INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
- 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International

300 N. ZEEB ROAD, ANN ARBOR, MI 48106 18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND

7916208

DESTREICH, GREGORY JOSEPH X-RAY EXCITED OPTICAL LUMINESCENCE OF POLYNUCLEAR AROMATIC HYDROCARBONS.

IOWA STATE UNIVERSITY, PH.D., 1979

.

University Microfilms International 300 N. ZEEB ROAD, ANN ARBOR, MI 48106

į

.

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \checkmark .

1.	Glossy photographs		
2.	Colored illustrations		
3.	Photographs with dark background		
·4.	Illustrations are poor copy		
5.	Print shows through as there is text on both sides of page		
6.	Indistinct, broken or small print on several pages throughout		
7.	Tightly bound copy with print lost in spine		
8.	Computer printout pages with indistinct print		
9.	Page(s) lacking when material received, and not available from school or author		
10.	Page(s) seem to be missing in numbering only as text follows		
11.	Poor carbon copy		
12.	Not original copy, several pages with blurred type		
13.	Appendix pages are poor copy		
14.	Original copy with light type		
15.	Curling and wrinkled pages		

16. Other _____

300 N. ZEEB RD., ANN ARBOR, MI 48106 (313) 761-4700

X-ray excited optical luminescence of polynuclear aromatic hydrocarbons

by

Gregory Joseph Oestreich

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

> Department: Chemistry Major: Analytical Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Majør Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

	Page
CHAPTER 1: INTRODUCTION	1
CEAPTER 2: FACILITIES	11
Experimental Facilities	11
Computational Facilities	19
CHAPTER 3: PULSED XEOL SYSTEM	23
X-ray Pulse Generation	26
Refrigeration and Optical Systems	31
Data Acquisition System	35
Data Analysis	37
X-ray Pulse Characteristics	40
CEAPTER 4: EXPERIMENTAL PROCEDURES	42
Preparation of Chemicals, Solvents and Solutions	42
Time Resolved Spectroscopy	44
Fluorescence Measurements	48
CHAPTER 5: RESULTS AND DISCUSSION	5 1
Decay Constant Values	5 1
Mixture Analysis by Time Resolution	54
Single Component Analysis by Fluorescence	67
Discussion and Conclusions	69
CHAPTER 6: MISCELLANEOUS OBSERVATIONS AND FUTURE WORK	72
Pulsed XEOL System Modifications	72
Solvent Composition	75
Other Systems Amenable to Study by XEOL	86

.

.

.

.

,

BIBLIOGRAPHY		92	
ACKNOWLEDGMENTS		96	
AFPENDIX	1:	TRS 3	9 7
APPENDIX	2:	SMASH	102
AFPENDIX	3:	GENPLOT	115
AFPENDIX	4:	TRSGJO	119
AFPENDIX	5:	JCL	149
AFPENDIX	6:	EXECTRS3	151

LIST OF TABLES

			Page
Table	1.	Principal Components of Pulsed XEOL System	14
Table	2.	Interface Instructions	19
Table	3.	Polynuclear Aromatic Hydrocarbons	43
Table	4.	Stepwise Preparation of Pulsed XEOL System	46
Table	5.	Minicomputer Operation	47
Table	б.	Normalization Factors	49
Table	7.	Five Day Determination of Decay Constants	52
Table	8.	Decay Constant Statistics	52
Table	9.	Concentration Dependence of Decay Constants	53
Table	10.	Comparison of XEOL and Published Decay Constants	56
Table	11.	Decay Constants, Lifetimes and Half Lives of PAH's	56
Table	12.	Analytical Data from XEOL-TRS Analysis	67
Table	13.	Fluorescence Data from Pulsed XEOL Analysis	68
Table	14.	External Heavy Atom Effect on PAH Emission	87

iv

LIST OF FIGURES

6

- Figure 1. Energy level diagram for a n-alkane-PAH system at 10 K. The numbered transitions are; 1. Formation of the primary photoelectron, 2. Collisional population of molecular exciton bands, 3. Exciton trapped by perturbed host molecule, 4. Recombination, 5. Internal conversion followed by vibrational deactivation, 6. Intersystem crossing, 7. Fluorescence and 8. Phosphorescence.
- Figure 2. Photograph of the pulsed XEOL system with 12 the cryostat removed from the vacuum shield. The numbered components are: 1. cryostat (cold end), 2. sample holder, 3. ball bushing and bearing assembly, 4. radiation shield, 5. vacuum shield and 6. monochromator.
- Figure 3. Photograph of the pulsed XEOL system with 13 the cryostat inserted into the vacuum shield. The numbered components are; 1. monochromator, 2. photomultiplier tube in housing, 3. brass sample chamber, 4. vacuum shield, 5. vacuum line, 6. x-ray tube and 7. cryostat (mechanical end).
- Figure 4. Simplified circuit diagram of the control 17 interface. Interface commands are indicated in parentheses.
- Figure 5. Simplified circuit diagram of the circuit 18 used to generate timing reference pulses.
- Figure 6. Simplified circuit diagram of the gated 20 integrator. Control instructions are indicated in parentheses.
- Figure 7. Block diagram of the pulsed x-ray excited 24 optical luminescence system.

V

- Figure 8. Oscilloscope tracing of the amplifier 27 signal produced by a photomultiplier tube in response to a fast scintillator (perylene in n-heptane) excited by a DC x-ray source. Horizontal scale is 10 msec./cm. and vertical scale is 2 volts/cm.
- Figure 9. Timing diagram which illustrates the time 30 relationship and sequence of events in the production of a typical x-ray pulse.
- Figure 10. Sample holder used with the pulsed XEOL 32 system. Main body and retaining rings were fabricated from oxygen free high conductivity (OFHC) copper.
- Figure 11. A schematic diagram of the optical system 34 designed around the crossed Czerny-Turner mount of the McPherson monochromator used in the pulsed XEOL system.
- Figure 12. Time resolution of the phosphorescence 55 emission from a mixture of triphenylene and plenanthrene in n-heptane by use of the pulsed XEOL technique.
- Figure 13. Time resolution of the phosphorescence 57 emission from a mixture of triphenylene and chrysene in n-heptane by use of the pulsed XEOL technique.
- Figure 14a. Linear plot of intensity versus 60 molar concentration for triphenylene.
- Figure 14b. Logarithmic plot of intensity versus 60 molar concentration for triphenylene.
- Figure 15a. Linear plot of intensity versus 61 molar concentration for coronene.
- Figure 15b. Logarithmic plot of intensity versus 61 molar concentration for coronene.
- Figure 16a. Linear plot of intensity versus 62 molar concentration for chrysene.
- Figure 16b. Logarithmic plot of intensity versus 62 molar concentration for chrysene.

Figure	17a.	Linear plot of intensity versus molar concentration for phenanthrene.	63
Figure	17b.	Logarithmic plot of intensity versus molar concentration for phenanthrene.	63
Figure	18a.	Linear plot of intensity versus molar concentration for fluoranthene.	64
Figure	18b.	Logarithmic plot of intensity versus molar concentration for fluoranthene.	64
Figure	19.	Measured intensity as a function of the current of the electron beam used to produce the x-ray pulse.	76
Figure	20.	Measured intensity as a function of the acceleration voltage experienced by the electron beam used to produce the x-ray pulse.	77
Figure	21.	Measured intensity as a function of the duration of the x-ray pulse.	7 8
Figure	22.	XEOL spectrum of anthracene in n-hexane at a concentration of 1 X 10-4 M.	80
Figure	23.	XEOL spectrum of anthracene in n-heptane at a concentration of 1 X 10-4 M.	81
Figure	24.	XEOL spectrum of anthracene in n-octane at a concentration of 1 X 10-4 M.	82
Figure	25.	XEOL spectrum of 3,4-benzopyrene in n-hexane at a concentration of 1 X 10-* M.	83
Figure	26.	XEOL spectrum of 3,4-benzopyrene in n-heptane at a concentration of 1 X 10-4 M.	84
Figure	27.	XEOL spectrum of 3,4-benzopyrene in n-octane at a concentration of 1 X 10-4 M.	85
Figure	28.	XEOL spectrum of solid argon deposited on a beryllium window at 10 K from a flowing gas stream.	8 8

vii

Figure 30. XEOL spectrum of solid xenon deposited on 91 a beryllium window at 10 K from a flowing gas stream.

CHAPTER 1: INTRODUCTION

The search for cancer-causing agents began in 1775 when physicians observed an abnormally high occurrence of cancer of the scrotum in chimney sweeps. Today, the carcinogenic and mutagenic properties of polynuclear aromatic hydrocarbons (PAHs), a major component of soot, are well known (1,2). All humans are exposed to many natural and man made sources of PAHs. These compounds are produced in hydrocarbon-fueled combustion processes, both natural (e.g. forest fires (3)) and controlled (e.q. internal combustion engines, (4) fuel-rich flames (5)). In addition to the many existing sources of PAHs, the dwindling supply of petroleum threatens to add another source of PAHs, as coal becomes an energy substitute. PAHs occur in coal tar pitch (6,7), in the environment surrounding coke production (8), in coal conversion processes (9), in coal liquification products (10-12), and even in coal (13).

Once formed, the PAHs can enter the atmosphere and the food chain. The modern coal-burning power plant is one example of a particularly dangerous source of atmospheric PAHs. The PAHs formed in the combustion process enter the atmosphere as gases and subsequently condense on the particulate matter formed in the boiler (14) and finally escape into the environment by Feing immobilized on the very fine particulate matter not removed by precipitators. In this

form the PAHs are inhaled deeply into the lungs and become imbedded in tissue. The localized concentrations of PAHs in the lung tissues represents a serious health hazard. PAHs also enter the body during the consumption of nourishment and water. Fresh water supplies contain PAHs in the range from 1 part per trillion in ground water to 100 parts per trillion and higher in industrially-polluted surface water (15,16). Certain foods contain large quantities of PAHs. Smoked and charcoal broiled foods have been shown to be dietary sources of PAHs. In one study the content of PAHs ranged from 0 to 141 part per billion in smoked foods and from 0 to 164 part per billion in charcoal broiled foods (17). In a more general study PAHs were found at trace levels in meat, fish, poultry, loot vegetables, beverages, dairy products, oils, fats and shortenings (18). The occurrence of PAHs in the diet is an important source of human exposure to carcinogenic substances.

The many different sources and the varied composition of PAH-contaminated materials presents the analytical chemist with a serious problem. Sensitive and selective analytical methods for the characterization of PAHs are required. For these reasons and because of the potentially hazardous exposure of humans to PAHs in industrial (19) and natural environments, there is increasing interest in new analytical concepts for the qualitative and quantitative determination

of these compounds at trace and ultratrace levels (20).

PAHs occur in natural and man-made substances at trace and ultratrace levels in complex matrices (21-24,18). Therefore, sensitive and selective analytical techniques are required to characterize PAH mixtures. Because PAHs are highly luminescent materials (25,26), fluorimetric and phosphorimetric methods are favored for PAH characterization. Unfortunately, broad-band emission of most PAH systems prevents the simultaneous determination of several PAHs and limits the selectivity of luminescent methods.

To improve the selectivity of the luminescent methods for PAH systems, solid state techniques are often used. Two approaches for sharpening the luminescent emission are line-narrowing fluorescence spectroscopy (27,28) and mixed-crystal spectroscopy (29,30,31). Line-narrowing fluorescence spectroscopy employs a laser to excite only those PAH molecules in a particular environment within a low temperature matrix (e.g. glass, crystal or Shpol'skii). Molecules with vibrational levels in the first singlet electronic state which coincide with the laser frequency are excited. After vibrational deactivation these molecules are in equal energy excited states and fluoresce in a narrow frequency range. This technique has been demonstrated with an argon ion laser for anthracene and pyrene (32). Greatly improved selectivity should be possible with a tunable dye

laser in place of the argon ion laser. The second approach requires choice of a solvent or matrix in which the PAHs can reside in a few particular orientations. If PAHs are dissolved in n-alkanes (pentane to nonane) and the resulting solutions are cooled to a temperature in the range of 4 K to 77 K, narrow-lined emission is observed under UV excitation. The impurity PAH molecules in the n-alkane host are held in substitutional sites and lattice broadening of their emission is not observed. These quasilinear spectra are a manifestation of the Shpol'skii effect (33-35). A review of the Shpol'skii effect (36) summarizes the systems which display this behavior. The variety of systems listed suggests the phenomena is quite common. The application of the Shpol'skii effect, excited by UV radiation, to the determination of 3,4-benzopyrene, a potent carcinogen, is well-documented (37-40).

The major drawbacks to luminescence analysis using the Shpol'skii effect are instrumental limitations (41). Scattered radiation from the excitation source is a particularly serious limitation since internal reflection occurs within the n-alkane snows formed upon freezing. The technique known as X-ray Excited Optical Luminescence (XEOL), which employs x-ray excitation, eliminates the problem of crosstalk between emission from the excitation source and luminescenct emission from the sample. The conventional

sources (e.g. lasers, mercury lamps, xenon arcs etc.) (42) are replaced by an x-ray tube. XEOL is a sensitive analytical technique capable of detecting impurities at the fractional part per billion level in appropriate solid or gaseous environments (43,44). In an earlier publication (45) we reported the first observation of the Shpol'skii effect from PAHs in n-alkanes under x-ray excitation. The observation of quasilinear fluorescence and phosphorescence of PAHs under x-ray excitation suggested the combination of XEOL and the Shpol'skii effect might be a viable approach to the simultaneous multicomponent determination of complex PAH mixtures.

Another advantage gained by combining the Shpol'skii effect and XEOL is nonspecific excitation of the sample. The coincidence of the absorption band of the PAH molecule and the emission frequency of the excitation source is not a requirement because resonance processes are not responsible for direct excitation of the PAH molecules. Instead, highly selective energy transfer processes are responsible for the sensitized luminescence which is observed from trace PAHs contained in n-alkane microcrystals (45). The observation of sensitized luminescence indicates XEOL should be a sensitive method for the determination of PAHs in Shpol'skii matrices.

To visualize the processes which occur in the proposed excitation mechanism, an energy level diagram of the

n-alkane-PAH system at 10 K is presented in Figure 1. An explanation of the excitation mechanism begins with the energy levels of the free host molecule on the left side of Figure 1. The ground state, first two excited singlet electronic states, and the ionization limit are shown. To simplify the diagram, the vibrational levels were not drawn. In the solid state, the ground state and the ionization limit of the free host molecule are analogous to the valence and conduction bands of an ionic crystal. The singlet electronic states of the free host molecule broaden into molecular exciton bands which are characteristic of a molecular assembly of many host molecules. These molecular exciton bands are the transmission lines of the excitation energy. The perturbation exerted by an impurity molecule on neighboring host molecules results in the formation of host secondary trapping sites, shown in the mixed crystal region of the diagram. These perturbed host wolecules are important in the selective capture of excitons by the impurity molecules. Finally, on the right side of Figure 1 the energy levels of a typical PAH are depicted as discrete states. The use of a Shpol'skii solvent traps the PAHs in identical environments in the crystal lattice and prevents broadening of the singlet and triplet excited electronic states. The observed optical signal is a composite of fluorescence and phosphorescence transitions of PAH molecules trapped in the

lattice.

The first step in the excitation mechanism is the interaction of x-ray photons with the sample or the sample holder. X-ray photons interact with matter in three ways; 1. Photoelectric effect, 2. Compton effect and 3. Pair production (46,47). At the energies used in XEOL experiments (typically 60 kV.) only the photoelectric effect occurs. Atoms of the solvent or sample holder may absorb an x-ray photon and eject a primary photoelectron with energy in excess of several keV. (process No. 1 in Figure 1). The excited atoms relax by the emission of characteristic fluorescence x-rays or the ejection of Auger electrons. The primary photoelectron, fluorescent x-rays and the Auger electrons collisionally excite neighboring atoms in a cascade process.

The collisional excitation of electrons and atoms of host molecules populates the molecular exciton bands (process No. 2 in Figure 1). The exciton wave migrates through the molecular assembly and the excitation is delocalized (31). As the exciton propagates through the microcrystal it may enter a region in which an impurity molecule is trapped in the lattice. If the exciton migrates to a perturbed host molecule a phonon is produced and the exciton no longer possesses enough energy to migrate freely in the microcrystal. The exciton continues toward the impurity with the production of

additional phonons (process No. 3 in Figure 1) until the impurity traps the exciton and is excited electronically or ionized. The inability of the exciton to return to the bulk of the crystal after the production of phonons near the impurity sites results in the funneling of excitation energy to the impurity. Recombination, internal conversion and intersystem crossing with vibrational deactivation (processes No. 4, 5 and 6 in Figure 1) occur in the impurity. Fluorescence (process No. 7 in Figure 1) and phosphorescence (process No. 8 in Figure 1) return the PAH molecule to the ground state. Thus, the highly selective energy transfer processes produce the optical signal.

The sharp line spectra resulting from the Shpol'skii effect make spectral resolution of several PAHs possible and endow the XEOL technique with some selectivity. However, no monochromator is capable of resolving all lines. Even with the Shpol'skii effect, overlap occurs in the fluorescent and phosphorescent emission of PAHs. Time resolved spectroscopy (TES) coupled with XEOL would further improve the selectivity of the method. The technique of time resolved spectroscopy (48-50) allows separation of overlapping luminescence of PAHs on the basis of their luminescent decay constants. Since PAHs possess a large range of fluorescent and phosphorescent decay constants (26), it should be possible to time resolve fluorescent components and phosphorescent components. A

pulsed excitation source is required to perform the time resolution experiment. Before coupling XEOL and TRS a pulsed x-ray source has to be constructed.

.

This dissertation describes the development of XEOL-TRS as a method for the analysis of PAHs. The modification of a medical x-ray unit for use as a pulsed x-ray source under computer control is discussed. The ability to time resolve phosphorescent mixtures but not fluorescent mixtures because of x-ray pulse characteristics is reported. Finally, analytical data is presented on the analysis of synthetic PAH mixtures and other systems that might be amenable to study by the XEOL-TRS technique are suggested.

CHAPTER 2: FACILITIES

Experimental Facilities

The experimental facilities, used as basic components in a simple XEOL system, are described in an early publication (51). The basic components plus the additional components of the pulsed XEOL system used in the present study are summarized in Table 1.

In Figures 2 and 3 the essential hardware portions of the pulsed XEOL system are numbered for easy identification. The brass sample chamber, used to shield the operator from scattered x-rays, was redesigned for this system. All seams in the brass structure were fitted with right angle slots to eliminate streaming of scattered x-rays through conventional seams. A reproducible mount for the cryogenic vacuum shield was fitted on top of the chamber. A table, to which the chamber was securely fastened, was added to support a ball bushing and bearing assembly for easy insertion and extraction of the cryogenic system into and out of the vacuum shield. Figure 2 shows the cryogenic system removed from the vacuum shield. The table has three-dimensional adjustments to simplify optical alignment of the system. Optical alignment was performed using a continuous wave He-Ne laser with erission at 632.8 nm. (C. W. Radiation Inc. Mountain View, CA). The sides of the brass box are easily removed and

Figure 2. Photograph of the pulsed XEOL system with the cryostat removed from the vacuum shield. The numbered components are: 1. cryostat (cold end), 2. sample holder, 3. ball bushing and bearing assembly, 4. radiation shield, 5. vacuum shield and 6. monochromator.

Figure 3. Photograph of the pulsed XEOL system with the cryostat inserted into the vacuum shield. The numbered components are: 1. monochromator, 2. photomultiplier tube in housing, 3. brass sample chamber, 4. vacuum shield, 5. vacuum line, 6. x-ray tube and 7. cryostat (mechanical end).

Table 1. Principal Components of Pulsed XEOL System

X-ray Sources

DC x-ray power supply	Operated at 50 kV. and 40 mA. Water cooled Maximum 60 kV. 60 mA. (General Electric Corp., Milwaukee, WI Model XRD-6)			
DC x-ray tube	Tungsten target Water cooled anode Emission of x-rays from 0.1 nm. to 0.02 nm. (General Electric Corp., Milwaukee, WI Model EA-75X)			
Pulsed x-ray power supply	Medical x-ray unit Thyratron pulse circuits modified for computer control (Westinghouse Electric Corp., Greenville, PA)			
Pulsed x-ray tube	Medical x-ray tube Operated at 60 kV. 100 mA. using large filament Rotating anode Conduction cooled (The Machlett Laboratories Inc., Stamford, CT)			
<u>Spectroscopic_Equipment</u>				
Monochromator	Scanning 0.3 meter Crossed Czerny Turner mount (McPherson Instrument Corp., Acton, MA, Model No. 218)			
Detector	EMI 6256B photomultiplier S-13 response (EMI Gencom Inc., Plainview, NY)			
High voltage power supply	Operated at 1200 VDC (NJE Corp., Kenilworth, NJ, Model S-325)			

э

Table 1. (Continued)

.

External optics	Precision grade quartz lens 1 inch diameter 2 inch focal length (Corion Instrument Corp., Waltham, MA)			
Amplifier	Fast current amplifier with adjustable rise time and zero suppression (Keithley Instruments, Cleveland, OH, Model 427)			
Recorder	Two pen voltage recorder (Houston Instruments, Austin, TX, Model 5210-5)			
<u>Refrigeration_an</u>	<u>d_Vacuum_Equipment</u>			
Helium refrigerator	Helium refrigerant Temperature selectable from 10 K to 360 K with 1 degree resolution (Air Products and Chemicals Inc., Allentown, PA, Model CSA-202)			
Diffusion pump	2 inch air cooled (NRC Equipment Co., Newton, MA)			
Floor pump	(The Welch Scientific Co., Skokie, IL, Model 1397)			
Vacuum gauge	(National Research Corp., Cambridge, MA)			
Computer and Interfaces				
Computer	PDP8/E minicomputer (Digital Equipment Corp., Maynard, MA)			
Control interface	See text			
Data interface	(Heath Co., Benton Harbor, MI)			

.....

_

Table 1. (Continued)	
Buffer	(Heath Co., Benton Harbor, MI)
Analog to Digital Converter	(Redcor Corp., Woodland Hills CA)
Teletype	(Teletype Corp., Skokie, IL, Model-33)

replaced to accommodate either a DC or pulsed x-ray tube. The x-ray tubes are positioned to minimize the distance from the anode to the vacuum, because air can severely attenuate the x-ray beam. Figure 3 shows the brass chamber with the pulsed x-ray tube attached and the refrigerator inserted.

The control interface was designed by G. Holland of Ames Laboratory Instrumentation Group and built by technicians in the same group. A simplified circuit diagram of the interface is presented in Figure 4. The interface instructions which control the operation of the x-ray source are indicated on the diagram. The flip flops are equivalent to toggle switches. The AND gates test two computer conditions before allowing pulses to reach the x-ray supply. A second circuit in the control interface generates timing pulses from the line voltage. The simplified circuit is drawn in Figure 5. The two operational amplifiers act as conparators. The voltage dividers, connected to the noninverting inputs, are used to fine tune the phase relationship between the x-ray

Figure 4. Simplified circuit diagram of the control interface. Interface commands are indicated in parentheses.

.

Figure 5. Simplified circuit diagram of the circuit used to generate timing reference pulses.

supply and the timing pulses. The gated integrator, also designed by G. Holland, is an operational amplifier with a feedback capacitor and several input resistors. The circuit board is contained in the control interface chassis. The simplified circuit is drawn in Figure 6. Three input resistances were included to attenuate the input voltage. The integrator is operated with two interface instructions shown on the diagram. All interface instructions, their octal values and functions are summarized in Table 2.

Instruction	<u>Octal Value</u>	Function
CREADY	6337	Enable control interface
CREADY	6331	Open communication lines
CWAIT	6336	Close communication lines
NOW	6332	Timing pulse
ROTRON	6341	Turn Lotor on
FOTROF	6342	Turn rotor off
XABLE	6343	Enable x-ray supply
XDABLE	6344	Disable x-ray supply
XON	6333	Turn x-rays on
XOFF	6334	Turn x-rays off
TNBOX	6346	Initialize integrator
STBOX	6345	Start integrator
GETDAT	6354	Transfer data
STATOD	6455	Start A to D conversion
INATOD	6455	Initialize A to D converter

Table 2. Interface Instructions

Computational Facilities

The data, produced by the pulsed XEOL system, is processed by PL/1 and FORTRAN IV programs. These programs are

Figure 6. Simplified circuit diagram of the gated integrator. Control instructions are indicated in parentheses.

•

executed on the IBM 360/65 and ITEL AS/5 computers in the Iowa State University Computation Center. The PL/1 program was written to plot decay curve data using Simplotter (52) and to produce an input data set in the proper format for the FORTRAN IV program, called SMASH (53). SMASH was developed by the neutron activation analysis group at Ames Laboratory to separate complex decay curves and was modified for the present study to handle spectroscopic data. Listings of the PL/1 and SMASH programs appear in Appendix 1 and Appendix 2 respectively.

A conversational system, known as WYLBUR, makes operator interaction with the data processing system possible. WYLBUR was accessed over telephone lines located in our research area. A Decwriter II (Digital Equipment Corp. Maynard, MA) and Teletype (Teletype Corp., Skokie, IL, Nodel 35) were the devices used to communicate instructions to WYLBUR. WYLBUR is a text editing program with remote job entry and execute file capabilities supported by the Towa State University Computation Center. The text editing features facilitate program writing and the remote job entry feature simplifies the debugging process. After the paper tape data set is transferred to the computer system, a WYLBUR execute file is used to generate a control data set for the PL/1 program and to create a system job composed of job control language, program listings and data. WYLBUR submits the job to the

system and the results are printed in the computation center.

Another facility available at the Iowa State University Computation Center for displaying graphical data is Simplotter. Simplotter is a FORTRAN program, developed at Ames Laboratory, for general plotting requirements. Simplotter was used to display decay curves, calibration curves and other general data. A PL/1 program was written to access Simplotter directly to plot simple data sets while WYLBUR was used to generate the data set with the proper format. A listing of the WYLBUR execute file and PL/1 program is given in Appendix 3.

The computational facilities, available through the Iowa State University Computation Center, made the time resolution experiment possible. The separation of complex decay curves by a least squares method using a digital computer is a routine exercise. Without the least squares method we would have limited our resolution to simple two-component systems because graphical methods would have been employed. Our ability to use mathematical techniques, such as the SMASH routine, made it possible to extend time-resolved spectroscopy to mixtures with more than three components.

CHAPTER 3: PULSED XEOL SYSTEM

The pulsed x-ray excited optical luminescence system is shown as a block diagram in Figure 7. At the heart of the system is a dedicated minicomputer. The stringent timing requirements for x-ray pulse generation and the careful measurement of integration periods during data acquisition required the use of a dedicated computer. Human interaction with the system occurs at the teletype where input is typed at the keyboard and output is generated at the punch as paper tape. The assembly language program which generates the x-ray pulse, controls the data acquisition system and handles input and output information is listed in Appendix 4.

The computer interacts with the system through two interfaces. The data interface is used to transfer digital data from the analog-to-digital converter to the computer memory where it is stored until output is punched. The control interface connects the computer, the x-ray supply and the integrator. Timing reference pulses are produced in the control interface.

The excitation source in the luminescence system is a modified medical x-ray unit. The x-ray supply can produce a maximum voltage of 150 kV. across the x-ray tube and a maximum current of 300 mA. through the x-ray tube. The x-ray tube is a rotating anode, medical x-ray tube which is cooled by conduction.

Figure 7. Block diagram of the pulsed x-ray excited optical luminescence system.

Three control signals are required to pulse the x-ray source. First, the rotating anode must be started. The rapid rate of rotation prevents excessive heating of localized areas of the anode surface and subsequent sputtering and pitting. Next the x-ray supply must be enabled. Under normal operation the enable function would produce x-rays. Finally, a gate pulse signals the power supply to release the thyratron switches and activate the x-ray tube for the duration of the pulse.

During the on period of the x-ray pulse, the sample, typically PAHs dissolved in n-heptane at 10 K, is excited. At termination of the x-ray pulse some initial activity exists and decays exponentially. The emission is collected by a lens, dispersed with a monochromator and detected by a photomultiplier tube. The photomultiplier tube current is amplified by a fast response (typically 1-10 msec.) current amplifier and a voltage signal results.

The gated integrator sums the voltage signal for a predetermined period and is reset. Prior to the reset command, the integrator output is sampled and an analog-to-digital conversion is performed. After the integrator is reset the process is repeated until the number of data points, specified by the operator, is obtained. The luminescent decay is characterized by the sequential data points. The timing relationship between the x-ray pulse and
the integration of the voltage signal is precisely controlled by the minicomputer. The digital data are transferred to computer memory where luminescent decay from subsequent x-ray pulses can be added. The signal averaged data are punched on paper tape and analyzed on the Iowa State University Computation Center facilities.

In the following sections detailed explanations of the operation of different phases of the pulsed, x-ray excited, optical luminescence system are presented. The principles of x-ray pulse generation are outlined. The control of the sample temperature and the containment of the sample are described. The data acquisition options are presented and the section on data analysis follows the data after they are punched on paper tape to the final results. Finally, some consequences of the pulsing technique are discussed in the section on x-ray pulse characteristics.

X-ray Pulse Generation

The first attempt to produce an x-ray pulse involved a high voltage grid in the x-ray tube which could deflect the electron beam away from the anode. Before implementing the grid approach, the x-ray emission of the DC supply was characterized. A liquid scintillator was irradiated and the response was observed with an oscilloscope. A typical oscilloscope tracing is depicted in Figure 8. A full-wave

Figure 8. Oscilloscope tracing of the amplifier signal produced by a photomultiplier tube in response to a fast scintillator (perylene in n-heptane) excited by a DC x-ray source. Horizontal scale is 10 msec./cm. and vertical scale is 2 volts/cm. rectified sine-wave with a frequency of 120 cycles per second was observed. The sine waveform and not a DC level was observed because manufacturers of x-ray equipment do not filter the voltage supply which powers the x-ray tube. The size of the capacitors and resistors that are required to filter kilovolt voltage levels are prohibitive. The switch-selectable voltages and currents on x-ray sources are root-mean-square values and represent the DC average of the waveform. The grid approach was abandoned and advantage was taken of the inherent pulsed nature of a DC x-ray supply. If the medical x-ray supply could be turned on at a zero point in the waveform and off at a later zero point, an x-ray pulse which is a multiple of 1/120th of a second in length could be produced.

To generate such an x-ray pulse required precise determination of zero points in voltage waveforms, such as the one shown in Figure 8. A computer was used to control the pulse generation. Because the computer could not monitor the voltage waveform of the medical x-ray unit directly, a virtual link between the computer and the x-ray unit was established with the control interface. The line voltage which powered the control interface was used to produce timing reference pulses every time the line voltage went to zero. Because the entire United States is on the same power grid the timing reference pulses differed from the zero

points of the voltage waveform in the medical x-ray supply by a simple phase relationship. An oscilloscope was used to synchronize the timing reference pulses and the zero points in the voltage waveform with the phase adjustments in the control interface.

Normal operation of the medical unit required two steps to produce x-rays. After the thyratron switches were modified to function under computer control, three steps were required. The rotor had to be started, the x-ray unit had to be enabled, which produced x-rays in normal operation, and the thyratron switches had to be gated. The sequence of events in production of a typical x-ray pulse is shown in Figure 9. After the rotor was started and the x-ray unit was enabled, the computer start command enables the control interface. The computer ready command released the timing reference pulses. At the first zero point the x-rays were turned on and at the next zero point the x-rays were turned off. If a longer excitation period was required, the process was repeated until the number of waves, as specified by the operator, occurred. Variable length excitation periods from 1/120th of a second to several seconds could be produced. The maximum length of x-ray excitation period was limited by the voltage, current and time product which determined the electrical power the x-ray tube had to dissipate as heat.

Figure 9. Timing diagram which illustrates the time relationship and sequence of events in the production of a typical x-ray pulse.

.

.

.

Refrigeration and Optical Systems

The pulsed XEOL system was developed to study a variety of samples over a large temperature range. A refrigeration system with the flexibility to study solids, liquids and gases at temperatures in the range from liquid helium to boiling water was desired. A helium refrigerator (see Table 1 for details) was purchased and incorporated in the pulsed XEOL system. The helium refrigerator was a two stage cryostat which worked on the Solvay process and provided the capability of examining the spectra of solids, liquids and gases at thumb-switch-selectable temperatures ranging from 10 to 360 K with 1 K resolution.

Unfortunately, the helium refrigerator presented its own problems. Because the vacuum used to insulate the cryostat from the surroundings prohibited the use of conventional XEOL sample handling techniques, a sample holder which could contain the sample in a vacuum, allow x-rays to irradiate the sample and transmit the optical radiation was designed. The materials problems encountered in designing the sample holder with the specifications mentioned above required a change from the conventional geometry used in an XEOL experiment.

The sample holder used in this study is sketched in Figure 10. The body of the sample holder was made of oxygen-free high conductivity (OFHC) copper. The guarter-twenty thread attaches the holder to the cryostat.

Figure 10. Sample holder used with the pulsed XEOL system. Main body and retaining rings were fabricated from oxygen free high conductivity copper.

An indium washer was placed between the cryostat and the holder to compensate for expansion and contraction effects and to insure that thermal contact was made between the cryostat and the sample holder. The sample was held between a beryllium window and a fused quartz disc. Both the window and the disc were sealed to the holder with OFHC copper retaining rings and indium gaskets. Indium gaskets were used because of the ductility of indium at 10 K. Also, 0.2 mm. (0.008 in.) indium gaskets replaced the thicker gaskets shown in Figure 10 because less indium was smeared into the sample holder. The sample was injected into the holder with a syringe through the filling ports. The ports were threaded and sealed with number two screws and indium gaskets. The holder was emptied by removing two of the three number two screws.

A "straight-through" geometry was used with the sample holder described above. The optical diagram is shown in Figure 11. Advantage was taken of the penetrating ability of x-ray radiation and the crossed Czerny-Turner mount of the monochromator. The x-ray cross section of capture for carbon and hydrogen is small so the x-ray beam is not significantly attenuated by a hydrocarbon sample, therefore, the x-ray beam and the luminescence proceed into the monochromator. At the collimating mirror the optical signal is reflected to the grating but the x-ray radiation passes through the mirror and is absorbed by the lead shielding which surrounds the

Figure 11. A schematic diagram of the optical system designed around the crossed Czerny-Turner mount of the McFherson monochromator used in the pulsed XEOL system. monochromator. The optical signal is dispersed at the grating and proceeds to the photomultiplier tube where it is detected. Scattered x-ray radiation does not enter the photomultiplier tube to produce noise because the photomultiplier tube is positioned off the primary optical axis.

Data Acquisition System

The major objective for construction of the pulsed XEOL system was to obtain decay curve data. The large x-ray flux available with a pulsed source represents an advantage over the DC sources, hence a secondary objective was to obtain pseudo-DC data. The major instrumental components of the data acquisition system were the gated integrator, the analog-to-digital converter and the data interface. The heart of the system, however, was the software which controlled the gated integrator. The software was written to make the data acquisition system operate in one of two modes, a fast mode or a slow mode.

In the fast mode, pseudo-DC data was obtained. The fast mode was used to study fluorescent single component emission. The integrator was started at the zero point of the x-ray wave and reset at the next zero point. The luminescence produced by a single x-ray wave was integrated and the voltage output of the integrator was considered the average

DC level of the luminescence. To improve the signal-to-noise ratio and the statistical values of the data several successive waves could be integrated during an extended pulse and the data of several pulses could be summed to signal average the noise. A mean and standard deviation were calculated and used as an average DC value for subsequent analytical calculations.

In the slow mode, decay curve data were obtained. There were two algorithms for sampling an exponential decay. The first algorithm involved integration of the entire decay curve and periodic sampling of the integrator, output. A numerical differentiation generated the original decay curve. The second algorithm divided the decay curve into equal time segments. Each time segment was integrated and the voltage output was plotted as a function of time to obtain the decay curve. The second approach was used because the individual integrations "signal averaged" the noise to a constant value which could be subtracted from each data point and enhanced signal-to-noise ratios as compared to the discrete sampling algorithm resulted.

Three integration periods (1000, 100 and 10 msec.) were programmed for the gated integrator, so that a large range of decay constants could be studied. The reset time of the integrator was 1 millisecond, hence a small percentage of the signal is lost. To illustrate, use of the 10 millisecond

integration period means 10 percent of the signal was lost during the reset time whereas with the 1000 millisecond integration period, only 0.1 percent of the signal was lost. The same "real-time" must be integrated to obtain equivalent signal-to-noise ratios if different integration periods are used. For example, if 10 decay curves are summed using the 1000 millisecond integration period then 100 decay curves have to be summed using the 100 millisecond integration period and 1000 decay curves have to be summed using the 10 millisecond integration period to obtain equivalent signal-to-noise ratios.

In both modes the data acquisition system proceeded in several steps. The analog signal from the fast response current amplifier was integrated according to the algorithm of the mode. The integrator output was digitized by the analog-to -digital converter in 20 microseconds. The digitized signal was passed to the computer through the data interface in a parallel transmission. The data was temporarily stored in the computer until output was punched and then the paper tape was processed by the large computer system as described in the next section.

Data Analysis

The pulsed XEOL system generated large quantities of numerical data in either mode of operation. To process these

data, sophisticated computational facilities were needed. Furthermore, the time resolution experiment was dependent on a numerical characterization of simple or complex decay curves. The statistical techniques needed to characterize the decay curves were ideally suited for computer analysis. For these reasons it was necessary to accumulate data with the minicomputer but process the data on a more sophisticated ccmputer system.

The Iowa State University Computation Center operates an IEM 360/65 and an AS/5 computer system. PL/1 and FORTRAN IV are among the many languages supported by the system. An interactive system, known as WYLBUR, is also available. WYLBUR, PL/1 and FORTRAN IV were used extensively for the analysis of the numerical data.

The paper tape data set generated by the assembly language program contained control information used in the assembly language program and the numerical data collected from the experiment. The data set was transferred to the large computer and stored on disc. WYLBUR was used to construct a job which calculated the experimental results. If the fast mode was run the job contained only a PL/1 program which read the data from disc and calculated a mean and standard deviation. The results were printed with a data dump of the important control variables. If the slow mode was run, the job contained a PL/1 program and a modified FORTRAN IV

program. The PL/1 program read the data from disc and plotted the decay curve using Simplotter. The data dump was generated and an output data set was created which was the input for the FORTRAN IV program, called SMASH. SMASH either calculated a decay curve by a direct-search method or used a linear least squares procedure to calculate initial activities of the luminescence. The results of the SMASH program were printed by the output routines contained within the program.

After the data analysis job was completed, the output was retrieved from the Iowa State University Computation Center. The results were extracted from the printed material. If wavelength or concentration plots were desired, another jcb could be created with a WYLBUR execute file and PL/1 program, which generated a computer plot with Simplotter. Analytical data were calculated with a hand calculator.

All the programs mentioned in this section are listed in Appendices 1-4. The PL/1 programs were written specifically for this study but the SMASH program was borrowed from the neutron activation analysis group and the input routine was modified to facilitate operation of the program. The job control language which regulates execution of the job is listed in Appendix 5. The WYLBUR execute file which created the job is listed in Appendix 6.

υ

X-ray Pulse Characteristics

The method used to generate the x-ray pulse limited the range of the time resolution experiment. The limitation is manifest by a differential equation which relates the number of excited molecules as a function of time to a supply term and a depletion term. The relation is expressed in equation 1:

$$N' = S*F - k*N \tag{1}$$

where N represents the number of excited molecules as a function of time, S is the cross section for capture of an x-ray photon, F is the driving function or functional form of the excitation source ($F=sin(\omega t)$) and k is the decay constant of the excited molecule. The equation holds only while the x-ray pulse is active. The solution is given in equation 2;

$$N = S[k*sin(\omega t) - \omega * cos(\omega t)] / [k^2 + \omega^2]$$
(2)

Three cases are considered to simplify the form of the solution. If $k \gg \omega$, which corresponds to phosphorescent emission, then equation 3 results;

$$N = (S/\omega) \cos(\omega t)$$
(3)

As the x-ray pulse ($sin(\omega t)$) goes to zero, the number of excited molecules goes to a maximum and an initial activity exists after the x-ray pulse. If $k << \omega$, which corresponds to fluorescent emission, then equation 4 results:

$$N = (S/k) \sin(\omega t)$$
(4)

Now, as the x-ray pulse goes to zero so does the number of excited molecules and no initial activity exists after the x-ray pulse. Finally, if $k \approx \omega$ then no simplification of the equation is possible. Some initial activity does exist after the x-ray pulse but the decay is severely distorted by the shape of the excitation pulse. Fourier techniques are used to deconvolute the data and extract the decay curve.

To summarize the three cases, with the x-ray pulse used in the present study the time resolution experiment was limited to phosphorescent emission. Fluorescent emission could not be time resolved but was studied by observation of single component emission with the pseudo-DC mode. No intermediate decay curves were observed from the PAHs studied, but as the scope expands to include other types of organic compounds it will be necessary to develop the Fourier techniques to deconvolute the data.

CHAPTER 4: EXPERIMENTAL PROCEDURES

Preparation of Chemicals, Solvents and Solutions

All of the PAHs used in the XEOL study are listed in Table 3. The PAHs were purified by zone refining or vacuum sublimation as indicated in the table. The crude PAHs were sealed in a glass tube under a partial pressure of helium and melted before being zone refined. A minimum of five passes on a ten-stage zone refiner were used to purify the PAHs. The zone refined tubes were scratched with a file and broken in thirds. The top and bottom thirds of the tube were discarded and the middle third was retained. The PAHs were chipped and scraped from the glass tube when needed for solutions. To vacuum sublime coronene and benzo-ghi-perylene, the two compounds were sealed individually in a vacuum under a water-cooled glass probe. A mineral oil bath was used to sublime the PAHs which subsequently condensed on the glass probe. The glass probe was removed from the vacuum and the PAH was scraped from the surface and stored for later use. Vacuum sublimation was used because too little starting material was available for zone refining. Only naphthalene and fluorene were used as received.

On the basis of their XEOL spectra, seven of the PAHs were used as model compounds for the time resolution experiments. Triphenylene, coronene, chrysene, phenanthrene,

fluoranthene, naphthalene and fluorene exhibited phosphorescent emission. Perylene and 3,4-benzopyrene were used as model compounds for the single component fluorescent experiments.

Table 3. Polynuclear Aromatic Hydrocarbons

Compound	<u>Purity</u>
Naphthalene	As received
Anthracene	Zone refined
Phenanthrene	Zone refined
1,2-Benzanthracene	Zone refined
Pyrene	Zone refined
Chrysene	Zone refined
Triphenylene	Zone refined
1,2,5,6-Dibenzanthracene	Zone refined
3,4-Benzopyrene	Zone refined
Perylene	Zone refined
Benzo-ghi-perylene	Vacuum sublimed
Coronene	Vacuum sublimed
Fluorene	As received
<u>Fluoranthene</u>	Zone refined

Three n-alkane solvents were used, n-hexane, n-heptane and n-octane. The solvents were distilled and passed through a cation exchange resin in the silver form to remove the last traces of aromatic impurities. A weak bond is formed between the silver cation and the pi bond of the aromatic system. If the price of the solvents should become prohibitive the purification procedure can be used to recycle the n-alkane solvents. Gas chromatographic analysis of the purified solvents revealed the only contaminants were trace amounts of isomeric aliphatic hydrocarbons.

Stock solutions of the PAHs were prepared in volumetric flasks from weighed quantities of purified PAHs. Concentrations ranged from 0.01 M to 0.0001 M. Solubility limited the maximum concentration for several PAHs. PAHs which dissolved slowly were equilibrated overnight or vigorously stirred by an ultrasonic cleaner. Concentrated stock solutions were prepared to minimize adsorption and decomposition effects commonly observed with very dilute solutions. All stock solutions were stored in the dark to avoid photodecomposition. Dilute solutions were prepared as needed on a day-to-day basis from the stock solutions. No successive dilutions were performed to minimize pipetting errors.

Time Resolved Spectroscopy

The principles of time resolved spectroscopy are based on the radiative lifetimes of excited molecules. The functional form of the time dependence of single component luminescence is given in equation 5:

$$I(t) = I(0) \exp(-kt)$$
 (5)

I(t) is the emitted intensity as a function of time, I(0) is the initial intensity at the termination of the excitation pulse, k is the decay constant of the excited species and t

is the time. If many species are emitting simultaneously the time dependent intensity is expressed by equation 6:

$$I(t) = \sum_{i} I(0) \exp(-k_{i}t)$$
 (6)

The total intensity is the sum of the intensities of all the emitting species.

The time resolution experiment is divided into two phases. First, decay curves are obtained from the individual luminescent species and decay constants are determined by substitution of the data into equation 5. Second, decay curves from mixtures of luminescent species are collected. The decay constants, determined from single component decay curves, are substituted into equation 6 and the initial intensity of each component is calculated. Finally, the initial intensities are related to the concentration of the luminescent species in the sample.

To prepare either phase of the time resolution experiment the steps listed in Table 4 are performed. After the preparations are completed, the experiment is initiated by operator interaction with the minicomputer. The step by step operation of the minicomputer is described in Table 5.

After the experiment is completed and the paper tape data set is transferred to disc, WYLBUR is used to prepare a job which processes the data. If a decay constant is sought certain conventions are followed. A preliminary job is Table 4. Stepwise Preparation of Pulsed XEOL System

- Inject the sample into the holder and seal the holder with indium gaskets and number two screws (Approximately 1.0 ml. of sample is needed to fill the holder).
- 2. Attach the holder and radiation shield to the cryostat and insert the cyrostat into the vacuum shield.
- 3. Connect the vacuum line and pull a vacuum on the contents of the vacuum shield.
- 4. Start the refrigerator and wait for the sample to cool.
- 5. Turn on the medical x-ray unit and select the current and voltage for the x-ray pulse (typically 60 kV., 100 mA.).
- 6. Make certain the slits are opened (typically 1000 micrometers), the monochromator is tuned to zero order and the photomultiplier tube is on (typically 1200 volts).

7. Turn on the computer power key and the teletype.

created which generates a plot of the decay curve. An estimate of the half life is made from the decay curve by measuring the time the intensity drops to one half the initial value. The decay constant is equal to 0.693 divided by the half life. A second job is generated which contains SMASH. The estimate of the decay constant is input into SMASH as a negative number. The negative estimate signals SMASH to perform a direct search for the decay constant. The initial estimate is used to calculate a maximum value for the quality of fit. A search vector is followed and the value for the quality of fit is minimized as the search vector proceeds to the final value of the decay constant. At the completion of the calculation output is generated which lists the initial data and the calculated fit with the estimated decay constant and with the final decay constant.

Table 5. Minicomputer Operation

- 1. Load the assembly language program into memory if the program is not already present in memory (Consult the operations manual).
- 2. Depress all address switches and press the extended address load switch.
- 3. Load 200 octal into the address switches and press the address load switch.
- 4. Place the halt switch in the up position, press the clear switch and the continue switch (The telepype should print a message).
- 5. Enter the date and time as requested and answer subsequent questions. Typical answers are; Number of waves = 480, Number of passes = 10, Transient decay = 800, Number of data points = 100, Range code = 3. After the last question is answered the experiment will start automatically.
- 6. Turn the punch on and wait for the next question to be printed by the teletype.
- 7. After the experiment is completed depress the halt switch and tear the paper tape data set off the punch.

8. Roll the paper tape and submit it at the Iowa State <u>University Computation Center for transfer to disc.</u>

A complex decay curve can be time resolved with SMASH if different conventions are used. The same WYLBUR execute file is used to prepare the job. A decay constant, which has been determined from single component data, is entered for each species which contributed to the decay curve. All decay constants are entered as positive numbers. The positive decay constants signal SNASH to perform a linear least squares procedure to calculate the initial intensities of the various components. The quality of fit is calculated and if the value does not fall between specific limits, error messages are generated. The error messages indicate whether too many or too few decay constants were entered. The output contains the initial data and the calculated data. The initial intensities are listed with the corresponding decay constants.

The output produced by the job is retrieved from the computation center and the calculated results are extracted from the printed matter and tabulated. If analytical results are sought the calculated results are normalized for amplifier gain and integrator input resistance. The normalization factors are listed in Table 6. After the results are normalized, calibration curves are plotted or unknown concentrations of PAH's are calculated.

Fluorescence Measurements

If fluorescent emission is measured the capacitor in the gated integrator is reduced by a factor of 60. Greater integrator sensitivity is needed because the integration

Amplifier_Gain	<u>Input Resistor</u>	<u>Normalization Factor</u>
1 X 10 ⁸	50K ohms 100K ohms	1 2
1 X 107	25K ohms 50K ohms	5 10
	100K ohms	20
1 X 10°	25K ohms 50K ohms	50 100
مرتبع المان المتعر ويوردونها ويورد المراجع المالة المكان المكان المكان المكان المكان المالية والمكان والم	<u>100K ohms</u>	200

period is shortened to 1/120th of a second when single waves are integrated. After the integrator is modified the pulsed XEOL system is prepared as described in Table 4. The x-ray supply is adjusted to 90 kV. and 300 mA. because a shorter pulse is used for the fluorescence experiment and the x-ray tube can dissipate the heat. The experiment is initiated as described in Table 5 but different input is used. The fast mode is specified for the assembly language program and only the number of waves in the pulse and the number of passes are entered. Typically 40 waves and 20 passes are selected. The experiment begins after the last question is answered.

Even though computerized data analysis techniques exist for the fast mode, the techniques were not used. The data collected from fluorescent emission were analyzed with a programable calculator. If analytical results are desired the calculated results are normalized with the factors given in

49

Table 6. Normalization Factors

Table 6. A mean and standard deviation were calculated from the signal averaged data obtained for each wave in the pulse. However, the data obtained from the first twenty waves were discarded because the x-ray flux produced by the x-ray tube is not stable immediately after the x-ray tube is turned on. The mean is used to profile emission bands, generate calibration curves and calculate unknown PAH concentrations.

CHAPTER 5: RESULTS AND DISCUSSION

Decay Constant Values

The first step in the time resolution experiment was the determination of decay constants of the phosphorescent PAHs. These constants were determined from the stock solutions prepared from purified PAH materials. Because the pulsed XEOL system was untested, a reproducibility study of the. determination of several decay constants was performed. The five day stability of the system was measured for triphenylene, coronene, chrysene, phenanthrene and fluoranthene, and a mean was calculated from five values obtained on different days. The decay constants obtained on five different days for seven PAHs are listed in Table 7. Two of the values in the table were excluded from statistical calculations by the Dixon criterion. The excluded values resulted from an error in the search routine used by SMASH, because noise in the measurement system can cause a large spread in the data points which describe a decay curve, with the greatest spread late in the decay scheme, and a false minimum in the quality of fit can be sought by the search vector. The frequency of occurrence of the error in the search routine was governed by the signal-to-noise ratio of the data. The mean and percent relative standard deviation of each decay constant are summarized in Table 8.

<u>Compound</u>	<u>Day 1</u>	<u>Day_2_</u>	Day_3	<u>Day 4</u>	Day_5
Triphenylene	0.0696	0.0687	0.0688	0.0699	0.0689
Coronene	0.1160	0.1157	0.1165	0.1155	0.1169
Fluorene	0.1704	0.1690	0.1707	0.1704	0.1703
Phenanthrene	0.2775	0.2781	0.24602	0.2736	0.2746
Naphthalene	0.3388	0.3483	0.3550	0.3385	0.28782
Chrysene	0.3831	0.3809	0.3817	0.3849	0.3806
Fluoranthene	1.1231	1.1425	1.2067	1.0931	1.0222

Table 7. Five Day Determination of Decay Constants¹

¹All quantities reported in sec⁻¹ ²Values excluded by Dixon Criterion

<u>Compound</u>	Mean_Decay_Constant	<u>% RSD</u>	
Triphenylene	0.0692	0.77	
Coronene	0.1161	0.50	
Fluorene	0.1702	0.39	
Phenanthrene	0.2760	0.79	
Naphthalene	0.3452	2.3	
Chrysene	0.3822	0.46	
Fluoranthene	1, 1175	6.0	

Table 8. Decay Constant Statistics¹

'All quantities reported in sec-1

If the decay constants are not independent of concentration, analytical applications of time resolved spectroscopy would be impossible. The concentration independent behavior of the decay constants had to be verified. Triphenylene, coronene, phenanthrene, chrysene and fluoranthene were selected for these verifications. The results are presented in Table 9. With the exception of the lowest concentration values for phenanthrene, chrysene and fluoranthene, the decay constants reported in Table 9 agreed with the values tabulated in Table 8. Therefore, the independent behavior of the decay constants with concentration was verified. The three values at the lowest concentration were severely distorted by a background luminescence. When the concentration dependence study was performed the background interference was not understood and no correction was made. The source and nature of the background luminescence will be discussed in the next section.

Table 9. Concentration Dependence of Decay Constants ¹				
Compound	<u>1_X_10-3M</u>	<u>1 x 10-+M</u>	<u>1 x 10-5 m</u>	<u>1 x 10-6 M</u>
Triphenylene	0.0700	0.0705	0.0708	0.0715
Coronene		0.1171	0.1180	0.1182
Phenanthrene	0.2791	0.2770	0.2820	0.3037
Chrysene	0.3851	0.3879	0.3805	0.4950
<u>Fluoranthene</u>	1.2374	1.1924	0.9067	میں شد بند بند است کار ملد میں بری میں میں خلب شد بند بند است کار میں زند میں بری میں م
All quantities	reported	in sec-1		

A comparison of the decay constants observed in this study with literature values is shown in Table 10. Examination of the tabulated values indicates XEOL-TRS and conventional methods give comparable results. The agreement

between decay constants obtained from optical excitation and x-ray excitation helps to unravel the XEOL excitation mechanism. Normally, the decay constants of phosphorescent species in a highly ionized environment are significantly different from the decay constants of phosphorescenct species in a neutral environment. Thus, x-ray excitation as compared to optical excitation does not affect the environment of the excited species appreciably even though ionized intermediates are produced by x-ray interaction with matter. Finally, the results obtained from decay curves of individual PAHs are summarized as decay constants, lifetimes and half lives in Table 11. The decay constant and the lifetime are reciprocally related and the half life is 0.693 divided by the decay constant.

Mixture Analysis by Time Resolution

One advantage of time resolved spectroscopy was demonstrated by some early results obtained from simple two component systems. As a first example of the usefulness of time resolved spectroscopy, a mixture of triphenylene and phenanthrene was studied. On the right hand side of Figure 12 the DC spectra of triphenylene and phenanthrene are presented with the background trace and the DC spectrum of a mixture of the two compounds. The double lines which extend from the top spectrum to the bottom spectrum indicate the region of the

Figure 12. Time resolution of the phosphorescence emission from a mixture of triphenylene and phenanthrene in n-heptane by use of the pulsed XEOL technique.

<u>Compound</u>	XEOL-TRS	<u>Birks (26)</u>	<u>McClure (54)</u>
Triphenylene	0.069	0.062	0.062
Coronene	0.12	0.11	0.11
Fluorene	0.17	0.20	0.20
Phenanthrene	0.28	0.29	0.30
Naphthalene	0,34	0.42	0.38
Chrysene	0.38	0.38	0.40
Fluoranthene	1.12	1.18	

Table 10. Comparison of XEOL and Published Decay Constants¹

'All quantities reported in sec-1

<u>Compound</u> <u>Decay Constant</u> <u>Lifetime</u> <u>Half Life</u> 0.069 sec-1 14.5 10.0 Triphenylene sec sec Coroneae 0.116 sec-1 8.6 6.0 sec sec 0.170 sec-1 Fluorene 5.9 4.1 sec sec Phenanthrene 0.276 sec-1 3.6 sec 2.5 sec 0.345 sec-1 2.9 2.0 Naphthalene sec sec 0.382 sec-1 1.8 sec Chrysene 2.6 sec 0.62 sec 1.118 sec-1 0,89 sec <u>Fluoranthene</u>

Table 11. Decay Constants, Lifetimes and Half Lives of PAHs

spectra isolated by the monochromator. An obvious spectral interference is observed. Or the left hand side of Figure 12 the decay curves for the individual compounds and the mixture are drawn. The decay constants used to time resolve the spectral interference are given on the top two plots and the initial intensities are summarized on the bottom plot. The nonzero initial intensities prove the spectral interference can be resolved temporally. A second example is presented in Figure 13 for the mixture of triphenylene and chrysene.

Figure 13. Time resolution of the phosphorescence emission from a mixture of triphenylene and chrysene in n-heptane by use of the pulsed XEOL technique.

To determine the problems encountered in the time resolution of more complex mixtures with the pulsed XEOL system, a five component system which contained triphenylene, coronene, chrysene, phenanthrene and fluoranthene was examined. The five PAHs were selected because their decay constants cover a large range of values with no overlap.

Even though the five components in the mixture share no common emission band and spectral interferences are not severe, a second advantage of time resolved spectroscopy was demonstrated when the five component mixture was time resolved. The individual lines in the emission bands of the FAHs were weak and analytical determinations based on emission of single lines lacked sensitivity. To demonstrate the improved sensitivity of PAH determination by time resolved spectroscopy the monochromator was tuned to zero order and the slits were opened to 1 millimeter. In this way all the light emitted by the sample proceeded through the monochromator unresolved. If the monochromator had not been an integral part of the pulsed XEOL system, only a lens and a mirror would have been used to transmit the optical signal to the photomultiplier tube. With the slits opened to 1 millimeter the optical throughput of the monochromator obviously increased and the sensitivity of the measurement improved. The amount of scattered radiation which reached the detector also increased as the slits were opened, but with

time resolution only radiation which is characterized by a specific decay constant was detected. All other radiation produces a DC background which is removed by a simple subtraction.

Complex decay curves of several dilutions of the mixture were collected with the pulsed XEOL system. Each decay curve was time resolved and the results were normalized. Analytical calibration curves, both linear and logarithmic, for each component in the mixture were plotted and are drawn in Figures 14-18. Several unexpected features were observed for the logarithmic and linear plots of concentration versus intensity.

The first unexpected feature was the nonlinear behavior of the calibration curves. An approximate slope of one half was observed for the log plots, which indicated that the observed intensity was a function of the half power of concentration. Two explanations for the one half slope are possible. First, a half power rate expression could exist as an intermediate step in the kinetic scheme which describes the excitation mechanism. For example, a half power rate expression is observed for some free radical reactions (e.g. the formation of chlorine free radicals from molecular chlorine). Ionized species and free radicals are produced when x-rays interact with matter. The second possibility is based on the scattering of light within the translucent

Figure 14b. Logarithmic plot of intensity versus molar concentration for triphenylene.

Figure 15b. Logarithmic plot of intensity versus molar concentration for coronene.

Figure 16a. Linear plot of intensity versus molar concentration for chrysene.

Figure 16b. Logarithmic plot of intensity versus molar concentration for chrysene.

Figure 17b. Logarithmic plot of intensity versua molar concentration for phenanthrene.

Figure 18b. Logarithmic plot of intensity versus molar concentration for fluoranthene.

sample. The emission of the sample originates from different depths within the sample and not just the sample surface. Formation of a microcrystalline snow when n-alkanes are frozen produced many reflective surfaces within the sample. Internal reflection and optical scattering reduced the probability of detection of a photon which originated in the interior of the sample as compared to a photon which originated on the surface of the sample. The relationship between concentration of luminescent species and the probability of detection of a photon emitted in the n-alkane snow as a function of distance from the surface of the sample must be considered. The functional behavior of the probability of detection as a function of distance from the surface of the sample could be responsible for the observed half power dependence of intensity on concentration. Escape depth considerations are common in many surface techniques and empirical functions have been used to make corrections for probabilities of escape for x-rays, photons and electrons (55). The answer to the question of which interpretation is correct, or if some other factors need to be considered could not be answered in the course of the present investigation.

The second unexpected feature was the flattening of the fluoranthene and triphenylene analytical calibration curves at low concentration. This flattening could be attributed to a background luminescence from the quartz window in the

sample holder characterized by decay constants with values approximately equal to the decay constants for triphenylene and fluoranthene. The background luminescence of the quartz window at 10 K contains two slow components with decay constants 0.068 and 1.160 sec⁻¹. The second component was six times as intense as the first, hence a greater background effect was observed for fluoranthene as compared to triphenylene. The source of the background luminescence is defects and impurities in the quartz which become luminescent centers at low temperatures (56). Above 200 K no background luminescence is observed. Two possible solutions to this problem are considered in the next chapter.

Finally, the analytical calibration curves for coronene and chrysene flattened at high concentration. The observed behavior is not concentration quenching because singlet-triplet absorption is a forbidden process. The exact nature of the effect is not fully understood but energy transfer between luminescent species at high concentration and photochemical decomposition may be contributing to the observed behavior. Elucidation of photochemical processes in n-alkane systems induced by x-ray irradiation will be needed to understand the relationship between the observed intensity and high concentration of PAHs in the n-alkane snow.

To test the applicability of time resolved spectroscopy for analytical problems, three synthetic unknown PAH mixtures

were prepared and analyzed. The analysis was performed in triplicate and the results are tabulated in Table 12. All the values in the table are reported in micrograms. The uncertainties range from a few percent to 20 percent relative. Values for coronene and chrysene are not reported for unknown No. 1 because the amount present was below the detection limit for that particular sample. The phenanthrene value for unknown No. 2 and the chrysene value for unknown No. 3 were low because of peculiarities in SMASH discussed earlier. Although the data in Table 12 are promising, additional development undoubtedly will be required before XEOL-TRS can make a major contribution to the determination of PAHs in complex mixtures.

Table 12. Analytical Data from XEOL-TRS Analysis ¹ 2										
	ttekne	NO 1	Unkno		Unkno					
<u>Compound</u>	<u>Actual</u>	<u>Found</u>	<u>Actua</u>	<u>l Found</u>	<u>Actua</u>	<u>l Found</u>				
Triphonylong	0 57	0 6440 05	2 0	1 0+0 2	57	5 7+0 9				
Coronene	0.60		3.0	3.0 ± 0.3	6.0	5.4 ± 2				
Chrysene	5.7		11	12±2	23	13±1				
Phenanthrene	1.6	1.3±0.4	8.9	5.0±0.4	36	34±7				
<u>Fluoranthene</u>	<u> 10 0 </u>	<u>120±10</u>	200	<u>200±40</u>	400	<u>_440±80</u>				

All quantities reported in micrograms Analysis performed in triplicate

67

¢

Single Component Analysis by Fluorescence

The pseudo-DC mode was used to measure fluorescent emission induced by the greater x-ray flux available from the medical x-ray supply. Wavelength profiles were obtained for 3,4-benzopyrene and perylene in the wavelength region around 427.5 nm. and 453.0 nm., respectively. Analytical calibration curves were plotted from normalized data obtained from the maxima of the wavelength profiles. The analytical calibration curves were used to analyze three synthetic unknowns. The third unknown contained both compounds whereas the other two unknowns contained only a single component. The analysis was performed in triplicate and the results are tabulated in Table 13. All values are reported in micrograms.

The results are disappointing for the mixture and the uncertainties are unacceptable for all three unknowns. The large uncertainties are caused by the inability to

reproducibly peak the monochromator on the maximum intensity wavelength of the emission band and the fluorescent background emitted by the sample holder. Location of the maximum intensity wavelength of the emission band was a long tedious process with the pseudo-DC excitation source as compared to the standard DC excitation source and an alternate approach was sought. Suggestions for the correction of these problems are discussed in the next chapter. The analysis of the mixture is further complicated by the suppression of 3,4-benzopyrene emission by perylene. Interferences of the type observed for unknown No. 3 are expected when fluorescence analysis is performed with PAHs because energy transfer processes play a major role in the excitation and deexcitation mechanisms of many PAH systems. After appropriate system improvements the XEOL technique could be applied to the fluorescent analysis of single component PAH systems. However, single component PAH analysis is not practical because PAHs occur in complex mixtures. Therefore, the use of internal reference compounds, prior isolation of PAHs by ring size and alkyl substitution or other innovative analytical approaches will be required before XEOL can be applied to the fluorescent analysis of PAHs.

Discussions and Conclusions

The results reported in this chapter demonstrate the feasibility of the XEOL-TRS technique for the analysis of simple mixtures of phosphorescent PAHs. The technique could obviously be applied to other organic phosphorescent systems. The present study is the first application of XEOL to organic systems and many basic principles were established. The use of low temperatures and unconventional geometries are two examples. Techniques for the determination of decay constants were developed. As the scope expands to other organic systems, Fourier techniques and phase resolution will be required to measure shorter decay constants. The examination of fluorescence produced with a high power x-ray pulse demonstrated the flexibility of the pulsed XEOL system to study fluorescence and phosphorescence. The combination of XEOL with conventional pulsed fluorescence techniques will expand the scope of the XEOL method. Finally, the temperature flexibility, supplied by the helium refrigerator employed in the pulsed XEOL system, makes possible the study of a wide range of solids, liquids and gases.

XEOL coupled with time resolved spectroscopy does not solve all the problems of PAH analysis. The technique in the present state of development does not compete with gas or liquid chromatography, GC-MS or conventional fluorescence techniques. The improvements discussed in the next chapter if

implemented should improve the capabilities of the pulsed XEOL system. However, the true potential of the method as applied to PAH analysis will not be appreciated fully until a nanosecond width x-ray pulse is used for excitation. A synchrotron produces an intense x-ray pulse of nanosecond width which would eliminate the limitations imposed on the present study by the pulse characteristics. As time and space become available on national synchrotron facilities a proposal, based on the work presented here, should be prepared. The improved sensitivity and more general applicability of time resolved fluorescence as opposed to time resolved phosphorescence should be stressed. Interferences (e.g. the suppression of 3,4-benzopyrene emission by perylene) could be characterized by the pulsed XEOL system in the pseudo-DC mode prior to the synchrotron study. Even with ideal x-ray excitation sources and unlimited computational facilities the XEOL technique would not be the ultimate method for the analysis of PAH mixtures. The PAH problem is complex and many analytical techniques will be required to characterize natural and man made mixtures of PAHS.

CHAPTER 6: MISCELLANEOUS OBSERVATIONS AND FUTURE WORK

The work reported earlier (13,45), combined with the results presented in this dissertation, is the first application of XEOL to an organic system. Furthermore, the use of a pulsed x-ray excitation source is a novel approach to XEOL. These two facts suggest the scope of application for XEOL coupled with conventional luminescent methods is very broad and requires additional investigation.

Before new applications of XEOL are considered, modifications of the pulsed XEOL system are described in the following section. Implementation of the modifications would eliminate many of the problems encountered in the PAH study. In the next section the effects of solvent composition are discussed and suggestions are presented for the enhancement of the sensitivity of the PAH analysis by XEOL. Finally, XEOL results obtained from novel systems are presented in the last section and new applications of XEOL to analytical problems are indicated.

Pulsed XEOL System Modifications

The major problem encountered in the analysis of PAHs with the pulsed XEOL system was the background luminescence emitted by the quartz window in the sample holder. To correct the problem, the quartz window can be replaced by a window composed of a different material or removed completely.

Several window materials were tested to eliminate the background luminescence but no suitable substitute was found. Single crystal quartz was not available when the other materials were tested. A sample of single crystal quartz should be obtained and tested as a substitute window material.

An alternate approach to eliminate the background luminescence from the quartz window in the sample holder involved deposition of the sample on a cold beryllium disk from a flowing gas stream. A doughnut-shaped manifold with twelve directional ports was designed. At the present time deposition techniques are being developed. The major problems that need to be solved are improved vacuum control, measurement and control of sample deposition and efficient vaporization and transport methods for the PAH material. After the problems are solved, many interesting experiments are possible, in particular, x-ray generation of reactive species and photochemical reactions. The deposition of gaseous samples on a cold surface opens the realm of matrix isolation to study by the XEOL technique.

Another problem, encountered in the fluorescence study, was the inability to reproducibly position the monochromator at a specific wavelength. Mechanical play in the wavelength counter and large temperature variations in the laboratory contributed to the problem. To correct the difficulty

software should be developed to calculate a polynomial fit from discrete data points which characterize the profile of the emission band. A numerical differentiation of the colynomial produces the derivative of the emission band shape. The wavelength of maximum intensity is equal to one of the roots of the polynomial expression which represents the derivative set equal to zero. The maximum intensity is calculated by substitution of the wavelength of maximum intensity into the original polynomial. These numerical methods eliminate the need to position the monochromator reproducibly because only the relative positions of the data points with respect to one another are required. The relative positions can be accurately determined by use of a computer-controlled stepper motor to position the monochromator at the discrete wavelengths in the profile of the emission band. The software and interface needed to operate a stepper motor by computer control were developed by D. Kalnicky (57) and are available in the laboratory. A stepper motor should be purchased and mounted on the monochromator and modifications of software for use of the stepper motor should be started.

In addition to the modifications described in the preceding paragraphs, optimization of the x-ray pulse characteristics is imperative. The trade offs between voltage, current, and pulse duration of the x-ray pulse

should be studied. Figures 19-21 are plots of intensity versus current, voltage and pulse duration. A factor of two increase in current or pulse duration doubles the measured intensity but an approximate fifty percent increase in voltage produces an equivalent enhancement. Optimization of PAH analysis with respect to the three pulse parameters, within the limits determined by the energy the x-ray tube must dissipate as heat, should enhance the sensitivity and lower the detection limits of the XEOL technique.

Solvent Composition

The host matrix or solvent composition for an organic system, e.g. PAHs in n-alkane solvents, is an important factor in all XEOL experiments. The host matrix has to interact with the primary x-ray radiation and support energy transfer processes which excite the guest species. Very few host matrices exhibit XEOL emission from guest species. A better understanding of the excitation processes in those matrices which exhibit XEOL emission should be developed in the near future. The results of a study of the excitation mechanism for PAHs in n-alkanes in particular, will assist in the prediction of new organic systems which will exhibit XEOL emission. The importance of solvent composition for the PAH study is demonstrated by two probing experiments.

INTENSITY VS VOLTAGE

Figure 21. Measured intensity as a function of the duration of the x-ray pulse.

The first experiment examined the effect of n-alkane chain length on the structure of the XEOL spectrum. Anthracene and 3,4-benzopyrene were examined in n-hexane, n-heptane and n-octane. The three anthracene spectra are presented in Figures 22-24. The emission band for anthracene in n-hexane is broad and structureless whereas in n-heptane several sharp lines are observed and in n-octane a weak band is observed. A different effect is observed for 3,4-benzopyrene as shown in Figures 25-27. The structure of the emission sharpens and the intensity increases as the chain length increases. Similar solvent effects are observed for all the PAHs studied. These solvent effects and others previously observed for UV excitation of n-alkane-PAH systems (35,58-61) need to be investigated so that the analysis of PAHs by the XEOL technique can be optimized.

A second probing experiment on solvent composition involved the introduction of a heavy atom to the n-alkane-PAH system by addition of iodobutane or tetra-n-butyllead to the solvent. Addition of a heavy atom to the solvent induces the external heavy atom effect in PAH systems (62-64). The increase of the spin-orbit coupling of excited singlet and triplet states results in an increase in the rate of intersystem crossing between singlet and triplet states and thus enhanced phosphorescence emission. Analytical applications of the external heavy atom effect in UV excited,

WAVELENGTH (nm)

Figure 22. XECL spectrum of anthracene in n-hexane at a concentration of 1 \times 10⁻⁴ M.

Figure 23. XECL spectrum of anthracene in n-heptane at a concentration of 1 X 10-4 M.

Figure 24. XECL spectrum of anthracene in n-octane at a concentration of 1 \times 10⁻⁴ H.

Figure 25. XECL spectrum of 3,4-benzopyrene in n-hexane at a concentration of 1 X 10^{-4} H.

Figure 26. XECL spectrum of 3,4-benzopyrene in n-heptane at a concentration of 1 \times 10-4 M.

Figure 27. XECL spectrum of 3,4-benzopyrene in n-octane at a concentration of 1 \times 10-* M.

PAH systems are numerous (65-67). Furthermore, the x-ray capture cross section of an atom increases with atomic number (47). Therefore, the addition of a heavy atom to the solvent results in a host with a large x-ray capture cross section and a second enhancement of the luminescence emission should result with the XEOL technique. The heavy atom host captures more x-ray photons than a hydrocarbon host and the energy of the x-ray beam is more efficiently converted to electronic excitation energy for the PAH guest molecules.

No effect was observed for iodobutane but an enhancement was observed for tetra-n-butyllead. Table 14 summarizes the effect of tetra-n-butyllead on five PAHs at a concentration of 10 microliters of tetra-n-butyllead per 1 milliliter of n-heptane. The results indicate improved detection limits could be achieved with the addition of a heavy atom to the solvent. Future experiments should be scheduled to study the effect of heavy atom concentration on the signal and decay constant of the analyte. Also, the optimum concentration of heavy atom and the optimum heavy atom need to be determined.

Other Systems Amenable to Study by XEOL

An obvious application of the XEOL study of PAHs is the characterization of fuel oils by the PAH fraction as described by the U. S. Coast Guard (68). Fuel oil samples were collected and XEOL spectra were obtained. The initial

Compound	Conc.	Signal Without <u>Heavy Atom</u>	Signal With <u>Heavy Atom</u>	Percent <u>Increase</u>
Fluoranthene	1 X 10-2 M	8642	76050	780%
Chrysene	1 X 10-3 M	13019	21060	62%
Pheuanthrene	1 X 10-3 M	31484	47200	50%
Triphenylene	1 X 10-3 M	88157	123700	40%
<u>Coronene</u>	1 X 10-4 M	<u>8454</u>	<u>9360</u>	11%

Table 14. External Heavy Atom Effect on PAH Emission

results were not competitive with the U. S. Coast Guard results, hence the fuel oil samples are being stored until the instrumental modifications have been completed. After the modifications are tested, the fuel oil samples will be characterized by XEOL spectra and complex decay curves. Characterization of fuel oils by complex decay curves will be one more method of identification necessary to fingerprint fuel oil spills and stock supplies of fuel oils.

XEOL emission from the final system considered was discovered by accident. The first experiments performed with the gas manifold involved the co-deposition of argon and PAHs on the beryllium disc to take advantage of the large x-ray capture cross section of argon as compared to carbon and hydrogen. A routine examination of a "pure" argon deposit revealed a complex spectrum, as shown in Figure 28. The many lines and bands are characteristic of nitrogen, oxygen and other gaseous impurities in argon. Possible analytical applications for the determination of these gases in argon

WAVELENGTH (nm)

Figure 28. XECL spectrum of solid argon deposited on a beryllium window at 10 K from a flowing gas stream.

should be investigated.

In Figures 29 and 30 the spectra of krypton and xenon are shown. The broad bands in the short wavelength region suggest that these materials may be better suited as hosts for PAHs and other luminescent organic molecules. This possibility is being investigated. The origins of the other lines in the two spectra are unknown but trace gaseous impurities are the most likely sources.

The combination of rare gases and hydrocarbons, both aliphatic and aromatic, opens many avenues of research for the XEOL technique in the pulsed and DC modes. The many matrices with varying degrees of heavy atom concentration, structural peculiarities and x-ray capture cross sections should supply ideal XEOL environments for many different types of organic analytes.

Figure 29. XECL spectrum of solid krypton deposited on a beryllium window at 10 K from a flowing gas stream.

Figure 30. XECL spectrum of solid renon deposited on a beryllium window at 10 K from a flowing gas stream.

BIBLIOGRAPHY

- Haddow, A. in <u>The Physiopathology of Cancer</u>, 2nd ed., edited by F. Homburger, Harper, New York, 1959, Chapter 14.
- Jones, D. W. and Mathews, R. S., Prog. Med. Chem. <u>10</u>, 159 (1974).
- 3. Blumer, M., Scientific American 234 (3), 34 (1976).
- 4. Hoffmann, D. and Wynder, E. L., <u>Analytical and</u> <u>Biological Studies on Gasoline Engine Exhaust</u>, Nat. Cancer Inst. Monogr. 9:91-116, 1962
- 5. Long, R., <u>Studies on Polycyclic Aromatic Hydrocarbons in</u> <u>Flames</u>, U.S.N.T.I.S. No. PB-220151, 1972.
- 6. Boden, H., J. Chrom. Sci. <u>14</u>, 391 (1976).
- 7. Matsushita, H. and Arashideni, K., Bunscki Kagaku <u>25</u>, 76 (1976).
- 8. Guerin, M. R., Griest, W. H., Ho, C. H., Shults, W. D., in <u>Third ERDA Environmental Protection Conference</u>, Oak Ridge, TN, Sept. 1975.
- 9. Koppenaal, D. W. and Manahan, S. E., Environ. Sci. Technol. <u>10</u>, 1104 (1976).
- 10. <u>Particulate Polycyclic Organic Matter</u>, National Academy of Sciences, Washington, DC, 1972.
- Kolanecki, L. and Skucinski, S., Rocz. Pomorskiej Akad. Med. Szezecinie (Suppl. 2), 177 (1968).
- 12. Skucinski, S. and Kolanecki, L., Rocz. Pomorskiej Akad. Med. Szezecinie (Suppl. 2), 167 (1968).
- 13. Woo, C. S., D'Silva, A. P., Fassel, V. A., Oestreich, G. J., Environ. Sci. Technol. <u>12</u>, 173 (1978).
- 14. Natusch, D. F. S. and Wallace, J. R., Science <u>186</u>, 695 (1974).
- 15. Borneff, J., Der Landarzt <u>40</u>, 109 (1964).
- 16. Shabad, L. M., Vestn. Akad. Med. Nauk SSR 27, 35 (1972).

17. Panalaks, T., J. Environ. Sci. Health <u>b11</u>, 299 (1976).

- 18. Howard, J. W., Fazio, T., White, R. H., Klimeck, E. A., J. Ass. Off. Anal. Chem. <u>51</u>, 122 (1968).
- 19. Freudenthal, R. I., Lutz, G. A. and Mitchell, R. I., <u>Carcinogenic Potential of Coal and Coal Conversion</u> <u>Products</u>, Battelle Columbus Laboratories, Ohio, 1975.
- 2C. White, C. E. and Argauer, R. J., <u>Fluorescence Analysis</u>, Marcel Dekker, New York, 1970, Chapter 12.
- 21. Albagli, A., Oja, H., Dubois, L., Environ. Lett. <u>6</u>, 241 (1974).
- 22. Blumer, M. and Youngblood, W. W., Science <u>188</u>, 53 (1975).
- 23. Severson, R. F., Snook, M. E., Arrendale, R. F., Chortyk, O. T., Anal. Chem. <u>48</u>, 1866 (1976).
- 24. Jones, P. W., Grammar, R. D., Strup, P. E., Stanford, T. B., Environ. Sci. Technol. <u>10</u>, 806 (1976).
- 25. Lijinsky, W., Chestnut, A., Raha, C. R., Chicago Medical School Quarterly <u>21</u>, 49 (1960).
- 26. Birks, J. B., <u>Photophysics of Aromatic Molecules</u>, Wiley-Interscience, London, 1970.
- 27. Eberly, J. H., McColgin, W. C., Kawaoka, K., Marchetti, A. P., Nature <u>251</u>, 215 (1974).
- 28. Szabo, A., Phys. Rev. Lett. <u>25</u>, 924 (1970).
- 29. McClure, D. S., Solid State Phys. <u>8</u>, 1 (1959).
- 30. Meyer, B., <u>Low Temperature Spectroscopy</u>, American Elsevier, New York, 1971.
- 31. Craig, D. D. and Walmsley, S. H., <u>Excitons in Molecular</u> <u>Crystals</u>, W. A. Benjamin, New York, 1968.
- 32. Brown. J. C., Edelson, M. C., Small, G. J., Anal. Chem. 50, 1394 (1978).
- 33. Shpol'skii, E. V., Il'ina, A. A. and Klimova, L. A., Dokl. Akad. Nauk SSSR <u>87</u>, 935 (1952).
- 34. Shpol'skii, E. V., Soviet Phys. Usp. 3, 372 (1960).

- 35. Shpol'skii, E. V., Soviet Phys. Usp. 6, 411 (1963).
- 36. Shpol'skii, E. V. and Bolotnikova, T. N., Pure and Appl. Chem. <u>37</u>, 183 (1974).
- 37. Muel, B. and Lacroix, G., Bull. Soc. Chim. Fr. 2139 (1960).
- 38. Personov, R. I. and Teplitskaya, T. A., Zh. Anal. Khim. 20, 1125 (1965).
- 39. Dikun, P. P., Zh. Prik. Spektrosk. 6, 202 (1967).
- 40. Kirkbright, G. F. and DeLima, C. D., Analyst <u>99</u>, 338 (1974).
- 41. Lukasiewicz, R. J. and Winefordner, J. D., Talanta <u>19</u>, 381 (1972).
- 42. Winefordner, J. D., Schulman, S. G., O'Haver, T. C., Luminescence Spectrometry in Analytical Chemistry, Wiley-Interscience, New York, 1972.
- 43. Fassel, V. A., DeKalb, E. L. and D'Silva, A. P. in <u>Analysis and Application of Rare Earth Materials</u>, edited by O. B. Michelson, NATO Advanced Study Institute, Kjeller, Norway, Universitetsforlaget, 1973, pp. 109-122.
- 44. Goldstein, S. A., D'Silva, A. P. and Fassel, V. A., Radiat. Res. <u>59</u>, 422 (1974).
- 45. D'Silva, A. P., Oestreich, G. J. and Fassel, V. A., Anal. Chem. <u>48</u>, 915 (1976).
- 46. Birks, J. B., <u>The Theory and Practice of Scintillation</u> <u>Counting</u>, Pergamon Press Ltd., Oxford, 1967.
- 47. Kaelble, E. F., <u>Handbook of X-rays</u>, McGraw-Hill Book Company, New York, 1967.
- 48. Fisher, R. P. and Winefordner, J. D., Anal. Chem. <u>44</u>, 948 (1972).
- 49. St. John, P. A. and Winefordner, J. D., Anal Chem. <u>39</u>, 500 (1967).
- 50. Winefordner, J. D., Accounts of Chem. Res. 2, 361 (1969).

- 51. DeKalb, E. L., Fassel, V. A., Taniguchi, T., Saranathan, T. R., Anal. Chem. <u>40</u>, 2082 (1968).
- 52. Scranton, D. G. and Manchester, E. F., U. S. Atomic Energy Commission, Report No. IS-2305, 1971.
- 53. Korthoven, P. J. M. and Carlsen, F. S., U. S. Atomic Energy Commission, Report No. 15-1501, 1967.
- 54. McClure, D. S., J. Chem. Phys. <u>17</u>, 905 (1949).
- 55. Colby, J. W. in <u>Proceedings Sixth National Conference on</u> <u>Electron Probe Analysis</u>, Pittsburgh, Pennsylvania, 1971, pp. 17A-17B.
- 56. Leverenz, H. W. in <u>An Introduction to Luminescence of</u> <u>Solids</u>, Dover Pulications Inc., New York, 1968, p. 220.
- 57. Kalnicky, D. J., Ph.D. thesis, Iowa State University, 1977.
- 58. Pfister, C., Chem. Phys. 2, 171 (1973).
- 59. Pfister, C., Chem. Phys. 2, 181 (1973).
- 60. Colmsjo, A. and Stenberg, U., Chemica Scripta <u>9</u>, 227 (1976).
- 61. Dekkers, J. J., Hoornweg, G. P., Visser, G., Maclean, C., Velthorst, N. H., Chem. Phys. Lett. <u>47</u>, 357 (1977).
- 62. Kasha, M., J. Chem. Phys. <u>20</u>, 71 (1952).
- 63. Dreeskamp, H. and Zander, M. in <u>Fifth Annual Symposium</u> <u>on Recent Advances in Analytical Chemistry of</u> <u>Pollutants</u>, Jeckyll Island, Georgia, 1975.
- 64. Aaron, J. J., Mousa, J. J., Winefordner, J. D., Talanta <u>20</u>, 279 (1973).
- 65. Jakovljevic, I. M., Anal. Chem. <u>49</u>, 2048 (1977).
- 66. Vo-Dinh, T., Yen, E. L., Winefordner, J. D., Anal. Chem. <u>48</u>, 1186 (1976).
- 67. Seybold, P. G. and White, W., Anal. Chem. <u>47</u>, 1199 (1975).
- 68. Fortier, S. H. and Eastwood, D., Anal. Chem. <u>50</u>, 334 (1978).

ACKNOWLEDGMENTS

I wish to thank Dr. Velmer A. Fassel and Mr. Arthur P. D'Silva for their guidance and critical review of the work presented in this dissertation. The ideas and suggestions of my co-workers and fellow graduate students also contributed to this research.

I am grateful for the many hours spent in conversation with George Holland of the Ames Laboratory Instrument Services Group. His expertise clarified many problems and made the virtual link between the medical x-ray unit and the minicomputer a reality.

The financial assistance granted me by Salsbury Iaboratories, Charles City, Iowa and the U. S. Department of Energy, Division of Environmental Research and Development is greatly appreciated.

I would like to express my appreciation for the love, guidance and encouragement I received from my parents, Kenneth and Lorraine Oestreich. I also wish to thank LaVern and Mary Dellwo for their support over the years I have known their daughter.

Above all, I thank my wife Barbara for her love, support and patience. Her encouragement and understanding made this dissertation possible. May I repay her many times over for the many sacrifices she cheerfully made over the past several years.

APPENDIX 1: TRS3

TRS3 is the FL/1 program which reads the experimental data from disc and generates the output data set which is the input data for SMASH. The PL/1 program translates data from a format specified by the assembly language program which runs on the PDP8/E minicomputer to data in the proper format for SMASH. Execution of TRS3 is the first major step in the job which calculates experimental results. TRS3 is run automatically by the WYLBUR execute file which appears in Appendix 6. The operation of TRS3 is controlled by a group of input variables which specify the number of experiments which were performed and the mode of the pulsed XEOL system employed for each experiment. If the slow mode is specified TES3 plots the decay curve with Simplotter. Simplotter is accessed by the CALL GRAPH and CALL GRAPHS statements which appear in the listing. A CALL ORIGIN statement, one of the Simplotter options, is used to move the position of the graph on the paper on which the graph is plotted. A listing of the source statements of TRS3 is given on the following pages.
```
(STRG, SUBRG):
CORE: PROCEDURE OPTIONS (MAIN);
      DCL GRAPH ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT,
               FIXED BIN, FIXED BIN, FLOAT, FLOAT, FLOAT,
               FLOAT, FLOAT, FLOAT, CHAR(20), CHAR(20),
               CHAR (20), CHAR (20));
      DCL GRAPHS ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT,
               FIXED BIN, FIXED BIN, CHAR(20));
      DCL ORIGIN ENTRY (FLOAT, FLOAT, FIXED BIN);
      DCL IN FILE INPUT:
      DCL OUT FILE OUTPUT ENVIRONMENT (CONSECUTIVE);
      DCL OPTION (50) FIXED:
      DCL (REJECT, INPUT) CHAR(80);
      DCL (X1 (POINTS), Y1 (POINTS), CORRECT (POINTS),
               ADDRESS (POINTS) ) FLOAT CONTROLLED;
      DCL (SUMSQR (POINTS), VAR (POINTS)) FLOAT CONTROLLED;
      DCL (LAB1, LAB2) CHAR (20);
      DCL COMP(NCOMP) FLOAT CONTROLLED;
      DCL (DATE, TIME) CHAR(6);
      DCL (RUNS, PASSES, NUMWAV, POINTS) FIXED BIN;
      DCL (HEAD, XLAB, YLAB, GLAB, DATLAB) CHAR (80);
      CALL ORIGIN (0.0, 1.0, 1);
      GET FILE (IN) LIST (RUN);
      DO I=1 TO RUN:
              GET FILE (IN) LIST (OPTION(I));
      END:
      RUNCNT=RUN:M=1:
GETIN:GET EDIT (REJECT) (COL(1), A(70)) COPY;
      GET EDIT (INPUT) (COL(1), A (63)) COPY;
      GET STRING (INPUT) EDIT (DATE, TIME, RUNS, NUMWAV,
              PASSES, POINTS, LUMIN) (A(6), X(2), A(4),
              X(2), 5(F(5), X(2));
      IF LUMIN=1 THEN
              GET STRING (INPUT) EDIT (DELTIM, RANGE)
               (X (49), 2 (F (5), X (2)));
      J=1:
      ALLOCATE Y1(POINTS):
INDAT:GET EDIT (INPUT) (COL(1), A(70)) COPY;
      DO I=1 TO 7;
              GET STRING (SUBSTR(INPUT, (10*I-9),8)) EDIT
               (Y1(J)) (F(8));
              IF J=POINTS THEN GO TO ENDIN;
              J=J+1:
      END:
      IF J-=POINIS+1 THEN GO TO INDAT:
ENDIN: RUNCNT=RUNCNT-1;
      J=1:
      Y 1 = -Y 1:
      ALLOCATE CORRECT (POINTS);
      ALLOCATE ADDRESS (POINTS):
```

```
CORIN:GET EDIT (INPUT) (COL(1), A(70)) COPY;
      DO I=1 TO 5:
               GET STRING (SUBSTR(INPUT, (14*I-13), 14)) EDIT
                (CORRECT (J), ADDRESS (J)) (2 (F (5), X (2)));
               IF CORRECT (J) = 0 THEN GO TO CORR;
               J=J+1:
      END:
      IF CORRECT (J-1) \rightarrow = 0 THEN GO TO CORIN:
CORR: ALLOCATE SUMSOR (POINTS) :
      J=1;
INSQR:GET EDIT (INPUT) (COL(1), A(70)) COPY;
      DO I=1 TO 7:
               GET STRING (SUBSTR (INPUT, (10*I-9), 8)) EDIT
                (SUMSQR(J)) (F(8)):
               IF J=POINTS THEN GO TO ENDSOR;
               J=J+1:
      END:
      IF J \rightarrow = POINTS + 1 THEN GO TO INSOR:
ENDSOR: DO I=1 TO FOINTS:
      IF CORRECT (I) = 0 THEN GO TO ENDIT:
      SUMSOR (ADDRESS (I)) = SUMSOR (ADDRESS (I)) +
               CORRECT (I) *16777216;
      END:
ENDIT: FREE CORRECT:
      FREE ADDRESS:
      IF LUMIN=0 THEN GO TO FAST:
      ALLOCATE VAR (POINTS);
      VAR=ABS (SUMSQR-Y1**2/PASSES) / (PASSES-1);
      FREE SUMSOR:
      CHECK=999:
      DO I=1 TO POINTS:
               IF VAR (I) -= 0 THEN CHECK=MIN(CHECK, VAR(I));
      END:
      DO I=1 TO POINTS:
               IF VAR (I) = 0 THEN VAR (I) = CHECK;
      END;
      Y1 = Y1 / PASSES:
      ALLOCATE X1(POINTS):
      X1(1) = 0;
      IF RANGE=1 THEN RANVAL=0.01:
               ELSE IF RANGE=2 THEN RANVAL=0.1;
               ELSE RANVAL=1:
      DO I=2 TO FOINTS:
               X1(I) = X1(I-1) + RANVAL;
      END:
      GET FILE (IN) EDIT (LAB1,LAB2) (COL(1),2(A(20))):
      CALL ORIGIN (11.0,0.0,1);
      CALL GRAPH (POINTS, X1, Y1, 1, 7, 9, 7, 0, 0, 0, 0,
                       (SEC) ', 'INTENSITY', LAB1, LAB2);
               'TIME
     CALL GRAPHS (POINTS, X1, Y1, 0, 121, DATE ] | 'IITIME);
```

```
IF OPTION(M) =1 THEN GO TO SMASH:
DUMP: PUT PAGE;
      PUT SKIP LIST ('TRS2 DATA DUMP'):
      PUT SKIP LIST ('DATE', DATE, 'TIME', TIME, 'RUN NO.',
               RUNS);
      PUT SKIP LIST ('NUMBER OF PASSES', PASSES,
               "NUMBER OF XRAY WAVES", NUMWAV);
      IF LUMIN=0 THEN GO TO CONT1:
      PUT SKIP LIST ('TRANSIENT DECAY TIME (USEC)', (DELTIM*
               5+10), 'INTEGRATION TIME (MSEC) ', (10**RANGE));
      PUT SKIP:
      PUT SKIP LIST ('THE TIME VALUES ARE:'):
      PUT SKIP LIST (X1):
CONT1:PUT SKIP:
      PUT SKIP LIST ('THE INTENSITY VALUES ARE:');
      PUT SKIP LIST (Y1):
      PUT SKIP:
      PUT SKIP LIST ('THE VARIANCE VALUES ARE:');
      PUT SKIP LIST (VAR);
      PUT PAGE:
      M = M + 1:
      IF RUNCNT-=0 THEN GO TO GETIN;
      PUT FILE (OUT) SKIP:
      GO TO STOP:
SMASH: AVE=0; IFIR ST=0; DEADT=0.0; SIGMAB=0.0;
      DO I=1 TO 10:
               AVE=AVE+Y1(POINTS+1-I):
      END:
      BACKGR=AVE/10;
      GET FILE (IN) EDIT (ISMASH) (COL(1),F(2));
      DO I=1 TO ISMASH:
              GET FILE (IN) EDIT (NCOMP, INPU, IPLOT)
               (COL(1), 3(F(5)));
               PUT FILE (OUT) EDIT (NCOMP, POINTS, IFIRST,
               INPU, DEADT, BACKGR, SIGMAB, IPLOT)
               (CCL(1),4(F(5)),3(F(12,3)),X(19),F(5));
              GET FILE (IN) EDIT (HEAD) (COL(1), A(80));
              PUT FILE (OUT) EDIT (HEAD) (COL(1), A(80));
              IF IPLOT=0 THEN GO TO CONT3;
              GET FILE (IN) EDIT (XLAB, YLAB, GLAB, DATLAB)
               (COL (1), 4 (A (20)));
              PUT FILE (OUT) EDIT (XLAB, YLAB, GLAB, DATLAB)
               (COL(1),4(A(20)));
CCNT3:
              ALLOCATE COMP(NCOMP):
              GET FILE (IN) EDIT (COMP) ((NCOMP) (F(10,3)));
              PUT FILE (OUT) EDIT (COMP) (COL(1), (NCCMP)
               (F(10,3))):
              FREE COMP;
              IF INPU<0 THEN GO TO CONT4;
              PUT FILE (OUT) EDIT (Y1) (COL(1), 6 \in (12, 5));
```

PUT FILE (OUT) EDIT (X1) (COL(1),6 E(12,5)); PUT FILE (OUT) EDIT (VAR) (COL(1),6 E(12,5)); CCNT4:END; GO TO DUMP: FAST: AVE=SUM(Y1)/POINTS; VARI=0; DO I=1 TO FCINTS; VARI=VARI+((Y1(I) - AVE) **2);END; VARI=VARI/ (POINTS-1); STAND=SQRT (VARI) ; PUT SKIP LIST ('THE AVERAGE VALUE IS: ', AVE); PUT SKIP LIST ('THE STANDARD DEVIATION IS:', STAND); PUT SKIP; GO TO DUMP; STOP: END CORE;

APPENDIX 2: SMASH

SMASH is a FORTRAN IV program which determines decay constants for single component decay curves and initial intensities for each component in a multiple component decay curve. The operation of SMASH is described elsewhere (53). Several modifications were made on the input routines and declaration statements to facilitate the execution of the program for the analysis of spectroscopic data. SMASH is the second major step in the job which calculates experimental results. A listing of SMASH with the modifications appears on the following pages.

С C SMASH, A PROGRAM FOR THE ANALYSIS OF DECAY CURVES, Ċ BY P.J.M. KCRTHOVEN AND F.S. CAPLSEN С CALL SMASH1 STOP END SUBROUTINE SMASH1 DIMENSION IPAR(10), SSIZE(10), X(10), Y(10)REAL LAMBDA (10) CONMON NSTEPS, NCOMP, FIT2, IFIRST, SSIZE, LAMBDA, ORFIT, 1NVAR, FIT1 1 NSTEPS=0 KOUNT = 0CALL SMINP1 IF (NCOMP) 2,63,2 2 ICONV=NVAR*400 3 KOUNT=KOUNT+1 DO 4 I=1,NCOMP 4 IPAR(I) = 0IA = 0IB=0CALL SMFIT1 FIT 1 = FIT2IF (NVAR) 6,5,6 5 IFIRST=0 6 IF (IFIRST) 10,7,10 7 CALL SMOUT1(1) IFIRST=1 IF (NVAR) 8,1,8 8 IF (KOUNT-1) 10,9,10 9 ORFIT=FIT2 10 TEMFIT=FIT2 11 FIT1=TEMFIT С С INITIAL SEARCH С DO 25 I=1, NCOMPX(I) = LAMBDA(I)IF (SSIZE(I)) 13,12,13 12 IPAR(I) = 0GO TO 25 13 LAMBDA(I) = LAMBDA(I) + SSIZE(I) CALL SMFIT1 IF (NSTEPS-ICONV) 14, 14, 62 14 IF (FIT2-FIT1) 15,20,20 15 IF (IPAR(I) - 2) 16, 17, 16 16 IPAR(I) = 017 IF (ABS(FIT2-FIT1)-0.000001) 19,18,18 18 IB = 1

```
IPAR(I) = 1
19 FIT1=FIT2
    GO TO 25
20 LAMBDA(I) = X(I) - SSIZE(I)
    CALL SMFIT1
    IF (NSTEPS-ICONV) 21,21,62
21 IF (FIT2-FI11) 22,23,23
22 SSIZE(I) = -SSIZE(I)
    GO TO 15
23 LAM BDA(I) = X(I)
    IF (IPAR(I)-2) 24,25,24
24 IPAR(I)=0
25 CONTINUE
   END INITIAL SEARCH
26 DO 27 I=1,NCOMP
    IF (IPAR(I) - 1) 27, 38, 27
27 CONTINUE
    IF (IB) 28,33,28
28 DO 32 I=1,NCOMP
   IF (IPAR(I) - 2) = 30, 29, 30
29 SSIZE (I) = SSIZE (I) *0.2
   IPAR(I) = 0
30 IF (ABS(SSIZE(I))-0.00002*LAMBDA(I)) 31,32,32
31 SSIZE (I) = 0.0
32 CONTINUE
   IB=0
   GO TO 58
33 DO 34 I=1,NCOMP
   IF (ABS(SSIZE(I))-0.00002*LAMBDA(I)) 34,34,35
34 CONTINUE
   IF (ABS(FIT1-FIT2)-0.000001) 61,3,3
35 DO 37 I=1,NCCMP
   SSIZE(I) = SSIZE(I) * 0.2
   IF (ABS(SSIZE(I))-0.00002*LAMBDA(I)) 36,37,37
36 \text{ SSIZE}(I) = 0.0
37 CONTINUE
   GO TO 58
   ADJUST PARAMETERS FOR THE SELECTED SEARCH
38 TEMFIT=FIT1
   DO 43 I=1, NCOMP
   TEMP=LAMBDA (I)
   IF (IPAR(I) - 1) 40, 39, 40
39 LAMBDA (I) = LAMBDA (I) *2.0-X (I)
40 \times (I) = TEMP
   IF (IA-1) 41,43,41
41 IPAR(I) = 0
```

C

C C

```
IF (SSIZE(I)) 42,43,42
   42 IPAR(I) = 1
   43 CONTINUE
      CALL SMFIT1
      IF (NSTEPS-ICONV) 44,44,62
   44 IF (FIT2-FIT1) 45,46,46
   45 FIT1=FIT2
C
C
      SELECTED SEARCH
С
   46 DO 54 I=1,NCOMP
      IF (IPAR(I) -1) 54,47,54
   47 Y(I) = LAMBDA(I)
      LAMBDA(I) = LAMBDA(I) + SSIZE(I)
      CALL SMFIT1
      IF (NSTEPS-ICONV) 48,48,62
   48 IF (FIT2-FIT1) 53,49,49
   49 LAMBDA (I) = Y (I) - SSIZE (I)
      CALL SMFIT1
      IF (NSTEPS-ICONV) 50,50,62
   50 IF (FIT2-FIT1) 51,52,52
   51 SSIZE (I) =-SSIZE (I)
      GO TO 53
   52 LAMBDA(I) = Y(I)
      IPAR(I) = 2
      GO TO 54
   53 IA = 1
      IB=1
      FIT 1 = FIT2
   54 CONTINUE
      END SELECTED SEARCH
      IF (FIT1-TEMFIT) 38,55,55
   55 DO 57 I=1,NCCMP
      IF (IPAR(I)-1) 57,56,57
   56 IPAB(I) = 2
   57 LAMBDA (I) = X (I)
      IA=0
      GO TO 11
   58 IF (FIT2-TEMFIT) 10,59,59
   59 DO 60 I = 1, NCCMP
  60 \text{ LAMBDA}(I) = X(I)
      GO TO 11
  61 CALL SMOUT1 (0)
      GO TO 1
  62 CALL SMOUT1 (-1)
      GO TO 1
  63 STOP
      END
```

С С

```
105
```

```
С
С
      SUBROUTINE INPUT
С
      SUBROUTINE SMINP1
      DIMENSION IDENT (20), HALFL (10), SSIZE (10), XLAB (5),
     1YLAB(5), DATLAB(5), GLAB(5), TM(1000), RATE(1000),
     2DIFF(1000), ACALC(1000), AO(10), C(10, 10), P(1000, 10),
     3BGRND (1000), SIGMBG (1000), RAVAR (1000), DFIT (10),
     4VAR (1000), COUNTS (1000), DELTAT (1000), WDIFF (1000),
     5X(10),HL(10)
      REAL LAMBDA (10)
      INTEGER DF
      COMMON NSTEPS, NCOMP, FIT2, IFIRST, SSIZE, LAMBDA, ORFIT,
     1IDENT, TM, RATE, VAR, XLAB, YLAB, GLAB, DATLAB, IPLOT, COUNTS,
     2ACALC, DIFF, DF, HL, AO, C, P, WDIFF, KS, DEADT, BACKGR, SIGMAB,
     3RAVAR, IWRIT, FIT1, NVAR, DELTAT, NP, HALFL, TO
      NVAR=0
      READ (5,101) NCOMP, NP, IFIRST, INPU, DEADT, BACKGR, SIGMAB,
     1IDUAL, IPLOT
  101 FORMAT (415,3F12.3,14X,215)
      IF (IPLOT) 116,115,116
  116 CALL ORIGIN (0.0,0.0,0)
      CALL ORIGIN (0.0, 1.0, 1)
  115 IF (NCOMP) 102,145,102
  102 READ (5, 103) (IDENT(I), I=1, 20)
  103 FORMAT (20A4)
      IF (IPLOT) 104,105,104
  104 READ (5,103) XLAB, YLAB, GLAB, DATLAB
  105 READ (5, 106) (HALFL(I), I=1, NCOMP)
  106 FORMAT (8F10.3)
      IF (INPU) 129,112,111
  111 NCOMP=0
      GO TO 145
  112 READ (5, 126) (COUNTS (I), I=1, NP)
      READ (5, 126) (TM(I), I=1, NP)
      READ (5, 126) (VAR (I), I=1, NP)
  126 FORMAT (6E12.5,8X)
  113 DO 127 I=1,NP
      RATE(I) = COUNTS(I) - BACKGR
      RAVAR (I) = RATE (I) / VAR (I)
      DELTAT(I) = TM(I)
  127 CONTINUE
      DO 128 I=2, NP
  128 TM(I) = TM(I) - TM(1)
      TO=TM(1)
      TM(1) = 0.0
  129 DO 130 I=1, NCCMP
      IF (HALFL(I)) 220,230,220
 230 LAMBDA(I) = 0.0
      GO TO 130
```

```
220 LAMBDA(I) = ABS (HALFL(I))
130 CONTINUE
     IF (NCOMP-1) 107,107,108
108 \text{ XN} = 0.0
     IWRIT=1
    CALL SMFIT1
     FIT 1 = FIT 2
     DO 131 I=1, NCOMP
     X(I) = LAMBDA(I)
    IF (HALFL(I)) 132,136,136
132 XX=LAMBDA (I) *0.05
    LAMBDA(I) = LAMBDA(I) + XX
    CALL SMFIT1
    IF (FIT2-FIT1) 133,134,134
134 LAMBDA (I) = LAMBDA (I) -2.0 \times XX
    CALL SMFIT1
    IF (FIT2-FIT1) 133,136,136
133 DFIT(I)=FIT1-FIT2
    GO TO 135
136 DFIT(I) = XN - 1.0
135 LAMBDA (I) = X (I)
131 CONTINUE
    DO 140 I=1, NCOMP
    K = NCOMP - 1
    DO 140 J=1,K
    IF (DFIT(J) - DFIT(J+1)) 141, 140, 140
141 SWAP=DFIT(J)
    DFIT(J) = DFIT(J+1)
    DFIT(J+1) = SWAP
    SWAP=LAMBDA (J)
    LAMBDA (J) = LAMBDA (J+1)
    LAMBDA (J+1) = SWAP
    SWAP = HALFL(J)
    HALFL(J) = HALFL(J+1)
    HALFL (J+1) = SWAP
140 CONTINUE
107 IWRIT=0
    NSTEPS=0
    DO 142 I=1, NCOMP
    IF (HALFL(I)) 143,144,144
143 SSIZE (I) = 0.05 \times LAMBDA (I)
    NVAR = NVAR + 1
    GO TO 142
144 SSIZE (I) =0.0
142 CONTINUE
145 RETURN
    END
    SUBROUTINE FIT
```

C C

```
SUBROUTINE SMFIT1
      DIMENSION TM (1000), P (1000, 10), V (10), RATE (1000),
     1A0(10), ACALC(1000), DIFF(1000), HL(10), IDENT(20),
     2YLAB(5), GLAB(5), DATLAB(5), COUNTS(1000), DELTAT(1000),
     3HALFL (10), RAVAR (1000), CC (10, 10), PAR (10), WDIFF (1000),
     4XLAB(5), SSIZE(10), VAR(1000), C(10, 10)
      REAL LAMBDA (10)
     INTEGER DF
     COMMON NSTEPS, NCOMP, FIT2, IFIRST, SSIZE, LAMBDA, ORFIT,
     1IDENT, TM, RATE, VAR, XLAB, YLAB, GLAB, DATLAB, IPLOT, CCUNIS,
    2ACALC, DIFF, DF, HL, AO, C, P, WDIFF, KS, DEADT, BACKGR, SIGMAB,
    3RAVAR, IWRIT, FIT1, NVAR, DELTAT, NP, HALFL, TO
      NSTEPS=NSTEPS+1
      IF (NSTEPS-1) 700,701,700
 701 DO 702 I=1, NCOMP
 702 PAR (I) = 1.0E60
 700 DO 2031 J=1, NCOMP
     IF (PAR (J) - LAMBDA (J)) 300,2031,300
 300 DO 203 I=1,NP
     DECAYF = -LAMBDA(J) *TM(I)
     IF (ABS (DECAYF) -50.0) 202,201,20%
 201 P(I,J) = 0.0
     GO TO 203
 202 P(I,J) = EXP(DECAYF)
 203 CONTINUE
2031 CONTINUE
     DO 204 I=1, NCOMP
     IF (PAR (I)-LAMBDA (I)) 320,204,320
 320 V(I) = 0.0
     DO 204 K=1, NP
     V(I) = V(I) + P(K, I) * RAVAR(K)
 204 CONTINUE
     DO 2051 I=1, NCOMP
     DO 2051 J=1, NCOMP
     IF (PAR(I)-LAMBDA(I)) 2205,2206,2205
2206 IF (PAR (J)-LAMBDA (J)) 2205,2207,2205
2207 C(I,J) = CC(I,J)
     GO TO 2051
2205 C(I_J) = 0.0
     DO 205 K=1, NP
     C(I,J) = C(I,J) + P(K,I) * P(K,J) / VAR(K)
 205 CC (I,J) = C (I,J)
2051 CONTINUE
     DO 2500 I=1, NCOMP
2500 PAR (I) = LAMBDA (I)
     CALL SMATNV (C, NCOMP, DETERM)
     DO 206 I=1, NCCMP
     A0 (I) = 0.0
     DO 206 J=1, NCOMP
206 A0 (I) = A0 (I) + C (I, J) * V (J)
```

```
RS=0.0
       DO 208 I=1, NP
       ACALC (I) = 0.0
       DO 207 J=1, NCOMP
   207 ACALC(I) = ACALC(I) + P(I, J) * AO(J)
       DIFF(I) = RATE(I) - ACALC(I)
       RS=RS+DIFF(I) **2/VAR(I)
  208 CONTINUE
       DF = NP - NCOMP
       XDF = DF
       FIT2=SQRT (RS/XDF)
  IF (IWRIT) 217,751,217
751 DO 211 I=1,NCOMP
       IF (LAMBDA(I)) 210,209,210
  209 HL(I) = 0.0
       GO TO 211
  210 HL(I) =LAMBDA(I)
  211 CONTINUE
       IF (NSTEPS-1) 215,212,215
  212 IF (IFIRST) 213,217,213
  213 WRITE (6, 21/i) (I, I=1, NCOMP)
  214 FORMAT (1H1,5H STEP,6X,3HFIT,9X,9(1H-,I1,1H-,8X),1H-,
      1I2, 1H - / 1H0)
  215 WRITE (6,216) NSTEPS, FIT2, (HL(I), I=1, NCOMP)
  216 FORMAT (15, F13. 6, 9F11.4, F12.4)
  217 RETURN
       END
С
С
       SUBROUTINE MATINV
С
       SUBROUTINE SMATNV (A, N, DETERM)
       DIMENSION A (10, 10), PIVOT (10), INDEX (10, 2), IPIVOT (10)
       EQUIVALENCE (IROW, JROW), (ICOLUM, JCOLUM), (AMAX, T, SWAP)
C
С
       INITIALIZATION
Ċ
       DETERM=1.0
       DO 301 J=1, N
  301 \text{ IPIVOT}(J) = 0
      DO 314 I = 1. N
С
      SEARCH FOR PIVOT ELEMENT
      AMAX=0.0
      DO 306 J = 1, N
      IF (IPIVOT(J) - 1) 302, 306, 302
  302 DO 305 K=1, N
      IF (IPIVOT(K)-1) 303,305,318
  303 IF (ABS(AMAX)-ABS(A(J,K))) 304,305,305
  304 IROW=J
```

С

ICOLUM=K AMAX=A(J,K)**305 CONTINUE 306 CONTINUE** IPIVOT (ICOLUM) = IPIVOT (ICOLUM) +1 С С INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL С IF (IROW-ICOLUM) 307,309,307 307 DETERM=-DETERM DO 308 L = 1, NSWAP=A(IROW,L) A(IROW, L) = A(ICOLUM, L)308 A (ICOLUM, L) = SWAP 309 INDEX (I, 1) = IROWINDEX (I, 2) = ICOLUMPIVOT(I) = A(ICOLUM, ICOLUM)DETERM=DETERM*PIVOT(I) С С DIVIDE PIVOT ROW BY PIVOT ELEMENT С A (ICOLUM, ICOLUM) = 1.0DO 310 L=1, N310 A(ICOLUM, L) = A(ICOLUM, L) / PIVOT(I)С С REDUCE NON-PIVOT ROWS С 311 DO 314 L1=1,N IF (L1-ICOLUM) 312,314,312 312 T=A(L1, ICOLUM)A(L1, ICOLUM) = 0.0DO 313 L=1,N 313 A(L1, L) = A(L1, L) - A(ICOLUM, L) * T314 CONTINUE С С INTERCHANGE COLUMNS С DO 317 I=1, N L=N+1-IIF (INDEX(L,1)-INDEX(L,2)) 315,317,315 315 JROW=INDEX(L, 1) JCOLUM=INDEX(L,2) DO 316 K=1, N SWAP=A(K, JROW) A(K, JROW) = A(K, JCOLUM)A (K, JCOLUM) = SWAP **316 CONTINUE 317 CONTINUE 318 RETURN** END

```
С
С
      SUBROUTINE OUTPUT
С
      SUBROUTINE SMOUT1 (ICASE)
      DIMENSION DATLAB(5), A0(10), P(1000, 10), SAZERO(10),
     1IDENT (20), SRELAT (10), WDIFF (1000), HALFL (10), HL (10),
     2DELTAT(1000), COUNTS(1000), RATE(1000), ACALC(1000),
     3XLAB(5), YLAB(5), GLAB(5), THALFL(10), TEMPHL(5),
     4SSIZE(10),TM(1000),CORR(10),DIFF(1000),VAR(1000),
     5AZERO (10) .C (10, 10)
      REAL LAMBDA (10), LOGACT (1000), LOGFC (1000)
      INTEGER DF
      COMMON NSTEPS, NCOMP, FIT2, IFIRST, SSIZE, LAMBDA, ORFIT,
     1IDENT, TM, RATE, VAR, XLAB, YLAB, GLAB, DATLAB, IPLOT, COUNTS,
     2ACALC, DIFF, DF, HL, AO, C, P, WDIFF, KS, DEADT, BACKGR, SIGMAB,
     3HALFL, TO, DELTAT, NP, FIT1, NVAR
      EQUIVALENCE (LOGACT(1), WDIFF(1)), (LOGFC(1), ACALC(1))
      DO 400 I = 1.NP
  400 TM (I) = TM (I) + TO
      DO 401 I=1, NCOMP
      CORR(I) = EXP(TO*LAMBDA(I))
      AZERO(I) = AO(I) * CORR(I)
      SAZERO (I) = SQRT(C(I,I)) * CORR(I) * FIT1
  401 SRELAT (I) = SAZERO (I) / AZERO (I) *100.0
      IPERC1=0
      IPERC2=0
      IPERC3=0
      DO 406 I=1, NP
      VAR(I) = SQRT(VAR(I))
      WDIFF(I) = DIFF(I) / VAR(I)
      IWDIFF=IABS (IFIX(WDIFF(I))) +1
      IF (ABS(WDIFF(I)) - 3.0) 402,403,403
  402 GO TO (406,404,405), IWDIFF
 403 IPERC3=IPERC3+1
      GO TO 406
 404 IPERC1=IPERC1+1
      GO TO 406
 405 IPERC2=IPERC2+1
 406 CONTINUE
      PERC1=FLOAT (IPERC1+IPERC2+IPERC3) /FLOAT (NP) *100.0
      PERC2=FLOAT (IPERC2+IPERC3)/FLOAT (NP) *100.0
      PERC3=FLOAT (IPERC3) /FLOAT (NP) *100.0
      WRITE (6, 407) (IDENT(I), I=1,20)
 407 FORMAT (1H1, 20A4)
      IF (ICASE) 408,410,414
 408 WRITE (6,409) NSTEPS
 409 FORMAT (86H THE SOLUTION IS NOT YET REACHED, OUTPUT IS
     1CALCULATED WITH THE PARAMETER VALUES AFTER, 15, 6H STEPS
     2/1H0)
```

GO TO 412

```
410 WRITE (6,411)
```

- 411 FORMAT (45H RESULTS OBTAINED WITH FINAL PARAMETER 1VALUES/1H0)
- 412 WRITE (6,413) NP, NSTEPS, NCOMP, PERC1, NVAR, DF, PERC2, 2BACKGR, SIGMAB, PERC3, DEADT, ORFIT, FIT1
- 413 FORMAT (15X,16HINPUT QUANTITIES,50X,17HOUTPUT QUANTITI 1ES//12X,23HNUMBER CF DATA POINTS =,15,56X,17HNUMBER OF 2 STEPS =,15/13X,22HNUMBER OF COMPONENTS =,15,23X,50HPE 3RCENTAGE OF POINTS DEVIATING MORE THAN 1 SIGMA =,F8.2/ 44X,31HNUMBER OF VARIABLE DECAY CONS =,15,34X,28H(THFOR 5ETICAL VALUE = 31.74) /15X,20HDEGREES OF FREEDOM =,15 6,23X,50HPERCENTAGE OF POINTS DEVIATING MORE THAN 2 SIG 7MA =,F8.2/7X,28HBACKGROUND (COUNTS/MINUTE) =,F9.1,30X, 828H(THEORETICAL VALUE = 4.56)/1H,34HSIGMA BACKGRCUN 9D (COUNTS/MINUTE) =,F7.1,21X,50HPERCENTAGE OF POINTS D 8EVIATING MORE THAN 3 SIGMA =,F8.2/8X,27HDEAD TIME (MIC 7RO SECONDS) =,F7.1,32X,29H(THEORETICAL VALUE = 0.26) 6//21X,14HORIGINAL FIT =,F14.6,53X,11HFINAL FIT =,F14.6 5//1H0)
- IF (ICASE) 445,548,417
- 445 WRITE (6,447)
- 447 FORMAT (1H0/58X,17H*****WARNING****/51X,30H****CHECK 1 YOUR ESTIMATES****/1H0/1H0)
 - GO TO 448
- 548 NEG=0 DO 442 I=1, NCOMP
 - IF (AZERO(I)) 443,443,442
- 443 NEG=1
- 442 CONTINUE
 - IF (NEG-1) 438,460,460
- 460 WRITE (6,444)
- 444 FORMAT (1H0/58X,17H****WARNING****/38X,56H****THE N 1UMBER OF COMPONENTS IS PROBABLY TOO LARGE****/1H0) GO TO 448
- 438 IF (FIT2-2.0) 448,439,439
- 439 WRITE (6,440)
- 440 FORMAT (1H0/58X,17H****WARNING****/38X,56H****THE N 1UMBER OF COMPONENTS IS PROBABLY TOO SMALL****/1H0) GO TO 448
- 414 WRITE (6,415)
- 415 FORMAT (48H RESULTS OBTAINED WITH ORIGINAL PARAMETER 1VALUES/1H0)
 - DO 416 I=1, NCOMP
 - TEMPHL(I) = HL(I)
 - THALFL(I) = HALFL(I)
 - HALFL(I) = ABS(HALFL(I))

416 HL (I) =0.0 FIT1=FIT2 NV=NVAR NVAR=0

```
ORFIT=0.0
     GO TO 412
417 IF (NV) 448,449,448
449 IF (FIT1-2.0) 448,450,450
450 WRITE (6,447)
448 IF (ICASE) 420,420,418
418 NVAR=NV
420 WRITE (6,421)
421 FORMAT (1H0,22X,9HCOMPONENT,8X,8HORIGINAL,9X,5HFINAL,9
    1X,8HACTIVITY,9X,5HSIGMA,9X,5HSIGMA/39X,9HDECAY CON,7X,
    29HDECAY CON,8X,6HAT EOB,8X,8HABSOLUTE,7X,8HRELATIVE//)
     WRITE (6,422) (I, HALFL(I), HL(I), AZERO(I), SAZERO(I),
    1SRELAT(I), I = 1, NCOMP)
422 FORMAT (22X, 15, F21, 4, F16, 4, F16, 3, F14, 3, F13, 3)
     WRITE (6,423)
423 FORMAT (1H0///1H0)
424 WRITE (6,425)
425 FORMAT (8X, 7HMIDTIME, 7X, 4HTIME, 10X, 8HORIGINAL, 8X, 9HCO
    1RRECTED, 8X, 5HSIGMA, 8X, 10HCALCULATED, 9X, 8HABSOLUTE, 11X,
   210HDIFFERENCE/9X, 5HCOUNT, 6X, 8HINTERVAL, 10X, 4HDATA, 13X,
   34HRATE, 11X, 4HRATE, 11X, 4HRATE, 11X, 10HDIFFERENCE, 8X, 13H (
   4SIGMA UNITS)/1HO)
    WRITE (6,426) (I, TM (I), DELTAT (I), COUNTS (I), RATE (I),
    1VAR(I), ACALC(I), DIFF(I), WDIFF(I), I=1, NP)
426 FORMAT (14, F10.6, F12.6, F18.1, F17.1, F14.1, F16.1,
   1F18.1,F18.3)
427 DO 428 I=1, NP
428 VAR (I) = VAR (I) **2
    IF (IPLOT) 429,432,431
429 DO 430 I=1, NP
    IF (RATE(I)) 461,461,462
461 RATE(I)=1.0
462 LOGACT (I) = ALOG10 (RATE (I))
    IF (ACALC(I)) 463,463,464
463 \text{ ACALC}(I) = 1.0
464 LOGFC (I) = ALOG 10 (ACALC (I))
430 CONTINUE
    CALL ORIGIN (11.0,0.0,1)
    CALL GRAPH (NP, TM, LOGACT, 3, 7, 9., -7., 0, 0, 0, 0, XLAB, YLAB,
   1GLAB, DATLAB)
    CALL GRAPH (NP, TM, LOGFC, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)
    GO TO 432
431 CALL ORIGIN (11.0,0.0,1)
    CALL GRAPH (NP, TM, RATE, 3, 7, 9, 7, 0, 0, 0, 0, XLAB, YLAB,
   1GLAB, DATLAB)
    CALL GRAPH (NP, TM, ACALC, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
432 IF (ICASE) 437,437,433
433 DO 419 I=1, NCOMP
    HL(I) = TEMPHL(I)
419 HALFL(I) = THALFL(I)
```

```
IF (NVAR) 434,437,434

434 WRITE (6,435) (I,I=1,NCOMP)

435 FORMAT (1H1,5H STEP,6X,3HFIT,9X,9(1H-,I1,1H-,8X),1H-,

112,1H-/1H0)

WRITE (6,436) NSTEFS,FIT2,(HL(I),I=1,NCOMP)

436 FORMAT (I5,F13.6,9F11.4,F12.4)

437 DO 446 I=1,NP

446 TM(I)=TM(I)-TO

RETURN

END
```

APPENDIX 3: GENPLOT

GENPLOT, a utility program for the generation of plots of general data, is a combination of a WYLBUR execute file and a PL/1 program. The execute file requests input information and data from the operator. The PL/1 program accesses Simplotter with CALL GRAPH and CALL GRAPHS statements. Logarithmic or linear plots can be generated. Several data sets can be plotted on the same graph and several graphs can be plotted at one time.

GENPLOT was used to plot calibration curves, decay curves, current, voltage and time relationships and other general data. The program was written to plot general data sets with many options of Simplotter available. Increased use of GENPLOT for examination of data trends and shapes of curves should be encouraged. The listing of the program follows on subsequent pages.

10 SET EXEC NOL TERSE 20 SET ESC : 25 CLR TEXT COPY 700/761 EXEC TO 1 30 40 REA VAL NO PRO 'NUMBER OF GRAPHS ? 1 50 CH *### TO *:NO* N 55 SET VAL WO=100 SET VAL N1=0 60 SET VAL N1=N1+1 70 63 IF (N1 GT NO) EXEC 550 90 REA VAL N2 PRO 'NUMBER OF PLOTS ON GRAPH :N1 ? 100 :WO :N2 101 SET VAL WO=WO+1 SET VAL N3=0 110 130 REA STR SO PRO 'X-AXIS LABEL ? . 140 :W0 ':S0' 145 SET VAL WO=WO+1 REA STR SO PRO 'Y-AXIS LABEL ? 150 I 160 :WO ':SO' SET VAL WO-WO+1 165 170 REA STR SO PRO 'GRAPH LABEL ? 180 :W0 ':SO' 181 SET VAL WO=WO+1 REA STR SO PRO 'LIN=LINEAR CR LOG=LOGARITHMIC FLOT ? ' 182 183 : 10 :: 50 190 SET VAL WO=WO+1 200 SET VAL N3=N3+1 2 10 IF (N3 GT N2) EXEC 70 220 REA VAL N4 PRO 'HOW MANY POINTS IN FLOT :N3 ? 230 REA VAL N5 PRO 'ENTER A NUMBER BETWEEN 1-13 ! 240 SET VAL SO=N4]] ' 11N5 250 :W0 :S0 SET VAL WO=WO+1 260 SET VAL N5=0 270 274 COMM ENTER X VALUES ONE AT A TIME 275 SET VAL S1=" 280 SET VAL N5=N5+1 285 IF (N5 GT N4) EXEC 340 300 REA STR SO PRO "X(:N5) = " 310 SET VAL S1=S111' '11S0 320 IF (SIZE(S1) LE 60) EXEC 280 330 EXEC 500 SAVE IF (N5 EQ N4) EXEC 360 333 335 **EXEC 275** 340 :W0 :S1 350 SET VAL WO=WO+1 360 SET VAL N5=0 364 COMM ENTER Y VALUES ONE AT A TIME 365 SET VAL S1="" 370 SET VAL N5=N5+1

```
375
       IF (N5 GT N4) EXEC 430
 390
       REA STR SO PRO Y(:N5) = 
400
       SET VAL S1=S111' '11S0
4 10
       IF (SIZE(S1) LE 60) EXEC 370
420
       EXEC 500 SAVE
423
       IF (N5 EQ N4) EXEC 450
425
       EXEC 365
430
       :W0 :S1
440
       SET VAL WO=WO+1
450
       REA STR SO PRO 'DATA LABEL ?
460
       :WO ':SQ'
470
       SET VAL WO=WO+1
480
       EXEC 200
500
       :W0 :S1
      SET VAL WO=WO+1
510
520
       EXEC RETURN
550
      COMM TO PLOT DATA TYPE EXEC NEXT
560
      EXEC PAUSE
570
      COPY 800/805 EXEC TO L+1
600
      RUN UNN
610
      EXEC PAUSE
700
      //A411GJO JOB A0099,GJO,TIME=(,29)
701
      //S1 EXEC PL1LFCG, PARM.PL1L='A, X, NEST', REGION.GC=128K
702
      //PL1L.SYSIN DD *
703
       PLOT: PROC OPTIONS (MAIN):
704
       DCL GRAPH ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT, FIXED
705
       BIN, FIXED BIN, FLOAT, FLOAT, FLOAT, FLOAT, FLOAT, FLOAT,
706
       CHAR (20), CHAR (20), CHAR (20), CHAR (20));
707
       DCL GRAPHS ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT, FIXED
708
       BIN, FIXED BIN, CHAR (20));
709
       DCL LETTRS ENTRY (FLOAT, FLOAT, FLOAT, CHAR (80), FLOAT,
709.5
       FIXED BIN);
7 10
       DCL ORIGIN ENTRY (FLOAT, FLOAT, FIXED BIN);
711
       DCL (XLAB, YLAB, GLAB, DATLAB) CHAR (20) VARYING:
712
       DCL (STRING) CHAR (3);
713
       CALL ORIGIN (0.0, 3.0, 1);
714
       DO I=1 TO ###:
       CALL ORIGIN (8.5,0.0,1);
715
716
       CALL ORIGIN (1.0,-1.5,6):
717
       GET LIST (IPLOT);
718
       GET LIST (XLAB, YLAB, GLAB);
719
       GET LIST (STRING);
       GET LIST (NPOINTS, ISYM);
720
721
       PLOT1: BEGIN:
722
       DCL (X(NPOINTS), Y(NPOINTS)) FLOAT:
723
       GET LIST (X):
724
       GET LIST (Y);
       GET LIST (DATLAB);
725
726
       IF STRING= LOG THEN DO:
727
       X = LOG10(X);
```

```
728
        Y = LOG10(Y);
729
        END:
        IF STRING='LOG' THEN DO;
730
731
        I5=-5:
732
        XYSF=0.5:
733
        END;
734
       ELSE DO:
735
       I5=5:
736
       XYSF=0.0;
737
       END;
738
       CALL GRAPH (NPOINTS, X, Y, ISYM, 7, 15, 15, XYSF, 0.0, XYSF,
739
       0.0,';',';',';',DATLAB);
740
       CALL LETTRS (0.0, 5.5, 0.2, GLAB, 0.0, 80);
       CALL LETTRS ((5-(LENGTH (XLAB)/5))/2,-1.0,0.2,XLAB,
741
741.5
       0.0,20);
742
       CALL LETTRS (-1.0, (5- (LENGTH (YLAB) /5)) /2,0.2, YLAB,
742.5
       90.0.20):
743
       END PLOT1:
744
       IF IPLOTS=1 THEN GO TO STOP;
745
       DO J=2 TO IPLOT;
746
       GET LIST (NPOINTS, ISYM);
747
       PLOTS: BEGIN;
       DCL (X(NPOINTS), Y(NPOINTS)) FLOAT;
748
749
       GET LIST (X);
750
       GET LIST (Y):
751
       GET LIST (DATLAB);
752
       IF STRING="LOG" THEN DO;
753
       X = LOG10(X);
754
       Y = LOG10(Y);
755
       END:
756
       CALL GRAPHS (NPOINTS, X, Y, ISYM, 107, DATLAB);
757
       END PLOTS:
758
       END:
759
       END:
760
       STOP: END PLOT:
761
      //GO.SYSIN DD *
800
      //GO.FT14F001 DD DSN=&SM,UNIT=SCRTCH,DISP=(NEW,PASS),
      // SPACE=(800, (120,15)), DCB=(RECFM=VS, LRECL=796,
801
802
      // BLKSIZE=800)
      /*
803
804
      //SMPLTTR EXEC PLOT, PLOTTER=INCRMNTL, FORM=W
805
      /*
806
      11
```

•

APPENDIX 4: TRSGJO

TRSGJO is an assembly language program which runs on the PLP8/E minicomputer. TRSGJO controls the x-ray pulse generation, data acquisition and format of the paper tape data set of the pulsed XEOL system. The assembly language program is composed of several subroutines. Many of the subroutines are utilities for accepting input from the keyboard or paper tape reader, generating output on the teletype or paper tape punch or performing simple numerical operations. The subroutines which contain interface instructions control the x-ray supply or gated integrator. The program, in compiled form, appears on the following pages.

	/ TRSGJC / OESIRI) SICH 5-20-77	
0000	FIELD 0		
0000	*0		
0020	*20		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CNTR 1, CNTR 2, ISTORE, P, PASSES, SUM2, NUMWAV, DELTIM, PUN1, RUNCNT, LUMIN, DATPOT, RANGE, N, SUM, DELRAN, TEMPST,	HLT 0 3777 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0C043 0000 0C044 0000	CNT1, CNT2,	0	
00045 0000 00046 0000	HIGH, LOW,	0 0	
0200	*200		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	START, RESET, PASS,	CLA CLL TLS JMS I DATTIM JMS I RESET1 JMS SET1 JMS I PREP TAD LUMIN SNA CLA JMS BCMB2 JMS BOMB JMS I SUMDAT JMS I SUMSQR ISZ P	<pre>/CLEAR LINK & LINK /RAISE TTY PRINT FLAG /INPUT DATE & TIME /RESET ROUTINE /SET WORKING VARIABLES /ROTOR ON & ENABLE /XRAYS FAST /X-RAYS FAST /X-RAYS SLOW /SUM SQUARES /TEST PASS COUNT</pre>
00215 5204		JMP PASS	-

0C216	4572		JMS I DATOUT	
0C217	7200		CLA	
00220	1377		TAD (MSG15-1	ANOTHER RUN ?
0C221	3017		DCA 17	
00222	4571		JMS I MESAGE	
00223	4570		JMS I NUMGET	/GET ANSWER
00224	7640		SZA CLA	•
00225	5203		JMP RESET	
00226	4567		JMS I ENDFIL	
00227	4566		JMS I CRLF	
00230	7402		HLT	
00231	0000	SET1,	0	/SET WORKING VARIABLES
00232	7200		CLA	,
00233	1023		TAD ISTORE	/SET STORAGE POINTER
0C234	3010		DCA 10	,
00235	10.33		TAD LUMIN	ZFAST OR SLOW
00236	7650		SNA CLA	
00237	5251		JMP POINTS	ZFAST, GO BOMB
00240	7340		CLA CLL CMA	INDER SET OTHERS
00241	1034		TAD DATFOT	
0(242	3037		DCA SIIM	John Lordi Coodilla
00242	7340		CLA CLL CMA	
00240	1010			
00244	3010			
00245	1034			
00240	30.26		DCA SUM2	JUNIA MELLINDINCE
00247	5631		IMD T SPT1	
00250	1027	DOINTS		
00251	3026			
00253	5631		IMP T SET1	
00255	5051			
00254	0000	BOMB -	0	ZBCMB ROUTINE
00255	6337	2-12/	CSTART	CONTROLLER STARTS
00256	1027		TAD NIMWAV	/# OF WAVES
00257	3036		DCA N	
00260	6331		CREADY	COMPUTER READY
00261	6332		NOW	ZERO CROSSING OF WAVE
00262	5261		JMP 1	
00263	6333	MULTT	XON	ATURN YRAY ON
00264	7346	NOTIT.	CLA CLL CMA RTL	JIONG ANAL ON
00265	4565		IMS T DEL	15 USEC * AC DELAV
00266	6332		NOW	INDICATES Y-PAV OFF
00267	5266		JMP -1	VERDECTING A MAI OFF
00270	6334		XOFF	ANDLDS Y-RAVS OFF
0(271	7346		CLA CLL CMA RTI	THORE A MALO OFF
00272	4565		JMS I DEL	15 USEC * AC DELAY
00273	2036		ISZ N	ANOTHER WAVE ?
00274	5263		JMP MULTI	YES, REPEAT PROCESS
00275	6336		CWAIT	/NO. RESET NOW PULSE

0C276 00277 00300 0C301 0C302 00303	6344 6342 1030 4565 4564 5654		XDABLE ROTROF TAD DELTIM JMS I DEL JMS I DATA JMP I BOMB	/XRAY DISABLE /TURN ROTOR OFF /TRANSIENT DELAY /5 USEC * AC DELAY /COLLECT DATA
00304 0C305 00306 00307 00310 0C311 00312	0000 6337 1027 3036 6331 6332 5311	BOMB2,	O CSTART TAD NUMWAV DCA N CREADY NOW JMP1	/BCMB ROUTINE FAST /CONTROLLER START /COMPUTER READY
00313 00314 0C315 00316 0C317 0C320	6333 1376 4565 6345 6332 5317	MULT,	XON TAD (-1440 JMS I DEL STBOX NOW JMP1	TURN XRAY ON /5 USEC * AC DELAY /START INTEGRATOR
00322 00323 00324 00325 00325 00326 00327 00330 00331	6334 1376 4565 6455 7346 4565 6354 6346 3410		TAD (-1440 JMS I DEL STATOD CLA CLL CMA F JMS I DEL GETDAT INBOX DCA I 10	/5 USEC * AC DELAY /START A TO D TL /5 USEC * AC DELAY /GET DATA POINT /RESET INTEGRATOR
00332 00333 00334 00335 00336 00337 00340 00342 00342 00344 00344	6332 5332 7346 4565 2036 5313 6336 6344 6342 2304 5704		NOW JMP1 CLA CLL CMA F JMS I DEL ISZ N JMP MULT CWAIT XDABLE ROTROF ISZ BOMB2 JMP I BOMB2	TL /5 USEC * AC DELAY /MORE WAVES ? /YES, BOMB /NO, RESET /DISABLE XRAY /TURN ROTOR OFF
0C376 00377	6340 3206 0400	* 400		
00400 0C401 00402 0C403	0000 7300 1241 3240	MESAGE, ENT10,	O CLA CLL TAD LIT1 DCA BYTCNT	/MESSAGE ROUTINE

0C404	1417		TAD I 17	
00405	3246		DCA STOR1	
00406	1246		TAD STOR1	
00407	7002		BSW	/BYTE SWAP
00410	0242	ENT11.	AND LIT2	/CHECK FOR TERMINATOR
00411	7440		SZA	ZERO IN AC ?
00412	5214		JMP +2	NO: CONTINUE
00413	5600		JMP I MESAGE	YES: END MESSAGE
00410	1243		TAD LIT3	• = = · · •
00414	7500		SMA	
00415	5221		JMP .+3	
00410	1244		TAD LTT4	
00410	5222		JMP +2	
00420	1245		TAD LTT5	
00421	3243		DCA STOR2	
00422	1247		TAD STOR2	/CHECK FOR CRLF
00423	1250		TAD MDOLAR	,
00424	7640		SZA CLA	IS THE CHARACTER A \$
00425	5231		JMP -+3	/NO: PRINT IT
00420	1566		JMS T CRLF	VES: CRLF
00427	5233		JMD +3	/
00430	1217		TAD 57082	
00431	1247		INS T TYPETT	
00432	22110		TSZ BVTCNT	/GFT NEXT CHARACTER
00433	5236		IND +2	/012
00434	5201		ΜΕ ΈΝΤΙ Ω	
00435	12/16			
00430	5210			
00437	0000	<u>ወ</u> የ መረግ እነ መ		
00440	7776		0 7776	
00441	0077	1 TOO	0077	
00442	77/15	LLIZ , ITT2	7745	
00443	1140	1113 <i>8</i> 1113	1142	
00444	0333	1114 <i>8</i>	0333	
00445	0233		0233	
00440	0000	STOR 1	0	
00447	7520	SIONZ,	-24/1	
00450	1034	upor at ,	-244	
00051	0000	NUMCED	0	ANO INTERPRETER ROUTINE
00431	7200	aona tr		And Therefore and the root of the
00452	1300		DCA DIGING	
00433	1220			
06454	1324		DCA DIGLOC	
00433 00423	3010		DCA DIGEIN	
VL430 AA#57	JJ2J 11647	CENDIC	TWG T DEAD	AREAD CHARACTER
00431	4004	GEIDIG,	DCA TREAD	YEAR CHARACIDA
00400	3323 1315		DON TRUE	CHECK FOR ERASE
00401	1222		TAD NGIYCH TAD TDUL	/KEV (SLASH)
00402	7650		CIY TUTUIU	ALCHAR A SLASH ?
00403	5211		JNA CLA JNA CDA	VES · REPEAT ENTRY
VV404	JJ		ONE BRUCK	

00465	1325		TAD TE	MP	/NO: TEST FOR TERMINAL
00466	13 27		TAD RE	TURN	/RETURN CHARACTER
00467	7650		SNA CL	A	/IS IT A RETURN ?
00470	5316		JMP CL	EAR	YES: EXIT THIS ROUTINE
00471	1325		TAD TE	MD	/NO. CHECK FOR
00477	1377			260	
00472	7510		SDY (-	200	ALE CHAP C 260 2
00475	5211		JEA JMD TER	ROR	$/YES \cdot CO TO FROR$
00474	1320			TNF	VNO. SUBTRACT 9 DECIMAL
00475	77/10				ALC CHAR > 271 2
00470	5211		307 200		
00500	1225			ND	
00500	2/110		TAD IL	nr Drc Dan	NO; GEI INE CHAR
00501	3410		DCA I		THOREMENT DICIM COUNT
00502	2323		152 DI	GITS	/INCREMENT DIGIT COUNT
00503	1300		CLA CL	L	CURCE DICIM COUNT
00504	1323		TAD DI	GITS	CHECK DIGIT COUNT
00505	1370		TAD (-	4	an Tarma (U D
00506	7740		SMA SZ	A CLA	/DIGITS = 4
00507	5311		JUL EK	ROK	NO; GO TO ERROR BRANCH
00510	5257		JMP GE	TDIG	
00511	4566	ERROR	JMS I	CRLF	/CRLF
00512	1322		TAD MQ	M	/GET ?
00513	7041		CIA		
00514	4563		JMS I	TYPEIT	/PRINT THE ?
00515	5252		JMP NU	MGET+1	/DISREGARD BAD ENTRY
00516	7300	CLEAR,	CLA CL	L	
00517	4331		JMS CO	NVRT	/CONVERT TO OCTAL
00520	5651		JMP I	NUMGET	
00521	0000	MDIGIT,	0		
00522	7501	MQM,	-277		
00523	0000	DIGITS,	0		
00524	0567	DIGLOC,	5 67		
00525	0000	TEMP,	0		
00526	7521	MSLASH,	-257		
0C527	7555	RETURN,	-223		
0C530	7767	MNINE,	-11		
	0010		DIGPTR	=10	
00531	0000	CONVRT,	0		/CONVERT ASCII TO OCTAL
00532	7300		CLA CLI	L	•
00533	1323		TAD DI	GITS	/SET DIGIT COUNTER
00534	7041		CIA		
0 (5 3 5	3321		DCA MD	IGIT	
00536	1324		TAD DT	GLOC	SET POINTER
00537	3010		DCA DI	GPTR	· · · · · · · · · · · · · · · · · · ·
00540	3325		DCA TE	MP	ZERO TEMPORARY STORAGE
00541	1325	PACK -	TAD TE	MP	/LOAD PARTIAL NUMBER
00542	7106		CLL RT	L	MULTIPLY BY 10
00543	1325		TAD TE	MP	,
00544	7004		RAL		

00545 0C546 0C547 0C550 00551 0C552 0C553 0C554 0C555	3325 1410 1377 1325 3325 2321 5341 1325 5731		DCA TEMP TAD I DIGPTR TAD (-260 TAD TEMP DCA TEMP ISZ MDIGIT JMP PACK TAD TEMP JMP I CONVRT	/ADD NEXT STORED DIGIT /SUBTRACT 260 /ADD TO PARTIAL NUMBER /STORE PARTIAL NUMBER /ALL DIGITS DONE ? /NO; GET ANOTHER /YES; GET PACKED NUMBER
	0570	*570		
0C570 00571 CC572 0C573	0000 0000 0000 0000		0 0 0 0	
0C5 7 6 0C5 7 7	7774 7520			
	0600	* 600		
00600 00601 0C602 0C603 00604 00605 0C606 00607 00610 00611 0C612	0000 7300 1600 3303 6211 1703 7700 1272 1273 1377 4563	SDPR NT,	O CLA CLL TAD I SDPRNT DCA SDGET CDF 10 TAD I SDGET SMA CLA TAD SDPLUS TAD SDMNS TAD (260 JMS I TYPEIT	/PICK UP ADDRESS OF /HIGH ORDER WORD /GET HIGH ORDER WORD /IS IT NEGATIVE ? /NO, GENERATE SPACE /YES, GENERATE MINUS /TYPE IT OUT
00613 0C614 00615 0C616 00617 0C620 00621	1703 7510 7060 3275 2303 1703 6201		TAD I SDGET SPA CMA CML DCA SDHIGH ISZ SDGET TAD I SDGET CDF 00	/GET HIGH ORDER WORD /IS IT POSITIVE ? /NO, COMPLEMENT IT /STORE POSITIVE WORD /PICK UP LOW ORDER WORD
00622 00623 0C624 00625 0C626 00627 0C630 00631 0C632	7430 7141 7430 2275 3276 1270 3274 1271 3304		SZL CMA CLL IAC SZL ISZ SDHIGH DCA SDLOW TAD SDLOOP DCA SDCNT TAD SDADDR DCA SDPTR	/IS LINK SET ? /YES, TWO'S COMPLEMENT /DID AC OVERPLOW /YES, CORRECT HIGH WORD /STORE LOW ORDER WORD /INITIALIZE COUNTER=7 /INITIALIZE POINTER TO /TABLE OF POWERS OF TEN
00633	2200		ISZ SDPRNT	/INDEX RETURN LINKAGE

00634	1704	SCARND,	TAD I SDPTR	PICK UP POWER OF TEN
00635	2304	-	ISZ SDPTR	/FOR USE IN SUBSTRACT
00636	3277		DCA SDHSUB	
CC637	1704		TAD I SDPTR	
00640	2304		ISZ SDPTR	
00641	3300		DCA SDLSUB	
00642	7100	SDDO,	CLL	/DOUBLE PRECISION
00643	1300	-	TAD SDLSUB	/SUBTRACTION
00644	1276		TAD SDLOW	
00645	3302		DCA SDTEML	
00646	7004		RAL	
00647	1277		TAD SDHSUB	
00650	1275		TAD SDHIGH	
00651	7510		SPA	/DID IT UNDERFLOW ?
00652	52 60		JMP SDOUT	/NO, COUNT IS DONE
00653	2301		ISZ SDBOX	YES, COUNT NOT DONE
00654	3275		DCA SDHIGH	/DEPOSIT HIGH ORDER
00655	1302		TAD SDTEML	PORTION RESTORE LOW
00656	3276		DCA SDLOW	/ORDER PORTION
00657	5242		JMP SDDO	/GO BACK AND SUBTRACT
00660	7200	SDOUT,	CLA	
00661	1301	-	TAD SDBOX	/PICK UP DIGIT
00662	1377		TAD (260	
00663	4563		JMS I TYPEIT	TYPE IT OUT
00664	3301		DCA SDBOX	/INITIALIZE DIGIT TO O
00665	2274		ISZ SDCNT	/HAVE WE TYPED / DIGITS
00666	5234		JMP SDARND	/NO, DETERMINE NEXT
00667	5600		JMP I SDPRNT	YES, END ROUTINE
00670	7771	SDLOOP,	-7	COUNT OF 7 DIGITS
00671	0705	SDADDR,	SDCONL	ADDRESS OF POWERS
00672	7763	SDPLUS,	-15	/ SPACE GENERATOR
00673	777 5	SDMNS,	-3	/ MINUS GENERATOR
00674	0000	SDCNT,	0	STORAGE LOCATIONS
0C675	0000	SDHIGH,	0	
00676	0000	SDLOW,	0	
0C677	0000	SDHS UB,	0	
00700	0000	SDLSUB,	0	
00701	0000	SDBOX,	0	
00702	0000	SDTEML,	0	
00703	0000	SDGET,	0	
00704	0000	SDPTR,	0	
00705	7413	SDCONL,	7413	TABLE OF POWERS OF TEN
00706	6700		6700	/-1,000,000
00707	7747		774 7	/-100,000
CC710	4540		4540	
00711	77 75		7775	/-10,000
00712	4360		4360	
00713	7777		7777	/-1,000
00714	6030		6030	
00715	7777		7777	/-100

00716	7634		7634	
	7034		7777	<i>(</i> - 10
00/1/	1111			/- 10
CC720	7766		7766	
00721	7777		7777	/-1
0C722	7777		7777	
00723	0000	SSPRNT,	0	
CC724	7100	•••••	CLL	
00725	7510		SPA	/IS IT POSITIVE ?
00726	7061		CML CMA TAC	ING. SET LINK
00720	2270		DCA SSVAL	STORE NUMBER
00727	3370		DCA SCROY	SET LOCATION TO ZERO
00730	3300			ATNETTALTZE COUNTER=4
00731	1365		TAD SSCNTR	ATUTITALIZE COONTER :
00732	3361		DCA SSCNT	THE TREE INCORDING TON
00733	1362		TAD SSADDR	/INITIALIZE INSTRUCTION
00734	3343		DCA SSXYZ+1	TC GET FIRST IU
00735	1363		TAD SSPLUS	/GET CODE TO TYPE +
00736	7430		SZL	/IS NUMBER NEGATIVE ?
00737	1364		TAD SSMNS	/YES, CHANGE CODE TC -
CC740	1377		TAD (260	
00741	4563		JMS I TYPEIT	TYPE IT OUT
00742	1370	SSXYZ,	TAD SSVAL	/PICK UP NUMBER
00743	1371	•	TAD SSCON	SUBSTRACT POWER OF TEN
00744	7510		SPA	/IS RESULT NEGATIVE ?
00745	5351		JMP .+4	YES, INDEXING FINISHED
00746	2366		ISZ SSBOX	/NO. INDEX DIGIT LOCA.
00747	3 3 70		DCA SSVAL	STORE REMAINDER SSVAL
0(750	5342		JMP SSXYZ	CONTINUE SUBSTRACTING
00751	7200		CLA	,
00757	1366		TAD SSBOX	GET THE DIGIT NUMBER
00752	1377		TAD (260	
00750	1563		INS T TVDETT	ATTAR TT OUT
00755	2266		DCA SSBOX	DIGIT COUNTER=0
00755	3300		$\frac{1}{100} \frac{1}{100} \frac{1}$	CET POWER OF TEN
00750	2343		TOA COUM	ATVERD FOUR DIGITS
00757	2301		TOT OOCNI	
00760	5342		JHP JSAIG	AND DEMIDN
00761	5/23		JMP I SSPANT	ILS, ALTOWN
00762	1371	SSADDR,	TAD SSCON	TO GET FIRST POWER
00763	7760	SSPLUS,	-20	/ SPACE GENERATOR
0 C76 4	0015	ssmns,	15	MINUS GENERATOR
00765	7774	SSCNTR,	-4	COUNT OF 4 DIGITS
00766	0000	SSBOX,	0	STORAGE REGISTERS
00767	0000	SSCNT,	0	
00770	0000	SSVAL,	0	
00771	6030	SSCON,	6030	/-1000
00772	7634	-	7634	/-100
00773	7766		7766	/- 10
CC774	7777		7777	/-1
00777	0260			

	1000	* 1000		
0 1000	0000	ENDFIL,	0	/PUNCH TRAILER
01001	7200		CLA	
01002	3031		DCA PUN1	
0 100 3	1377		TAD (204	
01004	4264		JMS TYPEIT	
01005	1376		TAD (-36	
01006	3021		DCA CNTR1	
0 1007	1375		TAD (377	
01010	4264		JMS TYPEIT	
01011	2021		ISZ CNTR1	
01012	520 7		JMP3	
01013	1374		TAD (-372	
01014	3021		DCA CNTR1	
01015	4264		JMS TYPEIT	
01016	2021		ISZ CNTR1	
01017	5215		JMP2	
01020	5600		JMP I ENDFIL	
01021	0000	DEI	0	ADEL ROUTINE
01021	2021		ע הכא כאידו 1	<i>y b 1</i> 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01022	7000		NOD	
01023	2021		NOF TS7 CNMP1	
01024	2021			
01025	5225		UNP	
01020	3021		QUE I DEL	
01027	0000	LEADER.	0	/PUNCH LEADER
01030	1374	•	TAD (-372	
01031	3021		DCA CNTR1	
01032	4264		JMS TYPEIT	
01033	2021		ISZ CNTR1	
01034	5232		JMP2	
01035	1376		TAD (-36	
01036	3021		DCA CNTR1	
0 10 37	1375		TAD (377	
01040	4264		JMS TYPEIT	
01041	2021		ISZ CNTR1	
01042	5237		JMP -3	
01043	5627		JMP I LEADER	
010##	0000	SDICE	0	ZPHNCH TWO SPACES
01044	7200	SEACE,		FLORON THO DENODD
01043	1200		ULA MID (2/10	
01040	1313		INC ULAN	
01047	4204		ONS TIRETI	
01050	13/3		THD (240 THD (240	
01051	4204		UND TIPELT	
V IV 32	JO44		JUL I STACE	

0 1053 01054 0 1055 0 1056 0 1057 0 1067 0 1061 0 1062 0 1063	0000 7200 1372 4264 1375 4264 1375 4264 5653	ENDR EC,	O CLA TAD JMS TAD JMS JMS JMP	(223 TYPEIT (377 TYPEIT (377 TYPEIT I ENDREC	/PUNCH END RECORD CHAR.
01064 01065 01066 01067 01070 01071	0000 6041 5265 6046 7300 5664	TYPEIT,	0 TSF JMP TLS CI,A JMP	1 CLL I TYPEIT	∕TTY PRINT ROUTINE
0 1072 0 1073 0 1074 0 1075 0 1075 0 1076 0 1077 0 1100	0000 7300 1371 4264 1370 4264 5672	CRLF,	O CLA TAD JMS TAD JMS JMP	CLL (215 TYPEIT (212 TYPEIT I CRLF	/CRLF ROUTINE
0 1101 0 1102 0 1103 0 1104 C 1105 0 1106 0 1107	0000 6031 5302 7300 6036 6046 5701	READ,	0 KSF JMP CLA KRB TLS JMP	1 Cll I READ	∕KEYBOARD READ ROUTINE
0 1170 0 1171 0 1172 0 1173 0 1173 0 1174 0 1175 0 1176 0 1177	0212 0215 0223 0240 7406 0377 7742 0204				
	1200	*1200			
0 1200 0 120 1 0 1202 0 1203 0 1203 0 1204 0 1205	0000 3222 6214 1220 3211 6201	DST,	O DCA RDF TAD DCA CDF	ACC KCDF CHG 00	/DOUBLE PRECISION STORE /SAVE AC /SAVE DATA FIELD /GENERATE CDF INSTRUCT.

0 1 2 0 6	1600		TAD I DST	∕GET STORAGE ADDRESS
01207	3221		DCA ARG	
0 12 10	2200		ISZ DST	SET RETURN ADDRESS
01211	0000	CHG.	0	/CHANGE DATA FIELD BACK
0 12 12	1222		TAD ACC	RECOVER AC
01213	3621		DCA I ARG	STORE HIGH ORDER WORD
01214	2221		ISZ ARG	,
01215	7701		ACL	/LOAD AC FROM MO
01216	3621		DCA I ARG	STORE LOW ORDER WORD
01217	5600		JMP I DST	
01220	6201	KCDF.	CDF	
01221	00 00	ARG,	0	
0 1222	0000	ACC,	0	
01223	0000	DCM,	0	/DOUBLE PRECISION
01224	7100		CLL	/COMPLEMENT
0 1225	7040		CMA	/SET AC TO 7777
01226	7521		SWP	
0 1227	7041		CIA	/NEGATE MQ CONTENTS
01230	7521		SWP	
01231	7430		SZL	/CHECK FOR OVERFLOW
01232	7001		IAC	
01233	5623		JMP I DCM	
01234	0000		0	ADCUBLE PRECISION ADD
01234	3222	DADe		VEAVE AC
01235	6214		DCA ACC RDF	ASAVE DATA FIFID
01230	1220			75RUD DAIR FILLD
01207	3245		DCA CHANG	
01241	6201		CDF 00	
0 1 2 4 2	16.34		TAD T DAD	GET ADDRESS OF
01243	3221		DCA ARG	STORED VALUES
01244	2234		ISZ DAD	SET RETURN ADDRESS
01245	0000	CHANG.	0	CHANGE DATA FIELD BACK
01246	1621		TAD T ARG	GET HIGH ORDER STORED
01247	3262		DCA HIGHT	VALUE AND SAVE
0 1250	2221		ISZ ARG	,
01251	7100		CLL	
0 1252	7521		SWP	/LOAD MO INTO AC
01253	1621		TAD I ARG	/GET LOW ORDER STORED
01254	7521		SWP	/LOW ORDER SUM IN MC
01255	7430		SZL	WAS THERE A CARRY ?
01256	7101		IAC CLL	YES, INCREMENT AC
01257	1222		TAD ACC	/NO, ADD HIGH ORDER
01260	1262		TAD HIGHT	
01261	5634		JMP I DAD	/ R ET U R N
01262	0000	HIGHT,	0	-
04060	0000	OUND 1 T	0	
01203	7200	SUMDAT,		/SUM DATA
01204	1200		CLA	

01265	1023		TAD	ISTORE	/FIND DATA
0 1266	3010		DCA	10	
01267	3306		DC A	MSHPNT	/SET MSH POINTER
01270	3310		DC A	MSHPNT+2	
01271	1026		TAD	SUM2	
0 1272	3021		DCA	CNTR 1	/DATA COUNTER
01273	7621	SUML OP,	CAM		
01274	1410	-	TAD	I 10	/GET FIRST VALUE
01275	7500		SMA		/IS IT NEGATIVE ?
01276	5303		JMP	ADD 1	/NO, ADD IT
0 1277	7041		CIA		YES, MAKE IT POSITIVE
01300	7521		SWP		/PUT IN MQ
01301	4223		JMS	DCM	∕MAKE IT NEGATIVE
01302	7410		SKP		
01303	7521	ADD1.	SWP		/PUT IN MQ
01304	6211		CDF	10	
01305	4234		JMS	DAD	/DCUBLE PRECISION ADD
01306	0000	MSHPNT.	0		·
01307	4200		JMS	DST	/DCUBLE PRECISION STOPE
01310	0000	DUMMY.	0		•
01311	6201	2	CDF	00	
01312	2306		ISZ	MSHPNT	/SET NEW ADDRESS
01313	2306		TSZ	MSHPNT	•
01314	2310		TSZ	MSHPNT+2	
01314	2310		TSZ	MSHPNT+2	
01315	2021		TSZ	CNTR 1	/ALL DATA SUMMED ?
01310	5273		TMD	SUMLUP	NO. NEXT VALUE
01317	7300		CLA	CLL	YES, DELAY
01320	1033		TAD	LUMTN	DELAY TEST
01321	7650		SNA	CLA	/FAST OR SLOW ?
01322	5347		TMP	STDEL	/FAST, DELAY
01323	10 35		TAD	RANGE	SLOW. TEST
01225	70/11		CTA	NAMO D	
01222	7041				
0 1320	7001		SNA		/10 MSEC RANGE ?
0 1327	5210		TMD	ጥፑናጥአ	VES. TEST TWO
01330	7001		TNC	TESTR	INO. 100 MSEC RANGE ?
0 1 2 2 1	7001		C7X	CT 3	
0 1332	7040				INC. FORGET DELAY
01333	1030		ULLE MND	T SOUDAT	VES. TEST THO
01334	1034		CTN	DATEOL	/10/1002 100
01335	7041			17/100	
01336	03//		AND	(7400	
01337	1640		54A	СБА Т симпуш	
01340	2003			T DOUDAL	
01341	2341	m 13 cm 3		21050 21050	
01342	1034	TESTA,	TAD	DATEOT	
01343	7041			1000	
01344	0.376		AND	(4000	
01345	7640		SZA		
01346	5663		NUD	I SUMDAT	

01347 01350	1375 3022	STDEL,	TAD DCA	(- 3720 CNTR2	STANDARD DELAY
01351	1375	DELMIN,	TAD	(-3720	
01352	4565		JMS	I DEL	/5 USEC * AC DELAY
01353	2022		ISZ	CNTR2	
01354	5351		JMP	DELMIN	
01355	5663		JMP	I SUMDAT	/END
01375	4060				
01376	4000				
01377	7400				
	1400	*1400			
01400	0000	DATOUT,	0		/PUNCH GENERAL DATA
01401	7200		CLA		
01402	1031		TA D	PUN 1	
01403	7650		SNA	CLA	
01404	45 6 1		JMS	I LEADER	/PUNCH LEADER
01405	2031		ISZ	PUN1	
01406	4566		JMS	I CRLF	
01407	4560		JMS	I ENDREC	
01410	1377		TAD	(-6	
01411	3021		DCA	CNTR1	
01412	1376		TAD	(PNTDAT	
01413	3013		DC A	13	
0 14 14	1413		TAD	I 13	
01415	4563		JMS	I TYPEIT	
01416	2021		ISZ	CNTR 1	
01417	5214		JMP	3	
01420	45 57		JMS	I SPACE	
01421	1413		TAD	I 13	
01422	1413		TAD	I 13	
01423	7200		CLA		
01424	1375		TAD	(-4	
01425	3021		DCA	CNTR1	
01426	1413		TAD	I 13	
01427	4563		JMS	I TYPEIT	
01430	2021		ISZ	CNTR1	
01431	5226		JMP	3	
01432	4557		JMS	I SPACE	
01433	1032		TAD	RUNCNT	
01434	4556		JMS	I SSPRNT	
01435	455 7		JMS	I SPACE	
01436	1027		TAD	NUMWAV	
01437	7041		CIA		
01440	4556		JMS	I SSPRNT	
014 41	455 7		JMS	I SPACE	
01442	1025		TAD	PASSES	
01443	7041		CIA		

01444	4556		JMS	Ι	SSPRNT			
01445	4557		JMS	I	SPACE			
01446	1026		TAD	SU	M2			
0 1447	7041		CIA					
01450	4556		JMS	I	SSPRNT			
01451	4557		JMS	I	SPACE			
01452	1033		TAD	ΓŪ	IMIN			
01453	4556		JMS	I	SSPRNT			
01454	4557		JMS	I	SPACE			
01455	1033		TAD	LU	IMIN			
01456	76 50		SNA	CI	A			
01457	5267		JMP	C 0	NTIN			
01460	1030		TAD	DE	LTIM			
0 1461	7041		CIA					
01462	4556		JMS	Ι	SSPRNT			
01463	4557		JMS	I	SPACE			
01464	1035		TAD	RA	NGE			
01465	4556		JMS	Ι	SSPRNT			
01466	4557		JMS	I	SPACE			
01467	4566	CONTIN	JMS	I	CRLF			
01470	4560	•	JMS	Ι	ENDREC			
01471	4555		JMS	I	PUNCH			
01472	4554		JMS	I	PUNSOR			
01473	5600		JMP	I	DATOUT	/END		
••••						·		
			-					0000000
01474	0000	PUNCH,	0			/SOMMED	DATA	OUTPUT
01474 C1475	0000 7200	PUNCH,	0 CLA			/SUMMED	DATA	OUTPUT
01474 C1475 01476	0000 7200 3305	PUNCH,	0 CLA DCA	AD	R	/SOMMED	DATA	OUTPUT
01474 01475 01476 01477	0000 7200 3305 1026	PUNCH,	O CLA DCA TAD	AD Su	DR IM2	/SOMMED	DATA	OUTPUT
01474 01475 01476 01477 01500	0000 7200 3305 1026 3021	PUNCH,	O CLA DCA TAD DCA	AD Su CN)R 1M2 1TR 1	/SOMMED	DATA	OUTPUT
01474 01475 01476 01477 01500 01501	0000 7209 3305 1026 3021 1374	PUNCH,	O CLA DCA TAD DCA TAD	AD Su Cn (-	DR IM2 ITR1 •7	/SOMMED	DATA	OUTPUT
01474 C1475 01476 01477 01500 01501 01502	0000 7200 3305 1026 3021 1374 3022	PUNCH, LOP,	O CLA DCA TAD DCA TAD DCA	AD SU CN (CN	DR IM2 ITR1 -7 ITR2	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503	0000 7209 3305 1026 3021 1374 3022 7200	PUNCH, LOP, INLOP,	O CLA DCA TAD DCA TAD DCA CLA	AD Su Cn (- Cn	DR 1M2 1TR1 -7 1TR2	/SOMMED	DATA	OUTPUT
01474 C1475 01476 01477 01500 01501 01502 01503 01504	0000 7209 3305 1026 3021 1374 3022 7200 4553	PUNCH, LOP, INLOP,	O CLA DCA TAD DCA TAD DCA CLA JMS	AD SU CN (- CN I	DR IM2 ITR1 -7 ITR2 SDPRNT	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS O	AD SU CN (~ CN I	DR IM2 ITR1 7 ITR2 SDPRNT	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS O JMS	AD SU CN (- CN I I	DR IM2 ITR1 7 ITR2 SDPRNT SPACE	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS O JMS ISZ	AD SU CN (- CN I I AD	DR M2 TR1 7 TR2 SDPRNT SPACE DR	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS O JMS ISZ ISZ	AD SU CN (~ CN I I AD AD	DR IM2 ITR1 7 ITR2 SDPRNT SPACE DR DR	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01511	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2021	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS O JMS ISZ ISZ	AD SUCN (~ CN I AD AD CN	DR IM2 ITR1 -7 ITR2 SDPRNT SPACE DR DR ITR1	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2021 5314	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS O JMS ISZ ISZ ISZ JMP	AD SU CN (- CN I AD AD CN	DR IM2 ITR1 -7 ITR2 SDPRNT SPACE DR DR ITR1 -2	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512 01513	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2021 5314 5321	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS O JMS ISZ ISZ ISZ JMP JMP	AL SUCN CN I I AL CN + EN	DR M2 TR1 7 SDPRNT SPACE DR TR1 2 ITR1 2 ITAP	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512 01513 01514	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2021 5314 5321 2022	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS USZ ISZ JMP JMP ISZ	ALUSUN (CNIALIST)	DR M2 TR1 7 SDPRNT SPACE DR DR TR1 2 UTAP TR2	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512 01513 01514 01515	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2021 5314 5321 2022 5303	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA CLA JMS O JMS ISZ ISZ ISZ ISZ JMP JMP ISZ JMP	ALUN- SUN- CN I I ALUN- ENN IN	DR M2 TR1 7 SDPRNT SPACE DR DR TR1 2 IDTAP TR2 ILOP	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512 01513 01514 01515 01516	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2305 2314 5321 2022 5303 4566	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA JMS UCA JMS ISZ ISZ ISZ ISZ JMP ISZ JMP JMP	ALUN SUN-CN I ILLAUN+NN I I	DR M2 TR1 7 SDPRNT SPACE DR DR TR1 2 IDTAP TR2 ILOP CRLF	/SOMMED	DATA	001201
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01512 01513 01515 01515 01516 01517	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2305 2321 5314 5321 2022 5303 4566 4560	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA JMS UCA JMS USZ ISZ JMP JMP ISZ JMP JMS JMS	ALUN- C I IALUN+ NNN I I	DR M2 TR1 7 SDPRNT SPACE DR TR1 2 IDTAP TR2 IDTAP CRLF ENDREC	/SOMMED	DATA	GOTPOT
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512 01513 01515 01516 01517 01520	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2305 2305 2305 2305 2305	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA JMS UCA JMS ISZ ISZ JMP ISZ JMP ISZ JMP JMS JMS JMS	ALUN- C I IALN+ NNN L C	DR M2 TR1 7 SDPRNT SPACE DR TR1 2 IDTAP TR2 IDTAP TR2 IDTAP CRLF ENDREC P	/SOMMED	DATA	GUTPUT
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512 01513 01514 01515 01516 01517 01520 01521	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2305 5321 5321 2022 5305 4560 5301 4566	PUNCH, LOP, INLOP, ADR,	O CLA DCA TAD DCA TAD DCA JMS UCA JMS ISZ JMS JMS JMP JMS JMP JMS JMP JMS	ALUN- C I IALUN+ENNN L L	DR M2 TR1 7 SDPRNT SPACE DR SPACE DR TR1 2 IDTAP TR2 IDTAP CRLF ENDREC P CRLF	/SOMMED	DATA	GUTPUT
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512 01516 01517 01520 01521 01522	0000 7209 3305 1026 3021 1374 3022 7200 4553 0000 4557 2305 2305 2305 2305 5305 4560 5301 4560 5301 4560	PUNCH, LOP, INLOP, ADR, ENDTAP,	O CLA DCA TAD DCA DCA JMS UCA JMS ISZ JMP JMS JMP JMS JMS JMS JMS JMS JMS	ALUN- C I IALN+NNN C I LLN+NNN C	DR M2 TR1 7 SDPRNT SPACE DR TR1 2 DTAP TR2 IDTAP TR2 IDTAP CRLF ENDREC P CRLF ENDREC	/SOMMED	DATA	GUTPUT
01474 C1475 01476 01477 01500 01501 01502 01503 01504 01505 01506 01507 01510 01511 01512 01513 01514 01515 01516 01517 01522 01522 01523	0000 7209 3305 1026 3021 1374 3022 7200 4553 2305 2305 2305 2305 2305 2305 2305 2	PUNCH, LOP, INLOP, ADR, ENDTAP,	O CLA DCA TAD DCA DCA JMS JMS JMS JMS JMP JMS JMS JMS JMS JMS TAD	ACUN-NI I LIN+NNN C 5	OR M2 TR1 7 SDPRNT SPACE OR TR1 2 IDTAP TR2 ILOP CRLF ENDREC OP CRLF ENDREC 0777	∕SUMMED	DATA AD OUI	CPUT
01525	3305		DCA	ADR	•			
---------	--------------	---------	--------	--------	---------	-----------------		
01526	2305		ISZ	ADR	ł _			
01527	1026		TAD	SUM	2			
01530	3021		DCA	CNT	'R1			
0 153 1	1372		TAD	(-5	i			
01532	3022		DCA	CNT	'R2			
0 153.3	7200	LOPIN,	CLA					
01534	1410		TAD	I 1	0			
01535	7450		SNA					
01536	5352		JMP	POL	•			
01537	4556		JMS	I	SSPRNT			
01540	4557		JMS	I	SPACE			
0 154 1	1305		TAD	A DR	1			
01542	4556		JMS	I	SSPRNT			
01543	4557		JMS	I	SPACE			
01544	2022		ISZ	CNT	'R2			
0 1545	5352		JMP	POL				
01546	4566		JMS	I	CRLF			
0 15 47	4560		JMS	ī	ENDREC			
01550	1372		TAD	(-5				
01550	30.22		DCA	CNT	'R2			
01551	2305	POL	TSZ	ADR	2			
01552	2000		TSZ	CNT	אי			
01555	5222		D ML		אדא			
01354	7200		CIN	LOE				
01555	1200		TMS	т	SSDRNT			
01550	4550		TMC	+ +	SDACE			
01557	4337		JEL D	1 7	SEACE			
01560	4550		005	1 7	SDACE			
01561	4557		JHS	т Т	SPACE			
01562	4566		J 11 5	Ť	CKLL			
01563	4560		JUZ	1	ENDREC			
01564	5674		JWB	TF	UNCH			
01572	7773							
01573	5777							
01575	7771							
01575	777 <u>4</u>							
01575	1711							
01570	7772							
01577	1112							
	1600	*1600						
01600	0000	RESET1.	0			/RESET FOR RUN		
0 1601	2032		ISZ	RUN	CNT	SET RUN COUNTER		
01607	7200		CLA			,		
0 160 2	1377		TAD	(MS	G03-1	/REPEAT RUN		
0 1604	3017		DCA	17				
01605	1571		IMS	T	MESAGE			
01605	4570		JMC	Ť	NIIMGET	/GET ANSWER		
0 1000	76 50		SNN	CT N		REPEAT ?		
V 10V/	1030		DN W		,			

01610 01611 01612	4552 1025 3024		JMS I MESSY TAD PASSES DCA P	/NO, PRINT MESSAGES /YES, RESET VARIABLES
01613	3021		DCA CNTR1	ZERO FIELD 1
01614	6211		CDF 10	
01015	3421	ZLOOP,	DCA I CNTRI	
01010	2021		ISZ CNTRI	
01620	6201		CDR 00	
01621	1376		TAD (3777	ZERO OVERLOAD
0 16 22	3010		DCA = 10	y and o the state of the state
01623	1375		TAD (-3000	
01624	3021		DCA CNTR1	
01625	3410		DCA I 10	
01626	2021		ISZ CNTR1	
01627	5225		JMP2	
01630	5600		JMP I RESET1	
0 16 3 1	0000	PREP,	0	✓ROTOR ON & ENABLE
01632	6.341	•	ROTRON	TURN ROTOR ON
01633	7200		CLA	·
01634	1374		TAD (-764	/DELAY 5 SEC
01635	3022		DCA CNTR2	
01636	1373	RLOOP,	TAD (-3720	
01637	4565		JMS I DEL	/5 USECD * AC DELAY
01640	2022		ISZ CNTRZ	
0 16 4 1	5230		JUL KTOOL	ARNARIE V-RAVC
01642	1372		ХАДЦЕ ТАД (-6	VERABLE A-RAIS
01644	3022		DCA CNTR2	/DELAI OO HSEC
01645	1373	XLOOP.	TAD (-3720)	
0 16 46	4565		JNS I DEL	✓5 USEC * AC DELAY
01647	2022		ISZ CNTR2	
01650	5245		JMP XLOOP	
01651	64 55		INATOD	/INITIALIZE A TO D
01652	6346		INBOX	/INITIALIZE INTEGRATOR
01653	5631		JMP I PREP	/END
0 16 5 4	0000	DATTIM.	0	✓DATE & TIME ROUTINE
01655	1371		TAD (MSG01-1	,
01656	3017		DCA 17	
0 1657	4571		JMS I MESAGE	/PRINT MESSAGE
01660	7200		CLA	•
01661	1372		TAD (-6	
01662	3021		DCA CNTF1	/SET DIGIT COUNTER
0 1663	1310		TAD DATPNT	/GET STORAGE LOCATION
01664	3311	~ ~ ~ ~	DCA PNTDAT	
01665	4562	DNEXT,	JMS L READ	/GET DIGIT
0 1000 0 1647	J/11 2211		DCA I PNTDAT	/STUKE DIGIT
0 1001	2311		ISZ PNTDAT	ARESET STURAGE LUCATION

0 1670	2021		ISZ CNTR1	/MORE DIGITS ?
0 167 1	52 6 5		JMP DNEXT	YES, GET DIGIT
01672	137 0		TAD (MSG02-1	NO, GET TIME
0 1673	3017		DCA 17	
0 167 4	4571		JMS I MESAGE	/PRINT MESSAGE
0 1675	7200		CLA	
01676	1367		TAD (-4	
0 1677	3021		DCA CNTR1	SET DIGIT COUNTER
0 1700	1320		TAD TIMPNT	/GET STORAGE LOCATION
0 170 1	3321		DCA PNTTIM	,
01702	4562	TNEXT-	JMS I READ	/GET DIGIT
01703	3721		DCA I PNTTIM	STORE DIGIT
01704	2321		TSZ PNTTTM	/RESET
01705	2021		TSZ CNTR1	MORE DIGITS ?
01706	5302		IMP TNEYT	VES. GET DIGIT
01707	5654		IMP T DATTTM	ANO END ROUTINE
01710	1712	חא מיס א מ		AND ROOTINE
01711	0000	טאיר איז א ר איז	Δ	
01712	0000	ENTDRI #	0	
01712	0000		0	/STORAGE OF DATE
01711	0000		0	
01714	0000		0	
01715	0000		0	
01710	0000		0	
01717	1700			
01720	1/22	TIMPNT,	TLMPNT+2	
01/21	0000	PNTTIM,	0	
01722	0000		0	/STORAGE OF TIME
01723	0000		0	
01724	0000		0	
01725	0000		0	
01767	7774			
0 1770	3006			
01771	2777			
0 1772	7772			
01773	4060			
0 1774	7014			
C 1775	5000			
0 1776	3777			
01777	3020			
	2000	*2000		
02000	0000	MESSY,	0	/INFORMATION INPUT
02001	1377	•	TAD (MSG04-1	/GET # OF WAVES
02002	3017		DCA 17	· ····································
02003	4571		JMS I MESAGE	
02004	4570		JMS I NUMGET	GET ANSWER
02005	7041		CIA	·
02006	3027		DCA NUMWAV	

ł

02007	1376		TAD	(M S	5G05 -1	✓# OF PASSES
02010	3017		DC A	17		
02011	4571		JMS	Ι	MESAGE	E
02012	4570		JMS	I	NUMGET	F /GET ANSWER
02013	7041		CIA			
02014	30 25		DCA	PA:	SSES	
02015	1375		TAD	(MS	5G06-1	/FAST OR SLOW ?
02016	3017		DCA	17		_
02017	4571		JMS	I	MESAGE	
02020	4570		JMS	I	NUMGET	r /ger Answer
02021	3033		DCA	LUI	MIN	
02022	1033		TAD	LUI	MIN	
02023	7650		SNA	CLI	A	
02024	5600		JMP	I I	MESSY	
02025	1374		TAD	(M:	5G07-1	TRANSIENT DECAI
02026	3017		DCA	1/	unalar	-
02027	4571		JMS	1 1	MESAGE	
02030	4570		JMS	1	NUMGET	r /Ger Answer
02031	7041		CLA			
02032	3030		DCA	DEI		
02033	13/3		TAD	(0)	5608-1	/# DATA POINTS
02034	301/			+'	MECLOR	D.
02035	45/1			- -	NUMCER	
02030	4570		JUD	T	NONGEI	I VGEI RASMER
02037	7041				8 D O M	
02040	3034			DA J		ARANGE CODE
02041	13/2		TAD	17	5609-1	VERIGE CODE
02042	3011		JUCA	т, Т	MESACE	E.
02043	4371		UNC	Ť	NUMCET	D T ∠GET ANSWER
02044	3035		DCA	וגק	NCE	
02045	1035		TAD	RAI	NGE	
02040	1255		TAD	ወጥነ	R	
02047	225/			- T - T -	NDER	
02050	165U		TAD	T	TEMPER	
02051	3000		DCA	DEI	LRAN	
02052	5600		JMP.	T	MESSY	
02055	0000	TEMPER.	0			
02054	2055	PTR.	PTR			
02055	2217		DEL	1		
02050	2223		DEL	2		
02057	2233		DEL	3		
~ 2000				-		
02172	3162					
02173	3152					
02174	3116					
02175	3070					
02176	3056					
02177	3041					

	2200	*2200		
02200 02201 02203 02204 02205 02206 02207 02210 02211 02212 02213 02214 02215 02216	0000 6455 7346 4565 6354 6346 3410 2037 5212 5600 1377 4565 6345 4440 5201	DATA,	O STATOD CLA CLL CMA RTL JMS I DEL GETDAT INBOX DCA I 10 ISZ SUM JMP .+2 JMP I DATA TAD (-276 JMS I DEL STBOX JMS I DELRAN JMP DATA+1	<pre>/DATA ROUTINE /START A TO D /5 USEC * AC DELAY /GET DATA POINT /INITIAL INTEGRATOR /STORE DATA /MORE DATA ? /YES, GET IT /NO, STOP /5 USEC * AC DELAY /START INTEGRATOR /DELAY RANGE VALUE</pre>
02217 02220 02221 02222	0000 1376 4565 5617	DEL1,	0 TAD (-3405 JMS I DEL JMP I DEL1	/10 MSEC DELAY
02223 02224 02225 02226 02227 02230 02231 02232	0000 1375 3022 1374 4565 2022 5226 5623	DEL2,	0 TAD (-5 DCA CNTR2 TAD (213 JMS I DEL ISZ CNTR2 JMP3 JMP I DEL2	/100 MSEC DELAY
0 2233 02234 02235 02236 02237 02240 02241 02242 02243	0000 1373 3022 1372 4565 7000 2022 5236 5633	DEL3,	0 TAD (-62 DCA CNTR2 TAD (147 JMS I DEL NOP ISZ CNTR2 JMP4 JMP I DEL3	✓1 SEC DELAY
02244 02245 02246 02247 02250 02251 02252 02253	00 00 7300 1644 3331 6211 1731 3323 2331	UDPRNT,	0 CLA CLL TAD I UDPRNT DCA UDGET CDF 10 TAD I UDGET DCA UDHIGH ISZ UDGET	/PICK UP ADDRESS OF /HIGH ORDER WORD /PICK UP BOTH WORDS FOR /USE IN SUBROUTINE

•

02254	1731		TAD I	UDGET	
02255	3324		DCA U	DLOW	
02256	6201		CDF ()0	
02250	1320		TAD T	IDI.OOP	/INITIALIZE COUNTER
07260	3322		DCA T	IDCNT	
02200	1224				/TNITIALIZE TO TABLE OF
02201	1361			אייסתו קייסתו	POWERS OF TEN
02202	2222		767 U	אני מער אור אור אור אור אור אור אור אור אור או	SET RETURN ADDRESS
02203	4722		134 U MND T		ADTOK UP FTRST POWER
02204	1/34	UDAR ND,		ער אדער איז	VEOR USE IN SUBTRACTION
02265	2332			ID HCHD ID FIN	FOR ODE IN SUBIRMOLLON
02266	3325				
02267	1732		TAD 1	L UDPTR	
02270	2332			DPTR	
02271	3326		DCA U	IDTZOR	POURT DEFOTCTON CAR
02272	7100	UDDO 🖌	CLL		ADOURTE BRECIPION 202
02273	1326		TAD U	JDLSUB	
02274	1324		TAD U	IDLOW	
02275	3330		DCA U	JDTEML	
02276	7004		RAL		
02277	1325		TAD U	JDHSUB	
02300	1323		TAD U	JDHIGH	
02301	7420		SNL		/DID IT OVERFLOW ?
02302	5310		JMP U	IDOUT	/NO, COUNT IS DONE
02303	2327		ISZ U	JDBOX	YES, CONTINUE
02304	3323		DCA U	JDHIGH	/SAVE REMAINDER
02305	1330		TAD C	JDTEML	
02306	3324		DCA U	JDLOW	
02307	5272		JMP U	JDDO	
02310	7200	UDOUT.	CLA		
02311	1327		TAD U	JDBOX	/GET DIGIT
02312	1371		TAD	(260	
02313	4563		JMS I	TYPEIT	TYPE IT
02314	3327		DCA (IDBOX	
02315	2222		TSZ I	IDCNT	MORE DIGITS ?
02315	5264		IMP D	IDARND	YES. GET NEXT
02310	5611		T D MT.		ING. DONE
02377	7770		-10		
02320	2222		IDCON	JT.	
02321	2333	UDCNT	00000		
02322	0000		õ		
02323	0000		0		
02324	0000		Å		
02325	0000		0		
02326	0000	UDT208,	0		
02327	0000	UDBOX,	0		
02330	0000	UDTEML,	U O		
02331	0000	UDGEI,	0		
02332	0000	ODPTK,	0		ADOURDS OF WEN
02333	3166	UDCONL,	3100		/ FUNERS OF TEN
02334	4600		4000		
02335	7413		7413		/~1,000,000

.

			(T AA	
02336	6700		6700	
02337	7747		7747	/-100,000
02340	4540		4540	
02341	7775		7775	/-10,000
02342	4360		4360	
02343	7777		7777	/-1000
02344	6030		6030	
02345	7777		7777	/-100
02346	7634		7634	
02347	7777		7777	/-10
02350	7766		7766	•
02351	7777		7777	/-1
02351	7777		7777	
02352				
00071	0260			
02371	0200			
02372	014/			
02373	//10			
02374	0213		-	
02375	7773			
02376	4373			
02377	7502			
	2400	*2400		
02400	0000	SQR,	0	SQUARE ROUTINE
02401	1600		TAD I SQR	/GET DATA ADDRESS
02402	3273		DCA ARGU	
02403	2200		ISZ SQR	/SET RETURN ADDRESS
02404	1673		TAD I ARGU	/GET DATA POINT
02405	7041		CIA	/MAKE IT POSITIVE
02406	3274		DCA STORE	STORE TEMPORALLY
02407	1274		TAD STORE	
02410	3275		DCA TEST	/SET TEST VALUE
02410	7001		TAC	•
02411	2276		DCA MASK	SET MASK TO ONE
02412	1277		TAD (-14)	SET BIT COUNTER
02413	20/1/1			
02414	2044		DCA HIGH	
02415	3045			
02410	3040	m m c m p m		
02417	1275	TESTDI	TAD IESI	CHECK FOR RIT TRUE
02420	0276		AND MASK	
02421	//40		SZA CLA CLL	ANDC NOD DADWING DROD
02422	5235		JMP ADD	ADD PARILAL PROD.
02423	1276	RETUR,	TAD MASK	KESET MASK
02424	7104		RAL CLL	
02425	3276		DCA MASK	
02426	2044		ISZ CNT2	MORE BITS ?
02427	5217		JMP TESTBT	YES, TEST NEXT
02430	1046		TAD LOW	/NC, LOAD RESULT IN
02431	7521		SWP	/MQ AND AC

.

02432	7200		CLA	
02433	1045		TAD HIGH	
02434	5600		JMP I SQR	/END
02435	1044	ADD.	TAD CNT2	/DETERMINE WHICH BIT
02436	1376	-	TAD (14	/WAS BEING TESTED
02437	7140		CMA CLL	
02440	3043		DCA CNT1	
02441	1274		TAD STORE	
02442	3041		DCA TEMPST	
02443	3042		DCA TEMPST+1	
02444	2043	REDO.	ISZ CNT1	SET VALUE OF
02445	5247	•	JMP .+2	PARTIAL PRODUCT
02446	5262		JMP DADSTP	ADD PARTIAL PRODUCT
02447	1042		TAD TEMPST+1	·
02450	7004		RAL	
02451	3042		DCA TEMPST+1	
02452	1041		TAD TEMPST	
02453	70.04		RAL	
02454	3041		DCA TEMPST	
02455	7420		SNL	/CHECK FOR OVERFLOW
02455	5244		JMP REDO	NO, CONTINUE
02450	2042		ISZ TEMPST+1	YES, INCREMENT MSD
02451	7100		CLL	, .
02400	5244		JMP REDO	
02401	1041	DADSTP	TAD TEMPST	/DOUBLE PRECISION ADD
02402	7521	21120 - 1 8	SWP	•
02400	7200		CLA	
02404	1042		TAD TEMPST+1	
02405	4551		JMS I DAD	ADD ROUTINE
02400	0.045		HIGH	•
02407	4550		JMS I DST	STORE ROUTINE
02470	0045		HIGH	,
02471	5223		JMP RETUR	
02472	0000	ARGII.	0	
02475	0000	STORE.	Õ	
02474	0000	TEST.	0	
02475	0000	MASK.	0	
02470	0000	na sa y	•	
02177	0000	SUMSOR .	0	SUM OF SOUARES
02477	7300	50115 Q.A.J	CLA CLL	
02500	1375		TAD (4000	STORAGE ADDRESS
02507	2217		ECA MSHSOR	,
02302	1275			
02505	2221		DCA MSHSOR+2	
02504	1375			ARESET DATA LOCATOR
02505	2214		DCA DATLOC	,
02507	10.26		TAD SUN2	/GET # DATA POINTS
02307	3020		DCA CNTR1	,
02510	137/1		TAD (6000	VOVERFLOW COUNTERS
02511	3022		DCA CNTR2	,
V & ~ I &	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

.

02513 02514	4200 4000	SQRSUM,	JMS 4000	SQI	R	/SQUARE VALUE
02515	6211	DAIDOO	CDF	10		
02515	4551		JMS	т	DAD	/DOUBLE PRECISION ADD
02517	0000	MSHSOR	0	-		
02570	4550	110 110 Q.M.	JMS	т	ת ב ת	/DOUBLE PRECISION STORE
02521	0000	DIMB.	0	-	2-2	
02521	6201	201127	CDF	00		
02522	74 30		SZL	•••		TEST, OVERFLOW
02525	24.22		TSZ	т	NTR2	YES, INCREMENT COUNTER
02524	7100		CLL	- '		//
02525	2022		TSZ	CN	r R 2	✓RESET ADDRESS
02520	2022		TSZ	יעת	FLOC	/
02520	2317		T 5 7	MSI	ISOR	
02530	2317		TS7	MSI	ISOR	
02531	2311		TSZ	MSI	450R+2	
02552	2321		TSZ	MCI	HSOR+2	
02535	2021		152	CN	1592.·2	MORE DATA ?
02534	5212			SOI	RGIIM	VES. SOUARE & ADD
02535	5515		TMD	<u>т</u> (INC. RETURN
02530	20//		JHP	т.	Sousen	
02537	0000	PUNS OR .	0			SUMMED SQUARES OUTPUT
02540	7200	2010 2017	CLA			, -
02540	1375		TAD	(4)	000	
02547	3351		DCA	ADI	RSOR	
02542	1026		TAD	SU	M2	,
02545	3021		DCA	CN	rr 1	
02545	1272	LOPSOR	TAD	1-	7	
02545	30.22	HOLDEN	DCA	CN	rr2	
02540	7200	TNSOR	CLA	•••		
02550	4547	Insgay	JMS	τ	UDPRNT	
02551	0000	ADRSOR.	0	-		
02552	4557	1010 21.7	JMS	т	SPACE	
02552	2351		TSZ	AD	RSOR	
02555	2351		TSZ		RSOR	
02555	2021		TS7	CN	rr1	
02555	5360		IMP	.+	2	
02550	5365		JMP	ENI		
02550	2022		T 5 7	CN	r 2 2 8 7	
02500	5217		JMD	TNO	SOR	
02501	1566		JMS	T T	CRLF	
02502	4560		ZMC.	Ŧ	ENDREC	
02505	4 J U U			TOI		
02004	1545	FNDCOP	JMC	Т	CRLF	
02000	4500	TUD2/214	JMC	T	ENDREC	
V 2300 A3567	4 J OU 57 27			т ч		
02307	5131		UHE	т i	COUPÁN	
02573	7771					
02574	60.00					
02575	4000					

02576 02577	0014 7764					
	3000	*3000				
0 300 0	4424	MSG01,	TEXT	/\$TODAYS	DATE /	
03001	1704					
03002	0131					
03003	2340					
03004	0401					
03005	2405					
03006	4000					
0300 7	4040	MSG02,	TEXT	/ TIME	(MILITARY)	1
03010	2411					
03011	1505					
03012	4050					
03013	1511					
03014	1411					
03015	2401					
0 30 16	2231					
03017	5140					
0 30 20	0000					
03021	4422	MSG03,	TEXT	/\$REPEAT	PREVIOUS	RUN 1-YES,
03022	0520			0-NO /		
03023	0501					
03024	2440					
03025	2022					
03026	0526					
03027	1117					
03030	2523					
03031	4022					
03032	2516					
03033	4061					
03034	5531					
03035	0523					
03036	5440					
03037	6055					
03040	1617					
03041	4000					
03042	4416	MSG04,	TEXT	/\$NUMBER	OF WAVES	IN BOMB /
03043	2515					
03044	0205					
03045	2240					
03046	1706					
03047	4027					
03050	0126					
03051	0523					
0.3052	4011					
03053	1640					
03054	0217					

03055	1502			
03056	4000			
03057	4040	MSG05,	TEXT	/ NUMBER OF PASSES /
03060	1625	-		
03061	1502			
03062	0522			
03063	4017			
03060	0640			
03065	2001			
03000	2001			
03000	2J2J 0522			
03007	0525			
03070	4000	NCCOS	m v v m	ATTACT OF STOR THATNESCENCE
0.3071	4400	MSGU0,	TUVI	A-FAST ON STON TOUTHERSCHACE
03072	0123			U-FRSI, I-SLOW /
03073	2440			
03074	1/22			
0.3075	4023			
03076	141/			
03077	2740			,
02100	1425			
03101	1511			
03102	1605			
03103	2303			
03104	0516			
03105	0305			
03106	4060			
03107	5506			
03110	0123			
03111	2454			
03112	4061			
03113	5523			
03114	1417			
03115	2740			
03116	0000			
03117	4424	MSG07,	TEXT	/\$TRANSIENT DECAY 5.0 USEC-CNT
03120	2201	-		INITIAL OFFSET 12.6 USEC /
03121	1623			
03122	1105			
03123	1624			
03124	4004			
03125	0503			
03126	0131			
0.3127	4065			
02130	5660			
03131	4025			
03132	2305			
0 - 1	0355			
07174	0316			
03135	2440			
03136	1116			

03137	1124			
03140	1101			
03147	1440			
03142	1706			
03143	0623			
03144	0524			
03145	4061			
03146	6256			
03147	6640			
03150	2523			
03151	0503			
03152	4000			
03153	4443	MSG08,	TEXT	/\$# DATA POINTS /
03154	4004			
03155	0124			
03156	0140			
03157	2017			
03160	1116			
03161	2423			
03162	4000			
03163	4040	MSG09,	TEXT	/ RANGE CODE 1-10, 2-100, 3-1000
03164	2201	-		MSEC /
03165	1607			
03166	0540			
03167	0317			
03170	0405			
03171	4061			
0.5172	5561			
03173	6054			
03174	4062			
03175	5561			
03176	6060			
03177	5440			
03200	6355			
0.3201	6160			
0.320.2	6060			
03203	4015			
0.3204	2305			
03205	0340			
03206	0000			
03207	4403	MSG15,	TEXT	/\$CONTINUE RUNS 1-YES, 0-NO /
03210	1716	•		
03211	2411			
03212	1625			
03213	0540			
07214	2225			
03215	1623			
0 - 2 16	4061			
03217	5531			
03220	0523			

5440 6055 1617 4000	
6345	STBOX=6345
6455	STATOD=6455
6354	GETDAT=6354
6346	INBOX=6346
6455	INATOD=6455
6344	XDABLE=6344
6342	ROTROF=6342
6337	CSTART=6337
6331	CREADY=6331
6332	NOW=6332
6333	XON=6333
6334	XOFF=6334
6336	CWAIT=6336
6343	XABLE=6343
6341	ROTRON=6341
7701	ACL=7701
7621	CAM=7621
	5440 6055 1617 4000 6345 6355 6354 6354 6354 6342 6337 6331 6332 6333 6333 6334 6334 6334 6334 7701 7621

\$

00147	2244
00150	1200
00151	1234
00152	2000
00153	0600
00154	253 7
00155	1474
00156	0723
00157	1044
00160	1053
00161	1027
00162	1101
00163	1064
00164	2200
00165	1021
00166	1072
00167	1000
00170	0451
00171	0400
0C172	1400
00173	2477
00174	1263
00175	1631
0C 176	1600
00177	1654

							~ ~ ~ ~ ~
ACC	1222	G ET DA T	6354	PREP	1631	SUM	0037
ACL	7701	G ET DI G	0457	PTR	2055	SUMDAT	1263
ACD	2435	HIGH	0045	PUNCH	1474	SUMLUP	1273
AED1	1303	HIGHT	1262	PUNSQR	25 37	SUMSQR	2477
ACR	1505	INATOD	6455	PUN1	0031	SUM2	0026
ACRSOR	2551	INBOX	6346	RANGE	0035	TEMP	0525
ARG	1221	INLOP	1503	READ	1101	TEMPER	2054
ARGU	2473	INSQR	2547	REDO	2444	TEMPST	0041
BCMB	0254	ISTORE	0023	RESET	0203	TEST	2475
BCMB2	0304	KCDF	1220	RESET1	1600	TESTA	1342
BYTCNT	0440	LEADER	1027	RETUR	2423	TESTBT	2417
CAM	7621	LIT1	0441	RETURN	0527	TIMPNT	1720
CHANG	1245	LIT2	0442	RLOOP	1636	TNEXT	1702
CHG	1211	LIT3	0443	ROTROF	6342	TYPEIT	1064
CIEAR	0516	LIT4	0444	ROTRON	6341	UDADDR	2321
CNTR1	0021	LIT5	0445	RUNCNT	0032	UDARND	2264
CNTR2	0022	LOP	1501	SDADDR	0671	UDBOX	2327
CNT 1	0043	LOPIN	1533	SDARND	0634	UDCNT	2322
CNT2	0044	LOPSOR	2545	SDBOX	0701	UDCONL	2333
CONTIN	1467	LOW	0046	SDCNT	0674	UDDO	2272
CONVET	0531	LUMIN	0033	SDCONL	0705	UDGET	2331
CREADY	6331	MASK	2476	SDDO	0642	UDHIGH	2323
CELF	1072	MDIGIT	0521	SDGET	0703	UDHSUB	2325
CSTART	6337	MDOLAR	0450	SDHIGH	0675	UDLOOP	2320
CWATT	6336	MESAGE	0400	SDHSUB	0677	UDLOW	2324
	1234	MESSY	2000	SDLOOP	0670	UDLSUB	2326
LADSTP	2462	MNINE	0530	SDLOW	0676	UDOUT	2310
DATA	2200	MOM	0522	SDLSUB	0700	UDPRNT	2244
DATLOC	2514	MSG01	3000	SDMNS	0673	UDPTR	2332
DATOIIT	1400	MSG02	3007	SDOUT	0660	UDTEML	2330
LATPNT	1710	MSG03	3021	SDPLUS	0672	XABLE	6343
DATPOT	00.34	MSG04	3042	SDPRNT	0600	XDABLE	6344
DATTTM	1654	MSG05	3057	SDPTR	0704	XLOOP	1645
DCM	1223	MSG06	3071	SDTEML	0702	XOFF	6334
DFL.	1021	MSG07	3117	SET1	0231	XON	6333
DELMIN	1351	MSG08	3153	SPACE	1044	ZLOOP	1615
DELRAN	0040	MSG09	3163	SOR	2400		
DELTTM	0030	MSG15	3207	SORSUM	2513		
DFL1	2217	MSHPNT	1306	SSADDR	0762		
DFL2	2223	MSHSOR	2517	SSBOX	0766		
DELA	2233	MSLASH	0526	SSCNT	0767		
DIGTTS	0523	MULT	0313	SSCNTR	0765		
DIGLOC	0524	MULTI	0263	SSCON	0771		
DIGPTR	0010	N	0036	SSMNS	0764		
DNEYT	1665	NOW	6332	SSPLUS	0763		
DST	1200	NUMBET	0451	SSPRNT	0723		
DUMB	2521	NUMWAV	0027	SSVAL	0770		
DIMMY	1310	P	0024	SSXYZ	0742		
ENDETT	1000	PACK	0541	START	0200		
ENDREC	1053	PASS	0204	STATOD	6455		

·

•

ENDSQR	2565	PASSES	0025	STBOX	6345
ENDTAP	1521	PNTDAT	1711	STDEL	1347
ENT10	0401	PNTTIM	1721	STORE	2474
E NT 11	0410	POINTS	0251	STOR 1	0446
ERROR	0511	POL	1552	STOR2	0447

EFRORS DETECTED: 0 LINKS GENERATED: 0

٠

APPENDIX 5: JCL

JCL is the acronym for job control language. The listing which follows contains all the JCL statements required to run the job which calculates the experimental results. The sections where data and program source decks belong are indicated in the listing. The WYLBUR execute file, EXECTRS3 (see Appendix 6), moves the the proper data sets to the indicated positions when the job is created. The statements in the listing are applicable only to the Iowa State University Computation Center and are subject to change as system changes are implemented.

```
1 //A411GJO JOB A0099,GJO,TIME=(1,59)
   2 /*JOBPARM LINES=10
   3 //S1 EXEC PGM=IEBGENER
   4 //SYSPRINT DD SYSOUT=A
   5 //SYSIN DD DUMMY
   6 //SYSUT2 DD DSN=&CARDS1,UNIT=DISK,DISP=(NEW,PASS),
   7 // SPACE=(3520,(5,5),RLSE),DCB=(RECFM=FB,LRECL=80,
   8 // BLKSIZE=3520)
   9 //SYSUT1 DD *
     Control Variables
 180 /*
 801 //S2 EXEC PL1LFCLG, PARM. PL1L='A, X, NEST', REGION. GO=160K
 802 //PL1L.SYSIN DD *
     TRS3 Source Deck
 £03 /*
 804 //GO.SYSIN DD DSN=CPS07.A0986.GJ01,DISP=SHR
 805 //IN
                DD DSN=&CARDS1, DISP=(OLD, DELETE)
 807 //OUT
                DD DSN=CPS07.A0986.GJ02,UNIT=DISK,
 808 // VOL=SER=RJEPAK, DISP=(NEW, KEEP, DELETE), SPACE=(3520,
 809 // (5,5)), DCB= (RECFM=FB, LRECL=80, BLKSIZE=3520)
 810 //GO.FT14F001 DD DSN≈&SM, UNIT=SCRTCH, DISP=(NEW, PASS),
 E11 // SPACE=(800, (120, 15)), DCB=(RECFM=VS, LRECL=796,

&12 // BLKSIZE=800)
 813 //SIMPLTTR EXEC PLOT, PLOTTER=INCRMNTL, FORM=W
 \epsilon14 //S3 EXEC FORTG, REGION.GO=160K, TIME.GO=(2,00)
 E15 //FORT.SYSLIN DD DISP=(OLD,PASS)
 816 //FORT.SYSIN DD *
     SMASH Source Deck
 &17 //LKED.SYSLMOD DD DSN=&GOSET2(GO)
 E18 //GO.FT05F001 DD DSN=CPS07.A0986.GJ02,DISP=SHR,
 E19 // VOL=SER=RJEPAK, UNIT=2314
 820 //GO.FT06F001 DD SYSOUT=A
 E21 //GO.FT14F001 DD DSN=&SM2,UNIT=SCRTCH,DISP=(NEW,PASS),
 E22 // SPACE=(800, (120, 15)), DCB=(RECFM=VS, LRECL=796,
 823 // BLKSIZE=800)
824 //SIMPLTTR EXEC PLOT, PLOTTER=INCRMNTL, FORM=W
825 //FLOT.FT14F001 DD DSN=CSM2
98 /*
999 //
1000
```

APPENDIX 6: EXECTRS3

EXECTRS3 is a WYLBUR execute file which creates the job which calculates the experimental results. The execute file starts with the JCL statements (Appendix 5), copies TRS3 (Appendix 1) and SMASH (Appendix 2) to the appropriate lines and interrogates the operator for input information. After the job is created the execute file submits the job to the computer system for execution and erases the original input data set in preparation for the next use of the execute file. The WYLBUR statements which make up the execute file are listed on the following pages.

10 SET EXEC NOL TER 20 SET ESC : 40 SET VOL CAT 50 USE #JCL CLR 60 COPY ALL FROM #TRS3 TO 802.001 70 SCR \$CPS07_A0986_GJ02 ON RJEPAK 80 COMM HOW MANY RUNS? 90 INS 11 UNN 100 REA VAL NO USING 11 110 COPY 1000 TO 12 120 SET VAL W0=12130 SET VAL W1=13 140 SET VAL N1=0 150 SET VAL N1=N1+1 160 REA STR SO PRO 'IS RUN :N1 FAST OR SLOW? 170 SET VAL N9=2*:N1 180 IF (SO EQ 'FAST') EXEC 400 190 REA STR SO PRO 'WILL SMASH BE RUN? 1 2CO IF (SO EQ 'NO') CH :N9/:N9 TO O IN :WO N 210 COPY 1000 TO : 11 220 REA STR S1 PRO 'GRAPH LABEL RUN :N1? 230 CH 1/20 TO ":S1" IN :W1 N 240 REA STR S1 PRO 'DATA LABEL RUN :N1? 250 CH 21/40 TO ':S1' IN :W1 N 260 SET VAL W1=W1+1 270 IF (SO EQ 'YES') EXEC 450 SAVE 280 IF (N1 LT NO) EXEC 150 290 CCMM TO RUN JOB TYPE EXEC NEXT 300 EXEC PAUSE 310 IF (N2 NE 1) DEL 813/822 320 IF (N2 EQ 1) COPY ALL FROM #SMASH TO 816.001 350 RUN 1/999 UNN 351 SCR \$CPS07.A0986.GJ03 360 EXEC PAUSE 400 CH :N9/:N9 TO 0 IN :W0 N 410 EXEC 280 450 REA VAL N8 PRO '#SMASHES RUN :N1? 460 COPY 1000 TO :W1 470 CH 1 TO :N8 IN :W1 N 480 SET VAL W1=W1+1 490 SET VAL N2=1 500 CH : N9/: N9 TO 1 IN : WO N 510 SET VAL N3=0 520 SET VAL N3=N3+1 530 IF (N3 GT N8) EXEC RETURN 540 COPY 1000 TO :W1 550 IF (N3 EQ 1) CH 10/10 TO 0 IN :W1 N 560 IF (N3 NE 1) CH 9/10 TO -1 IN :W1 N 570 REA STR S1 PRO 'HOW MANY COMPONENTS SMASH :N3? ' 580 CH 5/5 TO ":S1" IN :W1 N

```
590 REA STR S1 PRO 'GRAPHS SMASH :N3? '
600 IF (S1 EQ 'YES') EXEC 630
610 CH 15/15 TO 0 IN :W1 N
620 EXEC 660
630 REA STR S1 PRO 'LIN=LINEAR, LOG=SEMILOG
640 IF (S1 EQ 'LIN') CH 15/15 TO 1 IN :W1 N
650 IF (S1 EQ 'LOG') CH 14/15 TO -1 IN :W1 N
660 SET VAL W2=W1
670 SET VAL W1=W1+1
680 REA STR S1 PRO 'PRINTED OUTPUT HEADING?
690 COPY 1000 TO :W1
700 CH 1/80 TO ':S1' IN :W1 N
710 SET VAL W1=W1+1
720 REA VAL N9 USING :W2 COLS 15/15
730 IF (W9 EQ 0) EXEC 840
740 COPY 1000 TO : W1
750 REA STR S1 PRO "X-AXIS LABEL?
760 CH 1/20 TO ":S1" IN :W1 N
770 REA STR S1 PRO 'Y-AXIS LABEL?
780 CH 21/40 TO ':S1' IN :W1 N
790 REA STR S1 PRO 'GRAPH LABEL?
800 CH 41/60 TO ':S1' IN :W1 N
810 REA STR S1 PRO 'DATA LABEL?
820 CH 61/80 TO ':S1' IN :W1 N
830 SET VAL W1=W1+1
840 COPY 1000 TO :01
850 SET VAL N4=0
860 REA VAL N5 USING :W2 COL 5/5
870 SET VAL N4= N4+1
880 SET VAL N6=N4*10-9
890 SET VAL N7=N4*10
900 REA STR S1 PRO 'DECAY CONSTANT FOR COMPONENT : N4 '
910 CH :N6/:N7 TO ':S1' IN :W1 N
920 IF (N4 LT N5) EXEC 870
930 SET VAL W1=W1+1
940 EXEC 520
```