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Abstract 

Cointegration is tested between organic and conventional corn and soybean markets in several 

locations throughout the U.S. using a unique data set. Organic prices are found to behave like 

jump processes rather than diffusions, and Monte Carlo methods are developed to compute 

appropriate critical values for such tests. Findings indicate that no long-run relationship exists 

between organic and conventional prices, implying that price determination for organic corn and 

soybean is independent from that for the conventional crops. This suggests that organic corn and 

soybean prices are driven by demand and supply forces idiosyncratic to the organic market. For 

each crop, cointegrating spatial relationships are found between prices at the main organic 

markets. However, such relationships are generally weaker than the ones for the corresponding 

conventional prices, implying that organic markets are more affected by idiosyncratic shocks 

than conventional markets. 
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ORGANIC CROP PRICES, 

OR 2X CONVENTIONAL ONES? 

 

Born [1, p. 1] noted that “prices for organic grains and oilseeds were about double the 

conventional prices from 1995 to 2003”. Such “doubling” in organic crop prices is a commonly 

held belief in the organic agriculture sector. But, does that “doubling” depict the true existing 

relationship between the conventional and organic grain and oilseed markets? Is there any other 

relationship that links those conventional and organic markets? Or, is it that they are not really 

related to each other? The present study provides information to answer these questions. As 

explained next, establishing the existence of a stable and significant relationship between 

conventional and organic crop markets is of fundamental importance not only for current and 

potential organic producers, but also for processors and government agencies involved in 

insuring organic farmers.  

A priori, one would expect organic crop prices to closely follow conventional ones in the 

U.S., not only due to the thinness of organic markets, but also because organic crops account for 

a very small share of cropland. In 2008, only 0.57% of U.S. cropland was planted with organic 

crops; and although organic corn and soybeans are among the main organic crops in the U.S. in 

terms of acreage, they respectively account for only 0.21% and 0.20% of the total cropland 

devoted to such crops [2]. In addition, one might expect organic crops to sell at a premium 

because some consumers strongly prefer them over their conventional counterparts. According to 

Clarkson [3, p.163], “consumers pay higher prices to get foods […] raised without synthetic 

chemicals...” and further adds that “whatever their reasons, these buyers are not seeking the 

cheapest agricultural products. They seek preferred qualities”. 

Organic price premiums are also expected because organic production involves additional 

risks and costs. Organic producers cannot use conventional pesticides and insecticides to manage 

risks; hence, they rely on price premiums [4]. A recent study by McBride and Greene [5] 

compared the costs of organic and conventional soybean production and confirmed the higher 
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costs incurred by organic farmers; and concluded that organic soybean production is more 

profitable than conventional methods due to significant price premiums rather than lower costs 

or higher yields. Its results are consistent with those of Mahoney et al. [6], who found that, 

taking price premiums into account, the 4-year organic grain rotation provided greater net returns 

than the 2-year conventional one. Pimentel et al. [7] reported that, over 22 years of a long-term 

comparison trial, organic yields were comparable to conventional corn and soybean yields. 

According to Delate and Cambardella [8], corn (soybean) yield under a 4-year organic rotation 

reached 91.8% (99.6%) of conventional corn (soybean) yield in the 2-year rotation. Porter [9] 

found organic corn yields 7% to 9% lower and organic soybean yields 16% to 19% lower than 

conventional crop yields. Overall, the literature suggests that price premiums act as a major 

incentive in encouraging conventional producers and processors to switch to organic agriculture, 

by making organic crop systems as profitable as, or outperform, conventional ones.1 

Price dynamics in organic crop markets need not be the same as in conventional ones 

because they are less liquid. In many instances, it is difficult for organic producers to find spot 

markets for their crops to turn them into cash. This feature stimulates more complex 

relationships between producers and buyers in organic markets, and it makes contracting ahead 

of planting a key feature of crop marketing [1]. Dimitri and Oberholtzer [10] found evidence that 

contracting is the primary method for selling in the organic sector, with organic handlers 

procuring 46% of their supply under written contracts, 24% under informal contracts, and only 

27% through spot markets in 2004. In contrast, spot market transactions account for almost a 

60% share for the agricultural sector as a whole [11]. According to Dimitri and Oberholtzer [12], 

contracts in the organic sector are based on the handlers’ goal of reducing the transaction costs 

involved in obtaining enough product and ensuring consistent quality, rather than risk sharing. 

The authors report that, in addition to contracting, handlers often maintain close relationships 

 

 1 It must be noted, however, that Welsh [13] reported some Midwestern organic grain and soybean production 
systems to be more profitable than conventional ones, even without price premiums. 
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with producers by assisting and sometimes even recruiting them, in order to gain access to 

organic products. 

The Agricultural Risk Protection Act of 2000 recognized organic farming as a “good 

farming practice”, making Federal crop insurance coverage available for organic crops taking 

into account the idiosyncrasies of their production system. Therefore, in addition to the 

production risks covered for conventional producers, organic farmers that sign up for coverage 

are compensated for production losses from damage due to insects, disease, and/or weeds [14]. 

However, the incorporation of organic production into the crop insurance rating structure has 

been limited. Organic producers are charged an arbitrary 5% premium surcharge over 

conventional crop insurance. The actuarial fairness of this premium is, at least, questionable [see 

15]. In addition, in the case of crop failure, organic farmers receive a compensation based on 

conventionally produced crop prices, so that organic price premiums are not accounted for under 

the current insurance policy [16]. At the focus group meetings organized by Hanson et al. [17], 

organic farmers expressed their discontent with crop insurance policies’ price provisions, arguing 

that the coverage being offered did not reflect the price premiums that they would receive in the 

market compared to their fellow conventional producers. Further evidence in this regard is 

provided by Chen, Wang, and Makus [18], who showed that, even though crop insurance is an 

important risk management tool for apple growers, “the low price selection and low price 

premium setting do not provide enough indemnity [to organic growers] when losses occur”. 

Furthermore, Greene and Kremen [19] also argue that limited access to crop insurance may 

discourage conventional farmers from switching to organic farming. 

Organic agriculture avoids the use of synthetic fertilizers and pesticides. Instead, organic 

agriculture relies on manure, legumes and other natural sources of nitrogen [20]; thus reducing 

nitrogen applications and its derived emissions [21]. Additional evidence has been found 

showing not only significantly lower fertilizer use in organic agriculture but also lower energy 

requirements [22] [23]. Moreover, according to a study by the Rodale Institute [24], the benefit 

of lower energy use in organic agriculture is accompanied by a higher carbon sequestration rate 
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compared to that than in the conventional system. Also, based on a trial among a selected 

number of tillage strategies that included no-till, and a chisel plow-based organic system in soils 

where reduced-tillage systems are recommended, Teasdale, Coffman and Mangum [25] found 

that “despite the use of tillage, soil combustible C and N concentrations were higher at all depth 

intervals to 30 cm in the organic system compared with that in all other systems”.  

Taking into account the reduced pesticide water and food residues, the improved soil tilth, the 

lower energy use and derived emissions, as well as the potential higher carbon sequestration and 

enhanced biodiversity attributed to organic production systems, Greene et al. [26] point out that 

those environmental externalities could improve the environmental performance of U.S. 

agriculture if the adoption rate of organic practices were higher. However, farmers report that 

profitability is the major incentive to switch to organic agriculture [5].  

Having established the importance of price premiums for the organic agricultural sector, 

from producers to processors, as well as for governmental agencies and insurance companies, it 

is evident that a better understanding of the relationship between organic and conventional crop 

markets is quite relevant. The analysis becomes even more relevant considering the impact that 

organic price premiums can have on farmers’ decisions to switch to organic agriculture and the 

lower environmental footprint that such practices could endorse for the U.S. agricultural sector. 

Interestingly, however, an extensive literature review resulted in a noticeable lack of rigorous 

studies focusing on the analysis of organic crop prices and their premiums over conventional 

ones. One possible exception is Streff and Dobbs [27], but their work was limited to the northern 

plains and upper Midwest region, and provided no quantitative analysis of the organic price 

premiums depicted in their plots. 

Given the relevance of the relationship between organic prices and conventional ones, 

and the absence of related quantitative studies, the present work aims at starting to fill this gap in 

the literature by analyzing organic price premiums. More specifically, this study investigates the 

dynamic relationship between organic and conventional prices for corn and soybean at the main 

U.S. organic markets. In addition, the dynamic relationships between organic prices across 
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different geographic locations are analyzed and compared with their conventional counterparts. 

Results may prove useful to educate conventional producers who are evaluating switching to 

organic agriculture about price risks that affect such method of production, so that they can make 

a more informed decision. The analysis is also likely to yield useful information to improve the 

pricing provisions of Risk Management Agency (RMA) organic insurance rates, correct the 

insurance price determination by which organic producers get compensated for when losses 

occur, and offer additional price elections for organic crops. Further, the present results may help 

determine the potential usefulness of existing futures and option markets to cross hedge organic 

producers’ price risks. 

 

Data 

Organic market data are scarce and difficult to obtain, so we are grateful to the Rodale Institute 

(Rodale) for providing us its unique historic time series of organic corn and soybean spot prices, 

and the procedures it follows to acquire them. Rodale’s database comprises a number of market 

locations that roughly cover the entire U.S. and constitutes, to the best of our knowledge, the 

most complete, updated and extensive set of historic organic prices. Rodale has been collecting 

and comparing the prices of organic and conventional crops, in some cases as far back as 2003, 

and making them publicly available on the internet via their Organic Price Report. 

The main data set used here consisted of the organic corn and soybean price series. Such 

prices are provided to Rodale on a weekly basis by large elevators or handlers that specialize in 

organic grains and oilseeds, and reflect spot prices paid to organic producers. We focused on 

corn and soybean because they are among the organic crops with the largest area planted in the 

U.S. [2]. In addition, corn and soybean had the fewest number of missing observations relative to 

the other available series. The main corn (soybean) series corresponded to the Dallas, Fargo, 

Minneapolis, and Omaha (Fargo, Minneapolis, and Omaha) markets, each involving 246 weekly 

price observations starting in late October 2004 and ending in early July 2009. Two additional 

price series for both corn (Detroit and San Francisco) and soybean (Detroit and Dallas) were also 
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analyzed, but they covered a period about one year shorter. Table 1 shows additional information 

regarding period covered and number of observations for each series. 

Missing observations were replaced by the average of the two contiguous ones, provided 

the previous and following observations were the same. However, in a few instances the missing 

observations were between a price change. To assess the robustness of the results to the method 

used to fill in such missing observations, we performed all of the analysis under three different 

scenarios. Missing observations were replaced by the values of the immediately preceding and 

the immediately following observations in the first and second scenarios, respectively, and by the 

average of the contiguous observations in the third one.2 Since results were essentially the same 

under all of them, only results for the first scenario are reported throughout this article. 

For comparative purposes, Rodale uses conventional crop prices gathered by the United 

States Department of Agriculture’s (USDA) Agricultural Marketing Service (AMS), selecting 

AMS regions that handle product within the geographic location of the elevators or handlers (see 

http://www.rodaleinstitute.org/Organic-Price-Report). Here we used comparable conventional 

price series, obtained by applying the procedure described by Rodale to the data in the 

corresponding AMS reports (i.e., US GR 110, SF GR 110, MS GR 110, and WH GR 111 for 

Dallas, Fargo, Minneapolis, and Omaha, respectively).3 The analysis was also conducted 

employing the conventional Rodale series instead. In the interest of space, the latter results are 

omitted because the main conclusions remained unchanged. 

 

 

 
2 It will be evident later, however, that the third scenario is inconsistent with the observed patterns for organic corn 
and soybean prices. 

3 The SF GR 110 AMS report actually corresponds to East River South Dakota Grain Markets, but Rodale identifies 
it with Fargo, which is relatively close. For the San Francisco and Detroit corn series, and the Dallas and Detroit 
soybean series, both the organic as well as the conventional series were provided by Rodale because they were not 
available from AMS. There were 9 and 7 missing observations in the conventional corn series for San Francisco and 
Detroit, respectively, and 7 missing observations in each of the conventional soybean series for Dallas and Detroit; 
all of which were replaced by the average of the two contiguous observations.  
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Methods 

The dynamic relationships between organic and conventional prices were investigated using time 

series econometrics. To this end, following standard practice in the literature, all of the original 

price series were converted to natural logarithms. In a first stage, the stationarity properties of the 

series were explored by visual inspection of the sample autocorrelation (ACF) and partial 

autocorrelation (PACF) functions [28], to determine the parameter of integration that would 

make them stationary. The visual analysis was supplemented with the Elliot, Rothenberg, and 

Stock (ERS) unit-root tests, which are formal statistical tests to determine the parameter of 

integration. The ERS test is a modified Augmented Dickey Fuller (ADF) test that can 

accommodate more general formulations of the error [29]. Maddala and Kim [30, p.99] point out 

that the ERS test dominates the ADF test and, therefore, should be used instead. 

ERS’s Dickey-Fuller GLS (DF-GLS) method is described in Maddala and Kim [30]. 

Succinctly, ERS tests the null hypothesis that a0 = 0 in the following equation: 

 

(1) 
d

ty∆  = a0 1

d

ty −  + a1 1

d

ty −∆  + … + aq 
d

t qy −∆  + εt, 

 

where ∆ ≡ (1 – L) denotes first differences, L is the lag operator, 
d

ty  is the locally detrended 

series ty , as are regression parameters, and εt is an error term. A detrended series model with a 

linear trend is generally used, which takes the form 
d

ty  ≡ ty  − 0κ̂  − 1κ̂  t, where 0κ̂  and 1κ̂  are 

obtained by regressing y  ≡ [ 1y , (1 – L α ) 2y , …, (1 – L α ) Ty ] on z  ≡ [ 1z , (1 – L α ) 2z , 

…, (1 – L α ) Tz ], tz  ≡ [1, t]′, α  ≡ 1 + c /T, T is the number of observations in the time series, 

and c  is a parameter fixed by ERS at −13.5. 

A potentially important pitfall of the procedure just described for the present data is that, 

as shown later, there is strong evidence that organic prices do not follow the same distribution as 

conventional prices. In particular, organic prices are more realistically modeled as jump 

processes rather than diffusions. The ERS test (as well as the ADF test) is only asymptotically 

valid for non-normal errors [31]; hence, their applicability to a small sample like the one under 
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study is questionable. For this reason, Monte Carlo experiments were conducted to compute 

appropriate critical values for this application. The advocated Monte Carlo experiments are 

explained next. 

 

Monte Carlo Experiment to Test for Unit Roots in Organic Prices 

Organic log-prices were simulated as the jump process (2): 

 

(2) ( )O

tln P  = 
1

1

( )  with probability ,

( ) with probability (1  ).

O O O

t t t

O O

t t

ln P J

ln P

π

π
−

−

 +


−
 

 

If the organic log-prices were stationary, they would have an unconditional mean equal to µO. 

Defining the difference between the log-price at date t and the unconditional mean as 
O

te  ≡ 

( )O

tln P  − µO, for organic prices to tend to return back to their long-term mean both the jump 

probability ( O

t
π ) and the jump size (

O

tJ ) were assumed to be functions of the lagged residuals 

( 1

O

te − ) as in (3) and (4): 

 

(3) O

t
π  = 1/{1 + exp[−γ ( 0

Oλ  + 1

Oλ  | 1

O

te − |) − (1 – γ) 0

OΛ ]}, 

 

(4) 
O

tJ  ~ N(γ θ O 1

O

te − , γ 2 (θ O σ C )2 + (1 – γ)2 (Σ C )2). 

 

In (3) and (4), 0

Oλ , 1

Oλ , 0

OΛ , θ O, σ O, and Σ O are parameters whose values were set equal to the 

respective point estimates computed using organic Minneapolis log-price data. Minneapolis was 

used as the baseline market because it is located in Minnesota across the border from Wisconsin, 

and the former was the state with the largest area devoted to organic soybean from 2000 to 2008 

and to organic corn from 2003 to 2006, and the second largest area planted with organic corn in 

2007 and 2008 after Wisconsin [32] [33]. Parameter γ ∈ [0, 1] can be fixed so as to yield price 

autocorrelations of varying strength. The extreme scenarios of γ = 1 and γ = 0 result in the 

strongest possible autocorrelation and unit root, respectively. 
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Parameters 0

Oλ  and 1

Oλ  in (3) were set equal to the coefficient estimates from a logit 

regression in which the dependent variable took values of zero or one depending on whether an 

organic price change occurred, and the independent variables were a vector of ones and the 

absolute value of the lagged error 1

O

te − . However, since 0

Oλ  and 1

Oλ  are meant to represent the 

strongest autocorrelation possible consistent with the number of jumps and the lagged errors in 

the data, the values of the variables were reordered before fitting the logit so as to have the jumps 

aligned with the largest absolute lagged errors. Parameter 0

OΛ , on the other hand, is associated 

with the opposite case of no autocorrelation (i.e., the lagged error does not affect the occurrence 

of price changes). Therefore, 0

OΛ  was set equal to the point estimate of the coefficient of another 

logit regression in which the dependent variable was a binary variable taking values of zero or 

one depending on the occurrence of price changes, but where the independent variable was a 

vector of ones. 

The log-jumps simulated according to (4) have a normal distribution with mean and 

variance consisting of a γ-weighted combination of jumps inducing autocorrelation and jumps 

not inducing autocorrelation. The former jumps are governed by parameters θ O and σ O, and 

their magnitudes are inversely related to the lagged errors 1

O

te −  to the maximum extent possible 

consistent with the data. Jumps not inducing autocorrelation are driven by parameter Σ O, and 

their size is independent of the lagged errors 1

O

te − . The value of θ O was set equal to the ordinary 

least squares (OLS) estimates from a regression of the organic corn and soybean log-price jumps 

against the corresponding lagged errors 1

O

te − , previous rearrangement of the variable values so as 

to associate the largest (smallest) jumps with the smallest (largest) lagged errors. Parameter σ O 

was set equal to the standard deviation of the residuals from such regression. The value of Σ O 

was fixed at the standard deviation of the log-jump magnitudes in the data. 

Importantly, because of the chosen parameterization, the Monte Carlo design allowed us 

to simulate series that depicted key features of the actual series (e.g., jump probabilities and jump 

sizes), while varying the strength of the simulated autocorrelation relationship by fixing the value 

of parameter γ  in (3) and (4) anywhere between 0 and 1. Reported results correspond to 
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simulations performed for the polar case of unit root (γ = 0) and a scenario of medium-strength 

autocorrelation (γ = 0.5). The unit-root case was used to compute the critical values for the unit 

root test in the presence of jumps, whereas the autocorrelation case enabled us to examine the 

power of the test. Both experiments consisted of 10,000 simulations of the organic log-price 

series following the aforementioned parameterizations. 

Observations for each of the 10,000 simulated series were obtained by performing the 

following iterative procedure: 

Step 1. Set (0)( )O
ln P  equal to the first observation from the actual organic log-price series for 

Minneapolis. 

Step 2. Compute the jth lagged error ( )

O

je  = ( )( )O

jln P  − 
Oµ .  

Step 3. Compute the (j+1)th probability of jump:  

( 1)

O

jπ +  = 1/{1 + exp[−γ ( 0

Oλ  + 1

Oλ  | ( )

O

je |) − (1 – γ) 0

OΛ ]}. 

Step 4. Generate an observation U(j+1) from a standard uniform distribution. 

Step 5. If U(j+1) > ( 1)

O

jπ + , set ( 1)( )O

jln P +  = ( )( )O

jln P  and go to Step 7. Otherwise, go to Step 6. 

Step 6. Draw ( 1)

O

jJ +  ~ N(γ θ1 ( )

O

je , γ2 (θ O σ O)2 + (1 – γ)2 (Σ O)2), and set ( 1)( )O

jln P +  = ( )( )O

jln P  

+ ( 1)

O

jJ + . 

Step 7. If j < 10,000 + T, go back to Step 2. Otherwise, stop. 

The first 10,000 observations of each simulation were used as a “burning period” and discarded 

to ensure randomness and independence from starting values. The last T observations of each 

simulation were kept to compute critical values for the unit root test, by fitting regression (1) and 

then estimating the t statistic corresponding to the associated coefficient a0 for each of the 

simulated series under γ = 0. For example, the critical residual test value at the z% significance 

level was set equal to the (1 − z)th percentile of the 10,000 t values obtained in this manner. To 

compute the power of the test, an additional 10,000 t statistics were estimated in the same way 

but for the series simulated under γ = 0.5. Then, the power corresponding to the z% significance 

test was calculated as the percentage of such t values that exceeded the z% critical value. 
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 Cointegration Analysis 

As shown in the “Results and Discussion” section, both the visual ACF and PACF inspection 

and ERS tests strongly supported the hypothesis that all log-price series are nonstationary and 

integrated of order one (I(1)), i.e., they were rendered stationary after taking first differences. 

Therefore, the relationship between organic and conventional log-prices was examined by means 

of cointegration analysis. Introduced by Granger [34], cointegration is a concept involving long 

run relationships between integrated variables. In a bivariate case, for example, if xt and yt are 

both I(1) variables, they are cointegrated if there exists a β such that the linear combination ut = 

yt – β xt is stationary (i.e., ut is I(0)), where β indicates the long-run equilibrium relationship 

between the two variables. However, if ut is I(1), then it means that yt and xt are not cointegrated 

[30]. Intuitively, if yt and xt are cointegrated, on average the difference between yt and β xt is the 

unconditional expectation of ut (E(ut)). At any point in time yt – β xt may be different from E(ut), 

but y and x will evolve in such a way so as to bring the difference y – β x back to E(ut). In 

contrast, if y and x are not cointegrated, the unconditional mean of ut does not exist, and as y and 

x evolve over time they do not have a tendency to restore a long-run relationship between them. 

With the cointegration concept in mind, the second step of the data analysis was to 

determine whether organic and conventional prices were linked by any long-run equilibrium 

relationship by testing for cointegration. For this purpose, OLS regressions of organic log-prices 

( ( )O

tln P ) on conventional log-prices ( ( )C

tln P ) were fit for each market location: 

 

(5) ( )O

tln P  = 0

OC
b  + OCb1  ( )C

tln P  + 
OC

tv , 

where bOCs are parameters and 
OC

tv  is a residual. Then, the estimated residuals ( ˆOC

tv ) were 

examined to determine whether they were stationary or not. 

Residual-based cointegration tests have “no cointegration” as the null hypothesis and, 

thus, test ˆOC

tv  for a unit root.4 For this purpose it is common practice to apply Phillips’ [35] Zα 

 
4 Although a test with the null of cointegration instead might seem more appealing, Phillips and Ouliaris [36] point 
out some major pitfalls associated with such an approach. 
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test [30], which Phillips and Ouliaris [36] advocate over the ADF or Zt tests for having superior 

power properties. Phillips’ Zα test statistics is calculated as 

 

(6) Ẑα  = T (α̂ – 1) – (1/2) ( 2

Tl
s  – 2

k
s ) (T–2 2

1

2

ˆ( )
T

OC

t

t

v −
=

∑ )–1,  

where 2

Tl
s  ≡ T–1 2

1

ˆT

tt
k

=∑  + 2 T–1 
1 1

ˆ ˆl T

l t tt
w k kτ ττ τ −= = +∑ ∑ , 2

k
s  ≡ T–1 2

1

ˆT

tt
k

=∑ , wτl = 1 – τ/(l + 1), l is a 

window parameter, and α̂  and ˆ
t

k  are obtained by performing the regression ˆOC

tv  = 1
ˆ ˆOC

t
αν −  + ˆ

t
k . 

In addition to the relationship between organic and conventional prices, the extent to 

which organic prices at different locations are related in the long run was examined by fitting 

OLS regressions like (5) but using organic log-prices for two different markets at a time, and 

performing cointegration tests on their residuals. For comparative purposes, a similar procedure 

was also employed on conventional log-prices for different market locations. 

Similar to the unit root tests discussed earlier, a potentially important shortcoming of 

applying cointegration to our data is that organic log-prices are better represented as jump 

processes, whereas existing critical test values have been generated from two series with 

independent and identically distributed (i.i.d.) normal errors with zero mean and constant 

variance (e.g., [36, p. 168 eq. (3)] and [37, p.153]). Hence, appropriate critical values were 

obtained from the Monte Carlo experiments described next. 

 

Monte Carlo Experiment to Test for Cointegration Between Organic and Conventional Prices 

Given the widespread belief that organic prices are twice as large as conventional prices, for 

simulation purposes the postulated cointegrating relationship between the two price series was 

 

(7) ( )O

tln P  = ln(2) + ( )C

tln P  + 
OC

tv . 

 

Further, since the conventional market dwarfs the organic one, it was assumed that cointegration 

was due to the organic prices changing in response to changes in conventional prices, rather than 

the other way around. That is, the simulated cointegrated series involved log-prices changing 
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independently of organic log-prices, and the latter reacting so as to re-establish the long-term 

relationship between the two price series. 

I(1) log-price series for conventional corn and soybean were computed by letting 

( )C

tln P  = 1( )C

tln P−  + 
C

tε , where 
C

tε  ~ N(0, s2) and the values used for parameter s2 matched the 

estimates from the original Minneapolis conventional log-price data, as explained in Tsay [38]. 

That is, conventional prices were assumed to follow a discrete-time limiting case of a geometric 

Brownian motion [39]. 

Organic log-prices were simulated as a jump process like (2). However, consistent with 

the assumption of organic-conventional cointegration being driven by organic prices reacting so 

as to restore the long-run relationship with conventional prices, both the jump probability and the 

jump size were made functions of the lagged cointegration residuals ( 1

OC

tv − ) as follows: 

 

(8) O

t
π  = 1/{1 + exp[−γ ( 0

OCλ  + 1

OCλ  | 1

OC

tv − |) − (1 – γ) 0

OCΛ ]}, 

 

(9) 
O

tJ  ~ N(γ θ OC 1

OC

tv − , γ 2 (θ OC σ OC )2 + (1 – γ)2 (Σ OC )2). 

That is, (8) and (9) are functions analogous to (3) and (4), but involving 1

OC

tv −  instead of 1

O

te − . 

Parameters 0

OCλ , 1

OCλ , 0

OCΛ , θ OC, σOC, and Σ OC were estimated using sample data in a manner 

analogous to the estimation of 0

Oλ , 1

Oλ , 0

OΛ , θ O, σ O, and Σ O described earlier.5 

It should become clear that the design of the Monte Carlo experiment followed the 

reasoning behind an error correction model; hence, under the hypothesis of cointegration, the 

organic log-prices tended to change so as to bring the system back to the long-run equilibrium 

(7). In other words, in the cointegration case, the short-run dynamics of the organic prices were 

influenced by the departures from the long-run equilibrium, so that 

 

(10) 1( )O

tln P+∆  = φ [ ( )O

tln P  − ln(2) − ( )C

tln P ] + 1

O

te + , φ > 0, 

whereas changes in conventional log-prices were exogenously driven. 

 

5 For example, appropriate values for 
0

OC
λ  and 

1

OC
λ  were obtained from a logit regression involving the re-ordered 

(so as to build the “ideal” logit) organic-conventional cointegrating errors for the Minneapolis market. 
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Reported results correspond to simulations performed for scenarios with γ = 0 (used to 

compute the critical values for the ADF residual test in the presence of jumps) and γ = 0.5 (used 

to examine the power of the test).  Both experiments consisted of 10,000 simulated series, each 

of them computed by performing the following iterations: 

Step 1. Set (0)( )O
ln P  and (0)( )C

ln P  equal to the first observation from the actual organic and 

conventional log-price series for Minneapolis, respectively. 

Step 2. Compute the jth cointegration error ( )

OC

jv  = ( )( )O

jln P  − ln(2) − ( )( )C

jln P .  

Step 3. Compute the (j+1)th probability of jump:  

( 1)

O

jπ +  = 1/{1 + exp[−γ ( 0

OCλ  + 1

OCλ  | ( )

OC

jv |) − (1 – γ) 0

OCΛ ]}. 

Step 4. Generate an observation U(j+1) from a standard uniform distribution. 

Step 5. If U(j+1) > ( 1)

O

jπ + , set ( 1)( )O

jln P +  = ( )( )O

jln P  and go to Step 7. Otherwise, go to Step 6. 

Step 6. Draw ( 1)

O

jJ +  ~ N(γ θOC ( )

OC

jv , γ2 (θOC σOC)2 + (1 – γ)2 (ΣOC)2), and set ( 1)( )O

jln P +  = 

( )( )O

jln P  + ( 1)

O

jJ + . 

Step 7. Draw ( 1)

C

jε +  ~ N(0, s2), and set ( 1)( )C

jln P +  = ( )( )C

jln P  + ( 1)

C

jε + . 

Step 8. If j < 10,000 + T, go back to Step 2. Otherwise, stop. 

The critical values and the power of the residual cointegration test were calculated from the final 

T simulated observations. 

 

Monte Carlo Experiment to Test for Cointegration Between Organic Prices at Different Markets 

Another Monte Carlo experiment was performed to determine the critical values and the power 

of the cointegration tests for the organic log-prices at different markets. This experiment differed 

from the previous one in that it involved the relationship between two series characterized by 

jump processes, so as to emulate the behavior of organic log-prices at different market locations.  

The organic markets used to calibrate the cointegration errors were Minneapolis and 

Dallas for corn, and Minneapolis and Fargo for soybean. The Dallas market was chosen because 

among the other markets we had the longest series available for, its state ranked highest in terms 

of acreage devoted to organic corn. In the case of soybean we used Fargo because its series was 
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about one year longer than the Dallas series (see Table 1). The postulated long-run equilibrium 

relationship (i.e., the analog of (7)) between the organic log-prices at the two markets (i.e., 

Minneapolis and Dallas for corn, and Minneapolis and Fargo for soybean) was (11): 

 

(11) 1( )O

tln P  = 2( )O

tln P  + 1 2O O

tv . 

 

The prices of both of the simulated organic series were assumed to change as defined by the 

analogs of expressions (8)-(9), so as to bring the system back to the long-run equilibrium (11). 

The parameterization of the (8)-(9) analogs and the simulations were performed by applying 

procedures similar to the ones used to analyze the organic-conventional relationship. Therefore, 

their description is omitted to save space. 

 

Results and Discussion 

The organic and conventional corn and soybean spot prices series for the Minneapolis market, as 

well as their ratio, are depicted in panels A and B of Figure 1; the plots for the rest of the corn 

and soybean markets look similar. The first noticeable feature in Figure 1 is the piecewise linear 

shape of the organic prices, denoting a constant price for several weeks before a price change or 

jump occurs. It is evident that organic prices do not follow the same distribution as conventional 

prices, and are better characterized by a jump process. Their step-shape pricing pattern is likely 

to be associated with the relative thinness of the organic markets and the impact of contracting 

on them. According to the lower plots of both panels, the relationship between the organic and 

conventional prices throughout the period analyzed has been oscillating around two; as 

mentioned earlier, this doubling of conventional crop prices to price organic crops is considered 

the rule of thumb pricing in the organic sector. 

Table 2 reports summary statistics for organic and conventional prices, price premiums, 

and price ratios for all of the market locations under study. Average ratios for all corn markets 

are above the “2x” threshold, denoting the persistence of substantial price premiums for organic 
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corn. For soybean, average ratios are more closely aligned with the “doubling” rule. In all 

instances, however, the ratios vary substantially, as evidenced by the coefficients of variation of 

the ratios, and the minimum and maximum ratios in the series. 

Additional information about the jump-like behavior of organic prices is furnished in 

Table 3. Minneapolis exhibited the largest number of jumps for both crops. Even for this market, 

organic corn (soybean) prices only changed 12.2% (19.9%) of the weeks. Alternatively, the 

average period between price jumps in Minneapolis was 8.2 (= 1/0.122) weeks for corn and 5.0 

(= 1/0.199) weeks for soybean. When a price change did occur in Minneapolis, its average size 

(standard deviation) was $0.22/bu ($1.11/bu) for corn and $0.31/bu ($3.10/bu) for soybean. 

Figure 2 shows the ACFs and PACFs of the conventional and organic log-price series for 

corn in Minneapolis. Both pairs of plots are very similar; the ACFs decay very slowly and the 

PACFs have a significant first lag that then becomes insignificant. These ACF and PACF  

patterns are characteristic of nonstationary time series. Furthermore, according to Table 3.1 from 

Shumway and Stoffer [40, p.109] the properties of the ACFs and PACFs depicted in Figure 2 

suggest that both series follow an autoregressive process of order one or AR(1). 

A series is integrated of order one, or I(1), whenever stationarity can be achieved by 

taking first differences. For the Minneapolis corn data this seems to be the case, as seen from the  

ACFs and PACFs of the differenced organic and conventional corn log-price series shown in 

Figure 3. The organic series shows a spike at lag 1 in both the ACF and PACF graphs that is just 

above the confidence interval; however, the excess magnitude is negligible and so it could be 

said that after differencing once the series became stationary. 

The results of the ERS tests for the complete set of organic and conventional series are 

presented in Table 4. For log-price levels, all test statistics are substantially below the critical  

values corresponding to standard levels of significance, whereas the opposite is true for log-price 

first differences. Therefore, the empirical evidence is consistent with the assumption that both 

log-price series are I(1).  
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Table 5 shows results for the cointegration regression (5) and the residual-based tests 

corresponding to (6). The p-values for the Ẑα  test statistics are all larger than conventional levels 

of significance, with the smallest p-value equal to 0.116 (for soybean in Omaha). This indicates 

that the data fail to reject the null hypothesis of no cointegration for both crops in all markets. 

Importantly, the power of the tests is high, suggesting that the alternative of cointegration is not 

likely. In other words, there is not enough evidence to reject the null hypothesis that the residuals  

from the organic-conventional cointegrating regression contain a unit root, which means no 

cointegrating relationship between organic and conventional prices. These results would imply 

that the regressions of organic prices on conventional ones would be spurious in the sense of 

Granger and Newbold [41]. The organic-conventional relationship was further examined using 

logit and OLS regressions analogous to (8) and (9), respectively. To save space, results are 

omitted because no significant relationships emerged, which is consistent with the findings from 

the residual-based unit root tests. 

In summary, the data and the tests performed on it lead us to conclude that there is no 

evidence of a long-run relationship, i.e., cointegration, between organic and conventional prices.  

This means that the relationships obtained from regressing organic prices on conventional ones 

for the different locations we had data for are spurious. Furthermore, the “doubling” hypothesis 

that endorses that organic crop prices double the conventional ones is not supported by our data, 

as the organic/conventional crop ratio has varied within very large bounds (see Table 1). 

It is arguable whether the present results are surprising. On one hand, one might think 

that organic crop prices would reflect the additional cost of such method of production, making 

organic crops a “premium” commodity compared to their conventional counterparts, and 

allowing therefore for some degree of substitutability between them. In this regard, a close 

association between organic and conventional prices is more likely to be observed if the two 

types of crops are highly substitutable in production or consumption. 

On the other hand, for some purposes organic and conventional crops cannot really be 

considered close substitutes, if substitutes at all. For example, for livestock to be considered 
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organic it is required that it be fed with organic products as established by the National Organic 

Program regulations in section §205.237: “The producer of an organic livestock operation must 

provide livestock with a total feed ration composed of agricultural products, including pasture 

and forage, that are organically produced …” 

Nonetheless, it could be argued that some degree of substitutability could exist even in 

this latter context if the producer switches his livestock to conventional feed, making it non-

organic livestock because in section §205.236 (a) the National Organic Program regulations 

establishes that “Livestock products that are to be sold, labeled or represented as organic must be 

from livestock under continuous organic management from the last third of gestation or 

hatching”. But such substitution is limited to a one-time event, since section §205.236 (b) states 

that “Livestock or edible livestock products that are removed from an organic operation and 

subsequently managed on a nonorganic operation may be not sold, labeled or represented as 

organically produced”. Therefore, producers could switch their livestock to conventional but 

after that they could no longer switch it back to organic. Dairy producers eventually could, 

however, do the switch more than once because in section §205.236 (a) it is stipulated that “Milk 

or milk products must be from animals that have been under continuous organic management 

beginning no later than one year prior to the production of the milk or milk products that are to 

be sold, labeled or represented as organic”, with some specific exceptions being also admitted. 

Our findings of no cointegration between organic and conventional prices not only 

support the limited substitutability argument in production, but also exemplify the significant 

impact that the organic livestock feed requirements have in the organic crop market. Taking a 

closer look at Figure 1.A, it can be seen that in mid 2007 there was a sizable jump in organic 

corn prices in Minneapolis. Such a change is the largest in the series, with prices rising from 

$6.75/bu to $10/bu, that is, a 48% increase from the second to third week of July 2007. 

Importantly, Figure 1.A also reveals that conventional corn prices in Minneapolis did not 

experience a similar price change over the same period; in fact, they decreased by 13%. The 
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behavior of corn prices in Minneapolis during mid 2007 is representative of the price dynamics 

in all other locations around that period. 

Looking for an explanation of the contrasting behavior of the organic prices compared to 

the conventional ones, Born’s [1, p. 1] characterization seems to fit in: “Organic markets can be 

volatile, with periods of high demand and short supply for certain crops and periods of high 

supply and sluggish demand for others”. Evidence on the matter can be found that not only 

supports Born’s statement, but also provides further explanation with respect to the 2007 organic 

price jumps and their link to organic livestock requirements. For example, Clarkson [3, p.163] 

pointed out before the U.S. House of Representatives’ Agriculture Committee that “demand is 

troubled by an increasing shortfall in the supply of organic raw materials” and then added that 

“U.S. demand for organic soy foods and feeds is growing so rapidly that processors probably 

consume twice as many organic soybeans as are produced in the U.S. Despite excellent prices 

and an abundance of land and great farmers, these U.S. processors find themselves importing 

organic soybeans from countries such as China, Brazil, Paraguay, Bolivia and Argentina”. 

Along the same lines, Lavigne [42] argued that shortages of organic feed were due to the 

different growth pace of livestock feed demand and supply, and further added that imports of 

organic soybean had held its price steady while organic corn had not faced foreign competition 

and had, therefore, increased significantly.6 Furthermore, Dimitri and Oberholtzer [43, p. 8-9)] 

stated that “Organic ‘handlers’ move nearly all organic products from the farm to the retailer” 

and they added that “sourcing organic ingredients has become even more challenging as demand 

for organic products has increased”. In that study, the authors indicated that almost 60% of 

organic handlers faced limited supply of raw materials during 2007. 

Examining the organic livestock growth trend in recent years (see Figure 4) and 

comparing it with the trend for acreage destined for organic corn and soybean production over 

the same period (Figure 5), the explanation for having short supply of organic feed crops and 

 
6 Our data confirm this line of thought because for all locations but one, the jump in organic soybean prices over the 
period being discussed was around 26%. 
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consequent increase in their prices (as the one we noted particularly for corn) is evident. From 

2001 through 2007 the U.S. organic beef, dairy, and poultry production increased by 325%, 

241%, and 143%, respectively, whereas over that same period the acreage destined in the U.S to 

organic corn production increased by only 84% and the one for organic soybean actually 

decreased by 42%. Such disparity in growth rates between livestock and acreage for feedstuff 

within the organic agriculture sector, along with the imports’ explanation discussed above, helps 

better understand the significant 2007 organic corn jump in our data. 

It is worth pointing out that it is evident from Table 2 that the data are consistent with the 

hypothesis that organic crops sell at a premium over conventional ones. This is true because all 

of the minimum organic/conventional price ratios in the table are greater than unity. This means 

that the relationship between organic and conventional prices may be characterized by threshold 

cointegration. Threshold cointegration refers to the case in which the adjustment towards the 

long-run equilibrium, like the one defined by equation (7), is discrete [44][30] rather than 

continuous as assumed in the present study. In our case, threshold cointegration would imply that 

the adjusting process would be triggered when the organic log-price minus the conventional log-

price fell below a sufficiently small positive threshold, whereas no adjustment would occur 

above such threshold allowing organic and conventional prices to freely diverge. Threshold 

cointegration could be even more relevant in the context of spatial markets, due to the presence 

of transaction costs [45]. Unfortunately, if such thresholds do exist, the price series available are 

not nearly long enough to allow us to estimate them with any reasonable degree of accuracy. 

The present results are useful for several reasons. Firstly, they provide important 

information for designing organic insurance pricing provisions. In this regard, RMA should not 

only take into account that prices for organic corn and soybean are higher than the corresponding 

conventional prices (see Table 2), but also that the former do not follow the latter. It seems 

sensible that crop insurance policies be offered with additional price elections, compensating 

organic farmers so as to better reflect the idiosyncrasies of organic agriculture. Given that RMA 

currently calculates organic crops’ insurance rates using conventional crop prices, this 
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recommendation is particularly relevant for the determination of rates for the Actual Production 

History and Crop Revenue Coverage insurance products. Secondly, conventional producers 

evaluating whether to switch to organic production should be aware that organic corn and 

soybean prices have been about as volatile as their conventional counterparts. Further, they 

should also be aware that organic corn and soybean have sold at a premium, but that such 

premium has experienced substantial volatility in both absolute as well as relative terms. Finally, 

the historical data indicate that existing futures and option markets would be of little use to cross 

hedge the price risks of organic corn and soybean in any meaningful way. 

 

 Cointegration Between Organic Prices at Different Markets 

Another dimension to the study consisted of analyzing whether organic prices in different 

locations are related to each other in the long run. In this way, we wanted to assess how 

idiosyncratic organic markets are. To this end, we fitted OLS cointegration regressions similar to 

(5) but for pairs of organic log-prices at different markets, so that the organic series for one 

location was regressed against its counterpart for a different location.  

Results for the OLS regressions and the corresponding residual-based tests for location 

pairs for which we had at least T = 246 observations are reported in Table 6. It can be noticed 

that all of the pairs but one for corn (Omaha-Dallas) show evidence of cointegration. It can also 

be seen that the evidence in favor of cointegration is strongest for pairs involving Minneapolis, 

suggesting that the organic hub is the Minneapolis market and that there could be some sort of  

price disagreement between the markets in the second tier. This is consistent with Minnesota 

being a top state in organic corn and soybean acreage. 

To shed further light on the relationships between organic log-prices at different markets, 

we fitted the analogs of regressions (8) and (9). Results for the jump probability logit model and 

the jump size regression model are reported in Tables 7 and 8, respectively. The main insight 

from Table 7 is that departures from the cointegrating relationship between pairs of organic log-

prices do not seem to induce changes in the probabilities of price changes. That is, jump 



22 

probabilities do not appear to respond to deviations from the respective long-run relationships. 

However, Table 8 shows strong evidence that when organic price changes do occur, their 

magnitudes are significantly negatively related to the lagged cointegrating errors, so as to restore 

the corresponding long-run relationship between organic prices. This is true because all of the  

slope estimates 1
i jO O

θ  are negative and, with the exception of Omaha-Dallas corn, at least one of 

such estimates is statistically significantly negative for each location pair. The evidence also 

suggests that when the prices in the Minneapolis organic market do change, the magnitude of 

those price changes is influenced by shortages or excess supply in the other markets. This is 

interesting because, as pointed out earlier, the cointegration results in Table 6 suggest that 

Minneapolis is a hub, and it may be a consequence of the thinness of organic markets. Together, 

Tables 7 and 8 provide further support for the hypothesis that there are long-run relationships 

between log-prices at different U.S. organic markets. 

For completeness, and as a way of comparing the relationship between organic log-prices 

at different locations with those between conventional log-prices, results for the cointegration 

regressions and residual-based cointegration tests for the conventional log-price series are shown 

in Table 9. According to this table, cointegration is present in all conventional market locations 

at any reasonable level of significance. By comparing the results in Tables 6 and 9, it seems safe 

to conclude that the long-run relationship between log-prices at different locations is stronger for 

conventional than for organic markets.  

 

Concluding Remarks 

In recent years there has been a steady and significant growth of the organic sector [46]. 

However, little economic research has been done on the subject likely due to the lack of data 

availability. The present study aimed at starting filling this gap; in particular at determining 

whether the organic corn and soybean prices in the U.S. follow their conventional counterparts. 

Our findings suggest that there is no basis for advocating the existence of a long-run relationship 

between organic and conventional prices.  
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Evidence of spatial price cointegration among organic markets was found, particularly 

between pairs of markets we had data for and the presumed organic hub, Minneapolis, indicating 

that such market is the leading one. Overall, spatial cointegration in organic markets seems 

weaker than the one present in conventional markets, suggesting that local market forces may 

exert a stronger effect on the determination of local prices for organic crops than for 

conventional ones. Departures from the long-term relationships across organic markets do not 

seem to increase the probability of price changes, however, whenever price changes do occur, 

they tend to restore such long-term relationships. 

If our conclusions for the organic corn and soybean markets extend to other organic crop 

markets, it would imply that organic crop markets have unique characteristics when compared 

with their conventional counterparts. Such idiosyncrasies need to be taken into consideration, for 

example, by RMA when setting the Federal crop insurance policy for organic farmers. Another 

implication policymakers could exploit, is that organic price premiums, which act as the major 

incentive for farmers to switch to organic agriculture [5] and, therefore, contribute to the 

reduction of the environmental footprint of the U.S. agricultural sector [26], are not linked to 

conventional markets but embedded within organic ones. Our results also suggest that organic 

prices are as volatile as conventional ones, that the premiums paid for organic crops exhibit 

substantial variability, and that existing futures and derivatives markets do not provide effective 

tools to manage price risks for the organic sector. 
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Table 1. Summary Information for Organic Prices Series 

 Corn Soybean 

 Date Observations Date Observations 

 Start End Total Missing Start End Total Missing 

Minneapolis 10/26/04 7/9/09 246 13 10/26/04 7/2/09 246 13 

Omaha 10/26/04 7/9/09 246 13 10/26/04 7/2/09 246 13 
Fargo 10/26/04 7/9/09 246 15 10/26/04 7/2/09 246 13 
Dallas 10/26/04 7/9/09 246 13 10/26/04 8/5/08 198 7 

Detroit 10/26/04 8/5/08 198 7 10/26/04 8/5/08 198 7 

San Francisco 11/9/04 7/8/08 193 6 n/a n/a n/a n/a 
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Table 2. Summary Statistics for Organic and Conventional Prices, Price Premiums and 

their Ratio by Market 

 Corn Soybean 

 Organic Conv. Premium Ratio Organic Conv. Premium Ratio 

Minneapolis Mean 7.21 3.05 4.17 2.52 16.29 7.84 8.45 2.09 

 Std.dev. 2.32 1.23 1.63 0.63 6.42 2.61 4.75 0.49 

 Coeff.var. 0.32 0.40 0.39 0.25 0.39 0.33 0.56 0.24 

 Min. 4.00 1.30 1.47 1.45 9.50 4.74 3.66 1.37 

 Max. 11.00 6.66 8.31 4.23 31.00 14.74 22.69 3.82 

Omaha Mean 7.24 3.18 4.05 2.38 15.09 8.02 7.07 1.96 

 Std. dev. 2.70 1.33 1.83 0.56 3.92 2.79 2.26 0.35 

 Coeff.var. 0.37 0.42 0.45 0.23 0.26 0.35 0.32 0.18 

 Min. 4.00 1.47 1.09 1.28 11.00 4.89 3.36 1.29 

 Max. 11.00 7.09 8.00 3.67 25.00 15.74 16.47 2.93 

Fargo Mean 7.16 3.11 4.05 2.47 15.53 7.79 7.74 2.02 
 Std.dev. 2.29 1.34 1.42 0.60 5.97 2.74 3.95 0.41 
 Coeff.var. 0.32 0.43 0.35 0.24 0.38 0.35 0.51 0.20 
 Min. 4.50 1.46 1.23 1.33 10.00 4.78 3.39 1.35 
 Max. 11.00 7.08 7.63 3.94 31.00 15.48 19.57 3.11 

Dallas Mean 7.72 3.59 4.13 2.17 14.39 7.11 7.28 2.13 
 Std.dev. 3.02 1.25 2.11 0.45 3.15 2.61 1.32 0.36 
 Coeff.var. 0.39 0.35 0.51 0.21 0.22 0.37 0.18 0.17 
 Min. 4.35 2.07 0.58 1.13 11.25 4.30 4.50 1.42 
 Max. 13.00 7.49 8.14 3.18 21.00 14.55 10.58 2.94 

Detroit Mean 6.99 3.07 3.92 2.40 14.10 7.60 6.51 1.95 
 Std.dev. 2.61 1.34 1.77 0.58 3.14 2.83 1.23 0.33 
 Coeff.var. 0.37 0.44 0.45 0.24 0.22 0.37 0.19 0.17 
 Min. 4.15 1.58 1.11 1.29 11.25 4.95 3.65 1.31 
 Max. 11.00 7.05 7.85 3.49 21.00 16.04 9.69 2.67 

San Mean 9.00 4.30 4.70 2.10 n/a n/a n/a n/a 
Francisco Std.dev. 3.28 1.43 2.28 0.41 n/a n/a n/a n/a 
 Coeff.var. 0.36 0.33 0.48 0.20 n/a n/a n/a n/a 
 Min. 5.45 2.38 2.13 1.49 n/a n/a n/a n/a 
 Max. 14.00 8.79 9.74 3.29 n/a n/a n/a n/a 
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Table 3. Summary Statistics for Jumps in Organic Prices, by Market 

 Corn Soybean 

Minneapolis Number of observations 246 246 

 Number of jumps 30 49 

 Frequency of jumps 0.122 0.199 

 Average jump size 0.22 0.31 

 Std. Dev. jump size 1.11 3.10 

Omaha Number of observations 246 246 

 Number of jumps 19 24 

 Frequency of jumps 0.077 0.098 

 Average jump size 0.34 0.35 

 Std. Dev. jump size 1.34 1.98 

Fargo Number of observations 246 246 
 Number of jumps 14 14 
 Frequency of jumps 0.057 0.057 
 Average jump size 0.32 0.36 
 Std. Dev. jump size 0.98 3.39 

Dallas Number of observations 246 198 
 Number of jumps 20 17 
 Frequency of jumps 0.081 0.086 
 Average jump size 0.31 0.56 
 Std. Dev. jump size 1.43 1.11 

Detroit Number of observations 198 198 
 Number of jumps 16 18 
 Frequency of jumps 0.081 0.091 
 Average jump size 0.43 0.49 
 Std. Dev. jump size 0.95 1.20 

San  Number of observations 193 n/a 
Francisco Number of jumps 16 n/a 
 Frequency of jumps 0.083 n/a 
 Average jump size 0.53 n/a 
 Std. Dev. jump size 1.12 n/a 
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Table 4. ERS DF-GLS Unit Root Test Statistics for Organic and Conventional Log-Prices 

A. Log-Price Levels [ln(Pt)] 

 Conventional Organic 

 Corn Soybean Corn Soybean 

 Test stat.a Test stat.a Test stat. p-value Power Test stat. p-value Power 

Minneapolis -1.81 -2.16 -1.75 0.460 0.830 -1.30 0.737 0.990 

Omaha -1.37 -1.91 -1.64 0.525 0.877 -1.49 0.628 0.976 

Fargo -1.53 -1.87 -1.33 0.715 0.964 -0.93 0.893 0.998 
Dallas -1.63 -1.81 -1.47 0.630 0.934 -0.74 0.940 1.000 

Detroit -2.31 -1.49 -1.45 0.641 0.939 -0.65 0.957 1.000 

San Francisco -1.44 n/a -1.72 0.477 0.843 n/a n/a n/a 
a
For the conventional series, critical values for the test statistics are -3.48 (-2.89, -2.57) at the 1% (5%, 10%) 

significance levels, respectively [31, p.825]. 

 

B. Log-Price First Differences [∆∆∆∆ln(Pt) ≡≡≡≡ ln(Pt) – ln(Pt−−−−1)] 

 Conventional Organicb 

 Corn Soybean Corn Soybean 

 Test stat.a Test stat.a Test stat. p-value Test stat. p-value 

Minneapolis -7.77*** -5.89*** -18.50*** 0.000 -13.77*** 0.000 

Omaha -4.39*** -12.17*** -16.07*** 0.000 -16.30*** 0.000 

Fargo -5.80*** -11.80*** -15.68*** 0.000 -15.65*** 0.000 
Dallas -7.12*** -6.73*** -15.71*** 0.000 -14.30*** 0.000 

Detroit -4.50*** -8.14*** -16.17*** 0.000 -15.76*** 0.000 

San Francisco -3.40** n/a -14.94*** 0.000 n/a n/a 
a
For the conventional series, critical values for the test statistics are -3.48 (-2.89, -2.57) at the 1% (5%, 10%) 

significance levels, respectively [31, p.825]. 

b
Power is omitted because the null is being rejected at standard levels of significance. 
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Table 5. Regression Results for Cointegration between Organic and Conventional Log-

Prices, and Residual-Based Cointegration Tests 

Model: ( )O

tln P  = 0

OC
b  + 1

OC
b  ( )C

tln P  + 
OC

tv  

 Residual-based test 

0

OC
b  1

OC
b  R

2 # Obs. Ẑα  p-value Power 

Corn Minneapolis 1.28 0.62 0.60 246 -14.62 0.186 0.99 

 
(35.89) (19.15)     

Omaha 1.14 0.71 0.67 246 -12.32 0.277 1.00 

 
(30.78) (22.12)     

Fargo 1.29 0.60 0.66 246 -7.60 0.555 1.00 

 
(41.77) (21.74)     

Dallas 0.88 0.89 0.65 246 -11.88 0.296 1.00 

 
(16.68) (21.52)     

Detroit 1.18 0.67 0.61 198 -8.00 0.526 1.00 

 
(27.68) (17.37)     

San Francisco 0.81 0.94 0.71 194 -10.56 0.363 1.00 
(12.85) (21.66)     

Soybean Minneapolis 0.86 0.93 0.64 246 -12.17 0.282 0.761 
(9.57) (21.01)     

Omaha 1.41 0.63 0.72 246 -17.19 0.116 0.466 
(27.20) (25.02)    

Fargo 0.92 0.88 0.70 246 -9.59 0.418 0.891 
(12.21) (23.79)     

Dallas 1.58 0.56 0.79 198 -10.22 0.381 0.863 
(39.43) (26.75)     

Detroit 1.53 0.56 0.79 198 -10.39 0.373 0.854 
(37.17) (27.01)     

Note: t statistics are shown in parenthesis below the corresponding coefficients. 
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Table 6. Regression Results for Cointegration between Organic Log-Prices at Different 

Markets, and Residual-Based Cointegration Tests 

Model: ( )iO

tln P  = 0
i jO O

b  + 1
i jO O

b  ( )jO

tln P  + 
i jO O

tv  

 Residual-based test 

0
i jO O

b  1
i jO O

b  R
2 # Observ. Ẑα  p-value 

Corn Minn.-Omaha -0.21 1.10 0.93 246 -44.82 0.001 
(-5.58) (55.68)   

Minn.-Fargo 0.11 0.94 0.91 246 -44.93 0.001 

 
(2.87) (49.94)   

Minn.-Dallas -0.16 1.11 0.90 246 -30.07 0.010 

 
(-3.47) (45.69)   

Omaha-Fargo 0.37 0.81 0.89 246 -21.52 0.049 

 
(10.26) (43.36)   

Omaha-Dallas 0.04 1.01 0.98 246 -13.77 0.212 

 
(2.15) (97.85)   

Fargo-Dallas -0.15 1.11 0.87 246 -20.54 0.058 

 
(-2.86) (40.14)   

Soybean Minn.-Omaha 1.09 0.58 0.78 246 -26.22 0.020 
(20.30) (29.84)   

Minn.-Fargo 0.34 0.86 0.82 246 -27.48 0.016 
(5.04) (34.05)   

Omaha-Fargo -0.80 1.30 0.82 246 -22.26 0.042 
(-7.71) (33.71)   

Note: t statistics are shown in parenthesis below the corresponding coefficients. 
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Table 7. Logit Regression Results for Jump Probabilities between Organic Log-Prices at 

Different Markets 

Model: iO

tπ  = 1/{1 + exp[−( 0
i jO O

λ  + 1
i jO O

λ  | 1
i jO O

tv − |)} 

Corn Soybean 

0
i jO O

λ  1
i jO O

λ  
Mc-Fadden 

Pseudo-R
2 # Obs. 0

i jO O
λ  1

i jO O
λ  

Mc-Fadden 

Pseudo-R
2 # Obs. 

MO: Minn. -1.73*** -4.14 0.006 246 -1.46*** 0.57 0.001 246 
(-5.65) (-0.97)  (-6.66) (0.46)   

MO: Omaha -2.83*** 4.27 0.016 246 -2.39*** 2.03 0.004  246 

 
(-8.20) (1.58) 

 
 (-7.85) (0.83)   

MF: Minn. -2.37***   4.99 * 0.018 246 -1.42*** 0.24 0.0001 246 

 
(-7.91) (1.92) 

 
 (-6.15) (0.16)   

MF: Fargo -2.92*** 1.44 0.001 246 -3.12*** 2.62 0.009 246 

 
(-6.60) (0.32) 

 
 (-7.15) (1.02)   

MD: Minn. -1.82*** -2.04 0.002 246 n/a n/a n/a n/a 

 
(-5.97) (-0.64)      

MD: Dallas -2.80*** 3.64 0.013 246 n/a n/a n/a n/a 

 (-7.38) (1.38)      
OF: Omaha -2.99***    4.70 * 0.024 246 -2.18*** -0.56 0.00001 246 

 
(-7.66) (1.87) 

 
 (-5.97) (-0.15)   

OF: Fargo -2.18*** -8.80 0.022 246 -2.78*** -0.20 0.0001 246 

 
(-4.41) (-1.34) 

 
 (-6.07) (-0.06)   

OD: Omaha -1.83*** -13.27 0.014 246 n/a n/a n/a n/a 

 
(-3.65) (-1.37)      

OD: Dallas -1.93*** -10.41 0.011 246 n/a n/a n/a n/a 

 
(-4.32) (-1.22)      

FD: Fargo -2.47*** -4.74 0.012 246 n/a n/a n/a n/a 

 (-6.39) (-1.07)      
FD: Dallas -2.70*** 2.48 0.007 246 n/a n/a n/a n/a 

 (-7.26) (1.04)      
Note: MO, MF, MD, OF, OD, and FD mean Minneapolis-Omaha, Minneapolis-Fargo, Minneapolis-Dallas, Omaha-

Fargo, Omaha-Dallas, and Fargo-Dallas, respectively. t statistics are shown in parenthesis below the corresponding 

coefficients. 

*** (**, *) Denotes significantly different from zero at the 1% (5%, 10%) level, based on the two-sided t statistic. 
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Table 8. OLS Regression Results for Jump Sizes between Organic Log-Prices at Different 

Markets 

Model: iO

tJ  = 0
i jO O

θ  + 1
i jO O

θ  1
i jO O

tv −  + 
i jO O

terror  

Corn Soybean 

0
i jO O

θ  1
i jO O

θ  R
2 

# 
Observ. 0

i jO O
θ  1

i jO O
θ  R

2 
# 

Observ. 

MO: Minn.  0.01 -0.81*** 0.41 30 0.03 -0.33*** 0.22 49 
(0.57) (-4.36)  (1.57) (-3.63)   

MO: Omaha 0.05 -0.13 0.005 19 0.02 -0.24 0.05 24 

 
(1.08) (-0.29) 

 
 (0.79) (-1.14)   

MF: Minn.  0.02 -0.63*** 0.26 30 0.03 -0.40*** 0.26 49 

 
(1.00) (-3.16) 

 
 (1.45) (-4.08)   

MF: Fargo 0.02 -0.70*** 0.48 14 0.04 -0.56** 0.28 14 

 
(0.90) (-3.39) 

 
 (1.06) (-2.16)   

MD: Minn. 0.01 -0.66*** 0.32 30 n/a n/a n/a n/a 

 
(0.66) (-3.63)      

MD: Dallas 0.04 -0.13 0.009 20 n/a n/a n/a n/a 

 (1.01) (-0.41)      
OF: Omaha 0.03 -0.36 0.07 19 0.01 -0.55*** 0.29 24 

 
(0.82) (-1.15) 

 
 (0.56) (-3.02)   

OF: Fargo 0.02 -0.91*** 0.62 14 0.005 -0.56** 0.32 14 

 
(0.77) (-4.44) 

 
 (0.14) (-2.37)   

OD: Omaha 0.05 -0.28 0.006 19 n/a n/a n/a n/a 

 
(1.30) (-0.33)      

OD: Dallas 0.04 -0.70 0.04 20 n/a n/a n/a n/a 

 
(1.07) (-0.92)      

FD: Fargo -0.03 -1.05*** 0.68 14 n/a n/a n/a n/a 

 (-0.14) (-4.41)      
FD: Dallas 0.028 -0.36 0.09 20 n/a n/a n/a n/a 

 (0.72) (-1.34)      
Note: MO, MF, MD, OF, OD, and FD mean Minneapolis-Omaha, Minneapolis-Fargo, Minneapolis-Dallas, Omaha-

Fargo, Omaha-Dallas, and Fargo-Dallas, respectively. t statistics are shown in parenthesis below the corresponding 

coefficients. 

*** (**, *) Denotes significantly different from zero at the 1% (5%, 10%) level, based on the two-sided t statistic. 
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Table 9. Regression Results for Cointegration between Conventional Log-Prices at Different 

Markets, and Residual-Based Cointegration Tests 

Model: ( )iC

tln P  = 0
i jC C

b  + 1
i jC C

b  ( )jC

tln P  + 
i jC C

tv  

 Residual-based test 

0
i jC C

b  1
i jC C

b  R
2 

# 
Observ. Ẑα  p-valuea 

Corn Minn.-Omaha -0.002 1.04 0.98 246 -65.12 0.0000 

 
(-0.24) (125.77) 

 
   

Minn.-Fargo -0.05 1.06 0.98 246 -59.78 0.0000 

 
(-5.08) (112.56) 

 
   

Minn.-Dallas 0.36 0.84 0.98 246 -83.65 0.0000 

 
(38.86) (101.30) 

 
   

Omaha-Fargo -0.04 1.02 0.99 246 -23.91 0.0005 

 
(-6.82) (166.38) 

 
   

Omaha-Dallas 0.36 0.80 0.98 246 -49.80 0.0000 

 
(43.79) (111.35) 

 
   

Fargo-Dallas 0.40 0.79 0.99 246 -74.23 0.0000 

 
(59.34) (130.83) 

 
   

Soybean Minn.-Omaha -0.02 1.02 0.99 246 -34.43 0.0000 

 
(-1.31) (132.05) 

 
   

Minn.-Fargo -0.06 1.02 0.98 246 -31.80 0.0000 

 
(-3.66) (128.43) 

 
   

Omaha-Fargo -0.04 1.00 0.99 246 -82.71 0.0000 

 
(-5.19) (292.28) 

 
   

a
Calculated based on McKinnon [47]. 

Note: t statistics are shown in parenthesis below the corresponding coefficients. 
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Figure 1. Organic and Conventional Prices and their Ratios for Minneapolis 
 

Note: The crosses denote missing observations in the original series 
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Figure 2. ACFs and PACFs of Corn Log-Prices in Minneapolis 
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Figure 3. ACFs and PACFs of First-Differenced Corn Log-Prices in Minneapolis 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

 
Source: USDA-ERS [48]. 

Figure 4. Organic Dairy and Beef Cow Production, and Poultry Production in the 

U.S., 2001-2007 
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Source: USDA-ERS [48]. 

Figure 5. Organic Corn and Soybean Acreage in the U.S. 2001-2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


