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Abstract

The tuned liquid column damper (TLCD), a passive damping device consisting of a large U-tube with

oscillating liquid, has been shown to be effective at mitigating structural responses under natural hazards.

Aside from their bandwidth-limited mitigation capabilities, a key limitation of TLCDs is in their large

geometries that occupy large space often at prime locations. A solution is to implement multi-columned

versions, termed tuned liquid multiple columns dampers (TLMCDs), which have the potential to be tuned

to multiple frequencies and occupy less space by leveraging the multiple columns to allow fluid movement.

However, mathematical models characterizing their dynamic behavior must be developed enabling proper

tuning and sizing in the design process. In this paper, a new analytical model characterizing a TLMCD

as a multiple degrees-of-freedom coupled nonlinear system is presented. The frequencies of free vibration

and vibration modes of a TLMCD are identified in closed-form formulations. Results are validated using

computational fluid dynamics simulations, and show that the analytical model can predict the damper’s liquid

surface movements as well as its capability to reduce structural vibration when the structure is subjected

to harmonic excitations. A parametric study is conducted to investigate the effect of head loss coefficients,

column spacing, cross-section area ratios, and column numbers on mitigating structural response. It is found

that, while TLMCDs are less effective than traditional TLCDs under an equal liquid mass, they can provide

enhanced performance under geometric restrictions.
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1. Introduction

Advances in construction methods and materials have led to more flexible structures, thereby raising the

demand on reducing vibrations caused by natural hazards. Such vibrations can be mitigated through the

incorporation of supplemental damping devices, including passive [1, 2], semi-active [3, 4, 5] and active [6, 7]
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systems. Of interest to this paper are passive systems, which have been widely accepted by the field due to5

their mechanical robustness and mitigation performance without necessitating external power [8]. Amongst

these are tuned mass dampers (TMDs), which dissipate energy by leveraging inertia. TMDs are typically

effective at +/- 15% of their tuned frequency, making them ideal at mitigating wind-induced vibrations [9].

A variation of TMDs is the tuned liquid column damper (TLCD), which consists of a large U-shaped tube

with oscillating liquid. TLCDs leverage gravity in the vertical tubes as the restoring forces and generate10

damping from the liquid head loss induced by an internal orifice located in the horizontal section of the

U-shaped tube. TLCDs have low installation and maintenance costs, high mechanical robustness, and can

be used for storage of water [10].

In TLCD modeling, liquid surface displacements are frequently used to represent liquid motion in vertical

columns, because the column cross-section sizes are relatively small compared to their lengths. In civil15

engineering applications, liquid compression is often negligible and ignored, whereby a TLCD with two free

liquid surfaces can be modeld as a single degree-of-freedom (SDOF) system. Sakai et al. [11] analytically

modeled the liquid motion of a TLCD using a weakly nonlinear equation with nonlinear damping provided by

the internal orifice in the horizontal column. Others have studied numerical solutions for TLCD-structure

interactions [12, 13]. Transfer functions have also been applied to predict the frequency response of an20

undamped SDOF structure equipped with a TLCD under harmonic or white noise excitations, assuming

that the nonlinear damping term in the TLCD equation can be replaced with an equivalent linear one

[14, 15, 16].

Analogous to TMDs, TLCDs are only effective in a restricted fixed frequency range. Variations of TLCDs

have been proposed in the last few decades to address such limitation. One example is the bidirectional25

TLCD, first proposed by Hitchcock [17] and further developed by Razos et al. [18]. Bidirectional TLCDs

consist of four vertical columns and work as two TLCDs installed orthogonally, useful at mitigating vibrations

from orthogonal directions. Min et al. [19] proposed a multi-cell re-tuning passive TLCD, in which the two

vertical columns are subdivided into a number of smaller cells that can be sealed or opened to adjust the

damper’s frequency of free vibration after installation. Recently, the authors introduced the concept of30

tuned liquid wall damper (TLWD) [20], which is a small multi-capillary TLCD encased in concrete walls.

The TLWD is designed to use the liquid for both thermal storage and structural damping. The TLWD is

also a multi-cell TLCD. This type of TLCD system is here termed tuned liquid multiple columns dampers

(TLMCDs). The critical advantage of TLMCDs is in their capability to be tuned at multiple frequencies,

and availability of multiple columns yielding smaller overall geometries. The development of mathematical35

models characterizing their dynamic behavior could greatly facilitate their holistic integration within the

structural design phase via a motion-based design procedure.

The extension of TLCD models to TLMCDs is challenging due to the TLMCD’s nonlinear equations of

motion. Rozas et al. [18] modeled bidirectional TLCDs through the assumption that both DOFs in the

orthogonal directions were uncoupled. Min et al. [19] and Wu et al. [20] modeled TLMCDs by transforming40
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the TLMCD into an equivalent TLCD of the same frequency of free vibration. However, this approximation

method introduces unnecessary constraints on the liquid motion by presuming a relationship between liquid

surface displacements in different columns. All the above proposed dynamic models are derived from TLCD

models, and do not accurately characterize the liquid motion coupling between multiple vertical columns

in a TLMCD, where the liquid surface displacement in each column should be treated as an individual45

DOF. A TLMCD model is also fundamentally different from multiple tuned mass dampers (MTMDs) [21]

or multiple tuned liquid column dampers (MTLCDs) [22] models, in which each individual damper is tuned

to a different frequency of free vibration to enhance robustness against frequency mistuning with the motion

of each individual masses being uncoupled. A TLMCD is an MDOF damper and has multiple coupled

frequencies of free vibration and mode shapes. To the best knowledge of the authors, the closest work is that50

of Hirata and Craik [23], who developed a dynamic model describing the free liquid oscillation in a three-

armed vertical columns. However, this model only describes the coupled liquid motion in an undamped and

unforced system and cannot characterize nonlinear damping and inertia forces found in a TLMCD.

In this paper, the authors propose a new analytical model to characterize a damped and forced TLMCD

system that can extend to unlimited DOFs. Unlike previous TLCD dynamic models, where the liquid55

damping force is only governed by a single head loss coefficient, the proposed method captures essential

features of the liquid damping forces by dividing them into two parts. The first one is induced by the friction

phenomenon in the liquid motion. The second one is due to the head loss of fluid flowing through the orifices.

In the next section, the proposed dynamic model for a TLMCD is introduced. After, the time series

of a 4-column and an 8-column TLMCD’s liquid surface displacements calculated from the dynamic model60

are validated against computational fluid dynamics (CFD) simulation results. Subsequently, a linearization

method for TLMCDs is formulated and the modal shapes at resonance described. It is followed by a

parametric study of head loss coefficients, column spacing, cross-section area ratio and column number on

the structural response reduction conducted numerically. Then, the effectiveness of TLMCDs and TLCDs

are compared both under equal liquid mass and geometries.65

2. Analytical model

The typical TLMCD consists of a horizontal tube joining multiple vertical columns. Fig. 1 schematizes

an N-column TLMCD, where ẍg is the acceleration transmitted from the floor, xi is the vertical liquid

surface displacement in the ith column (positive upwards), h is the initial vertical liquid surface height equal

in every columns, li is the horizontal centre-to-centre distance between the ith and i + 1th columns, ψi is70

the ith orifice blocking ratio, A is the columns’ cross-section area, ν is the cross-section area ratio of the

vertical tubes to the horizontal tube, and Qo, Qf , Qe are the orifice damping force, the friction force between

the liquid and column’s inner surface, and the liquid inertia force, respectively. Variables Qo, Qf , and Qe

are the nonconservative forces in the TLMCD system, which will be discussed later. The analytical model

is built upon the following assumptions: 1) all vertical columns are identical; 2) liquid compression and75
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liquid-air interface diffusion are negligible, resulting in a constant total liquid volume during vibrations; and

3) the cross-section sizes of columns are considerably smaller than the total length of the tube, resulting in

a uniform motion of the liquid surface over the cross section in each column. Under these assumptions, the

N-column TLMCD can be treated as N-1 DOFs by letting the displacement of the last column be dependent

on the other column motions (xN = −
∑N−1

i=1 xi).80

Figure 1: Schematic of an N-column TLMCD (xi is positive upwards)

The equations of motion for the TLMCD are derived using the Lagrange equations. Similar methods

have been adopted by Hitchcock [24], Sarkar et al. [25] and Rozas et al.[18] for some variants of TLCDs.

Starting with

d

dt

(
∂T

∂ẋi

)
− ∂T

∂xi
+
∂V

∂xi
= Qi, i = 1, 2, ..., N − 1 (1)

where ẋi denotes the liquid velocity in the ith column, t is time, Qi is the nonconservative force acting on

the ith DOF, and T and V are respectively the system’s kinematic and potential energy, with85

V =
1

2
ρlAg

N∑
i=1

x2i (2a)

T =
1

2
ρlA

N∑
i=1

ẋ2i (h+ xi) +
1

2
ρlA/ν

N−1∑
i=1

ν2li

 i∑
j=1

ẋj

2

(2b)

where ρl is the liquid density, and g is gravitational acceleration. Using the assumed kinematic constraint

xN = −
∑N−1

i=1 xi and substituting Eq. (2) into Eq. (1) gives:

i∑
j=1

(
N−1∑
k=1

xk − h−
N−1∑
k=i

νlk

)
ẍj +

N−1∑
j=i+1

N−1∑
k=1

xk − h−
N−1∑
k=j

νlk

 ẍj − (h+ xi) ẍi +
1

2

(
N−1∑
k=1

ẋk

)2

− 1

2
ẋ2i − gxi − g

N−1∑
k=1

xk +
Qi

ρlA
= 0, i = 1, 2, ..., N − 1

(3)
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The non-conservative force Qi includes three parts: 1) the damping force Qoi induced by the orifices in

the horizontal column; 2) the friction force Qfi between the liquid and column’s inner surface; and 3) the90

liquid inertia force Qei due to ẍg.

The damping force Qoi is typically assumed to be proportional to the square of the liquid velocity [12].

The relationship between the head loss coefficient η and orifice blocking ratio ψ has been experimentally

studied by Idelchik and Fried [26], Min et al.[27], and Wu et al. [28]. Idelchik and Fried’s formula is selected

because it models the effect of the orifices and excludes the friction head loss that is modeled separately in95

our study

η =
(
ψ + 0.707ψ0.375

)2
(1− ψ)

−2
(4)

It should also be noted that the above empirical equation may not be accurate enough since the head

loss coefficient is also influenced by the external excitation’s amplitude and type (white noise, harmonic,

seismic signal, etc.), and orifice shapes [27, 29]. It is recommended to obtain the relationship experimentally

case-by-case. For a small unit of time, work done by the orifice damping force can be written100

δWo = −
N−1∑
k=1

1

2
ρlA

νηk
∣∣∣∣∣∣

k∑
j=1

ẋj

∣∣∣∣∣∣
 k∑

j=1

ẋj

 k∑
j=1

δxj

 (5)

where ηk is the head loss coefficient for orifice k. The orifice damping force Qoi acting on each DOF is given

by:

Qoi =
∂Wo

∂xi
= −

N−1∑
k=i

1

2
ρlA

νηk
∣∣∣∣∣∣

k∑
j=1

ẋj

∣∣∣∣∣∣
 k∑

j=1

ẋj

 (6)

For laminar flows, the friction resistance is related to the Reynolds number of the flow and is largely

insensitive to surface roughness. However, when the flow is turbulent, the friction force becomes dependent

on the roughness of the tube’s inner surface. If the liquid in the TLMCD is designed to be contained by105

coarse pipes, the friction force can be considerably larger than the orifice damping force. For mathematical

tractability, we assume that the friction force is proportional to the square of liquid velocity ẋ2. An expression

for the work done by the friction force over a small unit of time can be obtained:

δWf = −
N∑

k=1

ρlA [µ|ẋk|ẋk (h+ xk) δxk] +

N−1∑
k=1

ρlA

µνlk
∣∣∣∣∣∣

k∑
j=1

ẋj

∣∣∣∣∣∣
 k∑

j=1

ẋj

 k∑
j=1

δxj

 (7)

where µ is the head loss coefficient due to friction. The friction damping force Qfi acting on each DOF is
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given by:110

Qfi =
∂Wf

∂xi

= −ρlAµ

|ẋi|ẋi (h+ xi) +

∣∣∣∣∣∣
N−1∑
j=1

ẋj

∣∣∣∣∣∣
N−1∑

j=1

ẋj

h− N−1∑
j=1

xj

+

N−1∑
k=i

νlk
∣∣∣∣∣∣

k∑
j=1

ẋj

∣∣∣∣∣∣
 k∑

j=1

ẋj


(8)

Other than the orifice blocking flow and the friction force, any other drastic variations in the liquid

velocity may result in additional head loss in the damping system. For example, some recent work [30]

experimentally found that the transition zone between the vertical columns and the horizontal column is

another source of liquid head loss. However, direct formulas for computing this type of head loss are yet to

be developed. This effect is not considered in the proposed TLMCD analytical model.115

The last non-conservative force is the liquid inertia force Qei caused by the external acceleration. The

work done by the excitation force on the vertical columns is null, because the sum of vertical liquid masses

is constant and the direction of inertia forces is perpendicular to the liquid velocity. The work done by the

inertia force Qei is solely from the motion of the liquid in the horizontal column:

δWe = −ρlA
N−1∑
k=1

ẍglk k∑
j=1

δxj

 (9)

The inertia force Qei acting on each DOF is:120

Qei =
∂We

∂xi
= −ρlAẍg(t)

N−1∑
k=i

lk (10)

and the total non-conservative force Qi acting on the ith degree of freedom is:

Qi = Qoi +Qfi +Qei (11)

Combining Eqs.(3), (6), (8), (10), and (11), one obtains the nonlinear equations of motion for a TLMCD:

i∑
j=1

(
N−1∑
k=1

xk − h−
N−1∑
k=i

νlk

)
ẍj +

N−1∑
j=i+1

N−1∑
k=1

xk − h−
N−1∑
k=j

νlk

 ẍj

− (h+ xi) ẍi +
1

2

(
N−1∑
k=1

ẋk

)2

− 1

2
ẋ2i − gxi − g

N−1∑
k=1

xk

= µ|ẋi|ẋi (h+ xi) + µ

∣∣∣∣∣
N−1∑
k=1

ẋk

∣∣∣∣∣
(

N−1∑
k=1

ẋk

)(
h−

N−1∑
k=1

xk

)

+

N−1∑
k=i

ν

(
µlk +

1

2
ηk

) ∣∣∣∣∣∣
k∑

j=1

ẋj

∣∣∣∣∣∣
k∑

j=1

ẋj + ẍg(t)

N−1∑
k=i

lk, i = 1, 2, ..., N − 1

(12)
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which can be written in matrix form

M(x)ẍ + Kx + F(x, ẋ) = 0 (13)

where M(x) ∈ RN−1×N−1 is a state-dependent mass matrix, K ∈ RN−1×N−1 is a linear stiffness matrix, and

F(x, ẋ) ∈ RN−1×1 is a restoring force matrix containing all the other nonlinear terms. The state-dependent125

mass matrix M(x) is given by:

M(x) =
(∑N−1

k=1 xk − h
)
I−



x1 + h+ ν
∑N−1

k=1 lk ν
∑N−1

k=2 lk ν
∑N−1

k=3 lk . . . νlN−1

ν
∑N−1

k=2 lk x2 + h+ ν
∑N−1

k=2 lk ν
∑N−1

k=3 lk . . . νlN−1

ν
∑N−1

k=3 lk ν
∑N−1

k=3 lk x3 + h+ ν
∑N−1

k=3 lk . . . νlN−1

...
...

...
. . .

...

νlN−1 νlN−1 νlN−1 . . . xN−1 + h+ νlN−1


(14)

where I is the identity matrix of appropriate size. From Eq. (12), it is noted that the cross-section area A

and liquid density ρl are not directly related to the liquid motion since they are canceled from both sides

of the equation, but they may have an indirect influence on the head loss coefficients. The derivation of

a formulation for determining optimal tuning ratios and head loss coefficients for the TLMCD is complex,130

because the mass matrix is state-dependent.

3. Model validation

In this section, the analytical model is validated against CFD simulations on a 4-column and an 8-column

TLMCD, after a brief verification of the CFD methodology itself by comparing results on a TLCD against

experimental data reported in literature.135

3.1. CFD methodology verification

CFD models are created in ANSYS FLUENT 17.2 software and simulated using a standard k-ε solver,

widely used to simulate turbulent flow [31, 32, 33]. The maximum mesh size is set as 0.01 m, with much

finer mesh around the orifices in the bottom area. The top of each vertical columns in the TLMCD is open

to allow the liquid to flow freely. No liquid and air diffusion is included. To account for the unevenness of140

the liquid surface in the vertical columns, the liquid surface displacement is defined as the distance between

the horizontal centerline of the liquid surface and its original steady state position.

The CFD methodology is first verified against experimental data published in Wu et al. [28]. In their

study, a TLCD (2-column TLMCD) was directly attached to a shaking table and subjected to a harmonic

ground acceleration ẍg = 4 sin(0.492t) cm/s2. The cross-section area of the TLCD tube was reported to be145

15 x 15 cm2, and the horizontal and vertical lengths were 85 cm and 63.75 cm, respectively. The orifice

blocking ratio varied from 20% to 80% to obtain a relationship with the TLCD’s head loss coefficient. The

experimented system without the shaking table was modeled by generating meshes with a maximum element
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length of 1 cm to capture features associated with liquid motion in transition areas such as elbows and tee

sections. Since the TLCD material is unknown, the roughness height of the pipe was set to 0.002 mm.150

Results from the CFD simulation are compared against these experimental results in Table 1. Results show

slightly lower maximum liquid surface amplitudes, but no more than 10%, showing an overall good agreement

between both the experimental and CFD simulation results.

Table 1: Comparison of liquid surface amplitudes (cm) between CFD and test results [28].

orifice blocking ratio ψ 0.2 0.4 0.6 0.8

experimental results 15.8 13.1 9.2 4.3

CFD simulation results 14.3 12.2 8.3 4.3

difference (%) 9.5 7.3 9.7 0

3.2. Validation of analytical model

The proposed analytical model presented in Section 2 is validated on 4-column and 8-column TLMCDs155

using the same CFD methodology as described in Section 3.1. The geometry parameters and damping

coefficients of both systems are listed in Table 2. All the orifices have an identical blocking ratio of 20%,

and the orifice head loss coefficient η is determined using Eq. (4). Liquid surface displacements are first

calculated using the analytical model and then compared to the CFD results.

Table 2: System parameters for 4-column and 8-column TLMCDs.

system parameters units 4-column 8-column

cross-section area A cm2 15x15 30x30

orifice head loss coefficient η − 0.54 0.54

friction head loss coefficient µ − 0.2 0.1

initial liquid surface height h m 0.5 0.9

column spacing li m 0.5 1.5

Two simulation cases are considered: free oscillation and forced vibrations. Starting with the 4-column160

TLMCD under free oscillation, the initial condition on the liquid surface displacements in the four vertical

columns are set to: x1(0) = x2(0) = 0.385 m, and x3(0) = x4(0) = −0.385 m. Figs. 2(a) and (b) plot

time series data of the four columns’ liquid surface displacements from the analytical model and the CFD

simulations. There is a good agreement between the model and simulations results. For the forced vibrations

case of the 4-column TLMCD, a harmonic base acceleration ẍg = 0.37 sin(2.46t) m/s2 is used as the forcing,165

where the vibration frequency is at the first frequency of free vibration of the 4-column TLMCD, and the

acceleration amplitude is selected arbitrarily to provide a reasonable fluid motion. Fig. 3 shows the liquid

motion amplitudes under this harmonic excitation: the liquid heights in the four columns decrease almost
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linearly from one end to the other. Fig. 4(a) and (b) are plots of the forced vibration results for the liquid

surface displacements for all the columns, also showing a good agreement between the model and simulation170

results.

Figure 2: Time series of column displacements under free oscillation: (a) columns x1 and x2; and (b) columns x3 and x4.

Figure 3: CFD results of the 4-column TLMCD under forced vibration, t = 7.8 s.

Figure 4: Time series of column displacements under forced oscillation: (a) columns x1 and x2; and (b) columns x3 and x4.

9



The 8-column TLMCD is validated using the same methodology as for the 4-column TLCD. Figs. 6 and

7 plot the time series data comparing the results of both free and force vibrations. For the free vibrations,

the initial condition on the liquid surface displacements are set to -0.9 m in the first four columns and +0.9 m

in the last four columns. The CFD simulations and analytical solutions of the liquid surface displacements175

match very well for the first 2 seconds. After that, as the system energy diminishes, the error slightly

increases, but the analytical model can still capture the oscillation amplitude. In the forced vibration case,

the TLMCD is subjected to a harmonic base acceleration ẍg = 0.6 sin(0.934t) m/s2, where the vibration

frequency is close to the first frequency of free vibration of the 8-column TLMCD, and the acceleration

amplitude is selected arbitrarily to provide a reasonable fluid motion. The liquid motion is shown in Fig. 5.180

Results show a good agreement between the model and simulation results. It can also be observed that the

liquid motion is almost at the same phase in all columns, with a slight decrease in phase from the left-most

to the right-most column.

Figure 5: CFD results of the 8-column TLMCD under forced vibration, t = 14.6 s.

Figure 6: Time series of liquid displacements under free oscillation: (a) columns x1 to x4; and (b) columns x5 to x8.
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(a)

(b)

Figure 7: Time series of liquid displacements under free oscillation: (a) columns x1 to x4; and (b) columns x5 to x8.

4. Modal analysis

4.1. Weak nonlinearity of TLMCD185

The nonlinear equations of motion in the TLMCD model makes it difficult to extract frequencies of

free vibration analytically. For an undamped free vibration case, it is possible to calculate the system’s

frequencies of free vibration using invariant points, where these frequencies are solely determined by the

system’s energy regardless of initial conditions [23]. However, this method is not applicable to damped

models and those under forced vibrations, because the system’s energy is time-varying and invariant points190

are not available.

The weakly dependence of a nonlinear system’s frequencies of free vibration can be measured by the

fluctuation range of frequencies, and a small variation range indicates that frequencies are consistent under

various situations. Mechanical systems with weak nonlinearity, in which the nonlinear terms in the differential

equations of motion are much smaller than the linear ones, tend to have weakly dependent frequency response195

functions [34]. Various numerical simulations suggest that a TLMCD is a weakly nonlinear system, and that
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frequencies of free vibration of TLMCDs can be identified numerically through resonance frequency responses

under a harmonic frequency sweep. For example, the vibration amplitudes of the displacements of the first

two columns of 4-column TLMCD with an equal column spacing of 1 m and an initial liquid height of 1 m

under harmonic vibrations are obtained using Eq. (12). Fig. 8 plots the frequency responses under various200

orifice blocking ratios ψ. It can be observed that increasing the orifice blocking ratios only reduces the

corresponding resonance frequencies of the TLMCD by less than 1%, as illustrated in Fig. 10(a). Another

factor that may influence frequencies of free vibration is the total energy of the system, because a TLMCD’s

frequencies of free vibration may be input amplitude-dependent given its nonlinearity. Fig. 9 plots the

frequency responses under harmonic excitation inputs with various amplitudes. It is found that increasing205

the acceleration input affects the frequency response amplitude almost proportionally, and that there is a

small, insignificant drift in the resonance frequencies, as illustrated in Fig. 10(b). It can be concluded that

a TLMCD is weakly nonlinear and its frequencies of free vibration can be estimated within a reasonable

range independently of damping and system energy. The next section discusses how these frequencies and

corresponding mode shapes can be analytically computed.210

Figure 8: Frequency responses of a 4-column TLMCD under various uniform orifice blocking ratios (amplitude of ẍg = 0.1m/s2):

(a) frequency response for x1; and (b) frequency response for x2.
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Figure 9: Frequency responses of a 4-column TLMCD under various acceleration amplitudes (ψ = 20%): (a) frequency response

for x1; and (b) frequency response for x2.

Figure 10: The influence of orifice damping and floor acceleration amplitudes on the 4-column TLMCD’s frequency response:

(a) orifice blocking ratio; and (b) acceleration amplitude.

4.2. Linearization method

Symmetric TLMCD

The nonlinearity of the TLMCD is attributed to the coupled liquid motion in multiple vertical columns.

For a geometrically symmetric TLMCD, opposite columns have opposite liquid surface displacements. Based

on this observation, the equations of motion for symmetrical TLMCDs can be linearized, and the rank of215

an N-column symmetrical TLMCD system can be reduced to N/2 (as frequencies of free vibration are equal
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pairwise). The linearized constant mass and stiffness matrices are derived from Eq. (12):

M =



ν
(

2
∑N/2

k=1 lk − lN/2

)
+ 2h ν

(
2
∑N/2

k=2 lk − lN/2

)
ν
(

2
∑N/2

k=3 lk − lN/2

)
. . . νlN−1

ν
(

2
∑N/2

k=2 lk − lN/2

)
ν
(

2
∑N/2

k=2 lk − lN/2

)
+ 2h ν

(
2
∑N/2

k=3 lk − lN/2

)
. . . νlN−1

ν
(

2
∑N/2

k=3 lk − lN/2

)
ν
(

2
∑N/2

k=3 lk − lN/2

)
ν
(

2
∑N/2

k=3 lk − lN/2

)
+ 2h . . . νlN−1

...
...

...
. . .

...

νlN−1 νlN−1 νlN−1 . . . νlN−1 + 2h


N/2×N/2

(15)

K =


2g 0 . . . 0

0 2g . . . 0
...

...
. . .

...

0 0 . . . 2g


N/2×N/2

(16)

The frequencies of free vibration and mode shapes can be obtained directly from the linearized mass and

stiffness matrices.

Another simple method can be also used to determine the frequencies of free vibration of the symmetric220

TLMCD. To better describe this method, the first mode shape of a TLMCD is shown in Fig. 11. The

fundamental frequency of free vibration and mode shape of a TLMCD can be expressed physically using the

frequency of free vibration formula of liquid column vibration absorbers (LCVAs). An LCVA is a variant

of a TLCD where the cross-section area of the horizontal column is smaller than that of vertical columns

[35]. A TLMCD’s motion can be simplified as a combination of several independent LCVAs with the same225

frequency of free vibration. The effective length of a LCVA is given as [35]:

le = νl + 2h (17)

where l and h are the horizontal and vertical lengths of a LCVA, respectively. If an N-column symmetrical

TLMCD is separated into N/2 individual LCVAs, their common frequency of free vibration can be calculated

using the following equations:

N/2∑
j=1

αj = 1 (18)

2h+ ν

N/2−1∑
i=j+1

2li

+ lN/2

 /αj + 2νlj/

(
j∑

i=1

αj

)
= le, j = 1, 2, ..., N/2 (19)

ω =

√
2g

le
(20)

where αj is the jth cross-section area proportion in the horizontal middle column, le is the effective length of230

all LCVAs, and ω is the fundamental frequency of free vibration of the TLMCD. Solving the above equations

for the fundamental frequency is straightforward if negative αj values are always discarded. It is verified
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that the result obtained from above equations is the same as that solved using the matrix form. In higher

order vibration modes, αj values can be negative and the calculation process is more complex.

hN/2d
N/2-1d 

1 
lN/2 -1l1 lN/2

d

Figure 11: Fundamental vibration mode for a symmetric TLMCD.

Asymmetric TLMCDs235

Asymmetric TLMCDs have stronger nonlinearities, and the frequencies of free vibration can only be

obtained using an approximate method. If we neglect the nonlinear terms and the displacements in the

Eq.(12), constant mass and stiffness matrices are derived:

M =



ν
∑N−1

k=1 lk + 2h ν
∑N−1

k=2 lk + h ν
∑N−1

k=3 lk + h . . . νlN−1 + h

ν
∑N−1

k=2 lk + h ν
∑N−1

k=2 lk + 2h ν
∑N−1

k=3 lk + h . . . νlN−1 + h

ν
∑N−1

k=3 lk + h ν
∑N−1

k=3 lk + h ν
∑N−1

k=3 lk + 2h . . . νlN−1 + h
...

...
...

. . .
...

νlN−1 + h νlN−1 + h νlN−1 + h . . . νlN−1 + 2h


N−1×N−1

(21)

K =


2g g . . . g

g 2g . . . g
...

...
. . .

...

g g . . . 2g


N−1×N−1

(22)

It can be found that the mass and stiffness matrices from the asymmetric TLMCD (Eq. (21) and Eq.

(22)) have different sizes and off-diagonal terms comparing with the linearized mass and stiffness matrices240

under the symmetric case (Eqs. (15) and (16)). In this situation, there are a total of N-1 frequencies of free

vibration for an asymmetric N-column TLMCD. The frequencies of free vibration and mode shapes of the

asymmetric TLMCD are calculated using Eqs. (21) and (22). Note that this method applies for small liquid

displacements, and it should be used to approximately predict the frequencies of free vibration, but not the

actual liquid motion.245
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4.3. Numerical Examples

The method for extracting frequencies of free vibration and mode shapes in Section 4.2 is illustrated

using the 4-column and the 8-column TLMCD examples described in Section 3.2.

4-column TLMCD

The linearized mass and stiffness matrices for the symmetric 4-column TLMCD are obtained using Eqs.250

(15) and (16):

M =

ν (2l1 + l2) + 2h νl2

νl2 νl2 + 2h

 (23)

K =

2g 0

0 2g

 (24)

The resulting mode shapes are:

[
φ1 φ2

]
=

−0.924 −0.383

−0.383 0.924

 (25)

From this linearization method, the 4-column TLMCD is separated into two smaller LCVAs that share

the same frequency of free vibration. The cross-sectional area proportional to these two smaller horizontal

columns, α1 and α2, can be obtained by equalizing the effective lengths of the two LCVAs (Eq. (19)). Two255

different sets of α1 and α2 values will be produced, corresponding to two frequencies of free vibration of the

4-column TLMCD. Fig. 12 shows the liquid flow inside the 4-column TLMCD when the damper is excited

by a sinusoidal acceleration at its first and second frequencies of free vibration, respectively. It is observed

that α2 is negative in the second frequency response shape, where the flow direction in the middle horizontal

column is reversed and contrary to the fluid flow’s direction in the larger LCVA.260

Figure 12: The 4-column TLMCD’s response shapes: (a) the first frequency response shape; and (b) the second frequency

response shape.
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Table 3: Comparison of numerical (num) and analytical (analyt) frequencies of free vibration for TLMCDs with different column

spacings.

case type
column spacing (m) 1st freq. (rad/s) 2nd freq. (rad/s) 3rd freq. (rad/s) 4th freq. (rad/s)

l1 l2 l3 l4 num analyt num analyt num analyt num analyt

1

symmetric 4-column TLMCD

1 0.5 1 − 2.37 2.33 3.76 3.77 − − − −

2 1 1 1 − 2.09 2.11 3.52 3.48 − − − −

3 1 2.5 1 − 1.67 1.65 3.27 3.30 − − − −

4 1 5 1 − 1.27 1.27 3.20 3.21 − − − −

5
asymmetric 4-column TLMCD

0.5 0.5 1 − 2.46 2.47 3.41 3.46 3.88 3.87 − −

6 1 2 3 − 1.53 1.55 2.57 2.62 3.19 3.20 − −

7 symmetric 8-column TLMCD 0.9 0.9 0.9 0.9 1.12 1.15 2.06 2.10 2.31 2.31 2.38 2.38

To validate the robustness and accuracy of the frequency of free vibration analytical computation method,

various column spacings in the 4-column TLMCD are studied, as shown in Table 3. The frequencies results

calculated from the analytical method are compared with numerical results which are simulated using the

numerical methods described in Section 4.1. The comparison between the identified analytical and numerical

frequencies show a good agreement, as all the differences are less than 2%. Frequency response curves of265

the simulated first column liquid surface displacement x1 under Cases 2 and 5 are plotted in Fig. 13. It is

found that there are two distinctive frequencies of free vibration for the symmetric case (Case 2 in Table 3)

and three for the asymmetric case (Case 5 in Table 3).

Figure 13: Frequency response curves of x1 for 4-column TLMCDs: (a) a symmetric case (Case 2 in Table 3); and (b) an

asymmetric case (Case 5 in Table 3).

8-column TLMCD

The equally spaced (symmetric) 8-column TLMCD is also simulated (Case 7) and results in Table 3 show270

good agreement between the analytical and numerical frequencies. Fig. 14 plots the frequency response of

the first column liquid surface displacement x1. The first analytical mode shape, as illustrated in Fig. 15,

also correlates to that of the CFD simulation (see Fig. 5). Higher order mode shapes can be described by
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the corresponding mode shape coefficients. Given the same total horizontal length, increasing the column

number will significantly lower all the frequencies of free vibration. If required, this can be compensated, for275

example, by enlarging the horizontal tube’s cross-section. The next section presents a parametric study to

further the understanding of TLMCD alterations.

Figure 14: Frequency response of x1 for the 8-column TLMCD (amplitude of ẍg = 0.1 m/s2, ψ = 20 %).

-0.694
-0.588

-0.393
-0.138

0.138 0.393

0.588

Figure 15: Fundamental mode shape of the 8-column TLMCD.

5. Parametric study of damping performance for an SDOF structure

The damping performance of a TLCD or a TLMCD is usually measured by its capability to reduce

structural responses [36]. In this section, the transfer function H1, defined as the ratio of the dynamic280

displacement amplitude to the static structural response (Eq. (26)), is used to evaluate the TLMCD’s

damping capacity, whereas the main mitigation objective is to lower the maximum H1 value across all

frequencies

H1 =
|xs|max

p0/ks
(26)

where xs is the SDOF structure’s displacement, p0 is the base harmonic excitation amplitude, and ks is the

structural stiffness. We apply harmonic ground motions to the TLMCD-structure system and evaluate the285

parametric effects, including tuning ratios, head loss coefficients, and column configurations, on H1.
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In literature on TLCDs, analytical transfer functions for structural responses are only available after the

nonlinear damping force due to the head loss is linearized. Because the system of interest is nonlinear, H1 is

numerically evaluated using the steady state of the structural response. The equation of motion governing

the SDOF system equipped with a TLMCD is written as290

msẍs + ρlA

(
Nh+

N−1∑
i=1

li/ν

)
ẍs + ρlA

N−1∑
i=1

ẍi i∑
j=1

lj

+ csẋs + ksxs = p0 sin(ωf t) (27)

where cs is the structural damping coefficient, ωf is the excitation frequency. The SDOF system equipped

with the TLMCD is numerically simulated using Eqs. (12) and (27) to estimate H1.

In the following parametric studies, the configuration of the TLMCD, illustrated in Fig. 16, is as follows.

The mass ratio γ is 1%, and the initial liquid heights in the vertical columns are set to a uniform value

h = 0.853 m. The structural characteristics of the SDOF structure are taken as ms = 386100 kg, ωs = 1.1295

rad/s, and ξs = 0.05. A harmonic force with an amplitude of p0 = 0.001msg and with frequencies ranging

from 80% to 120% of the TLMCD’s first frequency of free vibration, which can be identified using the method

described in Section 4, is applied to the structure. The effect of column spacing li, cross-section area ratio ν,

orifice head loss coefficient η, and column number N on the structural vibration responses are investigated.

Figure 16: SDOF system equipped with a TLMCD.

5.1. Tuning frequency ratios300

The TLMCD’s tuning frequency ratio χ is defined as the ratio of the damper’s first frequency of free

vibration to the structure’s natural frequency. There are two parameters that can be used to tune the

TLMCD’s first frequency of free vibration: the cross-section area ratio ν and the column spacing li.

To study the effect of column spacing, we set parameters ν, η and h constant and vary li. The relationship

between li and ν and χ is estimated using the linearization method in Section 4.2 and plotted in Fig. 17305

(a), showing that as li increases χ decreases. The task is repeated for ν, with the behavior plotted in Fig.

17 (b), exhibiting χ decreasing for ν increasing.
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The effect of the parameters onH1 is investigated on a 4-column and an 8-column TLCD, whose properties

are listed in Table 4. Fig. 18 plots H1 versus ρ curves for various values of li, and Fig. 19 plots H1 versus ρ

curves for various values of ν. Results show that there exists an optimal tuning ratio that can be obtained310

through tuning either or both parameters. This optimal value is characterized by two peaks of equal height.

It can be noted that the 4-column TLMCD is more sensitive to variations in li and ν than the 8-column

one, and that the 8-column TLMCD is less effective around resonance.

Table 4: TLMCDs parameters for study of different tuning frequency ratios.

parameters units 4-column 8-column

liquid height h m 0.853 0.853

mass ratio γ % 1.0 1.0

orifice head loss coefficient η − 1.5 0.4

column spacing li m (5.118) (2.193)

cross-section area ratio ν − (1.017) (0.615)

Note: The values in parentheses are those used when kept constant.

Figure 17: Effect of (a) column spacing li; and (b) cross-section area ratio υ on the tuning ratio.
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Figure 18: Effect of column spacing li for: (a) 4-column TLMCD; and (b) 8-column TLMCD.

Figure 19: Effect of cross-section area ratio υ for: (a) 4-column TLMCD; and (b) 8-column TLMCD.

5.2. Head loss coefficients

Here, values for li and ν are fixed, taken at the optimal tuning ratios found in the previous section. Simu-315

lation parameters for the 4-column and 8-column TLMCDs are listed in Table 5. The head loss coefficient for

each orifice is taken as identical and altered simultaneously. Their effects on H1 are plotted in Fig. 20. Two

invariant points can be observed in the transfer functions that are independent of the head loss coefficients.

It follows that the optimized head loss coefficients are those that result in the invariant points being the

highest in H1. It can also be noted that, because it has fewer orifices, the 4-column TLMCD requires larger320

head loss coefficients (η = 2) to minimize H1 than does the 8-column TLMCD (η = 0.5).
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Table 5: TLMCDs parameters for study of different head loss coefficients.

parameters units 4-column 8-column

total length l m 17.059 17.059

liquid height h m 0.853 0.853

mass ratio γ % 1.0 1.0

column spacing li m 5.118 2.193

cross-section area ratio ν − 1.017 0.615

Figure 20: Effect of orifice head loss coefficient η for: (a) 4-column TLMCD; and (b) 8-column TLMCD.

5.3. Number of columns

The effect of the number of columns on the TLMCDs of parameters listed in Tables 6 and 7 are compared

against each other. The minimized H1 under various column numbers are plotted in Fig. 21(a) for an equal

mass and in Fig. 21(b) for an equal column size throughout the studied configurations. The minimized H1325

were obtained by adjusting ν to obtain two equal peaks in the transfer function, and then adjusting the head

loss coefficients to minimize the height of the peaks.

Results show that, when the total mass of the TLMCD is maintained constant, reducing the number

of columns provides a better mitigation performance around resonance, but a slightly worse one in other

frequency ranges. This is attributed to more mass of liquid present in the horizontal column, making330

the device more effective [12]. For a constant mass, a TLMCD will not over-perform a TLCD (2-column

TLMCD). Conversely, when the mass ratio is allowed to vary but the size of the columns is maintained

constant (Fig. 21(b)), increasing the number of columns provides better mitigation. This can be attributed

to the larger mass ratio. In this case, a TLMCD could be designed to over-perform a TLCD. Overall, it can

be concluded from results that, given a space constraint, a TLMCD could provide higher mitigation benefits335

compared with a TLCD. Remark that, not shown, it was observed that increasing the number of columns

beyond 12 only had a non-significant effect to the overall response.
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Figure 21: Comparison of the minimized transfer function curves under different column number N : (a) for equal mass; (b) for

equal column size.

Table 6: Parameters for TLMCDs with different column number under equal liquid mass.

parameters units
column number

2 4 6 8 12

total length l m 17.059 17.059 17.059 17.059 17.059

liquid height h m 0.853 0.853 0.853 0.853 0.853

mass ratio γ % 1.0 1.0 1.0 1.0 1.0

orifice head loss coefficient η − 10.2 2.3 1.0 0.5 0.22

vertical column size A m2 0.295 0.237 0.175 0.137 0.099

cross-section area ratio ν − 1.152 1.017 0.772 0.615 0.432

Table 7: Parameters for TLMCDs with different number of columns of equal vertical heights.

parameters units
column number

2 4 6 8 12

total length l m 17.059 17.059 17.059 17.059 17.059

liquid height h m 0.853 0.853 0.853 0.853 0.853

mass ratio γ % 1.0 1.5 2.0 2.6 3.7

orifice head loss coefficient η − 10.2 3.0 1.7 1.2 0.7

vertical column size A m2 0.295 0.295 0.295 0.295 0.295

cross-section area ratio ν − 1.152 1.019 0.786 0.631 0.452
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5.4. Structural mitigation using higher order modes of TLMCDs

The parameters of TLMCDs using the second vibration mode for structure mitigation are listed in Table

8. Higher order vibration modes of TLMCDs usually have smaller effective masses, and as a result, their340

damping ability is lower than the TLMCD’s first vibration mode. Tuning higher order frequencies of free

vibration to the natural frequency of the structure also requires significantly increasing the ν value, resulting

in reduction of the percentage of liquid mass in the horizontal column and deterioration of TLMCDs’ damping

capability. The H1 curves of 4-column and 8-column TLMCDs with different cross-section ratios are shown

in Fig. 22, where ν = 5.7 and ν = 4.9 correspond to the optimized cases, respectively. Comparing against345

cases using the first vibration mode (Fig. 19), the structure yields a larger displacement response. Note that

the distances between higher order frequencies are much closer to each other than the first two frequencies,

and the transfer functions curves are possibly influenced by multiple vibration modes.

Table 8: TLMCDs parameters using the second vibration mode for structural mitigation.

parameters units 4-column 8-column

total length l m 17.059 17.059

liquid height h m 0.853 0.853

mass ratio γ % 1.0 1.0

column spacing li m 5.118 2.193

uniform head loss coefficient ν − 1.017 0.615

Figure 22: Transfer function curves using the second vibration mode for structural mitigation: (a) 4-column TLMCD; and (b)

8-column TLMCD.

6. Conclusions

In this paper, a nonlinear dynamic model for TLMCDs is derived using Lagrange equations to characterize350

both nonlinear orifice and friction damping forces. Both the analytical model and CFD method are used
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to study two typical TLMCDs. Good correlations of liquid motion between both sets of results under both

free oscillation and forced vibrations demonstrate the accuracy of the derived analytical model. Numerical

simulation shows that the analytical model of the TLMCD is weakly nonlinear, and the influence of damping

and system energy on the frequencies of free vibration of the TLMCD is limited. A simplified linearization355

method is developed to calculate the frequencies of free vibration of the TLMCD, which is validated by

the numerical results of frequency response curves. The shape of the fundamental mode of TLMCD can be

physically explained using the concept of the effective length from LCVAs.

A parametric study using the analytical model is conducted to evaluate the influence of various parameters

on the reduction of structural vibration responses under harmonic excitations. It is found that the tuning360

ratio affects the shape of transfer function curve and can be adjusted to equalize the curve’s two peaks by

varying the column spacing or cross-section area ratio. Head loss coefficients control the damping force in

TLMCD, which can be optimized for a fixed TLMCD configuration to minimize the structural response at

resonance. The number of columns determines the portion of horizontal liquid mass in the TLMCD and

indirectly influences the peak values of the transfer function curve.365

It can be concluded that a two-column TLCD can be treated as a special type of TLMCD with the

smallest number of columns. With the same mass ratio and liquid height, a TLMCD with more vertical

columns is less effective than a TLCD, because the TLMCD has smaller horizontal mass. However, when

keeping the geometries constant, a TLMCD with more columns over-performs a TLCD, because the TLMCD

has a larger mass ratio.370

This study focused on structural mitigation using the first vibration mode of TLMCDs. Although higher

order vibration modes have less effective mass and may not be as effective as the first mode, it is still possible

to combine a TLMCD’s multiple vibration modes to mitigate structural responses, which is left to future

work.
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Table caption list455

Table 1: Comparison of liquid surface amplitudes (cm) between CFD and test results [28].

Table 2: System parameters for 4-column and 8-column TLMCDs.

Table 3: Comparison of numerical (num) and analytical (analyt) frequencies of free vibration for TLMCDs

with different column spacings.

Table 4: TLMCDs parameters for study of different tuning frequency ratios.460

Table 5: TLMCDs parameters for study of different head loss coefficients.

Table 6: Parameters for TLMCDs with different column number under equal liquid mass.

Table 7: Parameters for TLMCDs with different number of columns of equal vertical heights.

Table 8: TLMCDs parameters using the second vibration mode for structural mitigation.
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Figure caption list465

Fig. 1: Schematic of an N-column TLMCD (xi is positive upwards).

Fig. 2: Time series of column displacements under free oscillation: (a) columns x1 and x2; and (b)

columns x3 and x4.

Fig. 3: CFD results of the 4-column TLMCD under forced vibration, t = 7.8 s.

Fig. 4: Time series of column displacements under forced oscillation: (a) columns x1 and x2; and (b)470

columns x3 and x4.

Fig. 5: CFD results of the 8-column TLMCD under forced vibration, t = 14.6 s.

Fig. 6: Time series of liquid displacements under free oscillation: (a) columns x1 to x4; and (b) columns

x5 to x8.

Fig. 7: Time series of liquid displacements under free oscillation: (a) columns x1 to x4; and (b) columns475

x5 to x8.

Fig. 8: Frequency responses of a 4-column TLMCD under various uniform orifice blocking ratios (ampli-

tude of ẍg = 0.1m/s2): (a) frequency response for x1; and (b) frequency response for x2.

Fig. 9: Frequency responses of a 4-column TLMCD under various acceleration amplitudes (ψ = 20%):

(a) frequency response for x1; and (b) frequency response for x2.480

Fig. 10: The influence of orifice damping and floor acceleration amplitudes on the 4-column TLMCD’s

frequencies of free vibration: (a) orifice blocking ratio; and (b) acceleration amplitude.

Fig. 11: Fundamental vibration mode for a symmetric TLMCD.

Fig. 12: The 4-column TLMCD’s response shapes: (a) the first frequency response shape; and (b) the

second frequency response shape.485

Fig. 13: Frequency response curves of x1 for 4-column TLMCDs: (a) a symmetric case (Case 2 in Table

3); and (b) an asymmetric case (Case 5 in Table 3).

Fig. 14: Frequency response of x1 for the 8-column TLMCD (amplitude of ẍg = 0.1 m/s2, ψ = 20 %).

Fig. 15: Fundamental mode shape of the 8-column TLMCD.

Fig. 16: SDOF system equipped with a TLMCD.490

Fig. 17: Effect of (a) column spacing li; and (b) cross-section area ratio υ on the tuning ratio.

Fig. 18: Effect of column spacing li for: (a) 4-column TLMCD; and (b) 8-column TLMCD.

Fig. 19: Effect of cross-section area ratio υ for: (a) 4-column TLMCD; and (b) 8-column TLMCD.

Fig. 20: Effect of orifice head loss coefficient η for: (a) 4-column TLMCD; and (b) 8-column TLMCD.

Fig. 21: Comparison of the minimized transfer function curves under different column number N : (a)495

for equal mass; (b) for equal column size.

Fig. 22: Transfer function curves using the second vibration mode for structural mitigation: (a) 4-column

TLMCD; and (b) 8-column TLMCD.
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