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Abstract

This paper develops a novel bootstrap procedure to obtain robust bias-corrected confidence

intervals in regression discontinuity (RD) designs using the uniform kernel. The procedure

uses a residual bootstrap from a second order local polynomial to estimate the bias of the local

linear RD estimator; the bias is then subtracted from the original estimator. The bias-corrected

estimator is then bootstrapped itself to generate valid confidence intervals. The confidence

intervals generated by this procedure are valid under conditions similar to Calonico, Cattaneo

and Titiunik’s (2014, Econometrica) analytical correction—i.e. when the bias of the naive

regression discontinuity estimator would otherwise prevent valid inference. This paper also

provides simulation evidence that our method is as accurate as the analytical corrections and

we demonstrate its use through a reanalysis of Ludwig and Miller’s (2008) Head Start dataset.

1 Introduction

Regression Discontinuity (RD) designs have emerged in the last decade as an important and popu-
lar research design strategy for analyzing the causal impact of policies and interventions in several
fields of the social sciences, including economics, political science, public policy, and sociology.
This research strategy exploits the fact that many programs use a threshold based on a numeric
score to determine whether or not to provide a treatment.1 In its basic version, sharp RD, individ-
uals or groups with score above the threshold are treated while those below the threshold are left
untreated. The identification of the treatment effect at the threshold is then based on comparing

∗All authors: Department of Economics, Iowa State University. 260 Heady Hall, Ames, IA 50011. Bartalotti:
bartalot@iastate.edu; Calhoun: gcalhoun@iastate.edu and http://gray.clhn.org; He: yanghe@iastate.edu.

1This score is often referred to as the running variable in this literature.
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treated and untreated units at the cutoff. When a subject’s position just above or below the cut-
off is credibly not related to unobserved characteristics that would affect the outcome of interest,
differences between treated and untreated individuals at the cutoff can be plausibly attributed to
the treatment alone. As a practical matter this involves comparing units within a bandwidth just
above and just below the threshold. Other RD strategies exist that can exploit different forms of
discontinuities as well.

The RD design strategy was introduced by Thistlethwaite and Campbell (1960) to study edu-
cational outcomes and many of its recent applications in economics were to estimate the effects
of other educational policies: evaluating the impact of investments in school facilities, class sizes,
remedial education, early childhood education, and financial aid effects on student achievement
and later outcomes, for example.2 But the underlying identification strategy has proven to apply
much more widely and RD has been used in health economics,3 political science,4 and labor eco-
nomics,5 among other fields. Imbens and Lemieux (2008) and Lee and Lemieux (2010) provide
recent overviews of this literature with many more examples.

In these studies, identification occurs exactly at the cutoff, so the treatment effect is typically
estimated by fitting separate local linear models above and below the cutoff, then extrapolating the
models to the exact point of discontinuity. The difference between the estimated outcomes at that
point is taken to be an estimate of the treatment effect. As a practical matter, a key econometric
issue is determining the bandwidth for the local linear models. One very popular choice is the
bandwidth estimator proposed by Imbens and Kalyanaraman (2012) and extended by Calonico,
Cattaneo, and Titiunik (2014), which minimizes the Asymptotic Mean Squared Error (AMSE) of
difference in the models’ point estimators at the cutoff. But, as observed by Calonico, Cattaneo,
and Titiunik (2014), henceforth “CCT,” the AMSE-optimal bandwidth has the serious drawback
that it produces invalid confidence intervals and hypothesis tests. Local polynomial estimators of
the treatment effect are generally biased in finite samples because the functional form of the local
conditional expectation that they need to approximate is unknown. The unmodeled component of
the conditional expectation becomes smaller as the bandwidth itself becomes smaller, so the esti-
mator’s bias vanishes asymptotically as long as the bandwidth shrinks as the sample size increases.
AMSE-optimal bandwidth shrinks as the sample size increases, so its estimator of the treatment
effect is consistent, but the bandwidth shrinks slowly enough that the remaining bias term is large
enough to affect the asymptotic distribution of the estimator. Consequently the usual “naive” con-

2See, for example, Van der Klaauw (2002), Jacob and Lefgren (2004), Ludwig and Miller (2007), Urquiola and
Verhoogen (2009), Cellini, Ferreira, and Rothstein (2010)

3Card, Dobkin, and Maestas (2009); Barreca et al. (2011)
4Lee and Card (2008), Caughey and Sekhon (2011), Keele and Titiunik (2014), Erikson and Titiunik (2015),

Fujiwara (2011, 2015)
5Schmieder, Von Wachter, and Bender (2012).
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fidence intervals for the RD treatment effects are invalid and can have coverage well below their
nominal level.

CCT show that the bias resulting from undersmoothing can be estimated and they provide
a bias-corrected treatment effect estimator that remains asymptotically unbiased even when the
bandwidth converges to zero at the AMSE-optimal rate. They also show that this bias-correction
term contributes to the asymptotic variance of the resulting treatment effect estimator and provide a
new formula for the asymptotic variance of the bias-corrected estimator. The resulting confidence
intervals have accurate coverage even when the naive RD interval does not.

In this paper, we propose a bootstrap alternative to CCT’s analytical corrections. CCT motivate
their estimator by showing that the bias and variance components for the local linear estimator
can be accounted for by estimating a local second order polynomial with bandwidth of the same
order.6 They use a Taylor expansion around the cutoff to show that the bias associated with the
second order polynomial converges to zero at a faster rate, fast enough that the bias of the local
linear model can be estimated and removed using the second order polynomial. Additionally, that
approximation provides fast enough convergence that it can be used to estimate the correct variance
correction as well.

Our approach exploits CCT’s theoretical insight through a new residual bootstrap. In particular,
we propose estimating the local linear model as usual, then estimating a local second order poly-
nomial and generating bootstrap datasets by resampling the residuals of that polynomial. Since
the second order polynomial is the true Data Generating Process (DGP) for the bootstrapped data,
its estimate of the treatment effect is the true value of the treatment effect under the distribution
induced by this bootstrap. The bias of the linear model is therefore known under this distribution
and can be calculated by averaging the error of the linear model’s estimates across many boot-
strap replications. This approach is described in detail by our Algorithm 1 and the resulting bias
corrected estimator is shown to be asymptotically normal with mean zero in our Theorem 1 under
AMSE-optimal bandwidth rates.

Just as in CCT, our bias correction step introduces additional variability. However, the second
order polynomial again adequately estimates the features of the true DGP that are necessary for es-
timating and accommodating that additional variability. So we propose an iterated bootstrap proce-
dure (Hall and Martin, 1988): use the second order polynomial residual bootstrap to produce many
bootstrap replications of the bias corrected estimator, and then use the resulting bootstrap distri-
bution to produce confidence intervals. This procedure, which requires bootstrapping the datasets
produced by an initial bootstrap, is described in Algorithm 2, and the resulting confidence intervals

6More generally, they show that the bias and variance of a local polynomial of order p can be accounted for by
estimating the p + 1 local polynomial. We will restrict our analysis to the case with p = 1 in this paper because of its
widespread use.
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are shown to be asymptotically valid in Theorem 2.
This bootstrap procedure offers some advantages over analytical methods. In particular, both

this paper and CCT assume that the observations are generated independently of each other; how-
ever, extending these bias correction methods to other forms of dependence is relatively straightfor-
ward for the bootstrap but can be substantially more complicated for analytical corrections, which
have to be explicitly derived by the researcher. Similarly, although we only provide results for the
local linear model in this paper, it is trivial to implement this procedure for higher order polyno-
mials, for covariate-adjusted estimators (Frölich, 2007, Calonico et al., 2015), or for other local
smoothers. (Loader, 2006) However, in this paper we focus on the baseline case of sharp RD with
a local linear model and uniform kernel. Extensions to fuzzy RD designs7 and nonuniform kernels,
which require nontrivial changes to the underlying bootstrap algorithm, as well as developments
to address cross sectional dependence, are the subject of ongoing research.

The paper is organized as follows. Section 2 describes the basic RD approach, its usual imple-
mentation, and the explicit analytical bias correction approach in the literature. Section 3 presents
our proposed bootstrap bias corrected RD algorithm and discusses its asymptotic properties. Sim-
ulation evidence that the bootstrap procedure provides valid CIs and its relative performance to the
analytical bias correction are presented in Section 4 and Section 5 demonstrates the estimator’s us-
age by applying it to the Head Start dataset used by Ludwig and Miller (2007).8 Finally, Section 6
concludes.

2 Background

This section provides additional details of RD estimators in general and of CCT’s proposed bias
correction. It also defines some of the notation and presents the assumptions that will be used for
our theoretical analysis in Section 3. We have adopted CCT’s notation where possible to aid readers
familiar with that paper.

In the typical sharp RD setting, a researcher wishes to estimate the local causal effect of treat-
ment at a given threshold. A running variable, Xi, determines treatment assignment. Given a known
threshold, which we will set to zero without loss of generality, the ith subject receives the treatment
of interest if Xi ≥ 0 and does not receive treatment if Xi < 0.

7“Fuzzy” regression discontinuity design (Hahn, Todd, and Van der Klaauw, 2001), as opposed to “sharp” RD,
describes situations where the probability of treatment changes discontinuously at a known threshold, but by less than
100%. Then there are treated and untreated subjects above and below the discontinuity but the treatment effect remains
identified.

8The simulations and empirical analysis were carried out in the R programming language (R Core Team, 2015) and
rely on the rdrobust (Calonico, Cattaneo, and Titiunik, 2015), doParallel, foreach (Revolution Analytics and Weston,
2015a,b), and doRNG (Gaujoux, 2014) packages.
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Subject i’s potential outcomes are denoted by the variable Yi (·); Yi (1) is the subject’s outcome
under treatment and Yi (0) is the outcome without treatment. Since only one of the two outcomes is
observed, the sample is comprised of the running variable, Xi, and the observed outcome Yi, where

Yi = Yi (0) 1{Xi < 0} + Yi (1) 1{Xi ≥ 0}

and 1{·} denotes the indicator function.
In most cases, the population parameter of interest is the Average Treatment Effect (ATE) at

the cutoff, which we will denote τ. This parameter is the difference in expected potential outcomes
given Xi = 0; formally,

τ = E(Y (1) − Y (0) | X = 0).

Hahn, Todd, and Van der Klaauw (2001) show that the effect τ is identified under continuity and
smoothness conditions on the joint distribution of Xi, Yi (0), and Yi (1) around the cutoff Xi = 0.
Under these conditions, which are made precise in our Assumption 1, τ is equal to

τ = lim
x→0+

µ(x) − lim
x→0−

µ(x)

where

µ(x) = E(Yi | Xi = x).

For later convenience, also define the derivatives

µ(η) (x) =
dη µ(x)

dxη

and let

µ+(x) = E(Yi (1) | Xi = x) µ−(x) = E(Yi (0) | Xi = x)

σ2
+(x) = V(Yi (1) | Xi = x) σ2

−(x) = V(Yi (0) | Xi = x)

and

µ
(η)
+ = lim

x→0+
µ(η) (x), µ

(η)
− = lim

x→0−
µ(η) (x),

where the symbolV(·) represents the variance. The effect τ is nonparametrically identified because
both µ− and µ+ can be estimated consistently under Assumption 1, which lists standard conditions
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in the RD literature. (See, in particular, Hahn, Todd, and Van der Klaauw, 2001, Porter, 2003, and
CCT.)

Assumption 1 (Behavior of the DGP near the cutoff). The random variables Yi, Xi form a random

sample of size n. There exists a positive number κ0 such that the following conditions hold for all

x in the neighborhood (−κ0, κ0) around zero:

1. The density of each Xi is continuous and bounded away from zero.

2. E(Y 4
i | Xi = x) is bounded.

3. µ+(x) and µ−(x) are both 3 times continuously differentiable.

4. σ2
+(x) and σ2

−(x) are both continuous and bounded away from zero.

Since the conditions for identification only need to hold in a neighborhood around the cutoff, µ+

and µ− can be estimated by extrapolating from a local polynomial regression. We will focus here
on local linear regression.9 For this model, if h represents a bandwidth parameter, the estimator of
τ, τ̂(h), is defined as

τ̂(h) = µ̂+(h) − µ̂−(h)

with

µ̂+(h) = arg min
β0

min
β1

n∑
i=1

1{h > Xi ≥ 0}(Yi − β0 − Xi β1)2

and

µ̂−(h) = arg min
β0

min
β1

n∑
i=1

1{0 > Xi > −h}(Yi − β0 − Xi β1)2.

Conventional (naive) confidence intervals can be calculated by using an asymptotic approximation
for τ̂(h). In particular, if

τ̂(h) − τ
√

V (h)
→d N (0,1), (1)

9See Hahn, Todd, and Van der Klaauw (2001), Porter (2003) or Fan and Gijbels (1992) for discussions of the
properties of local polynomial regressions for boundary problems. The bootstrap algorithm proposed in this paper can
be extended to accommodate higher order polynomials discontinuities in the derivatives of the conditional expectation,
like “Kink RD” design (Card et al., 2009).
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with

V (h)
/
V(τ̂(h) | X1, . . . ,Xn) →p 1

then valid confidence intervals can be constructed through the usual method of inverting the t-test.10
This procedure gives the widely-used interval estimator

τ̂(h) ± q1−α/2V (h)1/2

where q1−α/2 is the 1 − α/2 quantile of the standard normal distribution.
The statistical properties of these estimators, however, clearly depend on the bandwidth param-

eter h, and bandwidths that have desirable properties for point estimation may not have desirable
properties for hypothesis testing or interval estimation. In particular, for (1) to hold, h must sat-
isfy nh → ∞ and nh5 → 0. (Hahn, Todd, and Van der Klaauw, 2001; Porter, 2003) Otherwise,
the finite-sample bias of τ̂(h) does not converge in probability to zero quickly enough and it con-
tributes non-negligibly to the asymptotic distribution in (1). This result holds even though τ̂(h)
can be consistent under those conditions. These bandwidth issues are relevant in practice because
many widely-used bandwidth selection procedures, most notably the AMSE-optimal bandwidth
and cross-validation bandwidth (Imbens and Kalyanaraman, 2012) do not produce op(n−1/5) band-
widths.

CCT solve this problem by deriving the analytical form of the first-order bias and explicitly
recentering τ̂(h). Under weaker assumptions on the asymptotic behavior of the bandwidth, which
we will specify in Assumption 2, CCT show that the approximate bias of τ̂(h) has the form

E(τ̂(h) | X1, . . . ,Xn) − τ = h2
[
µ(2)

+

2 B+(h) − µ(2)
−

2 B−(h)
]
(1 + op(1))

whereB+(h) andB−(h) are observed quantities that depend on the kernel, bandwidth, and running
variables X1, . . . ,Xn; formal definitions of these terms are given in the Mathematical Appendix.
The plug-in bias-corrected estimator then requires estimates for the second derivatives of the con-
ditional mean from above and below the cutoff, µ(2)

+ and µ(2)
− , and CCT show that these derivatives

can be estimated by fitting a second order local polynomial, i.e. one order higher than the polyno-
mial used to obtain τ̂, using a (potentially) different pilot bandwidth b. Their procedure gives the
bias-corrected estimator

τ̂′(h,b) = τ̂(h) − h2
[
µ̂(2)

+ (b)
2 B+(h) − µ̂(2)

− (b)
2 B−(h)

]
10The mathematical appendix of this paper gives a precise definition for V (h).
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The variance introduced by the bias-correction term does not vanish, so the naive confidence inter-
val needs not only to be re-centered to correct the bias, but also rescaled to allow for the additional
variability introduced by the bias correction, resulting in the following asymptotic approximation:

τ̂′(h,b) − τ
V ′(h,b)1/2 →

d N (0,1)

with V ′(h,b) = V (h) + C(h,b) and C(h,b) an additional variance component generated by the
bias-correction term.11 This new approximation can be used instead of (1) to construct “bandwidth
robust” confidence intervals, and CCT provide simulation evidence that their intervals perform
well in finite samples even when the naive interval performs badly.

Assumption 2 specifies the bandwidth conditions assumed by CCT, which we will also use in
this paper.

Assumption 2 (Bandwidth). Let h be the bandwidth used to estimate the local linear model and

let b be the bandwidth used to estimate a second local quadratic model. Then nh → ∞, nb → ∞,

nh5b2 → 0, and nb5h2 → 0 as n → ∞.12 The relationship h ≤ b also holds for all n.

In the next section, we build upon the insight provided by CCT bias-corrected estimator and
propose a simple bootstrap procedure that can directly construct the robust CIs without requiring
the derivation of analytical formulas and direct estimators for the bias, variance and covariance
terms, while relying on the same first-order bias correction approximation. The requirement h < b

is one additional restriction that we impose in this paper because the bootstrap can not be im-
plemented for the uniform kernel without it, but the other parts of Assumption 2 are identical to
CCT.13

3 Bootstrap Bias Correction

This section presents our theoretical contributions. We propose two algorithms in this section.
The first uses a residual bootstrap based on a second order local polynomial to estimate the bias
of the local linear model. That estimate can be subtracted from the biased original estimator to
provide an asymptotically unbiased estimator with the same asymptotic distribution as CCT’s.
As in CCT, this bias correction term introduces a new source of variance, invalidating standard
(naive) critical values. Consequently, the second algorithm we propose uses an iterated bootstrap
to estimate the correct critical values of the bias corrected estimator. The intuition behind both

11C(h,b) and V (h) are defined precisely in the mathematical appendix.
12Unless otherwise stated, all limits in this paper are assumed to hold as n → ∞.
13This assumption can be relaxed by considering other kernels, which is the subject of current research by the

authors.
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procedures is straightforward. CCT show that a local second order polynomial captures the aspects
of the DGP necessary for constructing valid confidence intervals. Our proposed algorithms estimate
and embed the second order behavior in the bootstrap DGP through a residual bootstrap.

Throughout this section and the rest of the paper, we will let E∗, Pr∗, etc. denote expectations
and probabilities taken with respect to the distribution induced by the bootstrap (which implicitly
conditions on X1, . . . ,Xn and Y1, . . . ,Yn) and let parameters with ∗ superscripts be the parameter
values under the distribution induced by the bootstrap. Two ∗ superscripts indicate that the param-
eter or probability measure corresponds to a secondary bootstrap distribution.

Algorithm 1 explains the bias-correction steps in detail.

Algorithm 1 (Bias estimation). Assume h and b are bandwidths as defined by Assumption 2 and

define

I−(h) = {i : −h < Xi < 0}, I+(h) = {i : 0 ≤ Xi < h}.

Also define M−(h) and M+(h) to be the number of elements in I−(h) and I+(h) respectively, and

m−(h,1), . . . ,m−(h,M−(h)) and m+(h,1), . . . ,m+(h,M+(h)) to be subsequences of 1, . . . ,n that

index I−(h) and I+(h), respectively.

1. Estimate local second order polynomials ĝ− and ĝ+ using the observations in I−(b) and

I+(b):

ĝ−(x) = β̂−,0 + β̂−,1x + β̂−,2x2, ĝ+(x) = β̂+,0 + β̂+,1x + β̂+,2x2 (2)

with

β̂− = arg min
β

∑
i∈I− (b)

(Yi − β0 − β1Xi − β2X2
i )2

β̂+ = arg min
β

∑
i∈I+(b)

(Yi − β0 − β1Xi − β2X2
i )2.

Calculate the residuals

ε̂i =



Yi − ĝ−(Xi) if Xi < 0

Yi − ĝ+(Xi) otherwise.
(3)

2. Repeat the following steps B1 times to produce the bootstrap estimates τ̂∗1 (h), . . . , τ̂∗B1
(h).

For the kth value:

(a) Draw an i.i.d. sample of size M−(b) from {ε̂i : i ∈ I−(b)} and one of size M+(b) from

9



3. Bootstrap Bias Correction May 1, 2016

{ε̂i : i ∈ I+(b)}. Let ε∗
−,i and ε∗

+,i denote the ith element of each sample and construct

Y ∗
−,m− (b,i) = ĝ−(Xm− (b,i)) + ε∗−,i Y ∗+,m+(b,i) = ĝ+(Xm− (b,i)) + ε∗+,i .

(b) Calculate µ̂∗+(h) and µ̂∗−(h) by estimating the local linear model on the bootstrap data

set:14

µ̂∗−(h) = arg min
µ

min
β

∑
i∈I− (h)

(Y ∗i − µ − βX∗i )2

µ̂∗+(h) = arg min
µ

min
β

∑
i∈I+(h)

(Y ∗i − µ − βX∗i )2.

(c) Save τ̂∗k (h) = µ̂∗+(h) − µ̂∗−(h).

3. Estimate the bias as

∆
∗(h,b) = 1

B1

B1∑
k=1

τ̂∗k (h) −
[
ĝ+(0) − ĝ−(0)

]
. (4)

Note that ĝ+(0) − ĝ−(0) is the true treatment effect under the distribution induced by this boot-
strap. The bootstrap estimator works by constructing an approximate DGP with known properties.
As the dataset gets larger, the approximate DGP mimics the unknown real DGP more closely, and
the population parameter values in the bootstrap DGP can become accurate estimates of the true
parameter values in the real DGP.

Under Assumptions 1 and 2 the procedure described by Algorithm 1 provides a consistent
estimator of the bias component that converges fast enough in probability that it can be be used as
a correction. As is standard in the bootstrap literature, we will assume that the number of bootstrap
replications, B1, is large enough that the simulation error can be ignored. Theorem 1 presents the
result formally.

Theorem 1. Under Assumptions 1 and 2,

(τ̂(h) − ∆∗(h,b) − τ)
V ′(h,b)1/2 →d N (0,1), (5)

where ∆∗(h,b) is defined by Equation 4.

Note that the variance component of (5) is the same value used by CCT and introduced in (1).
Theorem 1 implies that our bias-corrected estimator has the same asymptotic distribution as CCT’s.

14Note that the indices of summation are chosen to correspond to the indices of the variables generated in the
previous step.
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This equivalence should be unsurprising; both estimators use a second order polynomial to directly
estimate the bias of the local linear model, so they should behave very similarly.

Since the second order polynomial captures the relevant aspects of the DGP for estimating the
variance as well as the bias, the asymptotic distribution of the bias corrected estimator τ̂(h) −
∆∗(h,b) can also be approximated with a bootstrap. We propose bootstrapping τ̂(h) − ∆∗(h,b)
using the same residual bootstrap method used in Algorithm 1. Algorithm 2 provides the details of
our procedure and Theorem 2 establishes its theoretical properties.

Algorithm 2 (Confidence intervals). Define the same notation as in Algorithm 1.

1. Estimate ĝ+ and g− and generate the residuals ε̂i just as in Algorithm 1.

2. Repeat the following steps B2 times to produce the bootstrap estimates τ̂′∗1 (h,b), . . . , τ̂′∗B2
(h,b).

For the kth value:

(a) Draw an i.i.d. sample of size M−(b) from {ε̂i : i ∈ I−(b)} and one of size M+(b) from

{ε̂i : i ∈ I+(b)}. Let ε∗
−,i and ε∗

+,i denote the ith element of each sample and construct

Y ∗
−,m− (b,i) = ĝ−(Xm− (b,i)) + ε∗−,i Y ∗+,m+(b,i) = ĝ+(Xm+(b,i)) + ε∗+,i .

(b) Calculate µ̂∗+(h) and µ̂∗−(h) by estimating the local linear model on the bootstrap data

set:

µ̂∗−(h) = arg min
µ

min
β

∑
i∈I− (h)

(Y ∗i − µ − βX∗i )2

µ̂∗+(h) = arg min
µ

min
β

∑
i∈I+(h)

(Y ∗i − µ − βX∗i )2.

(c) Apply Algorithm 1 to the bootstrapped data set,

(Y ∗
−,m− (b,1),X−,m− (b,1)), . . . , (Y ∗−,m− (b,M− (b)),X−,m− (b,M− (b))),

(Y ∗+,m+(b,1),X+,m+(b,1)), . . . , (Y ∗+,m+(b,M+(b)),X+,m+(b,M+(b)))

using the same bandwidths h and b that are used in the rest of this algorithm but rees-

timating all of the local polynomials on the bootstrap data. Generate B1 new bootstrap

samples and let ∆∗∗(h,b) represent the bias estimator returned by Algorithm 1.

(d) Save the bias-corrected estimator τ̂′∗k (h,b) = µ̂∗+(h) − µ̂∗i (h) − ∆∗∗(h,b).

3. Use the empirical CDF of τ̂′∗1 (h,b), . . . τ̂′∗B2
(h,b) to construct confidence intervals, etc.
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Theorem 2 establishes that this iterated bootstrap approximates the asymptotic distribution of
the bias-corrected statistic proposed by Algorithm 1 and justifies this second algorithm. As before,
we assume that B1 and B2 are large enough that simulation error can be ignored.

Theorem 2. Under Assumptions 1 and 2,

V
∗(τ̂∗(h) − ∆∗∗(h,b))/V ′(h,b) →p 1

and

sup
x

�
�
�
Pr∗[τ̂∗(h) − ∆∗∗(h,b) − τ∗ ≤ x] − Pr[τ̂(h) − ∆∗(h,b) − τ ≤ x]��

�
→p 0.

Evidence of the usefulness of the procedures proposed above and their relative performance to
the analytical bias correction proposed in CCT are presented in a series of Monte Carlo simulations
in Section 4.

4 Simulation Evidence

This section presents evidence from Monte Carlo simulations that the bootstrap procedures pro-
posed in Section 3 produce valid, robust confidence intervals similar to those obtained by the
analytical procedures established in CCT. The bootstrap CIs obtained compare favorably to the
analytical alternative, with coverage slightly closer to nominal coverage and shorter length of the
intervals in the specifications implemented.

The Monte Carlo experiments have a similar structure. For all of them, we generate 500 i.i.d.
observations from the DGP

Yi = µ j (Xi) + εi

Xi ∼ 2 × beta(2,4) − 1

εi ∼ N (0,0.12952),

where j will index the specific DGP. This is the experimental design used by Imbens and Kalya-
naraman (2012) and CCT, which we adopt here to make our simulation results directly comparable
with theirs and with the rest of the literature. We will use the same three functional forms for µ j as
CCT as well.

The first DGP is designed to match features of Lee’s (2008) analysis of U.S. congressional
elections. Lee estimates the incumbency advantage in electoral races for the House of Representa-
tives — candidates who received the largest vote share in the previous election are the incumbents,

12
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which creates the discontinuity. The conditional expectation is a fifth order polynomial fit to that
dataset, (after excluding a small number of extreme observations; see Imbens and Kalyanaraman,
2012, or CCT for further details) giving

µ1(x) =



0.48 + 1.27x + 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 if x < 0

0.52 + 0.84x − 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 otherwise.

The population ATE for this DGP is 0.04 (= 0.52 − 0.48).
The second DGP is based on Ludwig and Miller’s (2007) analysis of the Head Start program.

Funding eligibility is determined at the county level using the county’s historical poverty rate,
with a sharp threshold that determines the provision of services. We use the fifth order polynomial
estimated on Ludwig and Miller’s dataset as the conditional expectation for the second DGP:

µ2(x) =



3.71 + 2.30x + 3.28x2 + 1.45x3 + 0.23x4 + 0.03x5 if x < 0,

0.26 + 18.49x − 54.81x2 + 74.30x3 − 45.02x4 + 9.83x5 otherwise

and the population ATE is −3.45 (= 0.26 − 3.71).
Finally, for the third DGP, we use CCT’s modification of µ1, given by

µ3(x) =



0.48 + 1.27x + 3.59x2 + 14.147x3 + 23.694x4 + 10.995x5 if x < 0

0.52 + 0.84x − 0.30x2 + 2.397x3 − 0.901x4 + 3.56x5 otherwise

and the population ATE is again 0.04. CCT introduce this DGP because it has high curvature
and local linear models are likely to exhibit high bias, making it a natural test case for both their
analytical corrections and our bootstrap.

To estimate the finite-sample coverage of our new bootstrap based confidence interval, we sim-
ulate 5000 samples from each of the three DGPs and calculate nominal 95% two-sided confidence
intervals. We use 999 bootstrap replications (B2) to calculate the asymptotic distribution of the
bias corrected estimator, and each of those replications uses an additional 500 replications (B1) to
estimate the bias. We use the 0.025 and 0.975 quantiles of the bootstrap distribution as the lower
and upper bound of the interval, and the bandwidths, h and b, are chosen using the AMSE-optimal
rule proposed by CCT.

We also show the coverage of two of CCT’s interval estimators for comparison. We estimate
their bias corrected procedure with AMSE-optimal bandwidths for both the uniform kernel and the
triangular kernel. The uniform kernel provides a direct comparison with our bootstrap, while the
triangular kernel may be more appealing to practitioners. Since CCT establish conclusively that the
“naive” uncorrected interval estimator has poor coverage in these settings we do not report results
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DGP Method Bias SD RMSE CI Coverage (%) CI Length

1 Resid. bootstrap –0.014 0.067 0.069 93.4 0.242
CCT (uniform) –0.014 0.067 0.069 92.5 0.246
CCT (triangular) –0.014 0.067 0.068 91.4 0.239

2 Resid. bootstrap –0.011 0.088 0.089 95.1 0.323
CCT (uniform) –0.011 0.088 0.089 93.7 0.353
CCT (triangular) –0.008 0.086 0.086 93.2 0.346

3 Resid. bootstrap –0.004 0.065 0.065 95.9 0.247
CCT (uniform) –0.004 0.065 0.065 93.8 0.251
CCT (triangular) –0.005 0.065 0.065 93.4 0.244

Table 1: Experimental coverage probabilities for each interval estimator based on 5000 simulations; nominal
coverage probabilities are 95% for each estimator. The column “CI Coverage” lists the coverage frequency
in these simulations and “CI Length” lists the average length of the confidence interval across simulations.

for that estimator.
Table 1 presents the results of these simulations. The rows labeled “Resid. bootstrap” show

results for our proposed bootstrap interval; “CCT (uniform)” and “CCT (triangular)” show results
for the analytically-corrected intervals. The first three columns give the bias, standard deviation,
and Root-MSE of the bias corrected point estimators corresponding to each confidence interval. As
expected, these estimators are close to unbiased, with their standard deviation largely determining
the estimators’ RMSE. Moreover, as Theorem 1 suggests, the bootstrap and analytically-corrected
estimators have essentially the same standard deviation across all of the DGPs.

The column “CI Coverage” lists the experimental coverage of each interval. All of the intervals
are reasonably close to their nominal coverage, although the analytically corrected estimators seem
to persistently under-cover the true ATE (especially the one using triangular kernel). Our proposed
bootstrap procedure consistently performs well, as it is about a percentage point closer to nominal
coverage than the other interval estimators in DGPs 1 and 2, and is slightly conservative (95.9%
coverage) in DGP 3. The final column, “CI Length,” indicates that all three of these procedures
generate intervals that are approximately the same length on average.

These are DGPs where the naive confidence intervals are known to perform poorly, and this
set of simulation results indicates that our proposed bootstrap approach is quite competitive with
analytical methods for producing valid intervals. Overall, the bootstrap bias-correction procedure
proposed in this paper provides a simple alternative to obtain valid robust confidence intervals in
RD designs and performs well compared to the analytical bias correction procedures proposed by
CCT.

14



5. Application May 1, 2016

5 Application

In this section, we apply the bootstrap procedure to the data used in Ludwig and Miller (2007).15
In their paper, the effects of Head Start application assistance on health and schooling were inves-
tigated under a sharp RD design.

In 1965, the Head Start program was established to help poor children age three to five and
their families. The program elements include parent involvement, nutrition, social services, mental
health services and health services. To promote this program in the most needing area, the Office of
Economic Opportunity provided grant-writing assistance to the poorest 300 counties in the United
States based on the 1960 poverty rate. So the poverty rate of the 300th poorest county serves as a
sharp cutoff of treatment. It is shown in Ludwig and Miller (2007) that the 228 “treatment” counties
with poverty rates 10 percentage points above this cutoff have average Head Start spending per
four-year-old as twice of that for 349 “control” counties with poverty rates 10 percentage points
below this cutoff.

Ludwig and Miller (2007) utilize this fact to estimate the “intent-to-treat” effect: the effect of
proposal developing assistance on health and schooling. They use mortality as their health outcome
measure and use data from the National Vital Statistics System of the National Center for Health
Statistics, which provide information on cause of death and age at death. Ludwig and Miller (2007)
limited the causes of death to those which could be affected by Head Start health services and found
a large drop in mortality rates of children five to nine years of age over the period of 1973–1983.
They also found some evidence for a positive effect on schooling from decennial census data.

We reestimate the ATE on health and schooling with robust procedures. To be specific, we
apply both the robust procedure proposed by CCT and the bootstrap procedure introduced in this
paper. Our bootstrap estimator uses the AMSE-optimal bandwidths proposed by CCT and the
uniform kernel. In the bootstrap procedure, we use 500 bootstraps for bias correction and 999
to calculate the confidence intervals. The analytical estimator using CCT’s bias correction and
variance estimator use their AMSE-optimal bandwidths as well.

For completeness, we also report the original results in Ludwig and Miller (2007).16 Since our
research focuses on confidence intervals, we calculate and report the conventional unadjusted RD
confidence interval for each of the bandwidths used by Ludwig and Miller (2007). (Ludwig and
Miller use a range of bandwidths for their analysis.) They also use a paired bootstrap algorithm to
generate p-values, and we report those p-values for completeness.

Table 2 shows the results of the Head Start program on mortality of children five to nine years

15The data is publicly available from http://faculty.econ.ucdavis.edu/faculty/dlmiller/statafiles.
16One minor issue arose in reproducing Ludwig and Miller’s results: their paper presents results for the triangular

kernel, but we were only able to recover their ATE estimate using the uniform kernel. Results for the triangular and
uniform kernel were essentially the same, and this discrepancy does not affect Ludwig and Miller’s conclusions.
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ATE 95% CI h b p-value

LM (2007) –1.895 (–3.930, 0.139) 9 0.036
LM (2007) –1.198 (–2.561, 0.165) 18 0.081
LM (2007) –1.114 (–2.138, –0.090) 36 0.027
CCT –3.795 (–7.037, –0.554) 3.888 6.807
Resid. bootstrap –3.792 (–6.512, –0.262) 3.888 6.807

Table 2: The effect of Head Start assistance on mortality. The first three rows come from Table 3 in Ludwig
and Miller (2007) except “95% CI,” which is calculated using the conventional asymptotic interval estimator.
The last two rows list results from two robust procedures.

of age.17 Instead of choosing an optimal bandwidth, Ludwig and Miller (2007) adopted three can-
didate bandwidths 9, 18, and 36. Their estimates indicate that Head Start assistance lowers the
targeted mortality rate by –1.895, –1.198 and –1.114 respectively, which are not very sensitive to
the choice of bandwidths in this range. These ATEs are also significantly different from zero (with
p-value 0.036, 0.081 and 0.027) based on Ludwig and Miller’s percentile-t bootstrapped p-value.
The statistical inference changes when conventional analytical confidence interval is used, which
includes zero for bandwidth 9 and 18.

Results from the two robust procedures are similar to each other but greatly differ from the
original estimates. The estimated ATEs are as high as –3.795 from CCT and –3.792 from the
bootstrap. Both are significantly different from zero, though the confidence intervals are also very
wide, which is likely to be due to the much smaller bandwidths used relative to the other estimators
(h = 3.888, b = 6.807).

Table 3 presents the effect of the program on schooling for the cohort aged 18–24 in 1990.
The measurement of schooling is the fraction of people with high school or more in Panel A and
the fraction of people with some college or more in Panel B. A bandwidth of 7 is used in Ludwig
and Miller (2007). Their estimates suggest that Head Start assistance increases the fraction of
people with high school or more by 3% and the fraction of people with some college or more by
3.7%. Both are significantly different from zero based on both their p-value and the conventional
analytical confidence interval.

The two robust procedures are again very similar to each other and give slightly larger point
estimates in both panels. In Panel A, the ATE increases from 0.030 to 0.055 (CCT) and 0.054
(bootstrap). In Panel B, the ATE increases from 0.037 to 0.051 (CCT) and 0.052 (bootstrap). The
confidence intervals tend to shift up as well. In contrast to the striking differences between the
conventional estimates bias-corrected procedures for the mortality estimates, the differences in
Table 3 are much smaller.

17We, like Ludwig and Miller, focus on the 1973–1983 period.
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ATE 95% CI h b p-value

Fraction “high school or more” (Panel A)

LM (2007) 0.030 (0.003, 0.057) 7 0.032
CCT 0.055 (0.014, 0.096) 3.671 8.618
Bootstrap 0.054 (0.013, 0.096) 3.671 8.618

Fraction “some college or more” (Panel B)

LM (2007) 0.037 (0.002, 0.073) 7 0.032
CCT 0.051 (0.004, 0.099) 5.076 10.251
Bootstrap 0.052 (0.001, 0.094) 5.076 10.251

Table 3: The effect of Head Start assistance on education for cohort 18–24 in 1990. Panel A uses the fraction
of people with high school or more as dependent variable. Panel B uses the fraction of people with some
college or more as dependent variable. The first row in each panel comes from Table 4 in Ludwig and Miller
(2007) except “95% CI,” which is calculated using the conventional asymptotic interval estimator. The last
two rows in each panel list results from two robust procedures.

To briefly summarize, the bootstrap procedure performs similarly to the robust estimator pro-
posed by CCT in the above applications. Both provide somewhat dissimilar answers from the
classical point and interval estimators that do not account for the estimator’s bias, but our esti-
mates largely support the direction and the statistical significance of Ludwig and Miller’s (2007)
empirical findings.

6 Conclusion

This paper proposes a novel bootstrap procedure to obtain robust bias-corrected confidence in-
tervals in sharp regression discontinuity designs using a uniform kernel. The approach proposed
builds upon the developments and intuition advanced by CCT and is based on a first-order bias cor-
rection. We exploit CCT’s theoretical insight through a new residual bootstrap. In particular, we
propose estimating the local linear model as usual, then estimating a local second order polynomial
and generating bootstrap datasets by resampling the residuals of that polynomial. This bootstrap
allows the bias of the linear model to be estimated and removed, and the bootstrap can be repeated
to accurately estimate the sampling distribution of the bias-corrected estimator.

Bootstrap procedures are appealing in this setting because they are relatively easy for applied
researchers to modify to account for new and unusual dependence structures or functional forms.
The variance adjustment was proven to be correct under the assumption of i.i.d. data, but could
easily be extended to handle cross-sectional or time series dependence by using the appropriate
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resampling strategy on the second order polynomial’s residuals. For the analytical methods, how-
ever, new formulas need to be derived to accommodate new features of the DGP. To fully take
advantage of the bootstrap’s flexibility, though, these results need to be extended to other kernels,
design strategies (e.g. fuzzy and kink RD designs) and other more realistic dependence structures.
All of these are the subject of ongoing research.

A Mathematical appendix

Let ep be the selection vector with 1 in element p + 1 and 0 everywhere else. Define the following
additional notation:18 rp(x) = (1, x, . . . , xp)′,

( µ̂+,p(h), µ̂(1)
+,p(h), . . . , µ̂(p)

+,p(h))′ = arg min
β

∑
i∈I+(h)

(Yi − rp(Xi/h)′β)2

( µ̂−,p(h), µ̂(1)
−,p(h), . . . , µ̂(p)

−,p(h))′ = arg min
β

∑
i∈I− (h)

(Yi − rp(Xi/h)′β)2

and

Γ+,p(h) = 1
nh

∑
i∈I+(h)

rp(Xi/h)rp(Xi/h)′

Γ−,p(h) = 1
nh

∑
i∈I− (h)

rp(Xi/h)rp(Xi/h)′

Ψ+,p,q(h,b) = 1
nhb

∑
i∈I+(min(h,b))

rp(Xi/h)rq(Xi/b)′V(Yi | Xi)

Ψ−,p,q(h,b) = 1
nhb

∑
i∈I− (min(h,b))

rp(Xi/h)rq(Xi/b)′V(Yi | Xi)

B+(h) = e′0Γ
−1
+,1

∑
i∈I+(h)

r1(Xi/h) X2
i /h2,

B−(h) = e′0Γ
−1
−,1

∑
i∈I− (h)

r1(Xi/h) X2
i /h2.

Also, for reference, define the variance terms

V (h) = e′0
(

1
nΓ
−1
−,1Ψ−,1Γ

−1
−,1 + 1

nΓ
−1
+,1Ψ+,1Γ

−1
+,1

)
e0

18As we mention in Section 2, we have adopted CCT’s notation where possible and these terms originate in that
paper.
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and

C(h,b) = n−1e′2
[
Γ
−1
+,2 (b)Ψ+,2,2(b,b)Γ−1

+,2 (b)B2
+(h) + Γ−1

−,2(b)Ψ−,2,2(b,b)Γ−1
−,2(b)B2

−(h)
]
e2

− 2h2n−1b−2e′0
[
Γ
−1
+,1 (h)Ψ+,1,2(h,b)Γ−1

+,2 (b)B+(h) + Γ−1
−,1(h)Ψ−,1,2(h,b)Γ−1

−,2(b)B−(h)
]
e2.

See CCT for the motivation and derivation of these formulas.

A.1 Proof of Theorem 1

We have

τ̂(h) − ∆∗(h,b) − τ = (τ̂(h) − E τ̂(h)) + (E τ̂(h) − τ) − (E∗ τ̂∗(h) − τ∗).

The design of the bootstrap ensures that

E
∗ µ̂∗+,1(h) − µ∗+ = h2µ∗(2)

+ B+(h)/2, E
∗ µ̂∗−,1(h) − µ∗− = h2µ∗(2)

− B−(h)/2,

almost surely, implying that

E
∗ τ̂∗(h) − τ∗ = h2 µ∗(2)

+ B+(h)/2 − h2 µ∗(2)
− B−(h)/2.

CCT’s Lemma A1 implies that

E τ̂(h) − τ = h2 µ(2)
+ B+(h)/2 − h2 µ(2)

− B−(h)/2 + Op(h3)

as well, giving

τ̂(h)−E τ̂(h) + (E τ̂(h) − τ) − (E∗ τ̂∗(h) − τ∗)

= τ̂(h) − E τ̂(h) + h2 ((µ∗(2)
− − µ(2)

− )B−(h)/2 − (µ∗(2)
+ − µ(2)

+ )B+(h)/2
)

+ Op(h3)

= τ̂(h) − E τ̂(h) + h2( µ̂(2)
−,2(b) − µ(2)

− )B−(h)/2 (6)

−h2( µ̂(2)
+,2(b) − µ(2)

+ )B+(h)/2 + Op(h3)

The second equality holds because µ∗(2)
+ = µ̂(2)

+,2(b) and µ∗(2)
− = µ̂(2)

−,2(b) almost surely. Asymptotic
normality then follows from normality of τ̂(h) − E τ̂(h), µ̂(2)

+,2(b) − µ(2)
+ , and µ̂(2)

−,2(b) − µ(2)
− using

similar arguments to CCT’s Lemma SA4.D. �
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A.2 Proof of Theorem 2

Repeat the steps from Theorem 1’s proof through (6) for the iterated bootstrap to get

τ̂(h)∗−∆∗∗(h,b) − τ∗ = (τ̂∗(h) − E∗ τ̂∗(h)) + (E∗ τ̂∗(h) − τ∗) − (E∗∗ τ̂∗∗(h) − τ∗∗)

= τ̂∗(h) − E∗ τ̂∗(h) + h2( µ̂∗(2)
−,2 (b) − µ∗(2)

− )B−(h)/2 − h2( µ̂∗(2)
+,2 (b) − µ∗(2)

+ )B+(h)/2

= Ω+(h,b)′ε∗+ − Ω−(h,b)′ε∗−,

where ε∗+ = (ε∗
+,1, . . . , ε

∗
+,M+(b))

′ and Ω+(h,b) is an M+(b)-dimensional vector with ith element
Ω+,1i (h,b) − Ω+,2i (h,b), which are defined as

Ω+,1i (h,b) = (1 0)
( ∑

j∈I+(h)

r1(X j/h)r1(X j/h)′
)−1

r1(Xm+(b,i)/h) 1{h > Xm+(b,i) ≥ 0}

and

Ω+,2i (h,b) = (0 0 h2)
( ∑

j∈I+(b)

r2(X j/b)r2(X j/b)′
)−1

r2(Xm+(b,i)/b).

The definitions of ε∗− and Ω−(h,b) have the same definitions as ε∗+ and Ω+(h,b) after making the
obvious substitutions of “−” for “+.”

Notice that (6) implies that

τ̂(h) − ∆∗(h,b) − τ =d
Ω+(h,b)′ε+ − Ω−(h,b)′ε− + Op(h3),

with ε+ an i.i.d. random vector of length M+(b), the ith element of which is distributed as

εi,+ =d





Ym+(1,b) − E(Ym+(1,b) | Xm+(1,b)) with probability 1/M+(b)
...

Ym+(M+(b),b) − E(Ym+(M+(b),b) | Xm+(1,b)) with probability 1/M+(b),

and ε− the corresponding quantity after replacing “+” with “–.” Consequently, it suffices to prove
that

ρ(V ′(h,b)−1/2
Ω+(h,b)′ε∗+, V ′(h,b)−1/2

Ω+(h,b)′ε+) →p 0 (7)

and

ρ(V ′(h,b)−1/2
Ω−(b)′ε∗−, V ′(h,b)−1/2

Ω−(b)′ε−) →p 0 (8)
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with ρ the “Mallows metric” used by Bickel and Freedman (1981).19 Convergence in ρ is equivalent
to convergence in both distribution and second moments. (Bickel and Freedman, 1981, Lemma
8.3.)

We will only prove (7) since the proof of (8) is identical. By Theorem 2.1 of Freedman (1981),
we have

ρ(V ′(h,b)−1/2
Ω+(h,b)′ε∗+,V

′(h,b)−1/2
Ω+(h,b)′ε+)

≤ ρ(ε∗+,1, ε+,1) × tr(V ′(h,b)−1/2
Ω+(h,b)′Ω+(h,b)V ′(h,b)−1/2)

= ρ(ε∗+,1, ε+,1) × Op∗ (1),

the second line holding as a consequence of CCT’s Lemma SA1. So it suffices to show that
ρ(ε∗

+,1, ε+,1) →p∗ 0. Let ε◦i be an i.i.d. sequence randomly drawn from the realized values of ε+

with replacement and let ε̄◦ = (1/M+(b))
∑M+(b)

i=1 ε◦i . Then, using the same arguments as Freedman
(1981), we have the upper bound

ρ(ε∗+,1, ε+,1) ≤






(ε̄◦)2 + (2/M+(b))
M+(b)∑

i=1

(ε̂i − εi)2






1
2

+ ρ(ε◦1, ε+,1).

But (ε̄◦)2 →p 0 by the LLN,

(1/M+(b))
M+(b)∑

i=1

E((ε̂i − εi)2 | Xi) → 0

by CCT’s Lemma SA1, and ρ(ε◦1, ε+,1) →p 0 by Lemma 8.4 of Bickel and Freedman (1981). �

19For two random vectors u and v with finite 2nd moments, ρ(u,v) is defined as

ρ(u,v) = inf (U,V ) s .t . U=du, V=dv

(
E‖U − V ‖2

)1/2.
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