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YIELD FSTIMA TION THROUGHOUT THE GROWING SEASON 

The 1993 adverse weather and floods in the midwestern United States caused enormous damage. 

Apart from the impacts to urban areas, most of the ponding and flood damage in the Upper Midwest 

occurred on farmland with significant effects on agricultural yields and production. 

Although public officials and policy makers knew that the agricultural damage was extensive 

during the summer of 1993, information was imprecise. Because the setting of policy parameters, 

such as those. relating to disaster assistance, emergency wetlands reserve, and the emergency 

conservation program, depended directly on expectations of harvested yields, intraseason 

quantification of weather-induced impacts was required. Given this need, the Food and Agricultural 

Policy Research Institute (F APR!) oflowa State University was asked to estimate the extent of the 

flood damage in Iowa, detailing the impacts on acreage, yields, prices, and farm income (Smith et a!. 

1993). This experience of 1993 induced FAPRI to examine alternative procedures for estimating 

yields throughout the growing season. One of the more promising alternatives, in terms of parsimony 

and data availability, is presented in this paper. 

The exploratory procedure illustrated in the study utilizes pooling of data and a maximum 

likelihood approach to incorporate crop condition information into state-level yield estimates as the 

growing season progresses. Initially, a weighting procedure was employed to create a crop condition 

index based on USDA's condition classification. The index then was used as an additional 

explanatory variable in pooled yield regressions. Using this technique, FAPRI estimated yields for 

corn in Iowa to average 111.9 bushels per acre, 3.1 bushels below USDA's yield estimate in their 

August crop production report. Similar results were obtained for the remainder of the growing 

season. But FAPRI estimates were consistently closer to actual average yields for Iowa corn that 

were ultimately under 90 bushels per acre. Because the results were encouraging, further evaluation 

of crop condition information use was warranted. This study describes the present phase of that 

research. 

Many previous studies of yield estimation have concentrated on estimating yield as a function of 

biological constraints such as fertilizer, pesticides, plant population, and other factors. However, it is 

difficult for these models to explain extreme weather events (Wendland 1987). In addition, 

considerable data maintenance is required to support these models. This study attempts to combine a 

parsimonious approach with explanatory variables that are better able to reflect extreme conditions. 
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Other studies have tried to estimate the relationship between yields and weather (Willimack et al. 

1985). The principal limitations of such techniques are that they provide only one estimate of yield in 

time, are not parsimonious, and require site-specific temperature and precipitation observations. 

Theoretical Development 

In general, the approach to estimating average ending yields based on crop conditions proceeds 

from the notion that there is one unique yield associated with each condition classification. This study 

uses crop conditions reported by USDA. USDA breaks crop conditions into five classifications: very 

poor, poor, fair, good, and excellent. Thus, theoretically, there exists some set of yields associated 

with each crop condition such that the following is true: 

E 

I)P, =i. 
i=V 

where 

i = V, P, F, G, and E, 
v = Very poor, 
p = Poor, 
F = Fair, 
G = Good, 
E = Excellent, 

Yi = Yield for condition i, 
Cj = Percent of crop in condition i, 

y = Average yield. 

This approach can easily be extended to reflect average yield for any region. In this study, 

state-level yields are evaluated, so a subscript s is added to denote the yield and set of weights or 

proportions for a particular state: 

E 

I>,c., = y;. 
i=V 

Since the appropriate sets of yields corresponding to the crop conditions in each state are 

unknown, they must be estimated. Ordinarily, it would be a simple matter to estimate the set of 

yields for each state by regressing state average yields on the percent of crop in each category. 
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However, with only eight years of annual observations on crop conditions, there are not enough 

degrees of freedom for accurate estimation. Given that data on yields and crop conditions are 

available for major producing states, pooling cross-sectional and time-series data solves the degrees of 

freedom problem. 

The pooled set of data consists of yields and crop conditions for each state. Since actual yield 

levels vary by state due to different soil types, fertilizer rates, pesticide rates, weather deviations, and 

other factors, the weights assigned· to each crop condition category may also vary by state. For 

example, a corn crop in very poor condition in Iowa may yield an average of 80 bushels per acre, 

whereas a corn crop in very poor condition in Georgia may yield an average of 30 bushels per acre. 

The fact that yield levels vary by state forces the inclusion of yield shifters unique to each state. 

However, if yield shifters for all five crop condition categories for each state are included, significant 

degrees of freedom are lost. An alternative is to estimate an average yield, conditional upon a 

particular set of classification yields (yi.J for each crop condition type and the percent of crop in each 

crop condition type, thus regressing actual yield on the calculated conditional yields for each state. 

Since the appropriate set of classification yields is unknown, the yields must be estimated. In order to 

let the sets of yields vary by state, dummy variables for n -1 states must also be included. 

One other problem arises with the pooled set of data. In addition to yield levels varying across 

states, the variance of yields among states is also different. This suggests that some method to 

account for the unequal variance among states must be used. A form of weighted least squares for 

pooled data is used to correct this problem. 

Note that the yields are also being estimated across time. With increases in technology-such as 

new hybrids, better weed and pest control, and a wide variety of other factors-some yield growth is 

to be expected. In addition, since some technologies are region-specific, yields may grow at different 

rates in different states. To account for this varying change in technology, trend variables for each 

state should also be included in the regression. 

The functional form for estimating final average yield is then described by: 

where 

5 

is, = f3sL Y; cis, +A-I T + as est' 
i=:l 

cist = Percent of crop in condition i, 
T = Time trend, 
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'Yis = Estimated yield associated with each crop condition classification, and 
e,1 = White noise error term. 

This model is nonlinear in parameters but, conditional on the 'Yi• it can be estimated using 

weighted least squares. Estimates of the 'Yi were found using a grid search technique that identifies 

the set of classification yields associated with the maximum value of the log likelihood function. An 

iterative programming procedure systematically varied the yields, regression parameters were 

estimated, and the likelihood function was calculated at each iteration. A grid search then locates the 

value of classification yield estimates that maximizes the likelihood, which in this case reduces to 

minimization of squared errors. 

where the X matrix is: 

X= 

T 
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The pooled parameter estimator is given by: 

i3 = r.x' n-' xr' X' n-';;, 

TD16 CJ 

0 c,..,, 
0 c,..,, 

0 c,..,, 

0 c,..,, 
0 c,..,, 

0 c,..,, 

2 

7 

CIDJ 

0 

0 

0 

c,..,, 
c,..,, 

c,..,, 

0 

0 

0 

CJD2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

CJDJ6 

0 

0 

0 

0 

0 

0 



Yield Estimation Throughout the Growing Season I 5 

and 0 is a diagonal matrix to correct for group heteroskedasticity by state, TO 1-TO 16 is trend times 

dummy, CI is the calculated crop index for the appropriate year, week, and condition classification 

yield estimates, and CIDI-CIDI6 is crop index times dummy. 

Estimation Procedure 

The Data 

The crop condition data used in this study were taken from Weekly Weather and Crop Bulletin 

reports for 1986 through 1993. This included state-level data on the percentage of crop in each of 

five conditions: very poor, poor, fair, good, and excellent. The data on conditions were collected for 

corn and soybeans on a weekly basis. Data on state-level corn and soybean yields were taken from 

monthly Crop Production reports and the January annual summary of Crop Production. 

Estimation 

Weekly models for soybean and corn yields were estimated using weighted maximum likelihood 

estimation via the SAS Interactive Matrix Language. The equations for soybeans and corn were 

estimated according to specifications presented earlier. The key to the estimation process was the 

construction of the X matrix. As mentioned earlier, the X matrix consisted of 38 (34) columns with 

the first 19 (17) columns associated with trend and trend shifters and the last 19 (17) columns 

associated with conditional yield and conditional yield shifters for soybeans (corn). The X matrix 

included 7 rows for each state and 19 in the case of soybeans and 17 states in the case of corn. 

Conditional yields were determined by the percentage of the crop in each condition category and the 

associated yield estimate for each category. Thus, conditional yields were calculated by multiplying a 

matrix of crop conditions for each year and each state by a column vector of estimated yield weights 

for each crop condition. This created a column vector of conditional yields by year and by state. 

Since the appropriate yield weights for the amount of crop in each condition type were 

unknown, numerous trials were performed in order to determine the appropriate yield weight. A 

nested do loop was programmed in SAS to vary the yield weights for each class. The only restriction 

placed on yield weights for each condition category w;LS to insure that as yield weights varied from 

very poor to excellent, they increased in value. That is, the yield weight for the percentage of crop 

in poor condition should be greater than or equal to the yield weight for very poor condition, and the 
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yield weight for the percentage of crop in fair condition should be greater than or equal to the yield 

weight for poor condition, and so on. 

For each set of yield weights a unique "regression" was performed. The value of the weighted 

maximum likelihood estimator was stored in a matrix along with the yield weights corresponding to 

that value for each yield weight interaction. Because the number of alternative yield weight 

combinations was infinitely large, yield intervals were first used to narrow the set of yield weight 

classifications. Once the appropriate set of yield ranges for each class of crop conditions was 

determined, the ranges were narrowed until a combined set of unique yields for each condition 

category was determined. For example, initially the range of weights for corn in very poor condition 

may be 0 to 80 in increments of 10, for the poor condition 40 to 120, for the fair condition 60 to 

150, for the good condition 80 to 180, and for the excellent 100 to 200. The model procedure 

utilizes all possible combinations of weights from these ranges. The first such combination would be 

0, 40, 60, 80, and 100 for each respective condition category. This set of yield weights would be 

used to construct the conditional yield vector in the X matrix. The model for this set of weights is 

then estimated and the value of the weighted maximum likelihood estimator is calculated. This value 

and the set of weights is placed in a matrix. We then proceed to the next increment: 0, 40, 60, 80, 

and 120. The process continues until all combinations of weights are tried. SAS then performs a 

grid search on the matrix of maximum likelihood estimators. The maximum value of the likelihood 

estimate (in this case equivalent to sum of square error minimization) is selected along with the set of . 

yield weights and parameter estimates corresponding to that value. If the yield weights are at any of 

the limits on the weight ranges, these ranges are expanded and the process is started over. Once the 

yields are narrowed to within a set of ranges, the increment is lowered. So, in this example, the 

increment for corn may be lowered from 10 to 5. The process then begins again with the lower 

increment. The increments are narrowed until yield weights are within one bushel. 

The complete process of determining the yield weights was performed for six specific weeks in 

the growing season for soybeans and corn. The six different weeks were selected on the basis of data 

availability for all states considered. The weeks shown were in two-week intervals from the week of 

July 3-9 to the week of September 11-17. Note that these weeks are neither the beginning of crop 

condition observations nor the final crop condition observations but do represent the set of weeks 

where conditions for all states for 1986-92 are present. The results of the search for appropriate 

weights are presented in Tables I and 2. 
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Table I. Estimated average soybean yields for each condition category by week 

Mean Mean 
Very Square Absolute 

Week Poor Poor Fair Good Excellent R2 Error Percent Error 

July 3-9 18 22 24 31 46 80.0% 9.97 7.7% 
July 17-23 15 22 24 29 49 84.9% 7.52 6.8% 
July 31-Aug. 6 11 19 20 25 38 84.6% 7.71 6.7% 
Aug. 14-21 16 19 20 28 35 86.3% 6.82 6.6% 
Aug. 28-Sept. 3 12 15 21 26 36 88.7% 5.65 6.0% 
Sept. 11-17 g 18 23 30 38 91.9% 4.03 4.8% 

Table 2. Estimated average corn yields for each condition category by week 

Mean Mean 
Very Square Absolute 

Week Poor Poor Fair Good Excellent R2 Error Percent Error 

July 3-9 5 68 80 109 126 77.5% 137.48 7.1% 
July 17-23 60 65 72 121 124 90.3% 59.29 4.8% 
July 31-Aug. 6 50 58 73 114 115 93.8% 37.95 4.1% 
Aug. 14-21 41 64 89 120 139 94.1% 35.87 3.9% 
Aug. 28-Sept. 3 55 55 94 126 143 93.7% 38.32 3.9% 
Sept. 11-17 32 72 90 133 157 94.6% 33.08 3.5% 

Results 

Tables I and 2 indicate that, as expected, both corn and soybean models do a better job of 

explaining final yield the closer crop conditions observations are to harvest as evidenced by 

consistently higher R2, lower mean square errors, and lower mean absolute percent errors for weeks 

progressively closer to harvest (convergence in distribution). For the last week considered in this 

study, September 11-17, 91.9 percent of the variation in soybeans yields for all states is explained by 

the model and 94.6 percent of the variation in corn yields for all states is explained by the model. 

Note the remarkable jump in explanatory power of the corn model in going from the week of July 3-9 

to the week of July 17-23 where R2 increases from 77.5 percent to 90.3 percent and mean square 

error drops by more than one-half from 137.48 to 59.29. The increase in explanatory power for 

soybeans is more gradual. It is also interesting to note in Table I the tendency for soybean yield 

weights on the poor and very poor condition categories to be larger for weeks earlier in the growing 

season. This may reflect the greater ability of soybeans to recover from these conditions early in the 

season as opposed to late in the season. A similar pattern was not observable for corn. 
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Tables 1 and 2 also suggest the possibility of another factor not considered in the study

maturity. It can be argued that, because soybeans are planted later in the year, they are typically less 

mature for any given week than corn. Thus, the explanatory power of the soybean model naturally 

would be less than the corn model for any given week until soybean maturity catches up with corn. 

This is what the data appear to reflect in Tables 1 and 2. This suggests the possibility of increasing 

model performance further by adding a maturity indicator. 

Tables 3 and 4 present the results of holding yield weights at their September 11-17 values. 

Note that the performance statistics worsen slightly with the imposed yield, but because the final yield 

weights are similar to the yields in previous weeks there is only a small loss in explanatory power. 

This demonstrates the robustness of the final yield weights and explains final yields throughout the 

season. 

Table 3. Soybean regression performance imposing final week's estimated yields 

Mean Mean 
Very Square Absolute 

Week Poor Poor Fair Good Excellent R2 Error Percent Error 

July 3-9 8 18 23 30 38 77.5% 11.24 8.1% 
July 17-23 8 18 23 30 38 82.6% 8.71 7.5% 
July 31-Aug. 6 8 18 23 30 38 83.0% 8.51 7.3% 
Aug. 14-21 8 18 23 30 38 85.1% 7.44 6.9% 
Aug. 28-Sept. 3 8 18 23 30 38 88.5% 5.77 6.0% 
Sept. 11-17 8 18 23 30 38 91.9% 4.03 4.8% 

Table 4. Corn regression performance imposing final week's estimated yields 

Mean Mean 
Very Square Absolute 

Week Poor Poor Fair Good Excellent R2 Error Percent Error 

July 3-9 32 72 90 133 157 77.0% 140.25 7.2% 
July 17-23 32 72 90 133 157 88.3% 71.47 5.2% 
July 31-Aug. 6 32 72 90 133 157 92.6% 45.20 4.4% 
Aug. 14-21 32 72 90 133 !57 93.6% 39.26 3.8% 
Aug. 28-Sept. 3 32 72 90 133 !57 93.4% 40.42 4.0% 
Sept. 11-17 32 72 90 133 !57 94.6% 33.08 3.5% 



Table 5. Soybean parameter estimates, final week 

Variable 

TREND 
DUMTDAR 
DUMTDGA 
DUMTDIA 
DUMTDIL 
DUMTDIN 
DUMTDKS 
DUMTDKY 
DUMTDLA 
DUMTDMI 
DUMTDMN 
DUMTDMO 
DUMTDMS 
DUMTDNC 
DUMTDNE 
DUMTDOH 
DUMTDSC 
DUMTDSD 
DUMTDTN 
CY 
DUMCYAR 
DUMCYGA 
DUMCYIA 
DUMCYIL 
DUMCYIN 
DUMCYKS 
DUMCYKY 
DUMCYLA 
DUMCYMI 
DUMCYMN 
DUMCYMO 
DUMCYMS 
DUMCYNC 
DUMCYNE 
DUMCYOH 
DUMCYSC 
DUMCYSD 
DUMCYTN 

Parameter 
Estimate 

-{),057 
1.840 
0.392 
0.599 
0.936 
1.193 
0.919 
0.829 
1.297 
0.508 
0.655 
0.638 
1.447 
0.085 
1.445 
0.550 
0.258 

-{),314 
0.650 
0.915 

-{),()()() 

-{).053 
0.431 
0.325 
1.326 

-{).037 
0.186 

-{).096 
0.227 
0.344 
0.235 

-{).157 
0.047 
0.222 
0.389 

-{).157 
0.133 
0.089 

Standard 
Error 

0.420 
0.624 
0.583 
0.559 
0.555 
0.560 
0.522 
0.583 
0.558 
0.570 
0.544. 
0.563 
0.619 
0.589 
0.535 
0.555 
0.575 
0.559 
0.617 
0.076 
0.112 
0.403 
0.095 
0.095 
0.098 
0.089 
0.103 
0.100 
0.097 
0.096 
0.101 
0.116 
0.102 
0.094 
0.098 
0.101 
0.095 
0.111 

T-Ratio 

-{).136 
1.346 
0.673 
1.072 
1.687 
2.129 
1.760 
1.422 
2.322 
0.891 
1.204 
1.133 
2.337 
0.144 
2.699 
0.991 
0.448 

-{).561 
1.052 

12.108 
-{).001 
-{).508 
4.525 
3.405 
3.341 

-{).417 
1.802 

-{),961 
2.352 
3.582 
2.329 

-1.352 
0.466 
2.350 
3.983 

-l.563 
1.395 
0.804 
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Tables 5 and 6 present the parameter 

estimates for soybeans and corn given the 

yield weights in Tables I and 2. A priori, 

we expected that the coefficient on condition 

yield index should be close to I. For 

soybeans this coefficient is . 915 and for corn 

it is 1.2. The dummy shifters for soybean 

conditional yields by state are significant at 

· the a = .01 level of significance for all 

states except Arkansas, Georgia, Kansas, 

Louisiana, North Carolina, and Tennessee 

(generally the more marginal soybean 

producing states). In addition, soybean trend 

yield shifters are significant at the a = .05 

level of significance for all states except 

Colorado, Georgia, Michigan, North 

Carolina, Ohio, South Carolina, and South 

Dakota. The dummy shifters for corn 

conditional yields are all significant at the a 

= .01 level of significance, reflecting the 

diversity of corn yield weights among states. 

Only the corn trend yield shifters for 

Colorado, Michigan, North Carolina, and 

South Dakota are insignificant at the a = 
.01 level. 

Tables 7 and 8 present the results of 

model simulation over 1993 for soybeans 

and corn by week and compare them with USDA estimations for the same weeks, where available, 

and final yields. The performance of the _model compared with USDA estimates is mixed for both 

soybeans and corn. The model performs slightly better in predicting final yields than USDA in some 
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Table 6. Corn parameter estimates, final week states, but not as well as otbers. For 

Parameter Standard example, in early September USDA 
Variable Estimate Error T-Ratio 

estimated Indiana soybean 
TREND -1.828 1.109 -1.746 yields to be 47 bushels per acre; tbis model 
DUMTDGA 2.348 1.727 1.367 
DUMTDIA 3.170 1.511 2.098 suggested final soybean yields would be 45.8 
DUMTDIL 3.900 1.474 2.647 

bushels per acre. The actual yields for DUMTDIN 3.614 1.473 2.454 
DUMTDKS 5.236 1.494 3.504 Indiana soybeans were 44 bushels per acre, 
DUMTDKY 2.599 1.590 1.634 
DUMTDMI 1.533 1.584 0.968 suggesting tbat tbe model performed better 
DUMTDMN 3.528 1.470 2.401 

tban USDA estimates for tbis state. DUMTDMO 3.183 1.503 2.118 
DUMTDNC 0.135 1.756 0.007 However, for otber states, USDA estimates 
DUMTDNE 4.840 1.474 3.283 
DUMTDOH 3.157 1.491 2.118 were closer to actual yields. Overall, for 

DUMTDPA 3.325 1.495 2.224 soybeans, USDA in tbe second week of 
DUMTDSD 1.494 1.520 0.983 
DUMTDTX 2.375 1.545 1.538 September was closer in 12 of tbe 19 states 
DUMTDWI 2.701 1.484 1.824 

tban tbe model estimates. For corn, USDA CY 1.206 0.000 31.234 
DUMCYGA -0.523 0.001 -8.020 estimates in tbe second week of September 
DUMCYIA -0.277 0.001 -5.159 
DUMCYIL -0.289 0.001 -5.477 was closer in 13 of tbe 17 states. However, 
DUMCYIN -0.255 0.001 -4.771 

when comparing yield estimates for tbe week DUMCYKS -0.346 0.001 -6.709 
DUMCYKY -1.374 0.001 -6.349 of July 31st to August 6tb, model estimates 
DUMCYMI -1.366 0.001 -6.386 
DUMCYMN -0.263 0.001 -4.837 were better tban tbose of USDA in 8 of tbe 

DUMCYMO -0.340 0.001 -6.084 17 states. 
DUMCYNC -0.414 0.001 -6.013 
DUMCYNE -0.295 0.001 -5.628 The simulation of tbe model over 1993 
DUMCYOH -0.246 0.004 -4.445 

is somewhat misleading in tbe respect tbat DUMCYPA -0.455 0.001 -8.354 
DUMCYSD -0.579 0.001 -10.450 tbe model was not estimated over a period 
DUMCYTX -0.442 0.001 -8.307 
DUMCYWI -0.388 0.001 -7.424 tbat contained a flood of any kind, not to 

mention a flood to tbe extent of 1993's. 

Simulation of tbe model tbrough 1994 should prove an interesting check of model performance. The 

incorporation of 1993 data into tbe estimation period may also improve predictability in future floods. 

Conclusions 

This paper presents an exploratory procedure for estimating state-level crop yields throughout 

tbe growing season. The procedure utilizes pooling of data and a maximum likelihood approach 



Table 7. Comparison of actual soybean yields and model yield estimates for 1993 by state 

July 3-9 July 17-23 July 31-Aug. 6 Aug. 14-20 Aug. 28-Sept. 3 Sept. 11-17 
Final 

State Model USDA Model USDA Model USDA Model USDA Model USDA Model USDA Yields 

Alabama 23.2 NA 22.1 NA 20.0 24.0 20.7 24.0 21.7 24.0 21.6 24.0 24.0 

Arkansas 34.6 NA 33.0 NA 31.8 27.0 30.6 27.0 30.4 26.0 29.2 26.0 25.0 

Georgia 24.8 NA 22.0 NA 18.3 19.0 18.9 19.0 17.2 17.0 18.5 17.0 17.0 

Iowa 38.6 NA 35.1 NA 37.2 35.0 36.5 35.0 38.9 35.0 36.7 35.0 30.0 

Illinois 44.1 NA 43.1 NA 44.6 42.0 43.8 42.0 45.0 44.0 44.0 44.0 43.0 

Indiana 44.3 NA 43.4 NA 45.4 45.0 46.1 45.0 44.3 47.0 45.8 47.0 44.0 

Kansas 31.3 NA 30.7 NA 28.7 29.0 31.5 29.0 31.4 29.0 32.5 29.0 28.0 

Kentucky 36.1 NA 34.7 NA 35.8 32.0 37.0 32.0 36.5 33.0 34.8 33.0 33.0 

Louisiana 32.6 NA 30.7 NA 31.1 28.0 30.8 28.0 30.2 25.0 28.9 25.0 23.0 

Michigan 36.3 NA 35.6 NA 37.0 36.0 36.8 36.0 37.1 36.0 37.3 36.0 38.0 

Minnesota 28.9 NA 28.8 NA 28.9 27.0 30.2 27.0 29.3 25.0 29.8 25.0 22.0 

Missouri 35.3 NA 32.0 NA 31.2 33.0 33.2 33.0 33.5 35.0 33.3 35.0 33.0 

Mississippi 30.6 NA 31.1 NA 28.7 25.0 28.6 25.0 27.4 25.0 27.9 25.0 22.0 

N. Carolina 23.7 NA 24.6 NA 24.9 24.0 23.9 24.0 21.5 24.0 22.4 24.0 24.0 

Nebraska 36.3 NA 35.5 NA 34.6 35.0 39.3 35.0 44.5 36.0 45.2 36.0 35.0 

Ohio 39.2 NA 41.2 NA 42.8 41.0 41.3 41.0 37.8 39.0 38.2 39.0 28.0 

S. Carolina 20.2 NA 18.1 NA 17.4 17.0 16.0 17.0 14.5 15.0 16.5 15.0 15.0 

S. Dakota 21.4 NA 19.9 NA 20.3 22.0 21.4 22.0 24.3 22.0 22.4 22.0 21.0 

Tennessee 35.7 NA 34.1 NA 30.3 28.0 30.5 28.0 31.2 28.0 29.1 28.0 31.0 



Table 8. Comparison of corn yields estimated by the model with USDA estimates and final yields for 1993 by state 

July 3-9 July 17-23 July 31-Aug. 6 Aug. 14-20 Aug. 28-Sept. 3 Sept. 11-17 
Final 

State Model USDA Model USDA Model USDA Model USDA Model USDA Model USDA Yields 

Colorado 165.0 NA 163.3 NA 158.2 140.0 147.5 140.0 149.9 140.0 138.1 140.0 120.0 

Georgia 84.7 NA 73.2 NA 70.1 35.0 71.1 65.0 71.9 65.0 69.8 65.0 70.0 

Iowa 121.3 NA 103.0 NA 105.0 115.0 109.4 115.0 112.8 112.0 105.3 112.0 80.0 

Illinois 141.7 NA 134.8 NA 140.7 140.0 141.7 140.0 142.3 140.0 143.9 140.0 130.0 

Indiana 140.4 NA 138.3 NA 143.1 140.0 140.4 140.0 142.7 136.0 143.2 136.0 132.0 

Kansas 155.4 NA 145.2 NA 150.2 140.0 149.0 140.0 150.4 135.0 148.7 135.0 120.0 

Kentucky 120.5 NA 111.1 NA 111.3 102.0 107.3 102.0 110.7 100.0 106.3 100.0 104.0 

Michigan 110.3 NA 113.9 NA 110.6 110.0 113.3 110.0 113.1 110.1 11202 110.0 110.0 

Minnesota 86.9 NA 85.3 NA 87.4 90.0 92.4 90.0 93.1 85.0 93.7 85.0 70.0 

Missouri 121.0 NA 112.3 NA 107.8 112.0 112.3 112.0 107.8 105.0 106.2 105.0 90.0 

N. Carolina 77.3 NA 77.2 NA 66.8 55.0 63.1 55.0 59.8 55.0 54.9 55.0 65.0 

Nebraska 140.1 NA 131.4 NA 129.0 124.0 136.9 124.0 145.6 122.0 146.1 122.0 104.0 

Ohio 133.5 NA 137.9 NA 138.8 128.0 134.9 128.0 123.5 115.0 121.5 115.0 110.0 

Pennsylvania 114.2 NA 109.7 NA 106.8 98.0 104.8 98.0 103.6 94.0 104.8 94.0 96.0 

S. Dakota 66.6 NA 65.9 NA 68.8 69.0 69.3 69.0 75.6 67.0 70.6 67.0 63.0 

Texas 119.4 NA 114.8 NA 114.5 121.0 103.3 121.0 109.7 115.0 108.6 115.0 115.0 

Wisconsin 97.7 NA 94.6 NA 99.4 105.0 98.2 105.0 108.5 105.0 106.8 105.0 92.0 
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incorporating information from USDA's crop condition reports. An iterative process was employed 

that systematically varied the implicit yield estimates associated with each condition classification, 

parameters were then re-estimated, and the value of the likelihood function was calculated at each 

iteration. A subsequent grid search was performed that located the maximum value of the likelihood 

function and identified the estimated condition classification yields and parameter estimates associated 

with the maximum value of the likelihood function. The results were comparable to those provided 

by USDA and indicate that incorporation of crop condition information improves precision of yield 

estimates during the growing season and that gains to precision increase as the season progresses. 
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