	0.581	0.490	0.390	0.343	0.000
0.75	0.681	0.637	0.586	0.492	0.389	0.340	0.000
0.80	0.688	0.648	0.591	0.494	0.387	0.335	0.000
0.85	0.697	0.666	0.598	0.496	0.384	0.328	0.000
0.90	0.708	0.682	0.604	0.498	0.380	0.319	0.000
0.95	0.731	0.693	0.612	0.501	0.375	0.307	0.000
1.00	0.770	0.700	0.620	0.504	0.370	0.290	0.000

Table 17. Array of values of $\mathrm{K}_{\mathrm{HNO}}^{3}$ for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)_{\mathrm{aq}}$. and X_{La}

X_{La}	$\left(M_{t}\right)_{\text {aga }}$.						
	3.0	4.0	5.0	7.0	10.0	13.0	16.0
0.00	0.713	0.640	0.580	0.478	0.382	0.330	0.296
0.05	0.713	0.650	0.587	0.491	0.400	0.341	0.303
0.10	0.720	0.659	0.597	0.510	0.417	0.357	0.313
0.15	0.732	0.672	0.611	0.531	0.438	0.376	0.325
0.20	0.750	0.690	0.630	0.533	0.459	0.396	0.341
0.25	0.774	0.711	0.651	0.579	0.483	0.416	0.360
0.30	0.803	0.738	0.677	0.603	0.507	0.438	0.382
0.35	0.838	0.769	0.708	0.630	0.533	0.461	0.408
0.40	0.880	0.806	0.741	0.660	0.561	0.489	0.437
0.45	0.927	0.847	0.777	0.696	0.592	0.519	0.469
0.50	0.981	0.893	0.817	0.733	0.627	0.552	0.505
0.55	1.042	0.937	0.869	0.777	0.668	0.593	0.543
0.60	1.108	0.994	0.928	0.833	0.716	0.642	0.586
0.65	1.180	1.057	0.999	0.902	0.777	0.703	0.634
0.70	1.257	1.137	1.083	0.986	0.854	0.784	0.000
0.75	1.347	1.230	1.177	1.078	0.965	0.905	0.000
0.80	1.456	1.337	1.281	1.187	1.090	1.044	0.000
0.85	1.584	1.465	1.403	1.322	1.251	1.220	0.000
0.90	1.755	1.630	1.569	1.497	1.482	1.500	0.000
0.95	2.043	1.930	1.830	1.783	0.000	0.000	0.000
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 18. Array of values of $\mathrm{K}_{\mathrm{HNO}}^{3}$ for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)$ aq. and $X_{P r}$

X_{Pr}	$\left(M_{t}\right)_{\text {aq. }}$						
	3.0	4.0	5.0	7.0	10.0	13.0	16.0
0.00	0.713	0.640	0.580	0.478	0.382	0.330	0.296
0.05	0.710	0.640	0.586	0.490	0.397	0.340	0.303
0.10	0.712	0.644	0.593	0.507	0.411	0.351	0.313
0.15	0.722	0.654	0.606	0.523	0.428	0.365	0.324
0.20	0.739	0.669	0.620	0.541	0.447	0.380	0.336
0.25	0.758	0.688	0.640	0.562	0.467	0.397	0.351
0.30	0.781	0.711	0.660	0.584	0.488	0.413	0.365
0.35	0.811	0.739	0.683	0.607	0.510	0.432	0.384
0.40	0.849	0.771	0.710	0.631	0.535	0.455	0.405
0.45	0.889	0.801	0.739	0.659	0.561	0.480	0.430
0.50	0.936	0.851	0.769	0.688	0.590	0.508	0.457
0.55	0.988	0.900	0.805	0.721	0.622	0.540	0.490
0.60	1.044	0.950	0.850	0.759	0.663	0.580	0.529
0.65	1.104	1.003	0.906	0.802	0.712	0.627	0.573
0.70	1.177	1.060	0.969	0.855	0.766	0.685	0.000
0.75	1.268	1.126	1.045	0.920	0.841	0.757	0.000
0.80	1.371	1.203	1.127	0.994	0.922	0.848	0.000
0.85	1.494	1.307	1.221	1.087	1.014	0.952	0.000
0.90	1.652	1.454	1.329	1.190	1.128	1.075	0.000
0.95	1.879	1.665	1.453	1.383	1.309	0.000	0.000
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 19. Array of values of $\mathrm{K}_{\mathrm{HNO}}^{3}$ for the system $\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)_{\text {aq. }}$. and X_{Nd}

				$\left(M_{t}\right)$			
X_{Nd}	3.0	4.0	5.0	7.0	10.0	13.0	16.0
0.00	0.713	0.640	0.580	0.478	0.382	0.330	0.296
0.05	0.724	0.646	0.586	0.487	0.390	0.340	0.303
0.10	0.738	0.650	0.592	0.500	0.403	0.350	0.313
0.15	0.751	0.660	0.600	0.511	0.420	0.364	0.324
0.20	0.769	0.670	0.612	0.529	0.438	0.380	0.336
0.25	0.789	0.687	0.627	0.546	0.457	0.397	0.350
0.30	0.810	0.709	0.646	0.562	0.477	0.414	0.365
0.35	0.833	0.732	0.667	0.581	0.499	0.432	0.380
0.40	0.861	0.760	0.692	0.603	0.521	0.454	0.398
0.45	0.895	0.791	0.723	0.627	0.547	0.480	0.416
0.50	0.930	0.826	0.758	0.650	0.571	0.507	0.440
0.55	0.978	0.866	0.797	0.678	0.601	0.537	0.467
0.60	1.030	0.907	0.836	0.710	0.636	0.577	0.502
0.65	1.088	0.957	0.881	0.747	0.674	0.618	0.555
0.70	1.150	1.014	0.932	0.790	0.720	0.668	0.000
0.75	1.227	1.080	0.989	0.842	0.777	0.733	0.000
0.80	1.310	1.154	1.054	0.910	0.848	0.813	0.000
0.85	1.415	1.243	1.130	0.983	0.939	0.917	0.000
0.90	1.570	1.360	1.229	1.090	1.049	1.038	0.000
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1.795	1.525	1.353	1.240	0.000	0.000	0.000
0.95							
0.3							

Table 20. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ aq. and X_{Sm}

X_{Sm}	$\left(M_{t}\right)_{\text {aq }}$.						
	3.0	4.0	5.0	7.0	10.0	13.0	16.0
0.00	0.713	0.640	0.580	0.478	0.382	0.330	0.296
0.05	0.717	0.648	0.581	0.481	0.387	0.332	0.299
0.10	0.727	0.657	0.583	0.488	0.395	0.340	0.303
0.15	0.738	0.667	0.590	0.498	0.402	0.348	0.309
0.20	0.751	0.679	0.597	0.507	0.413	0.357	0.316
0.25	0.770	0.689	0.603	0.519	0.423	0.368	0.324
0.30	0.789	0.701	0.611	0.532	0.437	0.378	0.333
0.35	0.810	0.717	0.621	0.547	0.449	0.393	0.345
0.40	0.832	0.734	0.637	0.562	0.464	0.409	0.357
0.45	0.857	0.753	0.658	0.580	0.418	0.428	0.371
0.50	0.884	0.772	0.683	0.598	0.501	0.450	0.387
0.55	0.917	0.796	0.711	0.618	0.525	0.478	0.000
0.60	0.951	0.820	0.745	0.642	0.551	0.510	0.000
0.65	0.991	0.850	0.782	0.669	0.586	0.550	0.000
0.70	1.031	0.887	0.824	0.701	0.623	0.604	0.000
0.75	1.077	0.928	0.868	0.737	0.678	0.670	0.000
0.80	1.123	0.979	0.915	0.783	0.752	0.750	0.000
0.85	1.172	1.047	0.966	0.840	0.856	0.840	0.000
0.90	1.227	1.175	1.026	0.917	1.050	0.939	0.000
0.95	1.282	1.380	1.087	1.011	0.000	0.000	0.000
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 21. Array of values of K_{t} for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-$ TBP $-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ org. and Y_{La}

	$\left(M_{\mathrm{t}}\right)_{\text {org. }}$					
Y_{La}	2.0	2.5	3.0	3.5	4.0	4.5
0.00	0.769	0.667	0.566	0.441	0.358	0.314
0.05	0.610	0.547	0.484	0.394	0.344	0.304
0.10	0.568	0.505	0.452	0.370	0.329	0.295
0.15	0.545	0.482	0.430	0.354	0.314	0.283
0.20	0.529	0.466	0.413	0.345	0.300	0.270
0.25	0.516	0.457	0.399	0.337	0.284	0.254
0.30	0.505	0.450	0.389	0.329	0.269	0.000
0.35	0.498	0.445	0.380	0.320	0.254	0.000
0.40	0.492	0.442	0.374	0.312	0.239	0.000
0.45	0.486	0.438	0.370	0.303	0.000	0.000
0.50	0.484	0.435	0.367	0.295	0.000	0.000
0.55	0.482	0.432	0.365	0.286	0.000	0.000
0.60	0.480	0.430	0.364	0.278	0.000	0.000
0.65	0.480	0.427	0.361	0.270	0.000	0.000
0.70	0.481	0.425	0.357	0.262	0.000	0.000
0.75	0.483	0.424	0.352	0.253	0.000	0.000
0.80	0.485	0.422	0.346	0.245	0.000	0.000
0.85	0.487	0.420	0.339	0.237	0.000	0.000
0.90	0.490	0.419	0.331	0.228	0.000	0.000
0.95	0.494	0.417	0.322	0.220	0.000	0.000
1.00	0.498	0.415	0.313	0.212	0.000	0.000

Table 22. Array of values of K_{t} for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)_{\text {org. }}$ and Y_{Pr}

$Y^{P r}$	$\left(M_{t}\right)_{\text {org }}$.					
	2.0	2.5	3.0	3.5	4.0	4.5
0.00	0.769	0.667	0.566	0.441	0.358	0.314
0.05	0.693	0.603	0.531	0.437	0.358	0.315
0.10	0.662	0.575	0.509	0.433	0.355	0.314
0.15	0.639	0.559	0.495	0.426	0.351	0.310
0.20	0.620	0.549	0.484	0.420	0.346	0.305
0.25	0.605	0.544	0.475	0.413	0.340	0.298
0.30	0.595	0.540	0.469	0.406	0.331	0.290
0.35	0.588	0.537	0.464	0.398	0.323	0.280
0.40	0.584	0.535	0.461	0.389	0.314	0.269
0.45	0.582	0.533	0.459	0.379	0.304	0.000
0.50	0.583	0.533	0.456	0.368	0.000	0.000
0.55	0.584	0.534	0.455	0.359	0.000	0.000
0.60	0.588	0.535	0.455	0.352	0.000	0.000
0.65	0.593	0.539	0.455	0.349	0.000	0.000
0.70	0.599	0.544	0.458	0.346	0.000	0.000
0.75	0.607	0.551	0.461	0.345	0.000	0.000
0.80	0.616	0.561	0.467	0.345	0.000	0.000
0.85	0.625	0.574	0.475	0.345	0.000	0.000
0.90	0.636	0.588	0.485	0.346	0.000	0.000
0.95	0.648	0.602	0.499	0.349	0.000	0.000
1.00	0.660	0.619	0.519	0.351	0.000	0.000

Table 23. Array of values of K_{t} for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)_{\text {org. }}$ and Y_{Nd}

$Y_{\text {Nd }}$	$\left(M_{t}\right)_{\text {org }}$.					
	2.0	2.5	3.0	3.5	4.0	4.5
0.00	0.769	0.667	0.566	0.441	0.358	0.314
0.05	0.700	0.611	0.540	0.445	0.368	0.321
0.10	0.665	0.584	0.522	0.445	0.374	0.326
0.15	0.643	0.569	0.508	0.442	0.378	0.329
0.20	0.627	0.564	0.499	0.435	0.377	0.329^{\prime}
0.25	0.618	0.562	0.492	0.424	0.375	0.326
0.30	0.612	0.564	0.487	0.415	0.368	0.321
0.35	0.611	0.565	0.485	0.408	0.357	0.315
0.40	0.610	0.566	0.485	0.403	0.345	0.306
0.45	0.611	0.569	0.488	0.400	0.327	0.000
0.50	0.614	0.572	0.490	0.400	0.307	0.000
0.55	0.616	0.575	0.494	0.401	0.000	0.000
0.60	0.620	0.580	0.500	0.404	0.000	0.000
0.65	0.625	0.584	0.508	0.405	0.000	0.000
0.70	0.630	0.590	0.519	0.405	0.000	0.000
0.75	0.636	0.596	0.527	0.403	0.000	0.000
0.80	0.645	0.603	0.533	0.400	0.000	0.000
0.85	0.655	0.613	0.537	0.398	0.000	0.000
0.90	0.669	0.624	0.540	0.395	0.000	0.000
0.95	0.684	0.637	0.542	0.390	0.000	0.000
1.00	0.702	0.653	0.543	0.386	0.000	0.000

Table 24. Array of values of K_{t} for the system $\operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}-$ $\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)_{\text {org. and }} Y_{S m}$

$Y_{S m}$	$\left(M_{t}\right)_{\text {org. }}$					
	2.0	2.5	3.0	3.5	4.0	4.5
0.00	0.769	0.667	0.566	0.441	0.358	0.314
0.05	0.724	0.641	0.555	0.449	0.370	0.328
0.10	0.700	0.626	0.548	0.454	0.377	0.339
0.15	0.684	0.615	0.543	0.458	0.383	0.345
0.20	0.672	0.608	0.541	0.460	0.388	0.349
0.25	0.665	0.605	0.541	0.461	0.390	0.350
0.30	0.660	0.603	0.544	0.462	0.390	0.349
0.35	0.659	0.604	0.548	0.461	0.388	0.346
0.40	0.659	0.606	0.553	0.461	0.386	0.341
0.45	0.660	0.610	0.560	0.460	0.382	0.000
0.50	0.664	0.616	0.567	0.459	0.377	0.000
0.55	0.669	0.623	0.575	0.475	0.372	0.000
0.60	0.676	0.630	0.582	0.455	0.365	0.000
0.65	0.685	0.640	0.590	0.450	0.359	0.000
0.70	0.695	0.652	0.598	0.450	0.351	0.000
0.75	0.707	0.665	0.605	0.449	0.343	0.000
0.80	0.720	0.679	0.614	0.450	0.000	0.000
0.85	0.733	0.694	0.622	0.455	0.000	0.000
0.90	0.748	0.710	0.630	0.463	0.000	0.000
0.95	0.763	0.727	0.638	0.475	0.000	0.000
1.00	0.780	0.746	0.646	0.492	0.000	0.000

Table 25. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)_{\text {org. }}$ and Y_{La}

$Y_{\text {Sm }}$	$\left(M_{t}\right)_{\text {org. }}$					
	2.0	2.5	3.0	3.5	4.0	4.5
0.00	0.769	0.667	0.566	0.441	0.358	0.314
0.05	0.802	0.701	0.617	0.523	0.464	0.399
0.10	0.845	0.749	0.681	0.612	0.566	0.474
0.15	0.895	0.804	0.756	0.701	0.668	0.546
0.20	0.950	0.867	0.831	0.797	0.767	0.617
0.25	1.016	0.937	0.910	0.895	0.863	0.685
0.30	1.087	1.009	0.991	0.995	0.963	0.000
0.35	1.160	1.083	1.071	1.101	1.068	0.000
0.40	1.234	1.161	1.157	1.218	0.000	0.000
0.45	1.307	1.244	1.245	1.331	0.000	0.000
0.50	1.384	1.331	1.337	1.452	0.000	0.000
0.55	1.467	1.423	1.434	1.574	0.000	0.000
0.60	1.548	1.520	1.539	1.697	0.000	0.000
0.65	1.637	1.618	1.649	1.825	0.000	0.000
0.70	1.732	1.718	1.769	1.956	0.000	0.000
0.75	1.829	1.823	1.900	2.087	0.000	0.000
0.80	1.933	1.929	2.037	2.222	0.000	0.000
0.85	2.041	2.041	2.186	0.000	0.000	0.000
0.90	2.157	2.156	2.348	0.000	0.000	0.000
0.95	2.275	2.276	0.000	0.000	0.000	0.000
1.00	0.000	0.000	0.000	0.000	0.000	0.000

Table 26. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)_{\text {org. }}$ and $Y_{P r}$

Y_{Pr}	$\left(M_{t}\right)_{\text {org }}$.					
	2.0	2.5	3.0	3.5	4.0	4.5
0.00	0.769	0.667	0.566	0.441	0.358	0.314
0.05	0.785	0.678	0.581	0.479	0.399	0.346
0.10	0.809	0.697	0.601	0.521	0.442	0.380
0.15	0.839	0.723	0.628	0.563	0.487	0.418
0.20	0.872	0.760	0.661	0.607	0.534	0.458
0.25	0.912	0.802	0.700	0.653	0.584	0.507
0.30	0.959	0.848	0.748	0.701	0.638	0.571
0.35	1.011	0.894	0.795	0.750	0.697	0.640
0.40	1.067	0.940	0.844	0.799	0.756	0.722
0.45	1.133	0.991	0.892	0.854	0.819	0.000
0.50	1.207	1.044	0.945	0.911	0.886	0.000
0.55	1.280	1.099	0.999	0.971	0.000	0.000
0.60	1.358	1.157	1.055	1.035	0.000	0.000
0.65	1.437	1.221	1.112	1.099	0.000	0.000
0.70	1.523	1.291	1.173	1.167	0.000	0.000
0.75	1.613	1.370	1.237	1.234	0.000	0.000
0.80	1.709	1.454	1.301	1.303	0.000	0.000
0.85	1.810	1.547	1.371	1.376	0.000	0.000
0.90	1.913	1.643	1.442	1.449	0.000	0.000
0.95	2.021	1.752	0.000	0.000	0.000	0.000
1.00	0.000	0.000	0.000	0.000	0.000	0.000

Table 27. Array of values of $\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)$ org. and Y_{Nd}

	$\left(\mathrm{M}_{\mathrm{t}}\right)_{\text {org. }}$					
	2.0	2.5	3.0	3.5	4.0	4.5
0.00	0.769	0.667	0.566	0.441	0.358	0.314
0.05	0.772	0.678	0.566	0.461	0.385	0.336
0.10	0.780	0.696	0.573	0.488	0.423	0.366
0.15	0.802	0.716	0.589	0.520	0.469	0.399
0.20	0.836	0.740	0.612	0.557	0.516	0.439
0.25	0.876	0.773	0.641	0.597	0.561	0.490
0.30	0.924	0.816	0.680	0.637	0.608	0.542
0.35	0.977	0.857	0.721	0.680	0.655	0.600
0.40	1.033	0.900	0.764	0.725	0.701	0.663
0.45	1.090	0.946	0.808	0.770	0.748	0.000
0.50	1.151	0.993	0.855	0.819	0.795	0.000
0.55	1.220	1.042	0.901	0.869	0.843	0.000
0.60	1.291	1.093	0.956	0.920	0.891	0.000
0.65	1.371	1.148	0.013	0.975	0.000	0.000
0.70	1.455	1.207	1.075	1.030	0.000	0.000
0.75	1.545	1.268	1.136	1.089	0.000	0.000
0.80	1.642	1.329	1.207	1.150	0.000	0.000
0.85	1.746	1.396	1.279	1.211	0.000	0.000
0.90	1.857	1.466	1.353	1.273	0.000	0.000
0.95	1.977	1.537	0.000	0.000	0.000	0.000
1.00	0.000	0.000	0.000	0.000	0.000	0.000

Table 28. Array of values of $\mathrm{K}_{\mathrm{HNO}}^{3}$ for the system $\operatorname{Sm}\left(\mathrm{NO}_{3}\right)_{3}$ -$\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(\mathrm{M}_{\mathrm{t}}\right)_{\mathrm{org}}$. and Y_{Sm}

$Y_{S m}$	$\left(M_{t}\right)_{\text {org }}$.					
	2.0	2.5	3.0	3.5	4.0	4.5
0.00	0.769	0.667	0.566	0.441	0.358	0.314
0.05	0.769	0.658	0.560	0.448	0.367	0.336
0.10	0.773	0.656	0.564	0.456	0.380	0.336
0.15	0.787	0.664	0.571	0.467	0.395	0.350
0.20	0.804	0.677	0.584	0.482	0.413	0.368
0.25	0.829	0.696	0.600	0.500	0.435	0.388
0.30	0.859	0.716	0.619	0.523	0.461	0.410
0.35	0.892	0.738	0.641	0.550	0.493	0.437
0.40	0.928	0.767	0.668	0.580	0.531	0.464
0.45	0.963	0.797	0.700	0.612	0.573	0.000
0.50	0.1003	0.831	0.735	0.648	0.623	0.000
0.55	1.047	0.869	0.776	0.684	0.690	0.000
0.60	1.092	0.907	0.817	0.722	0.772	0.000
0.65	1.139	0.947	0.863	0.762	0.878	0.000
0.70	1.191	0.988	0.911	0.805	1.018	0.000
0.75	1.245	1.032	0.961	0.850	0.000	0.000
0.80	1.301	1.079	1.015	0.897	0.000	0.000
0.85	1.360	1.129	1.072	0.947	0.000	0.000
0.90	1.421	1.179	1.131	0.998	0.000	0.000
0.95	1.488	1.231	0.000	0.000	0.000	0.000
1.00	0.000	0.000	0.000	0.000	0.000	0.000

$\mathrm{N} \quad-\mathrm{total}$ number of stages in an extraction cascade
M - feed stage in an extraction cascade with internal feed

S - flow rate of solvent in organic streams, kgm. TBP/ unit time
$\mathrm{F} \quad-\quad \begin{aligned} & \text { flow rate of solvent in a feed stream, kgm. } \mathrm{H}_{2} \mathrm{O} \text { / } \\ & \text { unit time }\end{aligned}$ unit time

SOVR - flow rate ratio, S / R
ROVS - flow rate ratio, R/S
REX - flow rate of solvent in aqueous streams on extract side of internally fed cascade, kgm. $\mathrm{H}_{2} \mathrm{O}$ /unit time

RSC - flow rate of solvent in aqueous streams on scrub side of internally fed cascade

TMAQ - $\left(M_{t}\right)$ aq.
$\mathrm{AMAQ}-\left(\mathrm{M}_{\mathrm{HNO}_{3}}\right) \mathrm{aq}$.
XLAMAQ - M_{La}) aq.
PRMAQ - ${ }^{\left(M_{P r}\right)}$ aq.
XNDMAQ - $\left(M_{N Q}\right)_{a q}$.
SMMAQ - $\left(M_{S m}\right)$ aq.
REMAQ - $\left(M_{R E}\right)_{\text {aq }}$.
XHNO3 $-\mathrm{X}_{\mathrm{HNO}_{3}}$
XLA $-\mathrm{X}_{\mathrm{La}}$
XPR $-X_{P r}$
XND $\quad-\mathrm{X}_{\mathrm{Nd}}$
XSM - X_{Sm}
Figure 37. Principal variable names

XRE -	$-\mathrm{X}_{\mathrm{RE}}$
XLASF -	$-{ }^{\text {L }}$ La
XPRSF -	- x_{Pr}
XNDSF	- x_{Na}
XSMSF	$-\mathrm{x}_{\text {Sm }}$
TMOR	- $\left(M_{t}\right)_{\text {org }}$.
AMOR	$-\left(\mathrm{M}_{\mathrm{HNO}_{3}}\right) \text { org. }$
XLAMOR	- ($\left.M_{\text {La }}\right)_{\text {org }}$.
PRMOR	- (MPr) org.
XNDMOR	- ($\left.M_{N \alpha}\right)_{\text {org }}$.
SMMOR	- ($M_{\text {Sm }}$) org.
REMOR	- ($M_{\text {RE }}$) org.
YHNO3	$-\mathrm{Y}_{\mathrm{HNO}}^{3}$
YLA	$-Y_{\text {La }}$
YPR	$-Y_{P r}$
YND	$-\mathrm{Y}_{\mathrm{Na}}$
YSM	$-Y_{S m}$
YRE	$-Y_{R E}$
YLASF	- y_{La}
YPRSF	- ${ }^{\text {Pr }}$
YNDSF	$-\mathrm{y}^{\mathrm{Nd}}$
YSMSF	- $\quad-y_{S m}$
Figure	re 37. (Continued)

XKTRE	- K_{t} for the system $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)$ aq. and $X_{R E} ; R E=L a, \operatorname{Pr}, N d, S m$
XKARE	$-\mathrm{K}_{\mathrm{HNO}_{3}}$ for the system $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)_{a q}$ and $X_{R E} ; R E=L a, \operatorname{Pr}, N d$, Sm
YKTRE	- K_{t} for the system $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of (M_{t}) org. and $Y_{R E} ; \mathrm{RE}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}$
YKARE	$-\mathrm{K}_{\mathrm{HNO}}^{3}$ for the system $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{HNO}_{3}-\mathrm{TBP}-\mathrm{H}_{2} \mathrm{O}$ as a function of $\left(M_{t}\right)_{\text {org }}$, and $Y_{R E} ; R E=L a, \operatorname{Pr}, N d, S m$
BLAPR	- $\beta_{\text {La-Pr }}$
BPRPR	- ${ }^{\beta} \mathrm{Pr}-\mathrm{Pr}$
BNDPR	- $\beta_{\mathrm{Na}}-\mathrm{Pr}$
BSMPR	${ }^{-}{ }^{\beta} \mathrm{Sm}-\mathrm{Pr}$
TOTK	- K_{t}
HNO3K	$-\mathrm{K}_{\mathrm{HNO}_{3}}$
FTM	- $\left(M_{t}\right)_{F}$
FAM	$-\left(\mathrm{M}_{\mathrm{HNO}_{3}}\right)_{\mathrm{F}}$
FLAM	- $\left(M_{L a}\right)^{\text {F }}$
FPRM	- $\left(M_{P r}\right)_{F}$
FNDM	- $\left(M_{N \alpha}\right)_{\mathrm{F}}$
FSMM	- $\left(M_{S m}\right)_{F}$
FREM	- $\left(M_{R E}\right)_{F}$
XAF	$-\left(\mathrm{X}_{\mathrm{HNO}_{3}}\right)_{\mathrm{F}}$

Figure 37. (Continued)

XLAF	$-\left(X_{L a}\right)_{F}$
XPRF	- $\left(X_{P r}\right)_{F}$
XNDF	- $\left(\mathrm{X}_{\mathrm{Na}}\right)_{\mathrm{F}}$
XSMF	- $\left(\mathrm{X}_{\mathrm{Sm}}\right)_{\mathrm{F}}$
XREF	- $\left(\mathrm{X}_{\mathrm{RE}}\right)_{\mathrm{F}}$
XLASFF	
XPRSFF	$-\left(x_{P r}\right)_{F}$
XNDSFF	$-\left(\mathrm{x}_{\mathrm{Na}}\right)_{\mathrm{F}}$
XSMSFF	- $\left(\mathrm{x}_{\text {Sm }}\right)_{\mathrm{F}}$
For Pro	rams 1 and 3:
R1TM	$-\left(M_{t}\right)_{R_{1}}$
R1AM	$-\left(\mathrm{M}_{\mathrm{HNO}_{3}}\right)_{\mathrm{R}_{1}}$
RILAM	$-\left(M_{L_{a}}\right)_{R_{1}}$
R1PRM	$-\left(M_{P r}\right)_{R_{1}}$
R1NDM	$-\left(M_{N a}\right)_{R_{1}}$
R1SMM	$-\left(M_{S m}\right)_{R_{1}}$
SOTM	$-\left(M_{t}\right)_{S_{0}}$
SOAM	$-\left(\mathrm{M}_{\mathrm{HNO}_{3}}\right)_{\mathrm{S}}$
SOLAM	$-\left(M_{L a}\right)_{S_{O}}$
SOPRM	$-\left(M_{P r}\right)_{S_{0}}$

Figure 37. (Continued)

Figure 37. (Continued)

NO, Go To Block 1

Calculate all separation factor:s

Calculate all
organic phase rare earth
molalities

fractional
composition of
the organic phase

Print a lin
giving all
values per-
taining to
organic phase

Use operating
line equations
to calculate
aqueous phase molalities

Figure 38. Flow diagram, Program I
 $1,7), X K A P R(21,7)$, KKAND $(21,7), X K A S M(21,7) \quad$ BMS1 002
$0051=1,21 \quad$ BASI Cl

OO : 0 ! - : 2:
READ INPUT TAPE 5, 500, (XKTPR(I.JI,J = 1,7) BMSI C4
DO $151=1,21 \quad$ BHS1 C5
REAO INPUT TAPE 5, 500, iूKiNDii,jl,j = i,7) BMS1 C6
DO $201=1.21 \quad$ BMSI C7
REAO INPUT TAPE 5, 500, (XKTSM(I,J), J=1,7) BMSI CB
DO $251=1,21$ BMS1 C9
READ INPUT TAPE 5, 500, (XKALAII,J),J=1.7) BMSI CIO
DO $30 \mathrm{I}=1.21 \quad$ BMSI C11
READ INPUT TAPE 5, 500, (XKAPR(1,J),J $=1,7) \quad$ BMSI C12
DO $351=1,21$ 8HS1 C13
READ INPUT TAPE 5, 500, (XKANDII,JI.J = 1.7) BMSI C14
$00401=1,21 \quad$ BMSI C15
READ INPUT TAPE 5, 500, $\{$ XKASMII,J),J $=1,71$ BMSI C16
READ INPUT TAPE 5, 501, TMAQ, AMAQ,XLAMAQ,PRMAQ, XNDMAQ.SMMAQ,REMAQ BMSI O35
READ INPUT TAPE 5, 502, TMOR,AMOR,XLAMOR,PRMOR,XNDMOR,SMMOR,REMOR,BMSI 036
1 SOVR,N,K BMS! 037
PRINT 503, SOVR,N BMSI 038
PRINT 504 BMSI 039
XHNO3 = AMAQ/TMAQ BMS1 040
$X L A=X L A M A Q / T M A Q \quad$ BMS1 041
$X P R=P R M A Q / T M A Q \quad$ BMS 1042
XNO = XNDMAQ/TMAQ BMS1 043
XSM $=$ SMMAQ/TMAQ \quad BMS 044
XRE $=$ REMAO/TMAO \quad BMS1 045
SXA $=\mathrm{XHNO} 3+X L A+X P R+X N D+X S M \quad$ BMSI 046
XLASF = XLAMAQ/REMAO BMSI 047
XPRSF $=$ PRMAQ/REMAQ $\quad . \quad 8 M S 1048$
XNDSF $=$ XNDMAQ/REMAQ BMS1 049
XSMSF $=$ SMMAQ/REMAQ $\quad 8$ BSI 050
SXREA $=X$ XASF + XPRSF + XNDSF + XSMSF BMSI O5I
YHNO3 = AMOR/TMOR BMS1 052
YLA $=X L A M O R / T M O R \quad$ BMS1 053
YPR = PRMOR/TMOR BMS1 054
YND $=$ XNOMOR/TMOR \quad BMSL 055
YSM $=$ SMMOR/TMOR \quad BMSI 056
YRE = REMOR/TMOR 3 BSI 057
SYO $=$ YHNOS + YLA + YPR + YND + YSM BMSI 058
YLASF $=$ XLAMOR/REMOR BMSI 059
$\begin{array}{ll}Y P R S F & =\text { PRMOR/REMOR }\end{array} \quad$ BMSL 060
$\begin{array}{ll}\text { YNDSF }=\text { XNDMOR/REAOR } & \text { BMSI } 061\end{array}$
$\begin{array}{ll}\text { YSMSF }=\text { SMMOR/REMOR } & \text { BMSI } 062\end{array}$
SYREO = YLASF + YPRSF + YNDSF + YSMSF BMS 063
PRINT 505, TMOR, AMOR, XLAMDR, PRMOR, XNDMOR,SMMOR, REMDR,YHNO3,YLA,YPRBMS1 064
$1, Y N D, Y S M, Y R E, Y L A S F, Y P R S F, Y N D S F, Y S M S F$: SYO, SYREO BMS 065
PRINT 506, TMAQ, AMAQ, XLAMAQ, PRMAQ, XNDMAQ,SMMAQ,REMAQ,XHNO3,XLA,XPRBMSI 066
$1, X N D, X S M, X R E, X L A S F, X P R S F, X N O S F, X S M S F, S X A, S X R E A \quad$ BMS 1067
RIIH = iFiAQ BMS1 068
RIAM $=A M A Q$
8MS1 069
$\begin{array}{ll}\text { RILAM }=\text { XLAMAQ } & \text { BHSL } 070\end{array}$
RIPRM = PRMAQ BMS1 071
$\begin{array}{ll}\text { RINDM }=\text { KNDMAO } & \text { BMS } 1072\end{array}$
$\begin{array}{ll}\text { RISMM }=\text { SMMAQ } & \text { BMS1 } 073\end{array}$
SOTH = THOR EHSS OT4
SOAM = AMOR BMMS 075
$\begin{array}{lr}\text { SOLAM }=\text { XLAMOR } & \text { BMSI } 076\end{array}$
$\begin{array}{lr}\text { SOPRM }=\text { PRMOR } & \text { BMS1 } 077\end{array}$
SONDM $=$ XNDMOR
BMS1 078

Figure 39. Fortran statements, Program I

Figure 39. (Continued)

	KKAND $3=$ KKAND10(1.0-FRZ) + KKAND20FRZ	BMS 1	141
	CKAND $=$ XKANO3 - XNDSF	BMS 1	142
	KKASH1 $=$ KKASN(IX,KZ) (1.0 - FRK) * KKASM(IX*IOKZ)OFRK	8 HS 1	143
		GMSI	146
		EMS:	1令
	CKASM $=$ XKASM3 - XSMSF	BMS 1	146
	TOTK = CKTLA * CKTPR + CKTND * CKTSM	BMS 1	147
	HNO3K $=$ CKALA + CKAPR + CKAND + CKASA	BHSI	148
	THOR = THAQETOTK	BHS 1	149
	IF(TMOR - 1.75) 105,110,110	BMS 1	150
105	PRINT 509, YMER, YMAQ, YOYK	BMSI	151
	IF(K) 495,495,45	BMS 1	152
110	$\triangle M O R=A M A Q * H N O 3 K$	BMS 1	153
	REMOR $=$ TMOR - AMOR	BMS 1	154
	(F(REMOR) $115,115,120$	BMS 1	155
115	PRINT 510, TMOR, AMOR, REMOR, HNO 3 K	BMS 1	156
	IF(K) 495,495,45	BMS i	157
120	BLAPR $=0.8187-0.1106 * T M O R$	BMS 1	158
	$B P R P R=1.0$	BMS 1	159
	BNDPR $=1.0448+0.09874$ TMOR	BMSI	160
	BSMPR $=-0.3795+0.9214 *$ IMOR	BHSl	161
	DEMS $=X L A M A Q * B L A P R ~+~ P R M A Q * B P R P R ~+~ X N D M A Q * B N D P R ~+~ S M M A Q * B S M P R ~$	BMS 1	162
	$X L A M O R=R E M O R * B L A P R * X L A M A Q / D E M S$	BMS 1	163
	PRMOR = REMOR*BPRPR*PRMAQ/DEMS	BMS 1	164
	XNDMOR = REMOR*BNOPR XNDMAQ/DEMS	BMSI	165
	SMMOR = REMOR•BSMPR•SMMAQ/DEMS	BMS 1	166
	YHNO3 $=$ AMOR /TMOR	BMS 1	167
	YLA = XLAMOR/TMOR	BMS 1	168
	YPR = PRMOR/TMOR	BMS 1	169
	YND $=$ XNOMOR/TMOR	BMS 1	170
	YSM $=$ SMMOR/TMOR	BMS 1	171
	YRE = REMOR/TMOR	BMS 1	172
	SYO $=$ YHNO3 + YLA + YPR + YND + YSM	BMS 1	173
	YLASF $=$ XLAMOR/REMOR	BMS 1	174
	YPRSF = PRMOR/REMOR	BMS 1	175
	YNDSF $=$ XNDMOR/REMOR	BMS 1	176
	YSMSF $=$ SMMOR/REMOR	BMS 1	177
	SYREO $=$ YLASF + YPRSF + YNDSF + YSMSF	BMS 1	178
	PRINT 511,L, TMOR, AMOR, XLAMOR, PRMOR, XNDMOR, SMMOR, REMOR, YHNO3, YLA, YP	BMEI	179
	IR, YND, YSM, YRE, YLASF, YPRSF, YNDSF, YSMSF, SYO, SYREO	BMS 1	180
	TMAO $=$ TMOR*SOVR - SOTM - SOVR + RITM	BMS 1	181
		BHSi	182
	XLAMAO $=$ XLAMOR SOVR - SOLAM*SOVR + RILAM	BMS 1	183
	PRMAQ $=$ PRMOR*SOVR - SOPRM*SOVR + RIPRM	BMS 1	184
	XNDMAQ $=$ XNDMOR•SOVR - SONDM*SOVR + RINDM	BMS 1	185
	SMMAO $=$ SMMOR - SOVR - SOSMM*SOVR + RISMM	BMS 1	186
	REMAQ = TMAQ - AMAQ	BMS 1	187
	SAM = MINIF(TMAQ, AMAQ, XLAMAQ, PRMAQ, XNOMAQ, SMMAQ, REMAQ)	BMS 1	188
	IF(SAM) 125.125.130	BMS 1	189
125	PRINT 512,TMAO, AMAQ, XLAMAQ, PRMAO, XNDMAQ, SMMAQ,REMAQ	BMS 1	190
	IF (K) 495,495,45	BMS 1	191
i30	Örivoj = AMAMQitina	oinsi	192
	$X L A=X L A M A Q / T M A Q$	BMS 1	193
	$X P R=P R M A Q / T M A Q$	BMS 1	194
	$X N D=X N D M A Q / T M A Q$	BMS 1	195
	XSA $=$ SMMAQ/TMAQ	BMS 1	196
	$X R E=$ REMAQ/TMAQ	BMS 1	197
		BHSi	198
	KLASF = KLAHAQ/REMAQ	BHS1	199
	$X P R S F=P R M A Q / R E M A Q$	BMS 1	200
	X NDSF $=$ XNDMAQ/REMAQ	BMS 1	201
	XSMSF $=$ SMMAQ/REMAQ	BMS 1	202

[^1]```
 SXREA = XLASF + XPRSF + XNDSF + XSMSF BASI 203
 LL=L+1 BMS1 204
 PRINT 51 3,LL,THAQ,AMAQ,XLAMAQ,PRMAQ,XNDHAQOSMMAQQRENAQ,XHNO3,KLA,XBHSL 205
 IPR:XND:XSM=XRE:XLASF:XPRSF:XNDSF:XSMSF:SXA:SXREA BMSI 200
 IF!TMAO - 3.0! 135:140,140 BA4S! 20?
 PRINT 514, TMAQ
 BMSI 208
 IF(K) 495,495,45 BMS1 209
140 IF(TMAO - 16.0) 150,145,145 8MS1 210
145 PRINT 514,TMAO EMS1 211
 IF(K) 495.495.45 BMS1 212
 CONTINUE BMSI 213
 IF(K)495.495.45 BMSI 214
 FORMAT (7F10.3) BMS1 217
 FORMAT (7F9.4) BMS1 218
 FORMAT (7F7.4.F8.4.I3.13) BMS1 219
 FORMAT (31HIEXTRACT SIDE CALCULATION SOVR=F8.4.4H N= I3) BMSI 220
 FORMAT (12OHJ TOTALMOLHNO3 MOL LA MOL PR MOL ND MOL SM MOL BMS1 221
 IRE MOL ACFR LAFR PRFR NDFR SMFR REFRLA/REPR/REND/RESM/RE STFRSREFRBMSI 222
 2) BMS1 223
 FORMAT (4HJS 0 7F8.4,12F5.3) BMS1 224
 FGRMAT (4HR 1 7F8.4.12F5.3) BMS1 225
 FORMAT (8HJXKTREE=0 16F6.3,F8.4,F6.3) BMSL 226
 FORMAT (8HJXKARE=0 16F6.3,F8.4,F6.3) BMS1 227
 FORMAT IGHJTMOR= F10.4,6H TMAQ = F8.4,GH TOTK= F8.41 BMSI 228
 FORMAT IGHJTMOR = F10.4,6H AMOR = F1O.8,7H REMOR= F10.8,7H HNO3K= FIBMSL 229
 10.81 BMSL 230
511 FORMAT (2HJS I2,7F8.4.12F5.3) BMS1 231
512 FORMAT IGHJTMAQ=F10.4,6H AMAQ= F10.4.8H XLAMAQ=F10.4,7H PRMAQ= FBMSL 232
 110.4,8H XNDMAQ= F10.4,7H SMMAQ=F10.4.7H REMAQ=F10.4) BMS1 233
 FORMAT (2HR I2,7F8.4.12F5.3) BMSL 234
 FORMAT (6HJTMAQ= F10.4) BMSL 235
 STOP 89 BMS1 215
 END BMSL 216
```

lilork 1









Figure 40. Flow diagram, Program II


[^2]

```
 YKASM2 = YKASM(IYOKZ+1)0(1.0 - FRY) + YKASM(IY&10KZ+1)EFRY BMSZ 12.5
 YKASM3 = YKASMI*(1.0 - FRL) + YKASM20FRZ BMS2 176
 CKASM = YKASM3 - YSMSF BMS2 127
 TOTK = CKTLA + CKTPR + CKTND % CKTSF - BMS2 128
```



```
 TMAQ = TMOR/TOTK
 AMAQ = AMOR/HNO3K
 REMAQ = TMAQ - AMAQ
 IF(REMAQ) 95.95.100
 PRINT 511, TMAQ,AMAQ,REMAQ,HNO3K
 M,MNO3K
 IF (K) 600,600,45
 BLAPR = 0.8187-0.11060TMOR
 BPRPR = 1.0
 BNDPR = 1.0448 + 0.09874*TMOR
 BSHPR = -0.3795 + 0.9214*TMOR
```



```
 XLAMAQ = XLAMOR*REMAQ/(BLAPR*DEMS) BMS2 141
 PRMAQ = PRMOR*REMAQ/(BPRPR*DEMS)
 XNDMAQ = XNOMOR*REMAQ/(BNOPR*DEMS)
 SMMAQ = SMMOR*REMAQ/(BSMPR*DEMS)
 XHNO3 = AMAQ/TMAQ
 XLA = XLAMAQ/TMAO
 XPR = PRMAQ/TMAQ
 XND = XNDMAQ/TMAQ
 XSM = SMMAQ/TMAQ
 XRE = REMAQ/TMAQ
 XLASF = XLAMAQ/REMAQ
 XPRSF = PRMAQ/REMAQ
 XNDSF = XNDMAQ/REMAQ
 XSMSF = SMMAO/REMAO
 SXA = XHNO3 + XLA + XPR + XNO + XSM
 IF (0.9999 - SXA) 105.115,110
 IF (1.0001 - SXA) 110,115,115
 PRINT 512, TMAQ,AMAQ,XLAMAQ, PRMAO,XNDMAO,SMMAO,REMAO
 IF (K) 600,600,45
115 SXREA = XLASF + XPRSF + XNDSF + XSMSF
 IF 10.9999 - SXPEA)120,130.125
120 IF If.DOO1 - SXREAII25,130,130
l25 PRINT 513, TMAQ,AMAC,XLAMAQ,PRMAQ,XNDMAG,SMMAQ,REMAQ
IF (K) 6CO,600,45
130 PRINT514,L,TMAQ,AMAQ, XLAMAQ,PRMAQ,XNDMAQ,SMMAQ,REMAC,KHNO3,XLA,XPRBMS2 165
 1,XND,XSM,XRE,XLASF,XPRSF,XNOSF,XSMSF BMS2 166
 TMOR = TMAQ ROVS + SITM - ROTM#ROVS BMS2 167
 AMOR = AMAO*ROVS + SIAM - ROAM*ROVS BHS? 168
 XLAMOR = XLAMAQ*RTVS + SILAM - ROLAM*ROVS BMS2. 169
 PRMOR = PRMAQAROVS + SIFRM - ROPRM&ROVS BMS2 170
 XNDMOR = XNDMAQ*ROVS + SINDM - RONDM*ROVS BMS2 171
 SMMOR = SMMAQEROVS + SISMM - ROSNM&ROVS
 REMOR = TMOR - AMOR
 SOM - MINIF(TMOR,AMOR, KLAMOR,PRMOR,XNDMOR,SMMOR,REMOR)
 IF (SOM) 135,135,140
 PRINT 515, THOR,AMOR,XLAMOR,PRMOR,XNDMOR,SMMOR,REMOR BMS2 176
 IF (K) 600,600,45
 YHNO3 = AMOR/TMOR
 YLA = XLAMOR/TMOR
 YPR = PRMOR/TMOR
 YND = YNDMOR/TMMR
 YSM = SMMOR/TMOR
 YRE = REMOR/TMOR
 YLASF = XLAMOR/REMOR
 YPRSF = PRMOR/REHOR
 YNDSF = XNOMOR/REMOR
 BMS2 171
 BmS2 173
 BMS2 175
 BMS2 177
 BMS2 178
 BMS? 179
 BMS2 180
 BMS2 181
 BMS2 182
 BMS2 183
 BMS? 184
 BMS? 185
 BMS2 186
```

Figure 41. (Continued)


Block 1

$i$
Print a line
wiving al:
values per-
tainine to $S$


Cabculate the
pいs:ano い: ?

:O

$\because 0$








Figure 42. Flow diagram, Program III


Figure 43. Fortran statements, Program III

Figure 43: (Continued)

```
 XKTSMZ = XKTSM(IX,KZ +1)0(1.0 -FKK)* KKISM(IX&1,KZ&1)OFRK BMS3 125
 XKTSM3 = XKTSM1.(1.0 -FRZI 4 XKTSMZ * FRZ AMS3 126
 CKTSM = XKTSM3 ■ XSMSF BMS3 127
```




```
 2 XKAND(IX,K2),XKANU(IX+1,KZ),XKAND(IX,KZ+1),XKANDIIX+1,KZ+1),XKASM(BMS 3 1 30
 3IX,KZI,XXASM(IX+1,KZ),XKASM(IX,KZ+1):XKASMIIX+1,KI+1))
 IF (SKA) 135,135,140 BMS 132
135 PRINT 513, XKALA(IK,KZ), XKALA(IXSI,KZ),XKALA(IX,KZ+I),XKALA(IX+I,KBMS3 133
 1Z+1),XKAPR(IX,KL),XKAPR(IX+1,KZ),XKAPR(IX,KZ+1),XKAPR(IX+1,KZ41),XBMS3 1 34
 2KANO(iX,KŻ),XKANDiIX+I,KZI,XKAND(IX,KZ+1),XKAND(IX+I,KZ+I),XKASM(IBMS3 135
 3X,KLI,XKASM(IX+I,KZ),XKASM(IX,KZ+1),XKASM(IX+I,KZ+I),TMAO,XRE BMS3 136
 IF (K) 600,600,45
140 XKALAI = XKALA(IX,KL)*(1.0 - FRX) + XKALA(IX+I,KZ)=FRX BMS 138
 XKALAL = XKALA!IXOKL+1)(1.0-FRX) + XKALA(IK+1,KZ*I)@FRK BHS3 139
 XKALA3 = XKALAI*(1.0-FRL) + XKALAZ*FRZ BMS3 140
 CKALA = XKALA3 - XLASF
 (1-0-FRX| + XKAPR\IX+1,KZ\=FRX
 XKAPR2 = XKAPR(IX,KZ+1)*(1.0 -FRX) + XKAPR(IX+1,KI+1)=FRX BMS3 143
 XKAPR 3 = XKAPR1*(1.0 -FRZ) + XKAPR2 * FRZ BMS3 144
 CKAPR = XKAPR3 - XPRSF BMS3 145
 XKANDI = XKANDIIX,KZ):(1.0-FRX)+ XKAND(IX+1,KZ)=FRX BMS3 146
 XKAND2 = XKAND(IX,KZ+II* (1.0 -FRX) +XKAND(IX+1,KZ +1)*FRX BMS 147
 XKAND3 = XKANDI* (1.0 -FKZ) + XKAND2 - FRZ BMS3 148
 CKAND = XKAND3 - XNDSF BMS3 149
 XKASMI = XKASM(IX,KZ)*(1.0 - FRX)+ XKASM(IX+I.KZ)*FRX BMS3 150
 XXASM2 = XKASMIIX,KZ+1)&(1.0 -FRX) + XKASMIIX+I,KZ+1)*FRX BMS3 151
 XKASM3 = XKASMI*(1.0 -FRZ) + XKASM2 FRZ &MS3 152
 CKASM = XKASM3 - XSMSF
 BMS3 153
 TOTK = CKTLA + CKTPR + CKTND + CKTSM 8MS3 154
 HNO3K = CKALA + CKAPR + CKANO + CKASM BMS3 155
 TMOR = TMAQ
 IF(TMOR - 1.75) 145,150,150
 PRINT 514, TMOR,TMAQ,TOTK
 BMS3 156
 BMS3 157
 IF (K) 600,600,45 BMS 159
150 AMOR = AMAO - HNO3K BMS3 160
 REMDR = TMOR - AMOR
 BMS3 161
 PRINT 515. IMOR,AMOR,REMOR,HNO3K EMS3 163
 IF (K) 600,600.45 BMS3 164
160 BLAPR = 0.8187-0.1106*TMOR BMS3 165
 AFRPR = 1.0
 BNDPR = 1.0448+0.09874*TMOR BMS3 167
 BSMPR = -0.3795 +0.9214*TMOR BMS3 168
 OEMS = XLAMAQ*BLAPR + PRMAQ* BPRPR + XNDMAQ*BNDPR + SMMAQ*BSMPR BMS3 169
 XLAMOR = REMOR*BLAPR*XLAMAQIGFMS BMS }17
 PRMOR = REMOR•BPRPR*PRMAQ/DEMS
 XNOMOR = REMOR*8NDPR*XNDMAQ/DEMS BMS 3 172
 SMMOP = REMOR=&SMPR=SMMAQ/DEMS EMS3 173
 YHNO3 = AMOR/TMOR
 YLA = XLAMOR/TMOR
 YPR = PRMGRITIGOR
 YNO = XNDMOR/YMOR
 YSM = SMMOR/TMOR
 YRE = REM(IR/TMOR
 SYO = YHNO3 + YLA + YPR + YND + YSM 1, MMS 179
 SYO = YHNO3 + YLA + YPR + YND + YSM BMS3 180
 IF (0.9999 - SYO) 165.175.170 BMS3 181
165 IF 11.0001 - SYOi 170.175,175 EMS3 i82
170 PRINT 516, THOR,AMOR, KLAMOR,PRHOR,NNOMOR,SHMOR,REHOR BHS I S3
175 YLASF=XLAMOR/REMOR
 YPRSF = PRMOR/REMOR BMS3 186
```

Figure 43 . (Continued)


Figure 43. (Continued)


Block 1









Figure 44. Flow oilagram, Program IV

```
 DIMENSION YKTLA(21,6),YKTPR(21,6),YKTND(21,6),YKTSM(21,6), YKALA(21BMS4 001
 1,6),YKAPR(21,6),YKAND(21,6),YKASM(21,6) BMS4 002
 DO 5 I = 1,21 1, BMS4 003
 READ INPUT IAPE 5, 500, iYKTLAiI,J),J = i,Oj BMS4 004
 DC iO i = i,2i BMS4 005
 REAO INPUT TAPE 5, 500, (YKTPR(I,J).J = 1.6) BMS4 ONG
 DO 15I=1,21 BMS4 007
 READ INPUT TAPE 5, 500, (YKTNO(I,J),J=1,6) BHS4 008
 DO 20I = 1,21 BMS4 009
 READ INPUT TAPE 5, 500, (YKYSM(I,J),J=1,6) BMS4 010
 OO 25 I = 1.21
 READ INPUT TAPE 5, 500, (YKALAII,J),J=1,6)
 DO 30 I = 1.21
 READ INPUT TAPE 5, 500, (YKAPR(I,J),J = 1,6) BMS4 014
 DU 35 I = 1.21
 READ INOUT TADE 5, 500, !YKAND:!,j!,j = 1,*! OMS
 DO 40I=1,21 1, BMS4 017
 READ INPUT TAPE 5, 500, (YKASM(I,J),J = 1,6) BMS4 018
 KEAD INPUT TAPE 5, 501, TMAQ, NMAQ, XLAMAO,PRMAO,XNOMAO,SMMAQ,REMAQ BMS4 019
 READ INPUT TAPE F, 5O1, TMOR, AMOR, XLAMOR,PRMOR,XNOMOR,SMMOR,REMOR BMS4 0?O
 READ INPUT TAPE 5, 5O2, FIH,FAH,FLAM,FPRH,FNDH,FSHM,FREM,S,F,REX,RBMS4 OTI
 ISC,N,M,K
 BMS4 022
 PRINT 503, S,F,REX,RSC,N,M BMS4 023
 PRINT 504 BMS4 024
 IF (FTM) 600,65,50 BMS4 025
 XAF = FAM/FIM BMS4 026
 XLAF = FLAM/FTM
 XPRF = FPRM/FTM BMS4 0288
 XNOF = FNDM/FTM
 XSMF = FSMM/FTM BMS4 030
 XREF = FREM/FTM BMS4 031
 IF (FREM) 600.60,55 BMS4 032
 XLASFF = FLAM/FREM
 XPRSFF=FPRM/FREM
 XNDSFF = FNDM/FREM BMS4 035
 XSMSFF = FSMM/FREM BMS4 036
 PRINT 505, FTM,FAM,FLAM,FPRM,FNOM,FSMM,FREM,XAF,XLAF,XPRF,XNDF,XSMBMS4 037
 1F,XREF,XLASFF,XPRSFF,XNDSFF,XSMSFF BMS4 038
 GU TO 70 BMS4 039
 PRINT 506, FTM,FAM,FLAM,FPRM,FNOM,FSNM,FREM,XAF,XLAF,XPRF,XNDF,XSMBMS4 040
 IF,XREF BMS4 041
 GOTD 70 BMS4 042
 PRINT 507, FTM,FAM,FLAM,FPRM,FNDM,FSNM,FREM BMS4 043
 IF (TMAO) 6CO.90,75 BMS4 044
 XHNO3 = AMAQ/TMAQ BMS4 045
 XLA = XLAMAO/TMAO BMS4 046
 XPR = PRMAQ/TMAO BMS4 047
 XND = XNDMAQ/TMAQ BMS4 048
 XSM = SMMAQ/TMAQ 保 OMS4 049
 XRE = REMAQ/TMAQ
 IF (REMAO) 600,95.8C BMS4 051
 XLASF = XLAMAQ/REMAQ BMS4 052
 XPRSF = PRMAQ/REMAQ BMS4 053
 XNDSF = XNOMAQ/REMAQ , BMS4 054
 XSMSF = SMMAQ/REMAQ BMS4 055
 PRINT 508, TMAQ,AMAQ,XLAMAQ,PRMAQ,XNDMAQ,SMMACORLMAQ,XHNO3,XLA,XPRBMS4 O56
 1.XND,XSM,XRE,XLASF,XPRSF, KNDSF, KSMSF BMS4 057
 GO TO 95 BMS4 058
 YRINT 509, TMAQ,AMAO, XLAMAQ,PRMAQ,XNDMAQ,SMMAQ,REMAQ,XHNU3,XLA,XPRBMS4 O59
 1,XND,XSM,XRE BMS4 060
 GC IO 95 BMS4 061
 PRINT 510, TMAQ, AMAQ,XLAMAQ,PRMAQ,XNDMAO,SMMAQ,REMAQ BMS4 062
```

Figure 45. Fortran statements, Program IV

```
95
 YHNO3 = AMOR/TMOR
 BMS& }06
 BMS4 064
 YPR = PRMMOR/TMOR
 YND = KNDMOR/TM(IR
 YSM = SMMOR/TMOR
 YRE = REMOR/TMOR
 YLASF = XLAMOR/REMOR
 YPRSF = PRMOR/REMOR
 YNDSF = XNDMOR/REMOR
 YSMSF = YMMCR/REMOR
 PRINT 511, TMOR,AMOR,XLAMOR,PRMOR,XNDMOR,SMMOR,REMOR,YHNO3,YLA,YPRBMS
 1,YND,YSM,YRE,YLASF,YPRSF,YNDSF,YSMSF BMS4 074
 ROIM = TMAC BMS4 075
 ROAM = AMAQ
 BMS4 076
 ROLAM = XLAMAO
 ROPRH = PRFIAQ
 RCNDM = XNOMAC
 ROSMM = SMMAQ
 SITM = TMOR
 SIAM = AMUR
 SILAM = XLAMOR
 SIPRM = PRMOR
 SINDM = XNOMOR
 SISMM = SMMOR
 D)(S 235 L = 1,N
 YPEI = (YRE 100.0 +5.0)/5.0
 IY = YREI
 Y! = IY
 FRY = YREI - YI
 l = (TMOR.IC.O - 15.0)/5.0
 kl = L
 IK = KI
 FRZ = I-ZK
 BMS4 095
 MINIF(YKTLA(IY,KZ),YKTLLA(IY+I,KL),YKTLAIIY,KZ+1),YKTLAIIY+1,BMS4 096
 IKZ+1),YKTPRIIY,KZI,YKTPR(IY+1,KZ),YKTPR(IY,KZ+II,YKTPR(IY+1,KZ+1),BMS4 097
 ZYKTND(IY,KZ),YKTND(IY+1,KZ),YKTND(IY,KZ+1),YKTND(IY+1,KZ+1),YKISM(BMS4 098
 3IY,KZ),YKTSM(IY+1,KI),YKTSM(IY,KZ+1),YKTSM(IY+1,NL+11) BMS4 099
 IF (SKT) 100,100,105 BMS4 100
LUO PRINT 5IZ, YKTLA(IY,KZ),YKTLA(IY+I,KZ),YKTLA(IY,KZ+1),YKTLA(IYYI,KBMS4 10l
 IZ+I),YKTPR(IY,KZ),YKTPR(IY+1,KZ),YKIPR(IY+1,KZ),YKTPR(IY+I,KZ+I),YBMS4 102.
 2KTND(IY,KZ),YKTNOIIY+1,KZ),YKTNOIIY,KZ+I),YKTNO(IY+I,KZ+1),YKTSM(IBMS4 1O3
 3Y,KZ),YKTSM(IY+1,KZ),YKTSM(IY,KZ+1),YKTSMIIY*I,KZ+1),TMOR,YRE BMS4 104
 IF (K) 500,600,45 BMS4 105
 YKTLAI = YKTLA(IY,KZ)*(1.0 - FRY) + YKTLA(IY+1,KZ)aFRY BMS4 10K
 YKTLAT = YKTLA(IY,KI+II*(1.0-FRY) +YKTLAIIY+1,KL+1)*FRY BMS4 107
 YKTLA3 = YKTLAI*(1.0 - FRL) + YKTLAZ*FRL. BMS4 108
 CKTLA = YKTLA3 % YLASF BMS4 109
 YKTPRI = YKTPR(IY,KL)*(1.0 - FRY) + YKTPRIIY+I,KL)*FRY BMS4 110
 YKTPKZ = YKTPR(IY,KZ+i)*il.0 - FRY) + YKTPRIIY+1gKZ+1)&FRY BMS4 1111
 YKTPR3 = YKTPRIO(1.0 - FRL) + YKTPRZFFRI BMS4 112
 CKTPR = YKTPR3 * YPRSF BMS4 113
 YKINDI = YKTND(IY,KI)*(1.0 - FRY) + YKIND(IY+I.KZ)*FRY BMS4 1144
 YKINI)? = YKTNI)(IY,KI +1)*(1.0 - FRY) + YKTNO(IY+1.KKI+1)#FRY BMSG 115
 YKINOS = YKTSDI=(1.0 - FRLI & YNTNDZ=FRZ. BMSA \10
 CKTND = YKTND3 YNDSF BMS4 117
 - YKISMI = YKISM(IY,KL)O(1.0 - FRY) & YKTSMIIY+1,KLIOFRY BMS4 118
 YKTSM2 = YKTSM(IY,K\+1)*(1.0 - FRY) + YKTSM(IY+1:XZ+1)FFRY BMS4 119
 YKTSM3 = YKTSMl*(1.0 - FRL) + YKISMZ*FRZ BMS4 120
 CKISM = YKTSM3 YSMSF EMS4 121
 SKA = MINIF(YKALA(IY,KZ),YKALA(IY+I,KZ),YKALAIIY,KI+1),YKALA(IY+1,BMS4 I?2
 IKZ+1),YKAPR(IY,KZ),YKAPR(IY+I,KZ),YKAPR(IY,KL+I),YKAPR(IY+1, KZ+I),BMS4 123
 ZYKAND(IY,KZ),YKAND(IY+I,KZ),YKAND(IY,KZ+1),YKAND(IY+I,KZ+1),YKASM(BMS4 124
```


## Figure 45 . (Continued)

```
 3IY,KZ),YKASM(IY+1,KZ)。YKASM(IYOKZ+1)。YKASM(IY+10KZ+1)) BMSK 125
 IF (SKA) 110.110,115 RMSG 1?6
119 PRINT 513, YKALAIIY,KZ),YKALA(IY+I,KL),YKALAIIY,KL+1):YKALAIIY*I,KBMS4 II27
 iZ+i),YKAPR(iY,KZ),YKAPR(IY+1,KZ),YKAPR(IY,KZ+1),YKAPR(IY+1,KZ+1),YBMS4 126
 ZKÁNOI I Y,KZI,YKAND(IY+1,KZ),YKAND(IY,KZ+1),YKAND(IY+1,KZ+1),YKASM(IBMS4 129
 3Y,KZ),YKASM(IY&1,KZ),YKASMIIY&KZ+1),YKASMIIY+1,KZ+II,TMOR,YRE BMS4 130
 IF (K) 600.600,45
115 YKALAI = YKALA(IY,KII*(1.0 - FRY) & YKALA(IY&I,KZ)OFRY BMS4 132
 YKALA2 = YKALAI[Y,KI+1)=(i.0 - FRY) + YKALA(IY+1,KKI+1)FFRY BMS4 133
 YKALA3 = YKALAI*(1.0 - FRZ) +YKALA2*FRI BMS4 134
 CKALA = YKALA3 - YLASF BMS4 135
 YKAPRI = YKAPR(IY,KZ)={1.0 - FRY) & YKAPR(IY&I,KZ)OFRY BMS4 136
 YKAPRZ = YKAPR(IY,KKL+1)*(1.0 - FRY) + YKAPR(IY*1,KZ*I)#FRY BMS4 137
 YKAPR3 = YKAPR1*(1.0 - FRL) + YKAPR2*FRL BMS4 138
 CKAPR = YKAPR3 YPRSF
```



```
BMS4 139
 YKANDZ = YKAND{IY,KI+1)*(1.0 - FRY) + YKANDIIY+1,KZ+1)FFRY BMS4 141
 YKAND3 = YKANO1.(1.0 - FRL) + YKAND2*FRL 8MS4 142
 CKAND = YKANO3 YNOSF
 YKASMI = YKASM(IY,KZ)*(1.0 - FRY) + YKASM(IY+1,KZ)*FRY
 YKASM2 = YKASH(IY,KZ +1)*(1.0 - FRY) + YKASM(IY+1,KZ+I)=FRY
 YKASM3 = YKASM1=(1.0 - FRZ) + YKASM2=FRZ
 CKASM = YKASM3 YSMSF
 TOTK = CKTLA + CKTPR + CKTND + CKTSM
 HNO3K = CKALA + CKAPR + CKAND + CKASM BMS4 149
 TMAO CKALA + CKAPR + CKAND + CKASM
 TNAQ = TMOR/TOTK
 AMAQ = AMOR/HNO3K
 REMAQ = TMAO - AMAQ
 IF (REMAQ) 120,120,125
 PRINT 514, TMAQ,AMAQ,REMAQ.HNO3K
 IF (K) 600,600,45
125 CLAPR = 0.8187-0.1106*TMOR BMS4 156
 MLAPRR 1.8187 0.llOG*TMOR
 BPRPR = 1.0
 HSMPR = -0.3795 + 0.9214*TMOR
 DEMS = XLAMOR/BLAPR + PRMOR/BPRPR + XNOMOR/BNDPR + SMMOR/BSMPR
 XLAMAQ = XLAMOR\bulletREMAQ/(BLAPR*DEMS) BMS4 161
 XLAMAQ = XLAMOROREMAQIMBLAPRGOEMS)
 OEMS:
 XNOMAQ = XNOMOR*REMAQ/(BNOPREOEMS)
 SMMAQ = SMMOR*REMAO/(BSMPR*DFMS)
 XHNO3 = AMAQ/TMAQ
 XLA = XLAMAQ/TMAQ
 XPR = PRMAQ/TMAQ
 XND = XNOMAQ/TMAQ
 XSM = SMMAQ/TMAQ
 XRE = REMAQ/THAQ
 XLASF = XLAMAQ/REMAQ
 XPRSF = PRMAO/REMAQ
 XNDSF = XNDMAQ/REMAQ
 XSHSF = SMMAQ/REMAQ
 SXA = XHNO3 + XLA + XPR + XND + XSM
 IF (0.9999 - SXAI 130,140,135
130 iF (1.0001 - SXA) 135,140,140
135 PRINT 515, TMAQ:AMAQ:XLAMAQ,PPMAO:XNDMAO:SMMAQ,PEMAQ
 IF (K) 600,600,45
140 SXREA = XLASF + XPRSF + XNDSF + XSMSF
 IF (0.9999 - SXREA) 145.155,150
145 IF Il.000I - SXREAI 150.155,155
IbN PRINT 516, TMAQ,AMAO,XLAMAQ,PRMAQ,XNOMAQ,SMMAQ,REMAO BMS4 183
 IF (K) 600,600,45
155 IF (L - M) 165,160,165
L6O PKINT 51T
```

Figure 45 . (Continued)


Figure 45 . (Continued)

| 509 | FORMAT | (4HJR 07F8.4.6F6.3) | GMS4 | 249 |
| :---: | :---: | :---: | :---: | :---: |
| 510 | FORMAT | (4HJR 07F8.4) | BMS4 | 250 |
| 511 | FORMAT | (4H S 17F8.4,10F6.3) | BMS4 | 251 |
| 512 | format |  | B 154 | 252 |
| 51? | FORMAT |  | BMS4 4 | 253 |
| 514 | FORMAT | (18HJREMAQ LESS THAN 04Fl0.4) | BMS4 | 254 |
| 515 | FORMAT | (16HJSYA NOT EQUAL 17F10.4) | BMS4 | 255 |
| 516 | FORMAT | iIBHJSXREA NOT EQUAL 17F10.4! | BMS4 | 256 |
| 517 | FORMAT | (17HiJEED ENTRY POINT) | BMS4 | 257 |
| 518 | FORMAT | (2HJRI2.7F8.4,10F6.3) | BMS 4 | 258 |
| 519 | FORMAT | (6HJTMOR $=$ F10.4.6H $A$ MOR $=$ F10.4,8H $\times$ LAMOR $=F 10.4,7 \mathrm{H}$ | PRMOR $=$ F10.4BMS4 | 259 |
|  | 1.8H XND | MOR $=$ F 10.4,7H SMMOR $=$ F10.4, 7H REMOR $=$ F10.4) | BMS4 | 280 |
| 520 | FORMAT | (16HJSYO NOT EQUAL 17F10.4) | BMS4 | 261 |
| 521 | FURMAT | (18HJSYREO NOT EQUAL 17F10.4) | BMS4 | 262 |
| 522 | FORMAT | (2H SI2.7F8.4.10F6.3) | BMS4 | 263 |
| 523 | FORMAT | (6H, GTMOR=F10.4) |  | $20^{\circ}$ |
| 600 | STOP 89 |  | BMS4 | 265 |
|  | END |  | BMS4 | 266 |


[^0]:    Figure 32. McCabe-Thiele representation of "pinohed" total molality

[^1]:    Figure 39. (Continued)

[^2]:    Figure 41. Fortran statements, Program II

