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1 GENERAL INTRODUCTION

[n this research. we explore the censored data problem from parametric models. The
following sections introduce the motivations of our research and address the directions

of our approach.

1.1 Accurate Methods for Type I Censored Data

Due to time constraints in life testing. Tvpe [ censored data commonly arise from
life tests. To make inference on parameters and quantiles of the life distribution. ac-
curate confidence intervals (C'Is) are needed. For Type II censored data (or uncen-
sored data) from location-scale distributions (or log-location-scale distributions). Law-
less (1982. page 117) presents pivotal quantities that can be used to obtain exact Cls
for distribution parameters and quantiles analytically or through simulation. For Tyvpe I
censoring (more common in practice). however. neither pivotal quantities nor other exact
confidence interval methods in general exist.

Today. normal-approximation intervals are used most commonly in commercial soft-
ware. [hese methods. however. may not have coverage probability close to nominal val-
ues for small to moderate number of failures. especially for one-sided confidence bounds.
Methods for finding better approximate C'[s is an important practical issue. Many pa-
pers in the literature discuss the coverage probability of two-sided Cls. Most methods
do not perform equally well when one-sided confidence bounds (('Bs) are concerned.
even though most practical probiems are one-sided (e.g.. the cost of an error on one side
is generally much different from the cost on the other side). We evaluate C'l methods in
order to find those that have high accuracy for both one-sided ('Bs and two-sided Cls
and present those evaluations for both heavily censored and small sample cases.

We show some special effects of Type I censoring. With Type [ censoring. unlike
the complete data or Type Il censoring case. the distributions of MLEs have a discrete
component. Also the pivotal-like statistics have distributions that depend on the pro-

portion failing. [t is for these reasons that some bootstrap methods behave poorly in



constructing confidence intervals for the p quantile when p is close to the proportion

failing and the expected number of failures is small.

1.2 Performance of Bootstrap Likelihood Ratio Statistics

The asymptotic distributions of likelihood ratio statistics had been studied for decades.
Most previous work has focused on the situations in which the underling distribution
1s continuous (especially parametric families) or discrete (e.g. empirical distributions).
With time censored data. the distribution of a likelihood ratio statistics is a mixture
of continuous and discrete parts. Jensen (1993) derives an Edgeworth expansion of log
likelihood ratio (LLR) statistics for such data. For finding one-sided confidence intervals.
the signed square root of log likelihood ratio (SRLLR) statistic is commonly used. This
likelihood ratio statistic usually provides more accurate approximate inferences than
the more commonly used studentized maximum likelihood estimators (see for example.
Doganaksoy and Schmee (1993) and the first part of our study). However. generally
the SRLLR statistics is approximated by the standard normal distribution only to first
order [O(1/n'/?)]. even for complete continuous data (Barndorff-Nelsen 1994).

The bootstrap is a general procedure of resampling to find an approximate sampling
distribution. We extend the results from Jensen (1993) and show that. under some
regularity conditions. the distribution of the SRLLR statistics can be approximated up

to second order accuracy [O(1/n)| by using the bootstrap procedure.

1.3 Simultaneous Confidence Bands

In life testing and reliability studies. the primary problem of interest is often to
estimate an unknown cumulative distribution function (cdf). For example. sample units
are put on a life test. The purpose might be to estimate the proportion failing over a
range of time points. Another example is the need to quantify nondestructive evaluation
(NDE) capability. NDE methods are often used to detect a range of subsurface flaws
before processing expensive materials. We want to know the detection ability for different
flaw sizes. These problems can be formulated as one where an unknown cdf is to be
estimated. We will use the more familiar failure time language in our general discussion.

Confidence intervals quantify the uncertainty of estimation. For example. pointwise
confidence intervals with a specific confidence level can be computed for the cdf at

particular times. When the interest is on the cdf for a range of times. the combination of



these pointwise confidence intervals will not provide a simultaneous confidence hand with
same confidence level. Typically. for a given confidence level. a simultaneous confidence
band would be wider than the joint set of pointwise confidence intervals. This is because
we use the same amount of information from the data to do the inference for a specific
point of interest as we use for inference on an infinite number of points.

Unlike pointwise confidence intervals. one cannot combine two 100(1 — a/2)% one-
sided simultaneous confidence bands to get a 100(1 — a)% two-sided simultaneous con-
fidence band. Different procedures are needed for one-sided and two-sided cases. Using
the Wald statistics with Fisher information. Cheng and Iles (1983. 1988) provide a gen-
eral procedure which can be applied to some continuous distribution that depends on a
set of unknown parameters when data is complete. Censoring often arises in life data
collection. Some theoretical results for complete data do not hold for censored data. Es-
pecially for Type [ censoring. the Wald and likelihood ratio statistics no longer have the
pivotal property (pivotal statistics have distributions that do not depend on unknown
parameters) in location-scale models. The bootstrap method. however. provide a more
accurate approximate distribution when the exact distributional form is not available. In
the second part of our research we show that the bootstrap likelihood ratio statistics are
generally second order accurate for complete and censored data. In the simulation study.
we show that the bootstradissertationp Wald statistics with local information provide a
confidence region with a coverage probability that appears to be as accurate as or more
accurate than the bootstrap likelihood ratio statistics. even when the expected number

of failures is small.

1.4 Dissertation Organization

The main body of this dissertation contains three papers that correspond to the
problems raised in the previous sections. The first paper presented in Chapter 2 searches
for accurate methods for Type [ censored data. The second paper shown in Chapter
3 investigates the asymptotic performance of Bootstrap likelihood ratio statistics. The
third paper in Chapter 4 explores the construction of simultaneous confidence bands.
Those results presented in Chapter 3 and 4 can be applied to both complete and censored

data. Chapter 5 gives the conclusion of this research.
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2 COMPARISONS OF WEIBULL DISTRIBUTION
APPROXIMATE CONFIDENCE INTERVALS
PROCEDURES FOR TYPE I CENSORED DATA

A paper submitted to the Technometics

Shuen-Lin Jeng and William Q. Meeker

Abstract

This paper compares different procedures to compute confidence intervals for pa-
rameters and quantiles of the Weibull distribution for Type I censored data from life
test experiments. The methods can be classified into three groups. The first group
contains methods based on the commonly-used normal approximation for the distribu-
tion of (possibly transformed) studentized maximum likelihood estimators. The second
group contains methods based on the likelihood ratio statistic and its modifications.
The methods in the third group use a parametric bootstrap approach. including the use
of bootstrap-type simulation to calibrate the procedures in the first two groups. All of
these procedures are justified on the basis of large-sample asymptotic theory. We use
Monte Carlo simulation to investigate the finite sample properties of these procedures.
Our results show that the coverage probability of one-sided confidence bounds is much
worse than those of two-sided confidence intervals calculated from methods in the first
and second group. Usual normal-approximation methods are crude unless the expected
number of failures is large (> 50 or 100). The likelihood ratio methods work much
better and provide an adequate procedure down to 30 or 20 failures. The second-order
bootstrap procedures do not perform equally well in small samples. By using bootstrap
methods with caution. the coverage probability is close to nominal for expected number
of failures down to 13 or less and even down to 10 or less for lightly censored cases

(proportion failing > 50% ). Exceptional cases. which are due to problems caused by the
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Type | censoring. are noted.

Keywords: Bartlett correction. bias-corrected accelerated bootstrap. bootstrap-t. life

data. likelihood ratio. ML estimator. parametric bootstrap. Type I censoring.

2.1 Introduction

2.1.1 Objectives

Due to time constraints in life testing. Tvpe [ censored data commonly arise from
life tests. To make inference on parameters and quantiles of the life distribution. ac-
curate confidence intervals (Cls) are needed. For Type [I censored data (or uncen-
sored data) from location-scale distributions (or log-location-scale distributions). Law-
less (1982, page |-I7) presents pivotal quantities that can be used to obtain exact Cls
for distribution parameters and quantiles analytically or through simulation. For Type I
censoring (more common in practice). however. neither pivotal nor other exact confi-
dence interval methods in general exist.

Today. normal-approximation intervals are used most commonly in commercial soft-
ware. [hese methods. however. may not have coverage probability close to nominal val-
ues for small to moderate number of failures. especially for one-sided confidence bounds.
Methods for finding better approximate Cls is an important practical issue. Many pa-
pers in the literature discuss the coverage probability of two-sided Cls. Most methods
do not perform equally well when one-sided confidence bounds (('Bs) are concerned.
even though most practical problems are one-sided (e.g.. cost of an error on one side is
generally much different from the cost on the other side). We evaluate CI methods in
order to find those that have high accuracy for both one-sided ('Bs and two-sided Cls
and present those evaluations for both heavily censored and small sample cases.

We show some special effects of Tvpe [ censoring. With Type I censoring. unlike
the complete data or Type Il censoring case. the distributions of MLEs have a discrete
component. Also the pivotal-like statistics have distributions that depend on the pro-
portion failing. It is for these reasons that some bootstrap methods behave poorly in
constructing confidence intervals for the p quantile when p is close to the proportion

failing and the expected number of failures is small.



2.1.2 Related Work

For one-parameter distributions. exact confidence bound methods exist for the pa-
rameter or monotone functions of the parameter like distribution quantiles or failure
probability (e.g.. Mood. Grayvbill and Bose 1974. Section VIII.4 and Casella and Berger
1990. Section 9.2). When there are nuisance parameters. the situation is more compli-
cated. For location-scale distributions. exact C'ls can be obtained for parameters and
some functions of the parameters based on complete or Tvpe [l censored data. For
Type I censoring. using a model with one or more nuisance parameters. there are no
known exact methods. [Under usual regularity conditions. the large-sample approxi-
mate methods described in Section 2 work generally for distributions with two or more
parameters.

[n application. C'Is based on normal-approximation theory (NORM method) of the
ML estimator are popular. They are easy to calculate and the method has been im-
plemented in most commercial software packages. Proper transformation of the ML
estimator (TNORM miethod) can improve the approximation to the normal distribu-
tion. For example. statistics transformed to have a range over whole real line may
perform closer to normal than those with finite boundaries.

Piegorsch (1937) explored the likelihood based interval for two-parameter exponential
samples with Tvpe I censoring. For the inference on the scale parameter. the coverage
probabilities for two-sided C'[ becomes adequate when sample size reaches 25. Ostrou-
chov and Meeker (1983) showed that Cls based on inverting log likelihood ratio (LLR)
tests provide better a approximation than TNORM Cls with interval censored data and
Type [ censoring for the Weibull and lognormal distributions. Vander Wiel and Meeker
(1990) showed that for Type [ censored Weibull data from case in accelerated life tests.
LLR based Cls are better than those from the TNORM method.

Doganaksoy and Schmee (1993) compared four methods for Type [ censored data
from Weibull and lognormal distributions. They are NORM. LLR. the standardized
LLR. and the LLR with Bartlett correction (LLRBART). They found that LLR-based
methods perform much better than NORM intervals. With complete or moderately
censored data. the standardized LLR considerably improves the approximation especially
for small samples (down to 10 expected failures.) Doganaksoy (1995) reviewed likelihood
ratio confidence intervals for reliability and life-data analysis applications. He notes that
the LLRBART C'Is have been used very little in applications due to the computational
difficulties of implementation.

Recent research indicates that the bootstrap is a very powerful method for com-
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puting accurate approximate confidence intervals. Hall (1987. 1992). Efron and Tib-
shirani (1993). Shao and Tu (1995) describe bootstrap theorv and methods in detail.
The parametric bootstrap method mimics the distribution of statistics by simulation or
re-sampling.

Robinson (1933) applied the hootstrap method to location and scale distributions.
The statistics used for constructing confidence intervals are pivotal quantities in the
case of complete or Tyvpe Il censored data. He used the method to find Cls for multiple
time-censored progressive data and used simulation to evaluate coverage probabilities.

The parametric bootstrap-t (PBT) is second-order accurate under smoothness con-
ditions (Efron 1932). The percentile method (Efron 1981) is very easy to implement
but usually is only first-order accurate for one-sided CBs. The bias-corrected method
(BC. Efron 1932) generally has better performance than the percentile method. The
bias-corrected accelerated method (BCA. Efron 1987) provides an alternative. more ac-
curate. method to construct Cls that usually improves the performance of percentile
and BC' method in complete samples.

The signed-root log-likelihood ratio (SRLLR) statistic has an approximate normal
distribution in large samples (Barndorff-Nielsen and Cox 199-1. page 101). Modified SR-
LLR method (Barndorff-Nielsen 1936. 1991) is third-order accurate in complete samples
but needs much more efforts to get the modification term. Using bootstrap simulation
to obtain the sampling distribution of the SRLLR statistic (PBSRLLR). instead of using
the large-sample approximate distribution (normal). improves the procedure’s coverage
probabilities. especially for one-sided ('Bs. PBSRLLR method is different from the one
that uses bootstrap simulation procedure to approximate the distribution of LLR statis-
tic (PBLLR. see Appendix A.2) and has accuracy has accuracy better than the PBLLR

method for one-sided cases.

2.1.3 Overview

The remainder of this paper is organized as follows. Section 2 describes the model and
the estimation method. Section 3 provides details of the methods for finding approximate
C'Is. Section 4 describes the design of the simulation experiment. Section 3 presents the
general results from the simulation experiment. Section 6 contains conclusions from the
experiment and suggestions for use in applications. Section 7 discusses some special
effects of Type I censoring that lead to poor performance of some simulation-based

CI/CB procedures. Discussion and directions for future research are given in Section 8.
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2.2 Model and Estimation

2.2.1 Model

If T has a Weibull distribution. then Y = log(7T) has a smallest extreme value (SEV)

distribution with density

Srly) = le":p [‘/_—’f_ — exp (ﬂ)] _
T o

a

and cdf

Fy(y)=1—exp {— exp (ﬂ)
o

—x <y< x.—x<pu<x.ag>0.

where g and o are location and scale parameters. The ¢ quantile of the SEV distribution
isy, = Fy'(q) = p+c,0. where ¢, = log[— log(1—q)] is the ¢ quantile of the standardized
(¢ = 0. and & = 1) SEV distribution. Define a = exp(u) and 3 = /o as Weibull

parameters.

2.2.2 ML Estimation

We use 7 and 7 to denote the ML estimators of the SEV parameters. Because of the
invariance property of ML estimators. i, = fi+c,7 is the ML estimator of the ¢ quantile of
the SEV distribution. Also the ML estimators of the Weibull parameters are a = exp(j1)
and 3 = 1/a. The ML estimator of the ¢ Weibull quantile is T,, = exp(y,). Also
y, = jt+c,5 is the ML estimator of the ¢ quantile of the SEV distribution. More generally
the ML estimator of a function g(p.o) is g = g(u.o). For any function of interest.
it is possible to re-parameterize by defining a one-to-one transformation. g(u.o) =
(g1(pt.0). g2(p. o)) = 6. that contains the function of interest among its elements. For
example g (u. o) could be a distribution quantile or failure probability. Then ML fitting
can be carried out for this new parameterization in a manner that is the same as that
described above for (u.o). This provides a procedure for obtaining ML estimates and
likelihood confidence intervals for any scalar or vector function of (y¢. o). For more details
sec Lawless (1982, Chapter ).

Let 8 = (#,.0,) be the unknown parameter vector. where 8, is the parameter of
interest and 0, is a nuisance parameter. Typically 8 could be (n.o) or (¢,.0). L(8) is the

likelihood and let ¢. denote the specified censoring time. Let ¢,.....¢, be n observations
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Table 2.1 Abbreviations for ('B/CI[ methods

NORM Normal-approximation

TNORM Transformed normal-approximation

LLR Log likelihood ratio

LLRBART | Log likelihood ratio Bartlett corrected

PBT Parametric bootstrap-¢

PTBT Parametric transformed bootstrap-¢

PBSRLLR | Parametric bootstrap signed square root LLR
PBP Parametric bootstrap percentile

PBBCA Parametric bootstrap bias-corrected accelerated
PBBC Parametric bootstrap bias-corrected

(e.g.. failure or censoring times) from a life test. If the observations are independent.
then the censored-data likelihood is

n

108) = T[ [fvUog(t.): )]*[1 — Fy (log(t.): 8)]'~*.

=1

where d, = | if ¢; is a failure time and §; = 0 if observation ¢ is censored at ¢..

2.3 Confidence Bound/Interval Methods

This section describes the different C'I/CB procedures that we study in this paper.
For more details. see the given references. Table 2.1 shows the abbreviation for each
method. Let (’,;;_, denote an approximate CI for #, with nominal coverage probability
L —a. where n is the sample size. The procedure for obtaining (',.;—, is said to be Ath
order accurate if Pr(#, € (' _,) = 1 —a + O(n~*/?). If there is no O(-) term in the

equation. we say that the procedure for C,., _, is "exact.”

2.3.1 Normal-Approximation Methods

Normal-approximation method (NORM). Suppose 8 is the ML estimator of the
parameter vector €. Under the usual regularity conditions. 6 is asymptoticly normal
and efficient (Serfling 1980. page 143). Let [ denote the Fisher information matrix and
n[s’é(ﬁﬁ]z be an estimator that converges to fél'” in probability when n increases to x.

where lél'” is the (1. 1) term of the inverse of [g. Then the distribution of (51 —01)/5:??(51}
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is approximately N(0.1) in large samples. A normal-approximation 100(1 — a )% con-
fidence interval can be obtained from #; £ z;_.,/25€(0;). where z(1_.,z is the N(0.1)

distribution | —a/2 quantile. In this paper n[se(#;)]* is obtained from the inverse of the

local estimate of the [g (e.g.. Nelson 1982, page 377).

Transformed normal-approximation method (TNORM). When an ML estimator
0, has its range on only part of the real line. a monotone continuously differentiable func-
tion g(al) with range on the entire real line could have a better normal-approximation
(Nelson. 1982, page 331). Let ¢g’(d,) denote the derivative of g(8,) and let n{s’é[g(é\l )]}° be
an estimator that converges to ¢'(¢, )[él'”g’(Ol) in probability. Using the delta method.
[g({l) - g(6, )]/s%[g(al)] ~ N(0.1). Then an approximate confidence interval for §; can
be obtained from g_l{g(al) + :“_,,/._,,s%[g(ﬁl)]}. where z(1_,/2) is the | — a/2 quantile
of the N(0.1) distribution. Typically g could be the log function for a scale parameter
or for positive quantile parameters and the logit or tanh function for a probability pa-
rameter. [n this paper n{s%[g(al)]}"’ is taken to be g’(f’)\l)f‘(al‘”g'(é\l). where féis the local

estimate of /fg.

2.3.2 Likelihood Ratio Methods

Log LR method (LLR). The profile likelihood for ¢, is defined as

0,.0,
R(6;) = max é(—l,\—') . (2.1)
2 L(8)
Let W = —2log R(0;). From Serfling (1980. Section 4.4). the limiting distribution of

Wis \{. Thus an approximate 100(1 — )% confidence interval can be calculated from
min{H " \'(“’1_0.”)} and max{WH ~( \'("l_a'”)}. where W' ~![-] is the inverse mapping and

\'("I_‘_,‘]) is the 1 — a quantile of \? distribution with 1 degree of freedom:.

Log LR Bartlett corrected method (LLRBART). Because the expectation of
W/E(WW) is equal to the mean of the \? distribution. the distribution of W/E(W’)
will be better approximated by the \? distribution (Bartlett 1937). In general one
must substitute an estimate for £ (W) computed from one’s data. For complicated
problems (e.g.. those involving censoring) it is necessary to estimate of £(f") by using
simulation. Then an approximate 100(1 — )% confidence interval can be obtained by
wsing min{ W \E_, , E01)]} and max{W "'[\Z_, ,E(W)]}.
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2.3.3 Parametric Bootstrap Methods

The following methods use the “bootstrap principle” or Monte C'arlo evaluation of
sampling distributions. Suppose a statistic S is a function of random variables with
a distribution that depends on the parameter 8. The parametric bootstrap version
S* of & is the same function but evaluated at data (“bootstrap sample™) simulated
using 6 instead of the unknown #. Using 6 in place of the distribution parameters. the
distribution of S~ can be calculated analyvtically in simple situations. or by simulation

in general.

Parametric bootstrap-t method (PBT). (Efron 1982) Let 0, be the ML estimator
of 0, and let 5{ be the ML estimator from bootstrap data. Also let ST be the a
quantile of the distribution of (67[ - 51)/5%'(51). where @'(51) is the bootstrap version
of s’é(()}). In this paper we choose s?‘(f)\l) to be the same as in the NORM method. The

-~

approximate 100(1 — o) confidence limits are computed from ?)\‘ - se(f,) and

i)\l — I, S’Zf‘({’)\l).

IYEYE

S~
O (1 ~a/2)

Parametric transformed bootstrap-t method (PTBT). Let g be a smooth mono-
tone function generally chosen such that g(ﬁl) has range on whole real line. Let {71 be
the ML estimator of 6, and let 5{ be the bootstrap version ML estimator. Let z 5«
be the o quantile of the distribution of [g(()}) - 9(51 )]/s'é'[g(é] )]. where s’é'[g(al)] is the
bootstrap version of s?.‘[g(l’)\l )]. In this paper we choose s’é[g(al)] to be the same as in
the TNORM method. An approximate 100(L — a)% confidence interval for §, can be

computed from g~ {g(8,) — :3(9‘1°).,_.,/_>,5%[g(01)]} and g~'{g(8,) — :y(97')(,_,/:)b%[g(0‘)]}'

Parametric bootstrap signed square root log LR method (PBSRLLR). Let
1(0,) = sign(al —0,)[-2log [{(091)]1/2 denote the signed square root of the log tikelihood
ratio statistic. In large samples. the distribution of V'(6;) can be approximated by a
normal distribution. Obtaining the distribution by simulation. however. captures the
asymmetry of the distribution and hence provides a better approximation for finding
confidence bounds for 8,. Suppose that vge is the a quantile of the bootstrap distribu-

tion of ¥°(8;). Then an approximate 100(1 — a)% confidence interval can be computed

) Ve )}

§ . S VI ) A =1
from min{1 (¢ ) Ve /_)))} and max{V7'( B1(1—a/2)

Uge
91(.,/2) 9l(l-q 91‘.,/2)

Parametric bootstrap percentile method (PBP). (Efron 1931) Let 0, be the ML

estimator of #; and let 8] be the bootstrap version of the ML estimator. Suppose ()1(-”)

is the a quantile of the distribution of §7. Then an approximate 100(1 — )% confidence
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interval for #; can be computed from 8y, ,,) and 8;(,_,,). If there exists an increasing
transformation ¢+, (#,) and ¥ a continuous. increasing and symmetric distribution such

that
Pr{L‘,.((;l) —a(b) <o} =U(r)

holds. then the PBP ('l procedure is exact. Otherwise the one-sided PBP (CBs are only
first order accurate. Note that the forms of ¢*, and ¥ need not be known to compute

the interval.

Parametric bootstrap bias-corrected accelerated method (PBBCA). Based on
concerns expressed on Schenker and Patwardhan (1985). Efron (1987) suggested an im-
proved percentile bootstrap method that corrected for both bias and non-constant scale
and named it BC'A (bias-corrected and accelerated ) method. Efron and Tibshirani (1993.
Section 14.3) showed an easier way to obtain BC'A confidence intervals. An approximate
100(1 — a)% confidence interval is given by ((;\l(‘””. é\l;&z))- Where 0’\1(-0) is the a quantile
of the distribution of (7{ and

-~ ::+:n2 —~ ?+:—u'2
01=¢>(:U+ 0,\ { ) Og=‘b<"+ 2 il )

L —a(Zo + =0 /2) T (5 F ziony) /

~ —~ . ~ ~ 3
s et <#{0I(b) < 01}) ~ Yoimy (O = Oy
. a =
d

Jo = —.
B R W
Zi:l (01[-] - Ol[i]) }

~

Usually @ is taken to be the standard normal cdf. Here (Tl[,-] = 0,(\7y). \p is the
original sample with the /th point u, deleted. ()Al[_] =5", 0’\1[,']/71. 2o 1s the a quantile of
normal distribution. B is the number of the bootstrap samples. and 07(b).b = 1..... B
are bootstrap versions of 0,.

If there is an increasing function v, (the exact form need not be known) such that

al01) = va(6))
L= ).
Pr{ I+ av,(6)) TS l} ®(z)

then the BCA CI procedure is exact.

Parametric bootstrap bias-corrected method (PBBC). Suppose that there exists
an increasing function ¢, (the exact form could be unknown). a cumulative distribution

function ®(.r) (the exact form needs to bhe specified) and

Pr {L‘”(i)\l) — () + 3 < .z'} = O(.r).
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Efron (1982) showed that the exact (' procedure for 8, can be obtained. For most cases
the form of ®(.r) is not available. and the standard normal cdf is suggested for . This is
the special case of the PBBC'A method and can be calculated as in the PBBC'A method

by putting ¢ = 0.

2.4 Simulation Experiment

This section describes our simulation experiment to compare the different confidence

interval procedures.

2.4.1 Simulation Design

Our simulation experiment was designed to study the following factors:
e p;: the expected proportion failing by the censoring time.
o L(r)=nps: the expected number of failures before the censoring time.

We used 2000 Monte ('arlo samples for each py and E(r) combination. The levels used
were p; = .01, .05. .1. .3. 5. .7, 9. L and E(r) = 3. 5. 7. 10. 15. 20. 30. 50 and 100.
For each Monte ('arlo sample we obtained the ML estimates of the scale parameter and
the quantiles y,. ¢ = .01. .05, .1. 3. .5, .632 and .9. where ;1 = yg3,. The one-sided
100( 1 — )% confidence bounds were calculated for o =.025 and .05. Hence the two-sided
('Is. Y0% and 95%. can be obtained by combining the upper and lower C'Bs. Without
loss of generality. we sampled from an SEV™ distribution with ¢ = 0 and & = 1.
Because the number of failures before the time censoring ¢. is random. it is possible to
have as few as r = 0 or 1 failures in the simulation. especially when E(r) is small. With
r = 0. ML estimates do not exist. With r = 1. LR intervals may not exist. Therefore.
we calculate the results conditionally on the cases with r > 1. and report the observed

nonzero proportions that resulted in r < 1.

2.4.2 Parameter Estimation and Computation Methods

ML estimates of ¢ and o were obtained by solving the simultaneous equations in
Appendix A.l.1. For finding the confidence limits from LR methods. two equations

from the log likelihood were used. The first one specifies the quantile to be estimated.
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The second equation assures that the constrained ML estimator will be achieved for the
nuisance parameter. See the Appendix A.[.2-Al..{ for further details.

The Fortran subroutines DNSQE and NNES from netlib (http://www.netlib.org)
were used to solve the simultaneous nonlinear equations. The TNORM confidence limits
were used as starting values. For the small expected number failing cases (E(r) < 10)
and heavy censoring (p; < .2). the start values were not always close enough to the
solution of equations. Two methods were attempted to overcome the difficulties. First
we switched from the Powell hvbrid method to a line search method. If line search failed.
as a last resort. we used different sets of start values obtained from a grid search and this
method was always successful. The program was written in Fortran with calculations
performed in double precision. The accuracy for the parameter estimates and the ('
calculation was approximately 6 significant digits.

The computer time required for the simulation is an increasing function of the ex-
pected number of failures. Simulating bootstrap intervals is computationally intensive.
For E(r) =3 and p; = 1 it takes about 10 seconds to calculate one Monte Carlo simu-
lation trial for all Cls for different methods and parameters. For £(r) = 100 and py = 1
it takes approximately S0 seconds. We used 2000 replications in the simulation. Most

of the simulations were done using DEC 3000 Model 900 Alpha workstations.

2.4.3 Coverage Probability Comparisons

Let 1 — a be the nominal coverage probability (C'P) of a CI. and let [ — a denote
the corresponding Monte (‘arlo estimate. The standard error of & is approximately
se(l —a) = [a(l — a)/n,]'"% where n, is the number of Monte Carlo simulation trials.
For one-sided 95% ('Bs from 2000 simulations the standard error of CP estimation is
L.05(1 — .95)/2000]'/? = .00-19. The Monte Carlo error is approximately £1%. We say
the method is adequate if the CP is within £2% error for 95% C'Bs and 90% Cls.

[f the estimated actual coverage probability is greater than (less than) 1 — « then
the CI procedure is conservative (anti-conservative). We say that coverage probability
is approximately symmetric when the difference of the CP of lower and upper UBs is

approximately the same.

2.5 Results of Simulation Experiment

The results of the simulation study were summarized using different numerical and

graphical methods. Here we present some of the most interesting and useful graphical
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Table 2.2 Number of the cases where r = 0 or | in 2000 Monte C'arlo simu-
lations of the experiment. The expected numbers rounded to the
nearest integer are shown inside parentheses.

ps
.0l 05 .10 30 50 .70 90
31 379(395)  365(383) 376(367) 308(293) 235(218) 160(167) 63( 53)
E(r) 51 SS(79) 72074 68 67) 59 52) 23(21) LI T) I 0
TLOITC ) 16 12) 13 10) 3( 5 (L) o 0) L 0
0] o 0) 3 0) O 0) 0 0) 0o 0) o 0) 0 0

displays. Table 2.2 shows the number of Monte Carlo simulations which that had only
0 or [ failure. Those cases are excluded in calculating coverage probability. When

£(r) > 10. there was no Monte Carlo simulation that had fewer than 2 failures.

2.5.1 One-sided CBs

Let UCB (LCB) denote an upper (lower) confidence bound. Figure 2.1 shows the
coverage probability of the one-sided approximate 95% ('Bs for the parameter o [rom
10 methods for 5 cases of proportion failing. Figure 2.2 is the same type of graph as
Figure 2.1 for the .1 quantile. ¢ ;. of Weibull distribution. The crossing of lines for some
cases with £(r) = 3 and 5 in Figure 2.2 is due to dropping the simulation trials where
r = 0or . Figure 2.3 shows C'Ps when py = .3 for different quantiles. Figure 2.4 to
Figure 2.7 present a closer comparison of C'P for methods and parameters.

For the parameter o. we have following results from Figure 2.1:

e [or the NORM method both UCBs and LCBs have inaccurate CP for all py.
even when £(r) = 50. UCBs are always anti-conservative and LCBs are always
conservative. The TNORM method has C'Ps closer to the nominal ones for E(r) >

30 but the confidence bounds still have the same asymmetry as in NORM method.

o For the LLR method. as E(r) < 20. UCBs are anti-conservative and LCBs are
conservative. For E(r) > 20 and py < .5. the approximation is adequate. The
LLRBART method does not improve the C'P relative to the LLR.

e The PBBC'A. PBBC and PBP methods have C'Ps approximately equal to the

nominal C'Ps for £(r) greater than 20. 30. 100. respectively.
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hounds. respectively.
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The PBSRLLR. PBT and PTBT methods always provide excellent approximations

even for £(r) = 3 case.

For estimating distribution quantiles. the situation is more complicated. In general.

quantiles ¢, {Figure 2.2 to Figure 2.7):

For NORM. UCBs are anti-conservative and LCBs are conservative in most cases
when E(r) > 10. The approximation of ('P is crude (e.g.. | - @ < .90 for nominal
I —a = .95) for some parameters even in the case E(r) = 100. NORM has better

performance for quantiles ¢, for which p < py.

TNORM is more accurate than NORDM for £(r) > 30. The approximation of C'P
is still crude and depends on p;. UCBs (LCBs) are conservative when p < py
(p > py) and are anti-conservative when p > p; (p < py) except that when p from

t, is close to py. both are conservative.

The asymmetry for the LLR and LLRBART is similar to TNORM. but the C'Ps
are closer to the nominal ones. That is. UCBs (LCBs) are conservative when
p < ps (p > ps) and are anti-conservative when p > py (p < p;). LLR provides
good CP for £(r) > 20. LLRBART improves LLR only when p, > .7.

PBT has poor C'P even for E(r) = 100. [t is a little more accurate with no
censoring than in the censored cases. Depending on the particular quantiles. PBT

could be better or worse than NORMI.

When p; > 5. the ordering with respect to C'P accuracy. in descending order. is
PBBCA. PBBC and PBP. Otherwise there is no strict order for these three meth-
ods. UCBs are always conservative and LCBs are anti-conservative. Generally
PBBCA and PBBC have adequate CP for E(r) > 20. But for p; < .5 and p > py
. PBBC is better than PBBCA. When p = py. PBBC and PBBCA have lower CP

than in other cases.

For PBSRLLR and PTBT. UCBs and LCBs all provide excellent approximations
when p; < p especially for heavily censored cases (p; < .1). But when py is close to
p. both methods have lower CP for LCBs. The PBSRLLR method is better than
the PTBT method and is adequate for £(r) > 15. When p; > .5. the PBSRLLR

method is adequate for £(r) > 10.
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2.5.2 Two-Sided ClIs

Recall that for one-sided ('B’s. often the ('P was conservative on one side and an-
ticonservative on the other side. With two-sided intervals. there is an averaging effect.
and the overall ('P approximations tend to be better. Figure 2.8 shows the ('P of the
two-sided Y0% Cls for parameter o using 10 ditferent methods for 5 cases of proportion
failing. Figure 2.9 is the same type of graph as Figure 2.8 for the .1 quantile. ¢ | of the
Weibull distribution.

For the parameter o. we have following results from Figure 2.3:

e The NORM method CP is approximately equal to the nominal CP for £(r) > 30.

But the TNORM method provides some improvements especially when E(r) > 20.

o The approximate C'P for the LLR method is adequate for E(r) > 15. With
Bartlett’s correction (LLRBART). the C'Ps are much closer to the nominal even

E(r)y=3.
e The approximate CP for the PBP method is adequate for £(r) > 20.

e The approximate C'P for the PBB(' and PBBCA method are very similar for
E(r) > 10. They improve on the PBP for E(r) < 20.

e The approximate C'P for the LLRBART. PBSRLLR. PBT and PTBT methods

are excellent for all values of E(r) and py.

For quantile parameters ¢,. Figure 2.9 for ¢; and similar plots for other {, values (not

presented here) indicate that

o ['nlike the situation for the parameter o. the adequacy of the C'P approximation

depends on the expected proportion failing.

e When p = p; < .3 and E(r) < 20. both NORM and TNORM are conservative.
TNORM is more conservative than NORM. But for p = p; > .5. both methods
are anti-conservative. Also. when p # pys. both methods are anti-conservative. For
p > ps. TNORM has CP closer to nominal than NORM. But for p < py. NORM
has CP closer to nominal than TNORM.

e LLR and LLRBART have accurate C'P for E(r) > 15 and E(r) > 7 respectively.
For large ps. LLRBART is considerably better than LLR.
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e The performance of PBT is close to that of NORM and is better when p > py.
But for large E(r) (> 30). NORM is better than PBT.

e The relative performances of PBP. PBBC and PBBCA depend on both py and
E(r). When p = p;. PBBC and PBBCA tend to have lower CP than p # py.

e PBSRLLR and PTBT provide excellent approximations when p > ps especially
when py is small (< .1). When py is close to p. however. both methods have C'P
that is lower than nominal. In this case the PBSRLLR method is better than

PTBT method and provides an adequate approximation for £(r) > L5.

2.5.3 [Expected Interval Length

Interval length is another criterion for comparing two-sided CIs. With the same
coverage probability. procedures that provide shorter intervals are better. Figure 2.10
shows the average interval length of the 2000 two-sided 90% C'ls for parameter o using 10
different methods for 5 values of py. Figure 2.11 is the same type of graph as Figure 2.10
for parameter f;. For parameter o. we have the following conclusions results from

Figure 2.10:

e Generally. for all different methods the CI expected length is shorter if ps is bigger.
This is quite natural. as with constant £(r). we have more information about the

distribution for larger py.

e There is not much difference among the different procedures for £(r) > 10. For
E(r) < 10. the order of expected lengths are :
{NORML. PBP} < {TNORM. PBBC. PBBCA} < {LLR. LLRBART}
< {PBSRLLR. PBT.PTBT}.

One explanation for this ordering is the anti-conservative nature of the shorter intervals.
For quantiles ¢,. the situation is quite different from that for . We draw the following
conclusions from Figure 2.11 and from plots for other values of ¢, that are not presented

here:

e Lor the case p > p;. the expected interval length is much wider for all different

methods even when E(r) = 20 . due to the extrapolation in time.

o Differences in the expected length often result from differences in the C'P. Intervals
with more conservative ('Ps tend to be wider. In general. the order of the (I

widths are NORM < TNORM. LLR < LLRBART. and PTBT < PBSRLLR.
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2.6 Conclusions and Recommendations

Normal-approximation confidence intervals (NORM and TNORM) are still com-
monly used in practice and are used in many statistical software packages. Normal-
approximation two-sided C'Is may not be adequate when the expected number of failures
is less than 30. For the one-sided case. we see that generally £{(r) =100 failures is still
barely enough to provide a good approximation to the nominal coverage probability. If
the scale parameter is of interest. the usual transformation (such as log). which makes
ML estimator have range over whole real line. is suggested. Doing this usually provides
a somewhat better coverage probability for any proportion failing.

Two-sided log likelihood ratio Cls have reasonably accurate coverage probability.
even for expected number of failures £(r) as small as 15. But the Cls are asymmetric.
[ndividual upper and lower C's could be somewhat conservative or anti-conservative
depending on number of failures and quantiles of interest. Use of Bartlett’s correction
generally improves the coverage probability approximation for two-sided C'Is. especially
when the proportion failing is greater than .3. Those Cls are adequate even when
E(r) = 7. But for one-sided coverage. however. the Bartlett’s correction provides no
improvement.

Some bootstrap methods provide better coverage probability accuracy. However.
using the bootstrap-¢ without a proper transformation may not perform any better than
the normal-approximation method. [t is important to use the bootstrap-t procedure
carefully.

The bootstrap percentile methods are easy to implement and thev improve the
normal-approximation method in many (but not all) cases. The accuracy of the paramet-
ric bootstrap percentile (PBP). bias corrected (PBB(C') and bias-corrected accelerated
(PBBCA) methods depend on the expected number of failures. the proportion failing
and the parameters of interest. When the proportion failing is greater than .1. the PB-
BC'A method has better performance than the PBBC method for quantile parameters.
[n heavily censored cases (py < .1). however. the PBBCA method is generally worse.
This is probably due to difficulty in estimating the acceleration constant under heavy
censoring.

The parametric bootstrap-t with transformation (PTBT) and bootstrap signed-root
log-likelihood ratio (PBSRLLR) methods provide more accurate results over all different
number of failures. proportion failing and parameters of interest except for the case that
parameter of interest is f, and p is close to proportion failing. Moreover. the coverage

probabilities are approximately symmetric. which is important when one-sided ('Bs are
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needed or when the cost of being wrong differs inportantly from one side to the other of
a two-sided interval. Although the PBSRLLR method is more accurate in small samples
(F£(r) < 10). the bootstrap-t with transformation requires much less computational
effort than the PBSRLLR method. Inverting the signed-root log-likelihood ratio method
requires repeated root finding. Also with heavy censoring. good starting values are
needed to find the confidence limits and there may be numerical difficulties. However
the important benefit of PBSRLLR method is that it is transformation invariant (unlike
PTBT).

The ClIs from both PTBT and PBSRLLR methods are wider than the normal-
approximation methods (NORM and TNORM). especially when censoring is heavy.
This is in part due to improving the poor accuracy of coverage probability using normal-
approximations. The wider Cl is as a trade off to get higher order of accuracy.

[n general. when the expected number of failures is smaller than 50 (20). the like-
lihood ratio based methods are recommended for finding one-sided confidence bounds
(two-sided confidence intervals). [f one-sided ('Bs are required or censoring is heavy
(ps < .1). the PTBT and PBSRLLR methods methods are suggested except for the
case when the quantity of interest is t, where p is close to proportion failing. Then
PBSRLLR is better than PTBT down to E(r)=15. When p; > .5. the PBSRLLR pro-
vides accurate C'P even down to £(r) = 10. With modern computing capabilities. the
PBSRLLR method is feasible and. when appropriate software becomes available. should

be considered the best practice.

2.7 Special Effects of Type I Censoring

In small samples. the CP from the NORM method is much more accurate if the
paramecter of interest is ¢, where p is close to proportion failing p;. Doganaksoy and
Schmee (1993) explain that in this case {, and o are approximately orthogonal parame-
ters and the NORM method benefits from this property. But unlike the NORM method.
both the PTBT and PBSRLLR methods perform poorly in this situation. The possible
reasons for this are a) the distributions of the pivotal-like statistics depend on the py
and b) the distributions of MLEs have a discrete or lattice component (i.e.. number of
failures). Figure 2.12 shows that the distributions of the pivotal-like statistics change
with the value of p; and is different for quantiles ¢, for which p = p; but consistently
similar for the scale parameter . This explains why the C'P of the confidence interval

for o is closer to nominal than the C'P for confidence interval for the quantiles. Also
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Figure 2.13 Plotted points are values of (zi.5) from 500 MLEs from Weibull
distribution data with py = .1 and sample size 30 (so E(r) = 3).
The lines are log(t;) = pt + ®7(r/30)o. r = 1. 2. .... 10. ® the
Weibull cdf. where y = 0. o0 = 1.
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there is a strong discrete-like behavior in the sampling distribution of some statistics
(e.g.. t:,‘; when p of ¢, is close to ps. With Type [ censored data. if r/n is small (<.3)
then log(t.) =~ i + ®~'(r/n)a. where (. the censor time. r the number of failures and n
the sample size. This is illustrated in Figure 2.13.

Robinson (1983) applied a parametric bootstrap method (see the Appendix A.2) to
find ClIs for multiple time-censored progressive data. This method (like PTBT) is exact
when data are complete or Type I censored. Since multiple time-censored progressive
data contain several censoring times. there is no discrete-like behavior in the MLEs like
that in Type [ censoring. For this reason the ('P with multiple time censoring is close
to the nominal over all of the different cases. For Type [ censored case. however. the
coverage probability of Robinson’s method is less accurate than that of the transformed

bootstrap-t (PTBT) method.

2.8 Discussion and Directions for Future Research

[t is most common that life tests result in Type [ censored data. Because there are no
known exact confidence interval methods for Type I censored data. this paper provides
a detailed comparison of methods for constructing approximate confidence intervals.
These methods range from the most commonly used large-sample normal-approximation
methods to the more modern computationally-intensive likelihood and simulation-based
methods. Because opposite lower and upper bounds of a two-sided confidence interval
tend to have conservative versus anti-conservative coverage probabilities. the effect of
averaging often results in reasonably adequate coverage-probability approximations for
two-sided confidence intervals in situations with moderately large sample sizes. Qur
results show. however. that for moderate amounts of censoring and one-sided bounds
(most commonly used in practical applications in the physical and engineering sciences
as well as other areas of application) the simple normal-approximation (NORM and
TNORM) methods provide only crude approximations even when the expected number
of failures is as large as 100.

Appropriate computationally-intensive methods provide important improvements.
[n particular. likelihood-based methods. even when calibrated with the large sample chi-
square distribution approximation (e.g.. the LR method). generally provide important
improvements. Calibrating the LR Cs by simulation (see the Appendix A.2) does not
address the asymmetry problem and results in inaccurate one-sided bounds. Calibrating

the individual tails of a likelihood-based interval with simulation (i.e.. the PBSRLLR
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method) provides important improvements in coverage probability accuracy. even for
small E(r). for all but one exceptional situation (i.e.. inferences at times near to the
censoring time or quantiles near the proportion censoring with E(r) < 10). The trans-
formed bootstrap-t procedure provides a computationally simpler method. but one needs
to be careful in the specification of the transformation to be used.

[n addition to providing guidance for practical applications. our results suggest the

following avenues for further research.

. Our study leaves unanswered the question of what one should do when making
inferences in the exceptional case when the failure number is down to 10. We see

no easy solution to this problem. Some possibilities include

e Extending the censoring time of the life test to be safely and sufficiently
bevond the time point (or proportion failing) of interest. This requires prior

knowledge of the failure-time distribution which is not generally available.

e Design life test experiments to result in Type [l censored data. In this case.
exact confidence interval procedures are available. but experimenters gener-
ally have to deal with time constraints in life testing and thus there may
be resistance to such life test plans. On the other hand. Tyvpe II censoring
provides important control over the amount of information that a life-test

experiment will provide.

e Design life test experiments to result in multiple time-censoring (where the
results of Robinson (1983) suggest that excellent large sample approxima-
tions are available from computationally intensive methods). [n this case.
constraints on time or number of units available for testing may also lead to

resistance to such life test plans.

e [f none of the above is possible (e.g.. for reasons given above or because the
experiment has already been completed) it might be possible to make use of
nonparametric methods (where conservative confidence intervals or bounds

may be available if there is a sufficient amount of data).

2. Our study has focused on the Weibull distribution. It would be of interest to
replicate the study for other distributions. We would expect very similar results
for other log-locations-scale distributions such as the lognormal and the loglogistic

distributions.
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3. [t would be of interest to extend this study to other censored-data situations that
arise in applications. including regression analysis and the analysis of accelerated
life test data. more complicated censoring schemes like interval censoring and ran-
dom censoring. simultaneous confidence interval and bounds. intervals to compare

two different grouped. and so on.

1. The LLRBART is second-order accurate for two-sided CI using Type I censored
data (Jensen 1993). Both PTBT and PBSRLLR methods are better than LLBART
in one-sided cases. Simulation results also suggest that PBSRLLR is better than
PTBT with smaller sample sizes. This suggests that higher-order asymptotics

would show a difference between these different methods. This could be explored.
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3 BOOTSTRAP LIKELIHOOD RATIO STATISTICS

A paper to be submitted to Scandinavian Journal of Statistics

Shuen-Lin Jeng and William Q. Meeker

Abstract

Much research has been done to study the asymptotic distributions of likelihood ra-
tio statistics. Most of this research has focused on the situation in which the underling
distribution is continuous (especially. parametric families) or discrete (e.g.. the empirical
distribution). In this paper we consider the situation in which the data are censored
and the distribution of the likelihood ratio statistic is a mixture of continuous and dis-
crete distributions. Jensen (1993) shows that under this situation the distribution of
Bartlett-adjusted likelihood ratio statistics can be approximated by a \? distribution up
to second order accuracy [O(1/n)]. This result can be used to provide a second order
accurate procedure for constructing confidence intervals. However. if the one-sided con-
fidence bound is of interest. the coverage probability of a procedure is usually only first
order accurate when using the \? approximation. We extend the results from Jensen
(1993) and show that the distribution of signed square root likelihood ratio statistics
can be approximated by its bootstrap distribution up to second order accuracy. Sim-
ilar results apply to likelihood ratio statistics with or without a Bartlett correction.
We use a simulation study to investigate the adequacy of the approximation provided
by the theoretical result. We compare the finite-sample coverage probability of several
competing confidence interval procedures based on the two parameters Weibull model.
The bootstrap-t and B(', methods are second order accurate when the data are com-
plete. Our simulation results show that the methods based on bootstrap signed square
root likelihood ratio statistics and its modification outperform the bootstrap { and B(C,

methods in constructing one-sided confidence bounds when the data are Type I censored.
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Keywords: Bartlett correction. confidence interval. life data. likelihood ratio. one-sided
confidence bound. signed square root likelihood ratio. parametric bootstrap. Type |

censoring.

3.1 Introduction

3.1.1 Motivation

The asyvmptotic distributions of likelihood ratio statistics had been studied for decades.
Most previous work has focused on the situations in which the underling distribution
is continuous (especially parametric families) or discrete (e.g. empirical distributions).
The log likelihood ratio statistic usually provides more accurate approximate inferences
than the more commonly used studentized maximum likelihood estimators (see for ex-
ample. Doganaksoy and Schmee (1993) and Jeng and Meeker (1998)). For finding one-
sided confidence bounds. the signed square root of log likelihood ratio (SRLLR) statistic
is commonly used. However. even for complete continuous data. generally the SR-
LLR statistics is approximated by the standard normal distribution only to first order
[O(1/\/n)] (Barndorff-Nelsen and Cox (1994)). With time censored data. the distribu-
tion of a likelihood ratio statistic is a mixture of continuous and discrete distributions.
Jensen (1993) derives an Edgeworth expansion of log likelihood ratio (LLR) statistic
when its underlying distribution is partly discrete. The bootstrap is a general resam-
pling or simulation procedure to find an approximate sampling distribution. In this
paper we extend the results from Jensen (1993) and we show that. under some reg-
ularity conditions that apply to complete and censored data. the distribution of the
SRLLR statistic and the LLR statistics. with or without a Bartlett correction. can be

approximated up to second order accuracy [O(1/n)] by using the bootstrap procedure.

3.1.2 Literature Review

Let [(2:0).0 = (8. 02)) = (0,.... .0, .0k, 41.--..0k). be the log likelihood function
for a single observation r where 8 is the parameter of primary interest and ") is a
vector of nuisance parameter. When there are n observations. define [, as

n

[.(0) = iZJ(I,-;e). (3.1)

n
1

where &, is the data for the observation i. Let # = (6;.... .0;) and

0 = (()1. e B B e Ok) = (é“).()(()"))) be the maximum likelihood estimates for
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. : 2
the full model parameter vector 8 and for the restricted model parameter §2) = 0(() ).

respectively. Then the log likelihood ratio statistic is
W = 2n[l.(0) — [,(0)]. (3.2)

and under standard regularity conditions (e.g.. Lehmann 19Y86) 1, is asvmptotically
\{k_k,)- Where \} denotes a chi-square distribution with degree of freedom f. The
signed square root log likelihood ratio (SRLLR) statistic for testing a scalar parameter

(or a scalar function of the parameter so that Ay = k& — 1) 8, = O is
R, = sign(x — ko) /W, (3.3)

and the distribution of R, is asvmptotically standard normal.

The distribution of the log likelihood statistic for i.i.d complete data has been de-
scribed in a number of publications. Box (19:49) derives an infinite series for the dis-
tribution of 1", in terms of the \? distribution and with terms decreasing in powers of
I/n. Lawley (1936) derives the Bartlett correction term for 1. Havakawa (1977) gives
an asymptotic expansion of the distribution of W', with the i.i.d complete data as the

following

) l , ,
Pr(lV, < w) =Pr(\j_y, <)+ m{\z Priviog 44 S w) — (240 — Ay) Pr(nig 42 S )

4 l
+ (A2 — A ) Prinio, < lL‘)} +o (-) .

n

(3.4)

where \{ is a chi-square random variable with & degrees of freedom. A, and A, are
functions of #. and A, = 0 when testing § = 8. Chandra and Ghosh (1979) give
an asymptotic expansion of W', to order o(l/n) in terms of the maximum likelihood
estimator of § as well as the second. third and fourth derivatives of ni,(6).

Lawley (1956) gives a series expansion of R, in terms of the first four derivatives
of nl,(0) and their expectations. When 6 is a scalar. McCullagh (1984) argues that
by conditioning on a second-order locally ancillary statistic. the procedure based on
R, plus the standardized skewness of ni)[n/aﬂ has the desired coverage probability to
the order O(1/n). Therefore the procedure. unconditionally. has error O(1/n) in each
tail. Efron (1985) shows that R, is asymptotically normal to order O(1/n?). Barndorff-
Nelson (1986. 1991) verifies that a particular modification of R, follows standard normal

distribution to order O(1/n%?) conditionally on an appropriate ancillary. and hence also
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unconditionally. Nishii and Yanagimoto (1993) provide an asymptotic expansion of
studendized R, up to third order for distributions in the exponential family.

For censored data. the usual arguments for finding a formal Edgeworth expansion are
no longer valid. The order of accuracy in the results mentioned above could be different.
Jensen (1987, 1989) establishes the Edgeworth expansion for a smooth function of the
mean of some statistics when the underling distribution is partly discrete. He first
derives the expansion conditional on the discrete part and then integrates over the
discrete component to obtain the unconditional Edgeworth expansion. Babu (1991)
calculates the Edgeworth expansion for statistics that are functions of lattice and non-
lattice variables for the case that the lattice variable is only one dimensional. Jensen
(1993) shows that 1, has a three-term Edgeworth expansion.

A large number of bootstrap methods have been suggested for testing or finding con-
fidence intervals (Hall 1992. Efron 1993. Shao and Tu 1995). The theoretical arguments
for the accuracy of these methods are mostly derived under the assumption of complete
data. For Type [ censored data. some bootstrap methods can be much less accurate.
especially for one-sided confidence intervals and small expected number failing (see Jeng
and Meeker. 1998). Datta (1992) establishes a continuous version of classical Edgeworth
expansions for both non-lattice and lattice distributions and uses this to unify both
non—parametric and parametric bootstrap methods of a studenized statistic up to order

O(1//n). Datta (1992) gives an example that bootstrap-¢ method is first order accurate
[O(1//n)] for the Type I censored data with the exponential distribution.

[n Section 3.2. we establish a result that the distribution of the SRLLR and LLR
statistics with or without a Bartlett correction can be approximated to order O(1/n)
by its bootstrap distribution when the underling distribution is partly discrete. Section
3.3 gives examples for using the theorems in Section 3.2. A simulation study is used to
compare the finite sample properties of several different methods. Section 3.4 concludes
with a summary and discussion of some possible areas for future research. In order
to keep this paper self-contained. Appendix B contains statements of some important

results from the literature.

3.2 Theorems and Results

We want to establish that the distributions of the SRLLR and LLR statistics can
be approximated by the distributions of their bootstrap version to the order O(1/n) for

complete and censored data. We use an approach that has two stages.
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I. Express the likelihood ratio statistic as a function of \/ng(S,/n) plus some
higher order error terms. where S, = (X,.Y,.). .\, is a continuous variable
with mean zero in R?. Y, is a lattice variable with mean g, in R? having
minimal lattice Z%. and ¢ is a smooth function. Then find an Edgeworth
expansion for the distribution of the statistic \/ng(~,/n). This will establish
that the likelihood ratio statistics has the same Edgeworth expansion up to

a certain order.

2. Prove that the Edgeworth expansion of the likelihood ratio statistic can be

approximated by its bootstrap version up to second order accuracy.

The work in the first stage is essentially done by Jensen (1987. 1989. 1993). For com-
pleteness of this paper we state some of his results (mostly in Section 3.2.1 and Appendix

B). Then. based on Jensen’s theorem we establish our main result in Section 3.2.2.

3.2.1 Likelihood Ratio Statistics

For a function of § € R* we denote by 9 the partial derivative dl*!/(907 ... 67*)
where v € N*_ [v| = Y v and ! = !, .. nt. When [v] = 1 we write 0; instead of d” to
denote a partial derivative w.r.t. ;. Let X|.X,.... be an i.i.d. sequence of real value
random variables with common distribution P;. where @ belongs to an open subset © of
R?. Let I(r:0) is (X.2) measurable function w.r.t. some measure g. Denote the cdf and
density of Py by F(r:0) and f(r:6). respectively. Typically [ can be the logarithm of
the likelihood function of an observation. For example when the data are not censored.

[(N;:0) = log[f(X.:0)]. With single Type I censoring at censor time ¢.. we have
L(X:0) =log{f(X::0)"[l — F(N::0)]'7% ). (3.3)

where §; = 1. if X; < t. (a failure) and d; = 0. if X; > ¢. (a censored observation).

Let the true parameter value be § = 8 and v be a £ dimensional nonnegative integer
vector. We shall use the following regularity conditions with s(> 3) a fixed integer.

Let the mean of the log likelihood functions /,, be defined as in (3.1). Then the log
likelihood ratio (LLR) statistic I, is defined as in Equation (3.2). The signed square
root of the log likelihood ratio (SRLLR) statistic is defined as in Equation (3.3).

The following are the regularity conditions for the likelihood function (.



{ A} Conditions:

(Al) For each v. | < |v| < s+ 1. [{«:0) has a v-th partial derivative 9“{(r:6) with
respect to # on X x Ul

(A2) Foreach v. | < || < s E[]0“1(X:60y)|] < > and there exists a; > 0 such that for
each v. jv| = s+ L.

El sup {]2°((X1:0)]}°] < x.

|88 <1
(A3) E[2(X,:00)] =0 for i = 1.... . k. and the k x k matrices
189) = {~E[0:0,1(X,:00)]} (3.6)
D(8o) = {E[DL(X1:00)0,1(X1:00)]}
are non-singular. and [(fy) = D(6y).

Define Z:'[U] = J"l(X,:0y) and let Z, = (Zl[ul)lSIUISS be the vector with coordinates

. . . . ; ktr—1 -
indexed by the v's. The dimension of Z; is m = Y_7_, (*"77'). and we arrange Z, values

such that the first & coordinates of Z, are those with indices v = €, € N¥ that have their
J-th coordinate equal to one and the rest equal to zero. Some of the coordinates of Z;
may be linearly dependent and we write

Z. = Z.A. (3.7}

where Z, has dimension my < m. Then Z, has linearly independent coordinates of

which the first m, are continuous variables and the remaining m, = mg — m, are lattice
. . . . . .. .5 S(1) 5(2 5(1

variables with minimal lattice Z™. We will write Z, = (Zf ).Zf h). where Zf ) are the

. . S5(2 .
first 1n; coordinates and Zf ) are the last ms coordinates.

(B) Conditions:

(Bl) E ,deax{!sﬁ-l.m;-}-l}} < x<. E [’Zl('-’-)lmax{2s+1.m;+l.mg+l}} < > and for all = > 0

there exists a p < | such that
. e fp . () 2(3)
(E [e.\p(zt-Zl +iv-Z; )” <p
for v, < 7. =1.... .m, and one of || > = or |v| > 2 being fulfilled.

(B2) The my < & matrix A®Y has full rank. where A" is the upper left hand corner

of .
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(B3) The m, < (k= Ay) matrix (AN (0y)~2)12) has full rank. where A" is the matrix
consisting of the first A columns of A. the lower triangular matrix [(85)~'? is the
Cholesky factorization of [(8y)~". and (AN [(8)~1/2)(12) is the m, x (A —Ay) matrix

of the first m rows and columns (k; + L.... k) of AN [(8y).

(‘ondition (B1) is called a uniform Cramer condition. and is required to establish
an Edgeworth expansion for the continuous part given the lattice part Zfz). Condition
(B2) is used to assure that the part corresponding to the parameter 62! in a first order
Taylor approximation of the statistic. \/ng(S,/n). depends on the continuous part Z"f”.
Condition ( B3) is used to assure the invariant property of the reparameterization.

Jensen (1993) gives a proposition that can be used to check the Condition (B1). We

state it as the following.

Proposition 1 (Jensen (1993), Proposition 2.3) . Let (X.Y) € R™ x {0.1}™2
and assume that the random vector has a continuous component with denstty f(r.y)
with respect to product measure of Lebesque measure and counting measure. Assume

that there erist ¢ > 0 and a > 0 such that
fleg) > e for(a.y) € (—a.a)™ x {0.1}™.
Then for all € > 0 there erists a p < 1 such that
|Elexptit - XN +iv-Y)]l <p
forjel <= . y=1..... my and one of |t| > ¢ or || > ¢ being fulfilled.

Proof. See Jensen (1993). Proposition 2.3.
The following lemma given by Jensen (1993) provides an asymptotic expansion of

the SRLLR statistic.

Lemma 1l Let [, = ((',[1"]). where U2 = Z:M - E (ZE"I) for1 < |v| < s, fors =
1. Assume that Conditions (A) hold. Then on a set having probability at least 1 ~
dy/[n(log(n))?]. the SRLLR statistic R, can be erpanded as

. . 1
R, = VnT\(() + V() + VnT3(0n) + Rem,,
vnd

Rem,,.

. 1

where Rem,, is a remainder term that satisfies

l 1 log(n) g ds
Pr ' 1, | —=—— > ] - ———
! ( \/”_3}?("1,1 < d, [ " ] > > 1 nliogln I




Here T(U ). ( =1.2. and 3. are polynomial terms of degree ¢ in the coordinates of U,

and dy.d,. and dy are some constants. The main term T((',) s

ol 021 -z
Ti(0,) = ==(8 E 20 3.9
[‘[(’Il) ()gk( 0) [” (d{)i( 0)):! ( )
erpressed as a function of U,. When the information matrir [(8o) s an identity matrir.
ol
W)= 6s). 3.
T(Ln) = 55(0) (3.10)

Proof. This lemma is stated by Jensen (1993) with an outlined proof. A detailed
expression of (3.8) can be found in Barndorff-Nielson and Cox (1994. page 154). B

The SRLLR statistic is used to test a scalar parameter. In general. the likelihood

ratio statistics can be used to test the hypotheses (O 41)-... .0c) = (Bik 41)0-- - - - Oro)-
Let R,, be the SRLLR statistic to test §; = 8,y under the model (8, 41).... .0x) =
(0, +100- - - - -Oro) and let 1}, = R2 .. Then I can be written as
k k
W,= > W.= > Rl
=ky +1 i=ky+1

Jensen (1993) derives and gives conditions for the existence of the Edgeworth expan-
sion for the log likelihood ratio statistic W,. We state Jensen's result in the following
Lemma.

Lemma 2 (Jensen 1993, Theorem 2.4.) Assume that Conditions (4} and (B1) hold
for s = 4. that [(8y) in (3.6) is a k x k identity matrir. and that A1"?) has full rank.
where A2 s the my x (k — k) matrir of the first m, rows and columns (ky +1.... . k)

-oft)

where fi_y, is the chi-squared density with k — ki degrees of freedom and q(v:0) is a

of A in (3.7). Then there erists a polynomial q(v) such that

Pr(W, <u)-— /“ (1 + %q(v:@)) Sr—i, (v)dv
0

sup
u

polynomial in v and a continuous function in 6.

Proof. Jensen(1993) uses Lemma | and Lemma 3 (stated in Appendix B} to establish
this lemma. Jensen (1939) proves Lemma 3 and refers to Bhattacharya and Ghosh (1978)
who derive the form of g(v:8). From Remark 1.4 of Bhattacharya and Ghosh (19738).
g(v:0) depends only on the moments of {’,. Hence ¢(v:8) is a continuous function of 8
when {(#) is a continuous function of #. Thus Condition (Al) establishes that g(v: ) is

a continuous function of 4. M
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The distribution of a likelihood ratio statistic with a Bartlett adjustment can be
more closely approximated by the chi-square approximation than the distribution of a

likelihood ratio statistic without a Bartlett adjustment. Consider the modified statistic

- W

V.=(k—-%k 3.
T = k= k) s (3.11)
and an expansion of E(117,)
B(6 1
n n-
Then. operationally. a Bartlett adjusted statistic W'B, can be obtained by
‘I‘n
B, = [ (3.13)

L+ B/

where (91, 0(()2)) is the maximum likelihood estimate for the model parameter 8!} with
the restriction 02 = 6{*). The following lemma gives an asymptotic expansion for the

distribution of I1,.

Lemma 3 Assume the same conditions used in Lemma 2. Then there exists a polyno-

n

Proof. Under the assumptions of Lemma 2. Jensen (1993) (Theorem 2.9) gives (3.14)
with B, instead of [T’n. Then noting that Wn = WB, + O0,(1/n?) establishes (3.14).
[ |

mial q(v:0) such that

— 173 [
sup iPr(H',l < u) - / <l + ;q( L':O)) Sr—i (v)de
u 0

where fi_g, and q(v:0) are the same as in the Lemma 2.

A result parallel to Lemma 2 can be obtained for the signed square root likelihood
ratio statistic to test a scalar parameter #;, = 6i0. Although it is not stated in the
Jensen's (1993) paper. this result is implicitly contained in it. We state the result in the

following theorem and give a proof.

Theorem 1 Assume that Conditions (A) and (B1l) hold for s = 4., that [(8y) in (3.6)
is a k x k identity matrir. and that A"? has full rank. where A is the my x (k — k)
matrir of the first my rows and columns (ky+1.... .k) of A in (3.7). Then there erists

woft)

a polynomial & ,(z) such that

Pr(R, < ) - / (o)

sup
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where &, has the form

Sonlr) = [l + Z n"“‘)Qj(t‘)} Qo (V). (3.15)

J=1

and where o,, is the pdf of a normal distribution with mean 0 and variance oy and Q,

s a polynomial in v.

Proof. By triangular inequality we have

Pr(R, < =) — / £, (e)de (3.16)
< lPr(R” < ) —=Pr(vnP(l,) < :)‘ + |Pr(vnP(L,) < 2) —/~ Esnlv)dr]|.
o (3.17)

Note that by Lemma 1 for all =

Pr(R, <z} =Pr (\/HP(('H) + \/%Remn < :)

< Pr (ﬁP((_'n) <z +dy [log(n)] ) + Pr (’ l 3Remn > dy [logfzz)} )
n P ;

) | - ) log(ll) 2 . _—_1__ 3.18
_PI(\/;PNH)<')+O<,: n :l >+O(n[[og(n)]2> ( "

> e L
= Privab(li) <) +O<n[1<>g(n)]'-’> '

where d, is defined in Lemma 1. Similarly we can have

. 1 X
PI‘(\/;P([,;)<Z)SPP(Rn<Z)+O(n—m>. (3.19)

Combining (3.18) and (3.19).

. ! -
‘P!‘(Rn<:)—Pl‘(\/ﬁp((n)<:)|=0(mo—g(n—)]2). (3.).0)

Because the right hand side of (3.20) implies that the approximation is o(1/n) and does
not depend on z. we have sup. | Pr(R, < z) — Pr(v/nP((’,) < )| = o(1/n).

By the Lemma 5 (given in Appendix B) the supremum of the second term on the
right side of (3.17) is of order O(1/n). Thus the supremum of the absolute difference

(3.16) 15 O(1/n). N
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Remark 1 As mentioned in Jensen (199.3) the theorems and lemmas in this section
can be generalized for the case that [(8y) in (1.6) s positive definite. Let [(8y)"'? be a
lowe r triangular matrir such that [(05)~*1(8y)7"* = [(0y)7". Let 6 =0[(0,)""2. Then
testing O o1 = Ok 41j0- - - - - Or = Oy s the same as testing 0-;;‘“ = é(klﬂ,u ..... 0 = b1p.
where O, 1100 - - - - o are linear combinations of O, 4+1)0--- - - Oro. The condition that

A2 has full rank is then replaced by Condition (B3).

3.2.2 Bootstrap Statistics

Suppose that S is a statistic. The parametric bootstrap version S of S is the same
function but evaluated at data (“bootstrap samples™) simulated using an estimate &

instead of the unknown 8.

Denote the cumulants of (', of order r by A, . That is.

1 9™ log[Eg(ettn
A (0) = :( .°°[ "(.6 ) (3.21)
PO, 00,
where ji.....J. € {l.... .mg} and my is the dimension of {’,. Define
)" P Eg((
p, . (0) = Lt Eolln)) (3.22)
()!111 s ()/'ljr =0

where P and [, are defined in Lemma I.
The following lemma provides the convergence rate of the difference between some

statistics and their bootstrap versions. [t will be used in our main theorems. Note that

= /\“_._J,(a) and P = le,_,h(b\).

the bootstrap version of A, _,, and P, are /\Jl._ e

-J

respectively.

Lemma 4 Assume that Conditions (A) and (B) hold for some specified s > 4 and that

g1 is a continuous differentiable function. Then

. 1 . I
/\_“..Jr - /\Jl...Jr = OP(%) N le---Jr - le...J, = OP(%) N

1 1
GuA, ) — gl(’\;l..._,,) = Op(ﬁ) - Py ) —gl(P,-,...J,) = Op(ﬁ) .

Proof. Under the stated conditions. \/E(OA — 0) has a limiting normal distribution
(Jensen (1993). Theorem 2.1). So we have 9—0 = 0O,(1//n). By Condition (Al).

A is a continuous differentiable function of # and A7, | is a continuous differentiable

Jyeedr Jr
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function of 5 Note that ,\;lmjr = /\“,“Jr(f’)\). The delta method shows that A, _, (§) —
’\“.,.J ( l/\/ ” -—\ISQ !]l[/\“...p(a)] _gl[’\“..._;r({))] =Op(l/\/’-{)

.\ot( that E(l’. .) =E ,(Z — E(Zl)] =0 and P is a polyvnomial. From (3.22) we see
that P, . /r are coefﬁcierths of T,(-) and these coefficients are continuous differentiable
functions of 4. Also P, | = PJI Jr(ﬁ). Hence we have that P, _, —P: = O,(1//n)
and gu(P,..,.) = 91(P,.,) = O,(1//n). W

The following Theorem establishes the result that the distribution of the SRLLR

statistic can be approximated to order O(1/n) by its bootstrap distribution.

Theorem 2 Assume that Conditions (A) and (B) hold for some specified s > 4. Then

:up|Par§‘)—P18 <:)|=0 (1>

124

Proof. By the Lemima 5 we have the result of the Corollary B in Appendix B. That

f(VnP(L,) <z)=0,:(3) — —=a(z)0,2(3) + O(—) .

where ®,. and o,: denote the cdf and pdf of a normal distribution with mean 0 and

) s o - . o . )
variance g2, g% = ZM_:L"IO Ak Py Py. ay(z)o,2(2) is bounded over z. and «, is a contin-

uous differentiable function of A, , and P, _,.. By the proof in Theorem | we have

sup. | Pr(R, < z) — Pr(\/nP(l';) < z)] = O(1/n). This implies that for all z.

. l l
PriR, < :)=<D,,z(-)——\/—[_lal( Yog2(= )-+—O<,—l->. (3.23)

By using Lemma 1 together with \,, defined in (3.21) and P,. Py defined in (3.22). we

have Aix = \’ar([',[f"]). where (',[f"] is the kth coordinate of (",. and P, = 0. j # k. and

P = [E (%(00))}_%. Thus

9% -
D AP Pe = M PP = Var(U) [E (0—92—"(00))]
Jhk=1.mg k (324)

, o/,l dzz !
Then (3.23) becomes

l l
Pr(R, < z) =9, (:)-77(1101(:)+O(,1). (3.25)
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Assume that Conditions (A) hold in a parametric bootstrap scheme and suppose that
data are sampled from the distribution with true parameter #. By Lemma | and

definitions in (3.21) and (3.22). we have A;, = Var({7; Ll ). PP =10., # k. and

P = [E ('—[s—(f)))J_%. Thus

. ) e e 9 ~\17
o Z ’\;kPJ P,: = ’\;ckPk Pk = Var(( ,[f"l') [E (W(O))]

Jkhk=l.mq
ol ~ P ~\]7 5
= Var | =2(0 n(g = 1. (3.26)
v 0] [ (@) =
Hence the bootstrap version of (3.23) is
l 1
Pr( R <:):<I>[(:)——\/—,_la (2)o(z) + 0, (”> (3.27)

By Lemima 1 we have

ay—a; =0, (—\/l—;) }

The difference between Equation (3.23) and Equation (3.27) is Op(1/n). This implies
IPr(R. < =) — Pr(R < =] = (1> . (3.23)
Because «((z)o((=) and aj(=)o(=) are bounded over =.
‘UP|‘11 Jor(2)/Vn = aj(z)or(z)/Vn] = Op(1/n).

Thus we have the supremum over = of (3.238) that gives the needed result. B
The following shows that a similar result can be obtained for the log likelihood ratio
statistic.
Theorem 3 Assume that Conditions (A) and (B) hold for some specified s > 4. Then
for all = >0 we have
1
sup |Pr(¥, < =)= Pr(W. <:z)| = O,,(—) .
N n

Proof. Note that

|Pr(l, <:z)—-Pr(W; < z)
“ l
< |Pr(1t, < u) — 1 + —q(c: O)fk K (0)de
o n
¢ | u 1 . -~
+ / | + —([(L 9) ) fr—i (v)dv —/ L4+ —¢ (v:8) ) fimi (v)dr o
0 0 n (3.29)
u l ~
+ lPr(H',: < u)-— / Il + —q¢7(c:d ) Se—i, (v)de
| Jo n
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Because q(v:#) in Lemma 2 is a continuous function of 8. ¢(r:0) — g(.r: 0) = O,(1//n).
Also because q(r:8) is a polynomial in ¢ and fi_g, is the density of the chi-square
distribution. [~ lg(v:0)] fix, (¢)dv is finite. Because
u 0
/ q(v:0) fr_i, (v)dr < / lg(v: 0)| fr—g, (v)dr.
-2 -

j_"\ q(e:0) fi_i, (v)drv is bounded over u. Thus

=0,(1) (3.30)

-o(t)

By (3.31) and by using Lemma 2 for the first and third term on the right hand side of

sup
u

/q(v:0)fk_kl(v)(lv—/ q"(v:(’)\)fk_kl(v)(lv
0 0

which implies that

sup

143

U l u l -
/ —q(v:0) fr—i, (v)dv — / —q"(v:8) froi, (v)dv
0 N g n

(3.31)

(3.29). we have the result. W
The following shows that a similar result can be obtained for log likelihood ratio

statistics with a Bartlett correction.

Theorem 4 Assume that Conditions () and ( B) hold for some specified s > 4. Then

for all = >0 we have
l
=0,(;)-

Proof. Using the result of Lemma 3 and arguments in Theorem 3 will establish the

sup {Pr( IV, < z) — Pr( ﬁ:: <)

result in this theorem. W

3.3 Examples

3.3.1 Confidence Interval (Bound) Procedures Based on Likelihood Ra-

tio Statistics

Jensen (1937) gives an example with fixed censoring time under the one-parameter
exponential model. He uses simulation to show that with 13 failures and a proportion
failing equal to .75. the large sample approximation using likelihood ratio statistics (for
two-sided intervals) and its signed square root form (for one-sided bounds). based on

the theory in the previous section. provides accurate coverage probabilities. But when
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censoring is heavy (e.g.. the proportion failing is equal to .1 and sample size 1s 20)
the upper confidence bound constructed from the signed square root likelihood ratio
statistic is very conservative. This is consistent with the results in Jeng and Meeker
(19938). Moreover. Jeng and Meeker (1993) show that in the two parameter Weibull
model. with heavy time censoring (proportion failing < .1). the approximate procedure
based on likelihood ratio statistic for constructing the one-sided confidence bounds is
not accurate when the number of failure is less than 20.

Jensen (1989) shows that the exponential lifetime model with random censoring
satisfies C'onditions () and (B). Hence Lemma 2 in Section 3.2 can provide a second
order accurate procedure for constructing two-sided confidence intervals. Jensen (1993)
presents an application using the logistic regression model. His numerical simulation
results suggest that the coverage probability of the procedure using likelihood ratio
statistic with a Bartlett correction for constructing two-sided confidence intervals has

fourth order accuracv [O(1/n*)] when the sample size is more than 20.
A p

3.3.2 The Two Parameter Weibull Distribution Model

To explore the finite sample performance of the asymptotic results in Section 3.2 we
conduct a simulation study using the two-parameter Weibull distribution model with

complete and Type [ censored data.

3.3.2.1 Regularity Conditions

We describe the formulation for the general location-scale distribution model. The
logarithm of a Weibull random variable has a smallest extreme value distribution which
belongs to the location-scale family. Suppose that the continuous random variable X' =
log( T') has density o[(x — u)/o] /o and cdf ®[(r —p)/o]. where (. o) = 8 is the unknown
parameter in an open set @ C R?. Let ¢. denote the censoring time and defined = 1 for a
failure and § = 0 for a censored observation. The observations are &y = log(t,).... .r, =

log(¢,). Let r. =log(t.). The log likelihood of an observation ., is

l(r:0) =4 {——log(a) + log [o <_r'_;_.ﬁ>] }
: (3.32)
+(1 - &) log [1 — b (i_—fi” _
g

We could be interested in the location or the scale parameter or in a particular

quantile or other function of the parameters. We do the development for estimating a



particular quantile. Other functions of the parameters can be obtained analogously. Let
r, be the p quantile of the distribution ®[(+—u)/o]. and u, = ¢~'(p). Then r, = p+uyo
and t, = exp(.r,) is the p quantile of the Weibull distribution. The confidence intervals
(bounds) for ¢, can be obtained by taking the exp transformation of the contidence

intervals (bounds) for r,. The likelihood in (3.32) can be rewritten as a function of

[(ei:(o.x,)) =9, {—— log(o) + log [o (l—‘—;—-—ﬁ — u,,)] } +
(l—Ji)log[l—cb(‘—"%ﬁ—u,,”.

With / smooth enough and o having light tails. it can be shown that Conditions (A)

(o.1,)

(3.33)

stated in section 3.2 are satisfied. See Appendix B for detail. Then for |v| < 4.

7 <(’)1(.\'(-:(0.1‘p)) (X (0.x,) PUNi:(0.1,)) PUX:(0.1,))

- e, o dr:  dr,do

g (3.34)

X (o xy) ))
where Z, is a 14 dimensional vector. Transform Z; into a mg = m,; + m, dimensional
vector Z, with lincarly independent coordinates for which the first m, ordinates are
continuous and last m» coordinates are discrete. The form of Z; depends on the distri-
bution of the observations. For the SEV. normal. and logistic distributions Z; is shown
in Appendix B. Note that J, is the only discrete part of Z;. so it is the only discrete
part of Z,. By Proposition I. Condiction (Bl) is satisfied here.

The first two elements of Z; are linearly independent when data come from the SEV.
normal or logistic distribution (see Appendix B). The first two elements of the first two
columns of A1 are (1.0) and (c,.c3) respectively. where ¢;.c, are non-zero constants
(that could depend on the parameters). hence A!!!) has full rank 2. For the SEV. normal.
and logistic distributions (¢;.c3) is just (0.1). So the Condiction (B2) holds.

Because the first m; rows of A" gives A1) as described above and [(8,)7'/2 is a
lower triangular positive definite matrix. (A 7(6,)~/2)'1) is a m; dimentional vector
which has rank 1. Thus Condiction {B3) holds. The theorems in Section 3.2 tell us that
the procedure based on the hootstrap log likelihood ratio statistic or its corresponding
signed square root procedures can be used to construct two-sided (one-sided) confidence

intervals (bounds) that are second order accurate.
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3.3.3 Simulation Study
3.3.3.1 Simulation Set Up

Let T be a random variable having a Weibull distribution. then X' = log(T) has
a smallest extreme value (SEV) distribution with density osgi-(z)/o and cdf ®spy-(2).
where ospi(z) = exp[—z —exp(z)]. Psev(z) = | —exp[—exp(z)] and = = (r — p)/o.
—x <r<x.—x < u < x.o > 0. Our simulation was designed to study the following

experimental factors:
e p;: the expected proportion failing by the censoring time.
e E(r) = npy: the expected number of failures before the censoring time.

We used 5000 Monte Carlo samples for each p; and E(r) combination. The number of
bootstrap replications was B = 10000. The levels of the experimental factors used were
pr=.0L..1..3..5..9. I and E(r) = 3.5.7.10. 15 and 20. For each Monte (C'arlo sample
we obtained the ML estimates of the scale parameter and the quantiles log(¢,). p = .01.
05. 1. .3. .5, .632 and .9. where ;¢ = log(t¢32). The one-sided 100(! — )% confidence
bounds (('Bs) were calculated for a =.025 and .05. Hence the 90% and 95% two-sided
('Is can be obtained by combining the upper and lower CBs. Without loss of generality.
we sampled from an SEV distribution with ¢ =0 and o = L.

Because the number of failures before the censoring time {. is random. it is possible to
have as few as r = 0 or 1 failures in the simulation. especially when E(r) is small. With
r = 0. ML estimates do not exist. With » = |. LR intervals may not exist. Therefore.
we calculate the results conditionally on the cases with r > 1.

Let | — a be the nominal coverage probability (C'P) of a procedure for constructing a
confidence interval. and let | —& denote the corresponding Monte C'arlo evaluation of the
actual coverage probability | —a’. The standard error of & is approximately se(l — &) =
[@'(1 = a')/n,]'2. where ny is the number of Monte Carlo simulation trials. For a 95%
confidence interval from 3000 simulations the standard error of the CP estimation is
[.05(1 — .95)/5000]'/? = .0031 if the procedure is correct. The Monte Carlo error is
approximately +£1%. We sayv the procedure or the method for the 95% confidence region
is adequate if the C'P is within £1% error of the normnal CP.

The modified signed square root LLR statistic is presented by Barndorff-Nelson
(1986. 1991) and is asymptotically standard normal distributed with error of order

O(1/n*?) when there is no censoring. It is a modification of the SRLLR methods.



Table 3.1 Abbreviations of the methods in simulation study

LLR Log likelihood ratio

LLRB Log likelihood ratio Bartlett corrected
MSRLLR Modified signed square root LLR

PTBT Parametric transformed bootstrap-¢

PBBCA Parametric bootstrap bias-corrected accelerated
PBSRLLR Parametric bootstrap signed squared root LLR
PBMSRLLR || Parametric bootstrap MSRLLR

We expected the PBMSRLLR will have similar or better performance as the PBSR-
LLLR methods. Detailed descriptions of the methods for constructing these confidence

intervals are given in Appendix B.

3.3.3.2 Simulation Results

This section presents some of the most interesting and useful results from our sim-
ulation. Figure 3.1 shows the coverage probability of the procedures for the one-sided
approximate 95% ('Bs for the parameter o from the seven methods for five different
proportion failing values. Figure 3.2 is the same type of graph as Figure 3.1 for ¢ .
the .1 quantile of Weibull distribution. Figure 3.3 shows CPs of these procedures when
ps = .5 for different quantiles. Figures 3.4 to 3.7 present a closer comparison of CP for
methods and parameters. Figure 3.8 and Figure 3.9 show the coverage probability of
these procedures for 90% two-sided confidence intervals. We summarize the simulation

results briefly as follows:

e The LLR method with a Bartlett correction does not improve the coverage prob-
ability of the procedure for one-sided confidence bounds. For one-sided confidence
bounds. the LLR and LLRB methods are adequate when the expected number
of failures > 20. For two-sided confidence intervals. the LLR method is adequate
when the expected number of failures is more than 15 and the LLR method with
a Bartlett correction is very accurate even for an expected number of failures as

small as 7.

e \When there is no censoring. the MSRLLR method is an accurate procedure for
one-sided confidence bounds. even with the expected number of failures as small as

5. For Type I censoring. the coverage probability of the MSRLLR method depends
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on the proportion failing. the expected number of failures. and the parameters of
interest. Generally. the NISRLLR method for the one-sided confidence bounds and
two-sided confidence intervals is adequate when the expected number of failures

exceeds 20.

e The bootstrap-t method is an accurate procedure for the scale parameter. When
the quantity of interest is the p quantile. where p is close to the proportion fail-
ing. the one-sided lower confidence bound procedure is anti-conservative. The
bootstrap-t method gives accurate coverage probabilities for all functions of the

parameters when the number of failures exceeds 20.

e The BC, method for both one-sided confidence bounds and two-sided confidence

intervals is adequate when the number of failures exceeds 20.

e The PBSRLLR method for the one-sided confidence bounds and two-sided confi-
dence intervals is adequate except when the number of failures is less than 15 and

the quantity of interest is the p quantile where p is close to the proportion failing.

e Among these seven methods. the PBMSRLLR method is most accurate for one-
sided confidence bounds. When the number of failures is less than 10 and the
quantity of interest is the p quantile where p is close to the proportion failing. the
PBMSRLLR method for the one-sided confidence bound is less accurate. Generally
the PBMSRLLR method is adequate when the number of failures is 10 or more.
For two-sided confidence intervals. the PBMSRLLR method is adequate when the

expected number of failures exceeds 7.

For Type I censored data. we can draw the following conclusion. If our interest is
in constructing one-sided confidence bounds. the PBSRLLR and PBMSRLLR methods
provide better coverage probability with a small expected number of failures (like 10).
For two-sided confidence intervals. the PBSRLLR. PBMSRLLR and LLRB methods
provide accurate procedures. The LLRB and PBMSRLLR methods give more accurate
results even when the expected number of failures is as small as 7. The two-sided
confidence interval from the PBSRLLR or the PBMSRLLR method is more symmetric
than that from other methods in the sense that the confidence level of one side of the

interval is close to the confidence level of the other side of the interval.
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3.4 Summary of Results and Possible Areas for Future Re-

search

[n this paper we prove that the distributions of likelihood ratio statistics and their
signed square root can be approximated by their bootstrap distribution up to the sec-
ond order [O(1/n)] when the underlying sampling distribution is partly discrete. One
application of this result can be applied to find accurate procedures for constructing
one-sided confidence bounds. two-sided confidence intervals or joint confidence region
for complete or censored data.

Examples like the one-parameter exponential model with Type [ censoring and lo-
gistic regression given by Jensen (1939. 1993) illustrate some applications. We study in
detail. the two-parameter Weibull distribution model when data are Type [ censored.
Our simulation study compares several commonly suggested methods (Bootstrap-t and
B(',) and more accurate higher order methods (modified signed square root likelihood
ratio statistic) with likelihood ratio statistics calibrated by bootstrap procedures. The
simulation provides a clear view of the small sample properties of these statistics.

We can draw the following conclusions from our simulations involving Type I censored
data. If one-sided confidence bounds are of interest. the PBSRLLR and PBMSRLLR
methods provide better coverage probability when the expected number of failures ex-
ceeds 10. [f two-sided confidence intervals are of interest. the PBSRLLR. PBMSRLLR
and LLRB methods provide accurate procedures and moreover. the PBMSRLLR and
LLRB methods give accurate coverage probability when the expected number of failures
exceeds 7. Although the LLRB method for two-sided confidence interval is the most
accurate one in coverage probability among these methods. the resulting two-sided con-
fidence interval is not symmetric in the sense that the confidence level of one side of the
interval is larger than the nominal confidence level and the confidence level of the other
side of the interval is smaller than the nominal one.

Some possible areas for further research are:

e Our examples show that the theorems in Section 3.2 can be applied to the location-
scale model with Tvpe [ censoring data. For other kinds of censoring and distribu-
tions. Conditions (A ) and (B) can be expected to hold when the model distributions
are smooth and without overly heavy tails. It would be of interest to study the

finite sample coverage probabilities for such distributions.

e The procedure based on the modified likelihood ratio statistic (e.g.. MSRLLR.

defined in the Appendix B) provides better coverage probabilities when they are
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calibrated with a bootstrap procedure. The order of accuracy of the approximation

could be further explored using methods parallel to those in Section 3.2.

e Although the order of accuracy is the same for different parameters of interest in
the theorem. our simulation study shows that. in small samples. the accuracy of the
bootstrap methods for constructing one-sided confidence bounds are quite different
for different quantiles when Type [ censored data are considered. The problem is
in the place when the quantity of interest is the p quantile where p is close to the
proportion failing. The reason for the problem is due to the discrete-like behavior
of MLE in Type [ censored data (see Jeng and Meeker (1998) for more discussion
and examples on this point). When the expected number of failures is small (less
than 10). another alternative suggested by some limited simulation results is to
use a double bootstrap calibration. Both the theoretical and the finite sample
properties of this approach could be studied. The computational effort needed to

do a complete simulation experiment would. however. be extremely large.
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4 SIMULTANEOUS PARAMETRIC CONFIDENCE BANDS
FOR CUMULATIVE DISTRIBUTIONS FROM LIFE DATA

A paper to be submitted to the Journal of Life Data Analysis

Shuen-Lin Jeng and William Q. Meeker

Abstract

This paper describes existing methods and develops new methods for constructing
simultaneous confidence bands for a cumulative distribution function (cdf). Our results
are built on extensions of previous work by Cheng and Iles (1983. 1988). Cheng and
lles use Wald statistics with (expected) Fisher information and provide different ap-
proaches to find one-sided and two-sided simultaneous confidence bands. We consider
three statistics. Wald statistics with Fisher information. Wald statistics with local in-
formation. and likelihood ratio statistics. Unlike pointwise confidence intervals. it is not
possible to combine two 95% one-sided simultaneous confidence bands to get a 90% two-
sided simultaneous confidence band. We present a general approach for construction
of two-sided simultaneous confidence bands on a cdf for a continuous parametric model
from complete and censored data. We start by using standard large-sample approxi-
mations and then extend and compare these to corresponding simulation or bootstrap
calibrated versions of the same methods. We show that bootstrap methods provide more
accurate coverage probabilities than those based on the usual large sample approxima-
tions. Both two-sided and one-sided simultaneous confidence bands for location-scale
parameter model are discussed in detail including situations with complete and censored
data. A simulation for the Weibull distribution and Type I censored data is used to
compare finite sample properties. For the location-scale model with complete or Type II
censoring. the bootstrap methods are exact. Simulation results show that. with Type [
censoring. a bootstrap method based on the Wald statistic with local information pro-

vides a confidence region with coverage probability that is more accurate than a method
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based on bootstraping the likelihood ratio statistic. We illustrate the implementation
of the methods with an application to estimate probability of detection (POD) which is
used to asses nondestructive evaluation (NDE) capability.

Keywords: Bootstrap. likelihood ratio. simultaneous confidence band. life data. prob-

ability of detection. Wald.

4.1 Introduction

4.1.1 Problem

[n life testing and reliability studies. the primary problem of interest is often to es-
timate an unknown cumulative distribution function (cdf). For example. sample units
might be put on a life test for the purpose of estimating the proportion failing before
some specific time point. Another example is the need to quantify nondestructive eval-
uation (NDE) capability. NDE methods are used. for example. to detect a subsurface
flaws before processing expensive materials. [nputs for a risk analysis include detection
capability for a range of different flaw sizes. These problems can be formulated as one
where an unknown cdfis to be estimated. We will. however. use the more familiar failure
time language in our general discussion.

Confidence intervals quantify the uncertainty of estimation. For example. pointwise
confidence intervals with a specific confidence level can be computed for the cdf at
particular times. When the interest is on the cdf over a range of time values. the
procedure using the combination of these pointwise confidence intervals will not provide
a simultaneous confidence band with same coverage probability. For a given confidence
level. a simultaneous confidence band would be wider than the joint set of pointwise
confidence intervals. This is because we use the same information from the data to do
the inference for specific point of interest as we have for inference on an infinite number
of points.

Unlike pointwise confidence intervals. one cannot combine two 100(1 — a/2)% one-
sided simultaneous confidence bands to get a 100(1 — a)% two-sided simultaneous con-
fidence band. Different procedures are needed for one-sided and two-sided cases.

Censoring often arises in life data collection. Some theoretical results for complete
data do not hold for censored data. Especially for Type | censoring. the Wald and the
likelihood ratio statistics no longer have the pivotal property (a pivotal statistic has a
distribution that does not depend on unknown parameters) in location-scale models.

Bootstrap methods. however. provide a more accurate approximate distribution when
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the exact distributional form is not available. Jeng and Meeker (1998) show that the
bootstrap likelihood ratio procedures are generally second order accurate for complete
and censored data. Simulation results in this paper show that the procedure based on
the bootstrap Wald statistics with local information provide a confidence region with
confidence level that appears to be as accurate as or more accurate than the procedure
based on the bootstrap likelihood ratio statistics. even when the expected number of

failures is small.

4.1.2 Literature Review

Nonparametric methods for constructing confidence bands for cdfs can. for exam-
ple. be based on statistics like the Kolmogorov-Smirnov statistics. See Lehmann (1986.
pp- 333-357) for definition and references to the literature. As described in Cheng and
[les (1983). however. these methods give rise to a constant (vertical) width and part
of such a band will have ordinate values that are greater than one. while other parts
will have ordinate values that are negative. Even if the general approach is used in a
parametric setting. it makes the band unnecessarily broad in the tails. Kanofsky and
Srinivasan (1972) overcome the problem under normal. exponential and uniform models
by using the maximum absolute difference between the true function and an estimator
of it (similar to the IKolmogorov-Smirnov statistics) and by adjusting the resulting band
to obtain the required confidence level. Using the Wald statistics with (expected) Fisher
information. Cheng and Iles (1983) provide an alternative general procedure that can be
applied to construct simultaneous bands for any continuous function g(-:8) of the pa-
rameters #. First. a joint confidenice region is constructed for the unknown parameters.
Then a simultaneous confidence band is obtained by seeing how the continuous distri-
bution g(-:¢) changes as the parameters are varied within the joint confidence region.
The band is two-sided and has ordinate values that lie within the range of g. Cheng
and Iles (1983) extend the result to one-sided simultaneous confidence bands for a cdf
under the location-scale model with complete data. The simultaneous confidence bands
constructed in this way may be exact or conservative. We show that. for the location-
scale model with complete or Type I censoring. the bootstrap methods we present for
constructing the two-sided and one-sided simultaneous confidence bands are exact.

Le C'am (1990) replaced Wald's confidence ellipsoids by confidence sets based on
Hellinger distance. Escobar and Meeker (1998) develop methods parallel to Cheng and
les (1933) based on the Wald statistics with local information for two-sided bands of

quantiles and cdfs and show a certain duality property.
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A likelihood ratio test can be used to construct a joint confidence region (or an
approximate joint confidence region) for model parameters. Generally the distribution
of the likelihood ratio statistic follows a \? distribution to the order O(1/n) for both
complete and censored data (Jensen. 1993). This confidence region can produce simul-
taneous confidence bands for cdf’s or any continuous function g(-:4). The likelihood
ratio statistics are transformation invariant. unlike the Wald statistics.

In the location-scale model for complete and Type II censored data. the Wald statis-
tic is a pivotal statistic. One can find the distribution of the Wald statistic by using
simulation (or parametric bootstrap) methods. For time-censored data. the distribution
of the Wald and the likelihood ratio statistics depends on the unknown proportion in
the population that would fail before the fixed censoring time. The bootstrap procedure
still provides a second order accurate approximation for the distribution of likelihood
ratio statistics (see Jeng and Meeker. 1998).

There are some other bootstrap methods for constructing joint confidence regions
that are not included in this research. Beran (1938) suggests a method called bootstrap
prepivoting to find the simultaneous confidence bands for a family of parametric func-
tions. The advantage of Beran's method is that the resulting confidence intervals are
asymptotically balanced. A simultaneous confidence band of a function g(-.8) is bal-
anced if the pointwise confidence level for the confidence statement concerning g(x.0)
remains unchanged as r varies. But the prepivoting procedure usually needs a dou-
ble bootstrap to make the root closer to a pivot. Hall (1992. Section 4.2) suggests
a likelihood based region that requires high dimensional density estimation. Yeh and
Singh (1997) propose a bootstrap balanced confidence region based on the Tukey depth.
The difficulty of using this method is the large amount of computer time required to
find the Tukey depth of every single point.

Meeker et al. (1995. 1996. 1997) develop a methodology to estimate Nondestructive
Evaluation (NDE) capability. The methodology is based on a physical/statistical predic-
tion model and can be used to predict probability of detection (POD) curves and other
characteristics of a flaw detecting system. Sarkar et al. (1998) apply a similar method to
quantify nondestructive testing inspection capability. using limited data available from
destructive testing of cracks in heat exchanger tubes. Their data were right censored
because of measurement saturation for large signals. They estimate a POD curve for
a particular flaw detection system and provide pointwise confidence intervals for the
POD curve based on the delta method and a normal approximation. We extend the

resilts to provide simultaneous confidence bands for the POD curve. We use a boot-
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strap procedure to built a joint confidence region for the unknown parameters. This
bootstrap procedure is similar to the one used by Robinson (1983) to construct confi-
dence intervals for one-dimensional parameters from progressively censored data. Then
the joint confidence region is used to construct a simultaneous confidence band for the

POD curve.

4.1.3 Overview

Section 4.2 provides a general approach for constructing two-sided simultaneous con-
fidence bands for a function g(-:8}. Section 4.3 focuses on the location-scale distribution
model and Section 1.4 presents the results of a simulation study using the Weibull dis-
tribution with complete and Type I censored data. Section 4.5 presents an application
in which the simultaneous confidence bands are used to quantify the uncertainty in the
probability of detection curve. Section 1.6 gives discussion and possible areas for future

research.

4.2 Methods

Let X be a continuous random variable with values in a set D (e.g.. the positive real
line) and let g(r: ) be a continuous function defined on the set D and the & dimensional
parameter space of §. A random sample x.... .r, of size n is to be used to calculate
a simultancous confidence band for g(.r:8) over some specified (possibly infinite) range
of & values. We present a general approach for constructing two-sided simultaneous
confidence bands. The method can be used for both complete and censored data. The
approach extends previous results from Cheng and Iles (1983).

Now we define some notation used in this paper. Suppose first that R isa 100(1l—a)%
joint confidence region for the unknown parameter vector §. R could be obtained for
the purpose of constructing either one-sided or two-sided simultaneous confidence bands.
For a given function g¢. let us consider the function y = g(x:8) in the (zr.y) plane for
r € D. When 6 is changing in R. the function g will cover a region. B. on the (r.y)
plane. Because the true value of 0 lies in R with probability 1 — a. the probability is
at least 1 — a that one of the functions used to cover the region B is the unknown true
function g(-:8). Thus B is a simultaneous confidence band for g(-:8) that will contain
the true function ¢(-: §) with probability at least 1 — a. In general there may be values
of # outside of the region R that give a function g(-:f) lving entirely within the band

B. So the band B could be conservative.
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Define the lower and upper confidence curves ('; and (', at r corresponding to a joint

confidence region R as

Ci(r) = géx}g{lg(.r:ﬁ). Cu(r) = rglea’i\(g(r:()). (4.1)

[f R is the region constructed for a two-sided simultaneous confidence band. we
denote the two-sided band by

B={(r.y):C(r)<y<C,lr).r €D} (++.2)

Usually in order to achieve the required confidence level. a different joint confidence
region R is needed for a one-sided simultaneous band. For a region R constructed to
compute a one-sided band. we use the region to produce a lower confidence curve C'(x)

and denote the one-sided lower simultaneous confidence band by
Bi={(r.y):y>Cir).r € D}. (4.3)
Similarly. we denote the the one-sided upper simultaneous confidence band by

B, = {(x.y): y < Cu(z).r € D}. (4.4)

4.2.1 Methods Used

The different methods for constructing a joint confidence region R are based on
different statistics and procedures. Below we describe briefly seven methods by indicat-
ing how the exact or approximate distribution of the statistics are obtained. In all of
these methods. we let L(#) denote the likelihood function and @ denote the maximum

likelihood estimator of 8.

4.2.1.1 \’-approximation Methods

Wald statistic with Fisher information (WLADF'). Let

Jlog L(8) dlog L(0)

[0)=E a6; a0,

be the Fisher information matrix. The Wald statistic with Fisher information is

Rao (1973. page 413) shows that the large-sample limiting distribution of Qf is \;.



Wald statistic with local information (WLADL). Let

[(9) = i)logL(g)dlog[‘(a)
()= a9, a0,

be the local information matrix. The Wald statistic with local information is

Qu(0) = (0 - 0)'T(6)(0 - ).
Cox and Hinkley (1974, page 314) show that the large-sample limiting distribution of
Qr is \i-
Log LR method (LLR). The likelihood ratio statistic is defined as

Serfling (1980. Section 4.4) shows that the large-sample limiting distribution of 1¥7(8) is
\i-
Log LR Bartlett corrected method (LLRB). Let

. W)
Wg(l) = ke
810 = *Efivo)
Because the expectation of Hg(#) is equal to the mean of the \3 distribution. the distri-
bution of 11'g(8) can. when compared with I11'(f). be expected to be better approximated
by the \i distribution (Bartlett 1937). In general one must substitute an estimate for
E[117(9)] computed from one’s data. For complicated problems (e.g.. those involving

censoring) it is necessary to estimate of E[I1(6)] by using simulation.

4.2.1.2 Parametric Bootstrap Methods

The following methods use the ~bootstrap principle” or Monte Carlo evaluation of
sampling distributions. Suppose a statistic S(8) is a function of random variables with a
distribution that depends on the parameter §. The parametric bootstrap version 5"(5)
of S is the same function but evaluated at data (“bootstrap samples”) simulated using
an estimate 8 instead of the unknown # [see Efron and Tibshirani (1993) for more detail].
['sing f in place of the distribution parameters. the distribution of S can be calculated
analyvtically in simple situations. or by simulation in general. Except for special cases

in which the underling statistic is pivotal [e.g.. complete data or Tyvpe II censoring
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from location-scale distributions] the distribution of 5= will depend on . and thus the

distribution of 8™ will provide only an approximation to the distribution of 5.

Parametric bootstrap Wald statistic with Fisher information (BWALDF'). Let
Q7#(0) be the bootstrap version of Qr(#). Use the distribution of Q%(8) to approximate
the distribution of Qg(8).

Parametric bootstrap Wald statistic with local information (BWALDL). Let
Q71.(0) be the bootstrap version of Qr(#). Use the distribution of Q7(8) to approximate
the distribution of Q ().

Parametric bootstrap log likelihood ratio method (BLLR). Let H™=(4) be the
bootstrap version of 117(#). Use the distribution of }™*(8) to approximate the distribution
of 17(0).

4.2.2 Construction of Simultaneous Confidence Bands

Let S(#) be any one of Qr(8). Qr(8). W(d). or Wg(d). Also let ~ denote the

100(1 — @)% quantile from the distributions corresponding to 5(#) or S™(8) from one of

the seven methods. A 100(1 — a)% confidence region for § can be obtained by
R ={0:500)<~}. (-4.5)

By using the notation of (4.1). an approximate 100(l — a)% two-sided simultaneous
confidence band can be obtained from (-1.2).

In general. these methods provide exact or conservative procedures. In the next sec-
tion we show that under the location-scale model with complete or Type II censored data.
the coverage probability of the bootstrap methods for constructing two-sided simultane-
ous confidence bands for the cdf by using the joint confidence region R of 8 is equal to
the nominal confidence level. When the data are Type [ censored from a location-scale
model or when the data are complete from other general models. approximate two-sided
simultaneous confidence bands still can be constructed using these methods.

The confidence level for a one-sided confidence band constructed by using the joint
confidence region obtained with equation (4.3) will be larger than the nominal one. In
general the joint confidence region needed for the one-sided simultaneous confidence
bands depends on the properties of function g. However. for the location-scale model
with complete data. Cheng and Iles (1988) give a procedure that provides a one-sided
bound with the correct coverage probability.

Jeng and Meeker (1998) show that under some regularities conditions the BLLR

method is second order accurate even for Type [ censored data. This procedure. when
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used to construct joint confidence regions. has coverage probability that is close to nomi-
nal. The BLLR method also provides approximate two-sided and one-sided simultaneous
confidence bands for general models with complete or censored data.

In the next section we focus on methods for the location-scale model with com-
plete or censored data. These methods can. however. be applied to log-location-scale

distributions like the lognormal. Weibull and loglogistic.

4.3 Location-scale Model

Suppose ®(£) is a known continuous distribution function. and consider a random
variable X with cdf ®{(« — p)/o] and density o[(x — pt)/o}/c where i and o are the
nnknown location and scale parameters. In this case X is said to have a location-scale

distribution. Let i and & be the maximum likelihood estimators for p and o.

4.3.1 Two-sided Simultaneous Confidence Bands

This section describes some properties of the statistics that are used to construct

joint confidence regions. First we express these statistics into different forms.
WALDF. The Fisher information matrix for ¢ and o can be written as
i

! 301 —l12

-~

[(p.o) =

™

g

—l12 22

Then. as shown in Cheng and Iles (1933). the Wald statistic with Fisher information

can be expressed as

Qr(p.c) = niy(ji —p)?/o* =2nin(i — u) (G — o)/o’ + nin(c — a)*/d?
= nipg M? = 2ni, MS + nip St

~

where M = (i — p)/o and S = (5 —0)/0o.

WALDL. Similarly the local information matrix can be written as

i1 —i12

- ~ o~ n
[:[([10)21—2 -~ .
0% \—ti2 122

Then the Wald statistic with local information can be expressed as

-~

~ ~ ~
Qrip.o) =ni M? =20, MS + nipS2.
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where M/ = (it ~ p)/7 and S=(5- a)lo.

LLR. For complete data. the likelihood ratio statistic can be expressed as

W(p.o) = =2log (E> =19 ”A)
I1

(o} n Nt
=1 @ ( F4 )

For right censored data (Tvpe [ or Type II). let 6; = | if the ith observation is a failure.

d; = 0 if ith the observation is censored. Then the likelihood ratio statistics can be

expressed as

Wip.o)=

9l A H;‘:[o(f%“)‘f' (1= @ (222)]'>
o ( ) HZLIO(I—;—“‘)O' [1 —® (r.;a)]‘—‘-

o
Complete data. Kendall and Stuart (1979) show that ¢y,.712. and i, are constants

independent of i and o. Because the distributions of M and S do not depend on u and
o (Lawless 1982, page 147). QF is a pivotal quantity. Note that (r; — [1)/7. M.and S
are functions of /a. (r; — pu)/o. M. and S. so the distribution of (r; — 1)/5. M.and §
do not depend on p or 0. The elements 7“.712. and ?3-_, depend only on (r; —z)/&. Thus
Q¢ is also a pivotal quantity. Because I} depends only on (&; — pt)/o. (¢; — i£)/7. and
7/o. it is also a pivotal quantity. The BWALDL. BWALDF. and BLLR methods for
constructing the 100(1 —a)% confidence regions have exact confidence level 1 — a except
for the Monte Carlo simulation error (which can be made arbitrary small by increasing

the number of Monte Carlo trails).

Type II censored data. Lawless (1982. page 147) shows thai. with Type lI censoring.
Zy=(p—pn)|5.Zy=06/o. Z3y = (¢ — p)/o. and a; = (x; — pt) /o are pivotal quantities.
Because Qp. Q. and W only depend on Z;. Z,. Z3. and a;. they are also pivotal
quantities with Type II censoring. The 100(1 — @)% confidence regions obtained by the
BWALDL. BWALDF. and BLLR methods have exact coverage probability | — a except

for Monte Carlo simulation error.

Type I censored data. With Type I censoring the distributions of Qp. Q. W', and
I¥'’g depend on the unknown proportion failing at the censoring time. For this reason.
joint confidence regions and simultaneous confidence bands based on these statistics are
only approximations. The approximation improves with increasing sample size.

Once we have a 100(1 —a )% confidence region R for i and o from one of the previous

described methods. the 100(1 — @)% two-sided simultaneous confidence curves can be
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obtained by using the equation (+.1). providing the simultaneous band as indicated in
(1.2).

('heng and Iles (1983) show that the confidence level of the two-sided simultaneous
confidence band is the same for the location-scale model as the confidence level of the
confidence region produced by the WALDF method. We extend this result to show that
any convex confidence region with required confidence level can be used to construct a
two-sided simultaneous band and that both the region and the band have the required
confidence level. Note that the confidence regions for the two-sided simultaneous bands
constructed from the WALDF or the WALDL methods are ellipses and thus are convex.
("sually the LLR method will produce convex confidence regions.

We first use a convex confidence region R to construct a simultaneous confidence
band for quantiles of the distribution. Then we show that the band can be converted to
a simultaneous confidence band for the cdf and argue that in either case. the confidence
level of the band is the same as the confidence region R.

The p quantile r, is defined as
Ip = [+ upo. (4.6)

where u, = ®7!(p). Consider a fixed p. 0 < p < 1. In the (1.0) plane. equation (4.6)

-1

represents a family of parallel lines with different intercepts r, and the same slope —u;

Because the region R is convex. the smallest and the largest values of x, produced by
(it.0) € R.say Tp(min) and 7,(max). correspond to two parallel tangents to the region
R (see Figure 1.1). Then [T,(min).p] and [ (max). p]. 0 < p < L. are two curves in the
(r.®[(r — p)/o]) plane which define a simultaneous confidence band B for all quantiles.
Based on Result | in Appendix C. the lower and upper confidence curves for quantiles
are the same as the upper and lower confidence curves. respectively. for the cdf ®. That
is the band B is also the simultaneous confidence band for the cdf. Result 2 in Appendix
(' shows the band B has the same confidence level as the confidence region R.
Equation (4.1) can always be calculated numerically. so the band (4.2) is obtainable.
Cheng and Iles (1983) provide an exact formula for the WALDF method. Suppose 7 is
the 1 — a quantile of the distribution from the WALDF method and +/n < ({1197 —

i1,)/i11. Then 100(1 — a)% two-sided simultaneous confidence curves are

~ ~

Ci(r) = o(€(r) = h).  Cu(r) = ®(&(r) +h) (4.7)

where

ho= {50 L+ (0€ + i) (e — i3,) 7 1Y and &(r) = (2 - R)/5.
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Figure 1.1 A Y3% convex confidence region to be used for two-sided simul-
taneous confidence band constructed from the BWALDL method
with data in Section .5.

The exact same formula can be applied for the BWALDF method. except that the
value of ~ is replaced by +=. the 1| — a quantile of distribution of Q7.

Using the arguments similar to those in Cheng and Iles (1983). Escobar and Meeker
(19938) develop the following formula for the WALDL method. Their formula also can
be used for the BWALDL method. Suppose ~ is the | — a quantile of the distribution
from the WALDL or BWALDL method and ~/5° < (711732 —-?%2)/7“. Then 100(1 — )%

two-sided simultaneous confidence curves are

~ ~

Ci(x) = O(&(x) + hy — h2).  Culr) = ©(&(x) + Ay + h2) (4.8)

where
X (1 + & 122)
0% =5 X ip

h= —1 2 Tt -

;::—*T\/sz(l'u-i-'—)fiu'%- 2ip) = x|
02— X Ip

b

hl =

-~

flr) = (r—p)/a.
For the LLR. LLRB. and BLLR methods. the 100(l — a)% two-sided simultaneous

confidence curves can be obtained numerically by using Equation (4.1).
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4.3.2 One-sided Simultaneous Confidence Bands

The construction of a confidence region for one-sided simultaneous confidence bands
is different from the two-sided case. Cheng and lles (1988) provide an argument for
using the WALDF method. \We extend their argument to other methods that can be
used to produce convex confidence regions.

To see this. we describe a method for obtaining a region needed to define a lower
confidence band of the cdf (the method for an upper confidence band is analogous).
As argued in Section 1.3.1. the upper simultaneous confidence curve for quantiles is the
same as the lower simultaneous confidence curve for the cdf. The same argument applies
for one-sided simultaneous confidence bands. Below we construct a confidence region
for obtaining an upper simultaneous confidence band for quantiles and argue that the
confidence level of the band is the same as that of the region.

Suppose we have a convex confidence region R with a certain confidence level. For
a given p. let R, denote the half space of (p.o) that satisfies p + u,0 < r(max). Let
R, denote the intersection of all R,. 0 < p < 1. Because the tangent lines are on the
right boundary of R. R, is the union of region R and a left semi-infinite band §;. See
Figure 4.2.

Result 3 (in Appendix (') shows that the confidence level of B; obtained by using ('
is the same as that of R;. That is. the one-sided simultaneous confidence band will be
exact if the corresponding convex confidence region R; has the desired confidence level.

We consider R;. R. and S in their inverted form as being a region R, . R'. and S,
in the (1i.5) plane. For a given confidence coefficient | — a. we would like to calculate

the corresponding value = such that
Pri(i.5) e R, =R US| =1 — a. (4.9)

For the WALDF method. Cheng and Iles (1938) describe a way to calculate the

critical value 5. We show their results here. Let

((ZF1> R . —le <,l7—#)
Or, ovni; \ 0 d g—0o)
where d = (ij1l9 — i3,)"/%. Note that §p1 and 5p2 are asymptotically independently
normal distributed. The region R is defined by those (u.o) values that satisfy the
inequality Qr = 5}1 + 5;’-_, < ~. Then spherical symmetry of the independent bivariate
normal distribution allows Pr{(7.7) € R,;} to be evaluated as half the sum of Pr{(fi.5) €

R'} and Pr{(ji.5) € S;} where S} is the doubly infinite band defined by ]5”] < S U2
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Figure 4.2 The 97.5% convex confidence region for a one-sided simultane-
ous confidence band constructed from the BWALDL method with
data in Section -1.5. It is the union of a closed convex region and
a left semi-infinite band.

These probabilities are. respectively. Pr(Z, < %) and Pr(—+'? < Z, < +'/?). where Z,
is a chi-square random variable with 2 df and Z, is a standard normal randomn variable.
Thus the asvmptotic value of the confidence coefficient associated with the region R; is
given by the formula 1[W(~)+ 2®noc(3'/?) — 1]. where W is the cdf of \3 distribution and

®,.c is the cdf of the standard distribution. For the WALDF method. to find the ~ for

an approximate 100(1 — a)% confidence region R, we solve the equation
L ,
5P+ 20,0:(7'*) 1] =1 -a. (4.10)

For the WALDL method. let

(aLl) _ 1 T =i (ﬁ‘ﬂ)

0L &vni,, \0 d g—o)

where d = (1,12 —’1?,_,)‘/2. By the same argument. we solve the equation (4.10) to find
~ for an approximate 100(1 — a)% confidence region R,

For the LLR method. the regions R" and S, are defined by W' < 5 and —7'/? <
R, < +Y2 where R, = sign(d — o)W, W, = 2log L(1.7) — log L(ji,.o)]. f, is
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the constrained maximum likelihood estimator of u given o. Because 1" and R, are
asymptotically \3 and standard normal distributed respectively. we can use equation
(-1.10) to find the - for an approximate 100(1 — a)% confidence region R;. Note that
hecause both the LLRB and the LLR statistics have the same limiting distribution, the
LLLRB method has the same ~ value as the LLR method.

Based on experience with pointwise confidence intervals (e.g.. Jeng and Meeker.
1993). we expect that using bootstrap calibration to obtain 5 in the one-sided case will
provide a more accurate procedure. Let i~ and . R;". R™". and S;* be the bootstrap
versions of 7 and 5. R;. R'. and S, . respectively. Now R’ is defined by Q. Q. W
or g as (1.3). For a given confidence coefficient | — a. we would like to calculate the

corresponding value 5~ such that

Prl(i".6") e R =R"US | =1-a. (4.11)

Then we use 5~ in place of ~ in the WALDF. WALDL. and LLR methods to provide
bootstrap confidence regions.

Once the confidence region is constructed. the lower one-sided confidence curve for
cdf @ is Cj(r) = mingegr, P(r:0). Hence the the lower one-sided confidence band is given
by equation (4.3).

Using arguments similar to those in the previous section. 5;-_). 5“. and R are pivotal
quantities for complete and Type II censored data. Then the confidence region obtained
by bootstrap calibration has exactly the nominal confidence level (except for the Monte
(‘arlo simulation error). Thus the procedure for one-sided simultaneous confidence bands
also has the correct coverage probability. For Type [ censored data. again we have only
approximate results. with the approximation becoming better in large samples.

For calculation of one-sided simultaneous confidence curves. (4.7) can be used for
the WALDF and the BWALDF methods by substituting in the corresponding + values.
Formula (4.7) can also be used for the WALDL and the BWALDL methods. For the
LLR and BLLR method. there is no simple formula but the one-sided simultaneous

confidence curves can be calculated numerically from (4.1).

4.4 Simulation Study

To explore the finite sample performance of these methods. we conducted a simula-
tion using the Weibull distribution and both complete and Type I censored data. Our

simulation experiment was designed to study the following factors:
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Table 4.1 Number of the cases where r = 0 or | in 5000 Monte Carlo simu-
lations of the experiment. The expected numbers rounded to the
nearest integer are shown inside parentheses.

%
.01 .10 50 .90
3] 951(988)  SS9(918) 555(546) 132(139)
E(r) 5| 175(198) 159(168) 54( 53)  1( 2)
T1O34035)  2A(20) 6 1) 0 0)
| 20 2) 2 1) o 0) o 0

e py: the expected proportion failing by the censoring time.
e £(r) = nps: the expected number of failures before the censoring time.

We used 5000 Monte ('arlo samples for each ps and E(r) combination. The number of
bootstrap replications used was 10000. The levels of the simulation experiment factors
used were p; = .01. .1..5. 9. L and E(r) = 3. 5. 7. 10. 15. 20. and 30. For each Monte
('arlo sample we obtained the ML estimates of the location and scale parameters. The
confidence regions for the two-sided and one-sided 100(1 — @)% simultaneous confidence
bands were evaluated for a =.025 and .05. Without loss of generality. we sampled from
an SEV distribution with g =0 and ¢ = 1.

Because the number of failures before the censoring time ¢, is random. it is possible to
have as few as rr = 0 or | failures in the simulation. especially when E(r) is small. With
r = 0. ML estimates do not exist. With r = 1. LR intervals may not exist. Therefore.
we calculate the results conditionally on the cases with r > 1. and report the observed
nonzero proportions that resulted in r < 1. See Table 4.4.

Let | —a be the nominal coverage probability (CP) of a procedure for constructing a
joint confidence region. and let | — & denote the corresponding Monte Carlo evaluation
of the actual coverage probability 1 — a’. The standard error of & is approximately
se(l —a) = [a@'(1 —a')/n,]"/% where n, is the number of Monte Carlo simulation trials.
For a 95% confidence region from 3000 simulations the standard error of the Monte
Carlo C'P evaluation is [.05(1 — .95)/5000]!/> = .003! if the procedure is correct. Thus
the Monte Carlo error is approximately £1%. We say the procedure or the method for
the 95% confidence region is adequate if the CP is within £1% error of the nominal CP.

From the Figure 1.3 to Figure 4.7 we have the following results



v 2
=1

e Neither the WALDF nor the WALDL method provides an adequate procedure
when E(r) < 30.

e The coverage probability of the LLR method depends both on the sample size and

on the expected number of failures. The procedure is adequate when E(r) > 20.

e The LLRB method is adequate when E(r) > 5 for two-sided simultaneous bands
and when E(r) > 30 for one-sided simultaneous bands. Using a Bartlett correction
improves the coverage probability of the procedure for one-sided simultaneous

bands only when there is no censoring or slight censoring.

e As expected. the BLLR method is exact for complete data. The coverage probabil-
ity of the procedure for two-sided simultaneous confidence bands is accurate even
in heavily censored cases when E(r) = 5. But the coverage probability of the pro-

cedure for one-sided simultaneous confidence bands is accurate when E(r) > 15.

e As expected. the BWALDF method is exact for complete data. With Tvpe |

censoring it is adequate when E(r) > 10.

e The BWALDL is exact as expected for complete data. With Type [ censoring it

is adequate when E(r) > 3.

Overall. the BWALDL method provides the best results. Also there are simple
formulas to calculate simultaneous confidence bands for the cdf. So for the location-

scale mode. the BWALDL method is recommended.

4.5 Simultaneous Confidence Band for POD Curve

Probability of Detection (POD) curves are a commonly used metric for the Non-
destructive Evaluation (NDE) capability. We follow the methodology developed by
Meeker et al. (1995. 1996. 1997) which is motivated by the need for methods to predict
ultrasonic (UT) inspection POD for detecting hard-alpha and other subsurface flaws in
titanium using a gated peak-to-peak UT detection method. Sarkar et al. (1998) apply a
similar methodology to the non-destructive testing using UT inspection and destructive
testing of cracks in heat exchanger data.

The combined data used in Sarkar et al. (1998) came from testing three heat ex-
changer tubes. The data are denoted by {(ar.yx) : & = 1.... .n}. where yi is the signal

amplitude corresponding to the crack size a,. In the ultrasonic inspection. the signal
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UT and Theoretical Model Prediction
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Figure 4.3 The UT signals and the theoretical model predictions. Censored
data is represented by triangles.

will saturate when it exceeds a specific bound. The ultrasonic signals were reported in
the scaled format as the percentage of a full-scale signal which is determined by calibrat-
ing on a given standard. Signals above 100% are right censored. Figure 4.8 shows the
observed data and the prediction from a theoretical physical model for ideal flaws (rect-
angular slots). The signals from the ideal flaws are much stronger than actual cracks.
Modeling the deviations (bias and variance) provides a useful model for estimating POD
for the inspection method.

Let yi denote the prediction from the theoretical physical model for ultrasonic NDE
signals (UNDE model) for a crack size of a;. We define the generalized deviations (using

a Box-Cox transformation) as

(w)* =1  (Gx)*-1 A # 0
9(yk-grzA) =4 ! (4.12)

log(yx) — log(gx). A =0.
The purpose of using the generalized transformation is to simplify the modeling of vari-
ability in the UT signals (specifically to stabilize variance and obtain a simple form for
the distribution).
Based on the experiences with large amounts of experimental UT data. Meeker et

al. (1995. 1996) observed that a value of A in the neighborhood of 0.3 tends to make
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the distribution of the deviation close to iid V(u.o?). For the heat exchanger UT data.
Sarkar et al. also found that A = 0.3 is suitable.

For the heat exchanger UT data. the scaled UT signal amplitude was recored in the
form of single right censoring with the fixed right censoring level .. The generalized
deviation results in multiplely right-censored values r.; = g(¢..g;). t = l.....n. We
use the method of maximum likelihood to estimate the unknown parameters p and o.
Figure 1.9 shows a normal probability plot and 95% pointwise confidence intervals for
the distribution of the generalized deviations. We see that the normal distribution fits
the generalized deviation data well.

Let Y be the maximum reading in the gate of an UT A-scan. The threshold y
was chosen to be the 25% of the full-scale signal. There is a detection when Y > y.
For this application. the POD is of the primary interest. Under the general model the

probability of a detection on any given reading of a crack of size a is

POD(a) = Pr(Y (a) > ym) = | — Prlg(Y(a).y(a)) < g(yin- y(a))]

=1 -d. g(ym.g(Aa)) -1, |
Ty (4.13)

where @, is the standard normal (Gaussian) cumulative distribution function and g,
and 7, are estimates from the generalized deviation data.

Sarkar et al. (1993) provide point-wise confidence intervals for a POD curve by
using the delta method and a normal approximation. For actual applications of system
reliability. one would be interested in the uncertainty of the estimation of the POD
curve for a range of crack sizes. The methods developed in this paper provide the
needed simultaneous confidence bands.

The following gives the bootstrap procedure used to find the critical value 5 for the
methods being considered. Let [*(u.o) be the particular statistic used for finding the
confidence region. This statistic could be Qg. Qp or W that is defined in the Section

4.3.

l. Simulate one sample rj.... .z} from the normal distribution .V (. 5?).

t

i =1l.....N. Calculate [ from the bootstrap data (z7.47). i =1......N.

2. Let 7 = 0if o7 < r.; and 87 = 1 if v > r.. Set =f = min{rl.r }.

3. Repeat steps 1 and 2 B times to calculate the MLEs ji5 and &} of i and &

and {Tof (7). j =1.....B. Arrange the [, in ascending order.
1. Use {5, _,, as the critical value 5 for the given confidence coefficient | — a

in finding two-sided simultaneous confidence bands.
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Figure 1.9 Normal probability plot with A =.3 and 95% pointwise confidence
interval.
5. Let k be a positive number less than n and let m = #{(g;.7;) : j >

k.(ji;.57) € S} where 8™ is defined in equation 4.11. Find & such that
k+ m = B(l —a). Use [} be the critical value v for the given confidence

coefficient | — a in finding one-sided simultaneous confidence bands.

We use B = 10000 to calculate the critical value 5 for the BWALDF and BWALDL
methods and to construct the 95% two-sided and 97.5% one-sided simultaneous con-
fidence bands for the POD curve. Figure 4.10 compares the two-sided 95% pointwise
confidence intervals using the delta method and the simultaneous confidence bands us-
ing the BWALDL method. The important differences are clear. The BWALDL band
is wider especially when the crack size is smaller than 20% of referenced size. Fig-
ure 1.11 shows that the difference between the BWALDL and the BWALDF methods
is not so large. As indicated by the simulation study. because the sample size is 32,
the confidence level should be close to the nominal value. Figure 4.12 compares a set of
the Y7.5% one-sided lower pointwise intervals based on the normal approximation and
lower simultaneous confidence bands based on the BWALDF and BWALDL methods.
The pointwise intervals tend to lead to narrower region which could be misleading when

interest is over a range of crack sizes.
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Figure -1.12 The 97.5% one-sided pointwise lower confidence bounds and
simultaneous lower confidence bands calculated by using the

BWALDL and BWALDF methods.

4.6 Discussion and Future Work

Cheng and Iles (1983. 1988) use Wald statistics with (expected) Fisher information
and provide different approaches for finding one-sided and two-sided simultaneous confi-
dence bands when there is no censoring in data. We extend their approach by using Wald
statistics with local information and likelihood ratio statistics (with or without Bartlett
correction) and compare these to corresponding simulation or bootstrap calibrated ver-
sions of the same methods when data are complete or censored. The methods presented
in this paper can be used to construct two-sided simultaneous confidence bands for gen-
eral continuous functions. For constructing one-sided simultaneous confidence bands.
these methods can only be directly applied to the cdf of location-scale distributions.

We show that for the location-scale model. the accuracy of the procedure for con-
structing the simultaneous confidence bands is the same as that of the procedure for
constructing its corresponding joint confidence region. The BWALDF. BWALDF. and
BLLR methods have exact coverage probability when data are complete or Type II cen-
sored. When data are Type I censored. only approximate joint confidence regions can be
obtained. Our simulation study shows that the BWALDF and BLLR methods provide

accurate coverage probabilities when the number of failures reaches 15 for different pro-
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portions failing. The BWALDL method produces accurate coverage probabilities when

the number of failures reaches 5. The following are some issues for future research:

e In some cases interest centers on inference for a function over some particular range
of its arguments. For example. only the lower part of a cdf might be of interest [e.g..
®(r:0).r < t. for some time t]. For the cdf of a location-scale distribution. we can
construct the corresponding joint confidence regions by following the arguments
similar to those in the Sections -.3.1 and 4.3.2 and then use the resulting regions to
construct two-sided and one-sided simultaneous bands. respectively. The shape of

the joint confidence region will depend on which part of the function is of interest.

e Both the BWALDF and the BWALDL methods provide accurate joint confidence
regions for the unknown parameters in the location-scale model. We use these
methods to construct correspondingly accurate simultaneous confidence bands.
The open question is how well these two methods perform in other models. In
particular. it would be useful to know if they are as good as the BLLK method
which generally has second order accuracy in coverage probability for both com-
plete and censored data (Jeng and Meeker 1998). A general method to construct
accurate one-sided simultaneous bands for a function g(-:€) still needs to be ex-
plored. The challenge is to determine an appropriate confidence region that can

be used to generate a one-sided simultaneous band.

e The approach used to construct simultaneous confidence bands in this paper can
he extended to regression problems. Escobar and Meeker (1998) give a formula to
calculate the simultaneous confidence band of a regression curve using the WALDF
and WALDL methods for the location-scale model. Their formula can also be used
in the BWALDF and BWALDL methods. The simultaneous confidence bands
using the LLR. LLRB or BLLR methods also can be obtained numerically.
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5 CONCLUSION

The first paper of our research provides a detailed comparison of methods for con-
structing approximate confidence intervals. These methods range from the most com-
monly used large-sample normal-approximation methods to the more modern compu-
tationally intensive likelihood and simulation-based methods. Because opposite lower
and upper bounds of a two-sided confidence interval tend to have conservative versus
anti-conservative coverage probabilities. the effect of averaging often results in reason-
ably adequate coverage-probability approximations for two-sided confidence intervals in
situations with moderately large sample sizes. Qur results show. however. that for mod-
erate amounts of censoring and one-sided bounds (most commonly used in practical
applications in the physical and engineering sciences as well as other areas of applica-
tion) the simple normal-approximation (NORM and TNORM) methods provide only
crude approximations even when the expected number of failures is as large as 100.

Appropriate computationally-intensive methods provide important improvements.
[n particular. likelihood-based methods. even when calibrated with the large sample
chi-square distribution approximation (e.g.. the LR method). generally provide better
results. Calibrating the LR ClIs by simulation (see Appendix A) does not address the
asymmetry problem and results in inaccurate one-sided bounds. Calibrating the indi-
vidual tails of a likelihood-based interval with simulation (i.e.. the PBSRLLR method)
provides important improvements in coverage probability accuracy. even for small E(r).
for all but one exceptional situation (i.e.. inferences at times near to the censoring time
or quantiles near the proportion censoring with £(r) < 10). The transformed bootstrap-
t procedure provides a computationally simpler method. but one needs to be careful in
the specification of the transformation to be used.

In the second paper we prove that the distributions of likelihood ratio statistics and
their signed square root can be approximated by their bootstrap distribution up to the
second order [O(1/n)] when the underling distribution is partly discrete. One application
of this result can be used to construct one-sided confidence bounds. two-sided confidence

intervals or joint confidence region for complete and censored data.
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Some examples like the one-parameter exponential model and logistic regression given
by Jensen (1989, 1993) are stated here to illustrate the applications. The two-parameter
Weibull distribution model is studied in details when data is Type I censored. Our
simulation study compares several commonly suggested methods (Bootstrap-t and BC',)
and other higher order accurate methods (modified signed square root likelihood ratio
statistics) with likelihood ratio statistics calibrated by bootstrap procedures and provide
a clear view of their finite-sample properties. Although the LLRB method for two-sided
confidence intervals is the most accurate one in coverage probability. the resulting two-
sided confidence interval is not symmetric in the sense that the confidence level of one
side of the interval is larger than the nominal confidence level and the confidence level
of the other side of the interval is smaller than the nominal one. If one-sided confidence
bounds are of interest. the PBSRLLR and PBMSRLLR methods provide better coverage
probability when the expected number of failures exceeds 10.

[n the third paper we focus on the problem of computing simultaneous confidence
bands. we provide methods by using the Wald statistics with local information and the
likelihood ratio statistics (with or without a Bartlett correction) and compare these to
corresponding simulation or bootstrap calibrated versions of the same methods when
data is complete or censored. The methods presented can be used to construct two-
sided simultaneous confidence bands for general continuous functions. For constructing
one-sided simultaneous confidence bands. these methods can only be applied directly to
cdf of location-scale distributions.

The accuracy of the resulting simultaneous confidence bands depend on the coverage
probability of its corresponding joint confidence region. We show that in location-scale
model. the BWALDF. BWALDF. and BLLR methods can be used to construct joint
confidence regions with exact coverage probability when data is complete or Type II
censored. When data is Type [ censored. only approximate joint confidence regions can
be obtained. Qur simulation study shows that the BWALDF. BWALDF. and BLLR
methods provide accurate coverage probability when number of failure reaches 15 for
different proportion failings. The BWALDL method produces accurate coverage proba-
bility when number of failure reaches 5.

[n addition to providing guidance for practical applications. our results suggest the

following avenues for further research.

[. Our study leaves unanswered the question of what one should do when making
inferences in the exceptional case when the failure number is down to 10. We see

no easy solution to this problem. Some possibilities include
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e Find a smoothed bootstrap distribution of MLE when sample size is small
(less than 10). Another alternative suggested by some limited simulation

results is to use a double bootstrap calibration.

e Extending the censoring time of the life test to be safely and sufficiently
bevond the time point (or proportion failing) of interest. This requires prior

knowledge of the failure-time distribution which is not generally available.

e Design life test experiments to result in Type II censored data. In this case.
exact confidence interval procedures are available. but experimenters gener-
ally have to deal with time constraints in life testing and thus there may
be resistance to such life test plans. On the other hand. Type [l censoring
provides important control over the amount of information that a life-test
experiment will provide.

e Design life test experiments to result in multiple time-censoring (where the
results of Robinson (1933) suggest that excellent large sample approxima-
tions are available from computationally intensive methods). In this case.
constraints on time or number of units available for testing may also lead to

resistance to such life test plans.

e [f none of the above is possible (e.g.. for reasons given above or because the
experiment has already been completed) it might be possible to make use of
nonparametric methods (where conservative confidence intervals or bounds

may be available if there is a sufficient amount of data).

2. Our study has focused on the Weibull distribution. [t would be of interest to

replicate the study for other distributions. We would expect very similar results
for other log-locations-scale distributions such as the lognormal and the loglogistic

distributions.

[t would be of interest to extend this study to other censored-data situations that
arise in applications. including regression analysis and the analysis of accelerated
life test data. more complicated censoring schemes like interval censoring and ran-
dom censoring. simultaneous confidence interval and bounds. intervals to compare

two different grouped. and so on.

1. Our examples show that the theorems we have developed can be applied to logistic

regression and location-scale model with Type [ censoring data. For other kinds of
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censoring and distribution. C'onditions (A) and (B) in Section 3.2 can be expected

to hold when the model distribution is smooth and without overly heavy tails.

The modified likelihood ratio statistic [presented by Barndorff-Nelson (1986. 1991 )]
seems to provide better coverage probabilities when they are calibrated with a

bootstrap procedure. The order of accuracy could be further explored.

. Both BWALDF and BWALDL methods provide accurate joint confidence regions

for the unknown parameters. \We use these to provide correspondingly accurate
simultaneous confidence bands. The open question is how well these two methods
perform in other models. Will they still be as good as the BLLR method which
generally has second order accuracy in coverage probability for both complete and

censored data?

A general method to construct one-sided simultaneous bands for a function of
parameters still need to be explored. The challenge is to determine an appropriate

confidence region corresponding to the desired one-sided simultaneous band.

In some cases interest centers on inference for a function over some particular
range of its arguments. For example. when the lower half of cdf is of interest [i.e..
O(r:0).x < t. for some time ¢]. for the cdf of a location-scale distribution. we can
construct the corresponding joint confidence regions by following arguments similar
to those in Sections 4.3.1 and 4.3.2 for two-sided and one-sided simultaneous bands.
The shape of the joint confidence region depends on which part of the function is

of interest. For general functions. more research is needed.



APPENDIX A CALCULATION DETAILS FOR FINDING
MLE AND CONFIDENCE INTERVALS

Calculation of MLE and ClIs

Calculation of ML Estimator

('onsider a sample of n observations with ¢;. ... . ¢, reported as exact failure times
(suppose that 2 < r < n) and n — r observations censored at a common time {.. A
simple expression can be derived for the Weibull log likelihood in the n = exp(y) and
3 = 1 /o parameterization. The Weibull ML estimates can be obtained by solving the

following two equations:

(n—r)t?log(t.) 1 | —
; —§:| —;Zlog(t,):()
© =1

l r
n? = - {Z t] + (n — r)t‘f} .
=1

Note that the first equation does not contain 1 and is thus easy to solve numerically for

3. For more detail sec Lawless (1932. page 170).

Calculation of CI from log likelihood ratio (LLR) Method

Suppose (' = {#, : where (0,.6,) are the solutions of the following two equations.}

d L(6,.6,) .
7 (log | —=—=—]| =0 A2.1
9, [( L®) )} D
: L(6:.0:) - 5 -

—2log (#) = \(1=at) (4.2.2)

Then the 100(1 — )% Clof 8 is (ming ¢ (jl.llla.\'g'lec- 0,)
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Calculation of CI from log likelihood ratio Bartlett corrected (LLRBART)
Method

Suppose (' = {f, : where (6,.6,) are the solutions of the equation (A.2.1) and the
following equation.}
L(0,.6,) 2
=2log | ——=—— ) /E(v)" = \[1_..1)
g ( L(d) / (1-a.l)

where E(v)" =" ~2log n1an2[Lf(§l. 92)/[,{(5:)]/2000. which is the bootstrap estimate

of expected value of ¢. The 100(1 — a)% CI of 8, is (ming . b,. maxy ¢ by).

Calculation of CI from parametric bootstrap signed-root log-likelihood
ratio (PBSRLLR) Method

The lower 100(1 —a/2)% confidence limit of 8, is the solution of the equation (A.2.1)
and the following equation.

sign(f, —01){—'—’Iog[L(91.92)/L(§)]}1/2 -

TEYEN

where 2 . is the a/2 quantile of the distribution of
(ex /2

sign(97 — 0,){—2log maxs, [L*(0,.0,)/ L= (8)]}'/2.

Other Methods Considered

The graphs used to present the results of our simulation contained comparisons
among only a subset of the confidence interval methods that we compared. Dropping
these from our detailed comparisons did not affect our primary conclusions. We mention

the other methods for completeness.

Parametric bootstrap of LR method (PBLLR) Let R~ be the bootstrap version
of the profile likelihood statistic R (Equation 2.1 in Section 2.3.2). Suppose T is the
a quantile of the distribution of B*. The two-sided 100(1 — @)% confidence interval is

obtained from min{R"(:(;”- ))} and max{R“(:gu-())}.

Robinson’s Method Robinson (1933) provide a parametric bootstrap method to any
model that is transformable to location-scale form and has invariant estimators. Let
(fi.7) be the ML estimator of (p.o) and t; is defined as in Section 2.1. Let e

and zz-s+),,, be the a quantile of the distribution of 7/ and [Iog(f;,.) - log(t?,)]/?f.
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Then confidence intervals for o and ¢, can be calculated form (6725, .07 ) and

l=a/2)

(exp(log(l:,) - 5’3(‘;-‘.:/~)”_,,,_,, )-C’XP(log(E;) - 3:(;7‘.5')4,./:) ).



APPENDIX B THEOREMS AND METHODS USED

Theorems Used in the Paper

We want to obtain an expansion for the distribution of the statistic /ng(S,/n)
where S, = (X,.Y,). X, is a continuous variable with means zero in R?'. ¥, is a lattice
variable mean g, in R? having minimal lattice Z” and. and g is a smooth function. Let
q = q + q2. We consider only the case ¢, > ¢,. For a function of ¢ € N* we denote by 9”
the partial derivative 9i/(9ts* ... dt7*) where v € R*. [v| = vy and vl = 1! Lyl To
formulate Lemma | we let ¥ denote a &k x k positive definitive matrix. The multivariate
normal cdf with mean vector 0 and covariance ¥ is denoted by ®x and the corresponding
density by ox.

The expansion for \/ng(S,/n) is formulated in terms of Borel sets satisfving certain

conditions on their boundary. The d-boundary of a Borel set 4 is defined as
(0A)° = {B(x.8)|r € 4. B(x.8) € A}

where B(.r.J) denotes a sphere centered at r and with radius 4.
The following lemma is the same as Theorem 1 of Jensen (1939). It establishes the

Edgeworth expansion for the statistic v/7¢g(S,/n) under fairly general conditions.

Lemma 5 (Jensen, 1989) Suppose that the following assumptions are satisfied.

(i) The r-th moment of S, is finite. i.e. E|| S, ||” < <. where r = max{2s—1.q, + 1}
with s > 3.

(ii) There exist = > 0 and ny € N such that forn > ng and || (¢t.v) ||< =

fn(t- ) = E(eit;\',,-i-iv()"n—un)) — 6an(t,u)

for some function H,(t.v).
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(iii) H, (t.v)|o = w, as n = o< and v € N1y < v owhere k, b5 finite and the
matrir of second partial derivatives {x,}, =2 i~ negative definite. Furthermore, for
n>ng and || (t.e) ||[< z the r-th order partial derivative 9*H,(t. v). |v] = r. &5

bounded.

(iv) For any = > 0 there erist ¢ > 0 and p < | such that |0 fa(t.v)| < cp" for
v < rifjt]|> = forall v.

(v) For any zy > 0 there exist =.c > 0. and p < | such that 0" fo(t.v)| < cp™ for
wf<rdlell>za. el <7 and | t]<:.

vi) g Rt o R with k < g has derivatives of order s — | which are continuous
{ g > 4q

in a neighborhood of (0.p,/n). Also g(0.p,/n) = 0.

(vit) The qp x kb matrir
_ dgla.y)

Dy = o'

(O.un/n)

has full rank.

Then we have that for any d > 0 there erists a constant ¢ such that

Pr(vng(N./n.Y./n) € A)—/fs,,,(:)d: < cn~ls=2/2
A

for all Borel sets A with ®<,[(8A)°] < dS for cvery § > 0. As defined in Bhattacharya
and (ihosh (1978),]11 Esnl(2)dz is the formal Edgeworth erpansion of the distribution
function of \/ng(X,/n.Y,/n). where

£s.n(2) = 0x,(2) [1+2ﬂ”/2@j(3)} (B.1)
=1

and Q, is a polynomial in =. Here g is positive definite and the coefficients of Q; are
of order one [O(1)].

Proof. See Jensen (1989) Section 2. B

Remark 2 From Remark [.4 of Bhattacharya and Ghosh (1978). Q; depends only on
the moments of S,. When the distribution function of S, is continuous in the unknown

parameter §. Q, will be a continuous function of 9.
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A case of much practical importance is when ¢ is one dimensional. Let the cumulants

of order m of 5, /n = (X, /n.Y,/n) be denoted by A, .. That is.

I O™ log[E(e"5»/™)]

A, = -
J1---Jm lm i)t“ . atjm o
with ji.... . jm € {I.... .q}. Define
_ dglp + E(S.)/n]
Gt ewsm duy, ... 0u,, 0.

Sargon (1976) gives the Edgeworth expansion of the statistics y/ng(5,/n) when the
underlying distribution of S, is continuous and g is a real value function. The following
(‘orollary gives a similar result that the underlying distribution of S, could be partly

discrete.

Corollary 1 Let g be a one dimensional function and let s = 5. Under the assumption

of Lemma 3. the erpansion to approrimate the probability Pr[\/ng(S./n) < w] becomes

—1 |1 a; + 3aj wy 2
¢”J(ll)+0,,3(l£){7_; [EO;+—%—2—((;) —1>J

1 as + ar + ag/2 +of/4 w ar + 1200 + Hag + 2004 + 6asa,y + 120y
+ —|— —+
20 o 2403

n

} 2 3 - . (B.2)
NG w3 aj + 6a,a3 + Ya; wy w3 . u'> 1
(';0‘ (a) )+ 203 <—<o) +10(0’) 130" to n/’

Here the coefficients are given by

g’ = AkG 0k Ya = A9 30 = ALkgigk Tab = Aapyg).
ar = Akm3igkGm- Q2 = Ajkmq9;9kGmGq- Q3 = YaGabTh-
Q4 = GabAab. Q5 = GabYab. Q6 = GubcTaTbTer

07 = GapeAabte. QA8 = VaGabAbcGedd-

ay = A2dGdcAchGba- Q10 = TaGab-3b.

The sum over the subscript is omitted for abbreviation.

Proof. The result follows from Lemma 5 and the result in Sargon (1976). B

Remark 3 (B.2) can be represented as

l
b, (w) — \—/_;a,(u')o,,z(w) + %(zl(w)ooz(w) + o(%) . (B.3)
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where ay(w) and ay(w) are polynomials with degree 2 and 3. respectively. Note that
ay(w)o{w) and ay(w)o,:(w) are bounded over w. If s =4 in Corollary B. the exrpansion

to approrimate the probability Pr(\/ng(S./n) < w] becomes

b (w) - %al(w)oﬂz(w) + O(%) . (B.4)

Checking Regularity Conditions

We would like to check that the (A) Conditions hold for Equation (3.32). It is clear
that if ® has a v-th derivative w.r.t. § on X x 2. then Condition (Al) holds. This is
true for the SEV. normal. and logistic distributions.

For condition A2. we present the general formulation for location-scale distributions
and then discuss the details for the SEV. normal. and logistic distributions.

Let & = (&; — &xp)/0 + up. then

i&— = —l. s =0. j>2
().l‘p g d‘li’
f)f,‘ Iy — JIp (.)Jf,' Iy — Iy -
_ = = . =(—=1) > B.5
do a? do’ (=1 gt 1= (8.3)
PrHke, . ik, \¥*'
T R T D < =(——> D=1 k>1
drpdok dr)dok a
Let & = (r.— x,)/0 + u, denote the standardized censoring time. then
dE. L 9 :
- = —-——. - ZZO. J Z 2.
().l‘p a ()li,
dE. r.—ur, ¢ S Le = Tp
— _ — (P )
do a2 " day =(=b i+l )23 (B.6)

aj+k aj+k ) k+1
9 5“=o.j22.1;21.d,5“=(—i) L J=1Lk>1.
drydo* drydo* o
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The partial derivatives of log likelihood function are

EXAE- o(£.) 5=
V(& (oo np)) = 4 —"} + (L =4,) [———(”—)} .
Se

(&) I — (¢
- e i o €.)%e
(1.0) . . . _ e R _ da
d l(-lz-(0~lp))—()t i 0_+ -_O-(-‘,'—) } +(1 A,) |: 1_—-———(D(£L)] .
o(&)[0" ()8 + 0'(6) 725 ] — [0 %e
0([.[)[(1_‘:(0_‘ l'p)) _ J, S [ S rp Jo -): ] [O drp do
o(&)*

{[1 — (&[0 (& )7}7% +o E —i—l - [o(fc)l‘-’%’.%}

+ (1 — ) [1 -
o))" (& ) O (8 -
AON(r;: (0. r,)) = 6 { 8= (C O() E (&) fp } (B.7)
~fli=eElfo'E }— (S (552)°
+ (1 =) “ — PN,
ICV (e (0. rp)) =9, { S )[o (&) O(E])_z [O fx)] }
L= @0 (E)(F)] = (o0& (5)?
1 -4,
* ’{ i }

Similarly. for 3 < |v| > 4. #”l(x;:(0.x,)) is a function of ®.0.0.0" .0 . 0" . and

terms in the Equation (B.5). (B.6).

SEV Distribution. For the smallest extreme value distribution.

®(€) = 1 —exp([—exp(€)]). o) = exp{[€ —exp(E)]}. (€)= [l —exp(€)]o(€)

Then Equations (B.7):

g — 5. [(l_eﬁp f‘))—f‘_] + (1 =9;) { eVp(f)gfc]
| dr, a" (B.3)
9oy = 5. [_— + (1 —exp(&))- SJ + (1 =46;) [ exp(&. )c)f;]

From Equations (B.3). (B.6). and (B.8). %!/ and 9"/ are linearly independent. We
can sec that all other partial derivatives 9“[. 1 < |v|. are functions of exp(§,) and the

terms in Equations (B.5). (B.6). Then 7. can be written as

(DD DO, 8. exp(&). L exp(&:). 8:€2 expl&). 8.8 expl(&). 5,) .
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Because the expectations of & exp(&)*. 0 < j + k. 0 < &k < L. are finite over an open
set containing the true parameters. the expectations of 9. | < |v|. are finite over the

same open set. This establishes Clondition (A2).
Normal Distribution. For the normal distribution

| 2 in < ,
o(€) = ——e=E P(g) = / ole)de.  O(6) = —Eol£).

" ~x

Then Equations (B.7) becomes:

dE; o(‘c %&'
901 =4, [C—(El—] + (1 =) [———\ )'Jp)]

Mo, I — ®(E,
, ) (B.9)
g0y _ s |_ L. 96 _ _ ol&)57
J [‘"‘)‘[ a’+&0rf + (1 =) L—®E) |

Equations (B.5). (B.6) and (B.9). 9>V, and "9 are linearly independent. We can
see that all of the other partial derivatives 9/. | < |v|. are functions of . and terms in

(B.3) and (B.6). Then Z: can be written as
(98 U0 5,82 5.8 6,) .

Because the expectations of &. 0 < j. are finite over an open set containing the true
parameters. the expectations of #“[. | < |v|. are finite over the same open set. This

establishes Condition (A2).

Logistic Distribution. For the logistic distribution

1 6—5 '

a(€) = - ol) = e

Then from Equation (B.7):

9OV = §; [_cp(gi)gf—‘l] +(1-4) {-—@(&-)%} -
: dp ?P (B.10)
f)(l'o)li = (5,‘ |:—— - q)(&)i] + (]- - 5:) [_(D(Eg)i] :
o Do do

From Equation (B.5). (B.6) and (B.10). 9%, and 9!/ are linearly independent. We

can see that all other partial derivatives 9“[. 1 < |v|. are functions of ®(&,). o(&;). and
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terms in the Equations (B.3) and (B.6). Then Z, can be written as
(aw-w,. IO Si0(E). 8.:0'(6). 6,07(&,). 8.0(6)&. 8:0(£)E. 80" (£)E.. 80 (&)E].
80" (£ 8:0"(€)€2. 8,0 (£,)E]. o}-)

Because the expectations of & o(£)*®(&)™. j + k + m > 0. are finite over an open set

containing the true parameters. the expectations of 9*/. | < |v|. are finite over the same

open set. Thus Condition (A2) holds.

For right censoring and a location-scale distribution with a likelihood function satis-
fving Conditions (Al) and (A2). it can be shown by using Equation (B.7) that [(6y) =
D(8y) . The calculation is straight forward. we omit the detail here. Note that D is
the variance-covariance matrix of score function so it is nonnegative definite. If the

determinant of D is 0. then

AN (o.2p)) _ AN(X;:(o.1,))
oz, Rz (511

for all possible values of X;. where ¢ is a constant. From Equations (B.38). (B.9). and
(B.10) we sec that (B.11) is not true for the SEV. lognormal. and loglogistic distributions.
Thus D is positive definite. Thus Condition (A3) holds.

Methods in the Simulation Study

This section describes some technical aspects for the different CI/CB procedures that

we have studied in this paper. For more details. see the given references.

Log LR method (LLR). The distribution of W’ is approximately \i. Thus an ap-
proximate 100(1 — a)% confidence interval can be calculated from min{I'V'l(\'(zl_o‘”)}
and max{W~'(\{,_, ,)}. where W ~![-] is the inverse mapping and \,_, ,, is the ] —a

quantile of \? distribution with | degree of freedom.

Log LR Bartlett corrected method (LLRB). l.et W = W/E(I"). In general
one must substitute an estimate for E(1}") computed from one’s data. For complicated
problems (e.g.. those involving censoring) it is necessary to estimate of E(W") by using
simulation. Then an approximate 100(l — )% confidence interval can be obtained by

using min{Wg' [\{_, )]} and max{W5'[\?_, )]}
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Modified signed root log LR method (MSRLLR). Barndorff-Nielsen and Cox
(1994. pp 201-206) proved that under some regularity conditions. Ry can be approxi-
mated by normal distribution with error rate O(1/n*?) when there is no censoring. Let

[ =log L(#) and @ = (v.\). where ¢ is a scalar parameter. The MSRLLR is defined as

N _ I [(e)
Ry(v) = R(L)+R( )log [R(L)]

where

Ulw) = [50) = L5(0.). | 0/ {UT BT O]}

0 5) = O:0. ~ 6: 8.
(0) = (6:0.a). 159) = 2ELD| 5, b
00 (55u) ()\do (él:r:r‘\.a)

R is the signed square root log likelihood ratio statistic. @ is an ancillary statistic. J
is the local information matrix of 4. and J,, is the local information matrix of \. Let
=, be the a quantile of normal distribution. The 100(1 — @)% confidence limits can be

obtained from (R_u)_l(i:(,,/g).

Parametric transformed bootstrap-t method (PTBT). Let g be a smooth mono-

tone function generally chosen such that g(gl) has range on whole real line. Let 8, be the

ML estimator of 8, and let 5{ be the bootstrap version of the ML estimator. Let 06 o

be the a quantile of the distribution of [g¢ (5‘) Al)]/;é‘[J 0 6,)]. where s’é'[g(al)] is the

bootstrap version of sfé[g(al ]. We choose se[g(8 ] to be g (0 )A(l ”J'(O ). where f@ is the

local estimate of [g. For estimating quantiles of a positive random variable we take g to
]

be the log transformation. An approximate 100(1 — a)% confidence interval for 8, can

be computed from ¢! {g(al) s’é[g(al )]} and ¢! {g(gl) - ;y(g‘.}(ums%[g('a] )]}

- ::}(9:.)11—.,/3)
Parametric bootstrap bias-corrected accelerated method (PBBCA). Efron and
Tibshirani (1993. Section [4.3) showed an easy way to obtain BCA confidence intervals.
An approximate 100(1 — a)% confidence interval is given by (é\l(-ul).é:(.uz)). Where 0’\1(-,3)
is the a quantile of the distribution of 5{ and
- Zo + a2 ~ 20+ Zimay2 )
o=@+ — . e =9 S+ — ;
: ( | —fl(~”0+3a/2)> o ( T —a(Z0 + z1-0/2)
- ~ PN ~ 3
s _gmt (FEB) <O} o XL Gy~ )
2o B . =7 i — 32
6|22 (Oug = Oupa) ]

Usually @ is taken to be the standard normal cdf. Here ()Al[] =0, Xpp)- X[ is the original

sample with the /th point «x; deleted. o) = Z.— ()1 ]/n . is the a quantile of normal
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distribution. and B is the number of the bootstrap samples. and 67(b).b = |..... B are
bootstrap versions of 8.

[f there is an increasing function v, (the exact form need not be known) such that

l—‘n(al) - L'rl(gl)
: < rb = dlr).
PI{ Lt ac(0) + o_l} (r)

then the BC', (I procedure is exact.

Parametric bootstrap signed square root LLR method (PBSRLLR). Suppose
that e is the a quantile of the bootstrap distribution of a SRLLR statistic. R(#,).
Then an approximate 100(1 — )% confidence interval can be computed from

min{R~'(rz- ). R (rz- /)))} and max{R '(rz-- ).R7Y(r )}.

0 (nr2) Ot (as) Tiiar
Parametric bootstrap modified signed square root LLR method (PBMSR-
LLR) Let Ry, be the bootstrap version of Ry;. Suppose T be the a quantile of the
distribution of RY,.The 100(1 — a)% confidence limits are

min{ Ry~ (rg; ) Ry (./2))} and max{Ry "' (rz- ). Ry~ Hrge )}

T(1=a/2) O (n i {1oa/2) 1 a2



APPENDIX C RESULTS USED FOR CONSTRUCTING
SIMULTANEOUS BANDS

Two-sided Simultaneous Confidence Bands

Result 1. In a location-scale model. the lower and upper confidence curves for quantiles
are the same as the upper and lower confidence curves for the cdf. if those curves are

computed from a convex joint confidence region.

Proof. We want to show that [T,(min).p] and [T,(max).p]. 0 < p < L. are two
curves the same as [r.max(, -jer ((r — p)/o)] and[e.ming, s jer ®((r — p)/o)]. We
only show the lower confidence curve case. the upper case can be obtained analogously.
Given r on real line. there is a p such that r,(max) = r. The lower confidence curve
for ® is [r.ming, ,jer ®((x — u)/o)). The claim will be established if we show that
ming.mer ®((r —p) /o) is equal to p. That is (F,(max). p) = [r.mingser ®((r—p)/0)].
0 < p < L. Suppose ming, ,jep®((r — p)/o) equals to py. Clearly pg < p and there
is at least a point (gp,.,,) in R satisfving equation (4.6). Suppose that pg is smaller
than p. Then it follows that -—u;ol is also smaller than —u;'. This means the line that
passes thought the point (g,,.0,,) (inside R) with intercept r,(max) is on the right of
the tangent line of the region R with the same intercept I',(max) (see Figure 4.1 for

visual justification). This is impossible. So we have that py = p.

Result 2. In a location-scale model. a two-sided simultaneous confidence band B has

the same confidence level as its corresponding convex confidence region R.

Proof. We consider any point (ug. o) which is not in the region R. Clearly thereisa p
such that the line with slope —u, passes the point (po.09) but does not cross the region
R (see Figure 4.2 for visual justification). This implies that the point (uo + w,00.p) is
not located in the band B. So we conclude that no other points outside the region R
will produce a cdf which lies entirely in the band B. The band B hence has the same

confidence level as the confidence region R.
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One-sided Simultaneous Confidence Bands

Result 3. In a location-scale model. the confidence level of one-sided confidence band of

the cdf is the same as the confidence level of its corresponding convex confidence region

R,.

Proof. We only show the lower confidence band case. the upper case can be obtained
analogously. If (gg.0¢) is not in the region R,. there is at least a py such that the
line u + up,0 = rp, passing through the point (up.09) does not cross the region R;.
Then the number py + w,,00 is bigger than I, (max). This implies no other points
outside region R; could produce a confidence curve which lies entirely in the band
By = {(T,(max).p) : 0 < p < 1} So the confidence level of B; is the same as that of R;.
That is the one-sided simultaneous confidence band will be exact if the corresponding

convex confidence region R, posses requested confidence level.
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