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INTRODUCTION 

Scattering by inhomogeneities in homogeneous media can be analyzed in an elegant 
manner by reducing the problem statement to the solution of a system of singular integral 
equations over the surface of the scatterer [1]. This system can be solved in a relatively straight 
forward manner by the use of the boundary element method [2]. An inhomogeneity in an 
interface between two solids of different mechanical properties presents some additional 
complications to the numerical analyst. These complications are discussed in this paper. In 
deriving the system of singular integral equations, it was decided to use the Green's functions 
for the unbounded regions of the two materials, rather than the single Green's function for the 
space of the joined half spaces. This approach introduces a considerable simplification in the 
integrands, but at the expense of the addition of a set of boundary integral equations over the 
interface between the two solids, outside of the inhomogeneity. In the boundary element 
approach the domain of these equations has to be truncated. Specific results are presented for 
backscattering by a spherical cavity in the interface of solids of different elastic moduli and 
mass densities. 

PROBLEM FORMULATION 

The interface of two elastic solids of different mechanical properties, which is defined 
by x3 = 0, intersects a cavity of arbitrary shape. The origin of the coordinate system is placed 
in the intersection of the cavity and the interface. The geometry is shown in Fig. 1. 

Steady-state time-harmonic fields are considered in this paper. The time harmonic term 
exp(-irot),where ro is the angular frequency will,however,be omitted.To distinguish the fields 
in the upper half-space from those in the lower half-space we use the following notation 

Here ~<:9 and.!_ <:9 define the total displacement and traction fields, while <t_ ={ (A.+2!l)/p) 112, 

CT= {!liP ) 112 are the velocities of longitudinal and transverse waves, respectively. 
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Fig. 1. Cavity in an interface of materials with different machanical Properties. 

The surface of the cavity is free of tractions. The surface of the cavity in the upper half

space is denoted by S, while S denotes the surface of the cavity in the lower half-space. Thus 
we have 

XES: t· =1·· ll·=O and XEs· t· ='t·· n·=O 1 1J J - . 1 1J J (la,b) 

-where 'tij denotes the stress tensor, and n and n are unit vectors normal to S and S, 

respectively. Tractions and displacements are continuous across the interface outside the 
cavity, which is denoted by r. Thus, 

(2a,b) 

The incident longitudinal wave in the half-space ~ < 0 is of the general form 

in in ·v in 
~ = A ~ exp( I.l.. ~ . ~ ) (3) 

where 

in in . in in 
~ = p = ( sme ' 0, cose ) (4a,b) 

If there were no cavity, the incident wave would give rise to reflected and transmitted 
longitudinal and transverse waves: 

reflected: (5) 

transmitted: (6) 

94 



Here a = L for longitudinal waves and a = T for transverse waves. The angle of incidence 
and the angles of reflection and transmission, as well as the unit vectors d and p are shown - -
in Fig.2. The (geometrical) fields are 

(7) 

(8) 

The computation of the reflection and transmission coefficients has been discussed 
elsewhere, see e.g. [3]. Briefly stated, the application of the continuity conditions (2a,b) over 

the plane X3 = 0 yields relations between the angles ea, Sa, and ein (Snell's law), as well 

as a set of four linear algebraic equations for R a and Ta. The latter equations can be solved 

for Ra and Ta to yield lengthy expressions, which are not reproduced here. For the special 

case of normal incidence ( ein = 0 ) we have, however, the simple forms 

Fig. 2. Propagation vectors of plane waves reflected and transmitted by the interface. 

(9a,b) 

The presence of the cavity perturbs the system of incident, reflected and transmitted 

fields by the generation of scattered fields ~s( ~) and us( x). Thus, the total fields become 
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(lOa,b) 

Clearly the scattered field must satisfy the continuity conditions (2a,b) on r , while on 
the surface of the cavity we must have 

--s- -g- s g 
~ e S: 't ij n j = - 't ij n j and x e S: 't ij nj =- 't ij nj (lla,b) 

In addition the scattered fields in the two half-spaces must satisfy radiation conditions 

and regularity conditions as 1~1 --+ oo 

IN1EGRAL REPRESENTATIONS FOR JOINED SOLIDS 

The representation of an elastodynamic displacement field in terms of integrals over 
surfaces bounding a domain, is well known, see e.g. Ref.[4]. In the present problem we will 
consider four domains: the domain inside the cavity in the lower half-space (V), the lower 
half-space excluding the domain of the cavity (L-V), the domain inside the cavity in the upper 

half-space (V) and the upper half-space excluding the domain of the cavity (i..V). For the 
scattering problem that is being considered in this paper, The scattered displacement field in L
V may then written as 

s s s 
C u1· (x) = I [U .. (x,y) t1-(y)- T .. (x,y) u 1-(y)] dS(y) 

- S+r_ lJ - - - lJ -- -
(12) 

where the notation r_ indicates that r is approached from XJ < 0, and c = 0 for ~E L+ v, 

c = 1 for~ E L-V and c = -21 for XE S+ r_. In Eq.(12), u .. (x,y) is the fundamental 
- - lJ --

solution. 

Due to space limitations the detailed derivation of the system of integral equations will 
be given elsewhere [5]. Here we simply state the following system of equations: 

X E S: 

~ui =-I T .. u1-dS -Jf .. "iiJ·dS +I [(U .. -U .. )t1- -(T..-T .. )u1-]dS 
s 11 ._ lJ r _ lJ lJ lJ lJ 

s 

- g - g u~ I [( u .. -U .. ) tJ· - ( T .. -T .. ) u J.] dS + 1 
0 lJ lJ lJ lJ 

r.+r_ 

(13) 

X E S: 

I- - -
2u =-IT .. uJ·dS-I T .. u1-dS 

i - lJ s lJ 
+ I [(U .. - u .. ) tJ· - (f .. -T .. ) "iiJ.] dS 

r + lJ lJ lJ lJ 
s 
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- g - g +-u~ J [C U .. -U .. ) tJ· -CT..- T..) UJ·] dS 1 
0 1J 1J 1J 1J 

['++['+ 

C14) 

X E 1: 

1 J J J g g lg 2ui =- T..uJ·dS+ [U .. tJ·- T .. UJ·]dS- [Ui.tJ· -Ti.UJ·]dS+2ui 
S 1J ['- 1J 1J [' +10 J J 

(15) 

1- - g - g 1-g 
-2 u. = - J T .. UJ· dS + J [U .. t J. -T.. u J. ] dS - J [ u .. t J. - T.. u J. ] dS + -2 u 1. 

1 _ 1 J 1 1 J 1 J 0 1 J 1J 
s + ['++['+ 

(16) 

In addition the fields on the interface 1 must satisfy the interface conditions C2a,b ). 

NUMERICAL RESULTS 

For the case that the cavity is a sphere of radius a, solutions of the systems of 
boundary integral equations have been obtained by the use of the boundary element method. 

For S and S this was achieved by replacing circles in the plane rotating about the x3- axis by 

polygons with 16 Cit d < 0.6) or 20 Cit d > 0.6) sides, as shown in Fig. 3a. Circles in 

planes normal to the x3- axis were maintained as circles, and 12 elements were taken along 

each circumference. The interface, r + 1o , is divided into annular elements, as shown in 

Fig. 3b. The unbounded area 1 was however replaced by a bounded area rb, whose outer 

boundary was defined by a circle of radius b. For x3 = 0, r > b, u sCO,O,x3 ) was assumed 

to be negligible as compared to ~~0,0, x3 ), In other words the radius r = b was selected 

such that that the contribution of integrals of the form 

- s - s J [CU .. -U .. ) tJ· - (T .. - T..) UJ·] dS 
1J 1J 1J lJ 

C17) 

['- lb 

are negligible. For kL d < 0.6, b/a was taken as b/a = 11, and 12 x 11 elements were used 

for rb + ro . For kL d > 0.6, b/a =15, and 12 x 15 elements were used for the region. 
The fields were taken as constants over all elements. 

The singular parts of the integrands have been dealt with as described in some detail in 
Ref.[2]. Thus, the Green's function tractions have been split in singular and nonsingular 
parts. The singular parts are just the same as the displacements and tractions corresponding to 
static loading, and they are computed as in the boundary element method for static problems. 
The dynamic deviations are not singular, and they may be expanded in a series. Usually a 
small number of terms in the expansions suffice for satisfactory results. 
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a b 

Fig.3(a). Polygon representation of curves rotating about the XJ. (b) Elements in the 
interface 

Specific results have been obtained for an incident wave of the form (3). It should be 
noted that the system of transmitted waves represented by Eq.(8) does not always consist of a 
system of homogeneous plane propagating waves. There is a critical angle of incidence, 
whose magnitude depends on the material properties of the two half-spaces. For incidence of 
a longitudinal wave at the critical angle the transmitted longitudinal wave grazes the interface, 
and for incidence beyond the critical angle the transmitted longitudinal wave also propagates 
along the interface, but with an amplitude which decays with distance to the interface. Details 
of these phenomena can be found in Refs. [6] and [7]. The method of this paper remains, 
however, valid, independent of the nature of the transmitted wave. 

An interface between two solids of different mechanical properties may give rise to 
Stoneley waves, i.e., surface waves whose amplitudes decay exponentially with distance 
from the interface in both materials. Stoneley waves with real-valued wavenumbers occur 
only within a limited range of material properties of the two materials. A discussion 
of the existence of Stoneley waves is given in Ref. [8]. 

Calculations have been carried out for three combinations of the material properties of 
the two half-spaces. The first case considered concerns materials defined by 

v = 0.29, v =0.46, pIp =1.19, GJ'L =1.69 

For normal incidence and a spherical cavity, the curve marked 2-M ofFig.4 shows the ratio 
of the amplitudes of the scattered field and the incident wave at the position defined by 
coordinates (0,0,-16). It is noted that the ratio tends to be quite small, at least at small 
frequencies. This ratio may be compared with the reflection coefficient given by Eq.(9a) for 
direct reflection by the interface. The reflection coefficient is R = 0.335. Thus the 
backscattered wave will be very difficult to distinguish from the reflected field. This 
observation suggests that a more viable method for detection and characterization of interface 
voids is by the case of oblique incidence. Oblique incidence was considered for a second 
combination of material properties: 

v = 0.25, v =0.23, pIp= 0.83, G./'L =1.13 

Figure 5 shows the x 1 and x3 components of the amplitude ratio of the backscattered field and 

the incident field for an angle of incidence a = 30°, at the point of observation 20 units 
removed from the center of the cavity. The backscattered field will now not compete with a 
specular reflection, and hence more useful results can be extracted from curves of the type 
shown in Fig.5. 
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Fig. 4. Absolute values of ratios of amplitudes of the backscattered and the incident fields 
for two-material case (2-M) and one-material case. 

It is also of interest to compare backscattered results for the 2 - material and I -
material cases, where the 1- material case is the one for the lower half space . For normal 
incidence, a comparison is included in Fig.4. For a third combination of material properties 

v = 0.25, v =0.25, pIp = 0.8, ~IS. =1.25, 

results are shown in Fig.6. It is noted that significant differences due to the presence of the 
interface occure only at higher frequencies. The difference are very small for Fig.6, because 
the two materials have the same mechanical impedance, and the reflection coefficient defined 
by Eq.(9a) actually equals zero. 
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Fig. 5. Amplitude ratios of backscattered displacements in x1 and x3 directions for oblique 
incidence 
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Fig. 6. Ratios of amplitudes of the backscattered and the incident fields for two-material 
case (2-M) and one material case( 1-M). 
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