INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

7916208

OESTREICH, GREGORY JOSEPH
X-RAY EXCITED OPTICAL LUMINESCENCE OF POLYNUCLEAR ARDMATIC HYDRDCARBONS.
IOWA STATE UNIVERSITY, PH.D., 1.979

University
Microfilms
international

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs \qquad
2. Colored illustrations
3. Photographs with dark background

4. Illustrations are poor copy \qquad
5. Print shows through as there is text on both sides of page \qquad
6. Indistinct, broken or small print on several pages \qquad throughout
7. Tightly bound copy with print lost in spine \qquad
8. Computer printout pages with indistinct print \qquad
9. Page (s) \qquad lacking when material received, and not available from school or author \qquad
10. Page (s) \qquad seem to be missing in numbering only as text follows \qquad
11. Poor carbon copy \qquad
12. Not original copy, several pages with blurred type \qquad
13. Appendix pages are poor copy \qquad
14. Original copy with light type \qquad
15. Curling and wrinkled pages \qquad
16. Other \qquad

$$
\begin{gathered}
\text { X-ray excited optical luminescence of } \\
\text { polynuclear aromatic hydrocarbons } \\
\text { by } \\
\text { Gregory Joseph Oestreich } \\
\text { A Dissertation Submitted to the } \\
\text { Graduate Faculty in Partial Fulfillment of } \\
\text { The Requirements for the Degree of } \\
\text { DocTon of pHILOSOPHY } \\
\text { Department: Chemistry } \\
\text { Major: Analytical Chemistry }
\end{gathered}
$$

Approved:

Signature was redacted for privacy.
In Charge of Major Work
Signature was redacted for privacy.
For the Major Depaytment
Signature was redacted for privacy.
Fcr the Graduate College

> Iowa State University ames, Iowa

TABLE OF CCNTENTS

Page
CHAPTER 1: INTRODUCTION 1
CGAPTER 2: FACILITIES 11
Experimental Facilities 11
Computational Facilities 19
CHAPTER 3: PULSED XEOL SYSTEM 23
X-ray Pulse Generation 26
Refrigeration and optical Systems 31
Data Acquisition System 35
Dat, a Analysis 37
X-ray Pulse Characteristics 40
CEAPTER 4: EXPERIMENTAL PROCEDURES 42
Preparation of Chemicals, Solvents and Solutions 42
Time Resolved Spectroscopy 44
Fluorescence Measurements 48
CHAPTER 5: RESULTS AND DISCUSSION 51
Decay Constant Values 51
Mixture Analysis by Time Resolution 54
Single Component Analysis by Fluorescence 67
Discussion and Conclusions 69
CHAPTER 6: MISCELLANEOUS OBSERVATIONS AND FUTORE WORK 72
Pulsed XEOL System Modifications 72
Solvent Composition 75
Other Systems Amenable to Study by XEOL 86
BIBLIOGRA PH Y 92
ACKNOWLEDGMENTS 96
AFPENDIX 1: TRS 3 97
APPENDIX 2: SMASH 102
AEPENDIX 3: GENPLOT 115
AFPENDIX 4: TRSGJO 119
AERENDIX 5: JCL 149
AFPENDIX 6: EXECTRS3 151

LIST OF TABLES

Page
Table 1. Principal Components of Pulsed XEOL System 14
Table 2. Interface Instructions 19
Table 3. Polynuclear Aromatic Hydrocarbons 43
Table 4 . Stepwise Preparation of Pulsed XEOL System 46
Table 5. Minicomputer Operation 47
Table 6. Normalization Factors 49
Table 7. Five Day Determination of Decay Constants 52
Table 8. Decay Constant Statistics 52
Table 9. Concentration Dependence of Decay Constants 53
Table 10. Comparison of XEOL and Published Decay 56 Constants
Table 11. Decay Constants, Lifetimes and Half Lives 56 of PAH's
Table 12. Analytical Data from XEOL-TRS Analysis 67
Table 13. Fluorescence Data from Pulsed xeol analysis 68
Table 14. External Heavy Atom Effect on PAR Emission 87

Figure	8.	Oscilloscope tracing of the amplifier signal produced by a photomultiplier tube in response to a fast scintillator (perylene in n-heptane) excited by a $D C$ x-ray source. Horizontal scale is $10 \mathrm{msec} / \mathrm{cm}$. and vertical scale is 2 volts/cm.	27
Figure	9.	Timing diagram which illustrates the time relationship and sequence of events in the production of a typical x-ray pulse.	30
Figure	10.	Sample holder used with the pulsed XEOL system. Main body and retaining riugs were fabricated from oxygen free high conductivity ($O F H C$) copper.	32
Figure	11.	A schematic diagram of the optical system designed around the crossed czerny-Turner mount of the McPherson monochromator used in the pulsed XEOL syster.	34
Figure	12.	Time resolution of the phosphorescence emission from a mixture of triphenylene and plenanthrene in n-heptane by use of the pulsed XEOL technique.	55
Figure	13.	Time resolution of the phosphorescence emission from a mixture of triphenylene and chrysene in n-heptane by use of the pulsed XeOl technique.	57
Figure		Linear plot of intensity versus molar concentration for triphenylene.	60
Figure	14b.	Logarithmic plot of intensity versus molar concentration for triphenylene.	60
Figure	15a.	Linear plot of intensity versus molar concentration for coronene.	61
Figure	15b.	Logarithmic plot of intensity versus molar concentration for coronene.	61
Figure	16a.	Linear plot of intensity versus molar concentration for chrysene.	62
Figure	16h.	Logarithmic plot of intensity versus molar concentration for chrysene.	62

Figure 17a. Linear plot of intensity versus 63 molar concentration for phenanthrene.
Figure 17b. Logarithmic ploi of intensity versus 63 molar concentration for phenamthreae.
Figure 18a. Linear plot of intensity versus 64 molar concentration for fluoranthene.
Figure 18b. Logarithmic plot of intensity versus 64 molar concentration for fluoranthene.
Figure 19. Geasured intensity as a function of the 76 curreat of the electron beaul used to produce the $x-r a y$ pulse.
Figure 20. Measured intensity as a function of the acceleration voltage experienced by the electron beam used to produce the $x-r a y$ pulse.
Figure 21. Measured intensity as a function of the 78 duration of the $x-r a y$ pulse.
Figure 22. XEOL spectrum of anthracene in n-hexane 80 at a concentration of $1 \times 10^{-4} \mathrm{M}$.
Figure 23. XEOL spectrum of anthracene in n-heptane 81 at a concentration of $1 \times 10^{-4} \mathrm{M}$.
Figure 24. XEOL spectrum of anthracene in n-octane 82 at a concentration of $1 \times 10^{-4} \mathrm{M}$.
Figure 25. XEOL spectrum of 3,4-benzopyrene in 83 a-hexane at a concentration of $1 \times 10^{-4} \mathrm{M}$.
Figure 26. XEOL spectrum of 3,4-benzopyrene in 84 n-heptane at a concentration of $1 \times 10^{-4} \mathrm{M}$.
Figure 27. XEOL spectrum of 3,4-benzopyrene in 85 n-octane at a concentration of $1 \times 10^{-4} \mathrm{M}$.
Figure 28. XEOL spectrum of solid argor deposited on 88 a beryllium window at 10 K from a flowing gas streau.
Figure 29. XeOL spectrum of solid krypton deposited 90 on a beryllium window at 10 K from a flowing gas stream.
Figure 30. XEOL spectrum of solid xenon deposited on 91 a beryllium window at 10 K from a flowing gas streau.

CHAPTEK 1: INTRODUCTION

The search for cancer-causing agents began in 1775 when physicians observed an abnormally high occurrence of cancer of the scrotum in chimey sweeps. Today, the carcinogenic and mutagedic properties of polynuclear aromatic hydrocarbons (PAHs), a major component of soot, are well known (1,2). nll humans are exposed to many natural and man made sources of patis. These compounds are produced in hydrocarbon-fueled combustion processes, both natural (e.g. forest fires (3)) and controlled (e.g. internal combustion engines, (4) fuel-rich flames (5)). In addition to the many existing sources of paHs, the dwindling supply of petroleum threatens to add another source of PAHs, as coal becomes an energy substitute. PAHs occur in coal tar pitch (6,7), in the environment surrounding coke production (8). in coal conversion processes (9), in coal liquification products (10-12), and even in coal (13).
once formed, the PAHs can enter the atmosphere and the food chain. The modern coal-burning power plant is one example of a particularly danger ous source of atmospheric paHs. The palls formed in the combustion process enter the atmosphere as gases and subsequently condense on the particulate matter formed in the boiler (14) and finally escape into the environment by reing immobilized on the very fine particulate matter not removed by precipitators. In this
form the paHs are inhaled deeply into the lungs and become imbedded in tissue. The localized concentrations of pars in the lung tissues represents a serious health hazard. pahs also enter the body during the consumption of nourishment and water. Presh water supplies contain pats in the range from 1 part per trillion in ground water to 100 parts per trillion and higher in industrially-polluted surface water (15, 16). Certain foods contain large quantities of PAHS. Smoked and charcoal broiled foods have been shown to be dietary sources of PAHS. In one study the content of PAHs ranged from 0 to 141 part per billion in smoked foods and from 0 to 164 part per billion in charcoal broiled foods (17). In a more general study paHs were found at trace levels in meat, fish, poultry, loot vegetables, beverages, dairy products, oils, fats and shortenings (18). The occurrence oi PAHs in the diet is an important source of human exposure to carcinogenic substances.

The many different sources and the varied composition of paH-contaminated materials presents the analytical chemist with a serious problem. Sensitive and selective analytical methods for the characterization of PAHs are required. For these reasons and because of the potentially hazardous exposure of humans to paHs in industrial (19) and natural environments, there is increasing interest in new analytical concepts for the qualitative and quantitative determination
of these compounds at trace and ultratrace levels (20).
paHs occur in natural and man-made substances at trace and ultratrace levels in complex matrices (21-24, 18). Therefore, sensitive and selective analytical techniques are required to characterize PAll mixtures. Because pats are highly luminescent materials (25,26), fluorimetric and phosphorimetric methods are favored for PAH characterization. Unfortunately, broad-band emission of mosi PAH systems prevents the simultaneous determination of several pats and limits the selectivity of luminescent methods.

To improve the selectivity of the luminescent methods for pah systems, solid state techniques are often used. Two approaches for sharpening the luminescent emission are line-narrowing fluokescence spectroscopy $(27,28)$ and mixed-crystal spectroscopy (29, 30,31). Line-narrowing fluorescence spectroscopy employs a laser to excite only those PAH molecules in a particular environment within a low temperature matrix (e.g. glass, crystal or shpol'skii). Molecules with vibrational levels in the first singlet electronic state which coincide with the laser frequency are excited. After vibrational deactivation these molecules are in equal energy excited states and fluoresce in a narrow frequency range. This technique has been demonstrated with an argon ion laser for anthracene and pyrene (32). Greatly improved selectivity should be possible with a tunable dye
laser in place of the argon ion laser. The second approach requires choice of a solvent or matrix in which the pahs can reside in a few particular orientations. If patis are dissolved in n-alkanes (pentane to nonane) and the resulting solutions are cooled to a temperature in the range of 4 K to 77 K, narrow-lined emission is observed under UV excitation. The impurity $P A H$ molecules in the n-alkane host are held in substitutional sites and lattice broadening of their emission is not observed. These quasilinear spectra are a manifestation of the Shpol'skii effect (33-35). A review of the Shpol'skii effect (36) summarizes the systems which display this behavior. The variety of systems listed suggests the phenomena is quite common. The applicatior of the Shpol'skii effect, excited by UV radiation, to the determination of 3.4-benzopyrene, a potent carcinogen, is well-documented (37-40).

The major drawbacks to luminescence analysis using the Shpol'skii effect are instrumental limitations (41). Scattered radiation from the excitation source is a particularly serious limitation since internal reflection occurs within the n-alkane snows formed upon freezing. The technique known as X-ray Excited Optical Luminescence (XEOL), which employs x-ray excitation, eliminates the problem of crosstalk between emission from the excitation source and luminescenct emission from the sample. The conventional
sources (e.g. lasers, mercury lamps, xenon arcs etc.) (42) are replaced by an x-ray tube. XEOL is a sensitive analytical technique capable of detecting impurities at the fractional part per billion level in appropriate solid or gaseous environments $(43,44)$. In an earlier publication (45) we reported the first observation of the Shpol'skii effect from pats in n-alkanes under x-ray excitation. The observation of quasilinear fluorescence and phosphorescence of pats under x-ray excitation suggested the combination of XEOL and the Shpol'skii effect might be a viable approach to the simultaneous multicomponent determination of complex PAH mixtures.

Another advantage gained by combining the Shpol'skii effect and XEOL is nonspecific excitation of the sample. The coincidence of the absorption band of the PAH molecule and the emission frequency of the excitation source is not a requirement hecause resonance processes are not responsible for direct excitation of the PAH molecules. Instead, highly selective energy transfer processes are responsible for the sensitized luminescence which is observed from trace pars contained in n-alkane microcrystals (45). The observation of sensitized luminescence indicates XEOL should be a sensitive method for the determination of PAHs in Shpoliskii matrices. To visualize the processes which occur in the proposed excitation mechanism, an energy level diagram of the

n-alkane-PAH system at 10 K is presented in Figure 1. An explanation of the excitation mechanism begins with the energy levels of the free host molecule on the left side of Figure 1. The ground state, first two excited singlet electronic states, and the ionization limit are shown. To simplify the diagram, the vibrational levels were not drawn. In the solid state, the ground state and the ionization limit of the free host molecule are analogous to the valence and conduction bands of an ionic crystal. The siaglet electronic states of the free host molecule broaden into molecular exciton bands which are characteristic of a molecular assembly of many host molecules. These molecular exciton bands are the transmission lines of the excitation energy. The perturbation exerted by an impurity molecule on neighboring host molecules results in the formation of host secondary trapping sites, shown in the mixed crystal region of the diagram. These perturbed host molecules are important in the selective capture of excitons by the impurity molecules. finally, on the right side of Figure 1 the energy levels of a typical PaH are depicted as discrete states. The use of a Shpol'skii solvent traps the PaHs in identical eaviconments in the crystal lattice and prevents broadening of the singlet and triplei excited electronic states. The observed optical signal is a composite of fluorescence and phosphorescence transitions of pat wolecules trapped in the
lattice.
The first step in the excitation mechanism is the interaction of x-ray photons with the sample or the sample holder. X-ray photons interact with matter in three ways; 1. Photoelectric effect, 2. Compton effect and 3. Pair production $(46,47)$. At the energies used in XEOL experiments (typically 60 kV.$)$ only the photoelectric effect occurs. Atoms of the solvent or sample holder may absorb an x-ray photon and eject a primary photoelectron with energy in excess of several kev. (process No. 1 in Figure 1). The excited atoms relax by the emission of characteristic fluorescence x-rays or the ejection of Auger electrons. The primary photoelectron, fluorescent x-rays and the Auger electrons collisionally excite neighboring atoms in a cascade process.

The collisional excitation of electrons and atoms of host molecules populates the molecular exciton bands (process No. 2 in figure 1). The exciton wave migrates through the molecular assembly and the excitation is delocalized (31). As the exciton propagates through the microcrystal it may enter a region in which an impurity molecule is trapped in the lattice. If the exciton migrates to a perturbed host molecule a phonon is produced and the exciton no longer possesses enough energy to migrate freely in the microciystal. The exciton continues toward the impurity with the production of
additional phonons (process No. 3 in Figure 1) until the impurity traps the exciton and is excited electronically or ionized. The inability of the exciton to return to the bulk of the crystal after the production of phonons aear the impurity sites results in the funneling of excictation energy to the impurity. Recombination, internal conversion and intersystem crossing with vibrational deactivation (processes No. 4, 5 and 6 in Figure 1) occur in the impurity. Fluorescence (process No. 7 in Figure 1) and phosphorescence (process No. 8 in Figure 1) return che PAH molecule to the ground state. Thus, the highly selective energy transfer processes produce the optical signal.

Th.e sharp line spectra resulting from the Shpol'skii effect make spectral resolution of sevecal pats possible and endow the XEOL technique with some selectivity. However, no monochromator is capable of resolving all lines. Even with the Shpol'skii effect, overlap occurs in the fluorescent and phosphorescent emission of paHs. Time resolved spectroscopy (TES) coupled with XEOL would further improve the selectivity of the method. The technique of time resolved spectroscopy (48-50) allows separation of overlapping luminescence of pAHs on the basis of their luminescent decay constants. Since paHs possess a large range of fluorescent and phosphorescent decay constants (26), it should be possible to time resolve fluorescent components and phosphorescent components. A
pulsed excitation source is required to perform the time resolution experiment. Before coupling XEOL and TRS a pulsed x-ray source has to be constructed.

This dissertation describes the development of XEOL-TBS as a method for the analysis of palls. The modification of a medical x-ray unit for use as a pulsed x-ray source under computer concrol is discussed. The ability to time resolve phosphorescent mixtures but not fluorescent mixtures because of x-ray pulse characteristics is reported. Finally, analytical data is presented on the analysis of synthetic PAH mixtures and other systems that might be amenable to study by the $X E O L-T R S$ technique are suggested.

CHAPTER 2: FACIIITIES

Experimental Facilities

The experimental facilities, used as basic components in a simple XEOL system, are described in an early publication (51). The basic components plus the additional components of the pulsed XEOL system used in the present study are summarized in Table 1.

In Figures 2 and 3 the essential hardware portions of the pulsed XEOL system are numbered for easy identification. The brass sample chamber, used to shield the operator from scattered x-rays, was redesigned for this system. All seams in the brass structure were fitted with right angle slots to eliminate streaming of scattered x-rays through conventional sєams. A reproducible mount for the cryogenic vacuum shield was fitted on top of the chamber. A table, to which the chamber was securely fastened, was added to support a ball bushing and bearing assembly for easy insertion and extraction of the cryogenic system into and out of the vacuum shield. Figure 2 shous the cryogenic system removed from the vacuum shield. The table has three-dimensional adjustments to simplify optical alignment of the system. optical alignment was performed using a continuous wave He-Ne laser with efission at 632.8 nm . (C. W. Radiation Inc. Mountain View, (A). The sides of the brass box are easily removed and

Figure 2. photograph of the pulsed XeOL system with the cryostat removed from the vacunin shield. The numhered components are: 1. cryostat (cold end), 2. sample holder, 3. tall bushing and bearing assembly, 4. radiation shield, 5. vacuum shield and 6. monochromator.

Figure 3. Photocraph of the pulsed XEOL system with the cryostat inserted into the vacuum shield. The numbered components are: 1. monochromator, 2. pliotomultiplier tube in housing, 3. brass sample chamber, 4. vacuum shield, 5. vacuum line, 6. x-ray tube and 7. cryostat (inechanical end).

$\underline{X}=\underline{\text { ray }}$ Sources	
DC x-ray power supply	operated at 50 kV . and 40 mA yater cooled Maximum 60 kV . 60 mA . (General Electric Corp.. Milwaukee, HI Model XRD-6)
DC x-ray tube	Tungsten target Water cooled anode Emission of x-rays from 0.1 nm . to 0.02 nm . (General Electric Corp.. Milwaukee, WI Model EA-75x)
Pulsed x-ray power supply	Medical x-ray unit Thyratron pulse circuits modified for computer control (Westinghouse Electric Corp. Greenville, PA)
pulsed x-ray tube	Medical x-ray tube Operated at 60 kV . 100 mA . using large filament Rotating anode Conduction cooled (The Machlett Laboratories Inc., Stamford, CT)
Spectroscopic Equippent	
Monochromator	Scanning 0.3 meter Crossed Czerny Turner mount (McPherson Instrument Corp., Acton, MA, Model No. 218)
Detector	EMI 6256B photomultiplier S-13 response (EMI Gencom Inc.. Plainview, NY)
High voltage power supply	Operated at 1200 VDC (NJE Corp., Kenilworth, NJ, Model s-325)

External optics	```precision grade quartz lens inch diameter 2 inch focal length (Corion Instrument Corp., Haltham, MA)```
Amplifier	Fast current amplifier with adjustable rise time and zero suppression (Keithley Instruments, Cleveland, $\mathrm{OH}, \mathrm{Model}$ 427)
Recorder	Two pen voltage recorder (Houston Instruments, Austin TX, Model 5210-5)

Refrigeration_and_Vacuum Equipment

Helium refrigerator

Diffusion pump

Floor pump

Vacuum gauge

Helium refrigerant
Temperature selectable from 10 K to 360 K with 1 degree resolution
(Air products and Chemicals Inc., Allentown, PA, Model CSA-202)

2 inch air cooled (NRC Equipment Co., Newton, MA)
(The Welch Scientific Co., Skokie, IL, Model 1397)
(National Research Corp.. Cambridge, MA)

Computer_and_Interfaces

computer

Control interface
Data interface

PDP8/E minicomputer (Digital Equipment Corp.. Maynard, MA)

See text
(Heath Co., Benton Harbor, MI)

Table_1._(Continued)

Buffer	(Heath Co.. Benton Harbor, MI)
Analog to Digital Converter	$($ (Hedcor Corp. Hoodland Hills
CA)	

replaced to accommodate either a DC or pulsed x-ray tube. The x-ray tubes are positioned to minimize the distance from the anode to the vacuum, because air car severely attenuate the x-ray beam. Figure 3 shows the brass chamber with the pulsed x-ray tube attached and the refrigerator inserted.

The control interface was designed by G. Holland of Ames Laboratory Instrumentation Group and built by technicians in the same group. A simplified circuit diagrau of the interface is presented in Figure 4. The interface instructions which control the operation of the x-ray source are indicated on the diagram. The flip flops are equivalent to toggle switches. The AND gates test two computer conditions before allowing pulses to reach the x-ray supply. A second circuit in the control interface generates tiraing pulses from the line voltage. The simplified circuit is drawn in Figure 5. The two operational amplifiers act as comparators. The voltage dividers, connected to the noninverting inputs, are used to fine tune the phase relationship between the x-ray

Figure 4. Simplified circuit diagran of the control interface. Interface comands are indicated in parentheses.

Figure 5. Simplified circuit diagram of the circuit used to generate timing reference pulses.
supply and the timing pulses. The gated integrator, also designed by G. Holland, is an operational amplifier with a feedback capacitor and several input $\mathrm{tesistors}$. board is contained in the control interface chassis. The simplified circuit is drawn in Figure 6. Three input resistances were included to attenuate the input voltage. The integrator is operated with two interface instructions shown on the diagram. All interface instructions, their octal values and functions are summarized in Table 2.

Table_2._Interface_Instructions
Instㄸuction \qquad Octal_Value \qquad Function

CREADY	6337	Enable coutrol interface
Cramdy	6331	Open communication lines
CWAIT	6336	Close communication lines
NOW	6332	Timing pulse
ROTRON	6341	Turn rotor on
fotrof	6342	Turn rotor off
XABLE	6343	Enable x-ray supply
XDABLE	6344	Disable x-ray supply
XON	6333	Turn x-rays on
XOFF	6334	Turn x-rays off
INBOX	6346	Initialize integrator
STBOX	6345	Start integrator
getdat	6354	Transfer data
STATOD	6455	Start A to D conversion
INATOD	6455	Initialize_A_to_D_converter

Computational Pacilities

The data, produced by the pulsed XEOL system, is processed by PL/1 and FORTHAN IV programs. These programs are

Figure 6. Simplified circuit diagram of the gated integrator. Control instructions are indicated in parentheses.
executed on the IBM $360 / 65$ and ITEL AS/5 computers in the Iowa state University Computation Center. The $\mathrm{PL} / 1$ progran was written to plot decay curve data using Simplotter (52) and to produce an input data set in the proper format for the FORTRAN IV program, called SMASH (53). SMASH was developed by the neatron activation analysis group at Ames Luboratory to separate complex decay curves and was modified for the present study to handle spectroscopic data. Listings of the pL/1 and SMASH programs appear in Appendix 1 and Appendix 2 respectively.

A conversational system, known as WYLBUR, makes operator interaction with the data processing system possible. WYLBUR was accessed over telephone lines located in our research area. A Decwriter II (Digital Equipment Corp. Maynard, MA) and Teletype (Teletype Corp., Skokie, IL, Model 35) were the devices used to communicate instructions to WYLBUR. WYLBUF is a text editing prograu with remote job entry and execute file capabilities supported by the Iowa State University Computation Center. The text editing features facilitate program writing and the remote job entry feature simplifies the debugging process. After the paper tape data set is transferred to the computer system, a WYLBUF execute file is used to generate a control data set for the pL/1 progran and to create a system job composed of job control language, program listings and data. WYLBUR subaits tas job to the
system and the results are printed in the computation center. Another facility available at the Ioua State University Computation Center for displaying graphical data is Simplotter. Simplotter is a FORTRAN program, developed at Ames Laboratory, for general plotting requirements. Simplotter was used to display decay curves, calibration curves and other general data. A PL/1 program was written to access Simplotter directly to plot simple data sets while WYLBUR was used to generate the data set with the proper format. A listing of the WYLBUR execute file and PL/1 program is given in Appendix 3.

The computational facilities, available through the Iowa State University Computation Center, made the time resolution experiment possible. The separation of complex decay curves by a least squares method using a digital computer is a routine exercise. Without the least squares method we would have limited our resolution to simple two-component systems because graphical methods would have been employed. Our ability to use mathemarical techniques, such as the SMASH routine, made it possible to extend time-resolved spectroscopy to mixtures with more than three components.

CHAPTER 3：PULSED XEOL SYSTEM

The pulsed x－ray excited optical luminescence system is shown as a block diagram in figure 7．At the heart of the system is a dedicated minicomputer．The striagent timing requirements for $x-r a y$ pulse generation and the careful measurement of integration periods during data acquisition required the use of a dedicated computer．Human interaction with the system occurs at the teletype where input is typed at the keyboard and output is generated at the punch as paper tape．The assembly language program which generates the x－ray pulse，controls the data acquisition system and handles input and output information is listed in Appendix 4. The computer interacts with the system through two interfaces．The data interface is used to transfer digital data from the analog－to－digital converter to the computer meary where it is stored until output is punched．The control interface connects the computer，the x－ray supply and the integrator．Timing reference pulses are produced in the control interface．

The excitation source in the luminescence system is a modified $⿴ 囗 十$ edical x－ray unit．The x－ray supply can produce a maximum voltage of 150 kV ．across the x－ray tube and a maximum current of 300 mA ．through the $x-r a y$ tube．The $x-r a y$ tube is a rotating anode，medical x－ray tube which is cooled by conduction．

Figure 7. Block diagran of the pulsed x-ray excited optical luninescence systen.

Three control signals are required to pulse the x-ray source. First, the rotating anode must be started. The rapid rate of rotation prevents excessive heating of localized areas of the anode surface and subsequent sputtering and pitting. Next the x-ray supply must be enabled. Under normal operation the enable function would produce x-rays. Finally, a gate pulse signals the power supply to release the thyratron switches and activate the x-ray tube for the duration of the pulse.

During the on period of the $x-r a y$ pulse, the sample, typically paHs dissolved in n-heptane at 10 K , is excited. At termination of the x-ray pulse some initial activity exists and decays exponentially. The emission is collected by a lens, dispersed with a monochromator and detected by a photomultiplier tube. The photomultiplier tube current is amplified by a fast response (typically 1-10 msec.) current amplifier and a voltage signal results.

The gated integrator sums the voltage signal for a predetermined period and is reset. prior co the reset command, the integrator output is sampled and an analog-to-digital conversion is performed. After the integrator is reset the process is repeated until the number of data points, specified by the operator, is obtained. The luminescent decay is characterized by the sequential data points. The timing relationship between the x-ray pulse and
the integration of the voltage signal is precisely controlled by the minicomputer. The digital data are transferred to computer memory where 1 uminescent decay from subsequent $x-r$ ay pulses can be added. The signal averaged data are punched on paper tape and analyzed on the Iowa State University Computation Center facilities.

In the following sections detailed explanations of the operation of different phases of the pulsed, x-ray excited, optical luminescence system are presented. The principles of x-ray pulse generation are outlined. The control of the sample temperature and the containment of the sample are described. The data acquisition options are presented and the section on data analysis follows the data after they are punched on paper tape to the final results. Finally, some consequences of the pulsing technique are discussed in the section on x-ray pulse characteristics.
X-ray Pulse Generation

The first at tempt to produce an x-ray pulse involved a high voltage grid in the x-ray tube which could deflect the electron beam away from the anode. Before implementing the grid approach, the x-ray emission of the DC supply was characterized. A liquid scintillator was irradiated and the response was observed with an oscilloscope. A typical oscilloscope tracing is depicted in Figure 8. A full-wave

Pigure 8. Oscilloscope tracing of the amplifier signal froduced by a protcoultiplier tuke in response to a fast scintillator (feryleae in n-heptane) excited by a DC x-ray source. Horizontal scale is $10 \mathrm{msec} / \mathrm{cm}$. and vertical scale is z volts/cm.
rectified sine-wave with a frequency of 120 cycles per second was observed. The sine waveform and not a DC level was observed because manufacturers of x-ray equipment do not filter the voltage supply which powers the x-ray tube. The size of the capacitors and resistors that are required to filter kilovolt voltage levels are prohibitive. The switch-selectable voltages and currents on x-ray sources are root-mean-square values and represent the $D C$ average of the waveform. The grid approach was abandoned and advantage was taken of the inherent pulsed nature of a DC x-ray supply. If the medical x-ray supply could be turned on ar a zero point in the waveform and off at a later zero point, an x-ray pulse which is a multiple of $1 / 120$ th of a second in length could be produced.

To generate such an x-ray pulse required precise determination of zero points in voltage waveforms, such as the one shown in figure 8. A computer was used to control the pulse generation. Because the computer could not monitor the voltage waveform of the medical x-ray unit directly, a virtual link between the computer and the $x-r a y$ unit was established with the control interface. The line voltage which powered the control interface was used to produce timing reference pulses every time the line vollage went to zero. Because the entire United States is on the same power grid the timing reference pulses differed frou the zero
points of the voltage waveform in the medical x-ray supply by a simple phase relationship. An oscilloscope was used to synchronize the timing reference pulses and the zero points in the voltage uaveform with the phase adjustments in the control interface.

Normal operation of the medical unit required two steps to produce x-rays. After the thyratron switches were modified tc function under computer control, three steps were required. The rotor had to be started, the x-ray unit had to be enabled, which produced x-rays in normal operation, and the thyratron switches had to be gated. The sequence of events in production of a typical x-ray pulse is shown in Figure 9. After the rotor was started and the x-ray unit was enabled, the computer start command enables the control interface. The computer ready command released the timing reference pulses. At the first zero point the x-rays were turned on and at the next zero point the x-rays were turned off. If a longer excitation period was required, the process was repeated until the number of waves, as specified by the operator, occurred. Variable length excitation periods from $1 / 120 t h$ of a second to several seconds could be produced. The maximum length of x-ray excitation period was limited by the voltage, current and time product which determined the electrical power the x-ray tube had to dissipate as heat.

Figure 9. Timing diagram which illustrates the time relationship and sequence of events in the production of a typical. x-ray pulse.

Refrigeration and Optical Systems

The pulsed XEOL system was developed to study a variety of samples over a large temperature range. A refrigeration system with the flexibility to study solids, liquids and gases at temperatures in the range from liquid helium to boiling water was desired. A helium refrigerator (see Table 1 for details) was purchased and incorporated in the pulsed XEOL system. The helium refrigerator was a two stage cryostat which worked on the Solvay process and provided the capability of examining the spectra of solids, liquids and gases at thumb-switch-selectable temperatures ranging froa 10 to 360 K with 1 K resolution.

Unfortunately, the helium refrigerator presented its own problems. Because the vacuun used to insulate the cryostat: from the surroundings prohibited the use of conventional XEOL sample handling techniques, a sample holder which could contain the sample in a vacuum, allow x-rays to irradiate the sample and transmit the optical radiation was designed. The materials problems encountered in designing the sample holder with the specifications mentioned above required a change from the conventional geometry used in an XEOL experiment. The sample holder used in this study is sketched in Figure 10. The body of the sample holder was made of oxygen-free high conductivity (OFHC) copper. The quarter-twenty thread attaches the holder to the cryostat.

SIDE VIEW

Figure 10. Sample holder used with the pulsed x Main body and retaining rings were fabricated from oxygen free high conductivity copper.

An indium washer was placed between the cryostat and the holder to compensate for expansion and contraction effects and to insure that thermal contact was made between the cryostat and the sample holder. The sample was held between a berylliun window and a fused quartz disc. Both the window and the disc were sealed to the holder with OFHC copper retaining rings and indium gaskets. Indium gaskets were used because of the ductility of indium at $10 \mathrm{~K} . \mathrm{Also}, 0.2 \mathrm{~mm}$. (0.008 in.$)$ indium gaskets replaced the thicker gaskets shown in Figure 10 because less iodium was smeared into the sample holder. The sample was injected into the holder with a syringe through the filling ports. The ports were threaded and sealed with number two screws and indium gaskets. The holder was emptied by removing two of the three number two screws.

A "straight-through" geometry was used with the sample holder described above. The optical diayram is shown in Figure 11. Advantage was taken of the penetrating ability of x-ray radiation and the crossed Czerny-Turner mount of the monochromator. The $x-r a y$ cross section of capture for carbon and hydrogen is small so the x-ray beam is not significantly attenuated by a hydrocarbon sample, therefore, the x-ray beam and the luminescence proceed into the monochromator. At the collimating mirror the optical signal is reflected to the grating but the x-ray radiation passes through the mirror and is absorbed by the lead shielding which surrounds the

Figure 11. A schematic diagram of the optical system designed around the crossed czerny-Turner mount of the AcFherson mochromator used in the pulsed XEOL system.
monochcomator. The optical signal is dispersed at the grating and proceeds to the photomultiplier tube where it is detected. Scattered x-ray radiation does not enter the photonultiplier tube to produce noise because the photomultiplier tube is positioned off the primary optical axis.

Data Acquisition System

The major objective for construction of the pulsed XEOL system was to obtain decay curve data. The laxge x-ray flux available with a pulsed source represents an advantage over the $D C$ sources, hence a secondary objective was to obtain pseudo-DC data. The major instrumental components of the data acquisition system were the gated integrator, the analog-to-digital converter and the data interface. The heart of the system, however, was the software which controlled the gated integrator. The software was written to make the data acquisition systen operate in one of two modes, a fast mode or a slow mode.

In the fast mode, pseudo-DC data was obtained. The fast mode was used to study fluorescent single component emission. The integrator was started at the zero point of the x-ray wave and reset at the next zero point. The luminescence produced by a single x-ray wave was integrated and the voltage output of the integrator was considered the average
$D C$ level of the luminescence. To improve the signal-to-noise ratio and the statistical values of the data several successive waves could be integrated during an extended pulse and the data of several pulses could be summed to signal average the noise. A mean and standard deviation were calculated and used as an average DC value for subsequent analytical calculations.

In the slow mode, decay curve data were obtained. There were two algorithms for sampling an exponential decay. The first algorithm involved integration of the entire decay curve and periodic sampling of the integrator output. A numerical differentiation generated the original decay curve. The second algorithal divided the decay curve iuto equal time segments. Each time segment was integrated and the voltage output was plotted as a function of time to obtain the decay curve. The second approach was used because the individual integrations "signal averaged" the noise to a constant value which could be subtracted from each data point and enhanced signal-to-noise ratios as compared to the discrece sampling algorithm resulted.

Three integration periods (1000, 100 and 10 msec) were programmed for the gated integrator, so that a large range of decay constants could be studied. The reset time of the integrator was 1 millisecond, hence a small percentage of the signal is lost. To illustrate, use of the 10 millisecond
integration period means 10 percent of the signal was lost during the reset time whereas with the 1000 millisecond integration period, only 0.1 percent of the signal was lost. The same "real-time" must be integrated to obtain equivalent signal-to-noise ratios if different integration periods are used. For example, if 10 decay curves are summed using the 1000 millisecond integration period then 100 decay curves have to be summed using the 100 millisecond integration period and 1000 decay curves have to be summed using the 10 millisecond integration period to obtain equivalent signal-to-noise ratios.
[a both modes the data acquisition system proceeded in several steps. The analog signal from the fast response current amplifier was integrated according to the algorithm of the mode. The integrator output was digitized by the analog-to -digital converter in 20 microseconds. The digitized signal was passed to the computer through the data interface in a parallel transmission. The data was temporarily stored in the computer until output was punched and then the paper tape was processed by the lacge computer system as described in the next section.

Data Analysis

The pulsed XEOL system generated large quantities of numerical data in either mode of operation. To process these
data, sophisticated computational facilities were needed. Furthermore, the time resolution experiment was dependent on a numerical characterization of simple or complex decay curves. The statistical technigues needed to characterize the decay cur ves were ideally suited for computer analysis. For these reasons it was necessary to accumulate data with the minicomputer but process the data on a more sophisticated ccmputer system.

The Iowa State University Computation Center operates an IEM $360 / 65$ and an $A S / 5$ computer system. $\mathrm{PL} / 1$ and FORTRAN IV are among the many languages supported by the system. An interactive system, known as WYLBUR, is also available. WYLBUR. $\mathrm{PL} / 1$ and FORTRAN IV were used extensively for the analysis of the numerical data.

The paper tape data set generated by the assembly language program contained control information used in the assembly language program and the numerical data collected from the experiment. The data set was transferred to the large computer and stored on disc. WYLBUR was used to construct a job which calculated the experimental results. If the fast mode was run the job contained only a PL/1 program which read the data from disc and calculated a mean and standard deviation. The results were printed with a data dump of the important control variables. If the slow mode was run, the job contained a RL/1 program and a modified FORTRAN IV
program. The $\mathrm{PL} / 1$ program read the data from disc and plotted the decay curve using simplotter. The data dump was generated and an output data set was created which was the input for the FORTRAN IV program, called SMASH. SMASH either calculated a decay curve by a direct-search method or used a linear least squares procedure to calculate initial activities of the luminescence. The results of the SMASH program were printed by the output routines contained within the program.

After the data analysis job was completed, the output was retrieved from the Iowa State University Computation Center. The results were extracted from the printed material. If wavelength or concentration plots were desired, another jcb could be created with a WYLBUR execute file and PL/1 program, which generated a computer plot with Simplotter. Analytical data were calculated with a hand calculator.

All the programs mentioned in this section are listed in Appendices 1-4. The PL/1 programs were written specifically for this study but the SMASH program was borrowed from the neutron activation analysis group and the input routine was modified to facilitate operation of the program. The job control language which regulates execution of the job is
 the job is listed in Appendix 6.

X-ray Pulse Characteristics

The method used to generate the x-ray pulse limited the range of the time resolution experiment. The liaitation is manifest by a differential equation which relates the number of excited molecules as a function of time to a supply term and a depletion term. The relation is expressed in equation 1:

$$
\begin{equation*}
N^{\prime}=S * F-k * N \tag{1}
\end{equation*}
$$

where N represents the number of excited molecules as a function of time, S is the cross section for capture of an x-ray photon, F is the driving function or functional form of the excitation source $(F=\sin (\omega t))$ and k is the decay constant of the excited molecule. The equation holds only while the x-ray pulse is active. The solution is given in equation 2;

$$
\begin{equation*}
N=S\left[k * \sin (\omega t)-\omega^{*} \cos (\omega t)\right] /\left[k^{2}+\omega^{2}\right] \tag{2}
\end{equation*}
$$

Three cases are considered to simplify the form of the solution. If $k \gg w$, which corresponds to phosphorescent emission, then equation 3 results;

$$
\begin{equation*}
N=(S / \omega) \cos (\omega t) \tag{3}
\end{equation*}
$$

As the x-ray pulse ($\sin (\omega t)$) goes to zero, the number of excited molecules goes to a maximum and an initial activity
exists after the x-ray pulse. If $k \ll \omega$, which corresponds to fluorescent emission, then equation 4 results:

$$
\begin{equation*}
N=(S / k) \sin (\omega t) \tag{4}
\end{equation*}
$$

Now, as the x-ray pulse goes to zero so does the number of excited molecules and no initial activity exists after the $x-r a y$ pulse. Finally, if $k \approx \omega$ then no simplification of the equation is possible. Some initial activity does exist after the x-ray pulse but the decay is severely distorted by the shape of the excitation pulse. Fourier techniques are used to deconvolute the data and extract the decay curve.

To sumarize the three cases, with the $x-r a y$ pulse used in the present study the time resolution experiment was limited to phosphorescent emission. Fluorescent emission could aot be time resolved but was studied by observation of single component emission with the pseudo-DC aode. No intermediate decay curves were observed from the paHs studied, tut as the scope expands to include other types of organic compounds it will be necessary to develop the fourier techniques to deconvolute the data.

CHAPTER 4: EXPERIMENTAL PROCEDURES

Preparation of Chemicals, Solvents and Solutions

All of the PAHS used in the XEOL study are listed in Table 3. The paHs were purified by zone refining or vacuum sublimation as indicated in the table. The crude paHs were sealed in a glass tube under a partial pressure of helium and melted before being zone refined. A minimum of five passes on a ten-stage zone refiner were used to purify the pars. The zone refined tubes were scratched with a file and broken in thirds. The top and botton thirds of the tube were discarded and the middle third was retained. The paHs were chipped and scraped from the glass tube when needed for solutions. To vacuum sublime corone and benzo-ghi-perylene, the two compounds were sealed individually in a vacuum under a water-cooled glass probe. A mineral oil bath was used to sublime the PaHs which subsequently condensed on the glass probe. The glass probe was removed from the vacuum and the PAH was scraped from the surface and stored for later use. Vacuum sublimation was used because too little starting material was available for zone refining. Only naphthalene and fluorene were used as received.

On the basis of their XEOL spectra, seven of the paHs were used as model compounds for the time resolution experiments. Triphenylene, coronene, chrysene, phenanthrene,
fluoranthene, naphthalene and fluorene exhibited phosphorescent emission. Perylene and 3,4-benzopyrene were used as model compounds for the single component fluorescent experiments.

Table 3. Polynuclear Aromatic Hydrocarbons

```
_Compound
```

Naphthalene
Anthracene
Phenanthrene
1,2-Benzanthracene
pyrene
Chrysene
Triphenylene
1,2,5,6-Dibenzanthracene
3,4-Benzopyrene
Perylene
Benzo-ghi-perylene
Coronene
Fluorene
Fluoranthene

As received Zone refined Vacuum sublimed Vacuum sublimed As received
zone refined

Three n-alkane solvents were used, n-hexane, n-heptane and n-octane. The solvents were distilled and passed through a cation exchange resin in the silver form to remove the last traces of aromatic impurities. A weak bond is formed between tbe silver cation and the pi bond of the aromatic system. If the price of the solvents should become prohibitive the purification procedure can be used to recycle the n-alkane solvents. Gas chromatographic analysis of the purified solvents revealed the only contaminants were trace amounts of
isomeric aliphatic hydrocarbons.
Stock solutions of the PAHs were prepared in volumetric flasks from weighed quantities of purified pats. Concentrations ranged from 0.01 M to 0.0001 M . Solubility limited the maximum concentration for several paHs. paHs which dissolved slowly were equilibrated overnight or yigorously stirred by an ultrasonic cleaner. Concentrated stock solutions were prepared to minimize adsorption and decomposition effects commonly observed with very dilute solutions. All stock solutions were stored in the dark to avoid photodecomposition. Dilute solutions were prepared as needed on a day-to-day basis from the stock solutions. No successive dilutions were performed to minimize pipetting errors.

Time Resolved Spectroscopy

The principles of time resolved spectroscopy are based on the radiative lifetimes of excited molecules. The functional form of the time dependence of single component luminescence is given in equation 5:

$$
\begin{equation*}
I(t)=I(0) \exp (-k t) \tag{5}
\end{equation*}
$$

I(t) is the emitted intensity as a function of time, $I(0)$ is the initial intensity at the termination of the excitation pulse, k is the decay constant of the excited species and t
is the time. If many species are enitting simultaneously the time dependent intensity is expressed by equation 6:

$$
\begin{equation*}
I(t)=\sum_{i} I(0)_{i} \exp \left(-k_{i} t\right) \tag{6}
\end{equation*}
$$

The total intensity is the sual of the intensities of all the emitting species.

The time resolution experiment is divided into two phases. First, decay curves are obtained from the individual luminescent species and decay constants are determined by substitution of the data into equation 5. Second, decay curves from mixtures of luminescent species are collected. The decay constants, determined from single component decay curves, are substituted into equation 6 and the initial intensity of each component is calculated. Finally, the initial intensities are related to the concentration of the luminescent species in the sample.

To prepare either phase of the time resolution experiment the steps listed in Table 4 are performed. After the preparations are completed, the experiment is initiated by operator interaction with the minicomputer. The step by step operation of the minicomputer is described in Table 5.

After the experiment is completed and the paper tape data set is transferred to disc, WYLBUR is used to prepare a job which processes the data. If a decay constant is sought certain conventions are followed. A preliminary job is

Table_4. Stepuise preparation_of pulsed XEOL System

1. Inject the sample into the holder and seal the holder with indium gaskets and number two screws (Approximately 1.0 ml . of sample is needed to fill the holder).
2. Attach the holder and radiation shield to the cryostat and insert the cyrostat into the vacum shield.
3. Connect the vacuum line and pull a vacuum on the contents of the vacuum shield.
4. Start the refrigerator and wait for the sample to cool.
5. Turn on the medical x-ray unit and select the current and voltage for the x-ray pulse (typically 60 kV .. 100 mA).
6. Make certain the slits are opened (typically 1000 micrometers), the monochromator is tuned to zero order and the photomultiplier tube is on (typically 1200 volts).
7. Turn on the computer_poyer key and the teletype.
created which generates a plot of the decay curve. An estimate of the half life is made from the decay curve by measuring the time the intensity drops to one half the initial value. The decay constant is equal to 0.693 divided by the half life. A second job is generated which contains SMASH. The estimate of the decay constant is input into SMASH as a negative number. The negative estimate signals SMASH to perform a direct search for the decay constant. The initial estimate is used to calculate a maximum value for the quality of fit. A search vector is followed and the value for the quality of fit is minimized as the search vector proceeds to
the final value of the decay constant. At the completion of the calculation output is generated which lists the initial data and the calculated fit with the estimated decay constant and with the final decay constant.

Table 5. Minicomputer operation

1. Load the assembly language program into memory if the program is not already present in memory (Consult the operations manual).
2. Depress all address switches and press the extended address load switch.
3. Load 200 octal into the address switches and press the address load switch.
4. Place the halt switch in the up position, press the clear switch and the continue switch (The telepype should print a message).
5. Enter the date and time as requested and answer subsequent questions. Typical answers are; Number of waves $=480$, Number of passes $=10$, Transient decay $=800$. Number of data points $=100$, Range code $=3$. After the last question is answered the experiment will start automatically.
6. Turn the punch on and wait for the next question to be printed by the teletype.
7. After the experiment is completed depress the halt switch and tear the paper tape data set off the punch.
8. Roll the paper tape and submit it at the Iowa State University computation Center_for transfer to disc.

A complex decay curve can be time resolved with SMASH if different conventions are used. The same WYLBUR execute file
is used to prepare the job. A decay constant, which has been determined from single component data, is entered for each species which contributed to the decay curve. All decay constants are entered as positive numbers. The positive decay constants signal SMASH to perform a linear least squares procedure to calculate the initial intensities of the various components. The quality of fit is calculated and if the value does not fall between specific limits, error messages are generated. The error messages indicate whether too many or too few decay constants were entered. The output contains the initial data and the calculated data. The initial intensities are listed with the corresponding decay constants.

The output produced by the job is retrieved from the computation center and the calculated results are extracted from the printed matter and tabulated. If analytical results are sought the calculated results are normalized for amplifier gain and integrator input resistance. The normalization factors are listed in Table 6. After the results are normalized, calibration curves are plotted or unknown concentrations of PAH's are calculated.

Fluorescence Measurements

If fluorescent emission is measured the capacitor in the gated integrator is reduced by a factor of 60. Greater integrator sensitivity is needed because the jintegration

Table_6. Normalization_Factors
Amplifier_Gain Input Resistor Normalization Factor

1×10^{8}	50K ohms 100 K ohms	1 2
1×107	25K ohms	5
	50K ohms	10
	100 K ohms	20
1×10^{6}	25K ohms	50
	50K ohms	100
	100K ohms	200

period is shortened to $1 / 120$ th of a second when single waves are integrated. After the integrator is modified the pulsed XFOL system is prepared as described in Table 4. The x-ray supply is adjusted to 90 kV . and 300 mA . because a shorter pulse is used for the fluorescence experiment and the x-ray tube can dissipate the heat. The experiment is initiated as described in Table 5 but different input is used. The fast mode is specified for the assembly language program and only the number of waves in the pulse and the number of passes are entered. Typically 40 waves and 20 passes are selected. The experiment begins after the last question is answered.

Even though computerized data analysis techniques exist for the fast mode, the techniques were not used. The data collected from fluorescent emission were analyzed with a programable calculator. If analytical results are desired the calculated results are normalized with the factors given in

Table 6. A mean and standard deviation were calculated from the signal averaged data obtained for each wave in the pulse. Hovever, the data obtained from the first twenty waves were discarded because the x-ray flux produced by the x-ray tube is not stable immediately after the x-ray tube is turned on. The mean is used to profile emission bands, generate calibration curves and calculate unknown PAH concentrations.

CHAPTER 5: RESULTS AND DISCUSSION

Decay Constant Values

The first step in the time resolution experiment was the determination of decay constants of the phosphorescent paHs. These constants were determined from the stock solutions prepared from purified PAH materials. Because the pulsed XEOL system was untested, a reproducibility study of the. determination of several decay constants was performed. The five day stability of the system was measured for triphenylene, coronene, chrysene, phenanthrene and fluoranthene, and a mean was calculated from five values obtained on different days. The decay constants obtained on five different days for seven paHs are listed in Table 7. Two of the values in the table were excluded from statistical calculations by the Dixon criterion. The excluded values resulted from an error in the search routine used by SMASH, because noise in the measurement system can cause a large spread in the data points which describe a decay curve, with the greatest spread late in the decay scheme, and a false minimum in the quality of fit can be sought by the search vector. The freguency of occurrence of the error in the search routine was governed by the signal-to-noise ratio of the data. The mean and percent relative standard deviation of each decay constant are summarized in Table 8 .

Table_Iの_Five_Day_Deternination_of Decay_Constantsi_m_

Triphenylene	0.0696	0.0687	0.0688	0.0699	0.0689
Coronene	0.1160	0.1157	0.1165	0.1155	0.1169
Fluorene	0.1704	0.1690	0.1707	0.1704	0.1703
Phenanthrene	0. 2775	0.2781	0.2460^{2}	0.2736	0.2746
Naphthalene	0.3388	0.3483	0.3550	0.3385	$0.2878{ }^{2}$
Chrysene	0.3831	0.3809	0.3817	0.3849	0.3806
Flugoranthene	1.1231	1.1425	1,2067	120931	1.0222

${ }^{2}$ All quantities reported in sec-1
2 Values excluded by Dixon Criterion

Table_8._Decay_Constant_Statistics 1

Triphenylene	0.0692	0.77
Coronene	0.1161	0.50
Fluorene	0.1702	0.39
Phenanthrene	0.2760	0.79
Naphthalene	0.3452	2.3
Chrysene	0.3822	0.46
Flugranthene	121175	6.0

${ }^{1}$ All quantities reported in sec-1

If the decay constants are not independent of concentration, analytical applications of time resolved spectroscopy would be impossible. The concentration independent behavior of the decay constants had to be verified. Triphenylene, coronene, phenanthrene, chrysene and fluoranthene were selected for these verifications. The results are presented in Table 9. With the exception of the lowest concentration values for phenanthrene, chrysene and
fluoranthene, the decay constants reported in Table 9 agreed with the values tabulated in Table 8. Therefore, the independent behavior of the decay constants with concentration was verified. The three values at the lowest concentration were severely distorted by a background luminescence. When the concentration dependence study was performed the background interference was not understood and no correction was made. The source and nature of the background luminescence will be discussed in the next section.

Table_9s_Eoncentration_Dependence_of_Decay_Constantsin_

Triphenylene	0.0700	0.0705	0.0708	0.0715
Coronene	-------	0.1171	0.1180	0.1182
Phenanthrene	0.2791	0.2770	0.2820	0.3037
Chrysene	0. 3851	0.3879	0.3805	0.4950
Fluoranthene	1.2374	1.1924	0.9067	

1 All quantities reported in sec-1

A comparison of the decay constants observed in this study with literature values is shoun in Table 10. Examination of the tabulated values indicates XEOL-TRS and conventional methods give comparable results. The agreement
between decay constants obtained from optical excitation and x-ray excitation helps to unravel the XEOL excitation mechanism. Normally, the decay constants of phosphorescent: species in a highly ionized environnent are significantly differeat from the decay constants of phosphorescenct species in a neutral environment. Thus, x-ray excitation as compared to optical excitation does not affect the environment of the excited species appreciably even though ionized intermediates are produced by x-ray interaction with matter. Finally, the results obtained from decay curves of individual pats are summarized as decay constants, lifetimes and half lives in Table 11. The decay constant and the lifetime are reciprocally related and the half life is 0.693 divided by the decay constant.

Mixture Analysis by Time Resolution

One advantage of time resolved spectroscopy was demonstrated by some early results obtained from simple two component systems. As a first example of the usefulness of time resolved spectroscopy, a mixture of triphenylene and phenanthrene was studied. On the right hand side of Figure 12 the DC spectra of triphenylene and phenanthrene are presented with the background trace and the $D C$ spectrum of a mixture of the two compounds. The double lines which extend from the top spectrum to the bottom spectrum indicate the region of the

Figure 12. Time resolution of the phosphorescence emission from a mixture of triphenylene and phenanthrene in n-heptane by use of the pulsed XEOL technique.

Table＿10．＿Comparison＿of＿XEOL＿and＿Published＿Decay＿Constantsi＿

Triphenylene	0.069	0.062	0.062
Coronene	0.12	0.11	0.11
Fluorene	0.17	0.20	0.20
Phenanthrene	0.28	0.29	0.30
Naphthalene	0.34	0.42	0.38
chrysene	0.38	0.38	0.40
Flugranthene	1．12	1.18	こーニ

${ }^{1}$ All quantities reported in sec－1

Table＿11．＿Decay＿Constantse＿Lifetimes＿and＿Half＿Lives＿of＿PAHS

Triphenylene	$0.069 \mathrm{sec}^{-1}$	14.5	sec	10.0	sec
Coronene	$0.116 \mathrm{sec}^{-1}$	8.6	sec	6.0	sec
Fluorene	$0.170 \mathrm{sec}^{-1}$	5.9	sec	4.1	sec
Fhenantarene	$0.276 \mathrm{sec}^{-1}$	3.6	sec	2.5	sec
Naphthalene	$0.345 \mathrm{sec}^{-1}$	2.9	sec	2.0	sec
Chrysene	$0.382 \mathrm{sec}^{-1}$	2.6	sec	1.8	sec
Elugranthene	1．118＿sec－1	－289	sec	0×6	sec

spectra isolated by the monochromator．An obvious spectral interierence is observed．on the left hand side of figure 12 the decay curves for the individual compounds and the mixture are drawn．The decay conscants used to time resolve the spectral interference are given on the top two plots and the initial intensities are summarized on the botton plot．The nonzero initial intensities prove the spectral interference can be resolved temporally．A second example is presented in

Figure 13. Time resolution of the phosphorescence emission from a mixture of triphenylene and chrysene in n-heptane by use of the pulsed XEOL technique.

To determine the problems encountered in the time resolution of more complex mixtures with the pulsed XEOL system, a five component system which contained triphenylene, coronene, chrysene, phenanthrene and fluoranthene was examined. The five paHs were selected because their decay constants cover a large range of values with no overlap.

Even though the five components in the mixture share no common emission band and spectral interferences are not severe, a second advantage of time resolved spectroscopy was demonstrated when the five component mixture was time resolved. The individual lines in the emission bands of the FAHs were weak and analytical determinations based on emission of single lines lacked sensitivity. To demonstrate the improved sensitivity of PAH deterinination by time resolved spectroscopy the monochromator was tuned to zero order and the slits were opened to 1 millimeter. In this way all the light emitted by the sample proceeded through the monochromator unresolved. If the monochromator had not been an integral part of the pulsed XEOL system, only a lens and a mircor would have been used to transmit the optical signal to the photomultiplier tube. With the slits opened to 1 millimeter the optical throughput of the monochromator obviously increased and the sensitivity of the measurement: improved. The amount of scattered radiation which reached the detector also increased as the sli'cs were opened, but with
time resolution only radiation which is characterized by a specific decay constant was detected. All other radiation produces a DC background which is removed by a simple subtraction.

Complex decay curves of several dilutions of the mixture were collected with the pulsed XEOL system. Each decay curve was time resolved and the results were normalized. Analytical calibration curves, both linear and logarithmic, for each component in the mixture were plotted and are drawn in Figures 14-18. Several unexpected features were observed for the logarithmic and linear plots of concentration versus intensity.

The first unexpected feature was the nonlinear behavior of the calibration curves. An approximate slope of one half was observed for the \log plots. which indicated that the observed intensity was a function of the half power of concentration. Two explanations for the one half slope are possible. First, a half power rate expression could exist as an intermediate step in the kinetic scheme which describes the excitation mechanism. For example, a half power rate expression is observed for some free radical reactions (e.g. the formation of chlorine free radicals fron molecular chlorine). Ionized species and free radicals are produced when x-rays interact with matter. The second possibility is based on the scattering of light within the translucent

TRIPHENYLENE

Figure 14a. Linear plot of intensity versus molar concentration for triphenylene.

Figure 14b. Logarithmic plot of intensity versus molar concentration for triphenylene.

CORONENE

Figure 15a. Linear plot of intensity versus molar concentration for coronene.

CORONENE

Rigure 15b. Logarithaic plot of intensity versus molar concentration for coronene.

Chrysene

Figure 16a. Linear plot of intensity versus molar concentration for chrysene.

CHRYSENE

Figure 16b. Logarithmic plot of intensity versus molar concentration for chrysene.

PHENANTHRENE

Figure 17a. Linear plot of intensity versus molar concentration for phenanthrene.

PHENANTHRENE

Figure 17b. Logarithnic plot of intensity versua molar concentration for phenanthrene.

Figure 18a. Linear plot of intensity versus molar concentration for fluoranthene.

FLUORANTHENE

Pigure 18b. Logarithmic plot of intensity versus molar concentration for fluoranthene.
sample. The emission of the sample originares from different depths within the sample and not $j u s t$ the sample surface. Formation of a microcrystallide snow when n-alkanes are frozen produced many reflective surfaces withir the sample. Internal reflection and optical scattering reduced the probability of detection of a photon which originated in the interior of the sample as compared to a photon which originated on the surface of the sample. The relationship between concentration of luainescent species and the probability of detection of a photon emitted in the n-alkane snow as a function of distance from the surface of the sample qust be considered. The functional behavior of the probability of detection as a function of distance from the surface of the sample could be responsible for the observed half power depen dence of intensity on concentration. Escape depth considerations are common in many surface techniques and empirical functions have been used to make corrections for probabilities of escape for x-rays, photons and electrons (55). The answer to the question of which interpretation is correct, or if some other factors need to be considered could not be answered in the course of the present investigation. The second unexpected feature was the flattening of the fluoranthene and triphenylene analytical calibration curves at low concentration. This flattening could be attributed to a background luminescence from the quartz window in the
sample holder characterized by decay constants with values approximately equal to the decay constants for triphenylene and fluoranthene. The background luminescence of the quartz window at 10 K contains two slow components with decay constants 0.068 and $1.160 \mathrm{sec}^{-1}$. The second component was six times as intense as the first, hence a greater background effect was observed for fluoranthene as compared to triphenylene. The source of the background luminescence is defects and impurities in the quartz which become luminescent centers at low temperatures (56). Above 200 K no background luminescence is observed. Two possible solutions to this problem are considered in the next chapter.

Finally, the analytical calibration curves for coronene and chrysene flattened at high concentration. The observed behavior is not concentration quenching because singlet-triplet absorption is a forbidden process. The exact nature of the effect is not fully understood but energy transfer between luminescent species at high concentration and photochemical decomposition may be contributing to the observed behavior. Elucidation of photochemical processes in n-alkane systems induced by x-ray irradiation will be needed to understand the relationship between the observed intensity and high concentration of PAHs in the n-alkane snow.

To test the applicability of time resolved spectroscopy for analytical problems, three synthetic unknown paH mixtures
were prepared and analyzed. The analysis was performed in triplicate and the results are tabulated in Table 12. All the values in the table are reported in micrograms. The uncertainties range from a few percent to 20 percent relative. Values for coronene and chrysene are not reported for unknown No. 1 because the amount present was below the detection limit for that particular sample. The phenanthrene value for unknown No. 2 and the chrysene value for unknown No. 3 were low because of peculiarities in SMASH discussed earlier. Although the data in Table 12 are promising, additional development undoubtedly will be required before XEOL-TRS can make a major contribution to the determination of paHs in complex mixtures.

Unknown No. 1 Unknown No. 2 Unknown No. 3 Compound__-ACtual__Found__Actual_Found__ACtual_Eound

Triphenylene	0.57	0.64 ± 0.05	2.0	1.9 ± 0.2	5.7	5.7 ± 0.9
Coronene	0.60		3.0	3.0 ± 0.3	6.0	5.4 ± 2
Chrysene	5.7		11	12 ± 2	23	13 ± 1
Phenanthrene	1. 6	1. 3 ± 0.4	8.9	5.0 ± 0.4	36	34 ± 7
Fluoranthene	100	120 ± 10	200	$\underline{200 \pm} 40$	400	$440 \pm \pm 0$

${ }^{1}$ All quantities reported in micrograms
analysis performed ia triplicate

Single Conpouent Aalysis by Fluorescence

The pseudo-DC mode was used to measure fluorescent emission induced by the greater x-ray flux available from the medical x-ray supply. Wavelength profiles were obtained for 3,4-benzopyrene and perylene in the wavelength region around 427.5 nm . and $453.0 \mathrm{~nm} .$, respectively. Analytical calibration curves were plotted from normalized data obtained froll the maxima of the wavelength profiles. The analytical calibration curves were used to analyze three synthetic unknowns. The third unknown contained both compounds whereas the other two unknowns contained only a single component. The analysis was perforued in triplicate and the results are tabulated in Table 13. All values are reported in micrograms.

Table_13._Eluorescence_Data_from_pulsed_XEOL_Aalysisi 2 Unknown No. 1 Unknown No. 2 Unknown No. 3 ___Compound____ACtual__Found__Actual__Eound__Actual__Found__ Perylene $2.51 .6 \pm 0.8$--- ---- $12.6 \quad 2.9 \pm 0.2$

1 All quantities reported in micrograms
2Analysis performed in triplicate

The results are disappointing for the mixture and the uncertainties are unacceptable for all three unknowns. The large uncertainties are caused by the inability to
reproducibly peak the monochromator on the maximum intensity wavelength of the emission band and the fluorescent hackground emitted by the sample holder. Location of the maximun intensity wavelength of the emission band was a long tedious plocess with the pseudo-DC excitation source as compared to the standard DC excitation source and an alternate approach was sought. Suggestions for the correction of these problems are discussed in the next chapter. The analysis of the mixture is further complicated by the suppression of 3,4-benzopyrene emission by perylene. Interferences of the type observed for unknown No. 3 are expected when fluorescence analysis is performed with PAHs because energy transfer processes play a major role in the excitation and deexcitation mechanisms of many par systems. After appropriate system improvements the XEOL techrique could be applied to the fluorescent analysis of single component PAH systems. However, single component PAH analysis is not practical because paHs occur in complex mixtures. Therefore, the use of internal reference compounds, prior isolation of paHs by ring size and alkyl substitution or other innovative analytical approaches will be required before $X E O L$ can be applied to the fluorescent analysis of paHs.

Discussions and Conclusions

The results reported in this chapter demonstrate the feasibility of the XEOL-TRS technique for the analysis of simple mixtures of phosphorescent paHs. The technique could obviously be applied to other organic phosphorescent systems. The present study is the first application of XEOL to organic systems and many basic principles were established. The use of low temperatures and unconventional geometries are two examples. Techniques for the determination of decay constants were developed. As the scope expands to other organic systems, Fourier techniques and phase resolution will be required to measure shorter decay constants. The examination of fluorescence pioduced with a high power x-ray pulse demonstrated the flexibility of the pulsed XEOL system to study fluorescence and phosphorescence. The combination of XEOL with conventional pulsed fluorescence techniques will expand the scope of the XEOL method. Firsally, the temperature flexibility, supplied by the helium refrigerator employed in the pulsed XEOL system, makes possible the study of a wide range of solids, liquids and gases.

XEOL coupled with time resolved spectroscopy does not solve all the problems of $P A H$ analysis. The technique in the present state of development does not compete with gas or liquid chromatography, GC-MS or conventional fluorescence technifues. The inprovements discussed in the next chapter if
implemented should improve the capabilities of the pulsed XEOL system. However, the true potential of the method as applied to PAH analysis will not be appreciated fully until a nanosecond width x-ray pulse is used for excitation. A Eynchrotron produces an intense x-ray pulse of nanosecond width which would eliminate the limitations imposed on the present study by the pulse characteristics. As time and space become available on national synchrotron facilities a proposal, based on the work presented here, should be prepared. The improved sensitivity and more general applicability of time resolved fluorescence as opposed to time resolved phosphorescence should be stressed. Interferences (e.g. the suppression of 3,4-benzopyrene emission by perylene) could be characterized by the pulsed XEOL system in the pseudo-DC mode prior to the synchrotror study. Even with ideal x-ray excitation sources and unlimited computational facilities the XEOL technique would not be the ultimate method for the analysis of PAH mixtures. The paH problem is complex and many analytical techniques will be required to characterize natural and man made mixtures of pats.

CHAPTER 6: MISCELLANEOUS OBSERVATIONS AND FUTURE WORK

The work reported earlier $(13,45)$, combined with the results presented in this dissertation, is the first application of XEOL to an organic system. Furthermore, the use of a pulsed x-ray excitation source is a novel approach to XEOL. These two facts suggest the scope of application for XEOL coupled with conventional luminescent methods is very broad and requires additional investigation.

Before new applications of xEOL are considered. modifications of the pulsed XEOL system are described in the following section. Implementation of the modifications would eliminate many of the problems encountered in the PAH study. In the next section the effects of solvent composition are discussed and suggestions are presented for the enhancement of the sensitivity of the PAH analysis by XEOL. Finally, XEOL results obtained from novel systems are presented in the last section and new applications of XEOL to analytical problems are indicated.

pulsed XeOL System Modifications

The major problem encountered in the analysis of paHs with the pulsed XEOL system was the background luminescence emitted by the quartz window in the sample holder. To correct the problem, the quartz window can be replaced by a window composed of a different material or removed completely.

Several window materials were tested to eliminate the background luminescence but no suitable substitute was found. Single crystal quartz was not available whea the other materials were tested. A sample of single crystal quartz should de obtained and tested as a substitute window material.

An alternate approach to eliminate the background luminescence from the quartz window in the sample holder involved deposition of the sample on a cold beryllium disk from a flowing gas stream. A dollghnut-shaped manifold with twelve directional ports was designed. At the present time deposition techniques are being developed. The wajor problems that need to be solved are improved vacuum control, measurement and control of sample deposition and efficient vaporization and transport methods for the PAH material. After the problems are solved, many interesting experiments are possible, in particular, x-ray generation of reactive species and photochemical reactions. The deposition of gaseous samples on a cold surface opens the realm of matrix isolation to study by the XEOL technique.

Another problem, encountered in the fluorescence study, was the inability to reproducibly position the monochromator at a specific wavelength. Mechanical play in the wavelength counter and large temperature variations in the laboratory contributed to the problea. To correct the difficulty
software should be developed to calculate a polynomial fit from discrete data points which characterize the profile of the emission band. A numerical differentiation of the colynomial produces the derivative of the emission band shape. The wavelength of maximum intensity is equal to one of the roots of the polynomial expression which represents the derivative set equal to zero. The maximum intensity is calculated by substitution of the wavelength of maximum intensity into the original polynomial. These numerical methods eliminate the need to position the monochromator reproducibly because only the relative positions of the data points with respect to one another are required. The relative positions can be accurately determined by use of a computer-controlled stepper motor to position the monochromator at the discrete wavelengths in the profile of the emissiou band. The software and interface needed to operate a stepper motor by computer control were developed by D. Kal口icky (57) and are available in the laboratory. A stepper motor should be purchased and mounted on the monochromator and modifications of software for use of the stepper motor should be started.

In addition to the modifications described in the preceding paragraphs, optimization of the x-ray pulse Characteristics is imperative. The trade offs between voltage, current, and pulse duration of the x-ray pulse
should be studied. Figures 19-21 are plots of iutensity versus current, voltage and pulse duration. a factor of two increase in current or pulse duration doubles the measured intensity but an approximate fifty percent increase in voltaye produces an equivalent enhancement. Optimization of PAH analysis with respect to the three pulse parameters, within the limits determined by the energy the x-ray tube must dissipate as heat, should enhance the sensitivity and lower the detection linits of the XEOL technique.

Solvent Composition

The host matrix or solvent composition for an organic system, e.g. PAHs in n-alkane solvents, is an important factor in all XEOL experiments. The host matrix has to interact with the primary x-ray radiation and support energy transfer processes which excite the guest species. Very few host matrices exhibit XEOL emission from guest species. A better understanding of the excitation processes in those matrices which exhibit xEOL emission should be developed in the near future. The results of a study of the excitation mechanism for paHs in n-alkanes in particular, will assist in the prediction of new organic systems which will exhibit XEOL emission. The importance of solvent composition for the PAH study is demonstrated by two probing experiments.

Figure 19. Measured intensity as a function of the current of the electron beam used to produce the x-ray pulse.

INTENSITY VS VOLTAGE

Figure 20, heasured intensity as a function of the acceleration voltage experienced by the electron bean used to produce the x-ray pulse.

INTENSITY VS PULSE DURATION

Figure 21. Heasured intensity as a function of the duration of the x-ray pulse.

The first experiment examined the effect of n-alkane chain length on the structure of the XEOL spectrum. Anthracene and 3,4-benzopyrene were examined in n-hexane, n-heptane and m-octane. The three anthracene spectra are presented in Figures 22-24. The emission band for anthracene in n-hexane is broad and structureless whereas in n-heptane several sharp lines are observed and in n-octane a weak band is observed. A different effect is observed for

3,4-beazopyrene as shown in Figures 25-27. The structure of the emission sharpens and the intensity increases as the chain length increases. Similar solvent effects are observed for all the PAHs studied. These solvent effects and others previously observed for UV excitation of n-alkane-paH systems (35,58-61) need to be investigated so that the analysis of PAHS by the XEOL technique can be optimized.

A second probing experiment on solvent composition involved the introduction of a heavy atom to the n-alkane-pAH systea by addition of iodobutane or tetra-n-butyllead to the solvent. Addition of a heavy atom to the solvent induces the external heavy atom effect in PAH systems (62-64). The increase of the spin-orbit coupling of excited singlet and triplet states results in an increase in the rate of intersystem crossing between singlet and triplet states and thus enhanced phosphorescence enission. Analytical applications of the external heavy atom effect in UV excited.

Figure 22. XECL spectrun of anthracene in n-hexane at a concentration of $1 \times 10^{-4} \mathrm{M}$.

Figure 23. XECI spectrun of anthracene in n-heptane at a concentration of 1×10^{-4}.

Figure 24. XECI spectrum of anthracene in n-octane at a concentration of $\mathcal{Y} 10^{-4}$.

Figure 25. XECI spectrua of 3,4-benzopyrene in n-hexane at a concentration of $1 \times 10^{-4} \mathrm{H}$.

Figure 26. XECL spectrun of 3,4-benzopyrene in n-heptane at a concentration of $1 \times 10^{-4} \mathrm{H}$.

Figure 27. XECL spectrus of 3,4-benzopyrene in n-octane at a concentration of $1 \times 10^{-4} \mathrm{~B}$.

PAH systems are numerous (65-67). Furthermore, the x-ray capture cross section of an atom increases with atomic number (47). Therefore, the addition of a heavy atom to the solvent results in a host with a large x-ray capture cross section and a second enhancement of the luminescence emission should result with the $X E O L$ technique. The heavy atom host captures more x-ray photons than a hydrocarbon host and the energy of the $x-r a y$ beam is more efficiently converted to electronic excitation energy for the PAH guest molecules.

No effect was observed for iodobutane but an enhancement was observed for tetra-a-butyllead. Table 14 summarizes the effect of tetra-n-butyllead on five pahs at a concentration of 10 microliters of tetra-n-butyllead per 1 milliliter of n-heptane. The results indicate improved detection limits could be achieved with the addition of a heavy atom to the solvent. Future experiments should be scheduled to study the effect of heavy atom concentration on the signal and decay constant of the analyte. Also, the optimum concentration of heavy atom and the optimum heavy atom need to be determined.

Other Systems Amenable to Study by XEOL

An obvious application of the XEOL study of PAHS is the characterization of fuel oils by the paH fraction as described by the U. S. Coast Guard (68). Fuel oil samples were collected and XEOL spectra were obtained. The initial

Compound	Conc.	Signal Without Heavy Atom \qquad	Signal With Heavy_Atom	percent Increase
Fluoranthene	$1 \times 10^{-2 M}$	8642	76050	780\%
Chiysene	$1 \times 10^{-3} \mathrm{M}$	13019	21060	62\%
Pheuanthrene	$1 \times 10^{-3} \mathrm{M}$	31484	47200	50\%
Triphenylene	$1 \times 10^{-3 M}$	88157	123700	40\%
Coronene	$1 \times 10=4 \mathrm{M}$	-8454	$\underline{9} 360$	11\%

results were not competitive with the U. S. Coast Guard results, hence the fuel oil samples are being stored until the instrumental modifications have been completed. After the modifications are tested, the fuel oil samples will be characterized by XEOL spectra and complex decay curves. Characterization of fuel oils by complex decay curves will be one more method of identification necessary to fingerprint fuel oil spills and stock supplies of fuel oils.

XEOL emission from the final system considered was discovered by accident. The first experiments performed with the gas manifold involved the co-deposition of argon and PAHs on the beryllium disc to take advantage of the large $x-r a y$ capture cross section of argon as compared to carbon and hydrogen. A routine examination of a "pure" argon deposit revealed a complex spectrum, as shown in Figure 28 . The many lines and bands are characteristic of nitrogen, oxygen and other gaseous impurities in argon. Possible analytical applications for the determination of these gases in argon

Figure 28. XECI spectran of solid argon deposited on a berylliu: window at 10 K fron a floying gas stream.
should be investigated.
In Figures 29 and 30 the spectra of krypton and xenon are shown. The broad bands in the short waveleagth region suggest that these materials may be better suited as hosts for pats and other luminescent organic molecules. This possibility is being investigated. The origins of the other lines in the two spectra are unknown but trace gaseous impurities are the most likely sources.

The combination of rare gases and hydrocarbons, both aliphatic and aromatic, opens many avenues of research for the $x \in O L$ technique in the pulsed and $D C$ modes. The many matrices with varying degrees of heavy atom concentration, structural peculiarities and x-ray capture cross sections should supply ideal XEOL environments for many different types of organic analytes.

Figure 29. XECL spectrum of solid krypton deposited on a berplliua window at 10 K fron a flowing gas strean.

Figure 30. XECL spectrun of solid xenon deposited on a beryllium window at 10 K from a flowing gas streaw.

1. Haddow, A. in The Physiopathology of Cancer, 2nd ed.. edited by F. Homburger, Harper, New York, 1959, Chapter 14.
2. Jones, D. W. and Mathews, R. S., Prog. Med. Chem. 10. 159 (1974).
3. Blumer, M., Scientific American 234 (3), 34 (1976).
4. Hoffmann, D. and Wynder, E. L., Analytical and Biological_Studies_on_Gasoline Engine_Exhaust, Nat. Cancer Inst. Monogr. 9:91-116, 1962
5. Long, R., Studies_on_polycyclic Aromatic Hydrocarbons_in Flages. U.S.N.T.I.S. No. PB-220151, 1972.
6. Boden, H., J. Chrom. Sci. 14, 391 (1976).
7. Matsushita, H. and Arashideni, K., Bunscki Kagaku 2 h, $^{7} 76$ (1976).
E. Guerin, M. R., Griest, W. H., Ho, C. H., Shults, W. D.e in Third ERDA Environmental protection Conference, oak Ridge, TN, Sept. 1975.
8. Koppenaal, D. W. and Manahan, S. E., Environ. Sci. Technol. 10, 1104 (1976).
9. Particulate Polycyclic organic Matter, National Academy of Sciences, Washington, DC, 1972.
10. Kolanecki, L. and Skucinski, S., Rocz. Pomorskiej akad. Med. Szezecinie (Suppl. 2), 177 (1968).
11. Skucinski, S. and Kolanecki, L., Rocz. Pomorskiej Akad. Med. Szezecinie (Suppl. 2), 167 (1968).
12. Woo, C. S., D'Silva, A. R., Fassel, V. A., Oestreich, G. J., Environ. Sci. Technol. 12, 173 (1978).
13. Natusch, D. F. S. and Wallace, J. R., Science 186, 695 (1974).
14. Borneff, J., Der Landarzt 40, 109 (1964).
15. Shabad, L. M., Vestn. Akad. Med. Nauk SSR 27, 35 (1972).
16. Panalaks, T., J. Environ. Sci. Health b11. 299 (1976). 18. Howard, J. W., Fazio, T., White, R. H., Klimeck, E. A., J. Ass. Off. Anal. Chem. 51, 122 (1968).

19. Freudenthal, R. I., Lutz, G. A. and Mitchell, R. I., Carcinogenic potential of coal and Coal Conversion Products, Battelle Columbus Laboratories, Ohio, 1975.

2C. White, C. E. and Argauer, R. J. Eluorescence_Analysis, Marcel Dekker, New York, 1970. Chapter 12.
21. Albagli, A., Oja, H., Dubois, L., Environ. Lett. 6, 241 (1974).
22. Blumer, M. and Youngblood. W. W. Science 188, 53 (1975) -
23. Severson, R. F., Snook, M. E., Arrendale, R. F., Chortyk, O. T., Anal. Chem. 48, 1866 (1976).
24. Jones, P. R., Grammar, R. D., Strup, P. E., Stanford, T. B., Environ. Sci. Technol. 10, 806 (1976).
25. Lijinsky, W., Chestnut, A., Raha, C. R., Chicago Medical School Quarterly 21. 49 (1960).
26. Birks, J. B., Photophysics_of Aromatic Molecules, Wiley-Interscience, London. 1970.
27. Eberly, J. K., McColgin, W. C., Kawaoka, K.. Marchetti, A. P., Nature 251, 215 (1974).
28. Szabo. A., Phys. Rev. Lett. 25. 924 (1970).
29. McClure, D. S., Solid State Phys. B , 1 (1959).
30. Meyer, B. Low_Temperature Spectroscopy, American Elsevier, New York, 1971.

ミ1. Craig, D. D. and Walmsley, S. H., Excitons in Molecular Crystals, W. A. Benjamin, New York, 1968.

ミ2. Brown. J. C., Edelson, M. C., Small, G. J., Anal. Chem. 50, 1394 (1978).
33. Shpol'skii, E. V., Il'ina, A. A. and Klimova, L. A., Dokl. Akad. Nauk SSSR 87, 935 (1952).
34. Shpol'skii, E. V., Soviet Phys. Usp. 3, 372 (1960).
35. Shpol'skii, E. V., Soviet Phys. Usp. 6, 411 (1963).
36. Shpol'skii, E. V. and Bolotnikova, T. N., Pure and Appl. Chem. 37. 183 (1974).
37. Muel, B. and Lacroix, G., Bull. Soc. Chim. Fr. 2139 (1960).
38. Personov. R. I. and Teplitskaya, T. A., Zh. Anal. Khim. 20, 1125 (1965).
39. Dikun, P. P., Zh. Prik. Spektrosk. 6, 202 (1967).
40. Kirkbright, G. F. and DeLima, C. D., Analyst 99. 338 (1974) •
41. Lukasiewicz, R. J. and Winefordner, J. D., Talanta 19。 381 (1972).
42. Winefordner, J. D., Schulman, S. G., O'Haver, T. C., Luminescence_spectrogetry_in_Analytical_chemistry, Wiley-Interscience, New York, 1972.
43. Fassel, V. A., DeKalb, E. L. and D'Silva, A. P. in Analysis_and_Application_of Rare_Earth_Materials, edited by 0. B. Michelson, Nato Advanced Study Institute, Kjeller, Norway, Universitetsforlaget, 1973, pp. 109-122.
44. Goldstein, S. A., D'Silva, A. P. and Fassel, V. A., Radiat. Res. 59. 422 (1974).
45. D'Silva, A. P., Oestreich, G. J. and Fassel, V. A., Anal. Chem. $4 \underline{8}, 915$ (1976).
46. Birks. J. B., The Theory_and practice of SGintillation Counting, pergamon Press Ltd.. Oxford, 1967.
47. Kaelble, E. F., Handbook_of_X=rays, McGrawCompany, New York, 1967.
48. Fisher, $\mathrm{F}_{\text {. }}$ P. and Winefordner, J. D., Anal. Chem. 44, 948 (1972).
49. St. Joha, P. A. and Wineforduer, J. D., Anal Chem. 39, 500 (1967).
50. Winefordner, J. D., Accounts of Chem. Res. 2, 361 (1969).
51. Dekalb, E. L., Fassel, V. A., Taniguchi, To, Saranathan, T. R., Anal. Chem. 40.2082 (1968).
c2. Scranton, D. G. and Manchester, E. F., U. S. Atomic Energy Commission, Report No. IS-2305, 1971.
53. Korthoven, P. J. M. and Carlsen, F. S., U. S. Atomic Energy Commission, Report No. IS-1501, 1967.
54. McClure, D. S., J. Chem. Phys. 17. 905 (1949).
55. Colby, J. W. in Proceedings Sixth National Conference_on Electron probe Analysis, pittsburgh, Pennsylvania, 1971, pp. 17A-17B.
56. Leverenz, H. W. in An Introduction to Luminescence_of Solids, Dover Pulications Inc., New York, 1968, p. 220.
57. Kalnicky, D. J., Ph.D. thesis, Iowa State University, 1977.
58. Pfister, C., Chem. Phys. 2, 171 (1973).
59. Pfister, C., Chem. Phys. 2, 181 (1973).
60. Colmsjo, A. and Stenberg, U., Chemica Scripta 9, 227 (1976).
61. Dekkers, J. J., Hoornweg, G. P., Visser, G., Maclean, C., Velthorst, N. H., Chem. Phys. Lett. 47, 357 (1977).
62. Kasha, M., J. Chem. Phys. 20, 71 (1952).
63. Dreeskamp, H. and Zander, M. in Fifth Annual Symposium on Recent Adyances in Analytical Chemistry_of pollutants, Jeckyli Island, Georgia, 1975.
64. Aaron, J. J., Mousa, J. J., Winefordner, J. D., Talanta 20. 279 (1973).
65. Jakovljevic, I. M., Anal. Chem. 49, 2048 (1977).
66. Vo-Dinh, T., Yen, E. L., Winefordner, J. D., Anal. Chem. 48, 1186 (1976).
67. Seybold, P. G. and white, W., Anal. Chem. 47, 1199 (1975).
68. Fortier, S. H. and Eastwood, D., Anal. Chem. 50, 334 (1978).

ACKNOWLEDGMENTS

I wish to thank Dr. Velmer A. Fassel and Mr. Arthur P. D'Silva for their guidance and critical review of the work presented in this dissertation. The ideas and suggestions of my co-workers and fellow graduate students also contriruted to this research.

I am grateful for the many hours spent in conversation with George Holland of the Ames Laboratory Instrument Services Group. His expertise clarified many problems and made the virtual link between the medical x-ray unit and the minicomputer a reality.

The financial assistance granted me by Salsbury Iaboratories, Charles City, Iowa and the U. S. Department of Energy, Division of Environmental Research and Development is greatly appreciated.

I would like to express my appreciation for the love, guidance and encouragement I received from my parents, Kenneth and Lorraine Oestreich. I also wish to thank Lavern and Mary Dellwo for their support over the years I have known their daughter.

Above all, I thank my wife Barbara for her love, support and patience. Her encouragement and understanding made this dissertation possible. May I repay her many times over for the many sacrifices she cheerfully made over the past several years.

APPENDIX 1: TRS3

TRS3 is the EL/1 program which reads the experimental data from disc and generates the output data set which is the input data for SMASH. The PL/1 program translates data from a format specified by the assembly language program which runs on the PDP8/E minicomputer to data in the proper format for SMASH. Execution of TRS3 is the first major step in the job which calculates experimental results. TRS3 is run
 Afpendix 6. The operation of TRS3 is controlled by a group of input variables which specify the number of experiments which were performed and the mode of the pulsed XEOL system employed for each experiment. If the slow mode is specified TFS3 plots the decay curve with Simplotter. Simplotter is accessed by the CALL GRAPH and CALL GRAPHS statements which appear in the listing. A CALL ORIGIN statement, one of the Simplotter options, is used to move the position of the graph on the paper on which the graph is plotted. A listing of the source statements of TRS 3 is given on the following pages.
(STRG,SUBRG):
CORE: RROCEDORE OPTIONS (MAIN);
DCL GRAPH ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT, FIXED BIN, FIXED BIN, FLOAT, FLOAT, FLOAT, float. float, float, Char(20), CHAR(20). CHAR(20). CHAR(20)):
DCL GRAPES ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT, FIXED BIN, FIXED BIN, CHAR (20));
DCL ORIGIN ENTRY (FLOAT,FLOAT,FIXED BIN);
DCL IN FILE INPUT:
DCL OUT FILE OUTPUT ENVIRONMENT (CONSECUTIVE);
DCL OPTION (50) FIXED;
DCL (REJECT, INPUT) CHAR(80) ;
DCL (X1 (POINTS), Y1(POINTS), CORRECT (POINTS). ADDRESS (POINTS)) FLOAT CONTROLLED:
DCL (SUMSQR (POINTS), VAR (POINTS)) FLOAT CONTROLLED;
DCL (LAB1, LAB2) CHAR (20) ;
DCL COMP (NCOMP) FLOAT CONTROLLED;
DCL (DATE, TIME) CHAR(6):
DCL (RUNS, PASSES, NUMWAV, POINTS) FIXED BIN;
DCL (HEAD, XLAB, YLAB, GLAB, DATLAB) CHAR(80);
CAKL ORIGIN (0.0,1,0,1):
GET FILE (IN) LIST (RUN):
DO $I=1$ TO RUN;
GET FILE (IN) LIST (OPTION(I));
END;
RUNCNT=RUN ; $M=1$;
GETIN:GET EDIT (REJECT) (COL(1),A(70)) COPY;
GET EDIT (INPUT) (COL(1),A(63)) COPY;
GET STRING (INPUT) EDIT (DATE,TIME,RUNS,NUMWAV, PASSES, POINTS,LUMIN) (A (6), X(2),A(4), $\mathrm{X}(2), 5(\mathrm{~F}(5), \mathrm{X}(2)))$:
IF LUMIN=1 THEN
GET STRING (INPOT) EDIT (DELTIM,RANGE)
(X(49), 2(F(5), X(2)));
$\mathrm{J}=1$;
ALLOCATE Y 1 (POINTS) ;
INDAT:GET EDIT (INPUT) (COL(1),A(70)) COPY;
DO $I=1$ TO 7:
GET STRING (SUBSTR(INPUT.(10*I-9).8)) EDIT
(Y) (J)) (F (8));

IF $J=$ POINTS THEN GO TO ENDIN;
$\mathrm{J}=\mathrm{J}+1$;
END;
IF $J_{\neg}=$ POINTS+1 THEN GO TO INDAT:
ENDIN:RUNCNT=RUNCNT-1;
$\mathrm{J}=1$;
$\mathrm{Y} 1=-\mathrm{Y} 1$;
ALLOCATE CORRECT (POINTS);
ALLOCATE ADDRESS (POINTS):

```
CORIN:GET EDIT (INPUT) (COL(1),A(70)) COPY;
    DO I=1 TO 5;
                                GET STRING (SUBSTR(INPUT,(14*I-13),14)) EDIT
                                    (CORRECT(J),ADDRESS(J)) (2(F(5),X(2)));
                                    IF CORRECT(J)=0 THEN GO TO CORR;
                                    J=J+1;
END;
    IF CORRECT (J-1) ᄀ=0 THEN GO TO CORIN:
CORR: ALLOCATE SUMSQR(POINTS);
    J=1;
INSQR:GET EDIT (INPUT) (COL(1),A(70)) COPY;
    DO I=1 TO 7;
        GET STRING (SUBSTR (INPUT,(10*I-9),8)) EDIT
                                    (SUMSQR(J)) (F(8));
                                    IF J=POINTS THEN GO TO ENDSQR;
                                    J=J+1;
    END;
    IF J`=POINTS+1 THEN GO TO INSQR;
ENDSQR:DO I=1 TO FOINTS;
    IF CORRECT (I)=0 THEN GO TO ENDIT;
    SUMSQR(ADDRESS (I))=SUMSQR(ADDRESS(I)) +
                                    CORRECT(I)*16777216;
    END;
ENDIT: FREE CORRECT;
    FREE ADDRESS;
    IF LUMIN=0 THEN GO TO FAST;
    ALLOCATE VAR(POINTS);
    VAR=ABS(SUMSQR-Y1**2/PASSES)/(PASSES-1);
    FREE SUMSQR;
    CHECK=999;
    DO I=1 TO POINTS;
                            IF VAR (I) ᄀ=0 THEN CHECK=MIN(CHECK,VAR(I));
    END;
    DO I=1 TO POINTS:
        IF VAR(I)=0 THEN VAF(I)=CHECK;
    END;
    Y1=Y1/PASSES;
    ALLOCATE X1(POINTS);
    X1(1)=0;
    IF RANGE=1 THEN RANVAL=0.01;
                                    ELSE IF RANGE=2 THEN RANVAL=0.1;
                                    ELSE RANVAL=1;
    DO I=2 TO EOINTS;
            X1 (I) = X1 (I-1) +RANVAL;
    END;
    GET FILE (IN) EDIT (LAB1,LAB2) (COL(1),2(A(20)));
    CALL ORIGIN (11.0,0.0,1);
    CALL GRAPH (POINTS,X1,Y1,1,7,9,7,0,0,0,0,
                            'TIME (SEC)','INTENSITY',LAB1,LAB2);
    CALL GRAPHS (POINTS,X1,Y1,0,121,DATE|!' '\\TIME);
```

IF OPTION(M) $=1$ THEN GO TO SMASH;
DUMP: POT PAGE;
PUT SKIP LIST ('TRS2 DATA DUMP'):
PUT SKIP LIST ('DATE',DATE,'TIME',TIME,'RON NO.', BUNS);
PUT SKIP LIST ('NUMBER OF PASSES'.PASSES, ' n OMber of Xray waves', Numhav);
IF LUMIN=0 THEN GO TO CONT1;
PUT SKIP LIST ('TRANSIENT DECAY TIME (USEC)', (DELTIM* 5+10). 'INTEGRATION TIME (MSEC)',(10**RANGE));
PUT SKIP;
PDT SKIP LIST ('THE TIME VALUES ARE:');
PUT SKIP LIST (X1);
CONT1:PUT SKIP:
PUT SKIP LIST ('THE INTENSITY VALUES ARE:');
PUT SKIP LIST (Y1);
PUT SKIP;
PUT SKIP LIST ('THE VARIANCE VALUES ARE:');
PUT SKIP LIST (VAR);
PUT PAGE;
$M=M+1$:
IF RUNCNT•=0 THEN GO TO GETIN;
PUT FILE (OUT) SKIP;
GO TO STOP:
SMASH:AVE=0;IFIRST=0;DEADT=0.0;SIGMAB=0.0;
DO $I=1$ TO 10;
$A V E=A V E+Y 1$ (POINTS+1-I) ;
END;
BACKGR=AVE/10;
GET FILE (IN) EDIT (ISMASH) (COL(1),F(2));
DO $I=1$ TO ISMASH:
GET FILE (IN) EDIT (NCOME,INPU,IPLOT)
(COL (1), 3 (F(5))):
PUT FILE (OUT) EDIT (NCOMP, POINTS, IFIRST, INPU, DEADT, BACKGR,SIGMAB, IPLOT)
(CCL (1), 4(F(5)), 3(F(12,3)),X(19),F(5));
GET FILE (IN) EDIT (HEAD) (COL(1).A(80)); PUT FILE (OUT) EDIT (HEAD) (COL (1), A(80)); IF IPLOT: 0 THEN GO TO CONT3;
GET FILE (IN) EDIT (XLAB,YLAB,GLAB, DATLAB)
(COL (1). 4 (A(20))):
PUT FILE (OUT) EDIT (XLAB,YLAB,GLAB,DATLAB) (COL (1), 4 (A (20))) ;
CCNT 3:
ALOLOCATE COMP (NCOMP) ;
GET FILE (IN) EDIT (COMP) ((NCOMP) (F(10,3))): PUT FILE (OUT) EDIT (COMP) (COL (1). (NCCMP) ($\mathrm{F}(10,3)$)):
FREE COMP;
IF INPU<O THEN GO TO CONT4; PUT FILE (OUT) EDIT (Y1) (COL(1), $6 \mathrm{E}(12,5)$);

```
    PUT FILE (OUT) EDIT (X1) (COL(1),6 E(12,5));
                                    PUT FILE (OUT) EDIT (VAR) (COL(1),6 E(12,5));
CCNT4:END;
    GO TO DUMP;
FAST: AVE=SUM(Y1)/POINTS;
VARI=0;
    DO I=1 TO FCINTS;
                                    VARI=VARI+((Y1(I)-AVE)**2);
    END;
    VARI=VARI/(POINTS-1);
    STAND=SQRT (VARI);
    pUT SKIP LIST ('THE AVERAGE VALUE IS:',AVE);
    pUT SKIP LIST ('THE STANDARD DEvIATION IS:',STAND);
    PUT SKIP;
    GO TO DUMP;
STOP: END CORE;
```

SMASH is a FORTRAN IV program which determines decay constants for single component decay curves and initial intensities for each component in a multiple component decay curve. The operation of SMASH is described elsewhere (53). Several modifications were made on the input routines and declaration statements to facilitate the execution of the program for the analysis of spectroscopic data. SMASH is the second major step in the job which calculates experimental results. A listing of SMASH with the modifications appears on the following pages.
CALL SMASH1
STOP
END
SUBROUTINE SMASH1
DIHENSICN IPAR(10), SSIZE(10), X(10), Y(10)
REAL LaMbDA (10)
COMHON NSTEPS,NCOMP,FIT2,IFIRST,SSIZE,LAMBDA,ORFIT, 1NVAR,FIT1
1 NSTEPS=0
KOUNT $=0$
CALL SMINP1
IF (NCOMP) 2,63,2
2 ICONV=NVAR*400
3 KOUNT=KOUNT+1
DO $4 I=1$, NCOMP
$4 \operatorname{IPAR}(I)=0$
$I A=0$
$I B=0$
CALL SMFIT1
FIT1=FIT2
IF (NVAR) 6.5.6
5 IFIRST=0
6 IF (IFIRST) 10,7,10
7 CALL SMOUT1 (1)
IFIRST=1
IF (NVAR) 8,1,8
8 IF (KOUNT-1) 10,9,10
9 ORFIT=FIT2
10 TEMFIT=FIT2
11 FIT1=TEMFIT
DO $25 \mathrm{I}=1$, NCOMP
$\mathrm{X}(\mathrm{I})=\mathrm{L}$ AMBDA (I)
IF (SSIZE (I)) 13,12,13
$12 \operatorname{IPAR}(I)=0$
GO TO 25
13 LAMBDA(I) =LAMBDA(I) +SSIZE (I)
CALL SMFIT1
IF (NSTEPS-ICONV) 14, 14,62
14 IF (FIT2-FIT1) 15,20,20
15 IF (IPAR(I) -2) 16, 17,16
$16 \operatorname{IPAR}(\mathrm{I})=0$
17 IF (ABS (FIT 2-FIT1)-0.000001) 19, 18, 18
18 IB=1

```

IPAR(I) \(=1\)
19 FIT1=FIT2
GO TO 25
20 LAMBDA (I) =X (I)-SSIZE(I)
CALL SMFIT1
IF (NSTEPS-ICONV) 21,21,62
21 IF (FIT2-FII1) \(22,23,23\)
22 SSIZE (I) =-SSIZE (I)
GO TO 15
23 LAMBDA(I) \(=\mathrm{X}(\mathrm{I})\)
IF (IPAR (I) - 2) \(24,25,24\)
\(24 \operatorname{IPAR}(\mathrm{I})=0\)
25 CONTINUE
C
C END INITIAL SEARCH
26 DO \(27 \mathrm{I}=1\), NCOMP
IF (IPAR(I) - 1) 27,38,27
27 CONTINUE
IF (IB) \(28,33,28\)
28 DO \(32 I=1, N C O M P\)
IF (IPAR(I) - 2) \(30,29,30\)
29 SSIZE (I) \(=\operatorname{SSIZE}(\mathrm{I}) * 0.2\)
IPAB(I) \(=0\)
30 IF (ABS (SSIZE (I)) -0.00002*LAMBDA(I)) 31,32,32
31 SSIZE (I) \(=0.0\)
32 CONTINUE
\(I B=0\)
GO TO 58
33 DO \(34 \mathrm{I}=1\), NCOMP
IF (ABS (SSIZE (I)) - 0.00002*LAMBDA(I)) 34,34,35
34 CONTINUE
\(\operatorname{IF}\) (ABS (FIT 1-FIT2)-0.000001) 61.3.3
35 DO \(37 \mathrm{I}=1\), NCCMP
SSIZE (I) \(=\) SSIZE (I) * 0.2
IF (ABS (SSIZE (I)) -0.00002*LAMBDA (I)) \(36,37,37\)
\(36 \operatorname{SSIZE}(I)=0.0\)
37 CONTINUE
GO TO 58
ADJUST PARAMETERS FOR THE SEIECTED SEARCH
38 TEMFIT=FIT1
DO \(43 I=1\), NCOMP
TEMP=LAMBDA (I)
IF (IPAR (I) - 1) 40, 39,40
39 LAMBDA(I) \(=\mathrm{LAMBDA}(I) * 2 \cdot 0-X(I)\)
\(40 \mathrm{X}(\mathrm{I})=T E M P\)
IF (IA-1) 41,43,41
41 IPAB(I)=0

IF (SSIZE(I)) 42,43,42
\(42 \operatorname{IPAR(I)}=1\)
43 CONTINUE
CALI SMFIT1
IF (NSTEPS-ICONV) \(44,44,62\)
44 IF (FIT2-FIT1) 45.46 .46
45 FIT1=FIT2
SELECTED SEARCH
46 DO \(54 \mathrm{I}=1, \mathrm{NCOMP}\)
IF (IPAR (I) - 1) 54, 47,54
\(47 \mathrm{Y}(\mathrm{I})=\mathrm{LAMBDA}(\mathrm{I})\)
LAMBDA (I) =LAMBDA(I) +SSIZE (I)
CALL SMFIT1
IF (NSTEPS-ICONV) 48,48,62
48 IF (FIT2-FIT1) 53,49,49
49. LAMBDA (I) =Y (I)-SSIZE (I)

CALL SMFIT1
IF (NSTEPS-ICONV) 50,50,62
50 IF (FIT2-FIT1) 51,52,52
\(51 \operatorname{SSIZE}(I)=-\operatorname{SSIZE}(I)\)
GO TO 53
52 LAMBDA(I) \(=Y(I)\)
\(\operatorname{IPAR(I)}=2\)
GO TO 54
53 IA=1
\(I B=1\)
FIT1=FIT2
54 CONTINUE

IF (FIT1-TEMFIT) \(38,55,55\)
55 DO \(57 \mathrm{I}=1\), NCCMP
IF (IPAR(I) - 1) \(57,56,57\)
\(56 \operatorname{IPAB}(I)=2\)
57 LAMBDA(I) \(=X(I)\)
\(I A=0\)
GO TO 11
58 IF (FIT2-TEMFIT) 10,59,59
59 DO \(60 \mathrm{I}=1\), NCCMP
60 LAMBDA (I) \(=X(I)\)
GO TO 11
61 CALL SMOUT1 (0)
GO TO 1
62 CALL SMOUT1 (-1)
GO TO 1
63 STOP END
```

C
C SUBROUTINE INPUT
C
SUBROUTINE SMINP1
DIMENSICN IDENT (20), HALFL (10),SSIZE (10), XLAB(5),
1YLAB(5),DATLLAB(5),GLAB (5),TM(1000),RATE(1000),
2DIFF(1000),ACALC (1000),AO(10),C(10,10), P(1000,10),
3BGRND (1000),SIGMBG (1000), RAVAR (1000),DFIT (10),
4VAR (1000),COUNTS (1000),DELTAT(1000),NDIFF(1000),
5X(10),HL(10)
REAL LAMBDA(10)
INTEGER DF
COMMON NSTEFS,NCOMP,FIT2,IFIRST,SSIZE,LAMBDA,ORFIT,
1IDENT,TM,RATE,VAR,XLAB,YLAB,GLAB,DATLAB,IPLOT,COUNTS,
2ACALC,DIFF,DF,HL,AO,C,R,WDIFF,KS,DEADT,BACKGR,SIGMAB,
3RAVAR,IWRIT,FIT1,NVAR,DELTAT,NP,HALFL,TO
NV AR=0
READ (5,101) NCOMP,NP,IFIRST,INPU,DEADT,BACKGR,SIGMAB,
1IDUAL,IPLOT
101 FORMAT (4I5,3F12.3,14X,2I5)
IF (IPLOT) 116,115,116
116 CALL ORIGIN (0.0.0.0.0)
CALL ORIGIN (0.0,1.0,1)
115 IF (NCOMP) 102,145,102
102 READ (5, 103) (IDENT (I),I=1,20)
103 FORMAT (20A4)
IF (IPLOT) 104,105,104
104 READ (5,103) XLAB,YLAB,GLAB,DATLAB
105 READ (5, 106) (HALFL(I),I=1,NCOMP)
106 FORMAT (8F10.3)
IF (INPU) 129,112,111
111 NCOMP=0
GO TO 145
112 READ (5,126) (COUNTS (I),I=1,NP)
READ (5,126) (TM (I),I=1,NP)
READ (5,126) (VAR(I),I=1,NP)
126 FORMAT (6E12.5.8X)
113 DO 127 I=1,NP
RATE(I) =COUNTS(I) - BACKGR
RAVAR(I)=RATE (I)/VAR(I)
DELTAT (I) =TM(I)
127 CONTINUE
DO 128 I=2,NP
128 TM (I) =TM (I) -TM(1)
TO=TM(1)
TM (1) =0.0
129 DO 130 I=1, NCCMP
IF (HALFL(I)) 220,230,220
230 LAMBDA (I) =0.0
GO TO 130

```
```

 220 LAMBDA(I) =ABS (HALFL(I))
 130 CONTINUE
 IF (NCOMP-1) 107, 107,108
 108 XN=0.0
 IWRIT=1
 CALL SMFIT1
 FIT1=FIT2
 DO 131 I=1,NCOMP
 X(I)=LAMBDA (I)
 IF (HALFL(I)) 132,136,136
 132 XX=LAMBDA (I) *0.05
LAMBDA(I) =LAMBDA(I) +XX
CALL SMFIT1
IF (FIT2-FIT1) 133,134,134
134 LAMBDA(I)=LAMBDA(I)-2.0*XX
CALL SMFIT1
IF (FIT2-FIT1) 133,136,136
133 DFIT(I)=FIT1-FIT2
GO TO 135
136 DFIT(I) =XN-1.0
135 LAMBDA(I) =X (I)
131 CONTINUE
DO 140 I=1,NCOMP
K=NCOMP-1
DO }140\textrm{J}=1,\textrm{K
IF (DFIT (J)-DFIT (J+1)) 141,140,140
141 SWAP=DFIT(J)
DFIT (J)=DFIT (J+1)
DFIT(J+1)=SWAP
SWAP=LAMBDA(J)
LAMBDA(J) =L AMBDA (J+1)
LAMBDA (J+1) =SWAP
SWAP= HALFL(J)
HALFL(J) =HALFL (J+1)
HALPL (J+1) = SWAP
140 CONTINUE
107 IWRIT=0
NSTEPS=0
DO }142I=1,NCOM
IF (HALFL(I)) 143,144,144
143 SSIZE(I)=0.05*LAMBDA(I)
NVAR=NVAR+1
GO TO 142
144 SSI ZE (I) =0.0
142 CONTINUE
145 RETURN
END
C
C SUBROUTINE FIT
C

```
```

 SUBROUTINE SMFIT1
 DIMENSION TM(1000),P(1000,10),V(10),RATE (1000).
 1A0(10), ACALC(1000),DIFF(1000),HL (10),IDENT (20),
 2YLAB(5),GLAB(5),DATLAB(5),COUNTS (3000), DELTAT(1000).
 3HAL,FL (10),RAVAR (1000),CC (10,10),PAR (10),WDIFF(1000),
 4XLAB (5),SSIZE (10) , VAR(1000) ,C (10, 10)
 REAL LAMBDA(10)
 INTEGER DF
 COMMON NSTEPS,NCOMP,FIT2,IFIRST,SSIZE,LAMBDA,ORFIT,
 1IDENT,TM,RATE,VAR,XLAB,YLAB,GLAB,DATLAB,IPLOT,CCUNTS,
 2ACALC,DIFF,DF,HL,AO,C,P,WDIFF,KS,DEADT,BACKGR,SIGMAB,
 3RAVAR,IWRIT,FIT1,NVAR,DELTAT,NP,HALFL,TO
 NSTEPS=NSTEFS+1
 IF (NSTEPS-1) 700,701,700
 701 DO 702 I=1,NCOMP
 702 PAR(I)=1.0E60
 700 DO 2031 J=1,NCOMP
 IF (PAR(J)-LAMBDA(J)) 300,203i,300
 300 DO 203 I=1,NP
 DECAYF=-LAMBDA(J) *TM(I)
 IF (ABS (DECAYF) -50.0) 202.201,20:
 201 P(I,J)=0.0
 GO TO 203
 202 P(I,J)=EXP(DECAYF)
 203 CONTINUE
 2031 CONTINUE
DO 204 I=1,NCOMP
IF (PAR(I)-LAMBDA (I)) 320,204,320
320 V (I)=0.0
DO 204 K=1,NP
V(I)=V(I) +P(K,I) *RAVAR(K)
204 CONTINOE
DO 2051 I=1,NCOMP
DO 2051 J=1,NCOMP
IF (PAR(I)-LAMBDA (I)) 2205,2206,2205
2206 IF (PAR(J)-LAMBDA (J)) 2205,2207,2205
2207 C (I,J) =CC (I,J)
GO TO 2051
2205 C (I,J) =0.0
DO 205 K=1,NP
C(I,J)=C (I,J) +P(K,I) *P(K,J)/VAR (K)
205 CC (I,J) =C (I,J)
2051 CONTINUE
DO 2500 I=1,NCOMP
2500 PAR(I)=LAMBDA (I)
CALL SMATNV (C,NCOMP,DETERM)
DO 206 I=1,NCCMP
AO (I) =0.0
DO 206 J=1, NCOMP
206 AO(I) =AO(I) +C {I,J} *V (J)

```
```

 RS=0.0
 DO 208 I=1,NP
 ACALC (I) =0.0
 DO 207 J=1, NCCMP
 207 ACALC (I) = ACALC (I) +P(I,J) *AO(J)
 DIFF(I)=RATE(I) -ACALC(I)
 RS=RS + DIFF(I)**2/VAR(I)
 208 CONTINUE
 DF=NP-NCOMP
 XDF=DF
 FIT2=SQRT (RS/XDF)
 IF (INRIT) 217.751,217
 751 DO 2:1 I=1,NCOMP
 IF (LiLMBDA(I)) 210,209,210
 209 HL(I) =0.0
 GO TO 211
 210 HL (I) =LAMBDA(I)
 211 CONTINUE
 IE (NSTEPS-1; 215,212,215
 212 IE (IFIRST) 213,217,213
 213 WRITE (6,21If) (I,I=1,NCOMP)
 214 FORMAT (1H1,5H STEP,6X,3HFIT,9X,9(1H-,I1,1H-,8X),1H-.
 1I2,1H-/1H0)
 215 WRITE (6,216) NSTEES,FIT2,(HL(I),I=1,NCOMP)
 216 FORMAT (I5, F13.6,9F11.4,F12.4)
 217 RETURN
 END
 C
C SUBROUTINE MATINV
C
SUBROUTINE SMATNV (A,N,DETERM)
DIMENSION A (10, 10), PIVOT (10), INDEX(10, 2),IPIVOT (10)
EQUIVALENCE (IROW,JROW). (ICOLUM,JCOLUM), (AMAX,T,SNAP)
C
C INITIALIZATICN
C
DETERM=1.0
DO 301 J=1,N
301 IPIVOT (J)=0
DO 314 I=1,N
C SEARCH FOR PIVOT ELEMENT
AMA X=0.0
DO 306 J=1,N
IF (IPIVOT(J) - 1) 302,306,302
302 DO 305 K=1,N
IF (IPIVOT(K) - 1) 303,305,318
303 IF (ABS (AMAX)-ABS (A (J,K))) 304, 305,305
304 IROW=J

```
```

 ICOLUM=K
 AMAX=A (J,K)
 305 CONTINUE
 306 CONTINUE
 IPIVOT (ICOL UM) = IPI VOT (ICOLUM) +1
 C
C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
C
IF (IRON-ICOLUM) 307,309,307
307 DETERM=-DETERM
DO 308 L=1,N
SWAP=A(IROW,L)
A(IROW,L) =A (ICOLUM,L)
308 A(ICOLUM,L) = SWAP
309 INDEX (I, 1)=IROW
INDEX (I,2) = ICOLUM
PIVOT (I) =A(ICOLUM,ICOLUM)
DETERM=DETERM*RIVOT(I)
C
C DIVIDE PIVOT RON BY PIVOT ELEMENT
C
A (ICOLUM,ICOLUM)=1.0
DO 310 L=1,N
310 A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(I)
C
C REDUCE NON-PIVOT ROWS
C
311 DO 314 L1=1 N
IF (L1-ICOLUM) 312,314,312
\exists12 T=A (L1,ICOLUM)
A (L 1, ICOLUM) =0.0
DO 313 L=1,N
313 A(L 1,L)=A (L 1,L) - A (ICOLUM,L)*T
314 CONTINUE
C
C
C
INTERCHANGE COLUMNS
DO 317 I=1,N
L=N+1-I
IF (INDEX (L, 1)-INDEX (L,2)) 315,317,315
315 JROW=INDEX (L, 1)
JCOLOM=INDEX (L, 2)
DO 316 K=1,N
SWAP=A(K,JROW)
A (K,JROW) =A (K,J COLUM)
A (K,JCOLUM) =SHAP
316 CONTINUE
317 CONTINUE
318 RETURN
END

```

\section*{SUBROUTINE OUTPUT}

SUBROUTINE SMOUT 1 (ICASE)
DIMENSION DATLAB(5),AO(10), P \((1000,10)\), SAZERO (10),
1 IDENT (20), SRELAT (10), WDIFF (1000), HALFL (10), HL (10). 2DELTAT(1000), COUNTS (1000), RATE (1000), ACALC (1000), 3 XLAB (5), YLAB (5) ,GLAB (5) ,THALFL (10), TEMPHL (5) , \(4 S S I Z E(10), T M(1000), \operatorname{CORR}(10), \operatorname{DIFF}(1000), \operatorname{VAR}(1000)\), 5AZERO (10) ,C (10, 10)
REAL LAMBDA (10), LOGACT (1000), LOGFC (1000)
INTEGER DF
COMMON NSTEPS, NCOMP,FIT2,IFIRST,SSIZE,LAMBDA,ORFIT,
1IDENT,TM, RATE,VAR, XLAB,YLAB, GLAB, DATLAB, IPLOT, COUNTS,
2ACALC, DIFF, DF, HL, AO,C,P,WDIFF,KS,DEADT,BACKGR,SIGMAB,
3HALFL,TO, DELTAT,NP,FIT1,NVAR
EQUIVALENCE (LOGACT (1), WDIFF(1)), (LOGFC (1), ACALC (1))
DO \(400 \mathrm{I}=1\), NP
\(400 \mathrm{TM}(\mathrm{I})=\mathrm{TM}(\mathrm{I})+\mathrm{TO}\)
DO \(401 \mathrm{I}=1\), NCOME
\(\operatorname{CORR}(I)=E X P\) (TO*LAMBDA (I))
\(\operatorname{AZERO}(I)=A 0(I) * \operatorname{CORR}(I)\)
\(\operatorname{SAZERO}(I)=\operatorname{SQRT}(C(I, I)) * \operatorname{CORR}(I) * F I T 1\)
401 SRELAT (I) \(=\operatorname{SAZERO}(\mathrm{I}) /\) AZERO (I) \(* 100.0\)
IPERC \(1=0\)
IPERC2=0
IPERC \(3=0\)
DO \(406 \mathrm{I}=1\), NP
\(\operatorname{VAR}(I)=\operatorname{SQRT}(\operatorname{VAR}(I))\)
\(\operatorname{WDIFF}(I)=\operatorname{DFF}(I) / \operatorname{VAR}(I)\)
IWDIFF=IABS (IFIX(WDIFF(I))) +1
IF (ABS (WDIFF (I))-3.0) 402,403,403
402 GO TO (406, 404, 405), IWDIFF
403 IPERC \(3=\) IPERC3+1
GO TO 406
404 IPERC \(1=\) IPERC \(1+1\)
GO TO 406
405 IPERC2=IPERC2+1
406 CONTINUE
PERC1=FLOAT (IPERC1 +IPERC2 +IPERC3)/FLOAT (NP) * 100.0
PERC2 \(=\) FLOAT (IPERC2 + IPERC 3 ) /FLOAT (NP) * 100.0
PERC3=FLOAT (IPERC3)/PLOAT (NP) \(* 100.0\)
WRITE (6,407) (IDENT (I), \(I=1,20\) )
407 FORMAT (1H1,20A4)
IF (ICASE) 408,410,414
408 WRITE \((6,409)\) NSTEPS
409 FORMAT (86H THE SOLUTION IS NOT YET REACHED, OUTRUT IS 1Calculated with the parameter values after, I5,6H steps 2/1H0)
GO TO 412

410 WRITE (6.411)
411 FORMAT (45H RESULTS OBTAINED WITH FINAL PARAMETER 1VALUES/1H0)
412 HRITE (6,413) NP,NSTEPS, NCOMP, PERC1,NVAR,DF, PERC2, 2BACKGR,SIGMAB, PERC3,DEADT,ORFIT,FIT 1
413 FORMAT (15X, 16HINPUT QUANTITIES,50X,17HOUTPUT QUANTITI 1ES//12X, 23 HNOMBER CF DATA POINTS =, I5,56X, 17 HNUMBER OF 2 STERS \(=\). I5 \(/ 13 \mathrm{X}, 22\) HNUMBER OF COMPONENTS \(=, I 5,23 \mathrm{X}, 50 \mathrm{HPE}\) 3RCENTAGE OF POINTS DEVIATING MORE THAN 1 SIGMA =,F8.2/ 44X, 31HNOMBER OF VARIABLE DECAY CONS \(=, 15,34 X, 28 H(T H E O R\) 5 ETICAL VALUE \(=31.74\) ) /15X. 20HDEGREES OF FREEDOM \(=\), IS \(6,23 \mathrm{X}, 50 \mathrm{HP}\) ERCENTAGE OF POINTS EEVIATING MORE THAN 2 SIG \(7 \mathrm{MA}=, F 8.2 / 7 \mathrm{X}, 28 \mathrm{HBACKGROUND}\) (COUNTS/MINOTE) =.F9.1.30X. 828H(THEORETICAL VALUE \(=4.56\) )/1H,34HSIGMA BACKGRCUN 9D (COUNTS/MINUTE) =,F7.1,21X,50HPERCENTAGE OF POINTS D 8EVIATING MORE THAN 3 ETGMA \(=, F 8.2 / 8 \mathrm{X}, 27 \mathrm{HDEAD}\) TIME (MIC 7RO SECONDS) \(=\) F7. \(1,32 \mathrm{X}, 29 \mathrm{H}(\mathrm{THEORETICAL}\) VALUE \(=0.26\) )
6//21X,14HORIGINAL FIT =,F14.6.53X.11HFINAL FIT =,F14.6 5//1H0)
IF (ICASE) 445,548.417
445 WRITE \((6,447)\)
447 FORMAT (1H0/58X,17H*****WARNING*****/51X,30H*****CHECK
1 YOUR ESTIMATES*****/1H0/1H0) GO TO 448
548 NEG=0
DO \(442 \mathrm{I}=1, \mathrm{NCOMP}\)
IF (AZERO(I)) 443,443,442
443 NEG=1
442 CONTINUE
IF (NEG-1) 438,460,460
460 WRITE \((6,444)\)
444 FORMAT (1H0/58X, 17H*****WARNING*****/38X, 56H*****THE N 1UMBER OF COMPONENTS IS PROBABLY TOO LARGE*****/1H0) GO TO 448
438 IF (FIT2-2.0) 448.439.439
439 WRITE \((6,440)\)
440 FORMAT (1H0/58X,17H*****WARNING*****/38X,56H*****THE N 1UMBER OF COMPONENTS IS PROBABLY TOO SMALL*****/1H0) GO TO 448
414 WRITE \((6,415)\)
415 FORMAT (48H RESULTS OBTAINED WITH ORIGINAL PARAMETER 1 VALOES/1H0)
DO \(416 \mathrm{I}=1\), NCOMP
TEMPHL (I) \(=\mathrm{HL}(\mathrm{I})\)
THALFL(I) = HALFL (I)
HALFL (I) =ABS (HALFL (I))
\(416 \mathrm{HL}(\mathrm{I})=0.0\)
FIT1=FIT2
\(\mathrm{NV}=\mathrm{NV} A R\)
NV \(A R=0\)

ORFIT \(=0.0\)
GO TO 412
417 IF (NV) \(448,449,448\)
449 IF (FIT1-2.0) 448,450,450
450 WRITE \((6,447)\)
448 IF (ICASE) \(420,420,418\)
418 NVAR=NV
\(420 \operatorname{WRITE}(6,421)\)
421 FORMAT (1H0, 22X,9HCOMPONENT, 8X, 8 HORIGINAL, 9X,5HFINAL, 9
\(1 \mathrm{X}, 8 \mathrm{HACTIVITY}, 9 \mathrm{X}, 5 \mathrm{HSIGMA}, 9 \mathrm{X}, 5 \mathrm{HSIGMA} / 39 \mathrm{X}, 9 \mathrm{HDECAY}\) CON, 7 X ,
29HDECAY CON, \(8 \mathrm{X}, 6 \mathrm{HAT}\) EOB, \(8 \mathrm{X}, 8 \mathrm{HABSOLUTE,7X,8HRELATIVE//)}\)
WRITE (6,422) (I, HALFL (I), HL (I), AZERO (I), SAZERO (I) ,
1SRELAT (I) , I = 1 , NCOMP)
422 FORMAT ( \(22 \mathrm{X}, \mathrm{I} 5, \mathrm{~F} 21.4\), F16.4,F16.3,F14.3,F13.3)
WRITE \((6,423)\)
423 FORHAT ( \(1 \mathrm{H} 0 / / / 1 \mathrm{H} 0\) )
424 WRITE \((6,425)\)
425 FORMAT (8X,7HMIDTIME, 7X,4HTIME,10X,8HORIGINAL, 8X,9HC0 1RRECTED, 8X, 5HSIGMA, 8X, 10HCALCULATED, 9X, 8HABSOLUTE, 11X, 210HDIFFERENCE/9X,5HCOUNT, 6X,8HINTERVAL, 10X, 4HDATA, 13X, 34HRATE, 11X,4HRATE, 11X,4HRATE, 11X, 10HDIFFERENCE, 8X,13H( 4 SIGHA UNITS) / 1HO)
WRITE (6,426) (I,TM(I), DELTAT (I), COUNTS (I), RATE (I),
1VAR (I), ACALC(I), DIFF (I), \(\operatorname{HDIFF}(I), I=1, N P)\)
426 FORMAT (I4,F10.6,F12.6,F18.1,F17.1,F14.1,F16.1,
1E18.1,F18.3)
427 DO \(428 \mathrm{I}=1\), NP
\(428 \operatorname{VAR}(I)=\operatorname{VAR}(I) * * 2\)
IF (IPLOT) 429,432,431
429 DO \(430 \mathrm{I}=1\), NP
IF (RATE(I)) 461,461,462
\(461 \operatorname{RATE}(\mathrm{I})=1.0\)
462 LOGACT (I) =ALOG10 (RATE (I)) IF (ACALC (I)) \(463,463,464\)
463 ACALC \((I)=1.0\)
\(464 \operatorname{LOGFC}(I)=\operatorname{ALOG} 10(\operatorname{ACALC}(I))\)
430 CONTINOE
CALL OKIGIN (11.0.0.0.1)
CALL GRAPH (NP, TM, LOGACT, 3,7,9.,-7., 0,0,0,0, XLAB,YLAB, 1GLAB, DATLAB)
CALL GRAPH (NP, TM,LOGFC, 3, \(2,0,0,0,0,0,0,0,0,0,0)\)
GO TO 432
431 CALL ORIGIN \((11.0,0.0,1)\)
CALL GRAPH (NP, TM, RATE, 3, 7, 9., 7., 0, 0,0,0,XLAB, YLAB,
1GLAB, DATLAB)
CALL GRAPH (NP, TM, ACALC, 3, \(2,0,0,0,0,0,0,0,0,0,0\) )
432 IF (ICASE) 437,437,433
433 DO \(419 \mathrm{I}=1\), NCOMP
HL (I) =TEMPHL (I)
419 HALFL(I) =THALPL (I)

IF (NVAR) \(434,437,434\)
434 WRITE \((6,435)(I, I=1, N C O M P)\)
435 FORMAT (1H1,5H STER,6X,3HEIT,9X,9(1H-,I1,1H-,8X), 1H-.
1I2, 1H-/1H0)
MRITE (6.436) NSTEES,FIT2, (HL (I), I=1,NCOMP)
436 FORMAT (I5,F13.6,9F11.4,F12.4)
437 DO \(446 \mathrm{I}=1\), NP
\(446 \mathrm{TM}(\mathrm{I})=\mathrm{TM}(\mathrm{I})-T 0\)
RETURN
END

GENPLOT, a utility program for the generation of plots of general data, is a combination of a \(W Y L B U R\) execute file and a PL/1 program. The execute file requests input information and data from the operator. The \(\mathrm{PL} / 1\) program accesses Simplotter with CALL GRAPH and CALL Gfaphs statements. Logarithmic or linear plots can be generated. Several data sets can be plotted on the same graph and several graphs can be plotted at one time.

GENPLOT was used to plot calibration curves, decay curves, current, voltage and time relationships and other general data. The program was written to plot general data sets with many options of Simplotter available. Increased use of GENPLOT for examination of data trends and shapes of curves should be encouraged. The listing of the program follows on subsequent pages.
```

 10 SET EXEC NOL TERSE
 20 SET ESC :
 25 CLR TEXT
 30 COPY 700/761 EXEC TO 1
 40 REA VAL NO PRO 'NOMBER OF GRAPHS ? '
 50 CH '###' TO ':NO' N
 55 SET VAL W0=100
 60 SET VAL N1=0
 70 SET VAL N1=N1+1
 &0 IF (N1 GT NO) EXEC 550
 G0 REA VAL N2 PRO 'NUMBER OF PLOTS ON GRAPH :N1 ? '
 100 :WO :N2
1C1 SET VAL WO=@O+1
110 SET VAL N 3=0
130 REA STR SO PRO 'X-AXIS LABEL ? '
140 :WO IESO'
145 SET VAL W0=WO+1
150 REA STR SO PRO 'Y-AXIS LABEL ? '
1\epsilon0 :WO ':SO!
SE5 VAL NO=WO+1
170 REA STR SO PRO 'GRAPH LABEL ? '
180 :WO ':SO'
181 SET VAL WO=W0+1
182 REA STR SO PRO 'LIN=LINEAR CR LOG=LOGARITHMIC PLOT ? '
183 :WO ':SO'
SEO VAL WO=WO+1
200 SET VAL N3=N3+1
210 IF (N3 GT N2) EXEC 70
220 REA VAL N4 PRO 'HOW MANY POINTS IN ELOT :N3 ? '
230 REA VAL N5 PRO 'ENTER A NUMBER BETWEEN 1-13 ! '
240 SET VAL SO=N4||' '||N5
250 :WO :SO
260 SET VAL WO=NO+1
270 SET VAL N5=0
274 COMM ENTER X VALUES ONE AT A TIME
275 SET VAL S1='!
280 SET VAL N5=N5+1
2\&5 IF (N5 GT N4) EXEC 340
300 REA STR SO PRO 'X(:N5)='
E10 SET VAL S1=S1|J' '|lS0
\#20 IF (SIZE(S1) LE 60) EXEC 280
330 EXEC 500 SAVE
333 IF (N5 EQ N4) EXEC 360
335 EXEC 275
340 :WO:S1
350 SET VAL WO=NO+1
360 SET VAL N5=0
364 COMM ENTER Y VALUES ONE AT A tIME
365 SET VAL S1='!
370 SET \nablaAL N5=N5+1

```
\begin{tabular}{|c|c|}
\hline 375 & IF (N5 GT N4) EXEC 430 \\
\hline 390 & REA STR SO PRO 'Y(: 55 ) \(=\) - \\
\hline 400 & SET VAL S1=S1|f' \(1 / \mathrm{SO}\) \\
\hline 410 & IF (SIZE(S1) LE 60) EXEC 370 \\
\hline 420 & EXEC 500 SAVE \\
\hline 423 & IF (N5 EQ N4) EXEC 450 \\
\hline 425 & EXEC 365 \\
\hline 430 & : 10 : S1 \\
\hline 440 & SET VAL M0= W0 0 + \\
\hline 450 & REA STR SO PRO 'data label ? \\
\hline 460 & :W0 ':SOP \\
\hline 470 & SET VAL \(60=W 0+1\) \\
\hline 480 & EXEC 200 \\
\hline 500 & : W0 : S1 \\
\hline 510 & SET VAL W0 \(=\) W0+1 \\
\hline 520 & EXEC RETURN \\
\hline 550 & COMM TO PLOT DATA type exec next \\
\hline 560 & EXEC PAUSE \\
\hline 570 & COPY 800/805 EXEC TO L+1 \\
\hline 600 & RUN UNN \\
\hline 610 & EXEC PAUSE \\
\hline 700 & //A 41 GJJO JOB A0099,GJO, TIME \(=(, 29)\) \\
\hline 701 & //S 1 EXEC PL1LFCG, PARM. PL 1L='A, X, NEST', REGION.GC=128K \\
\hline 7 C 2 & //PL1L.SYSIN DD * \\
\hline 703 & PLOT:PROC OPTIONS (MAIN); \\
\hline 704 & DCL GRAPH ENTRY(EIXED BIN, (*) FLOAT, (*) FLOAT, FIXED \\
\hline 7 C 5 & BIN, FIXED BIN, FLOAT, FLOAT, FLOAT, FLOAT, FLOAT, FLOAT, \\
\hline 706 & CHAR (20), CHAR (20), CHAR (20), CHAR (20)) ; \\
\hline 707 & DCL GRAPHS ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT, fixel \\
\hline 7 C 8 & BIN, FIXED BIN, CHAR (20)): \\
\hline 709 & dCL Lettrs entry (FLOAT, FLOAT, FLOAT, Char (80), float, \\
\hline 709.5 & FIXED BIN) : \\
\hline 710 & DCL ORIGIN ENTRY (FLOAT, FLOAT, FIXED BIN); \\
\hline 711 & DCL (XLAB, YLAB,GLAB, DATLAB) CHAR(20) VARYING; \\
\hline 712 & DCL (STRING) CHAR (3) ; \\
\hline 713 & CALL ORIGIN (0.0,3.0,1) ; \\
\hline 714 & DO \(\mathrm{I}=1\) TO \#\#\#; \\
\hline 715 & CALL ORIGIN (8.5.0.0.1): \\
\hline 716 & CALL ORIGIN ( \(1.0,-1.5,6\) ) \\
\hline 717 & GET LIST (IPLOT) ; \\
\hline 718 & GET LIST (XLAB,YLAB,GLAB) ; \\
\hline 719 & GET LIST (STRING) ; \\
\hline 720 & GET LIST (NPOINTS,ISYM) ; \\
\hline 721 & PLOT 1: BEGIN: \\
\hline 722 & DCL (X (NPOINTS), Y(NPOINTS)) FLOAT; \\
\hline 723 & GET LIST (X) ; \\
\hline 724 & GET LIST ( Y ) ; \\
\hline 725 & GET LIST (DATLAB) : \\
\hline 726 & IF STRING= 'LOG' THEN DO; \\
\hline 327 & \(\mathrm{X}=\mathrm{LOG} 10(\mathrm{X})\); \\
\hline
\end{tabular}

728 Y=LOG10(Y) ;
729 END;
730 IF STRING='LOG' THEN DO;
7ミ1
I5=-5;
732
XYSF=0.5;
733 END;
734 ELSE DO;
755 I5=5;
7: \(6 \quad X Y S F=0.0\);
737 END;
738 CALL GRAPH (NPOINTS,X,Y,ISYM,7,I5,I5,XYSF,0.0,XYSF,
739 0.0,';','',';', DATLAB);
740 CALL LETTRS ( \(0.0,5.5,0.2, G L A B, 0.0,80\) ) :

\(741.50 .0,20\) ):
742 CALL LETTRS ( -1.0 . (5-(LENGTH (YLAB)/5))/2.0.2,YLAB,
742.5 90.0.20):

743 END PLOT 1;
744 IF IPLOTS=1 THEN GO TO STOP;
745 DO \(J=2\) TO IRLOT;
746 GET LIST (NPOINTS,ISYM) ;
747 PLOTS: BEGIN;
748 DCL (X(NPOINTS), Y(NPOINTS)) FLOAT;
749 GET LIST (X):
750 GET LIST (Y) ;
751 GET LIST (DATLAB):
752 IF STRING='LOG' THEN DO;
\(753 \quad \mathrm{X}=\mathrm{LOG} 10(\mathrm{X})\);
\(754 \quad \mathrm{Y}=\mathrm{LOG10}\) ( Y ) ;
755 END;
756
757 END PLOTS;
758 END;
759 END;
760 STOP:END PLOT;
761 //GO.SYSIN DD *
8C0 //GO.FT14F001 DD DSN=ESM,UNIT=SCRTCH,DISP=(NEW, PASS),
\(801 / / \operatorname{SPACE}=(800,(120,15)), D C B=(\) RECFM=VS,LRECL=796.
802 // BLKSIZE=800)
EC3 /*
804 //SMPLTTR EXEC PLOT,PLOTTER=INCRMNTL,FORM=W
8 85 /*
806 //

\section*{APPENDIX 4: TRSGJO}

TRSGJO is an assembly language program which runs on the PLP8/E minicomputer. TRSGJO controls the \(x\)-ray pulse generation, data acquisition and format of the paper tape data set of the pulsed XEOL system. The assembly language program is composed of several subroutines. Many of the subroutines are utilities for accepting input from the keyboard or paper tape reader, generating output on the teletype or paper tape punch or performing simple numerical operations. The subroutines which contain interface instructions control the \(x\)-ray supply or gated integrator. The program, in compiled form, appears on the following pages.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
/ TRSGJO \\
/ OESTR
\end{tabular} & EICH & 5-20-77 & \\
\hline & 0000 & FIELD 0 & & & \\
\hline & 0000 & * 0 & & & \\
\hline & 0020 & * 20 & & & \\
\hline 00020 & 7402 & & HLT & & \\
\hline 00021 & 0000 & CNTR1. & 0 & & \\
\hline 00022 & 0000 & CNTR2, & 0 & & \\
\hline 00023 & 3777 & ISTORE, & 3777 & & \\
\hline 00024 & 0000 & & 0 & & \\
\hline 00025 & 0000 & PASSES. & 0 & & \\
\hline 00026 & 0000 & SUM2. & 0 & & \\
\hline 00027 & 0000 & NUMWAV, & 0 & & \\
\hline 00030 & 0000 & DELTIM. & 0 & & \\
\hline 00031 & 0000 & PON1. & 0 & & \\
\hline 00032 & 0000 & RUNCNT. & 0 & & \\
\hline \(0 \mathrm{CO33}\) & 0000 & LUMIN, & 0 & & \\
\hline 00034 & 0000 & DATPOT. & 0 & & \\
\hline 00035 & 0000 & RANGE, & 0 & & \\
\hline 00036 & 0000 & N , & 0 & & \\
\hline 0 C037 & 0000 & SUM, & 0 & & \\
\hline 00040 & 0000 & DELRAN, & 0 & & \\
\hline 00041 & 0000 & TEMPST. & 0 & & \\
\hline 00042 & 0000 & & 0 & & \\
\hline 0 C 043 & 0000 & CNT1, & 0 & & \\
\hline 00044 & 0000 & CNT2. & 0 & & \\
\hline 00045 & 0000 & HIGH. & 0 & & \\
\hline 00046 & 0000 & LOW. & 0 & & \\
\hline & 0200 & *200 & & & \\
\hline 0 C 200 & 7300 & StART. & CLA & CLL & /CLEAR LINK \(\varepsilon\) LINK \\
\hline 00201 & 6046 & & TLS & & /RAISE TTY PRINT Flag \\
\hline 0 C 202 & 4577 & & JMS & I DATTIM & /INPUT DATE E TIME \\
\hline 00203 & 4576 & RESET, & JM S & I RESET 1 & /RESET ROUTINE \\
\hline 00204 & 4231 & PASS & JMS & SET1 & /SET MORKING VARIABLES \\
\hline 00205 & 4575 & & JMS & I PREP & /ROTOR ON E ENABLE \\
\hline 0 C 206 & 1033 & & TAD & LUMIN & \\
\hline 00207 & 7650 & & SNA & CLA & \\
\hline 00210 & 4304 & & JMS & BCMB2 & /XRAYS FAST \\
\hline 00211 & 4254 & & JMS & BOMB & /X-RAYS SLOW \\
\hline 00212 & 4574 & & JMS & I SUMDAT & \\
\hline 00213 & 4573 & & JMS & I SUMSQR & /SUM SQUARES \\
\hline OC214 & 2024 & & ISZ & P & /TEST PASS COUNT \\
\hline 00215 & 5204 & & JMP & PASS & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(0 C 216\) & 4572 \\
\(0 C 217\) & 7200 \\
00220 & 1377 \\
\(0 C 221\) & 3017 \\
00222 & 4571 \\
00223 & 4570 \\
00224 & 7640 \\
00225 & 5203 \\
00226 & 4567 \\
\(0 C 227\) & 4566 \\
00230 & 7402
\end{tabular}
\(\begin{array}{ll}00231 & 0000 \\ 0 C 232 & 7200\end{array}\) 002331023 0C234 3010
002351033
0C236 7650
002375251
002407340
002411034
\(0 C 2423037\)
OC243 7340
002441010
002453010
\(0 C 2461034\)
002473026
\(0 C 2505631\)
002511027
\(0 C 2523026\)
002535631
002540000
\(0 C 2556337\)
002561027
002573036
002606331
\(0 C 2616332\)
002625261
\(0 C 2636333\)
002647346
\(0 C 2654565\)
\(0 C 2666332\)
OC267 5266
002706334
CC271 7346
OC272 4565
\(0 C 2732036\)
002745263
\(0 C 2756336\)
```

 JMS I DATOUT
 ClA
 TAD (MSG15-1 /ANOTHER RUN ?
 DCA }1
 JMS I MESAGE
 JMS I NUMGET /GET ANSWER
 SZA CLA
 JMP RESET
 JMS I ENDFIL
 JMS I CRLF
 HLT
 SET1, 0
CLA
TAD ISTORE /SET STORAGE POINTER
DCA 10
TAD LUMIN /PAST OR SLOW
SNA CLA
JMP POINTS /FAST, GO BOMB
CLA CLL CMA /SLOW, SET OTHERS
TAD DATPOT /DATA POINT COUNTER
DCA SUM
CLA CLL CMA
TAD 10
DCA 10
TAD DATPOT /DATA REFERENCE
DCA SUM2
JMP I SET1
pOINTS, TAD NUMWAV
DCA SOM2
JMP I SET1
BOMB , 0
CSTART
TAD NDMWAV
DCA N
CREADY
NOW
JMP .-1
XON
/TURN XRAY ON
CLA CLL CMA RTL
JMS I DEL /5 USEC * AC DELAY
NOW /INDICATES X-RAY OFF
JMP . -1
XOFF
CLA CLL CMA RTL
JMS I DEL
ISZ N
JMP MULTI
CWAIT
/HOLDS X-RAYS OFF
/5 USEC * AC DELAY
/ANOTHER WAVE ?
/YES, REPEAT PROCESS
/NO, RESET NOW PULSE

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(0 \subset 276\) & 6344 & & XDABLE & & /XRAY DISABLE \\
\hline 00277 & 6342 & & ROTROF & & /TURN ROTOR OFF \\
\hline 00300 & 1030 & & TAD DELTIM & & /TRANSIENT DELAY \\
\hline OC301 & 4565 & & JMS I DEL & & 15 OSEC * AC DELAY \\
\hline 0 O 302 & 4564 & & JMS I DATA & & ¢COLLECT DATA \\
\hline 00303 & 5654 & & JMP I BOMB & & \\
\hline 00304 & 0000 & BOMB 2, & 0 & & /BCMB ROUTINE FAST \\
\hline 00305 & 6337 & & CSTART & & /CONTROLLER START \\
\hline 00306 & 1027 & & TAD NUMWAV & & \\
\hline 00307 & 3036 & & DCA N & & \\
\hline 00310 & 6331 & & CREADY & & /COMPUTER READY \\
\hline 0 C311 & 6332 & & NOW & & \\
\hline 00312 & 5311 & & JMP - -1 & & \\
\hline 00313 & 6333 & MULT. & XO N & & /TURN XRAY ON \\
\hline 00314 & 1376 & & TAD (-1440 & & \\
\hline OC315 & 4565 & & JMS I DEL & & \(/ 5\) USEC * AC DELAY \\
\hline 00316 & 6345 & & STBOX & & /START INTEGRATOR \\
\hline 00317 & 6332 & & NOW & & \\
\hline 00320 & 5317 & & JMP . - 1 & & \\
\hline 0C321 & 6334 & & XOFF & & /HOLD XRAY OFF \\
\hline 00322 & 1376 & & TAD (-1440 & & \\
\hline 00323 & 4565 & & JMS I DEL & & \(/ 5\) USEC * AC DELAY \\
\hline 00324 & 6455 & & STATOD & & /START A TO D \\
\hline 0C325 & 7346 & & cla cle cha & RTL & \\
\hline 0 C 326 & 4565 & & JMS I DEL & & \(/ 5\) USEC * AC DELAY \\
\hline 00327 & 6354 & & GETDAT & & /GET DATA POINT \\
\hline 00330 & 6346 & & INBOX & & /RESET INTEGRATOR \\
\hline 0 C331 & 3410 & & DCA I 10 & & \\
\hline 00332 & 6332 & & NOW & & \\
\hline 00333 & 5332 & & JMP . -1 & & \\
\hline 00.334 & 7346 & & Cla cll cma & RTL & \\
\hline 00335 & 4565 & & JMS I DEL & & /5 USEC * AC DELAX \\
\hline 00336 & 2036 & & ISZ & & MORE WAVES ? \\
\hline 00337 & 5313 & & JMP MULT & & /YES, BOMB \\
\hline 00340 & 6336 & & CWAIT & & /NO, RESET \\
\hline 0 C341 & 6344 & & XDABLE & & /DISABLE XRAy \\
\hline 00342 & 6342 & & ROTROF & & /TURN ROTOR OFF \\
\hline 00343 & 2304 & & ISZ BOMB2 & & \\
\hline 00344 & 5704 & & JMP I BOMB2 & & \\
\hline 0 C 376 & 6340 & & & & \\
\hline 00377 & 3206 & & & & \\
\hline & 0400 & * 400 & & & \\
\hline 00400 & 0000 & MESAGE, & 0 & & /MESSAGE ROUTINE \\
\hline 0 C 401 & 7300 & ENT10. & CLA CLL & & \\
\hline 00402 & 1241 & & TAD LIT1 & & \\
\hline \(0 \mathrm{C403}\) & 3240 & & DCA BYTCNT & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 0 C 404 & 1417 \\
\hline 00405 & 3246 \\
\hline OC406 & 1246 \\
\hline 00407 & 7002 \\
\hline 00410 & 0242 \\
\hline 00411 & 7440 \\
\hline 00412 & 5214 \\
\hline 00413 & 5600 \\
\hline \(0 C 414\) & 1243 \\
\hline 00415 & 7500 \\
\hline 00416 & 5221 \\
\hline 00417 & 1244 \\
\hline 00420 & 5222 \\
\hline 00421 & 1245 \\
\hline 00422 & 3247 \\
\hline OC423 & 1247 \\
\hline \(0 C 424\) & 1250 \\
\hline 00425 & 7640 \\
\hline 00426 & 5231 \\
\hline 00427 & 4566 \\
\hline 00430 & 5233 \\
\hline \(0 C 431\) & 1247 \\
\hline 00432 & 4563 \\
\hline 00433 & 2240 \\
\hline 00434 & 5236 \\
\hline 00435 & 5201 \\
\hline 00436 & 1246 \\
\hline \(0 C 437\) & 5210 \\
\hline 00440 & 0000 \\
\hline \(0 C 441\) & 7776 \\
\hline \(0 C 442\) & 0077 \\
\hline \(0 C 443\) & 7745 \\
\hline 00444 & 0333 \\
\hline 00445 & 0233 \\
\hline 00446 & 0000 \\
\hline \(0 C 447\) & 0000 \\
\hline 00450 & 7534 \\
\hline 00451 & 0000 \\
\hline OC452 & 7300 \\
\hline \(0 C 453\) & 3323 \\
\hline OC454 & 1324 \\
\hline \(0 C 455\) & 3010 \\
\hline \(0 C 456\) & 3325 \\
\hline 00457 & 4562 \\
\hline \(0 C 460\) & 3325 \\
\hline 00461 & 1325 \\
\hline 00462 & 1326 \\
\hline 00463 & 7650 \\
\hline 00464 & 5311 \\
\hline
\end{tabular}
```

 TAD I }1
 DCA STOR1
 TAD STOR1
 BSW /BYTE SWAR
 /CHECK FOR TERMINATCR
/ZERO IN AC ?
/NO: CONTINUE
/YES: END MESSAGE
TAD LIT3
SMA
JMP - +3
TAD LIT4
JMP . +2
TAD LIT5
DCA STOR2
TAD STOR2
TAD MDOLAR
SZA CLA
JMP - +3
JMS I CRIF
JMP . + 3
TAD STOR2
JMS I TYPEIT
ISZ BYTCNT /GET NEXT CHARACTER
JMP . +2
JMP ENT10
TAD STOR1
JMP ENT11
BYTCNT, O
LIT1, }777
LIT2, 0077
LIT3. }774
LIT4. 0333
LIT5, 0233
STOR1. 0
STOR2, 0
MDOLAR, -244
NOMGET, O
CLA CLI
DCA DIGITS
TAD DIGLOC
DCA DIGPTR
DCA TEMP
GETDIG, JMS I READ
DCA TEMP
TAD TEMP
TAD MSLASH
SNA CLA
JMP ERROR
/READ CHARACTER
/CHECK FOR ERASE
/KEY (SLASH)
/IS CHAR A SLASH ?
/YES: REPEAT ENTRY

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 00465 & 1325 & & TAD & TEMP & /NO; TEST FOR TERMINAL \\
\hline 00466 & 1327 & & TAD & RETURN & /RETURN CHARACTER \\
\hline \(0 \subset 467\) & 7650 & & SNA & CLA & /IS IT A RETURN ? \\
\hline 00470 & 5316 & & JMP & CLEAR & /YES; EXIT THIS ROUTINE \\
\hline 00471 & 1325 & & TAD & TEMP & /NC; CHECK FOR \\
\hline 00472 & 1377 & & TAD & (-260 & NOCTAL INPUT \\
\hline \(0 \subset 473\) & 7510 & & SPA & & /IS CHAR < 260 ? \\
\hline 00474 & 5311 & & JMP & ERROR & /YES; GO TO ERROR \\
\hline 00475 & 1330 & & TAD & mNINE & /NO; SUBTRACT 9 decimal \\
\hline 00476 & 7740 & & SMA & SZA Cla & /IS CHAR > 271 ? \\
\hline \(0 C 477\) & 5311 & & JMP & ERROR & /YES; GO TO ERROR \\
\hline 00500 & 1325 & & TAD & TEMP & /NO; GET THE CHAR \\
\hline 00501 & 3410 & & DCA & I DIGPTR & \\
\hline 0C502 & 2323 & & ISZ & DIGITS & /INCREMENT DIGIT CCUNT \\
\hline OC503 & 7300 & & CLA & CLL & \\
\hline OC504 & 1323 & & TAD & DIGITS & /CHECK DIGIT COUNT \\
\hline OC505 & 1376 & & TAD & (-4 & \\
\hline 00506 & 7740 & & SMA & SZA Cla & /DIGITS <= 4 ? \\
\hline OC507 & 5311 & & JMP & ERROR & /NO; GO TO ERROR ERANCH \\
\hline 0C510 & 5257 & & JMP & GETDIG & \\
\hline 00511 & 4566 & ERROR, & JMS & I CRLF & /CRLF \\
\hline 00512 & 1322 & & TAD & HQM & /GET ? \\
\hline 0 C 513 & 7041 & & CIA & & \\
\hline 00514 & 4563 & & JMS & I TYPEIT & /PRINT THE ? \\
\hline 00515 & 5252 & & JMP & NUMGET+1 & /DISREGARD BAD ENTRY \\
\hline \(0 \mathrm{C516}\) & 7300 & Clear, & CLA & CLL & \\
\hline CC517 & 4331 & & JMS & CONVRT & /CONVERT TO OCTAL \\
\hline 00520 & 5651 & & JMP & I NOMGET & \\
\hline OC 521 & 0000 & MDIGIT. & 0 & & \\
\hline 00522 & 7501 & MQM, & -277 & & \\
\hline 00523 & 0000 & DIGITS, & 0 & & \\
\hline OC524 & 0567 & DIGLOC, & 567 & & \\
\hline OCS25 & 0000 & TEMP. & 0 & & \\
\hline 00526 & 7521 & MSLASH, & -257 & & \\
\hline OC527 & 7555 & RETURN, & -223 & & \\
\hline 0C530 & \[
\begin{aligned}
& 7767 \\
& 0010
\end{aligned}
\] & MNINE, & \[
\begin{aligned}
& -11 \\
& \text { DIGP }
\end{aligned}
\] & \[
P T R=10
\] & \\
\hline 00531 & 0000 & CONVET. & 0 & & /CONVERT ASCII TO OCTAL \\
\hline 0 C 532 & 7300 & & CLA & CLL & \\
\hline \(0 C 533\) & 1323 & & TAD & DIGITS & /SET DIGIT COUNTER \\
\hline 00534 & 7041 & & CIA & & \\
\hline 0 C 535 & 3321 & & DCA & MDIGIT & \\
\hline 00536 & 1324 & & TAD & DIGLOC & /SET POINTER \\
\hline OC537 & 3010 & & DCA & DIGPTR & \\
\hline 00540 & 3325 & & DCA & TEMP & /ZERO TEMPORARY STORAGE \\
\hline 00541 & 1325 & PACK, & TAD & TEMP & /LOAD PARTIAL NUMBER \\
\hline 00542 & 7106 & & CLL & RTL & /MULTIPLY BY 10 \\
\hline 00543 & 1325 & & TAD & TEMP & \\
\hline 00544 & 7004 & & RAL & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
00545 & 3325 \\
\(0 C 546\) & 1410 \\
\(0 C 547\) & 1377 \\
\(0 C 550\) & 1325 \\
00551 & 3325 \\
\(0 C 552\) & 2321 \\
00553 & 5341 \\
\(0 C 554\) & 1325 \\
\(0 C 555\) & 5731
\end{tabular}

0570
\(0 C 570 \quad 0000\)
005710000
CC572 0000
0C573 0000
\(0 C 5767774\)
\(0 C 5777520\)
0600
* 600
\(\begin{array}{ll}00600 & 0000 \\ 00601 & 7300\end{array}\)
\(0 C 6021600\)
\(0 C 6033303\)
006046211
006051703
\(0 C 6067700\)
006071272
006101273
006111377
OC612 4563
006131703
\(0 C 6147510\)
006157060
0 0.616 3275
006172303
OC620 1703
006216201
006227430
006237141
\(0 C 6247430\)
006252275
\(0 C 6263276\)
006271270
\(0 C 6303274\)
006311271
\(0 C 6323304\)
006332200

DCA TEMP
TAD I DIGPTR
TAD (-260 TAD TEMP DCA TEMP ISZ MDIGIT JMP PACK TAD TEMP JMP I CONVRT
/ADD NEXT STORED DIGIT /SUBTBACT 260
/ADD TO PARTIAL NUMBER /STORE PARTIAL NUMBER /ALL DIGITS DONE ? /NO; GET ANOTHER /YES: GET PACKED NUMBER

0
0
0
0

SDPRNT, 0
CLA CLL
TAD I SDPRNT /PICK UP ADDRESS OF
DCA SDGET /HIGH ORDER WORD
CDF 10
TAD I SDGET /GET HIGH ORDER HORD
SMA Cla
TAD SDPLUS
TAD SDMNS
TAD (260
JMS I TYPEIT
TAD I SDGET
SPA
CMA CML
DCA SDHIGH
ISZ SDGET
TAD I SDGET /PICK UP LOW ORDER WOR
CDF 00
SZL
CMA CLL IAC
SZL
ISZ SDHIGH
DCA SDLOW
TAD SDLOOP
DCA SDCNT
TAD SDADDR
DCA SDPTR
ISZ SDPRNT
/IS LINK SET ?
/YES, TWO'S COMPLEMENT /DID AC OVERFLOW /YES, CORRECT HIGH WOKD /STORE LOW ORDER HORD /INITIALIZE COUNTER=7
/INITIALIZE POINTER TO /TABLE OF POWERS OF TEN IINDEX RETURN LINKAGE
\begin{tabular}{|c|c|c|c|c|}
\hline 00634 & 1704 & SCARND. & TAD I SDPTR & /PICK UP POHER OF TEN \\
\hline 00635 & 2304 & & ISZ SDPTR & /FOR USE IN SUBSTRACT \\
\hline 00636 & 3277 & & DCA SDHSUB & \\
\hline CC637 & 1704 & & TAD I SDPTR & \\
\hline 0 C640 & 2304 & & ISZ SDPTR & \\
\hline 0C641 & 3300 & & DCA SDLSU日 & \\
\hline 00642 & 7100 & SDDO, & CLL & /DOUBLE PRECISION \\
\hline OC643 & 1300 & & TAD SDLSUB & /SUBTRACTION \\
\hline 0 0644 & 1276 & & TAD SDLOU & \\
\hline OC645 & 3302 & & DCA SDTEML & \\
\hline 00646 & 7004 & & RAL & \\
\hline 00647 & 1277 & & TAD SDHSUB & \\
\hline 00650 & 1275 & & TAD SDHIGH & \\
\hline \(0 \subset 651\) & 7510 & & SPA & /DID IT UNDERFLOW ? \\
\hline 00652 & 5260 & & JMP SDOUT & /NO, COUNT IS DONE \\
\hline 0C653 & 2301 & & ISZ SDBOX & /YES, COUNT NOT DONE \\
\hline 00654 & 3275 & & DCA SDHIGH & /DEPOSIT HIGH ORDER \\
\hline CC655 & 1302 & & TAD SDTEML & /PCRTION RESTORE LOW \\
\hline 00656 & 3276 & & DCA SDLOH & /ORDER PORTION \\
\hline 00657 & 5242 & & JMP SDDO & /GO baCk and subtract \\
\hline 00660 & 7200 & SDOUT, & CLA & \\
\hline 00661 & 1301 & & TAD SDBOX & /PICK UP DIGIT \\
\hline 00662 & 1377 & & TAD \({ }^{\text {a }} 260\) & \\
\hline 0C663 & 4563 & & JMS I TYPEIT & /TYPEIT OOT \\
\hline \(0 C 664\) & 3301 & & DCA SDBOX & /INITIALIZE DIGIT TO \\
\hline 0C665 & 2274 & & ISZ SDCNT & /HAVE WE TYPED 7 DIGITS \\
\hline 00666 & 5234 & & JMP SDARND & /NO, DETERMINE NEXT \\
\hline 00667 & 5600 & & JMP I SDPRNT & /YES, END ROUTINE \\
\hline 00670 & 7771 & SDLOOP, & -7 & /COUNT OF 7 DIGITS \\
\hline 0C671 & 0705 & SDADDR, & SDCONL & /ADDRESS OF POWERS \\
\hline 00672 & 7763 & SDPLOS, & -15 & /'SPACE' GENERATOR \\
\hline \(0 C 673\) & 7775 & SDMNS, & -3 & /'MINUS' GENERATOR \\
\hline 00674 & 0000 & SDCNT. & 0 & /STORAGE LOCATIONS \\
\hline 0C675 & 0000 & SDHIGH. & 0 & \\
\hline 00676 & 0000 & SDLOW, & 0 & \\
\hline \(0 C 677\) & 0000 & SDHSUB, & 0 & \\
\hline 00700 & 0000 & SDLSUE, & 0 & \\
\hline 00701 & 0000 & SDBOX. & 0 & \\
\hline 00702 & 0000 & SDTEML, & 0 & \\
\hline 0C703 & 0000 & SDGET, & 0 & \\
\hline 00704 & 0000 & SDPTR. & 0 & \\
\hline \(0 \subset 705\) & 7413 & SDCONL. & 7413 & /TABLE OF POWERS OF TEN \\
\hline 00706 & 6700 & & 6700 & /-1,000,000 \\
\hline 00707 & 7747 & & 7747 & /-100,000 \\
\hline CC710 & 4540 & & 4540 & \\
\hline 00711 & 7775 & & 7775 & /-10,000 \\
\hline 00712 & 4360 & & 4360 & \\
\hline \(0 \subset 713\) & 7777 & & 7777 & /-1,000 \\
\hline 0C714 & 6030 & & 6030 & \\
\hline \(0 C 715\) & 7777 & & 7777 & 1-100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 00716 & 7634 & & 7634 & \\
\hline 00717 & 7777 & & 7777 & 1-10 \\
\hline CC720 & 7766 & & 7766 & \\
\hline 00721 & 7777 & & 7777 & /-1 \\
\hline \(0 C 722\) & 7777 & & 7777 & \\
\hline 00723 & 0000 & SSPRNT。 & 0 & \\
\hline CC724 & 7100 & & CLL & \\
\hline \(0 \subset 725\) & 7510 & & SPA & /IS IT POSITIVE \\
\hline 00726 & 7061 & & cml cma iac & /NO, SET LINK \\
\hline \(0 \subset 727\) & 3370 & & DCA SSVAL & /STORE NUGBER \\
\hline 0C730 & 3366 & & DCA SSBOX & /SET LOCATION TO ZERO \\
\hline 00731 & 1365 & & TAD SSCNTR & /INITIALIZE COUNTER=4 \\
\hline 00732 & 3367 & & DCA SSCNT & \\
\hline 00733 & 1362 & & TAD SSADDR & /INITIALIZE INSTROCTION \\
\hline OC734 & 3343 & & DCA SSXYZ + 1 & /TC GET FIRST 10 \\
\hline 00735 & 1363 & & TAD SSPLUS & /GET CODE TO TYPE + \\
\hline OC 736 & 7430 & & SZL & /IS NUMBER NEGATIVE ? \\
\hline \(0 \subset 737\) & 1364 & & TAD SSMNS & /YES. CHANGE CODE TO - \\
\hline CC740 & 1377 & & TAD \((260\) & \\
\hline 00741 & 4563 & & JMS I TYPEIT & /TYPE IT OUT \\
\hline 00742 & 1370 & SSXYZ, & TAD SSVAL & /PICK UP NUMBER \\
\hline 00743 & 1371 & & TAD SSCON & /SUBSTRACT POWER OF TEN \\
\hline \(0 C 744\) & 7510 & & SPA & /IS RESULT NEGATIVE ? \\
\hline 00745 & 5351 & & JMP . +4 & /YES, INDEXING FINISHED \\
\hline 00746 & 2366 & & ISZ SSBOX & /NO, INDEX DIGIT LOCA. \\
\hline 00747 & 3370 & & DCA SSVAL & /STORE REMAINDER SSVAL \\
\hline \(0 \subset 750\) & 5342 & & JMP SSXYZ & /CONTINUE SUBSTRACTING \\
\hline 00751 & 7200 & & CLA & \\
\hline 00752 & 1366 & & TAD SSBOX & /GET THE DIGIT NUMBER \\
\hline \(0 \subset 753\) & 1377 & & TAD (260 & \\
\hline \(0 C 754\) & 4563 & & JMS I TYPEIT & /TYPE IT OUT \\
\hline 00755 & 3366 & & DCA SSBOX & /DIGIT COUNTER=0 \\
\hline 0C756 & 2343 & & ISZ SSXYZ+1 & /GET POWER OF TEN \\
\hline 00757 & 2367 & & ISZ SSCNT & /TYPED FOUR DIGITS \\
\hline 00760 & 5342 & & JMP SSXYZ & /NC, CONTINUE \\
\hline 0C76 1 & 5723 & & JMP I SSPRNT & /YES, RETURN \\
\hline \(0 C 762\) & 1371 & SSADDR。 & TAD SSCON & /TO GET FIRST POWER \\
\hline 00763 & 7760 & SSPLUS, & -20 & /'SPACE' GENERATOR \\
\hline \(0 C 764\) & 0015 & SSMNS. & 15 & /'MINUS' GENERATOR \\
\hline 00765 & 7774 & SSCNTR. & -4 & /COUNT OF 4 DIGITS \\
\hline 00766 & 0000 & SSBOX. & 0 & /STORAGE REGISTERS \\
\hline 00767 & 0000 & SSCNT. & 0 & \\
\hline 0C770 & 0000 & SS VAL. & 0 & \\
\hline 00771 & 6030 & SSCON, & 6030 & /-1000 \\
\hline 0C772 & 7634 & & 7634 & 1-100 \\
\hline \(0 \subset 773\) & 7766 & & 7766 & 1-10 \\
\hline CC774 & 7777 & & 7777 & /-1 \\
\hline
\end{tabular}
\(0 C 7770260\)
\begin{tabular}{|c|c|c|c|c|}
\hline & 1000 & * 1000 & & \\
\hline 01000 & 0000 & ENDFIL. & 0 & /PUNCH THAILEE \\
\hline 01001 & 7200 & & CLA & \\
\hline 01002 & 3031 & & DCA PUN1 & \\
\hline 01003 & 1377 & & TAD (204 & \\
\hline 01004 & 4264 & & JMS TYPEIT & \\
\hline 01005 & 1376 & & TAD (-36 & \\
\hline 01006 & 3021 & & DCA CNTR1 & \\
\hline 01007 & 1375 & & TAD 1377 & \\
\hline 01010 & 4264 & & JMS TYPEIT & \\
\hline 01011 & 2021 & & ISZ CNTR1 & \\
\hline 01012 & 5207 & & JMP . -3 & \\
\hline 01013 & 1374 & & TAD (-372 & \\
\hline 01014 & 3021 & & DCA CNTR1 & \\
\hline 01015 & 4264 & & JMS TYPEIT & \\
\hline 01016 & 2021 & & ISZ CNTR1 & \\
\hline 01017 & 5215 & & JMP . -2 & \\
\hline 01020 & 5600 & & JMP I ENDFIL & \\
\hline 01021 & 0000 & DEL, & 0 & /DEL ROUTINE \\
\hline 01022 & 3021 & & DCA CNTR1 & \\
\hline 01023 & 7000 & & NOP & \\
\hline 01024 & 2021 & & ISZ CNTR1 & \\
\hline 01025 & 5223 & & JMP . -2 & \\
\hline 01026 & 5621 & & JMP I DEL & \\
\hline 01027 & 0000 & LEADER. & 0 & \(/ \mathrm{PUNCH}\) Leader \\
\hline 01030 & 1374 & & TAD (-372 & \\
\hline 01031 & 3021 & & DCA CNTR 1 & \\
\hline 01032 & 4264 & & JMS TYPEIT & \\
\hline 01033 & 2021 & & ISZ CNTR1 & \\
\hline 01034 & 5232 & & JMP . -2 & \\
\hline 01035 & 1376 & & TAD (-36 & \\
\hline 01036 & 3021 & & DCA CNTR1 & \\
\hline 01037 & 1375 & & TAD (377 & \\
\hline 01040 & 4264 & & JMS TYPEIT & \\
\hline 01041 & 2021 & & ISZ CNTR1 & \\
\hline 01042 & 5237 & & JMP . -3 & \\
\hline 01043 & 5627 & & JMP I LEADER & \\
\hline 01044 & 0000 & SPACE, & 0 & /PUNCH TWO SPACES \\
\hline 01045 & 7200 & & CLA & \\
\hline 01046 & 1373 & & TAD (240 & \\
\hline 01047 & 4264 & & JMS TYPEIT & \\
\hline 01050 & 1373 & & TAD (240 & \\
\hline 01051 & 4264 & & JMS TYPEIT & \\
\hline 01052 & 5644 & & JMP I SPACE & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 01053 & 0000 & ENDREC, & 0 & & /PUNCH END RECORD CHAR. \\
\hline 01054 & 7200 & & CLA & & \\
\hline 01055 & 1372 & & TAD & \((223\) & \\
\hline 01056 & 4264 & & JMS & TYPEIT & \\
\hline 01057 & 1375 & & TAD & (377 & \\
\hline 01060 & 4264 & & JMS & TYPEIT & \\
\hline 01061 & 1375 & & TAD & (377 & \\
\hline 01062 & 4264 & & JMS & TYPEIT & \\
\hline 01063 & 5653 & & JMP & I ENDREC & \\
\hline 01064 & 0000 & TYPEIT, & 0 & & /Tty print routine \\
\hline 01065 & 6041 & & TSF & & \\
\hline 01066 & 5265 & & JMP & .-1 & \\
\hline C 1067 & 6046 & & TLS & & \\
\hline 01070 & 7300 & & CI, A & CLL & \\
\hline 01071 & 5664 & & JMP & I TYPEIT & \\
\hline 01072 & 0000 & CRLF, & 0 & & /CRLF ROUTINE \\
\hline 01073 & 7300 & & CLA & CLL & \\
\hline 01074 & 1371 & & TAD & \((215\) & \\
\hline 01075 & 4264 & & JMS & TYPEIT & \\
\hline 01076 & 1370 & & TAD & \((212\) & \\
\hline 01077 & 4264 & & JMS & TYPEIT & \\
\hline 01100 & 5672 & & JMP & I CRLF & \\
\hline 01101 & 0000 & READ, & 0 & & /KEyboard read routine \\
\hline 01102 & 6031 & & KSF & & \\
\hline 01103 & 5302 & & JMP & . -1 & \\
\hline 01104 & 7300 & & CLA & CLL & \\
\hline C1105 & 6036 & & KRB & & \\
\hline 01106 & 6046 & & TLS & & \\
\hline 01107 & 5701 & & JM P & I READ & \\
\hline 01170 & 0212 & & & & \\
\hline 01171 & 0215 & & & & \\
\hline 01172 & 0223 & & & & \\
\hline 01173 & 0240 & & & & \\
\hline 01174 & 7406 & & & & \\
\hline 01175 & 0377 & & & & \\
\hline 01176 & 7742 & & & & \\
\hline 01177 & 0204 & & & & \\
\hline & 1200 & * 1200 & & & \\
\hline 01200 & 0000 & DST, & 0 & & /DOUBLE RRECISION STORE \\
\hline 01201 & 3222 & & DCA & ACC & /SAVE AC \\
\hline 01202 & 6214 & & RDF & & /SAVE data field \\
\hline 01203 & 1220 & & TAD & KCDF & \\
\hline 01204 & 3211 & & DCA & CHG & /GENERATE CDF Instruct. \\
\hline 01205 & 6201 & & CDF & 00 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 01206 & 1600 & & TAD & I DST & /GET STORAGE ADDRESS \\
\hline 01207 & 3221 & & DCA & ARG & \\
\hline 01210 & 2200 & & ISZ & DST & /SET RETURN ADDRESS \\
\hline 01211 & 0000 & CHG。 & 0 & & /CHANGE DATA FIELD BACK \\
\hline 01212 & 1222 & & TAD & ACC & /RECOVER AC \\
\hline 01213 & 3621 & & DCA & I ARG & /STORE HIGH ORDER WORD \\
\hline 01214 & 2221 & & ISZ & ARG & \\
\hline 01215 & 7701 & & ACL & & /LOAD AC FROM MQ \\
\hline 01216 & 3621 & & DCA & I ARG & /STORE LOW ORDER WORD \\
\hline 01217 & 5600 & & JMP & I DST & \\
\hline 01220 & 6201 & KCDF, & CDF & & \\
\hline 01221 & 0000 & ARG。 & 0 & & \\
\hline 01222 & 0000 & ACC, & 0 & & \\
\hline 01223 & 0000 & DCM, & 0 & & / DOUBLE PRECISION \\
\hline 01224 & 7100 & & CLL & & /COMPLEMENT \\
\hline 01225 & 7040 & & CMA & & /SET AC TO 7777 \\
\hline 01226 & 7521 & & SWP & & \\
\hline 01227 & 7041 & & CIA & & /NEGATE MQ CONTENTS \\
\hline 01230 & 7521 & & SWP & & \\
\hline 01231 & 7430 & & SZL & & /CHECK FOR OVERFLOW \\
\hline 01232 & 7001 & & IAC & & \\
\hline 01233 & 5623 & & JMP & I DCM & \\
\hline 01234 & 0000 & DAD, & 0 & & /DCUBLE PRECISION ADD \\
\hline 01235 & 3222 & & DCA & ACC & /SAVE AC \\
\hline 01236 & 6214 & & RDF & & /SAVE DATA FIELD \\
\hline 01237 & 1220 & & TAD & KCDF & \\
\hline 01240 & 3245 & & DCA & CHANG & \\
\hline 01241 & 6201 & & CDF & 00 & \\
\hline 01242 & 1634 & & TAD & I DAD & /GET ADDRESS OF \\
\hline 01243 & 3221 & & DCA & ARG & /Stored values \\
\hline 01244 & 2234 & & ISZ & DAD & /SET RETURN ADDRESS \\
\hline 01245 & 0000 & CHANG, & 0 & & /CHANGE DATA FIELD BACK \\
\hline 01246 & 1621 & & TAD & I ARG & /GET HIGH ORDER STORED \\
\hline 01247 & 3262 & & DCA & HIGET & /VALUE AND SAVE \\
\hline 01250 & 2221 & & ISZ & ARG & \\
\hline 01251 & 7100 & & CLL & & \\
\hline 01252 & 7521 & & SWP & & /LOAD MQ Into ac \\
\hline 01253 & 1621 & & TAD & I ARG & /GET LOW ORDER STORED \\
\hline 01254 & 7521 & & SWP & & /LOW ORDER SUM IN MQ \\
\hline 01255 & 7430 & & SZL & & /WAS THERE A CARRY ? \\
\hline 01256 & 7101 & & IAC & CLL & /YES, InCREMENT AC \\
\hline 01257 & 1222 & & TAD & ACC & /NO, ADD HIGH ORDER \\
\hline 01260 & 1262 & & TAD & HIGHT & \\
\hline 01261 & 5634 & & JMP & I DAD & /RETURN \\
\hline 01262 & 0000 & HIGHT, & 0 & & \\
\hline 01263 & 0000 & SUMDAT, & 0 & & /SUM DATA \\
\hline 01264 & 7200 & & CLA & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
\\
01265 & 1023 \\
01266 & 3010 \\
01267 & 3306 \\
01270 & 3310 \\
01271 & 1026 \\
01272 & 3021 \\
01273 & 7621 \\
01274 & 1410 \\
01275 & 7500 \\
01276 & 5303 \\
01277 & 7041 \\
01300 & 7521 \\
01301 & 4223 \\
01302 & 7410 \\
01303 & 7521 \\
01304 & 6211 \\
01305 & 4234 \\
01306 & 0000 \\
01307 & 4200 \\
01310 & 0000 \\
01311 & 6201 \\
01312 & 2306 \\
01313 & 2306 \\
01314 & 2310 \\
01315 & 2310 \\
01316 & 2021 \\
01317 & 5273 \\
01320 & 7300 \\
01321 & 1033 \\
01322 & 7650 \\
01323 & 5347 \\
01324 & 1035 \\
01325 & 7041 \\
01326 & 7001 \\
01327 & 7450 \\
01330 & 5342 \\
01331 & 7001 \\
01332 & 7640 \\
01333 & 5663 \\
01334 & 1034 \\
01335 & 7041 \\
01336 & 0377 \\
01337 & 7640 \\
01340 & 5663 \\
01341 & 5347 \\
01342 & 1034 \\
01343 & 7041 \\
01344 & 0376 \\
01345 & 7640 \\
01346 & 5663 \\
0 &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & TAD & ISTORE & /FIND DATA \\
\hline & DCA & 10 & \\
\hline & DCA & MSHPNT & /SET MSH POINTER \\
\hline & DCA & MSHPNT+2 & \\
\hline & TAD & SUM2 & \\
\hline & DCA & CNTR1 & /DATA COUNTER \\
\hline SUMLOR, & CAM & & \\
\hline & TAD & I 10 & /GET FIRST VALUE \\
\hline & SMA & & /IS IT NEGATIVE ? \\
\hline & JMP & ADD 1 & /NO, ADD IT \\
\hline & CIA & & /YES. MAKE IT POSITIVE \\
\hline & SWP & & /PUT IN MQ \\
\hline & JMS & DCM & /MAKE IT NEGATIVE \\
\hline & SKP & & \\
\hline ADD1, & SWP & & /PUT IN MQ \\
\hline & CDF & 10 & \\
\hline & JMS & DAD & /DCUBLE PRECISION ADD \\
\hline MSHPNT, & 0 & & \\
\hline & JMS & DST & /DCUBLE PRECISION STOPE \\
\hline DUMMY, & 0 & & \\
\hline & CDF & 00 & \\
\hline & ISZ & MSHPNT & /SET NEW ADDRESS \\
\hline & ISZ & MSHPNT & \\
\hline & ISZ & MSHPNT+2 & \\
\hline & ISZ & MSHPNT+2 & \\
\hline & ISZ & CNTR 1 & /ALL DATA SUMMED ? \\
\hline & JMP & SUMLUP & /NO, NEXT VALUE \\
\hline & CLA & CLL & /YES, DELAY \\
\hline & TAD & LUMIN & /DELAY TEST \\
\hline & SNA & CLA & /FAST OR SLOW ? \\
\hline & JMP & STDEL & /FAST, DELAY \\
\hline & TAD & RANGE & /SLOW, TEST \\
\hline & CIA & & \\
\hline & IAC & & \\
\hline & SNA & & 110 MSEC RANGE ? \\
\hline & JMP & TESTA & /YES, TEST TWO \\
\hline & IAC & & /NO, 100 MSEC RANGE \\
\hline & SZA & CLA & \\
\hline & JMP & I SUMDAT & /NC, FOEGET DELAY \\
\hline & TAD & DATPOT & /YES, TEST TWO \\
\hline & CIA & & \\
\hline & AND & (7400 & \\
\hline & SZA & CLA & \\
\hline & JMP & I Sumbat & \\
\hline & JMP & STDEL & \\
\hline TESTA, & TAD & DATPOT & \\
\hline & CIA & & \\
\hline & AND & (4000 & \\
\hline & SZA & CLA & \\
\hline & JMP & I SUMDAT & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 01347 & 1375 & STDEL, & TAD & (-3720 & /STANDARD DELAY \\
\hline 01350 & 3022 & & DCA & CNTR2 & \\
\hline 01351 & 1375 & DELMIN, & TAD & (-3720 & \\
\hline 01352 & 4565 & & JMS & I DEL & \(/ 5\) USEC * AC DELAY \\
\hline 01353 & 2022 & & ISZ & CNTR2 & \\
\hline 01354 & 5351 & & JMP & DELMIN & \\
\hline 01355 & 5663 & & JMP & I Sumdat & /END \\
\hline 01375 & 4060 & & & & \\
\hline 01376 & 4000 & & & & \\
\hline 01377 & 7400 & & & & \\
\hline & 1400 & *1400 & & & \\
\hline 01400 & 0000 & DATOUT, & 0 & & /PUNCH GENERAL DATA \\
\hline 01401 & 7200 & & CLA & & \\
\hline 01402 & 1031 & & TAD & PUN 1 & \\
\hline 01403 & 7650 & & SNA & CLA & \\
\hline 01404 & 4561 & & JMS & I LEADER & /PUNCH LEADER \\
\hline 01405 & 2031 & & IS2 & PUN1 & \\
\hline 01406 & 4566 & & gMS & I CRLF & \\
\hline 01407 & 4560 & & JMS & I ENDREC & \\
\hline 01410 & 1377 & & TAD & (-6 & \\
\hline 01411 & 3021 & & DCA & CNTR1 & \\
\hline 01412 & 1376 & & TAD & (PNTDAT & \\
\hline 01413 & 3013 & & DCA & 13 & \\
\hline 01414 & 1413 & & TAD & I 13 & \\
\hline 01415 & 4563 & & JMS & I TYPEIT & \\
\hline 01416 & 2021 & & ISZ & CNTR 1 & \\
\hline 01417 & 5214 & & JMP & - \({ }^{-3}\) & \\
\hline 01420 & 4557 & & JMS & I SPACE & \\
\hline 01421 & 1413 & & TAD & I 13 & \\
\hline 01422 & 1413 & & TAD & I 13 & \\
\hline 01423 & 7200 & & CLA & & \\
\hline 01424 & 1375 & & TAD & (-4 & \\
\hline 01425 & 3021 & & DCA & CNTE1 & \\
\hline 01426 & 1413 & & TAD & I 13 & \\
\hline 01427 & 4563 & & JMS & I TYPEIT & \\
\hline 01430 & 2021 & & ISZ & CNTR1 & \\
\hline 01431 & 5226 & & JMP & .-3 & \\
\hline 01432 & 4557 & & JMS & I SPACE & \\
\hline 01433 & 1032 & & TAD & RUNCNT & \\
\hline 01434 & 4556 & & JMS & I SSPRNT & \\
\hline 01435 & 4557 & & JMS & I SPACE & \\
\hline 01436 & 1027 & & TAD & NUMWAV & \\
\hline 01437 & 7041 & & CIA & & \\
\hline 01440 & 4556 & & JMS & I SSPRNT & \\
\hline 01441 & 4557 & & JMS & I SPACE & \\
\hline 01442 & 1025 & & TAD & PASSES & \\
\hline 01443 & 7041 & & CIA & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 01444 & 4556 & & JMS & I SSPRNT & \\
\hline 01445 & 4557 & & JMS & I SPACE & \\
\hline 01446 & 1026 & & TAD & SUM2 & \\
\hline 01447 & 7041 & & CIA & & \\
\hline 01450 & 4556 & & JMS & I SSPRNT & \\
\hline 01451 & 4557 & & JMS & I SPACE & \\
\hline 01452 & 1033 & & TAD & LOMIN & \\
\hline 01453 & 4556 & & JMS & I SSPRNT & \\
\hline 01454 & 4557 & & JMS & I SPACE & \\
\hline 01455 & 1033 & & TAD & LUMIN & \\
\hline 01456 & 7650 & & SNA & Cla & \\
\hline 01457 & 5267 & & JMP & CONTIN & \\
\hline 01460 & 1030 & & TAD & DELTIM & \\
\hline 01461 & 7041 & & CIA & & \\
\hline 01462 & 4556 & & JMS & I SSPRNT & \\
\hline 01463 & 4557 & & JMS & I SPACE & \\
\hline 01464 & 1035 & & TAD & RANGE & \\
\hline 01465 & 4556 & & JMS & I SSPRNT & \\
\hline 01466 & 4557 & & JMS & I SPACE & \\
\hline 01467 & 4566 & CONTIN. & JMS & I CRLF & \\
\hline 01470 & 4560 & & JMS & I ENDREC & \\
\hline 01471 & 4555 & & JMS & I PUNCH & \\
\hline 01472 & 4554 & & JMS & I PUNSQR & \\
\hline 01473 & 5600 & & JMP & I DATOOT & /END \\
\hline 01474 & 0000 & PUNCH, & 0 & & /SUMMED DATA OUTEUT \\
\hline C 1475 & 7200 & & CLA & & \\
\hline 01476 & 3305 & & DCA & ADR & \\
\hline 01477 & 1026 & & TAD & SUM2 & \\
\hline 01500 & 3021 & & DCA & CNTR1 & \\
\hline 01501 & 1374 & LOP, & TAD & (-7 & \\
\hline 01502 & 3022 & & DCA & CNTR2 & \\
\hline 01503 & 7200 & INLOP, & CLA & & \\
\hline 01504 & 4553 & & JMS & I SDPRNT & \\
\hline 01505 & 0000 & ADR。 & 0 & & \\
\hline 01506 & 4557 & & JMS & I SPACE & \\
\hline 01507 & 2305 & & ISZ & ADR & \\
\hline 01510 & 2305 & & ISZ & ADR & \\
\hline 01511 & 2021 & & ISZ & CNTR1 & \\
\hline 01512 & 5314 & & JMP & - +2 & \\
\hline 01513 & 5321 & & JMP & ENDTAP & \\
\hline 01514 & 2022 & & ISZ & CNTR2 & \\
\hline 01515 & 5303 & & JMP & INLOP & \\
\hline 01516 & 4566 & & JMS & I CRLF & \\
\hline 01517 & 4560 & & JMS & I ENDREC & \\
\hline 01520 & 5301 & & JMP & LOP & \\
\hline 01521 & 4566 & ENDTAP. & JMS & I CRLF & \\
\hline 01522 & 4560 & & JMS & I ENDREC & \\
\hline 01523 & 1373 & & TAD & (5777 & /OVERLOAD OUTPUT \\
\hline 01524 & 3010 & & DCA & 10 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 01525 & 3305 & & DCA & ADR & \\
\hline 01526 & 2305 & & ISZ & ADR & \\
\hline 01527 & 1026 & & TAD & SUM2 & \\
\hline 01530 & 3021 & & DCA & CNTR1 & \\
\hline 01531 & 1372 & & TAD & (-5 & \\
\hline 01532 & 3022 & & DCA & CNTR2 & \\
\hline 0153.3 & 7200 & LOPIN, & CLA & & \\
\hline 01534 & 1410 & & TAD & I 10 & \\
\hline 01535 & 7450 & & SNA & & \\
\hline 01536 & 5352 & & JMP & POL & \\
\hline 01537 & 4556 & & JMS & I SSPRNT & \\
\hline 01540 & 4557 & & JMS & I SPACE & \\
\hline 01541 & 1305 & & TAD & ADR & \\
\hline 01542 & 4556 & & JMS & I SSPRNT & \\
\hline 01543 & 4557 & & JMS & I SPACE & \\
\hline 01544 & 2022 & & ISZ & CNTR2 & \\
\hline 01545 & 5352 & & JMP & POL & \\
\hline 01546 & 4566 & & JMS & I CRLF & \\
\hline 01547 & 4560 & & JMS & I ENDREC & \\
\hline 01550 & 1372 & & TAD & (-5 & \\
\hline 01551 & 3022 & & DCA & CNTR2 & \\
\hline C 1552 & 2305 & POL, & ISZ & ADR & \\
\hline 01553 & 2021 & & ISZ & CNTR1 & \\
\hline C 1554 & 5333 & & JMP & LOPIN & \\
\hline 01555 & 7200 & & CLA & & \\
\hline 01556 & 4556 & & JMS & I SSPRNT & \\
\hline 01557 & 4557 & & JMS & I SPACE & \\
\hline 01560 & 4556 & & JMS & I SSPRNT & \\
\hline 01561 & 4557 & & JMS & I SPACE & \\
\hline 01562 & 4566 & & JMS & I CRLF & \\
\hline 01563 & 4560 & & JMS & I ENDREC & \\
\hline 01564 & 5674 & & JMP & I PUNCH & \\
\hline 01572 & 7773 & & & & \\
\hline 01573 & 5777 & & & & \\
\hline 01574 & 7771 & & & & \\
\hline 01575 & 7774 & & & & \\
\hline 01576 & 1711 & & & & \\
\hline 01577 & 7772 & & & & \\
\hline & 1600 & * 1600 & & & \\
\hline 01600 & 0000 & RESET1, & 0 & & /FESET FOR RUN \\
\hline 01601 & 2032 & & IS 2 & RUNCNT & /SET RUN COUNTER \\
\hline 01602 & 7200 & & CLA & & \\
\hline 01603 & 1377 & & TAD & (MSGO3-1 & /REPEAT RUN \\
\hline 01604 & 3017 & & DCA & 17 & \\
\hline 01605 & 4571 & & JMS & I MESAGE & \\
\hline 01606 & 4570 & & JMS & I NOMGET & /GET ANSWER \\
\hline 01607 & 7650 & & SNA & CLA & /REPEAT ? \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 01610 & 4552 & & JMS I MESSY & /NO, PRINT MESSAGES \\
\hline 01611 & 1025 & & TAD PASSES & /YES, RESET Variables \\
\hline 01612 & 3024 & & DCA \(P\) & \\
\hline 01613 & 3021 & & dCa CNTR1 & /ZERO FIELD 1 \\
\hline 01614 & 6211 & & CDF 10 & \\
\hline 01615 & 3421 & ZLOOP, & DCA I CNTR1 & \\
\hline 01616 & 2021 & & ISZ CNTR 1 & \\
\hline 01617 & 5215 & & JMP ZLOOP & \\
\hline 01620 & 6201 & & CDF 00 & \\
\hline 01621 & 1376 & & TAD 13777 & /ZERO OVERLOAD \\
\hline 01622 & 3010 & & DCA 10 & \\
\hline 01623 & 1375 & & TAD (-3000 & \\
\hline 01624 & 3021 & & DCA CNTR1 & \\
\hline 01625 & 3410 & & DCA I 10 & \\
\hline 01626 & 2021 & & ISZ CNTR1 & \\
\hline 01627 & 5225 & & JMP - 2 & \\
\hline 01630 & 5600 & & JMP I RESET1 & \\
\hline 01631 & 0000 & PREP, & 0 & /ROTOR ON \& ENABLE \\
\hline 01632 & 6341 & & ROTRON & /TURN ROTOR ON \\
\hline 01633 & 7200 & & CLA & \\
\hline 01634 & 1374 & & TAD (-764 & /DELAY 5 SEC \\
\hline 01635 & 3022 & & DCA CNTR2 & \\
\hline 01636 & 1373 & RLOOP, & TAD (-3720 & \\
\hline 01637 & 4565 & & JMS I DEL & /5 OSECD * AC DELAY \\
\hline 01640 & 2022 & & ISZ CNTR2 & \\
\hline 01641 & 5236 & & JMP RLOOP & \\
\hline 01642 & 6343 & & XAbLe & /ENABLE X-Rays \\
\hline 01643 & 1372 & & TAD (-6 & /DELAY 60 MSEC \\
\hline 01644 & 3022 & & DCA CNTR2 & \\
\hline 01645 & 1373 & XLOOR. & TAD (-3720 & \\
\hline 01646 & 4565 & & Jis I DEL & 15 USEC * AC dELAY \\
\hline 01647 & 2022 & & ISZ CNTR2 & \\
\hline 01650 & 5245 & & JMP XLOOP & \\
\hline 01651 & 6455 & & INATOD & / INITIALIZE A TO D \\
\hline 01652 & 6346 & & INBOX & /INITIALIEE INTEGRATOR \\
\hline 01653 & 5631 & & JME I PREP & /END \\
\hline 01654 & 0000 & DATTIM, & 0 & /Date \& time routine \\
\hline 01655 & 1371 & & TAD (MSGO1-1 & \\
\hline 01656 & 3017 & & DCA 17 & \\
\hline 01657 & 4571 & & JMS I MESAGE & /PRINT MESSAGE \\
\hline 01660 & 7200 & & CLA & \\
\hline 01661 & 1372 & & TAD (-6 & \\
\hline 01662 & 3021 & & DCA CNTR1 & /SET DIGIT COONTER \\
\hline 01663 & 1310 & & TAD DATPNT & /GET Storage location \\
\hline 01664 & 3311 & & DCA PNTDAT & \\
\hline 01665 & 4562 & DNEXT. & JMS I READ & /GET DIGIT \\
\hline 01666 & 3711 & & DCA I PNTDAT & /STORE DIGIT \\
\hline 01667 & 2311 & & ISZ PNTDAT & /RESET STORAGE LOCATION \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 01670 & 2021 & & IS 2 & CNTR 1 & /MORE DIGITS ? \\
\hline 01671 & 5265 & & JMP & DNEXT & /YES, GET DIGIT \\
\hline 01672 & 1370 & & TAD & (MSG02-1 & /NO, GET TIME \\
\hline 01673 & 3017 & & DCA & 17 & \\
\hline 01674 & 4571 & & JMS & I MESAGE & /PRINT MESSAGE \\
\hline 01675 & 7200 & & CLA & & \\
\hline 01676 & 1367 & & TAD & (-4 & \\
\hline 01677 & 3021 & & DCA & CNTR 1 & /SET DIGIT COUNTER \\
\hline 01700 & 1320 & & TAD & TIMPNT & /GET Storage location \\
\hline 01701 & 3321 & & DCA & PNTTIM & \\
\hline 01702 & 4562 & TNEXT. & JMS & I READ & /GET DIGIT \\
\hline 01703 & 3721 & & DCA & I PNTTIM & /STORE DIGIT \\
\hline 01704 & 2321 & & ISZ & PNTTIM & /RESET \\
\hline 01705 & 2021 & & ISZ & CNTR 1 & /MORE DIGITS ? \\
\hline 01706 & 5302 & & JMP & TNEXT & /YES, GET DIGIT \\
\hline 01707 & 5654 & & JMP & I dattim & /NO, END ROUTINE \\
\hline 01710 & 1712 & DATPNT, & DATE & NT+2 & \\
\hline 01711 & 0000 & PNTDAT. & 0 & & \\
\hline 01712 & 0000 & & 0 & & /STORAGE OF DATE \\
\hline 01713 & 0000 & & 0 & & \\
\hline 01714 & 0000 & & 0 & & \\
\hline 01715 & 0000 & & 0 & & \\
\hline C1716 & 0000 & & 0 & & \\
\hline 01717 & 0000 & & 0 & & \\
\hline 01720 & 1722 & TIMPNT, & TIMP & NT+2 & \\
\hline 01721 & 0000 & PNTT IM, & 0 & & \\
\hline 01722 & 0000 & & 0 & & /STORAGE OF TIME \\
\hline 01723 & 0000 & & 0 & & \\
\hline 01724 & 0000 & & 0 & & \\
\hline 01725 & 0000 & & 0 & & \\
\hline 01767 & 7774 & & & & \\
\hline 01770 & 3006 & & & & \\
\hline 01771 & 2777 & & & & \\
\hline 01772 & 7772 & & & & \\
\hline 01773 & 4060 & & & & \\
\hline 01774 & 7014 & & & & \\
\hline C 1775 & 5000 & & & & \\
\hline 01776 & 3777 & & & & \\
\hline 01777 & 3020 & & & & \\
\hline & 2000 & *2000 & & & \\
\hline 02000 & 0000 & MESS y , & 0 & & /INFORMATION INPUT \\
\hline 02001 & 1377 & & TAD & (MSG04-1 & /GET \# OF maves \\
\hline 02002 & 3017 & & DCA & 17 & \\
\hline 02003 & 4571 & & JMS & I MESAGE & \\
\hline 02004 & 4570 & & JMS & I NUMGET & /GET ANSWER \\
\hline 02005 & 7041 & & CIA & & \\
\hline 02006 & 3027 & & DCA & numbav & \\
\hline
\end{tabular}
\begin{tabular}{ll}
02007 & 1376 \\
02010 & 3017 \\
02011 & 4571 \\
02012 & 4570 \\
02013 & 7041 \\
02014 & 3025 \\
02015 & 1375 \\
02016 & 3017 \\
02017 & 4571 \\
02020 & 4570 \\
02021 & 3033 \\
02022 & 1033 \\
02023 & 7650 \\
02024 & 5600 \\
02025 & 1374 \\
02026 & 3017 \\
02027 & 4571 \\
02030 & 4570 \\
02031 & 7041 \\
02032 & 3030 \\
02033 & 1373 \\
02034 & 3017 \\
02035 & 4571 \\
02036 & 4570 \\
02037 & 7041 \\
02040 & 3034 \\
02041 & 1372 \\
02042 & 3017 \\
02043 & 4571 \\
02044 & 4570 \\
02045 & 3035 \\
02046 & 1035 \\
02047 & 1255 \\
02050 & 3254 \\
02051 & 1654 \\
02052 & 3040 \\
02053 & 5600 \\
02054 & 0000 \\
02055 & 2055 \\
02056 & 2217 \\
02057 & 2223 \\
02060 & 2233 \\
& \\
02172 & 3162 \\
02173 & 3152 \\
02174 & 3116 \\
02175 & 3070 \\
02176 & 3056 \\
02177 & 3041 \\
&
\end{tabular}

TAD (MSG05-1 /\# OF PASSES
DCA 17
JMS I MESAGE
JMS I NUMGET /GET ANSHER
CIA
DCA PASSES
TAD (MSGO6-1 /FAST OR SLOW ?
DCA 17
JMS I MESAGE
JMS I NUMGET /GET ANSWER
DCA LUMIN
TAD LUMIN
SNA CLA
JMP I MESSY
TAD (MSG07-1 /TRANSIENT DECAY
DCA 17
JMS I MESAGE
JMS I NUMGET /GET ANSWER
CIA
DCA DELTIM
TAD (MSGO8-1 /\# DATA POINTS
DCA 17
JMS I MESAGE
JMS I NUMGET /GET ANSWER
CIA
DCA DATPOT
TAD (MSGO9-1 /BANGE CODE
DCA 17
JMS I MESAGE
JMS I NUMGET /GET ANSWER
DCA RANGE
tad RANGE
TAD PTR
DCA TEMPER
TAD I TEMPER
DCA DELRAN
JMP I MESSY
TEMPER, 0
PTR, PTE
DEL 1
DEL2
DEL 3
\begin{tabular}{|c|c|c|c|c|}
\hline & 2200 & *2200 & & \\
\hline 02200 & 0000 & DATA. & 0 & /data routine \\
\hline 02201 & 6455 & & STATOD & /Start a to d \\
\hline \(0<202\) & 7346 & & Cla cll cma & RTL \\
\hline 02203 & 4565 & & JMS I DEL & 15 USEC * AC DELAY \\
\hline 02204 & 6354 & & GETDAT & /GET DATA POINT \\
\hline 02205 & 6346 & & INBOX & /INITIAL INTEGRATOR \\
\hline 02206 & 3410 & & DCA I 10 & /STORE DATA \\
\hline 02207 & 2037 & & ISZ SUM & MORE DATA ? \\
\hline 02210 & 5212 & & JMP . +2 & /YES, GET IT \\
\hline 02211 & 5600 & & JMP I DATA & /NO, STOP \\
\hline 02212 & 1377 & & TAD (-276 & \\
\hline 02213 & 4565 & & JMS I DEL & 15 USEC * AC DELAY \\
\hline 02214 & 6345 & & Stbox & /StART INTEGRATOR \\
\hline 02215 & 4440 & & JMS I delran & /delay range value \\
\hline 02216 & 5201 & & JMP DATA+1 & \\
\hline 02217 & 0000 & DEL1, & 0 & \(/ 10\) MSEC DELAY \\
\hline 02220 & 1376 & & TAD (-3405 & \\
\hline \(0<221\) & 4565 & & JMS I DEL & \\
\hline 02222 & 5617 & & JMP I DEL 1 & \\
\hline 02223 & 0000 & DEL2, & 0 & 1100 MSEC DELAY \\
\hline 02224 & 1375 & & TAD (-5 & \\
\hline 02225 & 3022 & & DCA CNTR2 & \\
\hline 02226 & 1374 & & TAD 1213 & \\
\hline 02227 & 4565 & & JMS I DEL & \\
\hline 02230 & 2022 & & ISZ CNTR2 & \\
\hline 02231 & 5226 & & JMP - \({ }^{-3}\) & \\
\hline 02232 & 5623 & & JMP I DEL2 & \\
\hline 02233 & 0000 & DEL3, & 0 & 11 SEC DELAY \\
\hline 02234 & 1373 & & TAD (-62 & \\
\hline 02235 & 3022 & & DCA CNTR2 & \\
\hline 02236 & 1372 & & TAD (147 & \\
\hline 02237 & 4565 & & JMS I DEL & \\
\hline 02240 & 7000 & & NOP & \\
\hline 02241 & 2022 & & ISZ CNTR2 & \\
\hline 02242 & 5236 & & JMP - - 4 & \\
\hline 02243 & 5633 & & JMP I DEL3 & \\
\hline 02244 & 0000 & UDPRNT. & 0 & \\
\hline 02245 & 7300 & & Cla Cll & \\
\hline 02246 & 1644 & & TAD I UDPRNT & /PICK UP ADDEESS OF \\
\hline 02247 & 3331 & & DCA UDGET & /HIGH ORDER WORD \\
\hline 02250 & 6211 & & CDF 10 & \\
\hline 02251 & 1731 & & TAD I UDGET & /PICK UP BOTH WORDS FOR \\
\hline 02252 & 3323 & & DCA UDHIGH & /USE IN SUBROUTINE \\
\hline 02253 & 2331 & & ISZ UDGET & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 02254 & 1731 & & TAD I UDGET & \\
\hline 02255 & 3324 & & DCA UDLOW & \\
\hline 02256 & 6201 & & CDF 00 & \\
\hline 02257 & 1320 & & TAD ODLOOP & /INITIALIZE COUNTER \\
\hline 02260 & 3322 & & DCA UDCNT & \\
\hline 02261 & 1321 & & TAD UDADDR & /INITIALIZE TO TA日LE Of \\
\hline 02262 & 3332 & & DCA UDPTR & /POWERS OF TEN \\
\hline 02263 & 2244 & & ISZ UDPRNT & /SET FETORN ADDRESS \\
\hline 02264 & 1732 & UDARND, & TAD I UDPTR & /PICK UP FIRST POWER \\
\hline 02265 & 2332 & & ISZ UDPTR & /FOR USE IN SUBTRACTION \\
\hline 02266 & 3325 & & DCA UDHSUB & \\
\hline 02267 & 1732 & & TAD I UDPTR & \\
\hline 02270 & 2332 & & ISZ UDPTR & \\
\hline 02271 & 3326 & & DCA UDLSUB & \\
\hline 02272 & 7100 & UDDO, & CLI & /DOUBLE PRECISION SUB \\
\hline 02273 & 1326 & & TAD ODLSUB & \\
\hline 02274 & 1324 & & TAD UDLOE & \\
\hline 02275 & 3330 & & DCA UDTEML & \\
\hline 02276 & 7004 & & RAL & \\
\hline 02277 & 1325 & & TAD UDHSUB & \\
\hline 02300 & 1323 & & TAD UDHIGH & \\
\hline 02301 & 7420 & & SNL & /DID IT OVERFLOW ? \\
\hline 02302 & 5310 & & JMP UDOUT & /NO, COUNT IS DONE \\
\hline 02303 & 2327 & & ISZ UDBOX & /YES, CONTINUE \\
\hline 02304 & 3323 & & DCA UDHIGH & /SAvE REMAINDER \\
\hline 02305 & 1330 & & TAD ODTEML & \\
\hline 02306 & 3324 & & DCA UDLOW & \\
\hline 02307 & 5272 & & JMP UDDO & \\
\hline 02310 & 7200 & UDOUT, & CLA & \\
\hline 02311 & 1327 & & TAD UDBOX & /GET DIGIT \\
\hline 02 212 & 1371 & & TAD 1260 & \\
\hline 02313 & 4563 & & JMS I TYPEIT & /TYPE IT \\
\hline 02314 & 3327 & & DCA UDBOX & \\
\hline 02315 & 2322 & & ISZ UDCNT & /MORE DIGITS ? \\
\hline 02316 & 5264 & & JMP UDARND & /YES, GET NEXT \\
\hline 02317 & 5644 & & JMP I UDPRNT & /NC, DONE \\
\hline 02320 & 7770 & UDLOOP. & -10 & \\
\hline 02321 & 2333 & UDADDR. & UDCONL & \\
\hline 02う22 & 0000 & UDCNT. & 0 & \\
\hline 02323 & 0000 & UDHIGH, & 0 & \\
\hline 02324 & 0000 & UDLOM, & 0 & \\
\hline 02325 & 0000 & UDHSUB, & 0 & \\
\hline 02326 & 0000 & UDLSUB, & 0 & \\
\hline 02327 & 0000 & UDBOX, & 0 & \\
\hline 02330 & 0000 & UDTEML. & 0 & \\
\hline 02331 & 0000 & UDGET, & 0 & \\
\hline 02332 & 0000 & UDPTR, & 0 & \\
\hline 02333 & 3166 & UDCONL. & 3166 & /POWERS OF TEN \\
\hline 02334 & 4600 & & 4600 & 1-10,000,000 \\
\hline 02335 & 7413 & & 7413 & /-1,000,000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 02336 & 6700 & & 6700 & \\
\hline 02337 & 7747 & & 7747 & /-100,000 \\
\hline 02340 & 4540 & & 4540 & \\
\hline 02341 & 7775 & & 7775 & /-10,000 \\
\hline 02342 & 4360 & & 4360 & \\
\hline 02343 & 7777 & & 7777 & /-1000 \\
\hline 02344 & 6030 & & 6030 & \\
\hline 02345 & 7777 & & 7777 & /-100 \\
\hline 02346 & 7634 & & 7634 & \\
\hline 02347 & 7777 & & 7777 & /-10 \\
\hline 02350 & 7766 & & 7766 & \\
\hline 02351 & 7777 & & 7777 & /-1 \\
\hline 02352 & 7777 & & 7777 & \\
\hline 02371 & 0260 & & & \\
\hline 02372 & 0147 & & & \\
\hline 02373 & 7716 & & & \\
\hline 02374 & 0213 & & & \\
\hline 02375 & 7773 & & & \\
\hline 02376 & 4373 & & & \\
\hline 02377 & 7502 & & & \\
\hline & 2400 & *2400 & & \\
\hline 02400 & 0000 & SQR, & 0 & /SQUARE ROUTINE \\
\hline 02401 & 1600 & & TAD I SQR & /GET DATA ADDRESS \\
\hline 02402 & 3273 & & dCA ARGU & \\
\hline 02403 & 2200 & & ISZ SQR & /SET FETURN ADDRESS \\
\hline 02404 & 1673 & & TAD I ARGU & /GET Data point \\
\hline 02405 & 7041 & & CIA & /MAKE IT POSITIVE \\
\hline 02406 & 3274 & & DCA STORE & /Store temporaily \\
\hline 02407 & 1274 & & tad Store & \\
\hline 02410 & 3275 & & DCA TEST & /SET TEST VALUE \\
\hline 02411 & 7001 & & IAC & \\
\hline 02412 & 3276 & & DCA MASK & /SET MASK TO ONE \\
\hline 02413 & 1377 & & TAD (-14 & /SET BIT COUNTER \\
\hline 02414 & 3044 & & DCA CNT2 & \\
\hline 02415 & 3045 & & DCA HIGH & \\
\hline 02416 & 3046 & & DCA LON & \\
\hline 02417 & 1275 & TESTBT. & TAD TEST & \\
\hline 02420 & 0276 & & AND MASK & /CHECK FOR BIT TRUE \\
\hline 02421 & 7740 & & SZA CLA CLL & /TRUE ? \\
\hline 02422 & 5235 & & JMP ADD & /YES, ADd Partial prod. \\
\hline 02423 & 1276 & RETUR. & TAD MASK & /RESET MASK \\
\hline 02424 & 7104 & & Ral CLl & \\
\hline 02425 & 3276 & & DCA MASK & \\
\hline 02426 & 2044 & & ISZ CNT2 & MORE BITS ? \\
\hline 02427 & 5217 & & JMP TESTBT & /YES, TEST NEXT \\
\hline 02430 & 1046 & & TAD LON & /NC, LOAD RESULT IN \\
\hline 02431 & 7521 & & SWP & /MQ AND AC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 02432 & 7200 & & CLA & \\
\hline 02433 & 1045 & & TAD HIGH & \\
\hline 02434 & 5600 & & JMP I SQR & /END \\
\hline 02435 & 1044 & ADD, & TAD CNT2 & /DETERMINE Which bit \\
\hline 02436 & 1376 & & TAD (14 & /HAS BEING TESTED \\
\hline 02437 & 7140 & & CMA CLL & \\
\hline 02440 & 3043 & & DCA CNT1 & \\
\hline 02441 & 1274 & & TAD STORE & \\
\hline 02442 & 3041 & & DCA TEMPST & \\
\hline 02443 & 3042 & & DCA TEMPST+1 & \\
\hline 02444 & 2043 & REDO. & ISZ CNT1 & /SET VALUE OF \\
\hline 02445 & 5247 & & JMP . +2 & /PARTIAL PRODUCT \\
\hline 02446 & 5262 & & JMP DADSTP & /ADD Partial prodoct \\
\hline 02447 & 1042 & & TAD TEMPST+1 & \\
\hline 02450 & 7004 & & RAL & \\
\hline 02451 & 3042 & & DCA TEMPST+1 & \\
\hline 02452 & 1041 & & TAD TEMPST & \\
\hline 02453 & 7004 & & Ral & \\
\hline 02454 & 3041 & & DCA TEMPST & \\
\hline 02455 & 7420 & & SNL & /CHECK FOR OVERFLOW \\
\hline 02456 & 5244 & & JMP REDO & /NO, CONTINUE \\
\hline 02457 & 2042 & & ISZ TEMPST+1 & /YES, INCREMENT MSD \\
\hline 02460 & 7100 & & CLL & \\
\hline 02461 & 5244 & & JMP REDO & \\
\hline 02462 & 1041 & DADSTP。 & TAD TEMPST & /DOUBLE PRECISION ADD \\
\hline 02463 & 7521 & & SWP & \\
\hline 02464 & 7200 & & CLA & \\
\hline 02465 & 1042 & & TAD TEMPST+1 & \\
\hline 02466 & 4551 & & JMS I DAD & /ADD ROUTINE \\
\hline 02467 & 0045 & & HIGH & \\
\hline 02470 & 4550 & & JMS I DST & /STORE ROUTINE \\
\hline 02471 & 0045 & & HIGH & \\
\hline 02472 & 5223 & & JMP RETUR & \\
\hline 02473 & 0000 & ARGU. & 0 & \\
\hline 02474 & 0000 & STORE, & 0 & \\
\hline 02475 & 0000 & TEST. & 0 & \\
\hline 02476 & 0000 & MASK, & 0 & \\
\hline 02477 & 0000 & SUMSQR, & 0 & /SUM OF SQUARES \\
\hline 02500 & 7300 & & CLA CLL & \\
\hline 02501 & 1375 & & TAD (4000 & /STORAGE ADDRESS \\
\hline 02502 & 3317 & & ECA MSHSQR & \\
\hline 02503 & 1375 & & TAD (4000 & \\
\hline 02504 & 3321 & & DCA MSHSQR+2 & \\
\hline 02505 & 1375 & & TAD \((4000\) & /RESET DACA LOCATOR \\
\hline 02506 & 3314 & & DCA DATLOC & \\
\hline 02507 & 1026 & & TAD SUM2 & /GET \# DATA POINTS \\
\hline 02510 & 3021 & & DCA CNTR1 & \\
\hline 02511 & 1374 & & TAD (6000 & /OVERFLOW COUNTERS \\
\hline 02512 & 3022 & & DCA CNTR2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 02513 & 4200 & SQRSUM, & JMS & SQR & /SQUARE VALUE \\
\hline 02514 & 4000 & DATLOC, & 4000 & & \\
\hline 02515 & 6211 & & CDF & 10 & \\
\hline 02516 & 4551 & & JMS & I DAD & /DOUBLE PRECISION ADD \\
\hline 02517 & 0000 & MS HS QR. & 0 & & \\
\hline 02520 & 4550 & & JMS & I DST & /DOUBLE PRECISION STORE \\
\hline 02521 & 0000 & DUMB, & 0 & & \\
\hline 02522 & 6201 & & CDF & 00 & \\
\hline 02523 & 7430 & & SZL & & /TEST, OVERFLOW \\
\hline 02524 & 2422 & & ISZ & I CNTR2 & ;YES. INCREMENT COUNTER \\
\hline 02525 & 7100 & & CLL & & \\
\hline 02526 & 2022 & & ISZ & CNTR2 & /RESET ADDRESS \\
\hline 02527 & 2314 & & ISZ & DATLOC & \\
\hline 02530 & 2317 & & ISZ & MSHSQR & \\
\hline 02531 & 2317 & & ISZ & MSHSQR & \\
\hline 02532 & 2321 & & ISZ & MSHSQR+2 & \\
\hline 02533 & 2321 & & ISZ & MSHSQR+2 & \\
\hline 02534 & 2021 & & ISZ & CNTR1 & /MORE DATA ? \\
\hline 02535 & 5313 & & JMP & SQRSUM & /YES, SQUARE E ADD \\
\hline 02536 & 5677 & & JMP & I SUMSQR & /NO, RETURN \\
\hline 02537 & 0000 & PUNSQR. & 0 & & /SUMMED SQUARES OOTPUT \\
\hline 02540 & 7200 & & CLA & & \\
\hline 02541 & 1375 & & TAD & 14000 & \\
\hline 02542 & 3351 & & DCA & ADRSQR & \\
\hline 02543 & 1026 & & TAD & SUM2 & \\
\hline 02544 & 3021 & & DCA & CNTR1 & \\
\hline 02545 & 1373 & LOPSQR. & TAD & (-7 & \\
\hline 02546 & 3022 & & DCA & CNTR2 & \\
\hline 02547 & 7200 & INSQR. & CLA & & \\
\hline 02550 & 4547 & & JMS & I UDPRNT & \\
\hline 02551 & 0000 & ADRSQR. & 0 & & \\
\hline 02552 & 4557 & & JMS & I SPACE & \\
\hline 02553 & 2351 & & ISZ & ADRSQR & \\
\hline 02554 & 2351 & & ISZ & ADRSQR & \\
\hline 02555 & 2021 & & IS2 & CNTR1 & \\
\hline 02556 & 5360 & & JMP & - +2 & \\
\hline 02557 & 5365 & & JMP & ENDSQR & \\
\hline 02560 & 2022 & & ISZ & CNTR2 & \\
\hline 02561 & 5347 & & JMP & INSQR & \\
\hline 02562 & 4566 & & JMS & I CRIF & \\
\hline 02563 & 4560 & & JMS & I ENDREC & \\
\hline 02564 & 5345 & & JMP & LOPSQR & \\
\hline 02565 & 4566 & ENDSQR. & JMS & I CRLF & \\
\hline 02566 & 4560 & & JMS & I ENDREC & \\
\hline 02567 & 5737 & & JMP & I PUNSQR & \\
\hline 02573 & 7771 & & & & \\
\hline 02574 & 6000 & & & & \\
\hline 02575 & 4000 & & & & \\
\hline
\end{tabular}
```

02576 0014
02577 7764
3000 *3000
03000}4442
03001
03002 0131
03003 2340
03004 0401
03005 2405
03006 4000
0300744040
03010 2411
03011 1505
0こ0124050
03013 1511
03014 1411
03015 2401
03016 2231
03017 5140
05020 0000
03021 4422
0ミ022 0520
03023 0501
03024 2440
0ミ025 2022
0`026 0526
0こ027 1117
03030 2523
0ミ0314022
0こ032 }251
030334061
03034 5531
03035 0523
03036 5440
03037 6055
03040 1617
030414000
030424416
03043 2515
03044 0205
03045 2240
03046 1706
030474027
03050 0126
03051 0523
030524011
03053 1640
03054 0217
MSG02, TEXT / TIME (MILITARY) /
MSGO3. TEXT /\$REPEAT PREVIOUS RUN 1-YES,
O-NO /

```
\begin{tabular}{|c|c|c|c|c|}
\hline 03055 & 1502 & & & \\
\hline 03056 & 4000 & & & \\
\hline 03057 & 4040 & MSG05， & TEXT & ／NUMBER OF PASSES／ \\
\hline 03060 & 1625 & & & \\
\hline 03061 & 1502 & & & \\
\hline 03062 & 0522 & & & \\
\hline \(0 こ 063\) & 4017 & & & \\
\hline 03064 & 0640 & & & \\
\hline 03065 & 2001 & & & \\
\hline 03066 & 2323 & & & \\
\hline 03067 & 0523 & & & \\
\hline 03070 & 4000 & & & \\
\hline 03071 & 4406 & MSG0 6， & TEXT & ／\＄FAST OR SLOW LUMINESCENCE \\
\hline 03072 & 0123 & & & O－FAST，1－SLOW／ \\
\hline 03073 & 2440 & & & \\
\hline 03074 & 1722 & & & \\
\hline 03075 & 4023 & & & \\
\hline 03076 & 1417 & & & \\
\hline 03077 & 2740 & & & \\
\hline \(0 \equiv 100\) & 1425 & & & \\
\hline \(0 \equiv 101\) & 1511 & & & \\
\hline 03102 & 1605 & & & \\
\hline \(0 \equiv 103\) & 2303 & & & \\
\hline \(0 \equiv 104\) & 0516 & & & \\
\hline 03105 & 0305 & & & \\
\hline \(0 ミ 106\) & 4060 & & & \\
\hline 03107 & 5506 & & & \\
\hline \(0 ミ 110\) & 0123 & & & \\
\hline \(0 \equiv 111\) & 2454 & & & \\
\hline 03112 & 4061 & & & \\
\hline \(0 \equiv 113\) & 5523 & & & \\
\hline \(0 ミ 114\) & 1417 & & & \\
\hline 03115 & 2740 & & & \\
\hline 0 こ116 & 0000 & & & \\
\hline \(0 \equiv 117\) & 4424 & MSG07． & TEXT & ／\＄TRANSIENT DECAY 5．0 USEC－CNT \\
\hline \(0 \equiv 120\) & 2201 & & & INITIAL OFFSET 12.6 OSEC／ \\
\hline \(0 \equiv 121\) & 1623 & & & \\
\hline 03122 & 1105 & & & \\
\hline \(0 \equiv 123\) & 1624 & & & \\
\hline 03124 & 4004 & & & \\
\hline \(0 \equiv 125\) & 0503 & & & \\
\hline \(0 \equiv 126\) & 0131 & & & \\
\hline \(0 \equiv 127\) & 4065 & & & \\
\hline \(0 \equiv 130\) & 5660 & & & \\
\hline 03131 & 4025 & & & \\
\hline 03132 & 2305 & & & \\
\hline \(0 \pm 133\) & 0355 & & & \\
\hline 03134 & 0316 & & & \\
\hline 03135 & 2440 & & & \\
\hline 03136 & 1116 & & & \\
\hline
\end{tabular}
```

03137 1124
0ミ140 1101
03141 1440
0こ142 1706
03143 0623
0こ144 0524
0\1454061
0ミ146 6256
03147 6640
0ミ150 2523
03151 0503
031524000
031534443
0こ154 4004
0ミ155 0124
0ミ156 0140
03157 2017
03160 1116
0ミ161 2423
0ミ162 4000
0ミ163 4040
03164 2201
0ミ165 1607
03166 0540
03167 0317
0ミ170 0405
0ミ171 4061
0ミ172 5561
03173 6054
0ミ174 4062
0ミ175 5561
0ミ176 6060
03177 5440
03200 6355
0 ミ201 6160
0ミ202 6060
03203 4015
03204 2305
03205 0340
03206 0000
032074403
0ミ210 1716
0ミ211 2411
0ミ212 1625
03213 0540
03214 2225
0こ215 1623
0ミ216 4061
03217 5531
0ミ220 0523
MSGO8, TEXT/$# DATA POINTS/
MSGO9. TEXT / RANGE CODE 1-10, 2-100, 3-1000
MSEC /
MSG15, TEXT /$CONTINUE RUNS 1-YES, 0-NO /

```
\(0 \equiv 221 \quad 5440\)
\(0 \equiv 2226055\)
\(0 \equiv 2231617\)
\(0 \equiv 2244000\)

6345
6455
6354
6346
6455
6344
6342
6337
6331
6332
6333
6334
6336
6343
6341
7701
7621

STBCX=6345 STATOD=6455 GETDAT=6354 INBOX=6346 INATOD \(=6455\)
XDABLE=6344
BOTROF \(=6342\)
CSTART=6337
CREADY=6331
NOW \(=6332\)
\(\mathrm{XON}=6333\)
XOFF=6334
CWAIT=6336
XABLE \(=6343\)
ROTRON \(=6341\)
ACL=7701
\(C A M=7621\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ACC & 1222 & GETDAT & 6354 & PREP & 1631 & SOM & 0037 \\
\hline ACL & 7701 & GETDIG & 0457 & PTR & 2055 & SUMDAT & 1263 \\
\hline ALD & 2435 & HIGH & 0045 & PUNCH & 1474 & SUMLUP & 1273 \\
\hline ALD 1 & 1303 & HIGHT & 1262 & PUNSQR & 2537 & SUMSQR & 2477 \\
\hline ALR & 1505 & INATOD & 6455 & PUN1 & 0031 & SUM2 & 0026 \\
\hline ALRSQR & 2551 & INBOX & 6346 & RANGE & 0035 & TEMP & 0525 \\
\hline AFG & 1221 & INLOP & 1503 & READ & 1101 & TEMPER & 2054 \\
\hline AEGU & 2473 & INSQR & 2547 & REDO & 2444 & TEMPST & 0041 \\
\hline BCMB & 0254 & ISTORE & 0023 & RESET & 0203 & TEST & 2475 \\
\hline BCMB2 & 0304 & KCDF & 1220 & RESET 1 & 1600 & testa & 1342 \\
\hline BYTCNT & 0440 & LEADER & 1027 & RETUR & 2423 & TESTBT & 2417 \\
\hline CAM & 7621 & LIT 1 & 0441 & RETURN & 0527 & TIMPNT & 1720 \\
\hline CHANG & 1245 & LIT2 & 0442 & RLOOP & 1636 & TNEXT & 1702 \\
\hline C HG & 1211 & LIT3 & 0443 & ROTROF & 6342 & TYPEIT & 1064 \\
\hline CIEAR & 0516 & LIT4 & 0444 & ROTRON & 6341 & UDADDR & 2321 \\
\hline CNTR1 & 0021 & LIT 5 & 0445 & RUNCNT & 0032 & UDARND & 2264 \\
\hline CNTR2 & 0022 & LOP & 1501 & SDADDR & 0671 & UDBOX & 2327 \\
\hline CNT 1 & 0043 & LOPIN & 1533 & SDARND & 0634 & UDCNT & 2322 \\
\hline CNT2 & 0044 & LOPSQR & 2545 & SDBOX & 0701 & UDCONL & 2333 \\
\hline CCNTIN & 1467 & LON & 0046 & SDCNT & 0674 & UDDO & 2272 \\
\hline CCNVRT & 0531 & LUMIN & 0033 & SDCONL & 0705 & UDGET & 2331 \\
\hline CREADY & 6331 & MASK & 2476 & SDDO & 0642 & UDHIGH & 2323 \\
\hline CFLF & 1072 & MDIGIT & 0521 & SDGET & 0703 & UDHSUB & 2325 \\
\hline CSTART & 6337 & MDOLAR & 0450 & SDHIGH & 0675 & UDLOOP & 2320 \\
\hline CWAIT & 6336 & MESAGE & 0400 & SDHSUB & 0677 & UDLOW & 2324 \\
\hline DAD & 1234 & MESSY & 2000 & SDLOOP & 0670 & UDLSUB & 2326 \\
\hline [ADSTP & 2462 & MNINE & 0530 & SDLOP & 0676 & UDOUT & 2310 \\
\hline DATA & 2200 & MQM & 0522 & SDLSUB & 0700 & UDPRNT & 2244 \\
\hline CATLOC & 2514 & MSG01 & 3000 & SDMNS & 0673 & UDPTR & 2332 \\
\hline Datout & 1400 & MSG 02 & 3007 & SDOUT & 0660 & UDTEML & 2330 \\
\hline ᄃatent & 1710 & MSG 03 & 3021 & SDPLUS & 0672 & XAbLE & 6343 \\
\hline datpot & 0034 & MSGO4 & 3042 & SDPRNT & 0600 & XDABLE & 6344 \\
\hline DATTIM & 1654 & MSG05 & 3057 & SDPTR & 0704 & XLOOP & 1645 \\
\hline DCM & 1223 & MSG 06 & 3071 & SDTEML & 0702 & XOFF & 6334 \\
\hline DEL & 1021 & MSG07 & 3117 & SET1 & 0231 & XON & 6333 \\
\hline DELMIN & 1351 & MSG08 & 3153 & SPACE & 1044 & Z LOOP & 1615 \\
\hline DELRAN & 0040 & MSG09 & 3163 & SQE & 2400 & & \\
\hline DELTIM & 0030 & MSG 15 & 3207 & SQRSUM & 2513 & & \\
\hline DEL1 & 2217 & MSHPNT & 1306 & SSADDR & 0762 & & \\
\hline DEL2 & 2223 & MSHSQR & 2517 & SSBOX & 0766 & & \\
\hline DEL3 & 2233 & MSLASH & 0526 & SSCNT & 0767 & & \\
\hline DIGITS & 0523 & MULT & 0313 & SSCNTR & 0765 & & \\
\hline DIGLOC & 0524 & MULTI & 0263 & SSCON & 0771 & & \\
\hline DIGPTR & 0010 & N & 0036 & SSMNS & 0764 & & \\
\hline DNEXT & 1665 & NOW & 6332 & SSPLUS & 0763 & & \\
\hline DST & 1.200 & NUMGET & 0451 & SSPRNT & 0723 & & \\
\hline DUMB & 2521 & NOMWAV & 0027 & SSVAL & 0770 & & \\
\hline DOMMY & 1310 & P & 0024 & SSXYZ & 0742 & & \\
\hline ENDFIL & 1000 & P ACK & 0541 & START & 0200 & & \\
\hline ENDREC & 1053 & PASS & 0204 & STATOD & 6455 & & \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
ENDSQR 2565 & PASSES 0025 & STBOX & 6345 \\
ENDTAP 1521 & PNTDAT 1711 & STDEL & 1347 \\
ENT10 & 0401 & PNTTIM 1721 & STORE & 2474 \\
ENT11 & 0410 & POINTS 0251 & STOR1 & 0446 \\
ERROR & 0511 & POL & 1552 & STOR2 \\
O & 0447
\end{tabular}

EERORS DETECTED: 0
LINKS GENERATED: 0

\section*{APPENDIX 5: JCL}

JCL is the acronym for job control language. The listing which follows contains all the JCL statements required to run the job which calculates the experimental results. The sections where data and program source decks belong are indicated in the listing. The WYLBUR execute file, EXECTRS3 (see Appendix 6), moves the the proper data sets to the indicated positions when the job is created. The statements in the listing are applicable only to the Iowa State University Computation Center and are subject to change as system changes are implemented.
```

//A411GJO JOS A0099,GJO,TIME=(1,59)
/*JOBPARM LaNES=10
//S1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT2 DD DSN=ECARDS1,UNIT=DISK,DISP=(NEW,PASS),
$/ / \operatorname{SPACE}=(3520,(5,5)$, RLSE $), D C B=(R E C F M=F B, L R E C L=80$,
// BLKSIZE=3520)
//SYSUT1 DD *
Control Variables
ع12 // BLKSIZE=800)
ع13 //SIMPLTTR EXEC PLOT,PLOTTER=INCRMNTI,FORM=W
ع $14 / / S 3$ EXEC FORTG, REGION. GO $=160 \mathrm{~K}, \mathrm{TIME}$. $\mathrm{GO}=(2,00)$
ع15 //FORT.SYSLIN DD DISP=(OLD,PASS)
\&16 //FORT.SYSIN DD *
SMASH Source Deck
ع17//LKED.SYSLMOD DD DSN=EGOSET2(GO)
ع18 //GO.FT05F001 DD DSN=CPS07.A0986.GJO2,DISP=SHR.
E19 // VOL=SER=RJEPAK, UNIT=2314
820 //GO.FT06F001 DD SYSOUT=A
ع21 //GO.FT14F001 DD DSN=ESM2,UNIT=SCRTCH,DISP=(NEW,PASS),
$\varepsilon 22 / /$ SPACE $=(800,(120,15)), \mathrm{DCB}=(\operatorname{RECFM}=\mathrm{VS}, \mathrm{LRECL}=796$,
ع23 // BLKSI $2 \mathrm{E}=800$)
824 //SIMPLTTR EXEC PLOT,PLOTTER=INCRMNTL,FORM=W
$825 / / E L O T . F T 14 F 001$ DD DSN=ESM2

```
180
\(\varepsilon 01\)
802
\(\varepsilon 03\)
804
805
\(\varepsilon 07\)
808
\(\varepsilon 09\)
\(\varepsilon 10\)
\(\varepsilon 11\)
c9 1 /*
999 /

EXECTRS3 is a WYLBUR execute file which creates the job which calculates the experimental results. The execute file starts with the JCL statements (Appendix 5), copies TRS3 (Appendix 1) and SMASH (Appendix 2) to the appropriate lines and inter rogates the operator for input information. After the job is created the execute file submits the job to the computer system for execution and erases the original input data set in preparation for the next use of the execute file. The WYLBUR statements which make up the execute file are listed on the following pages.
```

 10 SET EXEC NOL TER
 20 SET ESC :
 40 SET VOL CAT
 50 USE #JCL CLR
 60 COPY ALL FROM #TRS3 TO 802.001
 70 SCR $CPS07.A0`86.GJO2 ON RJEPAK
 8O COMM HOW MANY RUNS?
 9O INS 11 UNN
 100 REA VAL NO USING 11
 110 COPY 1000 TO 12
 120 SET VAL W0=12
 130 SET VAL W1=13
 140 SET VAL N 1=0
 150 SET VAL N1=N1+1
 160 REA STR SO PRO 'IS RUN :N1 FAST OR SLOW? '
 170 SET VAL N9=2*:N1
 180 IF (SO EQ 'FAST') EXEC 400
 1¢0 REA STR SO PRO 'WILL SMASH BE RON? '
 2CO IF (SO EQ 'NO') CH:N9/:N9 TO O IN :WO N
 210 COPY 1000 TO =W1
 220 REA STR S1 PRO 'GRAPH LABEL RUN :N1? !
 230 CH 1/20 TO ':S1' IN :W1 N
 240 fEA STR S1 PRO 'DATA LABEL RUN :N1? '
 250 CH 21/40 TO ':S1' IN :W1 N
 260 SET VAL &1=W1+1
 270 IF (SO EQ 'YES') EXEC 450 SAVE
 280 IF (N1 LT N0) EXEC 150
 290 CCMM TO RUN JOB TYPE EXEC NEXT
 300 EXEC PAUSE
 310 IF (N2 NE 1) DEL 813/822
 320 IF (N2 EQ 1) COPY ALL FROM #SMASH TO 816.001
 350 RUN 1/999 UNN
 351 SCR $CPS07.A0 986.GJO3
 360 EXEC PAUSE
 400 CH :N9/:N9 TO O IN :HO N
 410 EXEC 280
 450 REA VAL NB PRO O#SMASHES RUN :N1? !
 4E0 COPY 1000 TO :W1
 470 CH 1 TO :N8 IN :W1 N
 4&0 SET VAL W1=W1+1
 490 SET VAL N2=1
 500 CH :N9/:N9 TO 1 IN :WO N
 510 SET VAL N 3=0
 E20 SET VAL N3=N3+1
 5ミ0 IF (N3 GT N8) EXEC RETURN
 540 COPY 1000 TO =W1
 550 IF (N3 EQ 1) CB 10/10 TO 0 IN :W1 N
 560 IF (N3 NE 1) CH 9/10 TO -1 IN :W1 N
 570 REA STR S1 PRO 'HOW MANY COMPONENTS SMASH :N3? '
 5\&0 CH 5/5 TO ':S1' IN :W1 N

```
```

590 REA STR S1 PRO `GRAPHS SMASH :N.3? '
600 IF (S1 EQ 'YES') EKEC 630
610 CH 15/15 TO O IN :W1 N
620 EXEC 660
630 REA STR S1 PRO 'IIN=LINEAR, LOG=SEMILOG
640 IF (S1 EQ 'LIN') CH 15/15 TO Y IN :W1 N
650 IF (S1 EQ 'LOG') CH 14/15 TO -1 IN :W1 N
660 SET VAL W2=W1
670 SET VAL W1=W1+1
680 REA STR ST RRO 'PRINTED OUTPUT HEADING?
690 COPY 1000 q0 =W1
700 CH 1/80 TO ':S1' IN :H1 N
710 SET VAL W1=:@1+1
720 REA VAL \&9 USING :W2 COLS 15/15
730 IF (W9 EQ 0) EXEC 840
740 COPY 1000 TO = W1
750 REA STR S1 PRO 'X-AXIS LABEL? '
760 CH 1/20 TO ':S10 IN =W1 N
770 REA STR S1 PRO 'Y-AXIS LABEL,?
780 CH 21/40 TO ':ST IN :W1 N
790 REA STR S1 PRO 'GRAPH LABEL? '
800 CH 41/60 TO ':S11 IN :W1 N
810 REA STR S1 PRO 'DATA LABEL? '
820 CH 61/80 TO ':S1' IN :W1 N
830 SET VAL W1=W1+1
840 COPY 1000 TO =W1
850 SET VAL N4=0
860 REA VAL N5 USING :W2 COL 5/5
870 SET VAL N4=N4+1
8\&0 SET VAL N6=N4*10-9
890 SET VAL N7=N4*10
900 REA STR S1 PRO 'DECAY CONSTANT FOR COMPONENT :N4 '
910 CH :N6/:N7 TO ':S11 IN :W1 N
920 IF (N4 LT N5) EXEC 870
930 SET VAL W1=W1+1
940 EXEC 520

```
```

