
Behavioral Subtyping is Equivalent to Modular Reasoning
for Object-oriented Programs

Gary T. Leavens and David A. Naumann

TR #06-36
December 22, 2006

Keywords: Behavioral subtyping, modular reasoning, object-oriented programming, recursive types, de-
notational semantics, functional specification, Java Modeling Language (JML).

2006 CR Categories: D.2.2 [Software Engineering] Design Tools and Techniques — Object-oriented
design methods; D.2.3 [Software Engineering] Coding Tools and Techniques — Object-oriented program-
ming; D.2.4 [Software Engineering] Software/Program Verification — Correctness proofs, formal methods,
programming by contract, reliability, tools, Eiffel, JML; D.2.7 [Software Engineering] Distribution, Mainte-
nance, and Enhancement — Documentation; D.3.1 [Programming Languages] Formal Definitions and The-
ory — Semantics; D.3.2 [Programming Languages] Language Classifications — Object-oriented languages;
D.3.3 [Programming Languages] Language Constructs and Features — classes and objects, inheritance; F.3.1
[Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions,
invariants, logics of programs, pre- and post-conditions, specification techniques;

Copyright c© 2006 by Gary T. Leavens and David A. Naumann.
Submitted for publication

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA

Behavioral Subtyping is Equivalent to Modular Reasoning
for Object-oriented Programs

Gary T. Leavens∗

Dept. of Computer Science
Iowa State University
Ames, IA 50011 USA
leavens@cs.iastate.edu

David A. Naumann†

Dept. of Computer Science
Stevens Institute of Technology

Hoboken, NJ USA
naumann@cs.stevens.edu

December 22, 2006

Abstract

Behavioral subtyping is an established idea that enables modular reasoning about behavioral proper-
ties of object-oriented programs. It requires that syntactic subtypes are behavioral refinements. It validates
reasoning about a dynamically-dispatched method call, say E .m(), using the specification associated with
the static type of the receiver expression E . For languages with references and mutable objects the idea
of behavioral subtyping has not been rigorously formalized as such and the standard informal notion has
inadequacies. This paper formalizes behavioral subtyping and introduces a new formalization of modular
reasoning, called supertype abstraction. A Java-like sequential language is considered, with classes and
interfaces, recursive types, first-class exceptions and handlers, and dynamically allocated mutable heap ob-
jects; the semantics is designed to serve as foundation for the Java Modeling Language (JML), a widely
used specification language. Behavioral subtyping is characterized as sound and semantically complete for
reasoning with supertype abstraction.

1 Introduction
In object-oriented (OO) programming, subtyping and dynamic dispatch are both useful and problematic. They
are useful because supertypes can abstract away details in the specifications of their subtypes, thus allowing
variations in data structures and algorithms to be handled uniformly [39]. They are problematic for modular
reasoning because a dynamically-dispatched method call such as E .m() seems to require a case analysis to
deal with all possible dynamic types of E ’s value. (Here the value of expression E is the receiver object
and m is a method name.) The basic idea of modular reasoning uses the specification of m from E ’s static
type to reason about such calls. This technique is called supertype abstraction [34]. It is a generalization of
typechecking, since it imposes constraints on implementations of at all subtypes of the static type of E . While
modular type safety conditions for dynamically-dispatched methods are well-known [20], a straightforward
translation into conditions on overriding method specifications, while sound, is more restrictive than necessary.
Hence, for modular reasoning one needs a behavioral notion of subtyping.

Remarkably, there is no mathematically rigorous account of behavioral subtyping and its connection with
modular reasoning about specifications and programs in conventional OO programming languages —although
there has been much study [3, 4, 5, 17, 22, 23, 35, 34, 40, 41, 60] (see [33] for a survey). Some of the current
understanding of behavioral subtyping is embodied in program logics [42, 52, 55, 56, 59] but is difficult to
disentangle from various other complications. Some of the current understanding is embodied languages and
tools such as Eiffel [41], JML [32], ESC/Java [24], and Spec# [12, 11]. But these have unsoundnesses and
incompletenesses, some by engineering design and some for lack of adequate theory and methodology.

On one hand, behavioral subtyping has been rigorously studied in restrictive and simplified programming
models (e.g., [35, 60]). On the other hand, various embodiments have been implemented in static and runtime

∗Supported in part by NSF grant CCF-0429567.
†Supported in part by NSF grants CCR-0208984 and CCF-0429894.

2

verification tools and logics that apply to rich specification and programming languages such as Java and JML
[32] and Eiffel [41]. Our goal is to close the gap by providing a rigorous analysis on which can be based
more specialized assessments and justifications of specific tools and logics. (With the ultimate aim of high
assurance for verification tools, we have undertaken to machine-check our results.)

We believe the gap has remained because it was far from clear how to formalize a general theory that
pertains directly to reasoning about code in languages of practical interest. The semantic intricacies of the
languages —and of current methodologies for sound reasoning about invariants, heap encapsulation, and
locality of effects [11, 37, 50, 15, 51, 55, 14]— are daunting. The details of the OO language are important,
because some language features, such as reflection, allow programs to make observations that can distinguish
between supertype and subtype objects. The achievements closest to our aim are soundness and completeness
proofs for logics (of fragments of Java) that embody supertype abstraction in some form (e.g.,[56, 55]). But
these assess the reasoning power of a proof system, rather than assessing and explicating the connection
between behavioral subtyping and supertype abstraction; and they are somewhat removed from the axiomatic
semantics of some widely used verifiers (which simply postulate soundness of behavioral subtyping in some
form).

Our main result is that supertype abstraction is equivalent to behavioral subtyping (Corollary 4.12). The
key insight that led to our theorem is a purely semantic formulation of supertype abstraction using two deno-
tational semantics: in one, method calls are statically dispatched. On this basis we are able to give a formal
treatment in a language with many constructs of sequential OO languages, including classes, interface and
class types, dynamically allocated mutable heap objects, first-class exceptions, inheritance, reference equality,
type tests, and recursive types. The proof that behavioral subtyping implies supertype abstraction goes by
structural induction on syntax, making novel and slightly intricate use of weakest preconditions.

To organize the proof we develop a little meta-language for state transformers. Interested readers will see
that the theorem could be generalized to other program constructs defined in the little calculus and to other
semantic domains. For our purposes it is important to include the somewhat intricate features of Java-like
languages listed just above. We are interested to know whether our result can be generalized to a framework
like that being developed by Power and Plotkin [58, 61]. The denotational semantics used here does have the
virtue of being so concrete and operationally transparent that adequacy with respect to operational semantics
is obvious. But a higher level of abstraction could facilitate study of variations —e.g., to model garbage
collection and its impact [19]— and extensions such as concurrency.

We make no commitment to particular specification notations or reasoning system but rather formulate
modular reasoning semantically in a way that idealizes what is found in logics and tools including those based
on first-order assertion languages [2, 12, 24, 56], those that allow higher order assertions [18, 29], and more
exotic logics [14, 64].

This paper makes the following contributions.

• We give a semantic definition of supertype abstraction, which idealizes what is found in logics and
verification tools for Java-like languages. In contrast to previous work, our definition does not rely on
derived notions such as substituting one object for another [35, 39, 40], nor is it tied to a proof system
[42, 52, 55, 56, 59].

• We formalize behavioral subtyping in terms of refinement of observable behavior in a realistic program-
ing model. Surprisingly, refinement does not need to hold between all syntactically related types but
only when the subtype is a (non-abstract) class.

• In contrast to the standard view [40], we use the intrinsic notion of refinement between specifications,
defined by quantifying over satisfying implementations. Characterization of refinement in terms of
relations between pre- and postconditions is important but it is a separate issue. Known results [21,
45, 53] can be used to characterize refinement of specifications of appropriate form, improving on the
overly restrictive condition found in much work on behavioral subtyping [4, 5, 23, 40, 41].

• An outcome of our focus on reasoning about correctness of programs rather than an abstract model
is that we find abstraction functions are not an integral part of behavioral subtyping (compare, e.g.,
[35, 40]).

• We characterize behavioral subtyping as being sound and semantically complete for supertype abstrac-
tion (Corollary 4.12). It was by seeking completeness that we were led to the surprising findings noted
in the preceding items.

3

Some inessential proofs and other details are included in appendices.

Related work and synopsis. An influential discussion of the benefits of supertype abstraction is Liskov’s
invited talk at OOPSLA 1987 [39]. Liskov stated an easily-remembered test for behavioral1 subtyping (p. 25):
“If for each object o1 of type S there is an object o2 of type T such that for all programs P defined in terms
of T , the behavior of P is unchanged when o1 is substituted for o2, then S is a subtype of T .” This is often
called the “Liskov Substitutability Principle” (LSP) and is a strong form of supertype abstraction. The LSP
is actually too strong, because it uses the notion of “unchanged” behavior; the point of introducing subtype
objects is often to change behavior in a way that is allowed by the supertype’s specification. A more flexible
intuition defines observations that are not allowed by this specification as “surprising,” and says that behavioral
“subtyping prevents surprising behavior” [35, Chapter 1].

Our definition of supertype abstraction says that properties of a command can be proved by reasoning
about its method calls as if they were statically dispatched to an arbitrary implementation that satisfies the
specification associated with the static type of the receiver. The definition is in terms of a denotational seman-
tics. For a command S , its meaning, D[[S]], is interpreted in a method environment, µ, that gives a meaning
to each method at each type. Thus D[[S]](µ) is a function from initial states to final states. We are interested
in proving that S satisfies some pre/post specification, spec. Modular reasoning proves that D[[S]](µ) satisfies
spec, using only the specifications associated with the static types of receivers of method calls in S . Specifica-
tions for all methods are collected in what we call a specification table.2 To avoid formalizing “reasoning” as
such, our definition considers semantic consequences that hold for any µ that satisfies the specification table.
Whereas the actual program semantics, D[[−]], uses dynamic dispatch, we define a static dispatch (or nomi-
nal [34]) semantics, S[[−]], to formalize reasoning in terms of static types. Supertype abstraction is formalized
roughly as follows: If it is true that S[[S]](µ) satisfies spec, then the actual semantics D[[S]](µ) satisfies spec,
provided that µ satisfies the specification table. (For details see Def. 4.4.)

In a program logic, supertype abstraction is embodied by the proof rule for method invocation, which al-
lows to derive {P} E .m() {Q} only from a specification (preT

m , postTm) associated with the static type, T , of
E . Similarly, an automated verifier typically uses weakest precondition semantics and achieves modularity by
replacing a call E .m() by the sequence “assert preT

m ; assume postTm ” (with various optimizations, e.g., [36]).
Both techniques aim to produce sound conclusions about the actual semantics. We model both by the static-
dispatch semantics S[[E .m()]](µ). What makes both techniques sound is behavioral subtyping, imposed by
proof obligations on implementations of m in subtypes of T (typically via some form of specification inher-
itance). The proof obligations are modeled by our specification table. Behavioral subtyping is a property of
the specification table.

Several authors have offered definitions of behavioral subtyping, but the most influential definition has
been Liskov and Wing’s [40]. Their “constraint rule” (from their Figure 4, page 1823), says that “Subtype
methods preserve the supertype method’s behavior.” Paraphrasing (and ignoring invariants and history con-
straints), this means that for type T to be a behavioral subtype of U : whenever T ’s method m overrides U ’s
method m , then the usual static typing conditions [20] hold, and for all subtype objects self :T ,

U ’s precondition for m implies T ’s precondition, i.e. preU
m (self) ⇒ preT

m (self) (1)
and T ’s postcondition implies U ’s, i.e. postTm (self) ⇒ postUm (self). (2)

This is intended to be part of a “descriptive and informal” presentation (p. 1813), which concentrates on ideas
and has only “informal justifications” (p. 1813). However, even at a conceptual level, it has several problems.
In particular, the postcondition rule (2) is stronger (i.e., less flexible) than necessary for the soundness of
supertype abstraction [22]: it is an inexact approximation of refinement between specifications. It is refine-
ment that explains the equivalence between behavioral subtyping and supertype abstraction, as our main result
(Corollary 4.12) shows. Our formulation of behavioral subtyping (Def. 4.1) is in terms of the intrinsic refine-
ment order on specifications. As we discuss later, characterizations of specification refinement in terms pre-
and post-conditions are sensitive both to the form of specifications and to some features of program semantics
such as nondeterminacy.

1The quote refers to what we call “behavioral subtyping” simply as “subtyping.”
2We resist the temptation to abstract the specification table as a single method environment that uses nondeterminacy to represent a

specification by the “least refined implementation”; though elegant and useful (e.g, [51, 56]), this technique requires justification with
respect to the actual program semantics.

4

Liskov and Wing’s “constraint rule” also considers that each type specifies a per-instance invariant and
says it must be strengthened in each subtype. But the encapsulation on which object invariants depend [27]
is severely compromised in OO programs due to shared mutable objects etc. State of the art solutions use
instead a single global invariant that combines alias control with conditions derived from whatever invariants
are explicitly declared (see Sect. 5) —this is modeled by our specification tables.

Liskov and Wing’s paper [40] is famous because they clearly present the main ideas and several interesting
examples. Liskov and Wing formulate something like supertype abstraction, their “Subtype Requirement” (p.
1812), but it is sketched in terms of provability and does not directly address modular reasoning about code
and method contracts. They present informal arguments why behavioral subtyping ensures their subtype
requirement. Although behavioral subtyping is defined in terms of pre- and post-conditions, the Subtype
Requirement pertains to reasoning only about invariants and history constraints. By contrast, we focus on
reasoning about pre-post properties of commands. We also consider a programming language, and include
pointer data structures, whereas they use a model with only atomic values and top-level references.

Leavens and Dhara [33] survey a lot of older work on behavioral subtyping, including the pioneering work
of America [4, 5] and Meyer [41]. Much of it is similar to Liskov and Wing’s and has similar limitations.

Several logics have been given for sequential fragments of Java which incorporate supertype abstraction
in our sense [42, 55, 56, 59]. These logics mostly achieve behavioral subtyping by requiring that each over-
riding method implementation in a type satisfies the corresponding specification in each of its supertypes.
Some prove soundness and even completeness of a proof system with behavioral subtyping, which justifies
supertype abstraction in their setting. Of these, only Müller’s [42] considers interfaces, and even this misses
our insight that interfaces can be exempted from the requirements of behavioral subtyping that must apply to
(non-abstract) classes. Müller concentrates on a modular treatment of frame axioms (modifies clauses) and
invariants using ownership.

Parkinson’s work [55] is based on separation logic [51]. Parkinson says “behavioral subtyping” for the
standard implications (1) and (2) and “specification compatibility” for a proof-theoretic formulation that is
closer to the intrinsic refinement ordering [55, Def. 3.5.1]. Pierik [56] gives a more conventional proof sys-
tem, in particular a proof outline logic with a first-order assertion language using finite sequences for heap
expressions. Pierik explicitly connects specification refinement with adaptation rules (cf. [45]). Supertype ab-
straction and behavioral subtyping are present but intertwined with many other details. Pierik and Parkinson
both prove soundness and Pierik proves completeness. But the relation between a logic and its models does not
address our objective of explicating the connection between behavioral subtyping and supertype abstraction.

2 A programming language and its semantics
The technical development uses an idealized object-oriented language that models a large fragment of the
class-based languages like Java and C#. Constructors are omitted but can be treated as syntactic sugar. For
issues like evaluation order and the semantics of null casts, where reasonable languages may differ on semantic
details, we follow Java. The semantics is adapted from [10] which in turn draws on [28] for formalization of
syntax including the class table. Because the language is essentially defunctionalized [8, 63], a denotational
semantics can be given using a straightforward hierarchy of inductively defined domains; there are no non-
trivial domain equations to solve. However, the semantics is not compositional at the level of classes; see
Sect. 5.

Three features of the semantics streamline the formal development but may be unexpected. First, although
a distinction is made between expressions E and commands S , both may have effects. Reasoning systems
often restrict expressions to be pure; but we include exceptions in full generality which entails heap effects in
expressions. Second, the complication of threading state through the semantics of expressions is mitigated by
the uniform use of a general form of state transformer, with separate variable declarations for the initial and
final state spaces; e.g., the value of an expression is returned in a distinguished variable, res. The third feature
is the encoding of exceptions. An expression may diverge, yield a normal result, or throw an exception. The
semantics uses a disjoint sum of just two kinds of outcome: either⊥ or a state. But that state includes a special
variable exc, to encode a disjoint sum: the value of exc is either null, which signifies normal termination, or
a reference to the exception object. Variable exc is not allowed to occur in the program text but is used
in specifications (which models the signals clause in JML). Manipulation of res and exc in the semantics
corresponds transparently to operational semantics using a stack of activation frames. The second and third
features lessen the number of domain definitions, which is especially helpful for working with logical relations

5

T ::= C | I | bool | int data type
msig ::= m(x :T) :T method signature
mdec ::= msig { S } method declaration
S ::= x := E | x .f := x assign to variable, to field

| var x :T in S local variable block
| S ; S | if x then S else S sequence, conditional
| throw x | try S catch(x :T) S throw, handle exception
| try S finally S finalize regardless of exception

E ::= x | null | true | 0 . . . variable, literals
| x .f | x = x field access, equality test
| x is T | (T) x | new C () type test, type cast, object construction
| x .m(x) | let x be E in E method call, sequenced local binding

Figure 1: Grammar. Bold keywords and punctuation marks including “{” and “}” are terminal symbols.

(compare [10] which uses a similar language). Relations are not used in this paper but the semantics is also
being used in other studies of JML.

The metatheory is standard set theory and we often use partial functions, treated as sets of pairs. Unqual-
ified, the term function means total function. Application is written with juxtaposition and associates to the
left as in f a b for a curried f . It binds more tightly than other operators including comma in pairing. We tend
to refrain from unnecessary parentheses around arguments. Finite mappings are used for typing contexts and
variable stores, written like [x :C , y : int] or with brackets omitted. The extension of a finite mapping g to
map b to z , where b /∈ dom g , is written [g , b : z]. To override the mapping for an element c ∈ dom g we
write [g | c : z].

Syntax. The grammar is based on some given sets of names, using the following nomenclature:

C ∈ ClassName names of declared classes
I ∈ InterfaceName names of declared interfaces
x , y , f variable names (for parameters, fields, and locals)
m method names

Two distinguished variable names may occur in code: self for the receiver object and res. The final value of
res gives the return value of a method, as if every method body has the form “S ; return res;”. There is one
distinguished interface name, Thr, and three distinguished class names: Object, NullDeref and ClassCast.
The last two implement Thr, the supertype for all exceptions and therefore the type of the special variable exc.
Since other classes can be subtypes of Thr, exception objects can have arbitrary references to and from other
objects.

Class and interface declarations have the following forms:

class C extends C implements I { f :T mdec } (3)
interface I extends I { f :T msig } (4)

Here and throughout we use over-lines to indicate sequences, possibly empty. Instance fields are included
in interfaces since they are needed in specifications; In a specification language they would be designated as
“ghost” or “model” fields and our results apply to programs that are properly annotated for ghost fields but the
distinction is not needed for our results.

The remaining syntactic categories are defined in Fig. 1. The syntax is in something like “A-normal
form” [65], i.e., subexpressions in various constructs are restricted to be variables. To avoid loss of expres-
siveness, let-expressions are added; e.g., a general equality test E1 = E2 can be desugared (−o) by the rule
(E1 = E2)o = let x be Eo

1 in let y be Eo
2 in x = y which preserves order of evaluation and propagation of

exceptions.
For brevity the term ref type is used to mean any non-primitive data type, i.e., a class or interface name, and

we define RefType = ClassName∪InterfaceName. A complete program is a class table, i.e., a mapping CT
that sends each class name C to its declaration CT (C) and each interface name I to its declaration CT (I).

6

The typing rules are syntax directed so the semantics can be defined by recursion on typing derivations.
The rules for commands and expressions use judgments in which the variable context is explicit, giving
names and types of local variables and parameters that are in scope (namely, the method parameters, any
locals in scope, and the special variables self, res). Although it is not explicit in the judgements, typing
depends on the whole class table, owing to recursive class declarations. Several functions access parts of
the class table. Suppose CT (C) is as in (3), then we define super C = D and superinterfaces C = I .
For a method declaration m(x :T) :T1 { S } in class C , define mtype(C ,m) = x :T→T1. If m is
inherited in C from D (i.e., is defined in D but not declared in C) then mtype(C ,m) is defined to be
mtype(D ,m). Thus mtype(C ,m) is defined iff m is declared or inherited in C . Similarly for inter-
faces: if I extends I then superinterfaces I = I and mtype(I ,m) is defined the same as for classes. For
declared fields we define dfields C = f :T and similarly dfields I . To include inherited fields, define
fields C = fields D ∪ dfields C ∪ (∪I ∈ superinterfaces C · fields I). In a well formed class table each
of these unions will be disjoint. For interfaces define fields I = dfields I ∪fields(superinterfaces I). We define
Meths T = {m | mtype(T ,m) is defined }. Note that mtype(T ,m) is defined just when T is a ref type that
declares or inherits m .

The subtype relation ≤ is defined inductively by (a) C ≤ D if super C = D (note that super Object is
undefined), (b) T ≤ I if I ∈ superinterfaces T , (c) I ≤ Object for all I , and (d) ≤ is reflexive and transitive.
A class table CT is well formed provided it satisfies standard constraints such as acyclicity of≤. Every method
declaration m(x :T) :T {S} in CT (C) is typable in the sense that Γ ` S where Γ = [self :C , res :T , x :T].
Method overrides must not change the signature, according to Java, but the usual contra/covariant rule would
cause no problem here. Rules that define Γ ` S are straightforward (see Appendix A). Here is the rule for
assignment and two of the rules for expressions.

Γ ` E :T T ≤ Γ x x 6= self
Γ ` x := E

Γ ` E :T Γ, x :T ` E1 :U
Γ ` let x be E in E1 :U

(5)

Γ ` x :T mtype(T ,m) = z :T→U Γ ` y :V V ≤ T
Γ ` x .m(y) :U

(6)

Semantic domains. We assume a given set Ref of references —abstract addresses. A ref context is a finite
partial function ρ that maps references to class names (and not interface names). The idea is that if o ∈ dom ρ
then o is allocated and moreover o points to an object of type ρ o. We define the set RefCtx = Ref ⇀
ClassName , where ⇀ denotes finite partial functions. For ρ and ρ′ in RefCtx, we can write ρ ⊆ ρ′ to express
that the domain of ρ′ includes at least the objects in ρ and for objects allocated in ρ the types are the same in
ρ′.

The domains encode important invariants: well typed values and absence of dangling references. (We
could easily add that self is not null and is immutable, but need not.)

For data type T the domain of values is defined by cases on T :

Val(int, ρ) = Z Val(bool, ρ) = {true, false}
Val(C , ρ) = {null} ∪ {o | o ∈ dom ρ ∧ ρ o ≤ C}
Val(I , ρ) = {o | ∃C · C ≤ I ∧ o ∈ Val(C , ρ)}

We use a PVS-like [54] notation for dependent function spaces or dependent pairs. For example, stores are
dependent functions from variables to type-correct and allocated values:

Store(Γ, ρ) = (x : dom Γ) → Val(Γ x , ρ)

What this means is that for any r ∈ Store(Γ, ρ), the domain of r is dom Γ and r x is an element of Val(Γ x , ρ)
for each x ∈ dom Γ. Next we build up to program states.

Obrecord(C , ρ) = Store(fields C , ρ)
Heap(ρ) = (o : dom ρ) → Obrecord(ρ o, ρ)
State(Γ) = (ρ : RefCtx)× Heap(ρ)× Store(Γ, ρ)

A heap h is map sending each allocated reference o to a store, h o, of the object’s current field values. The
most important domain is state transformers:

STrans(Γ,Γ′) = (s :State(Γ)) → {⊥} ∪ {s ′ | s ′ ∈ State(Γ′) ∧ extState(s, s ′)}

7

Relation extState is used to say that one state’s ref context extends the other’s:
extState((ρ, h, r), (ρ′, h ′, r ′)) ⇐⇒ ρ ⊆ ρ′. Elements of STrans(Γ,Γ′) are functions that map a
state in State(Γ) to either ⊥ or a state in State(Γ′), with a possibly extended heap. The domain of state
transformers subsumes meanings for methods, expressions and commands:

SemExpr(Γ,T) = STrans(Γ, [res :T , exc : Thr])
SemCommand(Γ) = STrans(Γ, [Γ, exc : Thr])
SemMeth(T ,m) = STrans([self :T , x :T], [res :U , exc : Thr]) where mtype(m,T) = x :T→U

A (normal) method environment is a table of meanings for all methods in all classes:

MethEnv = (C :ClassName)× (m :Meths C) → SemMeth(C ,m)

A method environment µ is defined on pairs (C ,m) where C is a class with method m; and µ(C ,m) is a
state transformer suitable to be the meaning of a method of type mtype(C ,m). In case m is inherited in C
from B , µ(C ,m) will be the restriction of µ(B ,m) to receiver objects of type C .

A command in context Γ ` S will denote a function from method environments to SemCommand(Γ)
and Γ ` E :T will denote a function from method environments to SemExpr(Γ,T). A complete program
CT denotes a method environment obtained as a least fixed point in the straightforward way: State(Γ) is
ordered discretely, STrans(Γ,Γ′) is ordered pointwise relative to the flat, ⊥-lifted order on State(Γ′), and
method environments are ordered pointwise. The command and expression semantics is easily shown to be
continuous in both constituents and the method environment.

In the formulation of modular reasoning based on static types we use an extended method environment
which associates method meanings to interfaces as well as to classes (even though the receiver of an invocation
is always an object of some class, cf. the definition of Val(I , ρ)). Extended method environments are defined
by

XMethEnv = (T :RefType)× (m :Meths T) → SemMeth(T ,m) .

Semantics of expressions, commands, and class table. The semantic definitions for expressions and com-
mands are straightforward and mostly relegated to Appendix B. To streamline the definitions, our meta-
language includes notation for the lift monad: lets x = α in β abbreviates if α = ⊥ then ⊥ else let x =
α in β (and let has its ordinary mathematical meaning). We are a bit pedantic in using keyword lets since the
proof of the main result relies on careful analysis of the semantic definitions.

The semantics of expressions and commands is defined by recursion on typing derivations. For example,
here is the semantics of assignment (see the rule in (5)):

[[Γ ` x := E]](µ)(ρ, h, r) = lets (ρ1, h1, r1) = [[Γ ` E :T]](µ)(ρ, h, r) in
if r1 exc = null then (ρ1, h1, [[r | x : r1 res], exc :null])
else (ρ1, h1, [r , exc : r1 exc])

(7)

If E yields ⊥ then so does the assignment (owing to lets). If E throws no exception then its value, r1 res, is
assigned to x and the store is also is extended with exc mapped to null . Otherwise, the final state is extended
with exc mapped to the exception, r1 exc.

This definition and the ones in the appendix use the notation [[−]] for the semantics function, but this
abbreviates two definitions. They are defined in the same way, except in the case of method call. The dynamic
dispatch semantics, for which we decorate the semantics brackets as D[[−]], is the operationally accurate one.
It dispatches to a method meaning based on the dynamic type of the receiver. Let T = Γ x and z :T→U =
mtype(m,T) as in the typing rule (6). Define

D[[Γ ` x .m(y) :U]](µ)(ρ, h, r) = if r x = null then except(ρ, h,U , NullDeref)
else let r1 = [self : r x , z : r y] in µ(ρ(r x),m)(ρ, h, r1)

(8)

The receiver object is r x , thus ρ(r x) is the dynamic type of the object; so to look up in method environment
µ the meaning of the dynamically dispatched method we write µ(ρ(r x),m). It is applied to state (ρ, h, r1)
containing the arguments. Since the argument expressions y are variables we can write r y for their values.
Because the dynamic type of the receiver is a class (specifically, ρ (r x)), this semantics is based on a normal
method environment. The helping function except simply builds a state with exc set to a new NullDeref
object (see Appendix B).

8

The static dispatch semantics of method call applies a method meaning determined by the static type T
of the receiver. Since interfaces are included among the static types, the static dispatch semantics is defined in
terms of an extended method environment µ̇:

S[[Γ ` x .m(y) :U]](µ̇)(ρ, h, r) = if r x = null then except(ρ, h,U , NullDeref)
else let r1 = [self : r x , z : r y] in µ̇(T ,m)(ρ, h, r1)

(9)

A well formed class table denotes a method environment, µ̂, the least upper bound of an ascending chain
of method environments—the approximation chain—each of which is given using the command semantics for
method bodies, applied to the preceding approximation. In operational terms, the i th element in the chain gives
the correct semantics for executions with method call stack bounded in length by i . Details are in Appendix B.

3 Specifications and refinement
This section formalizes method specifications and satisfaction by state transformers (in the sense of total
correctness). On this basis we define specification tables and satisfaction for them as well as the induced
refinement relation between specifications.

In practice, most specifications are written using two-state postconditions over program state, with special
syntax like “old(x)” to refer to the initial state. A specification of this kind can be desugared into one where
the pre- and post-conditions are one-state predicates, using auxiliary variables universally quantified over the
Hoare triple. Care must be taken in reasoning with such specifications to avoid soundness pitfalls (cf. [6]).
For our purposes it is convenient to distinguish auxiliaries from ordinary program variables by considering
indexed families of pre/post predicates on program state. We also use the notion of state transformer type,
notation Γ Γ′, for specifications of state transformers in STrans(Γ,Γ′).

Definition 3.1 A simple specification of type Γ Γ′ is a pair (pre, post) such that pre is a subset of State(Γ)
and post is a subset of State(Γ′)

A general specification of type Γ Γ′ is a triple (J , pre, post) consisting of a set J and indexed families
pre ∈ J → P(State(Γ)) and post ∈ J → P(State(Γ′)).

A method specification of type (T ,m) is one of type [self :T , x :T] [res :U , exc : Thr] where
mtype(m,T) = x :T→U . And a Γ-specification is one of type Γ [Γ, exc : Thr].

Unqualified, “specification” means general specification unless the context makes it obvious that simple
specifications are considered.

Example 3.2 Given a two-state postcondition Q ⊆ State(Γ) × State(Γ′) and P ⊆ State(Γ) one obtains a
general specification (J , pre, post) by taking J to be State(Γ) and defining pres and posts , for s ∈ State(Γ),
by pres = {t | t = s ∧ s ∈ P} and posts = {t | (s, t) ∈ Q}.

Definition 3.3 (|=) Let (pre, post) be a specification of type Γ Γ′ and σ be in STrans(Γ,Γ′). Then σ
satisfies (pre, post), written σ |= (pre, post), iff ∀s · s ∈ pre ⇒ σ s ∈ post . For general (J , pre, post), let
σ |= (J , pre, post) iff σ |= (prei , posti) for all i ∈ J .

A specification table, ST , contains a method specification ST (T ,m) of type mtype(T ,m) for each ref
type T and each m ∈ Meths T . It models what might be called the “effective specification”, which is typically
obtained from declared specifications by means of context-dependent interpretation of modifies clauses [38,
42], specification inheritance [22, 31, 67, 68], invariant disciplines [11, 37, 43, 50], etc. (See Sect. 5).

Definition 3.4 Let ST be a specification table. An extended method environment µ̇ satisfies ST , written
µ̇ |= ST , iff µ̇(T ,m) |= ST (T ,m) for all ref types T and m ∈ Meths T .

A normal method environment µ satisfies ST , written µ |= ST , iff µ(C ,m) |= ST (C ,m) for all classes
C and m ∈ Meths C .

Note this does not require µ(C ,m) to satisfy specifications of the interfaces implemented by C , nor of its
superclass. The idea is that ST (C ,m) is the entire proof obligation imposed on an implementation of m in
class C —so µ(C ,m) will satisfy specifications of m in super-classes and super-interfaces provided ST has
behavioral subtyping.

9

The behavioral subtyping property is expressed in terms of a refinement ordering on specifications: it says
that if T is a subtype of U then ST (T ,m) is a stronger specification than ST (U ,m) in the sense that any
method satisfying ST (T ,m) also satisfies ST (U ,m). This intrinsic ordering on specifications is determined
by the nature of command denotations and the definition of satisfaction. Some care needs to be taken with the
details, because if T is a class, a method in class T is defined to act on receiver objects of type T whereas
a specification of type (U ,m) imposes a requirement on state transformers for target type U . Owing to
the semantics of dynamic dispatch, however, it is sound for a method in class T to assume a strengthened
precondition saying that the receiver object has type T . (This is explicit in the proof obligation for method
bodies in proof systems, e.g. [42, 57].)

For a method m of class U with mtype(U ,m) = x :T→V , the relevant state transformers are in
SemMeth(U ,m), i.e., of type [self :U , x :T] [res :V , exc : Thr]. For T , a method meaning will have
type [self :T , x :T] [res :V , exc : Thr] —only the type of self varies.

Definition 3.5 (||=T) Let (pre, post) be a specification of type Γ Γ′ and let T ≤ Γ self. Define
(pre, post)�T to be the specification (pre ′, post), of type [Γ | self :T] Γ′, where pre ′ is defined by
(ρ, h, r) ∈ pre ′ ⇐⇒ r self ≤ T ∧ (ρ, h, r) ∈ pre. For a general specification, (J , pre, post)�T is
(J , pre ′, post) where pre ′

i = prei�T for all i ∈ J .
An element σ ∈ STrans([Γ | self :T],Γ′) satisfies (pre, post) under T , written σ ||=T (pre, post), iff

σ |= (pre, post)�T . For a general specification, the restriction is applied at each index.

Definition 3.6 (wT) Let spec0 be a specification of type Γ Γ′ and spec1 be of type [Γ | self :T] Γ′ where
T ≤ Γ self. Then spec1 refines spec0 with respect to T , written spec1 wT spec0, iff σ |= spec1 ⇒ σ ||=T

spec0 for all σ ∈ STrans([Γ | self :T],Γ′).

This applies in particular to general specifications. Note that σ ranges over the smaller set of transformers and
only weakly satisfies spec0. In case T = Γ self, however, σ |= spec0 is the same as σ ||=T spec0. We may
omit the superscript on w just in this case.

Lemma 3.7 (weak transitivity) Suppose spec0 is a specification of type Γ Γ′, spec1 is of type [Γ |
self :T] Γ′ where T ≤ Γ self, and spec2 is of type [Γ | self :U] Γ′ with U ≤ T . If spec2 wU spec1 and
spec1 wT spec0 then spec2 wU spec0, provided spec1 is satisfiable.3

4 Supertype abstraction and behavioral subtyping
This section defines behavioral subtyping in terms of the intrinsic refinement order on method specifications
and then an alternative formulation is given. Then supertype abstraction for commands is defined. Finally, the
two are proved equivalent.

Definition 4.1 A specification table ST has behavioral subtyping if and only if for all ref types U and classes
C with C ≤ U and all m ∈ Meths U we have ST (C ,m) wC ST (U ,m).

Note that the quantification is over sub-classes of U , ignoring interface subtypes of U .
If ≥ is any preorder relation on some set, an instance a ≥ b is equivalent to ∀c · b ≥ c ⇒ a ≥ c.

The following definition is roughly a restatement of behavioral suptyping in this manner, though taking into
account the change of type.

Definition 4.2 Specification table ST has supertype abstraction for method specifications iff the following
holds for all ref types T , all m ∈ Meths T , and all spec of type mtype(T ,m): If ST (T ,m) w spec then
ST (C ,m) wC spec for every class C with C ≤ T .

Lemma 4.3 A satisfiable specification table ST has behavioral subtyping iff it has supertype abstraction for
method specifications.

3To see that the satisfiability condition is necessary, let spec1 be the simple specification (pre1, post1) where pre1 = true and post1
says that self is U . No element of STrans([Γ | self :T], Γ′) satisfies spec1. Owing to unsatisfiability we have spec1 wT spec0 for
any spec0. Define spec2 to have pre2 = true = post2. Then because wU restricts the initial state we get spec2 wU spec1. But it is
easy to choose spec0 so that spec2 6wU spec0.

10

Supertype abstraction for commands. Reasoning systems use logic and axiomatic semantics to prove that
commands satisfy specifications. A proof that Γ ` S satisfies spec is considered modular provided that
reasoning about method calls in S is based only on the specifications of those methods. Thus our semantic
formulation says that S satisfies spec when S is interpreted by the static dispatch semantics. Of course the
static dispatch semantics of a command has many properties that are inconsistent with its standard semantics,
so reasoning on the basis of static dispatch semantics with a particular method environment would be unsound.
To capture that reasoning about method calls is based only on their specifications, our formulation quantifies
over all environments that satisfy ST .

Definition 4.4 Let ST be a specification table for CT . Supertype abstraction is valid for ST ,CT iff for all
Γ ` S and all general Γ-specifications spec, (10) implies (11), where

∀µ̇ ∈ XMethEnv · µ̇ |= ST ⇒ S[[Γ ` S]](µ̇) |= spec (10)

∀µ ∈ MethEnv · µ |= ST ⇒ D[[Γ ` S]](µ) |= spec (11)

The idea is that a modular reasoner establishes (10) but it is then a consequence that S satisfies spec in
the sense of the standard semantics, i.e., D[[Γ ` S]](µ̂) |= spec where µ̂ is the semantics of the class table —
provided that µ̂ does satisfy ST (i.e., the usual proof obligation that each method implementation satisfies its
specification). In fact, owing to modularity of reasoning about satisfaction as described by (10), the stronger
conclusion (11) can be drawn.

Theorem 4.5 For any satisfiable ST the following are equivalent.
(a) ST has supertype abstraction for method specifications (Def. 4.2).
(b) supertype abstraction is valid for ST ,CT (Def. 4.4).

We sketch the argument here and return to it after laying some groundwork. For (b)⇒ (a) we instantiate
S in Def. 4.4 with suitable method call and unfold the semantics thereof.

For (a)⇒ (b) we prove (b) by structural induction on S assuming that ST has supertype abstraction. A key
lemma to prove (b) is an analogous result for expressions, also proved by structural induction. There are three
kinds of cases: For method call, the semantics is used to reduce implication (10) ⇒ (11) to the implication
given by the supertype abstraction property. For other primitive expressions and commands, the semantics is
used to prove (11) directly from (10), which is easy since the semantics are identical, not involving the method
environment. The third kind is compound commands and expressions. For these we appeal to the induction
hypothesis for the constituent expressions and commands; to obtain suitable specifications for this purpose we
analyze the semantic definitions using a little meta-language. It is important that the quantifiers are arranged
as they are in Def. 4.4, so that the induction hypothesis is of the form “for all spec and S , (10) ⇒ (11)”,
because for a given S of the third kind we need multiple instantiations of spec and S .

A little calculus of state transformers. Consider any well formed expression Γ ` E :T other than a method
call. Suppose that either [[−]] is the dynamic dispatch semantics and µ a normal method environment or [[−]]
is the static dispatch semantics and µ an extended method environment. Then the semantics [[Γ ` E :T]](µ)
—and the semantics of every other expression and command— can be written as a function of the state
transformers denoted by its constituent parts, together with some primitive state transformers of various types,
using the following three operations.

Kleisli composition Given σ0 of type Γ0 Γ1 and σ1 of type Γ1 Γ2, define σ0;σ1 of type Γ0 Γ2 by
(σ0;σ1) s = (if σ0 s = ⊥ then ⊥ else σ1(σ0 s)).

Alternatives For σ0, σ1 of type Γ Γ′ and P ⊆ State(Γ), define IF P THEN σ0 ELSE σ1 of type Γ Γ′ by
(IF P THEN σ0 ELSE σ1) s = if s ∈ P then σ0 s else σ1 s .

Store-pairing For Γ and Γ′ with disjoint domains and σ of type Γ Γ′, define the store-pairing4 〈σ | id〉 of
type Γ [Γ′|Γ] by

〈σ | id〉(ρ, h, r) = if σ(ρ, h, r) = ⊥ then ⊥ else (ρ′, h ′, [r |r ′]) where (ρ′, h ′, r ′) = σ(ρ, h, r)
4Store-pairing seems ad hoc. It is tempting to extend the little calculus of state transformers to include products in a general form,

with pairing Γ Γ′×Γ′′ etc. Then the corresponding predicate transformers would be available from the categorical theory of predicate
transformers [25, 44]. But to prove the theorem what we need is to decompose specifications; succumbing to the temptation would require
us to introduce specifications of type Γ Γ′×Γ′′ or else a nontrivial encoding of pairs of heaps into a single heap (as done in [48]) —at
best, this would obscure the connection with JML and extant logics for reasoning about Java programs.

11

For constructs other than method call, D[[−]] and S[[−]] are defined as identical functions of the semantics
of their constituent expressions/commands. For example,D[[Γ ` x := E]](µ) is a function ofD[[Γ ` E :T]](µ)
and S[[Γ ` x := E]](µ̇) is exactly the same function of S[[Γ ` E :T]](µ̇). To see this, recall the semantics (7).
We can write [[Γ ` x := E]](µ) as the following sequence of state transformers:

Γ
〈〈([[Γ ` E :T]](µ) ; rename) | id〉- [Γ, res′ :T , exc : Thr]

assg- [Γ, exc : Thr] (12)

Here rename : [res :T , exc : Thr] [res′ :T , exc : Thr] just renames res to give a context5 disjoint from Γ
so we can use store-pairing. And assg is the state transformer that updates x with the value of res′ if exc is
null and in either case drops res′ from the store.

Suppose σ is a state transformer of type Γ Γ′ and post is a subset of State(Γ′). The weakest precondition
of σ with respect to post , written wp σ post , is the subset of State(Γ) defined by wp σ post = {t | σ t ∈ post}.

Lemma 4.6 (sequential decomposition) Suppose σi has type Γi Γi+1 for i = 0, 1. Let (pre, post) be a
simple specification of type Γ0 Γ2. Define spec0 = (pre, (wp σ1 post)) and spec1 = ((wp σ1 post), post).
Then (σ0;σ1) |= (pre, post) iff σ0 |= spec0 and σ1 |= spec1. Moreover, for any σ′

0, σ
′
1, if σ′

0 |= spec0 and
σ′

1 |= spec1 then σ′
0;σ

′
1 |= (pre, post).

These are well known facts about weakest preconditions; the lemma merely spells them out in a particular
way because their use later is a little intricate. Similarly for the following.

Lemma 4.7 (conditional decomposition) Suppose σi has type Γ Γ′, for i = 0, 1, and P ⊆ State(Γ).
Let (pre, post) be a simple specification of type Γ Γ′. Define spec0 = (P ∩ pre, post) and spec1 =
(pre − P , post). Then

IF P THEN σ0 ELSE σ1 |= (pre, post) iff σ0 |= spec0 and σ1 |= spec1

Moreover, IF P THEN σ′
0 ELSE σ′

1 |= (pre, post) for any σ′
0, σ

′
1 that satisfy spec0, spec1.

For store-pairing, the decomposition result needs to use a general specification, because a predicate over
[Γ′|Γ] need not be rectangular, i.e., need not factor using a conjunction of separate conditions on Γ and on Γ′.
This is already true with two integer variables and no heap. It is why categories of predicate transformers have
very lax products [25, 44].

For (ρ, h, r ′) ∈ State(Γ′) and r ∈ Store(Γ) with Γ disjoint from Γ′ we write (ρ, h, r ′)+ r for the evident
state in State([Γ|Γ′]).

Lemma 4.8 (store-pairing decomposition) Suppose Γ and Γ′ have disjoint domains and σ has type Γ Γ′.
Let (P ,Q) be a simple specification of type Γ [Γ′|Γ]. Define general specification (J , pre, post) by taking
J = Store(Γ) and, for r ∈ J , defining prer and postr by prer = {(ρ, h, q) ∈ State(Γ) | q = r ∧ (ρ, h, r) ∈
P} and postr = {(ρ, h, r ′) ∈ State(Γ′) | (ρ, h, r ′)+r ∈ Q}. Then 〈σ | id〉 |= (P ,Q) iff σ |= (J , pre, post).
Moreover, 〈σ′ | id〉 |= (P ,Q) for any σ′ that satisfies (J , pre, post).

Proving the theorem.

Lemma 4.9 (supertype abstraction for expressions) Suppose ST has supertype abstraction for methods
and is satisfiable. Then for all Γ, E , T , spec such that Γ ` E :T and spec is of type Γ [res :T , exc : Thr]
we have that (13) implies (14) where

∀µ̇ ∈ XMethEnv · µ̇ |= ST ⇒ S[[Γ ` E :T]](µ̇) |= spec (13)

∀µ ∈ MethEnv · µ |= ST ⇒ D[[Γ ` E :T]](µ) |= spec (14)

5 We are only interested in Γ that has res in its domain since it is present for any expression and command in a method body; cf. the
typing rule for method body.

12

Proof By structural induction on E . For the case Γ ` x :T , the result follows from a much stronger prop-
erty: S[[Γ ` x :T]](µ̇) = D[[Γ ` x :T]](µ) for all µ and all µ̇. The two semantics are identical in this case:
there are no sub-expressions and the semantics of expression x is independent of the method environment.
The argument is the same for null and other literals, as well as for x .f , x = y , E is T , (T) x , and new C ().

For the case of Γ ` let x be E in E1 :U , assume

∀µ̇ ∈ XMethEnv · µ̇ |= ST ⇒ S[[Γ ` let x be E in E1 :U]](µ̇) |= spec (15)

for spec of type Γ [res :U , exc : Thr]. Without loss of generality we can assume spec is a simple specifica-
tion. (For a general one, apply the argument to any (prei , posti).) Let µ be any normal method environment
such that µ |= ST . We must show D[[Γ ` let x be E in E1 :U]](µ) |= spec. By assumption (15) and satisfia-
bility of ST there is some µ̇ such that

S[[Γ ` let x be E in E1 :U]](µ̇) |= spec (16)

Here is the semantics of rule (5), written using [[−]] and µ′ to stand for either D[[−]] and a normal method
environment or S[[−]] and an extended method environment:

[[Γ ` let x be E in E1 :U]](µ′)(ρ, h, r) =
lets (ρ0, h0, r0) = [[Γ ` E :T]](µ′)(ρ, h, r) in
if r0 exc 6= null then (ρ0, h0, [res : default U , exc : r0 exc])
else let r1 = [r , x : r0 res] in [[Γ, x :T ` E1 :U]](µ′)(ρ0, h0, r1)

It is straightforward to show that [[Γ ` let x be E in E1 :U]](µ′) can be written as

Γ
〈([[Γ ` E :T]](µ′) ; rename) | id〉- [Γ, res′ :T , exc : Thr]

alt- [res :U , exc : Thr]

Here rename just renames res, as in (12). And alt is

IF “exc = null” THEN init ; [[Γ, x :T ` E1 :U]](µ′) ELSE propogate

where init : [Γ, res′ :T , exc : Thr] [Γ, x :T] sets x to the value of res′ and
propogate : [Γ, res′ :T , exc : Thr] [res :U , exc : Thr] is the (primitive) transformer that sets res to
default U and exc to the exception (from E). Thus by the decomposition lemmas there are specifications
specE of type Γ [res :T , exc : Thr], specE1 of type [Γ, x :T] [res :U , exc : Thr], and specpropogate ,
specinit , specrename of the evident types, such that (16) holds iff each of the component transformers satisfies
its specification.

Since assumption (15) holds for all µ̇, it follows that S[[Γ ` E :T]](µ̇) |= specE for all µ̇
and S[[Γ ` E1 :U]](µ̇) |= specE1 for all µ̇. As a consequence, we may appeal to the induc-
tion hypothesis for E , specE and for E1, specE1. This yields that D[[Γ ` E :T]](µ) |= specE and
D[[Γ, x :T ` E1 :U]](µ) |= specE1 for our arbitrarily chosen µ. The other component transformers like
rename are the same in both the static and dynamic dispatch semantics. Having established that the com-
ponent transformers of D[[Γ ` let x be E in E1 :U]](µ) all satisfy the component specifications, we obtain
D[[Γ ` let x be E in E1 :U]](µ) |= spec which was to be proved.

Finally, consider the case of Γ ` x .m(y) :U . Recall the static dispatch semantics (9) for meth-
ods. Suppose mtype(m,T) = z :T→U as in the typing rule for method call. Choose some µ̇ such that
S[[Γ ` x .m(y) :U]](µ̇) |= spec. (Such µ̇ exists owing to satisfiability of ST and the assumption (15).) By
decomposition we obtain spec′ of type [self :T , z :T]→U such that µ̇(T ,m) |= spec′. Moreover, noting that
if µ̇ |= ST then so does [µ̇ | (T ,m) :σ] for any σ with σ |= ST (T ,m), it follows from assumption (15) that
ST (T ,m) wT spec′.

Now suppose µ is any normal method environment that satisfies ST and recall the dynamic dispatch
semantics (8) which differs in using the dynamic type ρ(r x) of the receiver, rather than its static type T , to
look up the method in the environment. By supertype abstraction for methods (Def. 4.2), ST (T ,m) wT spec′

implies that C ≤ T ⇒ ST (C ,m) wC spec′ for all C . Since µ |= ST we have for each C ≤ T that
µ(C ,m) |= ST (C ,m) and thus µ(C ,m) ||=C spec′. To complete the proof of D[[Γ ` x .m(y) :U]](µ) it
is not enough to use decomposition backwards; we also unfold the definition of |= and the semantics since
µ(C ,m) is used just in case ρ(r x) ≤ C . �

13

The satisfiability hypothesis is necessary. Suppose that ST (C ,m) is unsatisfiable for some C . Then
(13) implies (14) because both have false antecedents. This does not let us drop the satisfiability hypothesis
because it can happen that the only unsatisfiable part is some interface specification ST (I ,m), falsifying the
antecedent of (13) but not (14).

The following result amounts to the (a)⇒ (b) part of Theorem 4.5.

Lemma 4.10 (supertype abstraction for commands) Suppose ST has supertype abstraction and is satis-
fiable. Then for all Γ, S , spec such that Γ ` S and spec is of type Γ [Γ, exc : Thr] we have that ∀µ̇ ∈
XMethEnv · µ̇ |= ST ⇒ S[[Γ ` S]](µ̇) |= spec implies ∀µ ∈ MethEnv · µ |= ST ⇒ D[[Γ ` S]](µ) |= spec.
Proof By structural induction on S . In the cases that S is x .f : = y and throw x , the semantics using S[[−]]
and D[[−]] are identical so the proof is immediate. In the cases of conditional, sequence, try-catch and try-
finally, the argument is by induction following the pattern for let-expression in the proof of Lemma 4.9. That
is also the pattern for the remaining command form, x : = E , except that instead of the induction hypothesis
there is an appeal to Lemma 4.9 for E . �

To prove the (b)⇒ (a) part of Theorem 4.5, (b) can be specialized to method call.

Lemma 4.11 If ST is satisfiable then it has supertype abstraction for method specifications provided that (17)
implies (18) for all T and all m ∈ Meths T with mtype(m,T) = x :T→U , where

∀µ̇ ∈ XMethEnv · µ̇ |= ST ⇒ S[[self :T , y :T , z :U ` z : = self.m(y)]](µ̇) |= spec (17)

∀µ ∈ MethEnv · µ |= ST ⇒ D[[self :T , y :T , z :U ` z : = self.m(y)]](µ) |= spec (18)

Putting the Theorem 4.5 together with lemma 4.3 we obtain the following.

Corollary 4.12 (semantic soundness and completeness) Suppose ST has behavioral subtyping. Suppose
S[[Γ ` S]](µ̇) can be proved to satisfy some Γ-specification spec, assuming about µ̇ only that it satisfies ST .
And suppose that the semantics, µ̂, of the class table satisfies ST . Then the actual semantics D[[Γ ` S]](µ̂)
satisfies spec. Moreover, such reasoning is sound only if ST has behavioral subtyping.

5 Discussion
The main result, Corollary 4.12, says that specifications conform to the restriction known as behavioral sub-
typing if and only if it is sound to reason about method calls in terms of the static type of the receiver. One
consequence is that behavioral subtyping is ultimately about the intrinsic ordering on specifications deter-
mined by the programming language and notion of satisfaction. For enforcement of behavioral subtyping in a
verification logic or axiomatic semantics, what is needed is either a sound criterion for refinement expressed in
terms of pre- and post-conditions or a means to obtain suitable specifications by constructions from arbitrary
specifications declared by the programmer.

The most common formulation of behavioral subtyping uses the implications (1) and (2) that correspond
to the rule of consequence in Hoare logic which derives a weaker specification from a stronger one. Even in
Hoare logic for simple procedures these are incomplete. So Hoare [26] proposed an “adaptation rule”; but
his not complete and some subsequent proposals were found to have subtle unsoundness in connection with
auxiliary variables in specifications (corrected in [6]). By now, sound and complete adaptation rules are known
for some programming languages [16, 30, 53] and the connection with specification refinement has been made
clear [21, 45, 56]. Our work seems to be the first to disentangle the characterization of refinement from the
use of refinement to define and reason about behavioral subtyping.

In the special case of two-state postconditions (Example 3.2), (pre ′, post ′) w (pre, post) holds just when
pre ⊆ pre ′ and old(pre) ∩ post ′ ⊆ post ; other characterizations can be found in [22] and [21]. More
complicated conditions are needed for general specifications, even with auxiliary variables ranging over data
types in the programming language rather than arbitrary index sets [16, 30, 56]. Completeness of such a
condition depends on the program semantics, since the definition ofwT quantifies over all program meanings;
some early proposals become complete if arbitrary angelic and demonic choice are added to the programming
language. An elegant way to study the issues is to interpret specifications as monotonic predicate transformers
and study factorization in subcategories of predicate transformers [45].

14

Several tools, and the JML specification language, allow declaration of arbitrary specifications but enforce
behavioral subtyping by fiat. The effective specification of a method m at type T , modeled by our ST (T ,m),
is defined as the least upper bound of specifications of m declared all types U ≤ T . This is known as
specification inheritance [22, 31, 67, 68].

Liskov and Wing’s formulation of behavioral subtyping considers object invariants as well as method
specifications. Object invariants play a crucial role in verification in practice, but it has proved quite difficult
to develop sound and modular principles for reasoning about invariants. Liskov and Wing’s condition works
for an invariant that depends only on values of the object’s own fields [43]. Useful invariants for Java programs
depend on fields of other objects and thus require means to achieve encapsulation in the presence of shared
mutable state. State of the art methodologies enforce a single global invariant, formed as a conjunction of
object-specific invariants derived from the invariant declarations in classes and using notions like ownership
for heap encapsulation [11, 37, 43, 50] (see [49] for a survey that includes separation logic). In these and other
works [55], invariants are thus folded into method specifications.

Future work. Our theorem is given using a specific programming language and denotational model de-
veloped in the context of a project on foundations for the JML specification language including relational
reasoning to deal with purity, modifies clauses, etc (e.g. [13, 46]). The semantic model has been encoded in
the PVS theorem prover and type soundness proved, building on previous work [47] involving a logical rela-
tion for information security. Machine checking of the results of this paper is underway at the time of writing.
It would be interesting to develop similar results using other semantic models that cater for recursive types
and relational reasoning (e.g., [1, 7, 66]).

Our semantics is not compositional at the level of classes: the meaning of a class is not a function of
the meanings of other classes, but rather the meaning of each method is a function of the meanings of all
methods in all classes. This is perfectly suited for the sort of modular reasoning found in verifiers: A method
implementation is verified with respect to specifications of all the methods it might call, and in terms of all
the interface/class names that appear in its field declarations, casts, and type tests. These may as well be
formalized as a closed world consisting of an arbitrary class table for which the method under consideration
is well formed. Indeed, since there may be infinitely many interfaces and classes in a class table, we can
also define a universal class table by enumerating all possible declarations. Nonetheless it is conceptually
appealing to have compositionality at the level of classes. Reus [62] gives a denotational model of that kind,
for an untyped language, and considers associated reasoning principles. We refrained from using such a model
since it entails additional complexity in proofs and also requires more justification with respect to operational
semantics. But it would also be interesting to explore behavioral subtyping and supertype abstraction in such
a model and using more abstract semantics of commands as mentioned in Sect. 1.

Acknowledgments
Thanks to Paulo Borba and Augusto Sampaio for hosting us in Recife during our initial work on this paper and
for stimulating discussions. Thanks to Shengchao Qin, Freidrich Steimann, Joseph Kiniry, Andreas Podelski,
and Erik Poll for comments on earlier drafts.

References
[1] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In European

Symposium on Programming (ESOP), pages 69–83, 2006.

[2] W. Ahrendt, Th. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mostowski, A. Roth,
S. Schlager, and P. H. Schmitt. The KeY tool. Software and System Modeling, 4:32–54, 2005.

[3] Suad Alagic and Svetlana Kouznetsova. Behavioral compatibility of self-typed theories. In Boris Mag-
nusson, editor, ECOOP 2002 — Object-Oriented Programming, 16th European Conference, Máalaga,
Spain, Proceedings, volume 2374 of LNCS, pages 585–608, Berlin, June 2002. Springer-Verlag.

15

[4] Pierre America. Inheritance and subtyping in a parallel object-oriented language. In Jean Bezivin et al.,
editors, ECOOP ’87, European Conference on Object-Oriented Programming, Paris, France, pages 234–
242, New York, June 1987. Springer-Verlag. Lecture Notes in Computer Science, Volume 276.

[5] Pierre America. Designing an object-oriented programming language with behavioural subtyping. In
J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages,
REX School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of LNCS, pages
60–90. Springer-Verlag, New York, 1991.

[6] Pierre America and Frank de Boer. Proving total correctness of recursive procedures. Information and
Computation, 84(2):129–164, 1990.

[7] Andrew W. Appel, Paul-André Melliès, Chrostopher D. Richards, and Jérôme Vouillon. A very modal
model of a modern, major, general type system. In POPL, 2007. to appear.

[8] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design and correctness of program transforma-
tions based on control-flow analysis. In Intl. Symp. on Theoretical Aspects of Computer Software, pages
420–447, October 2001. LNCS 2215.

[9] Anindya Banerjee and David A. Naumann. Representation independence, confinement and access con-
trol. In ACM Symposium on Principles of Programming Languages (POPL), pages 166–177, 2002.

[10] Anindya Banerjee and David A. Naumann. Ownership confinement ensures representation independence
for object-oriented programs. Journal of the ACM, 52(6):894–960, November 2005. Extended version
of [9].

[11] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–56, 2004. Special
issue: ECOOP 2003 workshop on Formal Techniques for Java-like Programs.

[12] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An overview.
In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors, Con-
struction and Analysis of Safe, Secure, and Interoperable Smart Devices, International Workshop (CAS-
SIS 2004), Revised Selected Papers, volume 3362 of LNCS, pages 49–69, 2005.

[13] Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart Beringer. Reading, writing and relations.
In Programming Languages and Systems (APLAS), volume 4279 of LNCS, pages 114–130, 2006.

[14] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-hyperdoctrines, higher-order separation logic,
and abstra ction. Technical Report ITU-TR-2005-69, IT University of Copenhagen, 2005.

[15] G.M. Bierman and M.J. Parkinson. Separation logic and abstraction. In ACM Symposium on Principles
of Programming Languages (POPL), pages 247–258, 2005.

[16] A. Bijlsma, P.A. Matthews, and J.G. Wiltink. A sharp proof rule for procedures in wp semantics. Acta
Informatica, 26:409–419, 1989.

[17] Kim B. Bruce and Peter Wegner. An algebraic model of subtypes in object-oriented languages (draft).
ACM SIGPLAN Notices, 21(10), October 1986.

[18] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java applet correctness: a developer-oriented
approach. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
International Symposium of Formal Methods Europe, volume 2805 of LNCS, pages 422–439. Springer,
September 2003.

[19] Criastiano Calcagno, Peter O’Hearn, and Richand Bornat. Program logic and equivalence in the presence
of garbage collection. Theoretical Computer Science, 298(3):557–581, 2003.

[20] Luca Cardelli. A semantics of multiple inheritance. Information and Computation, 76(2/3):138–164,
February/March 1988.

16

[21] Yonghao Chen and Betty H. C. Cheng. A semantic foundation for specification matching. In Gary T.
Leavens and Murali Sitaraman, editors, Foundations of Component-Based Systems, pages 91–109. Cam-
bridge University Press, New York, NY, 2000.

[22] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through specification inher-
itance. In Proceedings of the 18th International Conference on Software Engineering, Berlin, Germany,
pages 258–267. IEEE Computer Society Press, March 1996.

[23] Robert Bruce Findler and Matthias Felleisen. Contract soundness for object-oriented languages. In
OOPSLA ’01 Conference Proceedings, Object-Oriented Programming, Systems, Languages, and Appli-
cations, October 14-18, 2001, Tampa Bay, Florida, USA, pages 1–15, October 2001.

[24] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. In ACM Conf. on Program. Lang. Design and Implementation
(PLDI), pages 234–245, 2002.

[25] Paul H.B. Gardiner, Clare E. Martin, and Oege de Moor. An algebraic construction of predicate trans-
formers. Science of Computer Programming, 22:21–44, 1994.

[26] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In E. Engeler, editor, Symposium
on Semantics of Algorithmic Languages. Springer-Verlag, 1971.

[27] C. A. R. Hoare. Proofs of correctness of data representations. Acta Informatica, 1:271–281, 1972.

[28] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core calculus for
Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–459, May 2001.

[29] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van Berkum, Ulrich Hensel, and Hendrik
Tews. Reasoning about Java classes (preliminary report). In OOPSLA ’98 Conference Proceedings,
volume 33(10) of SIGPLAN, pages 329–340. ACM, October 1998.

[30] Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Computing, 11:541–566,
1999.

[31] Gary T. Leavens. JML’s rich, inherited specifications for behavioral subtypes. In Zhiming Liu and
He Jifeng, editors, Formal Methods and Software Engineering: 8th International Conference on Formal
Engineering Methods (ICFEM), volume 4260 of LNCS, pages 2–34, New York, NY, November 2006.
Springer-Verlag.

[32] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. Technical Report 98-06-rev29, Iowa State University, Department of
Computer Science, January 2006. To appear in ACM SIGSOFT Software Engineering Notes.

[33] Gary T. Leavens and Krishna Kishore Dhara. Concepts of behavioral subtyping and a sketch of their
extension to component-based systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, chapter 6, pages 113–135. Cambridge University Press, 2000.

[34] Gary T. Leavens and William E. Weihl. Specification and verification of object-oriented programs using
supertype abstraction. Acta Informatica, 32(8):705–778, November 1995.

[35] Gary Todd Leavens. Verifying object-oriented programs that use subtypes. Technical Report 439, Mas-
sachusetts Institute of Technology, Laboratory for Computer Science, February 1989. The author’s Ph.D.
thesis.

[36] K. Rustan M. Leino. Efficient weakest preconditions. Information Processing Letters, 93(6):281–288,
2005.

[37] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In European Conference
on Object-Oriented Programming, pages 491–516, 2004.

[38] K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding. ACM Transactions on
Programming Languages and Systems, 24(5):491–553, 2002.

17

[39] Barbara Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices, 23(5):17–34, May 1988.
Revised version of the keynote address given at OOPSLA ’87.

[40] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6), 1994.

[41] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, second edition, 1997.

[42] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of LNCS.
Springer-Verlag, 2002.

[43] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered object struc-
tures. Science of Computer Programming, 62(3):253–286, October 2006.

[44] David A. Naumann. A categorical model for higher order imperative programming. Mathematical
Structures in Computer Science, 8(4):351–399, August 1998.

[45] David A. Naumann. Calculating sharp adaptation rules. Information Processing Letters, 77:201–208,
2001.

[46] David A. Naumann. Observational purity and encapsulation. In Fundamental Aspects of Software Engi-
neering (FASE), pages 190–204, 2005.

[47] David A. Naumann. Verifying a secure information flow analyzer. In Joe Hurd and Tom Melham, editors,
18th International Conference on Theorem Proving in Higher Order Logics TPHOLS, volume 3603 of
LNCS, pages 211–226, 2005.

[48] David A. Naumann. From coupling relations to mated invariants for secure information flow. In Euro-
pean Symposium on Research in Computer Security (ESORICS), number 4189 in LNCS, pages 279–296,
2006.

[49] David A. Naumann. On assertion-based encapsulation for object invariants and simulations. Formal As-
pects of Computing, 2006. Special issue: Applicable Research on Formal Verification and Development,
to appear.

[50] David A. Naumann and Mike Barnett. Towards imperative modules: Reasoning about invariants and
sharing of mutable state (extended abstract). In IEEE Symp. on Logic in Computer Science (LICS),
pages 313–323, 2004.

[51] P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and information hiding. In ACM Symposium on
Principles of Programming Languages (POPL), pages 268–280, 2004.

[52] David von Oheimb and Tobias Nipkow. Hoare logic for NanoJava: Auxiliary variables, side effects
and virtual methods revisited. In Lars-Henrik Eriksson and Peter Alexander Lindsay, editors, Formal
Methods – Getting IT Right (FME’02), volume 2391 of LNCS, pages 89–105. Springer, 2002.

[53] Ernst-Rüdiger Olderog. On the notion of expressiveness and the rule of adaptation. Theoretical Computer
Science, 24:337–347, 1983.

[54] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak Kapur,
editor, 11th International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

[55] Matthew J. Parkinson. Local reasoning for Java. Technical Report 654, University of Cambridge Com-
puter Laboratory, November 2005. Dissertation.

[56] Cees Pierik. Validation techniques for object-oriented proof outlines. Dissertation, Universiteit Utrecht,
2006.

[57] Cees Pierik and Frank S. de Boer. A proof outline logic for object-oriented programming. Theoretical
Computer Science, 2005. to appear.

18

[58] Gordon D. Plotkin and John Power. Notions of computation determine monads. In Foundations of
Software Science and Computation Structures (FoSSaCS), pages 342–356, 2002.

[59] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swierstra, editor,
Programming Languages and Systems (ESOP ’99), volume 1576 of Lecture Notes in Computer Science,
pages 162–176. Springer-Verlag, 1999.

[60] Erik Poll. A coalgebraic semantics of subtyping. In H. Reichel, editor, Coalgebraic Methods in Computer
Science (CMCS), number 33 in Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam,
2000.

[61] John Power. Semantics for local computational effects. In Mathematical Foundations of Program Se-
mantics, pages 355–371, 2006.

[62] Bernhard Reus. Modular semantics and logics of classes. In Matthias Baaz and Johann A. Makowsky,
editors, Computer Science Logic (CSL), volume 2803 of LNCS, pages 456–469, 2003.

[63] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings of
the ACM Annual Conference, volume 2, pages 717–740, New York, 1972. ACM.

[64] John C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS, pages 55–74,
2002.

[65] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation passing style. Lisp and
Symbolic Computation, 6(3/4):289–360, 1993.

[66] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type abstraction and recursion. In POPL, pages
63–74, 2005.

[67] Alan Wills. Specification in Fresco. In Susan Stepney, Rosalind Barden, and David Cooper, editors, Ob-
ject Orientation in Z, Workshops in Computing, chapter 11, pages 127–135. Springer-Verlag, Cambridge
CB2 1LQ, UK, 1992.

[68] Jeannette Marie Wing. A two-tiered approach to specifying programs. Technical Report TR-299, MIT
Lab for Computer Science, 1983.

A Syntax
A class table CT is well formed provided it satisfies the following.

1. The subtype ordering ≤ is acyclic.

2. Any ref type that appears as a field type, superclass, local variable type, cast etc. is declared in CT .

3. Field names are not shadowed, that is, if f :T is in fields T and super T = U then f is not in dfields U .

4. Method types (including parameter names, for technical convenience) are invariant. That is, if
mtype(U ,m) is defined and T ≤ U then mtype(T ,m) = mtype(U ,m).

5. For any C , every method declaration m(x :T) :T {S} in CT (C) is typable in the sense that Γ ` S
where Γ = [self :C , res :T , x :T]. Also exc does not occur in S . Rules that define Γ ` S appear in
Fig. 2 and Fig. 3.

6. For any C , any I ∈ superinterfaces C , and any method signature m(x :T) :T declared or inherited in
I , there is a declared or inherited method in C with the same signature.

19

Γ ` 0 : int Γ ` x : Γx Γ ` new C ()
T ∈ RefType

Γ ` null :T

Γ ` E :T [Γ, x :T] ` E1 :U

Γ ` let x be E in E1 :U

Γ ` x :T1 Γ ` y :T2

Γ ` x = y : bool

Γ ` x :U (f :T) ∈ dfields V U ≤ V

Γ ` x .f :T

Γ ` x :T U ≤ T T ∈ RefType

Γ ` (U) x :U

Γ ` x :T U ≤ T T ∈ RefType

Γ ` x is U : bool

Γ ` x :T T ∈ RefType mtype(T ,m) = z :T→U Γ ` y :V V ≤ U

Γ ` x .m(y) :U

Figure 2: Typing rules for expressions.

Γ ` E :T T ≤ Γ x x 6= self
Γ ` x := E

Γ ` x :U (f :T) ∈ dfields V U ≤ V Γ ` y :T1 T1 ≤ T

Γ ` x .f := y

Γ ` x : bool Γ ` S1 Γ ` S2

Γ ` if x then S1 else S2

[Γ, x :T] ` S

Γ ` var x :T in S

Γ ` S1 Γ ` S2

Γ ` S1; S2

Γ ` x :T T ≤ Thr
Γ ` throw x

Γ ` S1 [Γ, x :T] ` S2 T ≤ Thr
Γ ` try S1 catch(x :T) S2

p
Γ ` S1 Γ ` S2

Γ ` try S1 finally S2

Figure 3: Typing rules for commands.

B Semantics
The semantics of commands and expressions are defined in figures 4 and 5. The semantics is defined with
respect to an arbitrary allocator. An allocator is just a choice function for unused references, i.e., a function
fresh that maps a pair (ρ, h), with h ∈ Heap(ρ), to a reference such that fresh(ρ, h) 6∈ dom ρ.6

To streamline the semantics of expressions, we define a helping function to create exceptional result states.
Given ref context ρ, heap h ∈ Heap(ρ), classname C ≤ Thr, and any type T we define except(ρ, h,T ,C) to
be an element of State([res :T , exc : Thr]) as follows.

except(ρ, h,T ,C) = let o = fresh(ρ, h) in
let ρo = [ρ, o :C] in
let ho = [h, o : defaultObrecord C] in (ρ0, h0, [res : default T , exc : o])

This is similar to the semantics of new C (), but the new object is assigned to exc rather than to res. A similar
function is used in the semantics of commands. Given (ρ, h, r) in State(Γ) and classname C ≤ Thr we define
except(ρ, h, r ,C) to be an element of State([Γ, exc : Thr]) as follows.

except(ρ, h, r ,C) = let o = fresh(ρ, h) in
let ρo = [ρ, o :C] in
let ho = [h, o : defaultObrecord C] in (ρ0, h0, [r , exc : o])

6As a simple example, Ref can be taken to be the naturals and fresh(ρ, h) can be the least n not in dom ρ. A realistic allocator
depends on program state which is why we include h here.

20

[[Γ ` x :T]](µ)(ρ, h, r) = (ρ, h, [res : r x , exc :null]
[[Γ ` true : bool]](µ)(ρ, h, r) = (ρ, h, [res : true, exc :null])
[[Γ ` 0 : int]](µ)(ρ, h, r) = (ρ, h, [res : 0, exc :null])
[[Γ ` null :T]](µ)(ρ, h, r) = (ρ, h, [res :null , exc :null])
[[Γ ` x = y : bool]](µ)(ρ, h, r) =

let v = (if (r x = r y) then true else false) in (ρ, h, [res : v , exc :null])
[[Γ ` new C () :C]](µ)(ρ, h, r) =

let o = fresh(ρ, h) in let ρo = [ρ, o :C] in let ho = [h, o : defaultObrecord C] in
(ρ0, h0, [res : o, exc :null])

[[Γ ` x .f :T]](µ)(ρ, h, r) =
if r x 6= null then (ρ, h, [res : h(r x).f , exc :null]) else except(ρ, h,T , NullDeref)

[[Γ ` (U) x :U]](µ)(ρ, h, r) =
if r x = null ∨ ρ(r x) ≤ U then (ρ, h, [res : r x , exc :null]) else except(ρ, h,U , ClassCast)

[[Γ ` x is U : bool]](µ)(ρ, h, r) =
let v = if r x 6= null ∧ ρ(r x) ≤ U then true else false in (ρ, h, [res : v , exc :null])

Figure 4: Semantics of expressions other than method call and let. Read [[−]] as eitherD[[−]] or S[[−]] through-
out.

For semantics of local variables we use another bit of notation: To remove an element from the domain of
a function we use the minus sign, e.g., if r is a store then r −exc is the same store but with exc removed from
its domain.

A class table denotes a method environment obtained as a fixpoint. The first step is to define semantics of
method declaration mdec of the form m(x :T) :T { S } in some class C . We define [[mdec]] to be a function
from method environments to SemMeth(C ,m), i.e.,

MethEnv → STrans([self :C , x :T], [res :T , exc : Thr])

as follows, using Γ = [self :C , res :T , x :T] so that Γ ` S (owing to condition (5) in the definition of well
formed class table). For any method environment µ and (ρ, h, r) in State([self :C , x :T]), define

[[mdec]](µ)(ρ, h, r) = let r0 = [r , res : default T] in
lets (ρ1, h1, r1) = [[Γ ` S]](µ)(ρ, h, r0) in (ρ1, h1, r1 − (self, x))

Now define an ascending chain µ ∈ N → MethEnv of method environments as follows.

µ0(C ,m) = λs · ⊥, for any m declared or inherited in C .
µj+1(C ,m) = [[mdec]](µj), if m is declared as mdec in C .
µj+1(C ,m) = restr((µj+1(B ,m)),C), if m inherited in C from B .

Here restr restricts the function µj+1(B ,m), which is defined on stores with self :B , to stores with self :C .
This works because C ≤ B implies [[C]] ⊆ [[B]] which in turn induces an inclusion for stores.7

Method environments are ordered by µ ≤ µ′ iff µ(C ,m) ≤ µ′(C ,m) for all C ,m . This refers to the
usual ordering on state transformers: For σ and τ in STrans(Γ,Γ′), define σ ≤ τ iff for all s in State(Γ)
we have either σ s = τ s or σ s = ⊥. The everywhere-⊥ function is the least element in the set of state
transformers of a given type, and this induces a least method environment. We refrain from proving that for
any Γ ` S , the semantics [[Γ ` S]] is a continuous function from method environments to state transformers.
Similarly, the semantics of a method declaration is continuous in the method environment. It follows that
i ≤ j ⇒ µi ≤ µj for the approximation chain. The semantics µ̂ is defined to be the least upper bound of
the approximation chain. (A similar semantics is used in [10]; a characterization of least upper bounds is very
easy and machine-checked proofs of the continuity properties etc. appear in [47].)

7We take pains to make such conversions explicit throughout the paper. It is necessary for machine-checking the results. More
importantly a key aspect of behavioral subtyping is the need for a method declared in some class C to satisfy a specification in which self
has some different type T ≥ C .

21

[[Γ ` x .f := y]](µ)(ρ, h, r) = if r x 6= null then (ρ, [h | r x .f : r y], r) else except(ρ, h, r , NullDeref)
[[Γ ` if x then S1 else S2]](µ)(ρ, h, r) =

if r x = true then [[Γ ` S1]](µ)(ρ, h, r) else [[Γ ` S2]](µ)(ρ, h, r)
[[Γ ` var x :T in S]](µ)(ρ, h, r) =

lets (ρ1, h1, r1) = [[Γ, x :T ` S]](µ)(ρ, h, [r , x : default T]) in (ρ1, h1, r1 − x)
[[Γ ` S1; S2]](µ)(ρ, h, r) =

lets (ρ1, h1, r1) = [[Γ ` S1]](µ)(ρ, h, r) in
if r1 exc = null then [[Γ ` S2]](µ)(ρ1, h1, r1 − exc) else (ρ1, h1, r1)

[[Γ ` throw x]](µ)(ρ, h, r) = if r x 6= null then (ρ, h, [r , exc : r x]) else except(ρ, h, r , NullDeref)
[[Γ ` try S1 catch(x :T) S2]](µ)(ρ, h, r) =

lets (ρ1, h1, r1) = [[Γ ` S1]](µ)(ρ, h, r) in
if r1 exc = null ∨ ρ(r1 exc) � T then (ρ1, h1, r1)
else let r3 = [r1 | x : r1 res]− exc in

lets (ρ2, h2, r2) = [[Γ, x :T ` S2]](µ)(ρ1, h1, r3) in (ρ2, h2, r2 − x)
[[Γ ` try S1 finally S2]](µ)(ρ, h, r) =

lets (ρ1, h1, r1) = [[Γ ` S1]](µ)(ρ, h, r) in
lets (ρ2, h2, r2) = [[Γ ` S2]](µ)(ρ1, h1, r1 − exc) in
if r2 exc = null then (ρ2, h2, [r2, exc : r1 exc]) else (ρ2, h2, r2)

Figure 5: Semantics of commands. Read [[−]] as either D[[−]] or S[[−]] throughout.

C Additional proofs

Proof of Lemma 3.7 Proof To show spec2 wU spec0, assume σ ∈ STrans([Γ | self :U],Γ′) and
σ |= spec2 with the aim to prove σ ||=U spec0. From spec2 wU spec1 we get σ ||=U spec1; but this does not
yield σ |= spec1 which isn’t even defined. Define τ ∈ STrans([Γ | self :T],Γ′) by

τ(ρ, h, r) = if r self ≤ U then σ(ρ, h, r) else s

where s is an arbitrarily chosen state that satisfies spec1 for (ρ, h, r). From σ ||=U spec1 we get τ |= spec1.
Then by spec1 wT spec0 we get that τ ||=T spec0. Now σ ||=U spec0 follows from τ ||=T spec0 by definition
of τ and ||=. �

Proof of Lemma 4.3 Proof For the implication left to right, suppose ST has behavioral subtyping. Con-
sider any pair(T ,m) and method specification spec for (T ,m) such that ST (T ,m) w spec and any C with
C ≤ T . By behavioral subtyping we have ST (C ,m) wC ST (T ,m). Since ST (T ,m) is satisfiable, we can
apply weak transitivity (Lemma 3.7) to get ST (C ,m) wC spec.

For the implication right to left, suppose ST has supertype abstraction for method specifications. Consider
C ≤ U where U is any ref type. Instantiate supertype abstraction with T : = U and spec : = ST (U ,m).
Since ST (U ,m) wT ST (U ,m), supertype abstraction yields ST (C ,m) wC ST (U ,m). �

Proof of Lemma 4.8. Proof Observe that, by definitions, σ |= (J , pre, post) is equivalent to

∀r ∈ Store(Γ) · σ |= (prer , postr)

which is equivalent, by definition of satisfaction, to

∀r ∈ Store(Γ) · ∀ρ, h, q · (ρ, h, q) ∈ prer ⇒ σ(ρ, h, q) ∈ postr

By definition of pre and post this is equivalent to

∀r ∈ Store(Γ) · ∀ρ, h, q · r = q ∧ (ρ, h, q) ∈ P ⇒ (σ(ρ, h, q) + r) ∈ Q

which is logically equivalent to

∀ρ, h, r · (ρ, h, r) ∈ P ⇒ (σ(ρ, h, r) + r) ∈ Q

and since ⊥ 6∈ Q this amounts to 〈σ | id〉 |= (P ,Q). We leave to the reader the argument why 〈σ′ | id〉 |=
(P ,Q) for any σ′ that satisfies (J , pre, post). �

22

Proof of Lemma 4.11. Proof For any T ,m and any spec of type mtype(m,T) we need to show that
ST (T ,m) wT spec implies ST (C ,m) wC spec for all C ≤ T . This follows by weak transitivity from
ST (C ,m) wC ST (T ,m) which we will prove.

The command z : = self.m(y) is chosen because we can unfold the semantics of z : = . . . as in the
proof of Lemma 4.9, so that this command satisfies spec just if self.m(y) satisfies an associated expression
specification of type mtype(m,T). We refrain from giving the transformation on specifications and simply
observe that for any σ that satisfies ST (T ,m) there is µ̇ with µ̇(T ,m) = σ and µ̇ |= ST . Moreover it is
only µ̇(T ,m) that has any bearing on whether S[[[self :T , y :T , z :U] ` z : = self.m(y)]](µ̇) satisfies spec.
So if we instantiate the antecedent (17) by spec : = ST (T ,m) it amounts to ∀σ · σ |= ST (T ,m) ⇒
σ |= ST (T ,m) which is true. Thus we obtain the consequent (18) with spec : = ST (T ,m), which, for
any C ≤ T , boils down to ∀σ ∈ SemMeth(C ,m) · σ |= ST (C ,m) ⇒ σ ||=C ST (T ,m) whence
ST (C ,m) wC ST (T ,m). �

23

	Introduction
	A programming language and its semantics
	Specifications and refinement
	Supertype abstraction and behavioral subtyping
	Discussion
	Syntax
	Semantics
	Additional proofs

