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CHAPTER 1. INTRODUCTION 

Traditionally, there have been two major streams of research in spatial interpolation 

and prediction: kriging and splines. The two methods have developed almost indepen

dently, and each provides a variety of models. Regarding splines, an extensive compara

tive study was carried out by Franke [25]. He reported that radial basis function methods 

rank high in predictive power, when compared to other spline methods, such as tensor 

product, blending or finite element methods. Further, within the group of radial basis 

function methods. Hardy's multiquadric harmonic (MQ-H) and biharmonic (MQ-B) [29] 

and Duchon's thin plate spline (TPS) [21] methods performed especially well. It is worthy 

of note that Franke's study excluded kriging and that other studies such as Laslett et.al. 

[40], have reported kriging to be superior to splines, without considering MQ method. 

The two approaches generally are thought to be distinct. In point of fact, Cressie [15] 

and Wahba [73] adopt somewhat partisan positions in the matter: the former for kriging 

and the latter for splines. On the other hand, the point of view also has been expressed 

that kriging and splines share essentially the same structure as in Kimeldorf and Wahba 

[38]. Further, Matheron [51] showed that thin plate spline (TPS) modeling is equivalent 

to a certain form of kriging in the sense of convergence in a Hilbert space setting. Also, 

Salkaukas [65] has demonstrated that kriging and TPS method are algebraically equivalent 

in terms of a certain generalized function concept. A third sense in which kriging and 



2 

splines are similar is espoused by Dubrule [20] and Watson [74]. The notion is extended 

by Myers [56] to vector valued functions viz., cokriging. 

Comparisons of splines with kriging typically are performed with a view to TPS. 

Such comparisons rarely are done with MQ-H or MQ-B in mind. The reason for this may 

be that the origins of MQ lie in the physical sciences rather than in mathematics. 

This work reviews the equivalence of kriging and splines, from a variety of points of 

view. Their common basis in such matters as model building and validity checking of 

kernels are reinvestigated, with a view to an application to the geometric-shape rendering 

of manufactured parts. Our main illustrative emphasis is on the engineering problem of 

characterizationing the attained shape of manufactured objects intended to be "round". 

Chapter 2 is reserved for an exposition of the author's perception of the common 

ground of splines and kriging. Chapter 3 is devoted to a description of kriging with a 

view to comparison with splines, while section 4 deals reciprocally with splines. 

Chapter 5 examines some details of unified model building and explores the possibil

ity of validity checking in relation to MQ kernels. The author's perception of the common 

aspects of splines and kriging is exposed in chapter 6. In chapter 7, the author's interpre

tation of MQ model in kriging terms is discussed. In chapter 8, the links between existing 

spatial prediction methods including least square method were examined with a view to 

interpreting the spatial prediction method as a generalization of least square method. 

In the remaining chapters 9 and 10, an application to a manufacturing problem is 

studied, particularly for the estimation of geometric objects intended to exhibit some form 

of roundness, such as circles, spheres, cylinders and toruses, in an attempt to develop an 

approach to geometric-shape rendering based on the material discussed in the previous 

chapters. 



3 

CHAPTER 2. COMMON GROUND OF SPLINES AND KRIGING 

Kriging and spline models have at least one point of view in common : irregular 

surfaces z(x) viewed as realizations of stochastic process Z(aj), these viewed in turn as 

superpositions of large and small-scale components. In some cases, such a superposition 

model will include a micro-scale component, typically interpreted as measurement error; 

thus Z{x) is viewed as composed of large (//), small (e) and micro(i?) scale variations: 

Z(aj) = ^(®)-l-e(aj)-|-i?(a5) (2.1) 

Here, /i(») is deterministic but e { x )  and ??(a5) are random with statistical expectation 

zero. It is also usually assumed that e{x) and £(25') , ® are correlated, while 

i9(«) and are not. Further, both krigers and spliners assume that z { x )  is available 

on a sub-domain 2^ of a domain V C TtP' of interest. Throughout this paper, is 

assumed to be a finite set of distinct points; The observations 

z{T^) = is used to deduce an estimate: 

z { x )  = m(aj) -1- e(») (2.2) 

of z { x )  on v .  When f i { x )  is the multivariable polynomial of degree k  —  1 ,  the model for 

Z{x) is said to be of order k. If the large scale part is omitted, it is of order 0. 

Both krigers and spliners avail themselves of the option of excluding the micro-scale 

v a r i a t i o n  i ?  f r o m  t h e  m o d e l ;  i n  t h a t  c a s e ,  k r i g e r s  c a l l  t h e  p r o b l e m  o f  d e v e l o p i n g  a n  z { - )  
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one of predictions by interpolation, the latter term also being common among spliners. 

When micro-scale variation is included, both disciplines speak of "measurement error" 

and "smoothing". Krigers deal with measurement error through introducing a ^''nugget 

effect", while spliners invoke a certain variational principle. 

2.1 Large-scale Variation 

The large-scale variation iJ. { x )  of z { x )  is usually represented as a multivariable poly

nomial P]g{x) of degree fc — 1. Let Qjf;he the set {q{x)\q{x) = : 0 < • 

+^n < fc — 1}. The cardinality |Q^| of this set is = m. A polynomial of degree, 

say A: — 1 = 2, in, say n = 2, dimensions will then consist of m = 6 monomials; qi{x) = 1, 

92(35) = X, q^{x) = y, q^ix) = q^(x) = xy and qQ(x) = y^. Let be the class 

of multivariate polynomials of degree k — 1. A polynomial P}g{x) of degree k — 1 can be 

expressed as where the /3j's are real constants. For the discussion in later 

sections, it is useful to introduce the following constructs related to large-scale variation. 

(2.3) 

In the context of known z and fc, a key task for both krigers and spliners is to estimate 

= and therefore also pj^{x) = /^j9j(®) = 

Example 2.0.1 In the case of multivariable polynomial regression, the model can be iden

tified as Z(x) = /x(aj) '^(x), where i?(») consists of independent errors. The associated 
A / • 1 / 

normal equation is given by (3 = h = {X X)~ X z. The corresponding estimates jjL{x) 

of fj,{x) can be expressed as (j,{x) = b' • x = z'X • (X'X)""^ • x. 

9l(«l) 92(®l) • 9l(®) z { x i )  

= 9l(®2) 92(®2) • •  Q m { x 2 )  X = 92(®) z = ^(®2) 

_ 9l(®iV) 92(®Ar) • • 9m(a5iv) 9m(«) _ 2(®Ar) _ 
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2.2 Small-scale Variation 

When large and small-scale variations are considered, the model for z { - )  becomes: 

m 
^(®) = X] + ̂ (®) = • X + e(®) (2.4) 

i=i 

where e(®) is a mutually correlated residual, with estimated interpolant: z { x )  =  b'x + 

e{x), where b = and e{x) = e(a5). The correlation structure of e(a3), and the inter

polation and treatment of that correlation structure, is the key part of the model and 

the major source of difference among interpolation methods such as splines, kriging and 

possibly other types of techniques. The structure described below generalizes and unifies 

the above viewpoints. Given = 1, • • •, iV, the interpolant ^(aj) must satisfy 

m m 
K ^ i )  =  E (2-5) 

i=i i=i 

The problem common to krigers and spliners is to choose an interpolant ( or approximant) 

m 
z { x )  = 5] b j q j { x )  -f- e(aj) (2.6) 

i=i 

which amounts to choosing { b j }  and {e(®^)} subject to (2.5). To analyze this type 

of general order model, a so-called "detrending" technique is employed. Detrending is 

applicable to "smoothing" models that incorporate independent errors i?(»), as well as to 

interpolation models such as (2.4) that do not. For maximal generality, the next section 

discusses detrending in the former case. 

2.3 Detrending 

This section on detrending emphasizes conceptual approaches to eliminate the trend 

rather than actually implementable data analytic detrending methodologies. The problem 
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faced by both krigers and spliners is how to treat the nuisance parameter /3. This problem 

is in effect approached by both schools in the following way. The whole idea is to filter, 

linearly, the data z such that G'z = Ge, where G is a linear operator (matrix). There are 

several known filtering methods depending on the matrix G used. In this study, only the 

subtraction and partial differential operator V is being considered. The easiest way of 

detrending is to use the subtraction, 

in which case the nature of the stochastic processes e { x )  and d { x )  remain intact. The 

more sophisticated one would be to use the partial differential operator V, 

Z Q { X )  =  V ^ Z [ x )  = F I {x) •\-V^ E { x ) - \ - V ^ d { x )  =  sqI® )  +  ̂ o(®) (2-8) 

The large scale part //(®) vanishes and the nature of the stochastic process changes. As 

noted, the detrended model embraces small-scale and micro-scale variations only. 

Note that after being detrended, the nature of the stochastic process changes. Basically, 

it is assumed that £o(®) covariance stationary white noise processes, the 

kernels of which must be of particular type, as will be discussed in later sections. 

2.4 Whitening Operation and Positive Transformation 

Now we consider the simple algebra involved in the calculation of an interpolant, 

which corresponds to the above mentioned reproducing kernel hilbert space approach. 

Consider the simplest form of a spatial prediction model that reflects only the small 

Z ^ { x )  =  Z { x )  —  /3'x = e { x )  - F  (2.7) 

^o(®) = ^o(®) + ^o(®) (2.9) 
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scale variation Z { x )  = e(x)  taken to be the detrended model. Let us define a vec

tor E = [e(®i), • • • ,e(a5jY)]' of correlated random variables with mean zero 

and finite variance. Suppose E ~ W(0, S), where S is a positive definite variance 

covariance matrix. If we define N = T^^E = [x;(a;j), •••, where T is a 

s y m m e t r i c  a n d  i n v e r t i b l e  s q u a r e  r o o t  o f  S  a s  i n  a p p e n d i x  1 2 . 3 ,  t h e n  N  r \ j  N { 0 ,  / ) ,  

where T~^ = is called Whitening operator that changes correlated random vari

ables {e(®i)}^i independent random variables {u(aj^-)}^p Again, let us define 

A = = [a(a!]̂ ), • • • then A ~ iV(0, S~̂ ). Further define v and ot 

by E = 7E = TN = T^A. Let the observation vectors of E, N and A be e, 1/ and a, 

respectively. Then the detrended observation vector z can be expressed as 

z = le — Tu = T ot — Ea (2.10) 

In the language of vector spaces, e and ot are mutually covariant and contravariant. Both 

for kriging and splines, 1/ is regarded as a vector of independent residuals. For simplicity, 

we introduce the following vectors of kernel functions functions: 

(2.11) 

An interpolant can be obtained by specifying a kernel {A(-)} such that I = 

with \^j = \{x^,xj). Alternatively, one can obtain an interpolant by specifying {r(-)} 

such that T = (t^j)|^-_]^ with = T{x^,xj). Still another method common to kriging 

and splines for obtaining an interpolant is to specify a function {«:(•)} such that S = = 

'^ij = where S is positive definite because it is a multiplication 

A(a5,!Bl) T { X , X I )  K(«,®I) 

A(®,a;2) t { X , X 2 )  
and K = 

/c(®,®2) 
— 

A(®,a;2) , r = t { X , X 2 )  
and K = 

/c(®,®2) 

1 

H _ T(®,«^) _ «(®,®iv) 



8 

of two identical symmetric invertible matrices. The interpolant corresponding to (2.10) is 

an extension of observations beyond the data points using the relation u = To. — T"~^e 

a n d  r  =  T ~ ^ K  =  T X .  

z { x )  =  e { x )  =  e ' - A  =  ( 2 . 1 2 )  

= e'• \ = I/'• T = a'• K (2.13) 

Note that equations in (2.12) are standard form of Hilbert space approach. Usually, 

krigers try to estimate the covariance kernel «(•) from the given observational data, while 

spliners choose and specify splines k{-) on their own criterion. 

The purpose of this chapter has been to introduce the reader to the notation involved 

in the subsequent chapters, and to models common to both kriging and splines in the 

context of linear spatial prediction models. The rest of this work is based on this notation 

and these models. 
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CHAPTER 3. KRIGING WITH REGIONAL DATA 

The spatial prediction method named "kriging" is an analogue for spatial stochastic 

processes of Wiener-Kolmogorov prediction theory that has been developed and used 

mainly by Matheron and his school in mining industry. In this method, an irregular 

s u r f a c e  ^ ( a ; )  i s  r e g a r d e d  a s  a  r e a l i z a t i o n  o f  m u l t i - d i m e n s i o n a l  r a n d o m  v a r i a b l e  Z { x ) ,  

where {Z{x) : x E T> C is thought of as a real-valued stochastic process defined 

on a domain V of TZ^. Conceptually, we divide the random process Z{x) into a drift or 

trend /j.{x) and a small-scale random process e(a!) : Z{x) = n{x) + e{x). The distinction 

between the drift (trend ) and fluctuation is not clear cut. Usually, iJ,{x) is a multivariate 

polynomial. Generally, we think of the drift as a large scale variation, regarded as fixed, 

and the fluctuation as a small-scale variation. The model could encompass a micro-scale 

process for pure "nugget effect" or measurement error of the process. 

The kriging model for spatial prediction is based on the multivariate normal dis

tribution, which is assumed throughout. The model for interpolation takes the form of 

Z{x) = fi{x) -|-£(aj). The model type depends on the way we regard e(a;). In the litera

ture, there are many types of models for kriging. In some cases, the small-scale variation 

is viewed as a white noise process. Under this assumption, the estimation lends itself to 

Ordinary Least Square. In some other cases, e{x) is regarded as a Brownian motion or a 

higher order random process. The prediction of kriging is much the same as Generalized 
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Linear Regression analysis and logged likelihood analysis. 

3.1 Stationarity 

The most common assumption of kriging is that the stochastic process is stationary 

in the domain of interest {VC 'RP' ). The term stationary, however, can have different 

meanings and different degrees. A stochastic process {Z{x) : x €T> C 'RP} is called 

1. Strictly Stationary : if the joint distribution of • • , Z [ x  is the same 

as the joint distribution of • • •, Z(»^)} for any set of points 

2. Covariance Stationary : if it has finite second moments and satisfies 1) E[Z{x)] 

exists for all x €.7^", and 2) Cov[Z{x'),Z{x)] is a function of Haj' — »|| for all 

(a;',®) G TtP" x 7^*^, where || • || is the EucUdeaji norm. A covariance stationary 

stochastic process is also called Wide Sense Stationary or Second Order Stationary. 

3. Intrinsically Stationary : if it satisfies 1) E[Z{x)] exists for all x €. HP", and 

2) for any {x^x) 6 71" x 'RP, the increment variable [Z{x') — Z{x)\ has finite 

variance, which depends only on ||a;' — «||. An intrinsic stationary stochastic process 

is also called Variogram Stationary or Wider Sense Stationary, since 3. does in fact 

generalizes 2. 

3.2 Covariogram and Variogram 

The covariogram and variogram are functions that characterize the second moment 

dependence properties of a stochcistic process defined on 7?.", and underlie intrinsic sta

tionarity or variogram stationarity a further sort of stationarity. They play an important 
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role in stochastic spatial prediction or kriging. In particular, with x' — x = h, suppose 

t h a t  f o r  t h e  i n c r e m e n t  v a r i a b l e  [ Z { x ^ )  —  Z { x ) ] ,  

E [ Z { x ' )  -  Z { x ) ]  =  0, for all®',® 6 2? (3.1) 

V a r [ Z { x ' )  —  Z [ x ) \  =  2 ' y { h )  ,  for all a;',« G (3.2) 

The quantity 27(-), which is a function only of the difference between the spatial locations 

X and x^, has been called the variogram by Matheron [49]. Earlier appearances in the 

scientific literature can be found and have been called structure functions in physics and 

meteorology, and a serial variation function in time series. Replacing equation (3.2) by 

C o f v \ ^ Z { x ' ) ^ Z { x ^  =  K ( h )  for all x , x '  (3.3) 

defines the class of covariance stationary processes. Here /c(-) is called the covariograms 

or covariance kernels. Usually, the semi-variograms, one half of the variograms, have the 

properties of 7(—fe) = 'y{h) and 7(0) = 0. When the semi-variogram 7(fe) = T^^dl'iH)) it 

i s  s a i d  t o  b e  i s o t r o p i c  o r  r o t a t i o n a l l y  s y m m e t r i c .  I f  V a r [ Z { x ) \  <  + 0 0  i s  n o t  a  f u n c t i o n  o f  x  

and we define h — ||/i||, the semi-variogram 7®(/j) is related very simply to the covariance 

kernel k^(-) if K^{h) exists. This can be easily seen from the followings 

7°(/») = \var[ Z { x ' ) - Z { x ) ]  (3.4) 

=  i { V a r [ Z { x ' ) ]  +  V a r [ Z { x ) ]  -  2 C o v [ Z { x ' ) ,  Z { x ) ] }  (3.5) 

= ^{«^(0) + «®(0)-2/c®(/i)} = K^{0)-K^{h) (3.6) 

Further, it is often seen that ( h )  =  k^(0), called the sill, by the the near-

independence of distant quantities. 

While conventional models envisage 7®(/i) with finite asymptote «^(0), one can ex

tend the class of covariance stationary processes to include cases where the variance 
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' y ^ { h )  =  V a r [ Z { x ^ )  —  Z { x ) ]  can become arbitrarily large as /i —> oo. Thus, one obtains 

the class of the intrinsically stationary processes, defined by (3.1) and (3.2), that includes 

covariance stationary processes with finite sill as well as stationary-increment processes 

like Brownian motion. Thus the class of variogram-stationary processes strictly con

tains the class f22 of second-order (covariance) stationary processes, and define the class 

1)3 of variogram-only-stationary processes as $^3 = we have that 

= CI2 + ^3 (^•7) 

The major distinction between variogram-only-stationary processes and covariance sta

tionary processes is that the latter posesses a covariogram depending on h = Ijaj' — aj||, 

in which case the variogram will have a finite sill, while the former does not. Various 

variogram models are presented in Journel and Huijbregts [35] and Salkaukas [65]. Var

iogram models are more versatile than covariogram models in the sense that (3.2) holds 

more often than does (3.3). In this connection, Matheron [50] has invented a generalized 

covariance concept. The functional relationship between the (generalized) covariance k(-) 

and the semi-variogram 7(') is the same as that given by (3.1), (3.2) and (3.3). Kitanidis 

[39] discusses on the estimation of generalized covariance function from the data. 

Example 3.0.2 S u p p o s e  { Z { x ) \ Z { x )  = /i-|-e(®),» 6 V] is a Brownian motion process, 

where fj, is a constant. The increment variable [Z{x') — Z{x)\ = [£(»')— e(a;)] is normally 

distributed with mean zero and variance Var[e{x') — e(aj)] = 7^(/i) = a^h, where a 

fixed parameter and h = j]®' — ajj] > 0. Then, Z{x) is an intrinsically stationary, but 

9 
not covariance stationary, stochastic process. When a = 1, the process is often called 

standard Brownian motion. 
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3.3 Choices of Covariogram and Variogram 

In this work, K^{h) represents the generalized covariance kernels, unless stated oth

erwise. Examples of the covariance-stationary and variogram stationary covariograms are 

given in Fig. 3.1 and Fig. 3.2, respectively. For the former, the sill is set equal to cj. 

Figure 3.1: Covariance-Stationary Semi-variograms 

ic(h) 

(d) 

h 

M 

h 

Figure 3.2: Variogram-Only-Stationary Semi-variograms 

Among the covariance-stationary functions K^{h) are the (a) Gaussian, (b) Exponen

tial, and (c) Hole Effect, while the (d) Linear, (e) Logarithmic, and (f) Power functions 

are examples of Variogram-only-stationary functions. 

We now consider a family of (generalized) covariance functions called Gaussian Fam

ily by Whittle [75] and largely used by krigers that include most existing (generalized) 

covariance functions as special cases. 
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where lCu{-) is the modified Bessell function of order v. The range parameter a works 

in the same way as scale parameters do in the exponential and Gaussian functions. The 

parameter 1/ is the order and controls the smoothness of the process. This family can be 

easily generalized to higher dimensions. For smoothing, krigers construct the following 

function using the kernel 

C j / { h )  = C Q S { h )  + c i K ^ { h )  (3.9) 

where 6(-) is the indicator function ( or white noise kernel), CQ the nugget, and (eg + CJ^) 

the sill. 

Now let us discuss how the kernel is tied to the order of the model. When one assumes 

the model Z{x) = fi{x) +e(®), e{x) is the process that has the associated (generalized) 

covariance function k;®(/i) and semi-variogram 7^(/i). The partial derivative Ve(») is also 

a stochastic process, whose associated covariogram or semi-variogram becomes negative 

Laplacians of the original ones, provided they are isotropic or radially symmetric. Suppose 

that Zjg{x) is a A; times "differentiable" random function on I? C 7?." with a semi-

variogram 7^(/j) or a covariogram K^{h). Assume the model to be: Z^{x) — fJ.f.{x) + 

e^(®), where ii^{x) is a polynomial of degree not exceeding k — 1 and £jf.{x) is & k times 

differentiable small-scale stochastic process. Let and be the associated 

semi-variogram and covariogram of VZj^(aj). As shown in Matheron [49] and Kent and 

Mardia [37], 

= -Aflih) (3.10) 

4_l{h) = -AKl(k) (3.11) 

where A is the Laplacian operator V^. In the same fashion, if we let V^Zi^(x) have associ

ated semi-variogram and covariogram 7®_^(^) or then they can be represented 
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as follows 

4-tW = 

(3.12) 

(3.13) 

These facts are enough to give one a hint that certain random functions can be expanded 

in a finite Taylor-like series with the remainder expressed in terms of a white noise process 

£Q(aj), which is the main topic of chapter 5. 

Example 3.0.3 White noise is defined by analogy to the continuous energy distribution 

in white light from an incandescent body. A covariance stationary stochastic process which 

has equal power in all frequency intervals over a wide frequency range is called white noise. 

For most purposes, it suffices to regard white noise as a normal process with covariogram 

where p is so large as to be considered infinite. If p is thought of as a variance of the 

process, the semi-variogram becomes 

With finite p, (3.14) becomes the semi-variogram of covariance stationary processes. There 

could exist many possible ways of giving a precise mathematical definition of white noise. 

Typical covariograms (or semi-variograms) of the white noise and Brownian motion are 

shown in Fig 3.3. The covariogram (or semi-variogram) of the white noise process works 

like a Dirac Delta Function encountered frequently in differential equation problems and 

regarded as a Generalized Function. A white noise kernel is characterized by complete 

monotonicity, which plays a key role in validity checking of kernels, as will be discussed in 

K®(/i) = pe 0 < h < oo (3.14) 

7®(/i) = 'c^(O) — K^{h) = p — pe 0 < h < oo (3.15) 



Figure 3.3: White Noise (a) and Standard Brownian Motion (b) 

chapter 5. It would be of help in later chapters to note that the derivative of a white noise 

kernel is again a white noise kernel, and one can take the Laplacian an infinite number of 

times. The sign of the Laplacian alternates, whenever the Laplacian is taken, and hence 

the white noise kernel is completely monotonic. 

3.4 Kriging Models of General Order 

The use of kernels in the model is interrelated with the order of the model. The 

• • • ^ AA kriging predictor defined as Z { x )  =  with = Aj(a;) = X { x , x i )  is 

known as the Best Linear Unbiased Predictor (BLUP), where Aj(ajj) = A(x^,xj) = 

Xjj = S^j. Let z = [2:(ajj), • • •, z(xjy)]' be an observation vector of the random vector Z 

= [Z{xi), • • •, Z{x jy)]' in the context of known {aij, then the kriging predictor 

for A = [A]^(®), A2(®), • • •, Ajy(AJ)]' becomes 

Z{x) = = A'-z (3.16) 
i=l 

The Unbiasedness requires the following condition: E[Z{x)] = E 

which reduces to x'/3 = A'X/3 or X = X'\. A key task for krigers is to determine the 

order k :  P ] ^ { x )  = = /?' • x as in section 2. Depending on the order k ,  there 
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exist three types of Covariance Stationary models: 

1. Simple Kriging (fc=0): f x { x )  is known or zero. 

2. Ordinary Kriging (A;=l): ^(a;) is an unknown constant. 

3. Universal Kriging { k  >  1): f i { x )  is an unknown multivariate polynomial. 

In the same manner, the variogram-only-stationary models can be classified in accordance 

with the order ranging from 0 to > 1. 

1. Order 0 (A;=0); n{x) is known or zero. 

2. Order 1 (A:=l): [ j , { x )  is an unknown constant. 

3. Order k  { k  >  1): f i { x )  is an unknown multivariate polynomial. 

According to the classification by Matheron [50] and Chritakos [11], a 0-IRF model is of 

order 1, a 1-IRF model order 2 and so on. Based on stochastic process theory, order 0 

model corresponds to white noise and order 1 to Brownian motion. If fc > 1, then it is 

called Brownian motion of higher order. 

3.5 Objective of Kriging 

Kriging predictors are devised with a view to an Error Variance Reduction at predic

tion points », which is often referred to as a Conditional Variance reduction. The variance 

of Z(x) can be decomposed into two parts; Conditional Variance (CV) and Variance of 

Conditional Expectation (VCE): 

V a r { Z { x ) }  =  V a r { Z { x ) - Z i x ) }  +  V a r { Z { x ) }  (3.17) 

= Var 
N 

Z { x )  -  £  A i Z ( x i )  
i=l 

-\-Var 
N 

i=l 
(3.18) 
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The second term of right hand side of (3.17) is the variance of conditional expectation, 

which is less than Var{Z(x)} itself by virtue of having observed data. Actually, use of 

Z(x) minimize the first term, which is one way of achieving what kriger's hoped-for error 

variance reduction. 

3.6 Covariogram Modeling 

Together with the unbiasedness of the estimates, the objective can be given by 

min Var 
A 

N 
= min E 

A 
z ( x )  -  x; \ z ( x i )  

N 
subject to > i = Ir '', 

z=l 

N \ 
z { x )  -  Y :  

i=l J 

21 

m 

(3.19) 

(3.20) 

Note that in case of simple kriging (A:=0), no such constraint is needed. In general, 

however, Z{x) is supposed to be A;-th order stochastic process. After removing the large-

scale part from the model, the MSE function can be rearranged as follows: 

E 
f N > 
Z ( x )  -  £  \ Z ( x i )  

{ i=l i 
= E 

= E 

' N y 
x'l3 -f £(a5) - X'XI3 - Xie{xi) 

K i=l ) 

( N N 
e(®) - E 

^ i=l ) 

(3.21) 

(3.22) 

since the unbiasedness condition x'/3 = A'X/3 holds. Thus, the optimization becomes 

N N N 
min Var[e(a;)]-)- Y ,  Zi ^ o v [ e { x i ) , e { x j ) ]  -  2 Y  C'ou[£(a;),£(a;^)] (3.23) 

i=\i=l i=l 

N 
subject to Y = 9j(®) , i = 1, • • •, ̂  (3.24) 

i=l 

The problem is identified as an Equality Constrained Quadratic Optimization (ECQO): 

min A'SA — 2A'/c + /c(0) subject to X'A = x (3.25) 
A 
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where /c(0) = Var[e{ x ) ] .  Let the Lagrangian Multiplier be 2a; = W2, •••, • 

Upon taking derivatives with respect to (A',u;'), this optimization problem reduces to a 

linear system called First Order Necessary Condition (FONC) 

SA -f Xu: = K (3.26) 

X'X = X (3.27) 

The system of equation solves uniquely, if the matrix S is Positive Definite on the Subspace 

defined by = {A : X^X = 0}. 

3.7 Variogram Modeling 

The Covariogram Model changes to the Variogram Model through the relations 

K { x , x j )  =  C o v [ e { x ) ^ e { x j ) ]  =  V a r [ e { x ) \  — ' ) { x , x j )  (3.28) 

= Cov[e{xi),e{xj)] = Var[e{xi)]--i{xi,xj) (3.29) 

On condition that = 1, the equation (3.23)-(3.24) can be rearranged as 

N N N 
min 2 ^ 7(®,®i) - E Zi 7(®i,«j) (3.30) 

i=l i=l j=l 

N 
subject to (3-31) 

i=l 

Let us define the matrix V  =  with ' y ^ j  = 7(35^-,®y) and 7 = [7(0!,«]^), •••, 

7(05, a;In turn, the objective function can be given by 

min 2A'7 —A'VA subject to X'X = x (3.32) 
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This is also an ECQO, the FONC of which is the following 

KA + Xw = 7 

X'\ = X 

(3.33) 

(3.34) 

where 2u) is the Lagrangian Multiplier. Just as in covariogram modeling, the solution 

V X 
in A and a; are uniquely determined if = 

X' 0 
is invertible. The system of 

equations solves uniquely, if the matrix V is positive (negative) definite on the tangent 

subspace M = {X: X'X = 0}. From equation (3.33), 

A = F~^(7 - Xuj) = - V~^X(jJ (3.35) 

Due to the unbiasedness condition (3.34), it follows that X ' X  = X'V ^(7 — XIAJ) = x. 

Thus, the estimates of A and u; can be obtained as follows: 

w = (XV-^X)-! • [xV-^7-x] (3.36) 

By substuting equation (3.36) into (3.35), one obtains 

A = V - ^ - f - V - ^ X i X ' v - ^ X y ^ l x ' V - ^ - i - ^  (3.37) 

= [y-^ - V - ' ^ X { X ' V - ^ X ) - ^ X ' V - ^ \  7 + \ v - ^ X { X ' V - ^ X ) - ^ \  x (3.38) 

For convenience, let A = A • 7 + B • x. The interpolant can be expressed as 

z { x )  = z' • A = z '  •  B  - K  +  z '  •  A - f  =  b' • X + a' • 7 (3.39) 

where 

= z' • - V~'^X • {X'V-'^X)-'^ • X'V-^] (3.40) 

b' = z' •V-'^X •{X'V-^X)-'^ (3.41) 

Note that X'a = 0, which indicate the orthogonal decomposition. (3.39) is called the 

dual form for kriging. 
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3.8 Confidence Interval of Prediction 

Since the kriging objective is to minimize MSE, the optimized value is the variance 

estimate of kriging prediction. Assuming covariance stationarity, the variance estimate 

o 
s  { x )  at a prediction point x  is given by 

5^(35) = = A'SA — 2Aic + «:(0) (3.42) 

where /c(0) is Var [^(aj)]. Assuming variogram only stationarity, one can infer that 

s^{x) = ^^{x) = 2X'y — X'VX (3.43) 

The 95% confidence interval { C I )  can be evaluated using standard deviation s(aj) 

C I  =  { z { x )  —  1.96 s(®) , Z { x )  + 1.96 s(aj)j (3.44) 

Under the assumption that Z { x )  is Gaussian, the probability that the actual surface z{x) 

is within the interval is 0.95 : Pr [z(®) G CI] = 0.95, where the Prf-] is calculated from 

t h e  j o i n t  d i s t r i b u t i o n  o f  Z { x ) ,  Z { x i ) ,  •  •  • ,  Z { x ^ ) .  

3.8.1 Smoothing of Data 

In most cases of real world problems, the sampled data are subject to random effect 

errors. In the absence of formal fitting procedures, the best way to assess the smoothing 

parameter or nugget CQ seems to be Cross Validation. Each data point is deleted in 

turn and its value predicted from the rest of the data, using the fitted or specified kernel 

function. The predicted error are then assessed. It is tempting to form the sum of squares 

of these errors. Based on this idea, Cressie [16] and Wahba [72] presented the formal fitting 

procedures, such as Ordinary Cross Validation and Generalized Cross Validation. 
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CHAPTER 4. SPLINES WITH SCATTERED DATA 

We now consider a deterministic approach to multi-dimensional interpolation and 

smoothing problem for "scattered" data using spline functions. Formally and computa

tionally, the analysis of deterministic splines follows the Hilbert space approach. 

The deviation of an interpolant z{ x )  from the actual surface z{ x )  is called the error 

of the interpolant. The error S{x) at a point x committed by interpolation is defined as 

S{x) = z{x) — z(x). The objective function is min |£(a!)|^ or 

min ||2(aj) — 2(aj)||^ (4.1) 

The optimal estimate z{ x )  £  M  =  span{^2(®)}^i) where ^2(a5)'s form a basis, becomes 

an interpolant when m> N and the least square approximant when m < N. 

4.1 Representation of an Interpolant 

We first describe a way of representating an interpolant at the prediction point » G X>. 

Consider a scalar-valued function X{x,xj) defined on ® € P such that 

= ^ i j  =  
1 q •Ci) — 33 rt 

' ^ (4.2) 
0 ®j 

where { i , j  =  is Kronecker Delta. These are what spliners call Cardinal 

Functions = A(a;, x ^ ) .  When x  is fixed, the interpolant z{ x )  is just a linear combination 
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of the cardinal functions with different z { x ^ ) .  The interpolant z { x )  based on these basis 

functions has a Representation in terms of a linear combination with the observations 

Zj^ = z{xj^), which is often called Lagrange Formula 

N N 
2(«) = 12 = 11) >^iZi 

i=l 
(4.3) 

Among famous examples of the cardinal function found in the literature is the kernel of 

Lagrangian Polynomial. This type of representation leaves something to be desired, for 

the interpolant is not unique and in some cases the interpolant might behave erratically. 

The measure against this would be to secure the boundedness and uniqueness of the 

interpolant. 

4.1.1 Optimization at Prediction Point 

For our purpose, let us define Za = [zQi '''"' iv)]' 

Aa = [—l,Ai, • • •, Ajy]' = [—l,A(a5,®i ),•••, A(a!,®jY)]'. The error |5(a;)|can be written 

as a dot product of the two vectors 

N 
£ { x )  =  2 r ( a ! )  -  X )  

i=l 

Further, let us define a {N + 1) x (iV + 1) matrix Ka = with Ta and Ka are: 

(4.4) 

(4.5) 

Ta = 
c r 

T T 
and Ka = 

c K 

K K 
(4.6) 

where c is a certain constant (possibly 1). For our purposes, we shall insist that Ta be 

symmetric. Now it is possible to show that the magnitude of £"(») in equation (4.4) can 
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be bounded a s  follows: 

\S{x)\ = z'a • Aa < Wal<a^^a • X'aKaXa 
1/2 1/2 

(4.7) 

This is the consequence of the well known Cawc/iy—Sc/iiuarz inequality. The upper bound 

can take several forms and can be expressed in terms of weighted norms: 

J  K  X  1 ^ / ^  -  t I a '  K  A  -  C  k I  K - ^ K  (4.8) 

where the constant C depends on Ka and the values zq, • • •, 

4.1.2 Zero Order Model {k = 0) 

We come now to the optimization of A(«, aj^-)2(Xj-). Ideally, we would like 

to minimize the absolute error |5(®)|, but since z { x )  is unknown, this is not possible. 

Instead, we choose a suitable /i" and minimize the upper bound of |5(a5)| in (4.8): 

min X'aKa><a = min [ -1, A^, • • •, Ajv ] 
Afl Aa 

= min |c — 2X!K + A'A'A| 

c K 
K K 

-1  

A N J 

(4.9) 

(4.10) 

where k . = [k(x, ajj), • • •, K(aJ, Xjy)]' and K  =  with = K { x ^ , x j ) .  

Note that equation (4.10) is an unconstrained quadratic optimization problem. In order 

for this problem to solve uniquely, K must be Positive Definite and hence T invertible. 

The interpolant can be given as 

z{x) =-z' • X = z' - T ^ - r  = • K ^ • k (4.11) 

Note that this is the standard form of Hilbert space approach in chapter 2. 
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4.1.3 General Order Model {k > 1) 

In order to make large-scale variation independent of small-scale one, we assume that 

m associated with the order k be smaller than the number N of data points. In addition, 

the constraint X^X = x is to be imposed on the permissible values of Aj, • • •, Then, 

the optimization becomes 

min X'KX — 2X'k + c subject to x'x = x (4-12) 

Note that this is a typical Quadratic Programming of optimization problem with equality 

constraints as in Luenberger [43]. The use of Lagrangian multipHers (2u;) leads to the 

following First Order Necessary Condition (FONC) 

KX + Xiij = K (4.13) 

X'X = X (4.14) 

whose solution in A and u; are uniquely obtainable if = is invertible. The 
X' 0 

system of equations solves uniquely, if and only if V is Positive (Negative) definite on the 

tangent subspace A4 = {A:X'A = 0}. 

4.2 Standard Form of Splines 

The standard representation of interpolant in splines are based on Reproducing Kernel 

Hilbert Space theory and can be given by 

N 
z { x )  =  j S '  • x +  ®j) (4.15) 

J=1 

where z { x )  is a polynomial in x  of degree k  —  \  plus a linear combination of N  copies 

h--
of the kernel function centered at data sites {xj}^_-^. This form can be derived directly 
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from (4.13) and (4.14) as will be shown in chapter 6. The parameter estimates are 

a = a = -z (4.16) 

h  =  ^  =  { X ' K ~ ' ^ X ) ' - ^  • X ' K ~ ' ^  - z  (4.17) 

Note that X ' a  =  X ' { K - ' ^  -  R - ^ X  •  ( X ' R - ^ X ) - ' ^  •  X ^ R - ' ^ )  =  0, where a represents 

any vector residing in the subspace orthogonal to the subspace spanned by column vector 

of matrix X. 

4.3 Choices of Spline Functions 

Usually, spliners adopt the class of Radially Symmetric Basis Function for kernels 

k(-), mainly because of the Rotation Invariance of the interpolants. According to Powell 

and his associates [63], radially symmetric basis function models have many desirable 

properties and hence they provide many opportunities for application. For this reason, 

radial function method is the major part of the analysis of splines. 

Radial symmetry is analogous to the concept of Isotropy of covariogram or semi-

variogram kernels of kriging. Usually, the functions x —> </»®(||jb — ^jll^)) ® ^ i = 

l,---,iV are referred to as radially symmetric functions "centered" at Xj. If a radial 

function is centered at 0, then <^(x) = <j){—x) and hence <f){x) = (/>^(||aj||2). A function 

(f>{x) is called Harmonic in P C 'RP, where the Laplacian of the function vanishes. 

Example 4.0.4 Let x = {x^y^z)': n=3, then the following condition, called Laplace 

equation, must be satisfied 

EY CY CY 

A(/.(a;) = v2(^(®) = ^'^(®) + ^ 
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for the (j>{x) to be harmonic. The theory of the solutions of Laplace's equation is called 

Potential Theory. In the same way, the Biharmonic and Polyharmonic conditions can he 

expressed as follows: 

( biharmonic ) d^<j){x) = V^(j){x) = = 0 (4-19) 

( polyharmonic ) A^(^(®) = v'^^(j){x) = • • •) =0 (4.20) 

The kernel function that satisfies these conditions renders very smooth surface in C 

in terms of curvature. 

Example 4.0.5 Both <i>i{x) = log(x^ + y^) and <^2(®) = yx"^ +y^ + are harmonic: 

= V^log(x^+ ?/^) = 0 , + (4.21) 

V'^(l>2{x,y,z) = \'^\Jx^ + y^ + z^ = 0 , ^ 0 (4.22) 

Note that the Laplacians of the two functions are not defined when x^ + ?/^ = 0 or 

9 9 9 x + y + z  = 0. This fact gives the notion that the Laplacian is proportional to 8{-). 

In this work, we only take into account the multiquadrics and Thin Plate Spline 

(Surface Spline), while we do not exclude other spline models. Our selection is based on 

Franke's [25] test of various methods for interpolation over planar domain, in which the 

performance of these three methods ranks high. 

4.3.1 Thin Plate Spline (Surface Spline) 

The Thin Plate Spline (TPS) was introduced by Duchon [21] and later technically 

advanced by Duchon and Meinguet in a series of papers [52, 53, 54]. The interpolant is 

known to be a generalization of univariate Natural Spline or Surface Spline. The objective 
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of TPS is to find a function g * { x )  that minimizes the Roughness Measure or Penalty, 

= ĵ n (•1-23) 

among all functions g { x )  interpolating the data { g { x i )  = 2 ( x j ) ,  i  =  1 ,  -  ,  N } ,  where k  is 

the order of the model. In the case of n=2, J^ig) measures the Bending Energy of a thin 

plate of infinite extent, and the solution models such a plate clamped at the datapoints 

Suppose any interpolant g{x) takes the form of 

N 
g { x )  =  / 3 '  •  X  +  X ]  X j )  

J=1 
(4.24) 

and for which V ^ g { x )  is square integrable, let g { x )  =  g * { x )  + 5f2(a5), where g \ { x )  =  

g{x) — g*{x) satisfies The roughness measure can be expressed as 

J k ( s )  =  J W )  +  • ' k ( n )  +  2/(v'^s') • (4-25) 

With the last cross term vanishing, the following always holds. 

J ^ i s )  >  4 ( } ' )  (4.26) 

The equality holds if and only if g ( x )  =  g * ( x ) .  Taking integration by parts k  times of 

the last term of (4.25) and using the facts that g*(x) = /3' • x + ajK*(x, Xj) and 

V2V(®) = V2^ ̂  ajK*{x,Xj) = (-l)^(27r)" Y. " »;) (4-27) 
j=l j=l 

one can make vanish the last term of (4.25) 2 f ( V ^ g * )  •  ( V ^ g i ) d x  

2(-l)^y{V^V(®)}5l(a;)<^® = 2(27r)"y 
N 

g i ( x ) d x  E o t j 8 { x - x j )  
l i = i  

2(2:r)" ^ {/ dx = 2(27r)" ^ Q!j^i(aJj) = 0 (4.28) 
7 = 1 • ^ 

N 

i=i 
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Using the fact that —AK£(X) = K^_2(aj), the kernel of the optimal interpolating surface 

can be obtained by solving Partial Differential Equations : 

V'^/c*(®) = v2v2«:*(®) oc S { x )  (4.29) 

As discussed earlier, for n = 2, log(a:^ + y^) oc ^(aj) and for n = 3, +2/^ + 2^ 

oc ^(aj). For the order the optimal kernel K * { t )  is given a s  follows: 

t^~^\ogt^l'^ ifn = 2,4,-*-
K  { x , x j )  =  

t _ i / 9  .  f / if n = 1,3,- • • 

where f, in (4.30) and henceforth is set equal to H® — «j||2- For k = 2, the model can be 

constructed as follows 

N 
( odd dim ) g * { x )  =  / 3 '  • • X . +  " j l l ®  "  ® ; l l 2  

i=i 

(evendim) g * { x )  =  /3'• x + ^ a^-H® - By ||2 log ||aj - a;j|l2 (4.32) 
i=i 

After estimating the parameters /3 and a by b and a, respectively, one gets, with X'a. = 0, 

as in section 4.2, 

( odd dim ) z { x )  =  g  { x )  = b •x+ ^ a j \ \ x  -  X j \ \ 2  (4.33) 
i=i 

N 
(evendim) z { x )  =  g * { x )  =  b'• x + " ®;ll2 ^og 11® - II2 (4-34) 

J=1 

For more detailed justification, refer to Duchon [21] and Kent and Mardia [37]. 

4.3.2 Radial Basis Functions and Matern Spline 

The choice of splines is not restricted to thin plate splines. In fact, many types of 

spline functions are being used in practice. Among these spline functions, one can name 
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the following, of which the first three are derivable from a Variational Principle, now is 

to be discussed in section 4.4. 

Note that some spliners regard the multiquadric kernels 6) and 7) as spline functions. 

We now consider a family of splines that includes most existing models as special cases. 

where kj/ is the function c{u){\/vhjTf Kv{y/vh 12) where lCu{-) is the modified Bessel 

function of order v and <5(-) is the indicator (dirac delta) function. Note that the scale 

parameter a works in the same way as in the Exponential and Gaussian functionss. The 

parameter i/ is the order and controls the smoothness of the spline. This family, first 

suggested in kriging by Whittle [75] and later extended in the area of splines by Matern 

[48], can be easily generalized to higher dimensions. 

The most interesting special cases are that with i/ = ^, where K^{h) will follow 

the exponential model, and that with v = 1.5 and a near infinity, where K^{h) will 

approximate the thin plate spline 3) associated with a cubic smoothing (thin plate) spline. 

1) Linear K{x,xj) = ||«—ajjH 

2) Cubic K{x,xj) = ||» —asjil* 

3) Thin Plate K{x,xj) — ||a5 —ajjH' 

4) Exponential K{x,xj) = exp|—||a; 

5) Gaussian K{x,xj) = exp|—||a5 

6) MQ-H K { x , x j )  = l/ ^ \ \ x  -

7) MQ-B K { x , x j )  = J \ \ x  —  X .  

Consider the kernel function Cv{h,) depending on four parameters co,c]^,a and v, already 

mentioned in chapter 3 

Ct,{h) = CQS{h) + ciK^{h) (4.35) 
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For this reason, we consider this family as defining a larger class of splines : Matern or 

M spline. 

4.4 Smoothing with Splines 

In the case of smoothing with splines, we are assuming the model to be 

z ( x )  =  f i { x )  +  e ( ® )  +  0 { x )  (4.36) 

where e(a;) and 0 { x )  are the realizations of e { x )  and ??(a5), respectively. Let g { x )  =  

//(a;) + e{x) be any smoothing function. Because of the presence of 0(®), 

z { x i )  # s(«i) = I i { x i )  + e(xj) , for i = 1, • • •, JV (4.37) 

To provide a setting to incorporate the 9 into the model, a Variational Principle is invoked 

as in Wahba [72] and Watson [74]. A minimizing problem is-defined as follows: 

^ Ln |V*'5{x)|2<ix (4.38) mm 
9 

If we let ON(T^(I> = 1, then equation (4.38) reduces to 

mm 
9 

N 
> E [2(«i) - + J^n \V^g(x)\'^dx (4.39) 

The choice of 0 < 0 < 00 determines the extent to which smoothing is allowed. Let 

g = [flr*(a;]^), • • •, jf*(»jy)]'; then g = + Ka. Based on the same argument in (4.28), 

^k^9*) = |VV(®)1^<^« = (27r)" <^i9*{^i) = (27r)"a'g (4.40) 

= {2iT)^a'[X(3 + Ka] — {2ir)^a' Ka = {2ir)^g'Ag 

i=l 
n^/ i \ n ^ /  (4.41) 
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Here, one uses the facts that X'ot — 0 and oJ = z'A, as in section 4.2. Using this fact, 

the minimization problem (4.39) can be restated ais 

min 0 |z — g|^ + g' • A • g = min 0 \z — Xji — Ka.^ + oi • K • a. (4.42) 
6 S 

The Minimization is straightforward and yields g* = (0/ + A)~^z. Thus, 

g* { x )  =  g ' •  B - x  +  g ' •  A - K  (4.43) 

= z'• (01 + A)~^ • B-x + z'• {91 + A)"^ - A-K (4.44) 

The formulas (4.42)-(4.44) turn out to be the same as those of kriging. To determine 

the smoothing parameter 0, Ordinary and Generalized Cross Validation techniques are 

employed as in kriging. 
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CHAPTER 5. THE ROLE OF KERNELS AND CONSTRAINTS 

So far, we have briefly reviewed kriging and spline methods, and that the kernels of 

kriging and the spline functions play equivalent roles in a spatial prediction model, even 

though the objective functions of the two method look different. 

As is to be discussed below, the isotrophy of a semi-variogram , or radial symmetry 

of a spline function lends the property of Rotation Invariance to the interpolant, while the 

constrained models features Translation Invariance (splines) and Annihilation (kriging). 

The radially symmetric splines or isotrophic kernels have very interesting properties that 

facilitate the application of spatial prediction. It is convenient and even customary to 

express the norm of radius vector as t — = Hxjll? as in chapter 4. For later use, let us 

define further that tQj = h^j = j|» — and t^j = h^j = ||a;^ — 

As noted earlier and also to be further discussed below, the optimization problem 

demands that the matrices V or K be Positive Definite on the Tangent Subspace given by 

= {u ; Xu = 0}. The kernels that yield V or K and satisfy these conditions are called 

Valid and Conditionally Positive Definite. By employing conditionally positive definite 

kernels of order k, the boundedness and uniqueness of the interpolant can be attained 

at the same time. Conversely, one can say that the positive definiteness condition on 

matrices V or K is ralaxable by increasing the order of the model. The main objective of 

this chapter is to discuss how to relax the restrictions on the matrices K or V. 
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5.1 Effect of Constraints on Splines and Kriging 

Now, we investigate the effect of Constraints imposed on the objective function of 

spline model, the proof of which is also available in Micchelli [55]. Recall that the objective 

of a spline model is to minimize the roughness penalty a!Kol accompanied by oc = 0. 

S i n c e  t h e  s p l i n e s  a r e  f u n c t i o n s  o f  d i s t a n c e ,  t h e  m a t r i x  K  i s  a  f u n c t i o n  o f  t ^ j  o r  h ^ j .  

Lemma 5.0.1 The conditions of splines = 0; for j = 1,2, •••,m imply 

that YlfLi EjLl = 0,fori = 0,l,---,k-l. 

Proof : By expanding the kernel, one gets | | a ; j  — ~  

The objective function is a stim of multiples of polynomial terms with respect to or xj 

E E E (5-1) 
i=lj=l u-\-v-{-w—i 

where u,i; and w are nonnegative in t e gers t h a t  sum to i. For u <v, let us define 

< 5 ( « ) = E ° j  E  l l ® l l ^ " l l ® j l l ^ " ( - 2 r ( ® ' ® j r  ( 5 - 2 )  
j=l u+v+w=£ 

Note that Q { x )  is the summation of polynomials of degree at most A: — 1. Therefore, 

HfLi ('•iQi^i) = 0- Likewise, the same thing is true of the case with u < v. Thus, the 

lemma holds. 

Corollary 5.0.1 Due to the condition ofX'a = 0, adding to the kernel function the term 

P]^{h^) = c^t^ has no effect at all on the associated spline model. 

Example 5.0.6 In the case of splines, ^ = 

0,1,2, • • k — 1, on condition that a^qj{xj) = 0, for j = 1, • • •, m. 
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In the case of kriging, it suffices to investigate intrinsically stationary models, because 

the unbiasedness constraint X^\ = x can be used without any restriction in the case of 

covariance stationary models. In the intrinsically stationary cases, one can derive the 

MSE function. 

min M S E  = min 
' N N N 

2  E  - E E  
j — l  i = l j = l  

(5.3) 

Lemma 5.0.2 The unbiasedness conditions ^iQji^i) = J — 1,2, • • • ,m 

or X'\ = X imply the equation 

N N N 
E E = 2 ^ ^ = 0,1,2, • • •, A: - 1 (5.4) 
i=lj=l j=l 

Proof : Due to the unbiasedness constraints, the M S E  is the same whether one uses 

7(/i) or 'y{h) -f expanding the functions in (5.4), one obtains 

(ll®ill^ + ll®jll^-2(»i,®j))^ , 1,2,---,A:-1 (5.5) 

11®-ajjlp^ = (||®||2 + l|ajj||2-2(aj,a5j))^ , £ = 1,2, • • •, A: - 1 (5.6) 

The left hand side of equation (5.4) is a sum of multiples of polynomial terms in aij or Xj 

E E E ll®ill^"ll®ill^"(-2)"'(®i,®j)"^ (5-7) 
i — \ j = \  u - \ - v - ^ w = i  

where u,t;, and w  are nonnegative integers that sum to £. Let us assume u  < v ,  let 

Q { x )  = ll®ll^"li®jll^'^(-2)"^(®,®j)"' (5.8) 
j=l u+v-\-w=i 

which is a polynomial of degree at most k — 1 in a. Due to the unbiasedness constraint, 

N ^ n, 
Zi ^iQio^i) = Qi^) = E ̂ j W ^ i  -  ®ill (5-9) 
i=l j=l 
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Likewise, the expression is the same when u > v. Hence, the following holds 

E E = 2 E (s-io) 
i = l j = l  j = l  

Corollary 5.0.2 Due to the unbiasedness conditions, adding to the variogram function 

the term p^{h^) — MSE or on the 

associated kriging objective function. 

These phenomena are often called Annihilation and play a key role in constructing a 

general order model of kriging and splines. For more details, refer to Kitanidis [39] 

5.2 Laplacian of Radially Symmetric Functions 

As discussed in previous sections, there exists the link between models of different 

order. Now let us review a known technique of obtaining the Laplacian of radially sym

metric functions. If we let /(») be a radially symmetric function centered at ® = 0 and 

g{x) be the Laplacian of /(«), then ̂ f(aj) is also radially symmetric and with slight abuse 

of notation : g{x) = f > 0. 

Example 5.0.7 The Laplacian of a radially symmetric function /(•) is expressible as a 

co m b i n a t i o n  o f  t h e  f i r s t  a n d  s e c o n d  o r d e r  d e r i v a t i v e s  o f  f { - ) ,  e x p r e s s e d  a s  a  f u n c t i o n  o f t .  

Let f{ x )  be radially symmetric, then with a slight abuse of notation, f{ x )  =  /®(||a5||2) =  

/"(«)• 

i=l Sx? jtl ax? Si dxi^ 

n 
= E 

i=l 

g2/0(f) d t  d f ^ j t )  d h  

d x ^ d t  d t  

n 
= E 

z=l 

' a ^ f ^ j t )  a/0(o d'^t 

dt'^ 1^3;^ j dt dx^ 
(5.12) 

d ^ f ^ t )  , d f ^ i t )  
• 2 n  ,  t > 0  (5.13) 

dt^ dt 
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Note that the second order derivative term of equation (5.13) is multiplied by t. There 

are some cases for which this feature allows A/(aj) to be expressed simply as a constant 

multiple of 

Example 5.0.8 Using this relationship, it is easy to verify that f^{t) = ||®||^^ is har

monic only for n = 3 and = log||®|| harmonic only for n = 2 and hence 

n 0 
f ^ i t )  =  ll®H log||«ll is biharmonic for n = 2, but not for n = 3. In general, a har

monic function is biharmonic and biharmonic function is triharmonic, and so on. 

Example 5.0.9 I f  f ^ { t )  =  aq + a^t*^, a ^ 0, then g{t) = where ag, ai and cj 

are arbitrary constants. Likewise, if f^{t) = t'^logt^a ^ 0, then g^{t) = + 

t ^ ~ ^  =  f ' ^ " ~ ^ ( l o g <  +  1 ) .  

Let f { x )  =  A/(a;) and g { x )  be radially symmetric. For known g { x ) ,  f { x )  can be obtained 

by solving 

+  < > 0  ( 5 . 1 4 )  

Example 5.0.10 If one has g^{t) = cq + logi, then f^{t) = d^ d-^t + d^tlogt. 

L i k ewise, if one has g^{t) = eg + cit~^ , then the indefinite integral of g^{t), providing 

a candidate f^{t) to be checked by (5.14), given by 

dQ i-dit + d2t~^'^^, a^l (5.15) 

dQ-{• dit + d2logt^ a = l (5.16) 

For example, the semi-variogram of a white noise process centered at Xj is 7Q(a!,®j) 

= 11® — The interpolant in this case can be expressed as ZQ{X) = • 

70(a5,«j). By integrating 70(®, a;j) = ||®—one obtains a semi-variogram 
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for Brownian motion with corresponding interpolant given by zi(x) = aj • 

5.3 Validity of Kernels 

Our next task is to investigate the admissibility (i.e. everywhere- invertiblity) of the 

kernels of the model. A thorough study of validity checking is available in the literature 

as in Matheron [49], Christakos [11], Micchelli [55], Powell [61] and Sun [70]. Their 

approaches are based in part on Fourier transforms, so complex variables are involved. 

On the other hand, Christakos [11] dispenses with complex variables by introducing a 

Generalized Function concept to prove the validity of certain kernels. As discussed in 

Micchelli [55], Powell [61] and Sun [70], validity checking in real domain also is possible 

for monotonic kernels. The relationship between non-negative definite and monotonic 

functions plays a key role in checking the admissibility of wider sense stationary semi-

variograms or spline functions. 

5.3.1 Positive Definite Functions 

A set T of elements, or points x, x\ ® 052, • • •, is said to be a metric space if it is 

provided with a distance function on d{x,x') with the following 

1. d { x , x ' )  =  d { x ' ,  x )  

2. d { x , x ' )  = 0 if and only if « = aj' 

3. d [ x , x ' ' )  >  d { x ^ x ' )  - { •  d { x ' , x " )  

A real or complex valued function (f>{d{xi,xj)), a metric transform of pairs of points of 

T is called positive definite (Hermitian), if it enjoys the following two properties 
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1. Hermitian symmetry : (j){x^,xj) — (l>{xj,x^) , i, j = 1, • • •, iV 

2. For any iV points a!i,a52r--,®iV of ^ EjLl ^ 0 

where (/> and are complex conjugates of <f> and (j, respectively. 

Now, let us assume that T = 'RP is a linear vector space with the metric or norm 

d{x, x') = ll® — aj'||. If the function ^ is a function of the length ||a: — ®'|| of the vector 

only, then it is necessarily real, because of the Hermitian symmetry, and will be denoted 

b y  g { - ) .  

A real valued function G(-), a metric transform, defined in T, is said to be positive 

definite over , if for any N points ® j, a;2) •' • ? of 

N N 
E (517) 

for arbitrary real and any N  points N  =  2 , Z ,  -  o i  T .  Usually, the 

theory goes with saying that if a function is positive definite over then it is also positive 

definite over , while the converse is not true. Refer to Shoenberg [66, 67]. 

Bochner [8] establishes the identity of the class of positive definite functions g { - )  with 

the class of characteristic functions of distribution functions in . 

~ , —oo < X < oo (5.18) 

where ^|^{u) is a non-negative and bounded measure on [0, oo). On the other hand, Shoen

berg [66, 67] showed that the class of positive definite functions g{-) is expressible as 

roo u2,,2 
g [ h )  =  L  e d a { u )  ,  0  <  h  <  o o  (5.19) 

J\J 

where a(it) is a non-negative and bounded measure on [0, oo). The positive definite 

functions are closely related to the complete monotonicity of a function. A real function 
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f { h )  is said to be completely monotonic for /i > 0, if 

( - l )^ / (^) ( / i )  >0  for  0</ i<oo and A: =  0 , l ,2 , - - -  (5 .20)  

where /(O) = /(O"^), which expresses the continuity of f { h )  at the origin. A fundamen

tal theorem of Shoenberg [66] states the identity of this class of completely monotonic 

functions with the class of functions representable as a Laplace-Stieltjes integral 

f { h )  =  f  e ~ ^ ^ d 0 { u )  ,  0  <  h  <  o o  (5.21) 
J\J 

where d0{u) is a non-negative and bounded measure on [0, oo). If (^(/i) is positive definite 

in Hilbert space (7^) of real functions, then one may write, in view of equations (5.19) 

and (5.21), 

(l>{h) = / e~^ " da{u) = f e~^ ^da{y/u) = ( e~^ ^d^{u) = <l){t?) (5.22) 
JQ */0 vO 

This relationship states that a function f { h )  is completely monotonic for h  > 0, if and 

only if f{h^) is positive definite in Ti, as shown in Shoenberg [66]. 

Recall that for convenience, we defined < = ||» — ®j||2 and h = \ \ x  —  X j \\2 '• t = h?. 

Example 5.0.11 Consider a white noise semi-variogram 7(i) = a > 0. It is easy 

to see that the function is completely monotonic. Since 7(i) = e~^d^{u) by (5.21) 

N N N N 
Z] 7(®i>«j)aiaj = L iii £ ^ aiajd^{u)>0 (5.23) 
i = l j = l  z=l j=l '• J 

where /3{u) can be identified as in Powell [61]. In general, the white noise kernels ( of 

which 7(-) is an example ) are positive definite. 
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5.3.2 Validity Checking of Splines and Intrinsic Kriging 

In the case of kriging, wide-sense stationary semi-variograms are said to be valid if 

they are positive definite. Thus, if one can prove the positive definiteness of a certain 

kernel, then that kernel is valid. 

In the case of splines or intrinsic kriging, the operative property of a semi-variogram 

j{t) (or a spline function «(i)) becomes conditional positive definiteness. In other words, 

one needs check whether a given kernel is positive definite under the relevant linear con

ditions 

The following procedure is available for intrinsically stationary processes. For such pro

cesses, the Taylor series allows writing, as in Micchelli [55] and Powell [61], 

where 7(-) is the semi-variogram ol white noise process and hence completely monotonic, 

N 
for j (5.24) 

t > o  (5.25) 

so that 7(^)(0) = e 0 > 0. Hence, 

^ ^^d6dif){u) (5.26) 

—ut ^—k u d'^{u) (5.27) 

where V'('") is a non-negative measure on [0, oo) such that 

(5.28) 

It follows in turn that 

N 

2,i=l 

N 

i , j= i  U=o 
E {E 
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( - • - u t - -^ ^j' _ g 

^=0 
u ^dtl)(u) a^-aj(5.29) 

Now it has been shown in section 5.1 that 

i,;=l 1^=0 
IJ f ^i'^j 

^ f^^SW(o), 

i,j=l 1^=0 
Xi Xj 

\2(. a^aj = 0 (5.30) 

and 

N 

E 
«,i=i 

ffc-l 

E 
£=0 

N 
= E 

«,i=i 

(-M)^||a;- - gj-112^ 1 

£=0 
l\ 

a^aj = 0 (5.31) 

under conditions (5.24). If the second term of (5.29) is positive (negative) definite, then the 

function 7(-) is positive (negative) definite on the tangent subspace M = {ajX'a = 0}; 

i.e., conditionally positive (negative) definite of order k. 

Example-5.0.12 Let us suppose that the kernel 7(/) = t^/^ is given. Then one can infer 

from Taylor series expansion that 7(f) = 7(0) + {0)d0 where 7(^^(0) is a white 

noise kernel and hence completely monotonic, and 

7(0 = + 

= 7(0) + ^°°(1 - e ~ ^ ^ ) u ~ ^ d i j ; { u )  

=  +  u ~ ^ d i p { u ) - J ^  e ^d'^{u) 

(5.32) 

(5.33) 

(5.34) 

The first and second terms are just constants. Also the third term is negative definite in 

view of the general argument just given. Thus, it can be seen that ~ 

^ 0 on condition that = 0/ conditionally negative definite of 

order k = 1. In the same manner, it can be shown that the TPS kernel is conditionally 

positive definite of order k — 2. 
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5.4 Decomposition of Distance Matrix 

Based on the arguments in the previous sections, if 7(-) is a valid kernel, the matrix 

V can be decomposed into several matrices based on a Taylor-like expansion: 

V — Vq -f- V]^ "{"••• "t" + Vj^ , k ^ 0 (5.35) 

It should be noted that u'Vu = U^VQ -f Vj -t- 1- = u'Vj^u, on condition 

that X'u = 0, since •'' i is annihilated by the condition. The matrix Vj^ 

is positive ( or negative ) definite over the whole space, hence V must be positive ( or 

negative ) definite on the subspace M = {u|X'u = 0}. Note that u is a dummy variable 

and hence the above fact holds for u = A or u = a. As will be discussed in some detail 

in chapter 6, if the Vandermondian (distance) matrix is positive definite on M then a 

unique solution is obtainable. Consequently, one can say that if a kernel is valid, then 

there exists a unique solution. If the predicted value at a prediction point x is unique, 

then the entire interpolant is uniquely determined. 

5.5 Relaxation of Restrictions on Kernels 

To discuss the idea of relaxation, consider the following kernel function 

'y{x,xj) = ||aj - , —oo < t; < CO (5.36) 

By applying section 5.3, it can be shown that, the kernel is valid, if j; < 2^" — 1, A; > 0, 

where k is the order of the model, in other words, if where [•] is the ceiling 

function. Here, r) can be an arbitrary real number. For example, one can infer that 

7(aj,a5j) = II®(5.37) 
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can be used for a model of order k = 2 or higher. Indeed, it can be shown that it is not 

valid for A = 1. In the case of TPS in 2-D, 

l{x,Xj) = \\x - xjf^~'^\0g\\x - xjW (5.38) 

is valid for fc > 2, In general, the higher the order of a model, the more freedom one has in 

choosing the kernel functions. In other words, restrictions on valid kernels can be relaxed 

by increasing the order k of the model. 
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CHAPTER 6. COMMON ASPECTS OF SPLINES AND KRIGING 

As discussed in previous chapters, the actual surface z { x )  =  f x { x )  +  e { x )  in arbitrary 

dimension n is the realization of random process Z{x) = n{x) + e{x),x G C 7?."'. Thus, 

t{x) is a realization of e{x). Behind the notion that kriging and splines are essentially 

the same methodology, one is backed by the definition of 

(e (s) ,e (t)) = K(s,t) = E[e(s)e(t)] = (e(s),£(t)) s ^ t e V c H ^  (6.1) 

where (•,•) is the inner product, and «(-,•) the (generalized) covariance kernel or repro

ducing kernel. From this fact, it is not difficult to see that the objective functions of 

splines and kriging of general order k are equivalent to each other 

min \ \ z { x )  —  z { x ) \ \ ' ^  =  min E[Z{x) — Z{x)]^ x C (6.2) 

while X'A = X, provided that the order k of the model and the basis functions are 

equivalent. If we impose the rotation invariance on kernel K(s,t),  «:(s,t) = k(| |s — t | |2)-

The interpolation H f L i  is best with respect to K a ,  if A = [•^li • • * 

imizes ||( —1, A')||while X'\ = x. Seen from kriging side, there exists two types 

of modeling: covariogram and variogram modeling. In covariogram modeling case, the 

objective function of kriging can be expressed as 

min A'SA — 2A'7 + «(0) subject to X'X = x (6.3) 
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In the case of variogram modeling, (6.3) reduces to 

min 2A'7 — X^VX subject to X'X — x (6.4) 

The relation between (generalized) covariance k(«) and the semi-variogram 7(0;) can 

be expressed as /c(®) = —'y{x) + k(0). In view of the result in chapter 4, the splines 

correspond to (generalized) covariance kernels. The use of Lagrangian multipliers (w) 

leads to the First Order Necessary Condition (FONC): from (6.3), 

SA -j- X o )  — n  

x ' x  = X 

(6.5) 

(6.6) 

Similarly, one obtains similar F O N C  from (6.4), 

VX + Xu} = 7 

= X 

whose solution in A and w are uniquely determined, if = 

6.1 Invariance Properties 

S X 

x '  0 

(6.7) 

(6.8) 

is invertible. 

As discussed in detail in chapter 5, the polynomial terms added to the kernel function 

has no effect at all on the prediction due to the model constraint, which property is often 

called Anninilation. For simplicity, consider the simple case of «:'(•) = + ^2 ^ 

The use of /c'(-) instead of «(•) makes no difference to the interpolant. The ineffectiveness 

of di is referred to as Shift Invariance. The fact that nonzero ^2 always yields the 

same prediction leads to Dilation Invariance. These two invariance properties are termed 

Translation Invariance. 



47 

In some cases, the change of scale «:^(c||aj — «jl|) for c > 0 ends up with the form of 

k'(-), in which case the kernel «(•) is referred to as being Self-Similar, since K®(c||a; — 

and — ®jl|) yield the same prediction. A formal definition of Self-Similarity can be 

given as follows: A random field { Z ( x )  :  x  £  T t " ' }  is called self-similar oi index a G 7^ if 

for each c> 0, {c~^Z{cx)} has the same distribution as {Z{t)}. [Kent and Mardia 1994, 

Taqqu 1988] 

Example 6.0.13 For a scaling factor c> 0 ,  suppose that K{ x , x j )  = /c^dj® — a;j||) = 

| |®-®j | |2 log | | a j -« j | |  

Kp{c\ \ x - x j \ \ )  =  c\ \ x - x j \\\0gc\ \ x - x j \ \  (6.9) 

=  dQ+di \ \x-Xj \ \^+  d2KP{\ \x-x j \ \ )  ,  d2^0  (6 .10)  

From translation invariance and annihilation, one knows that 

«®(c | |« -®j | | )  ~  K^dla j -as j l l )  (6 .11)  

which means /c^(c||aj —»j||) and /c®(||® — ®j||) yield the same prediction. The kernels /c(-) 

of this property is usually called self-similar. Basically, the family of functions belonging to 

the class of Matern spline or Whittle's Gaussian family is characterized by this property. 

MQ kernels weakly satisfy this property, because of tension parameter (P'. 

6.2 Unisolvence of the Interpolant 

In order to verify that the solution with respect to (A',a;') of the above problems are 

g l o b a l l y  o p t i m a l ,  w e  h a d  b e t t e r  e x a m i n e  t h e  s e c o n d  o r d e r  n e c e s s a r y  c o n d i t i o n  ( S O N C ) .  

For more details and second order sufficiency condition {SOSC), see Luenberger [43]. The 

theory goes with saying that if the matrix K of quadratic optimization is positive definite 
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on the Tangent Subspace formed at Regular Point of the constraints, then the solution is 

globally optimal and thus unique. The key point is that K need not be positive definite 

over the whole space represented by A, but just for A satisfying X'X = 0, the concept 

being what they call Conditional Positive Definiteness of Order k. 

Proposition 6.0.1 ( Luenberger [43] ) Let K and X be N x N and N xm matrices, 

respectively. Suppose that X has rank m and that K is positive definite on the tangent 

is nonsingular. 

Proof : Suppose (u, v) G %N+m jg 

Ku + Xv = 0 (6.12) 

=• 0 • (6.13) 

Multiplication of the first equation by u' yields U 'KU + u'Xv = 0 and substitute of 

Kn = 0 yields u'/i'u = 0. However, clearly u G A^, and thus the hypothesis on K 

together with u'Ku = 0 implies that u — 0. It then follows form the first equation that 

Xv = 0. The full-rank condition on X then implies that v = 0. Thus the only solution 

to (6.12)-(6.13) is u = 0, V = 0. Q.E.D. 

Note that K need not be always positive definite and hence k( - )  need  not  be  a  pos i t ive  

definite function, since the condition can be relaxed by increasing the order of the model 

as discussed in section 5 in connection with relaxation of kernels. 

subspace = {u : X'u = 0}. Then the matrix 
K X 

X' 0 
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6.3 Estimation of Interpolant 

Due to the invariance properties, it is easy to see that K RSJ 2 V, if one use the 

same type of kernels. The interpolant estimated from (6.5)-(6.6) can be rearranged as 

(6.14) 

r 1 r 1 -1 r -1 

o
 

II A T T E X K o
 

II 

IO 
= (z'.o'l 

1 

o
 X 

(6.15) 

where = [A',(J'L , = [K'.X ']', and zj^ = [z',0'|'. This is also reminiscent of the 

standard form of Hilbert space approach. 

6.4 Parametric Expression of Models 

An alternative way of obtaining A, W is based on the assumption that the inverse of 

V exists, which is known to be true in most cases. From equation (6.7), 

A =  K-^{k -  Xijo)  =  K- '^K -  K-^Xu)  (6.16) 

Due to the unbiasedness condition (6.8), it follows that X'X = X'V — XU) = x. 

Thus, the estimates of A and cj can be obtained as follows: 

w = { X ' K ~ ' ^ X ) - ' ^  • [ X ' K - ' ^ k - X  

By substuting equation (6.17) into (6.16), one obtains 

(6.17) 

(6.18) 

= [/f"'-A'-'x(X'/<—'A')-lx'/f-1] >£+[/(—ljf(x'A~lA')-']x (6.19) 
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For convenience, let A = Pk • k + Px • x- The interpolant can be expressed as 

z ( x )  =  z '  - X  = z' • jB • X + J  •  A  -  K  = b' • X + a' • K (6.20) 

which can be identified as a Boolean sum of two projections A and where 

a '  =  x ' - [K-^-K-^X-{X'K-^X) '^-X 'K-^]  (6 .21)  

b' =  z '  - K - ^ X - i X ' K ' ^ X ) - ^  (6.22) 

Note that X'& = 0, which indicate the orthogonal decomposition. This form is standard 

for splines and dual for kriging. 

The small-scale variation is the key part of the interpolation model and the major 

source of difference among interpolation methods such as splines, kriging and possibly 

other types of techniques. When large and small-scale is considered, the model becomes; 

m 
2(®) = ^j9j(®) + e(s) = /3'-x-fe(as) (6.23) 

i= i  

with estimated interpolant: z { x )  = b' • x -t- e(®), where b = ^3 and e(aj) = e(a5). The 

structure described below generalizes and unifies the above viewpoints. Given z, the 

interpolant z { x )  must satisfy 

m m 
= I] + e(a!i) = E = ^(®i) (6-24) 

i= i  i= i  

for i = - • • , N . Choosing an interpolant z { x )  = amounts to 

choosing { b j }  and {e(a;^-)}. This is the problem common to krigers and spliners and is in 

effect approached by both schools in the following way : consider a symmetric real matrix 

K, which can be identified as an operator of a Positive Transformation, and define a by 

€ = le = Ken. Then we have: 

z = X/3 + € = X^ + Ie = X0 + Ka (6.25) 
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Note that K  is positive definite on condition that X ' a  =  0. An interpolant can be 

obtained by specifying A(-) such that I = with X^j = A(a;j — xj). Another 

way of obtaining an interpolant is to specify a function «(•) such that K = 

with K ^ j  = K(||ajj —Xjll) is Positive Definite on the tangent subspace = {u : X'u = 0}. 

Note that the system of equations in (6.25) is equivalent to: 

m N 
z{xi) = z{xi) = ^ €(a;j)A(a5j,»^) (6.26) 

;=1 j=l 

m N 
=  Z i E  ( ^ - 2 7 )  

i = i  i= i  

Relations (6.26) and (6.27) respectively yield the following models: 

N 
z { x )  =  f 3 - x + e { x )  = /3 •x+ ^  e(®j)A(a ; ,®j)  (6 .28)  

i= i  

N 
= /3-xH-  X]  (6 .29)  

i= i  

Using vector notation, interpolation models corresponding to (6.28) and (6.29) becomes 

z ( x )  =  J  X  = /^ ' -x+e ' -A =  /3 ' -X + Q:'-K; (6.30) 

where a  = K ~ ^ e  and k  =  K X ,  provided x = X ' X .  The A is a vector of functions of 

X, since A is a function of k. The parameters ai,--- ,aj\f and - oi polynomial 

Pk ^ determined such that for i = 1, • • •, iV, 

m N 
z { x i )  =  z { x i )  =  ^ j q j { x i ) +  Y ,  (6-31) 

i= i  i= i  

N 
= 0 . i = (6.32) 

i= l  
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Equivalently, in matrix and vector notation, equations (6.31)-(6.32) become 

Kct + XP = z 

X'a = 0 

(6.33) 

(6.34) 

As a matter of fact, this is the Standard Form of splines and Dual Form of kriging. 

6.5 The Link to Generalized Least Square 

The parameters involved in kriging and spline models are e,a and /3. They are 

estimated based on N observations. In the language of vector spaces, e and o: are mutually 

Covariant and Contravariant. By the Hermitian character of the transformation K, 

min e'R-^E = min (z - XI3)'K~'^{Z - X(3) = (z - Xh)'K-'^{z - Xb) (6.35) 

and thus conforms to General Least Squares (GLS). By symmetry, we can extend this 

notion to obtain another type of error vector a orthogonal to 

m i n a ' K a  =  m i n  { w  —  R ^ ) ' K { w  —  R 1 3 )  =  { w  —  R h ) ' K { w  —  R h )  (6.37) 

B a s e d on the criterion (6.35), ^ is given by b = [X'K~^X)~^X^K~^z. Also, letting e 

and a be, respectively, the elements of the residuals z — Xb and w — i2b, we have as well 

a t  =  K  ^ { z  —  X ( 3 )  =  w  —  R ( 3  (6.36) 

Thus, (6.35) can be rewritten as 

e = z - X h  =  K  { w - R h )  

a  =  w- i?b  =  K-^{z-Xh)  

(6.38) 

(6.39) 
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6.6 Dual Property 

Alternatively, we can obtain an interpolant as well by estimating paramaters involved 

and inventing function «(•). Note that now we are working with N data points, while we 

worked with N + I data points in the previous subsection. Let us get started with the 

fact that that our K is indeed restricted to be positive (semi)definite follows from 

0 < a'Ka. (6.40) 

The existence of implies the existence of K ~ ^ ,  so that K  is in fact restricted to be 

positive definite. Indeed, the structure of K is more refined : K is conditionally positive 

definite of order k, a concept that can be detailed as follows. 

In order to discuss conditional positive definiteness of the matrix /HT, it will be useful 

to identify the two mutually orthogonal subspaces = {X/B : /3 £ TV^} and Ax = 

{a : X'a = 0, a 6 7^-^} of respective dimensions m and N — m m an N dimensional 

vector spaces. In the same manner, the vector space can be partitioned into two mutually 

or thogonal  subspaces  =  {R/3  :  /3  G TZ^}  and Sj i  = {e  :  =  0 ,66  TZ^}  of  

respective dimensions m and N — m. In other words, the vector space can be expressed 

as a Boolean (Direct) sum of subspaces as 

=  Ax ®Bx =  (6 .41)  

It is interesting to observe that the conditions R'e = X'a. = 0 always hold. Thus, the 

inequalities in (6.40) need not hold for all a values , but just for the values of cx satisfying 

Rie = x 'a = 0 (6.42) 

which actually weakens the positive definiteness condition of matrix K  and K ~ ^  so 

that the condition become less restrictive. The corresponding theory for the matrix K 
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involves the notion of validity of the kernel functions. The functions that satisfy the 

above-mentioned conditions are possible candidate kernel functions for both kriging and 

splines. See Huijbregts and Matheron [33], Olea [57] and Michelli [55]. 

All the properties discussed so far are attributable to the fact that both kriging and 

spline models defined in a Finite Dimensional vector space naturally or inevitably enjoy 

the dual structure, and both krigers and spliners are exploiting the Dual Structure of 

vector space. The following is the common way of estimating the parameters involved in 

the model. Recall that 

b' = -z (6.43) 

a '  =  -  X h )  =  [ k- ^  -  R - ' ^ X  •  ( X ' R - ' ^ X ) - ' ^  •  X ' r-'^] • z (6.44) 

From the fact that Ra. = z — Xb and X^a. = 0, it is easy to see that the estimates in 

(6.44) and (6.43) can b? obtained from the system of equations given in (I) or (II). 

{ I) Ra + Xl3 ^ z ( I I )  R-'^e + X^ = w (6.45) 

X'a =0 X'e =0 

The system of equations in (I) can be solved for arbitrary z, if and only if for every 

R X 
a  G «4^\{0}, /3 6 Bxi the augmented matrix are nonsingular, which can 

X' 0 

be easily verified using the SONC provided R is positive definite on condition X'a = 0. 

The same is true of (II). We will discuss later that the formulation for kriging model takes 

the primal form (II), while splines take the dual (I) as in chapter 3 and 4, respectively. 
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6.7 Computational Aspects 

Both in kriging and splines, positive definiteness of the matrix K on the tangent sub-

space is required for boundedness of the interpolant at the prediction point x. However, 

it is not trivial to verify the conditional positive definiteness of the function /c(-). In fact, 

the existing analytic methods guarantee only the conditional positive semi-definiteness of 

the function «(•), as discussed in chapter 5. Besides, the problem is more serious than is 

thought to be. Even though the matrix K is conditionally positive definite, it could be 

numerically singular especially when the condition number of the matrix K is very small, 

where the Condition Number is defined as 

the smallest eigenvalue 
Condition Number = (6.46) 

the largest eigenvalue 

Even this problem is also common to both kriging and splines. As a general rule, it is 

most efficient to use Factorization Methods such as LU decomposition that exploit the 

structure of the symmetric matrix, but we shall not review this here. 

6.8 Smoothing Techniques 

As mentioned earlier, the measurement error of observations are regarded as being 

independent. How to incorporate these errors into the prediction model is more like a 

trick. The changes are made only on the diagonal elements of the matrices. 

If we define K { 6 )  to be the matrix K  plus a diagonal matrix which has all elements 

0, then the optimization problem can be identified as follows 

min 0\z — X(3 — Ke\^ + K = vc^ 6\z — Xf3 — Ka\^ + a'Ka (6.47) 

The same result from another approach is available in Kimeldorf and Wahba [38] and 
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Watson [74]. Both krigers and spliners employ Ordinary or General Cross Validation 

t e c h n i q u e s  t o  e s t i m a t e  t h e  p a r a m e t e r  { 0 ) .  

6.9 Difference between Kriging and Splines 

The major difference lies in the objectives of each group and hence the criterion for 

the choice of kernels. Usually, krigers try to estimate the kernels from the observational 

data, as in Cressie [16] and Kitanidis [39], while spliners invent splines on their own 

criterion, say. Roughness Penalty, as in chapter 4. 
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CHAPTER 7. MULTIQUADRIC METHOD 

The multiquadric models were originally devised by Hardy [28, 29] as a global method 

to interpolate N observational data. The initial study of multiquadrics dates as far back 

as early 1970's. The origin and the development of the multiquadric method is well 

presented in Hardy [30] with extensive bibliographies. Many successful applications of 

the MQ method in the case of multidimensional data are also reported in many recent 

publications as in Pottmann and Eck [59], Carson and Foley [10] and Kansa [36]. Unlike 

other spatial prediction methods, the multiquadrics has its ground in Potential Theory. 

7.1 Potential Theory 

Multiquadric models are constructed on the basis of the afore-mentioned potential 

theory, a good example of which occurs in connection with gravitational forces. If a 

particle A of mass M is fixed at a point {xj,yj,Zj) and another particle B of mass m is 

at point (x, y, z) then A attracts (or repulses B), the gravitational force being the gradient 

of the scalar function 

I 
g { x , y ^ z )  =  -  ,  i  =  G M m  =  c o n s t  (7.1) 

r  = ^ { x -  xy)2  - \ . { y -  + (2  _  z j ) 2  (7.2) 
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where G is coefficient of gravitation. This function is called the potential of the gravita

tional field, and it satisfies Laplace's equation. On the other hand, the function 

f { x , y , z )  =  r  =  + (j/ - + (z - zj)'^ (7.3) 

represents the potential energy. These two types of functions are employed by Hardy 

and are called MQ harmonic (MQ-H) and MQ biharmonic (MQ-B), respectively. The 

functions can be expressed in terms of norms: 

(MQ-H)  =  l / \ \ x - X j \ \ 2  ,  x ^ x j  (7.4) 

(MQ-B)  K^{x,Xj)  =  | | a ; -» j | l2  ,  «^  a;^-  (7 .5)  

for j  = 1,2, • • • ,iV, where ||a: — X j \ \ 2  is the distance between the two points x  and X j .  

Of course, the Laplacian of KJJ{X — Xj) is supposed to be K^(a5,»j); 

V ^ K b { x , X j )  =  K f ^ { x , x j )  ,  X  : ^ X j  •  (7.6) 

' ^^Kh{x,Xj)  =  0  ,x^Xj  (7.7)  

Note that the original potential functions are defined only on 3 dimensional space. 

7.2 Tension Parameter 

As discussed in chapter 6, it is known and easy to verify that MQ-H and MQ-B kernels 

are  harmonic  and  b iharmonic ,  respec t ive ly ,  on ly  for  n  =  3.  Note  tha t  V^/c^(a j  — a j j )  ^  0 

when TI=2 and hence V^K|,(® - ®j) 7^ 0 when n = 2. To use the models in T> C 7?.^, a 

slight modification is needed and Hardy proposed the following by substuting (P" for the 

t e r m  { z  —  Z j ^ .  

(MQ-H)  K f ^ { x , x j )  = l / ^ { x  -  xj )2  +  { y -  y^-)2 + c2 (7.8) 

(MQ-B)  Ki j{x ,x j )  =  ^{x-  xj ) '^  +  (y  -  yj)'^ + c2 (7.9) 
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According to Hardy's recommendation, a small value of c would be enough to round off 

the discontinuity of the vertex at each center. In spite of the modification, the harmonic 

and biharmonic property is not maintained in 'R?. Some investigators such as Carson 

and Foley [10] have tried to find the "optimal value" of in some sense. According to 

their studies, the existence of an optimal c is not apparent. Some other spliners as Eck 

[24] regard this constant cis a Tension Parameter'^ and thus a sort of Design Parameter 

in surface design. 

7.3 Zero Order Model {k = 0) 

Originally, Hardy [28, 29] utilized the form of order 0 without the large scale part of 

polynomial and chose /c(-) to be a harmonic or biharmonic function. 

N iV . 1 
( MQ-H) %(«) = 53 ajK}^{x,Xj) = gj / , (7-10) 

j=l j=l  ^\\X-Xj\\+C^ 

N N , 
( MQ-B) %(») = Y, - ®jll + 

i= i  

These models are valid in that the Grammian matrices and are invertible without 

any conditions so that the interpolant is always obtainable. As discussed earlier, however, 

the boundedness of the interpolant is not guaranteed within this framework, as discussed 

in chapter 4. As seen in Figure 7.1, the MQ harmonic kernel can be related to the 

semi-variogram of a white noise process. With positive constant c, it becomes much like 

the Covariance Stationary kernel of kriging, viz. Simple Kriging. 

The MQ biharmonic kernel is also valid within this frame work, since it can be proven 

that the Grammian of MQ-B kernel is always invertible. The drawback of the zero order 

model framework is that it does not guarantee the boundedness of the interpolant. 
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-I •! •! -I 

Figure 7.1: Covariogram of White Noise and MQ Harmonic Kernel 

7.4 First Order Model {k = 1) 

Later, Hardy [32] switched to what they call multiquadric biharmonic model. The 

model can be identified as of order 1 and falls into the following framework. 

N 1 

X-Xj\\+C^ 

(MQ-H) zf^ix) = 6o+E«j 
i=l  

N , :— 
(MQ-B) %(a!) = ^0 + £ aj0|a;-ajjil+c2 

i=l 

(7.12) 

(7.13) 

The MQ harmonic model of order 1 is valid in that the matrices is Positive Definite 

without any condition so that the interpolant is bounded and uniquely determined. With 

positive constant c, it becomes the Covariance Stationary kernel of kriging, viz. Ordinary 

Kriging. The MQ biharmonic model of order 1 is also valid within this frame work since 

the kernel is Conditionally Positive Definite of Order 1. See Figure 7.2. Note that the 

biharmonic kernel is much the same as the semi-variogram of a Brownian motion porcess, 

which corresponds to Matheron's 0-IRF. 
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Figure 7.2: Standard Brownian Motion and MQ-B Kernel 

7.5 General Order Model (k > 1) 

More general types of models are also available. MQ models of general order belong 

to what Hardy call Osculating Mode. In fact, the model embraces the polynomial term 

for large-scale variation and the kernel of Hardy's osculating mode remains the same as 

the order of the model changes. On the other hand, Riesz Potential Model provides more 

general framework for this type of multiquadric kernels 

(Riesz)  /c (x ,®j)  =  ( j |® — Xj | l2  +  ^  ,  Q  <  r j  <  I  ,  k  —  0 , 1 , - •  •  (7.14) 

Note that harmonic and biharmonic models are characterized by A = 0 and = 1, 

respectively, with 7/ = 1/2. 

Example 7.0.14 A MQ biharmonic model of order 1 takes the spline form 

N 
z { x )  = /?o+ Xi aj«(aj,a;j) , (7.15) 

J=1  

and also the parameters involved must satisfy the condition that C'j = 0) 

N 
^(<^i) = /^o + Z] (7-16) 

j=i 

The MQ potential model of order k is also valid within this framework, since the kernel 

is conditionally positive definite of order k. 
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Figure 7.3: Smoothing with 0-IRF and MQ-B 

7.6 Smoothing 

A main difference between kriging and MQ lies in the use of the term "smoothing 

constant" (in the case of splines) and "nugget effect" (in the case of kriging) for essentially 

the same quantities. 

Unhke other spatial prediction methods, in case of MQ or potential models, the 

objective function is not defined. For this reason, it is not clear how to incorporate 

measurement errors into MQ models. As a matter of fact. Hardy's multiquadric models 

have been used extensively for interpolation only. It would be possible, however, to 

incorporate the smoothing into MQ potential model just as is done in kriging, as in 

Figure 7.3. 
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CHAPTER 8. THE LINKS AMONG EXISTING MODELS 

The spatial prediction models are the most general type of linear model. Accordingly, 

the generalized regression models or time series models are special cases of spatial predic

tion models. Some of typical spatial prediction methods can be understood in a unified 

context. Defined on a finite dimensional vector space or in a Hilbert space, both kriging 

and splines naturally and inevitably enjoy the same structure. The kriging predictor can 

be made equivalent to splines and multiquadric predictor with a particular choice of Gen

eralized Covariance or Semi-variogram. To facilitate the comparison of existing prediction 

models, the order of the model and the type of kernel function must be considered. 

8.1 The Links Among Models of Different Order 

For both kriging and splines, the interpolation models of order k can be constructed 

by solving the Partial Differential Equations: 

If the kernels are radially symmetric, the differential equation can be easily solved and 

thus the model building is performed more systematically, as discussed in section 6. An 

analogue between Covariance Stationary kriging and Variogram Stationary kriging are 

A^ K{ - )  =  w h i t e  n o i s e  

A^~^/e(-) = Brownian motion 

(8.1) 

(8.2) 
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Table 8.1: Classification by Order of Models 

Stationarity Order 0 Order 1 Order 2 Order k 
Wide Sense Simple Ordinary Universal Universal 
Condition on Positive 

Definite 

Positive 

Definite 

Positive 

Definite 

Positive 

Definite 
Wider Sense White Noise 0-IRF 1-IRF {k - 1)-IRF 
Admissibility 
Condition on 

(-i)S(-) 

Pos. Def. 
Conditionally 
Pos. Def. 

of order 1 

Conditionally 
Pos. Def. 

of order 2 

Conditionally 
Pos. Def. 

of order k 

tabulated as in Table 8.1. As a matter of fact, such a kriger £is Matheron [50] views the 

lowest order process as a Brownian motion, which is of order 1, whereas most spliners as 

Duchon [21] and Micchelli [55] equate the semi-variogram of the lowest order process as 

that of Dirac Delta (or white noise), which is completely monotonic. In this context, MQ-

H belongs to a semi-variogram of white noise model, just as MQ-B to that of a Brownian 

motion. In the same fcishion, TPS can be identified as belonging to a triharmonic or 

polyharmonic model. 

The functions for white noise models are featured by being completely monotonic. 

The white noise kernels play a key role in identifying the validity of a kernel. To ease the 

comparison, the following Table 8.2 might be helpful. Note that the kernel functions of 

lower order model can be used as the kernel of higher order models. 

8.1.1 The Order of Models 

Multiquadric users would relish the zero order model, where their distance matrix (or 

Vandermondian) is just invertible. Seen from spliner's stand point, the zero order model 

is not the bounded framework. Generally, the zero order model is not used by krigers',. 
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Table 8.2: Harmonic Series of Models 

Models Order 0 Order 1 Order 2 Order k 

MQ-2D fl/2 (1/2 [i3/2] ,1/2 |,A:-1/2| 

MQ-3D ^1/2 ,1/2 [,3/2] ,1/2 [,A.-l/2] 

TPS-2D 1«W) [log t] tlogt Iog( 

TPS-3D [(1/2) ,3/2 ,(c-l/2 

Krg-2D Pogi(ll/2)] (log(((^/2) (*log((i'^-l/2) 

Krg-3D 1,-1/2] il/2 ,3/2 ,fc-l/2 

MQ-2D : MQ in (x,y) MQ-3D : MQ in { x , y , z )  
TPS-2D : TPS in { x , y )  TPS-3D : TPS in { x , y , z )  
Krg-2D : Kriging in (x, y) Krg-2D : Kriging in (a;, y, z) 
[ • ] : models not in use 

for the it does not have the large scale part and hence the interpolant is seriously biased 

in the statistical sense. 

For the same reason, multiquadric users seem to prefer the MQ-B, which is order 

1 and hence bounded. Multiquadric users made scarce use of the second order model. 

Usually, the second order k = 2 models are preferred by spliners, while krigers do not 

seem to have preference on the order of the model, is so far as the model is valid. 

A question that can arise is what the use of higher order {k > 2) models is. A sort 

of answer is available in Maxdia et.al. [47]. According to their study, one need to employ 

higher order model to incorporate into the model the information on slopes, curvatures 

and the higher order derivatives, which can be available when measured by such measuring 

devices as laser interferometer. 
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8.2 The Link between Least Square and Spatial Prediction 

The estimation of parameters involved in spatial prediction models are essentially 

the same in that kriging estimates are based on maximum likelihood function and splines 

have its ground on generalized least square. It is famous that MLE and LS criterions are 

basically the same. In the sense, parameter estimates of spatial prediction are all MLE's. 

It is interesting and important to notice that spatial prediction method can be recognized 

as a natural extension of least squares or polynomial regression. For example, given a set 

of data the least square criterion is given by 

^ o V 
and A= ^ (8.3) 

i=l 

where ft is a constant. Note that we are assuming the residuals s-re 

independent. To compare the least square method with spatial prediction, consider the 

first order model 

N 
z{x) = /^o + Zi e V (8.4) 

j=l 

which is the standard form for splines and the dual form for kriging. If one adopts a 

white noise kernel for K{x,xj), then one gets fi = /?Q. The white noise kernel provides 

a connection between the least squares ajid spatial prediction method. Recall that the 

spatial prediction model satisfies the following condition, for i = 1, • • •, AT, 

N N N 
= /?0 + Z) = /^o + Zi = ^0 + £ (8-5) 

j=l j=l j=l 

In case that «(•) is a white noise kernel, it is easy to see that Cj = Uj = aj and hence 

K = I. It is interesting to note that the least square criterion provides a method for 

obtaining a the center of gravity in terms of physics. 
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8.2.1 Ordinary Least Square Method 

Let's consider a general order model. The least squares criterion is equivalent to the 

Polynomial Regression. The objective function can be identified as 

N 
Z) [2/K') - = min ( y - =  m m  u ' •  v  (8.6) 

P i=zl P P 

where X j  G V .  Note that i/ is the vector of independent residuals = 

Vi ~ estimate P — {U'U)~^ • U'y and -x. 

8.2.2 Generalized Least Squares 

The Least Square idea can be expanded further to Generalized Least Squares usually 

in connection with Covariance Stationarity. The GLS can be expressed as 

N N .. 

^ i=i j=i 

= min (z-X/3/-S~l-(z-X/^) = min e'• E / 1 
/ }  0 

(8.7) 

(8.8) 

where = S ^ and = E = variance-covariance matrix, which is given by 

S = [ K i j ]  = 
k(®2'®I) '«(®2'®2) 

'«(®b®iv) 

«(®2'®iv) 
(8.9) 

«(®iV'®l) '«(®iV'®2) ••• «(®iV'®iv) 

In GLS, the positive definiteness of matrices S and E~^ is needed for the Unisolvence 

and Boundedness of the interpolant, which in turn requires the covariance kernel function 

to be positive definite. If we insist on the positive definiteness of the kernel, the model is 
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analogous to the universal kriging. If we use the white noise kernel, the model reduces to 

the polynomial least square model. 

The GLS idea can be expanded further to Constrained GLS (COLS) on the basis of 

Wider Sense (Variogram) Stationarity assumption. The objective function of CGLS can 

be identified as 

N N .. 
E £ (8-10) 

^ i=l i=l 

The restriction on the matrix K  can be relaxed by adding constraints X ^ a  = 0 or B ! e  = 0. 

min o J - K - c x .  =  m m  e ' •  K ~ ^  •  €  (8.11) 
{3 (3 

After estimating parameters as before, the prediction of interpolant can be performed by 

N N 
f { x )  =  b'• x+ oj • «:(a5,®j) = b'• x + ^ ej • A(a5,ajj) (8.12) 

i=l j=l 

The choice of «:(•) and the order k of the model determines the effectiveness of interpolant 

estimation, while the Conditional Positive Definiteness of Order k of matrices K and 

K ~ ^  is needed for the Unisolvence and Boundedness of the problem. 

The main point of this section is that any least square problem can be a special case 

of spatial prediction. Conversely, it can be said that any least square problem can be 

naturally extended to spatial prediction problems. 
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CHAPTER 9. SPATIAL PREDICTION OF ROUND FEATURES 

In this chapter, we discuss what can be done with geometric objects which have 

circular features such as circles, spheres and cylinders. As discussed in the previous 

chapters, spatial prediction models can be unified into the Generalized Least Squares 

framework by extending the Least Square Criterion. When it comes to applying the 

spatial prediction theory to near-circular features, one may recall that the Least Squares 

Method provides a framework for circular profile approximation known as Best Fitting 

of circular features, the statistical behavior of which is well studied and illustrated in 

Berman [6], Berman and Culpin [7] and Coope [12]. Our primary emphasis will be on 

assessing departures from circularity. This will be done by fixing in an initial least squares 

estimate the "center of the profile, followed by detailed examination of the "radius" of 

the profile, applying methods of the previous sections, in addition to developing suitably 

periodic kernels. While it seems intuitively clear that pre-selection of the center will 

not subtantially affect the final estimated near-circular contour, precise analysis of this 

phenomenon awaits research beyond this work. 

9.1 Circular Profile Estimation 

According to ISO 1101 or ANSI Y14.5M, a profile is a outhne of the projected shadow 

of an object. If the outline is "approximately" round, it is called circular. The problem 
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of determining the circle of Best Fit to a set of points of circular profile in the plane ( 

or the obvious generalization to n-dimensions) is easily formulated as a Nonlinear Total 

Least Squares problem which may be solved using a nonlinear optimization algorithm. 

The distance from the center (a, 6) to a point = (xj, y^) can be given by 

n = y/{ui - a)2 + (u • - 6)2 (9.1) 

The Ordinary Least Square Criterion for circular feature with unknown center and radus 

can be expressed as 

N 2 ^ r 12 
E h - H  =  E  y { u i - a ) ^  +  { v i - b ) ' ^ - r  

a,b,r a,6,r L 

N , ,2 
) / K - a ) 2  +  ( u i - 6 ) 2 - r  ( 9 . 2 )  

i=l 

For fixed center { a , b ) ,  say (a, 6), and unknown radius r, the criterion becomes 

N 
(9-3) 

i=l 

The estimates a,b and r are Maximum Likelihood Estimates (MLE) under the assumption 

that the sample distances of (upU^) from the true center are independent and approxi

mately normally distributed about the true radius. 

9.1.1 Reference Circles 

Just as the cartesian doordinate system is used for a reference in planar surface 

estimation, a circular reference with a center is needed for a set of near-circular data 

points imbedded in the plane. The spatial prediction models for circular features depends 

on the choice of setting or circular reference; also the use of kernel type is closely related 
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to the domain of interest D; in particular, peroidicity is a nature attribute of kernels to 

be used for spatial analysis of circular features. 

There are many ways to designate a reference circle and center, such as the best 

fit circle, the minimum radial separation circle, the largest inscribed circle, the smallest 

circumscribed circle and so on. Among these, the best fit circle would be the most 

compatible one with spatial prediction methodology. 

Xj 

Xi 
Reference 
Center Ui 

(a,b) 

Figure 9.1: Observations of Circular Features 

In general, the center of the reference circle is of particular importance. Indeed 

distances from the reference circles are regarded as observations. 

For later use, let denote the unit sphere in so that can define a unit 

circle in 'R? and let be the best fit sphere in so that denotes the best fit 

«  .  9  
circle in T Z  .  Throughout this work, the center of a reference circle lying in the plane, is 

assumed, without loss of generality, to be at the origin. 
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9.1.2 Domain of Interest 

The most popular way of dealing with the circular problem would be to consider it 

in a univariate setting tied to a single angle 0. In the case that the observation points 

Xj^jXj e U^, since (a, b) = ||a||||b|| cos0 for arbitrary vector a and b, the intervening 

angle 9^j < TT between Xj and Xj can be given by 9^j = arccos(®^-,a5j), where (•) denotes 

the inner product. In case that aj^- and xj are not necessarily on but on an arbitrary 

circle, 

(9.4) 

An alternative way of identifying the domain would be to resort to chords, rather than 

angles as in Light and Cheney [42]. The metric involved is the Euclidean distance ||aj^ — 

j\\2, which is the length of the chord between the two points ajj and xj, given by 

\ 
2f — 2r cos (9.5) l l®z-  -®j l l2  

Figure 9.2 illustrates the metric of each system. A closer look reveals that there exists 

"CxN AIC (Geodesic) 
Qiord \\* 

(Euclidetn) N \\ 

Reference 
Center 
(a.b) 

Figure 9.2: Geodesic vs. Euclidean Distance 
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an algebraic link between the two metric systems. A relation alternative to (9.5) is 

/ ||jp jp *||^\ 
1|0 - Oj |j = arccos 11 

It is also possible to exploit the theory of Completely Monotone Functions and Con

ditionally Positive Definite Functions to obtain information about interpolation on any 

reference circle, as discussed in previous chapters. 

9.1.3 Criterion for the Choice of Kernels 

Self-similarity, already defined in section 6.1, is especially useful in the spherical case, 

where it produces invariance of the interpolant to the radius of the spherical domain. 

Beyond this, kernel selection in spherical surface analysis will depend on the domain V. 

If 2? is a circle, it is required for the kernel to be symrrietric and periodic: 

'^{^11^2) — "^^(11^1 ~ ^2II)  ± 2^7r) , ^ = 0,1,2,3, •• • (9.7) 

This type of kernels lend itself to Fourier series analysis. In the case of a sphere, the 

kernel should satisfy properties generalizing (9.7), as discussed below. 

9.1.4 Univariate Circular Approach 

In keeping with Fourier Analysis, as in Wahba [72], kernels on the circle can be 

obtained by imposing periodic boundary conditions on kernel functions, but it is more 

convenient to begin in the first instance with periodic kernel functions: Eigenfunctions 

and Eigenvalues have a particularly simple form 

00 00 

k { 0 )  ~ \/2 ^ flj/ cos 27ri/^ + \/2 ^ bu sin 2Tru6 9 6 [0,1] = C 7^^ (9.8) 
z/=l i/=l 
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with 12^1 + b^){2iny)^^ < oo, where the domain of interest is the unit circle. Since 

7/iT 1 (  ~  X " " " )  \  (9-9) 
I sin ^-KvO ± sin \ 
V y t 

then if < oo holds, we have 

OO .1 I 

Zi (4 + 6y)(27ri/)2^ = I L:(^)(u) 
u=l ' 

du (9.10) 

A natural way of obtaining a valid kernel is to derive the Reproducing Kernel. From the 

famous Parseval Identity, the reproducing kernel function ( inner product ) is given by 

oo 

!/=; 

oo 
i/=l (27rz/)2fc 

2 

[cos27ri/0j cos27ri/^2 + sm2'Kv6i sin27ri/02] (9-11) 

(9.12) = E "sOfe 27rj/(% - 02) 

which is a member of Covariance Kernel. The eigenvalues of the reproducing kernel are 

all of multiplicity 2 and are \j/ = (27ri/)~^^, and the eigenfunctions are •\/2sin27rf0 and 

•\/2 cos 2'ku6. A closed form expression for ^2) "sing Bernoulli polynomials was given 

by Craven and Wahba [13]. The Bernoulli polynomials B£{9),£ = 0,1, • • • G [0,1] are 

known to satisfy the recursive relations 

BoiO) = 1 

-ipm = 

B^{u)du = 0, ^=1,2, ••• 

The following formula is available in Abramowitz and Stegun [1]. 

(9.13) 

(9.14) 

(9.15) 

BikW = (-l)''-'2(24)! Y. 
^ cos27ri/0 

(27rz/)2A:' 
0G[O,1] (9.16) 
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so that K(-) of (9.12) is given by 

= (9.17) 

where — ^2] is the fractional part of — 02- '^(^1? ^2) ^ stationary covariance on the 

circle, whose associated stochastic process Z(0),0 G [0,1] possess exactly k — 1 quadratic-

mean derivatives and satifies the periodic boundary conditions z(^)(0) = = 

0,1,2,---,A: — 1. The first few such functions are given by 

k = l ,  B i i m )  = l{i _ I«|(l - |«|)} (9.18) 

k = 2, B4(|e|) = -l{-l + |«l2(i_|S|)2} (9.19) 

k = 3, B6(|«|) = i{l-l|»|2(l-|9|)2_|s|3(i_ 1^1)3, (gjp) 

Due to Translation Invariance, the constant term and scaling factor are removable so a 

bit of simplification is possible here. With 9, Oj e [0,27r] G 71^, 

»l(«.«j) = ||«-9j||(2:r-||«-9j||) (9.21) 

= ||«-«j||2(2^-||e-«j||)^ (9.22) 

+ ll«-«jll^(2T-|l«-«jll)' (9-23) 

This enable us to construct different types of models for circular profile interpolation. 

N N 
fe = 1 , m = /3o + E . E = 0 (9-24) 

i=i j=i 

N N 
k  =  2 ,  m  = l 3 Q + Y , a j K 2 { e , e j ) ,  = 0 (9-25) 

j=l j=l 

N N 
fc = 3 , m = ;9o + E ' E = 0 (9-26) 

i=i i=i 
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which varies depending on k. In general, any periodic function on the circle [0,1] which 

is continuous, even and positive-definite has a Fourier Representation 

oo 
K{OI — 62) = ^2 2-KV{9I — ^2) (9.27) 

u=\ 

with aj > 0, oi/ < 00. Schoenberg [68] proved that the most general nonnegative 

definite functions on the circle take the above form. In other words, such a function /c(-) 

has the property that for arbitrary iV, G 5^, and G 7^, 

N N 
Z Y. > 0 (9.28) 
i = l j - l  

where d(xi,xj) is the geodesic distance between the two points on the circle. Note that 

the models (9.24)-(9.26) are analogous to that of Ordinary Kriging, in the sense that the 

kernel k;(02 — ^2) covariance function of the Gaussian Brownian Bridge. In chapter 

10, the models of this category will be denoted by BPk. It is known that the models 

belonging to this category performs well especially for circular profiles, thus deserve to be 

used as benchmarks in teh circular case. 

9.1.5 Bivariate Circular Approach 

To discuss the estimation of circular profile in 2-D space, we need to define the domain 

of interest D = |(u, u)|(« — a)^ + (u — 6)^ — = o|, where f is an unspoecified radius. 

Let us recall the Variational Principle in chapter 4. The following kernel, known as Thin 

Plate Spline, useful here. For fc = 2,3, • • •, and x,Xj G V, 

= ll®-®jll2^~^logll®-®jll2 (9-29) 

where H® —II2 ~ ~ + iv ~ Vj)^- important to see that since this function 

is Radially Symmetric and Self-Similar, one can restrict the domain to the perimeter of 
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arbitrary radius. Using this kernel, one can construct the following prediction model 

where x = (r cos 0, r sin 0) (I'D and the models can be of any order other than 2. Ac

cording to the Variational Principle, the order k=2 typically is preferred, as discussed in 

Chapter 4. Note that the above discussion can be extended to embedding spaces of any 

even dimensional circular approach. In chapter 10, the models of this category will be 

denoted by TP/;. 

9.1.6 Trivariate Circular Approach 

Here it is assumed that the reference circle is imbedded in 3 dimensional space. The 

domain of interest can be designated by 

According to kriging and spline theory, the following kernels, depending on the order k, 

are valid in 3 dimensional space. 

for A; = 0,1,2,3,4, • • •. Note that these kernels are Self-similar. For this reason, one may 

at the origin. To make these kernels work in 2 dimensional space, one needs to assume 

z = Zj — 0, in which case (9.32) becomes 

N 
k  =  2 ,  f { x )  =  /3q + /3iqx + ̂ oiy + ^j) 

i=l 
(9.30) 

T> = j(u, v,i{;)|(u — a)^ + (v — 6)^ — =0 and lu = o| C (9.31) 

consider that the circle is imbedded on X-Y plane with the best fit center (a, b) located 
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Let the radius of a reference circle be denoted by f, then on 5^ = 6 1^, 

r 1 2 A?—" 1 

Kj^{x,xj) = [2r - 2rcos0Q^J (9.35) 

From this fact, one can consider the following prediction models, which can vary depending 

on the order k of the models. 

N 
k = 0, f ( x )  = (9-36) 

i=i 

N 
k  =  l ,  f { x )  =  0Q+ oi jKi{ x , X j )  (9.37) 

i=i 

N 
k = 2, /(«) = ^Q + /3iQX + ̂ Qiy+ ajK2{x,Xj) (9.38) 

J=1 

Note that the model (9.36) corresponds to Spherical Multiquadric of Hardy and Goepfert 

[31], which is always of order zero. According to spliners' criterion,, the order k=2 is 

always preferred, while in kriging there seems to be no preference as long as the kernel is 

valid. In chapter 10, the models of this category will be denoted by KRA:. 

9.1.7 Smoothing of Circular Profile Data 

In most cases of real world problems, the sampled data are subject to random effect 

errors. In the absence of formal fitting procedures, the best way to assess the fit of a 

covariance seems to be cross-validation. Each data point is deleted in turn and its value 

predicted from the rest of the data, using the fitted or specified kernel function. The 

predicted error are then assessed. It is tempting to form the sum of squares of these 

errors. Based on this idea, Wahba [72] and Cressie [14] presented the formal fitting 

techniques, such as Ordinary Cross Validation and Generalized Cross Validation. 
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9.2 Spherical Surface Estimation 

Now, consider a sphere imbedded in 3D space. There are some previous studies, 

such as Wahba [72], Hardy and Goepfert [31], and Pottmann and Eck [59]. The following 

approach suggests analogous, but somewhat different point of view. 

Again, let us get started with Least Square Method, or "best fitting" for sphere. 

The distance rj from the center (a, 6, c) to a point can be given by 

VI = \J(u^ — a)^ + (uj — 6)2 + — c)2. Hence, the Least Square Criterion for spherical 

feature can be expressed as 

mm in 5] - a)2 + - 6)2 + {w^ - c)2 - r] = min 
' i=l^ ^ i=l 

(9.39) 

For convenience, assume that the reference center (a, 6, c) is situated at the origin (0,0,0), 

where (a, 6, c) is the Best Fit Center. 

9.2.1 Bivariate Spherical Approach 

A sphere can be looked upon as a natural extension of a circle or a surface of revolution 

of a circle. On bivariate setting, let us suppose that the domain of interest 

V = {(0, (/>)|0 < 9 <2Tr  and 0 < ^ < TT} 

To discuss spherical kernels from a bivariate point of view, we concentrate on the diatance 

||-, "ll between two points on the sphere. The geodesic distance between any two points 9 

and 9j is given by = min|l|0 — ^j||,27r — [jd — In terms of that distance, 

the following two kernels are of special interest 

Ki iO^Oj )  =  \ \8 ,d j \\{27r- \ \ e , e j \ \ )  (9.40) 

= ||«,9j||2(2,-||«,9J||)2 (9.41) 
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The reader will notice that these kernels, as in the geodesic distance itself, are periodic 

on a great circle of the spaere considered. Using these kernels, the prediction can be 

performed by 

N N 
m = 60 + E «i • = bo+E^j- KO,Oj) (9.42) 

j=i i=i 

Note that the models are always of order 1 regardless of k, just as in the case of the 

univariate circular approach. BPA: denotes the models of this category in chapter 10. 

9.2.2 Trivariate Setting 

Now consider a sphere imbedded in 3 dimensional space. The domain is given by 

V  = |(ii, V ,  ii;)|(u — a ) ^  + (u — b)^ + — c)^ — = o| C (9.43) 

According to kriging and spline theory, the following kernels, depending on A; = 0,1,2, •, 

are valid on three dimensional setting. For G f C 

= {y/2r-2fcos9Qj]'^^~^ (9.44) 

= + (f - y j ) ^  + (^ - ̂ j ) ^ }  (9-45) 

where OQJ = arccos ^|]^' ||ai'^-||^' prediction can be conducted based on 

N N 
f{ x )  = b' • X + a j -  k(», X j )  =  W  •  X  +  e j  •  X { x , x j )  (9.46) 

j=l j=l 

The smoothing technique is also applicable to these models based on cross validation. In 

chapter 10, KRA: denotes the models of this category. 
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9.3 Cylindrical Surface Estimation 

Given a set of points sampled from an actual cylindrical surface, one can consider 

the Least Squares Criterion for the estimation of cylindrical surface. The distance from 

a point on the best fit center line or axis {a,b) to a point is given by 

— a)2 -|- — 6)2. The Least Squares Criterion for a cylinder is expressed as 

N r . t2 N 
mm in ^ [V{ui - of + {vi - 6)2 - n{x) = min ^ [r^ - ̂ (»^)]^ ,« G P (9.47) 

i=l i=l 

The reference axis (a, b) is set to (0,0), where (a, b) is the Best Fit Axis. 

9.3.1 Trivariate Cylindrical Approach 

Consider a cylinder imbeded in 3 dimensional space. The domain of interest can be 

identified as 

T >  =  {(a:, y ,  2;)|(a; — a ) ^  + (y — 6)^ — = 0 and c  <  z  <  d }  C  V ?  (9.48) 

where f is the radius of a cylinder of any magnitude. In view of the spatial prediction 

theory, only the kernels on three dimensional setting is considered. For x,Xj 6 the 

kernel can be given depending on A: = 0,1,2, • • •, 

,2A:-1 
^ = {y^2f - 2rcos0oj + (^ - (9-49) 

=  -  x j f  +  { y -  y j ) " ^  +  { z -  Zj)2| (9.50) 

where r is the radius of a cylinder of any magnitude. The prediction is performed by 

N N 
f { x )  =  h ' - x i -  a j  •  K { x , x j )  =  h ' - x ^ -  e j  •  X { x , x j )  (9.51) 

i=i i=i 

Note that smoothing and variance calculation are also possible by usual procedure. In 

chapter 10, the models of this category will be denoted by KRA:. 



82 

9.4 Toroidal Surface Estimation 

A torus can be regarded as a natural extension of a circle; a surface of revolution of 

a circle around w axis. Now consider a torus imbedded in 3 dimensional space. Again, 

let us get started with Least Square Method for torus. In this ca^e, the crosection is the 

0 0 0 
circle {u — R) + = r with two kinds of radii: the Large scale radius R and small 

scale radius r. In parametric terms the equation of a torus can given as 

r = r(0, (^) = (i? + a cos 0 )  cos ( f )  •  i  +  { R  +  a  cos 6) sm<j) • j asin9 • k 

where i J and k are standard orthonormal vectors in 3 dimensional space. For convenience, 

suppose that the reference center (uQ,i)o,it'o) is situated at the origin (0,0,0), where 

(«0,u0'^o) Center. The center of the cross-sectional circle can be given 

by (i?cos i? sin 1^). 

9.4.1 Bivariate Toroidal Approach 

In a bivariate approach, a torus is viewed as a surface of two paramaters 6 = (0, <^). 

On bivariate setting, the domain of interest can be identified as 

V = {(0, ̂ )|0 < 0 < 27r and 0 < (j) < 27r} 

To discuss toroidal kernels from a bivariate point of view, we concentrate on the Geodesic 

Distance ||-, -H between two points on the reference torus. The geodesic distance between 

any two points B and 9j is given by l|0,0jl| = min— 0j|l,27r — 1|0 — ^jH). In terms 

of that distance, the following two kernels are of special interest 

K i { d , 9 j )  =  \ \ e , e j \ \ { 2 ^ - \ \ e , e j \ \ )  (9 .52) 

K2{e,ej)  =  \ \e ,djf{2Tc-\ \e ,ej \ \ f  (9.53)  
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Note that these kernels, as in the geodesic distance itself, are periodic both with respect to 

the revolution and on a cross-sectional circle of the torus considered. Using these kernels, 

the prediction can be performed by 

N N 
f{e) = bQ+ ^j- j) = ^0 + £ ey • x{e,0j) (9.54) 

i=i j=i 

Note that the models are always of order 1 regardless of k, just as in the case of the 

bivariate spherical approach. BP& denotes the models of this category in chapter 10. 

Trivariate toroidal approach based on Euclidean distance is also possible, but not shown 

here. 
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CHAPTER 10. EXAMPLES OF ROUND FEATURE ESTIMATION 

This chapter is to demonstrate how the previous studies can be applied to the esti

mation of surfaces of machined parts that have round features. The set of data points 

is assumed to be obtained in three-coordinate form, as by three-coordinate measuring 

machines (3-CMM). 

There are some reasons for measuring manufactured parts using three dimensional 

CMM: tolerance checking of the manufactured part, testing for compensation of machine 

tools and testing the accuracy of three-coordinate measuring machine itself. 

In the case of tolerance checking of circular profiles, one may fit a circle into the 

data and check whether the specification is met. In case of testing for compensation of 

machine tools, the residuals are of more concern. In practice, the circular test is in wide 

use to test the accuracy of CMM itself. The circular test is a fast method of testing the 

geometrical accuracies of three-axis machines positioning, straightness, roll, pitch, yaw 

and perpendicularity. In the circular test, a standard disc is used. The disc is measured 

in different positions in the working area of the machine. 

The calculated mean squaxe fit diameter, standard deviation and Fourier analysis 

result in an analysis of the error sources and of the geometric error components. However, 

the calculation of the two or three dimensional uncertainty from measured geometric error 

components is generally not easy because of the random error effect. 
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In relation to this, we discuss how the three methods — Bernoulli Polynomial, Thin 

Plate Spline and IRF kriging — in the previous chapter can be used for round feature 

estimation such as circular profile, spherical and cylindrical surfaces. 

10.1 Circular Profile Estimation 

The easiest way of getting a glimpse of how those models work is to designate some 

test functions. Since the test function is perfectly known, one can define a measure of the 

performance in one way or another. 

10.1.1 Test of Reproducibility 

Among the performance measures of predictors would be the reproducibility of pre-

specified circular feature. To test the performance of the prediction models, a set of test 

functions are designated; The criterion would be the sum of squared errors (SSQ) at 

prediction points. Candidate test functions are f{9) = a + bcos£9 , a > 0, |6| < a, 

^ = 0,1,2,3, • • •. Examples of test functions are shown in Figure 10.1. 

Let us define the reproducibility to be the sum of squared deviation from prespecified 

near-circular shape at each 6^,1 = 1, - • • ,360, which is given by 

360 
S$Q= E  

i=l 

where /(0j) is the known test function and /{&{) is the prediction at each 0^, i = 1, • • •, 360. 

Table 10.1 and 10.2 condensed from Figure 10.2 and Figure 10.3, respectively, shows that 

the three methods do not differ in any substantial way. It is quite inspiring that one 

can detect 3 lobed round features with as small a sample size as 9. It seems to be almost 

I m - m ) ] '  (10.1) 
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Figure 10.1: Test Functions 

Table 10.1: Comparison of Test Results ^=1 

LOBO L0B2 L0B3 L0B5 
MQO .1141476E-05 .2103417E-5 .6685560E-5 .3329501E-4 
BPl .2520260E-33 .1308544E-5 .5947378E-5 .3225025E-4 
KRl .2279519E-33 .1178821E-5 .5780964E-5 .3237041E-4 

MQO : Multiquadric of = 0 on 2-D Setting 
BPl : Bernoulli Polynomial of A: = 1 on 1-D Setting 
KRl : IRF Kriging ( MQ-B ) of = 1 on 3-D Setting 
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Table 10.2: Comparison of Test Results k=2 

LOBO L0B2 LOBS LOBS 
BP2 .1148965E-29 .5000040E-8 .3418271E-6 .4495495E-4 
TP2 .1035142E-29 .4337514E-7 .1165846E-5 .3919316E-4 
KR2 .1086565E-29 .9343919E-9 .2145103E-6 .4662230E-4 

BP2 : Bernoulli Polynomial of = 2 on 1-D Setting 
TP2 : Thin Plate Spline of A; = 2 on 2-D Setting 
KR2 : IRF Kriging of fc = 2 on 3-D Setting 

impossible to detect 5 lobed objects. However, if the sample size is doubled, it would be 

possible to make a good estimation of 5 lobed round features. 

10.1.2 Interpolation of Circular Profile • 

The interpolation of circular profile is characterized by the fact that the interpolant 

passes through all the observation points. Let's suppose 18 points of circular data are 

given as in Fig 10.4. The calculated interpolant of each method is plotted as in Fig 10.4, 

which indicates that the two models of order k=l do not make big differences. 

The shortcoming of this type of interpolation is that the interpolant has cusps at 

. 0  
each data point. Note that if one employ tension paxameter c to round off the vertices, 

then it reduces to Hardy's multiquadric biharmonic model. Instead of employing Tension 

Parameter, one may consider an increase of the order of the model. Figure 10.5 shows 

that the performance of the three models of order k=2 do not make any substantial 

differences, either. A drawback of this method might be that the interpolant looks too 

wavy and hence is not naturally smooth. A plausible cause of this would be that the 

interpolant is being forced to pass through all the observation points. 
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Figure 10.2: Test Results - MQO, BPl and KRl 
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Figure 10.4: Interpolated Circular Profile - BPl, KRl 

10.1.3 Smoothing of Circular Profile Data 

One may suspect that the measurements by coordinate measuring machine (CMM) 

are subject to some random errors, just like sampling errors in statistics. Smoothed 

circular profiles based on Ordinary Cross Validation are shown in Figure 10.6. Note that 

the three methods yields very similar results. For practical purposes, all of them provide 

excellent estimates pr prediction. 

OJM I 

X (M m)  

Figure 10.5: Interpolated Circular Profile - BP2, TP2, and KR2 
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Figure 10.6: Smoothed Circular Profile - BP2, TP2, and KR2 

10.1.4 Lessons of Circular Profile Fitting 

It is interesting to see that circular profiles can be estimated in 1,2 or 3 dimensional 

setting, owing to the invariance properties of kernel functions. The three methods perform 

almost equally well. There would be no preference among the three methods. It might 

be because of the fact that they belong to the same family of functions, say M spline or 

Gaussian family. The strong point of KR model is that it can be easily extended to the 

estimation of arbitrary round objects in 3 dimensional settings. 

10.2 Spherical Surface Estimation 

Now, consider a sphere as a natural extension of a circle. An example data is shown 

in Figure 10.7. In this example, 9x5 grid data are used, while it is also applicable to 

non-grid data. Three types of models are considered. It is expected that the prediction 

model should work good as long as the circular profile is concerned. The actual data and 

reproduced surface is plotted in Fig 10.7 aad Fig 10.8. Note that BP A: and KRA: work 

much the same way. Figure 10.7 and Figure 10.8 indicate that the sphere is a little bit 

distorted. 
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Figure 10.7: Actual Data and Interpolated Surfaces - BPl and BP2 

Figure 10.8: Interpolated Surfaces - MQO, KRl and KR2 

Figure 10.9: Smoothed Surfaces - BP2 and KR2 
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Figure 10.10: Actual Data and Interpolated Surfaces - KRl and KR2 

10.3 Cylindrical Surface Estimation 

Figure 10.10 shows the actual data and the estimated surface. The reproduced sur

faces look' more realistic. The KRl has some cusps on the surface, while the KR2 repro

duces no cusps at all, but too wavy surface. By smoothing, one might be able to reduce 

the unnecessary willowing of the surfaces as shown in Fig 10.11. An interesting fact is 

that the abstract of the cylinder is a little bit tilted. In such a case, it would be better to 

try to fit a tilted cylinder by least square methods. According to ANSI standard, there are 

many types of distorted version of cylinders; Taper, Barrel, and so on, most of which are 

detectable by this simple approach. Such a study can find its wide applications in manu

facturing area; pilot study of geometric modeling and wear pattern study of cylindricval 

surfaces such as bushings and inner surface of a cylinder. 

10.4 Toroidal Surface Estimation 

An example data is plotted in Figure 10.12. As in the previous sections, the BPl 

reproduces some cusps on the surface, while the BP2 does not. Here, only the result of 
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Figure 10.11: Smoothed Surfaces - KRl and KR2 

Figure 10.12: Actual Data, Interpolated and Smoothed Surfaces - BPl and BP2 
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geodesic approach is shown, while Euclidean approach is expected to produce as good a 

result as shown here. This method applies basically to any ring-shaped objects such as 

tires, rims and so on. For this type of study to be applied to the real world problems, it 

is desirable to use the larger sample size with some modifications of the model. 
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CHAPTER 11. CONCLUSION 

There exist several spatial prediction methods : kriging, splines and some other 

methods such as multiquadrics. Kriging is based on stochastic process theory and the most 

common assumption is the normality of the underlying process, which ease the analysis 

of the process. Among many aspects of kriging is the fact that the kriging model need 

not be tied to conventional Covariance (Second Order, Wide Sense) Stationary models. 

Indeed, one can extend Covariance Stationarity to Intrinsically (Variogram, Wider Sense) 

Stationarity. The objective of deterministic spline modeling is to minimize the error 

committed by interpolation. It is worthy of note that this minimized error coincides 

with the minimized mean squared (prediction) error {MSE) advocated by krigers. Even 

though spatial prediction methods differ in their objectives, they enjoy the same structure 

identifiable within a unified framework. 

Kriging and spline prediction models take several forms, but these models are simul

taneously interpretable in both disciplines. Given the order k of the model, spline function 

kernels or semi-variograms may be subject to certain conditions such as Conditional Pos

itive Definiteness of Order k, which guarantees the boundedness and the uniqueness of 

the interpolant, and the optimization process common to both features of Translation 

Invariance and Annihilation. 

The major difference between kriging and spline methods lies in the criterion for 
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the choice of kernels. Seen from the krigers' point of view, the kernel type depends on 

assumptions concerning the underlying stochastic process, while spliners choose spline 

function on the basis of physical criteria, such as roughness minimization. 

According to the author's short experience, the multiquadric method is amazingly 

good for practical purposes, while it leaves something to be desired in some theoretical 

sense as discussed in chapter 7. Interpolants derived from the MQ biharmonic model of 

order zero may assume infinite values, while the MQ biharmonic model of order 1 does 

not suffer from this defect. MQ harmonic and biharmonic models are interpretable in the 

Wider Sense Stationary kriging context: 1) The MQ harmonic kernel can be interpreted 

as a covariogram of a white noise process, 2) The MQ biharmonic kernel can be interpreted 

as a covariogram of Brownian motion. 

There is a close link between least squares and spatial prediction. The least square 

methods can be viewed as a special case of spatial prediction method. Accordingly, any 

least square model can be naturally extended to the spatial prediction model. 

The model framework for circular profile interpolation and smoothing can be con

structed by extending the Least Squares Model for round features to a Generalized Least 

Squares model. One is able to construct various models depending on domain, kernel 

type and order of the model. One can formulate three types of models depending on the 

dimension of domain: one, two or three dimensional setting. For circles only, those three 

types of models perform almost equally well. The three dimensional setting or trivariate 

approach is easy and versitile, especially when dealing with three dimensional geometric 

objects like spheres or cylinders or possibly any other type of objects. 

Spatial prediction methods can find its wide applicability in the area of manufactur

ing, especially for geometric rendering of form-errors of machined parts or wear-pattern 
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of used parts. 

The major conclusion of this dissertation is that interpolation should proceed in a 

three-dimensional setting, by imbedding if necessary, when the domain of interest is less 

than three-dimensional. This produces smooth interpolants on which the three major 

schools essentially agree. It would be of great help to the engineers engaged in manufac

turing to have the corresponding software incorporated in coordinate measuring machines. 
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APPENDIX A. SPATIAL PREDICTION 

The whole idea of spatial prediction methodology might be well illustrated by Figure 

A.l. In spatial prediction, sample data are collected from the actual surface z{x),x G V 

and the surface are reproduced ba^ed on the observational data The 

Figure A.l: 2-D Observational Data and Reproduced Surface 

performance of spatial predictor can be measured by how close the reproduced surface is 

to the actual one. Since the actual surface is generally not known, they minimize the mean 

squared error in kriging and the upper bound of the error committed by the prediction 

in splines. 
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APPENDIX B. CARDINAL FUNCTIONS (HAT FUNCTIONS) 

As discussed earlier, an interpolant has a representation in terms of the scalar valued 

function A(-), which has a special property and shape. One can get an interpolant by 

specifying A(-). In spatial prediction, the usual way to get the function A(-) is to specify 

/c(-) or r(-) first and derive A(-) from the following algebraic relations. Define 

>^1 = % = =TOi = and =  K Q i = K { x , X i )  ,  i  = 1, • • •, iV (B.l) 

and let A = [Agi, Ao2> •" •, T =  [ " ^ Q b ^ 0 2 ' ' '  • , a n d  «  =  [ « 0 b  « ^ 0 2 ' ' ' ' '  « O i v ] ' '  

as before. Now let K  and T  consist of column vectors of {Tj, • • •, T j ^ }  and { K i , • • •, K j ^ } i  

respectively, i.e.. 

T  =  [ r i , T 2 , - - - , r ^ ]  =  

ni 

^iVl 

K  =  [ K I , K 2 , - - - , K N ]  =  

If onee let K X  —  k ,  then by Cramer's Rule, 

K l l  

tCNi 

• nN 

• '^NN 

••• '^IN 

^NN 

(B.2) 

(B.3) 

-^0 
_  deti^K^i''' 1 1^1 Ki^i, •  •  • )  _  

^  d e t { K i , -  •  • ,  K i ^ i ,  •  • ,  K ^ )  

1 , K = Ki 

0 , K ^ K j , j  ̂  i  
(B.4) 
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for J = 1 ,  •  •  • ,  jV . Consequently, it follows that 

ij 
1 , Xi = Xj 

(B.5) 

where i,j = 1,' 

T \  =  T .  

0 1 

, N .  I n  t h e  s a m e  w a y ,  g i v e n  T(-), A is obtainable from the relation 

•t-o bt fBMUM*-

Figure B.l: 1-D and 2-D Hat Function 

The A is a vector of functions of aj, since k is a vector of functions of x. The functions 

A(-) are called Cardinal (Hat) function in splines and Weignt Function in kriging. 



110 

APPENDIX C. EIGENVALUES AND QUADRATIC FORMS 

Let (5 be an iV X iV square matrix of full rank. A scalar A and a non zero vector x 

satisfying the equation Qx = Ax are said to be, respectively, an eigenvalue and eigenvector 

of Q. In order that A be an eigenvalue it is clear that it is necessary and sufficient for 

Q — XI to be singular, and hence det{Q — XI) = 0. This last result, when expanded, yields 

an N-th order polynomial equation which can be solved for N (possibly nondistinct) 

complex roots A which are the eigenvalues of Q. Assume that Q is symmetric. Then the 

following holds: 1) the eigenvalues of Q are real, 2) Eigenvectors associated with distinct 

eigenvalues are orthogonal and hence form an orthogonal basis. 

Let {vj, V2,• • •) Vjy) be an orthogonal basis as in 2). By normalization, we get an 

orthonormal basis {m, U2, • • •, ujy}. Defining matrix B = [uj, U2, •" *; we have 

that B = I and hence = B~^. Observe that 

B  ^ Q B  =  B ' Q B  =  •  •  •  , ( 5 u y Y ]  =  •  •  • , A j y u ^ y ]  (C.l) 

and hence the diagonalized matrix can be represented by 

Al 

B-^QB = 

X N 

(C.2) 

A symmetric matrix Q is said to be positive definite if the quadratic form x'Qx is positive 

for all nonzero vector x. For any x let y = (5~^x where Q is defined as above. Then 



I l l  

x'Qx = y'B 'Q B y — '^fLi ^ i v f -  Since the are arbitrary, Q  is positive definite ( or 

positive semidefinite) if and only if all eigenvalues of Q are positive ( or nonnegative). 

It can be easily shown that a positive definite matrix E has positive definite square 

roots satisfying • E^/^ = E. For this, we use B as above and define 

A12 

sV2 = 5-1 . 

^1/2 
W 

B = T (C.3) 

1/2 
Note that, in (C.3), may be chosen to be of either sign, so that T may be chosen 

as positive definite or negative definite or root of mixed signs, but in any event T will be 

invertible. 


