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    Chapter 15   

 Sequence-Based Prediction of RNA-Binding 
Residues in Proteins                     

     Rasna     R.     Walia     ,     Yasser     EL-Manzalawy     ,     Vasant     G.     Honavar     , 
and     Drena     Dobbs      

  Abstract 

   Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding 
the molecular determinants of protein–RNA recognition and has many potential applications. Recent 
technical advances have led to several high-throughput experimental methods for identifying partners in 
protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time- 
consuming. This chapter focuses on available computational methods for identifying which amino acids in 
an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three 
different web-based servers to predict RNA-binding residues are described. In addition, currently available 
web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable 
information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding 
recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify 
interfacial residues without the requirement for structural information regarding either the RNA-binding 
protein or its RNA partner.  

  Key words     Protein–RNA interfaces  ,   Binding site prediction  ,   Machine learning  ,   RNA-binding 
proteins (RBPs)  ,   Ribonucleoprotein particles (RNPs)  ,   Homology-based prediction  ,   RNABindRPlus  , 
  SNBRFinder  ,   PS-PRIP  ,   FastRNABindR  

1      Introduction 

 RNA-binding proteins (RBPs) are key regulators of cellular and 
developmental processes [ 1 ], playing pivotal roles in the posttran-
scriptional splicing and localization of mRNAs [ 2 – 5 ], mediating the 
activities of noncoding RNAs (ncRNAs) [ 6 ,  7 ] and even “moon-
lighting” as metabolic enzymes [ 8 ,  9 ] and promoting phase transi-
tions to generate stress granules inside cells [ 10 ]. Defects in RBPs 
and ribonucleoprotein particles (RNPs) have been linked to immu-
nological disorders [ 11 ], cancer [ 12 ,  13 ], and neurodegenerative 
diseases in humans [ 5 ,  14 ]. Still, even though the human genome 
encodes more than 1500 different RNA-binding proteins [ 15 , 
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 16 ]—at least as many RBPs as DNA-binding transcription factors 
[ 17 ]—our understanding of the cellular roles of RBPs, how they 
recognize their targets, and how they are regulated has lagged far 
behind our understanding of transcription factors. Recent exciting 
developments have begun to close this gap, providing proteome- 
wide catalogs and databases of RNA-binding proteins, “RNA inter-
actomes” or “RBPomes” [ 18 – 21 ], an impressive compendium of 
RNA recognition sites [ 22 ], detailed views of the architecture and 
dynamics of important RNP complexes and RNA viruses, e.g., refs. 
[ 23 ,  24 ], and substantial progress in engineering RBPs with custom-
ized functions and high specifi city for desired RNA targets [ 25 ,  26 ]. 

 RNA-binding proteins are often modular, and many well- 
characterized RBPs contain one or more conserved RNA-binding 
domains or motifs [ 1 ,  27 ]. The RNA recognition motif (RRM), 
for example, is one of the most abundant structural motifs in ver-
tebrate proteins, and is found in ~2 % of all human proteins [ 25 ]. 
Other abundant RNA-binding domains and motifs include the 
KH, dsRBD, DEAD-Box, PUF, SAM, and ZnF domains [ 1 ,  27 ], 
all which have conserved structures and can be recognized in the 
primary sequences of proteins ( see  Subheading  3.1 ,  step 6  below). 
However, only ~50 % of the mRNA-binding proteins identifi ed by 
“interactome capture” in HeLa cells contain a characterized RNA- 
binding domain [ 19 ]. Also, many RBPs bind RNA through intrin-
sically disordered regions (IDRs), which are thought to promote 
formation of extended interaction interfaces and contribute to the 
generation of higher order assemblies and the formation of RNA 
granules [ 28 ,  29 ]. Finally, a survey of available structures for pro-
tein–RNA complexes revealed that the majority of amino acids in 
the protein–RNA interface are not part of a characterized RNA- 
binding motif [ 30 ] and the presence of an RNA-binding signature 
does not conclusively identify the specifi c amino acids involved in 
RNA recognition and binding. 

 The most defi nitive way to identify RNA-binding residues 
(i.e., residues that directly contact RNA) ( see   Note    1  ) is to extract 
them from a high-resolution experimental structure of a protein–
RNA complex. Three-dimensional structures are available for only 
a small fraction of the known protein–RNA complexes [ 31 ]. As of 
December 16, 2015, the number of solved structures in the Protein 
Data Bank (PDB) for protein–RNA complexes is only 1661 out of 
114,402 total structures, and ~40 % of the RNA-containing struc-
tures in the PDB correspond to ribosomes. Protein–RNA com-
plexes can be very diffi cult to crystallize and many are too large for 
structure determination using NMR spectroscopy [ 32 ,  33 ]. 
Fortunately, recent advances in NMR [ 34 ], cryo-electron micros-
copy [ 35 ], and small-angle X-ray scattering (SAXS) [ 36 ] offer tre-
mendous promise for providing structural details for RNPs that 
have been recalcitrant to experimental structure determination. At 
present, in the absence of a 3D structure, several types of 
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experiments can be used to identify RNA-binding residues that are 
required for function (e.g., site-specifi c mutagenesis) or residues 
that are either required for high affi nity binding or are located in 
close proximity to RNA in protein–RNA complexes, either in vivo 
or in vitro (e.g., co-immunoprecipitation assays, cross-linking mass 
spectrometry, yeast 3-hybrid assays, footprinting, and electropho-
retic shift assays (reviewed in refs. [ 1 ,  27 ,  38 ]). 

 The development of high-throughput CHIP and RNASeq- 
based methods that employ a combination of in vivo cross-linking 
and immunoprecipitation (e.g., RIP-Chip, HITS-CLIP, PAR- 
CLIP, iCLIP, and CRAC) has made it possible to identify RNAs 
bound by specifi c proteins on a genome-wide scale (reviewed in 
refs. [ 1 ,  39 ,  40 ]). Along with these advances, several powerful inte-
grated biochemical/bioinformatics approaches can identify both 
the target RNAs and the specifi c ribonucleotides recognized by the 
RNA-binding proteins [ 41 – 43 ]. In contrast, at present, there are 
no truly high-throughput experimental approaches for identifying 
interfacial residues in the protein component of a protein–RNA 
complex, although CLAMP [ 44 ] and other cross-linking and com-
bined cross-linking mass spectrometry methods can identify inter-
facial residues in both the protein and RNA [ 37 ,  45 ,  46 ]. Despite 
all of these impressive advances, the cost and effort involved in the 
experimental determination of protein–RNA complex structures 
and/or identifying specifi c RNA-binding residues in proteins, has 
created a need for reliable computational approaches that can pre-
dict the most likely RNA-binding residues in proteins. 

 Computational approaches to predicting protein–RNA inter-
faces have been the topic of several recent reviews and benchmark 
comparisons [ 31 ,  47 – 50 ]. These approaches can be broadly classi-
fi ed into sequence- and structure-based methods [ 31 ,  47 ]. 
Sequence-based methods use sequence-derived features (such as 
amino acid identity or physicochemical properties) of a target resi-
due and its sequence neighbors to make predictions. Structure- 
based methods use structure-derived features (such as 
solvent-accessible surface area or secondary structure) of a target 
residue and its sequence or structural neighbors to make predic-
tions. Both sequence-based and structure-based approaches could, 
in theory, take advantage of recognizable RNA-binding motifs in 
RBPs and protein-binding motifs in their RNA targets. But, 
although hundreds of RNA-binding domains, motifs and signa-
tures are annotated in the  InterPro  resource [ 51 ], at present there 
is no comprehensive database focused specifi cally on RNA-binding 
motifs in proteins ( see   Note    2  ). For protein-binding motifs in 
RNA, there is a valuable compendium of “RNA-binding motifs” 
(i.e., RNA motifs recognized by RBPs) [ 22 ] and excellent data-
bases of RNA sequence motifs and binding specifi cities [ 41 ,  43 ], 
which provide experimentally determined recognition sites in RNA 
for a large number of RBPs. Also, one of the protocols provided 
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here,  PS-PRIP  ( see  Subheading  3.3 ) employs a dataset of interfa-
cial sequence motifs from RBPs and their targets to predict RNA- 
binding residues  and  protein-binding residues in the RNA 
component of specifi c protein–RNA complexes [ 52 ]. 

 Recent benchmark comparisons of software and servers for 
predicting RNA-binding residues in proteins [ 31 ,  47 ] have dem-
onstrated that the performance of methods that require only 
sequence information is often superior to that of methods that 
require structural information. One reason for this is that the best 
sequence-based methods encode sequences using PSSMs (Position- 
Specifi c Scoring Matrices) ( see   Note    3  ), which capture powerful 
evolutionary information from large multiple alignments of homol-
ogous sequences. In considering potential RNA-binding residues 
in a specifi c protein of interest, however, the user is strongly 
encouraged to take advantage of any available structural informa-
tion, especially in evaluating the validity of predictions. For exam-
ple, in most cases, RNA-binding residues are located on the 
solvent-exposed surface of the protein. Any predicted RNA- 
binding residues that are buried in the three-dimensional structure 
of a protein should be viewed with suspicion, although buried 
interfacial residues in “unbound” protein structures can become 
exposed due to conformational changes in the protein that occur 
upon RNA binding [ 28 ,  53 – 55 ]. 

 Another way in which structural information can be exploited 
to accurately identify potential RNA-binding residues is illustrated 
in the so-called “homology-based” approaches. Homology-based 
approaches take advantage of the observation that RNA-binding 
residues are often conserved across homologous proteins [ 56 ,  57 ]. 
Thus, if a “bound” structure is available for a close sequence 
homolog of the query protein, the RNA-binding residues of the 
query protein can be inferred, based on their alignment with the 
known RNA-binding residues in the homologous sequence. When 
applicable, homology-based approaches provide the most reliable 
computational predictions of RNA-binding sites, but they have an 
important limitation: if no homologs with experimentally deter-
mined bound structures are available for the query protein, no pre-
dictions can be generated. This limitation can be overcome by 
combining a homology-based method, with a machine learning- 
based method, which can return predictions for every residue in 
any protein. This is the strategy employed by  RNABindRPlus  ( see  
Subheading  3.2 ), which combines a PSSM-based Support Vector 
Machine (SVM) with a homology-based method to generate 
highly reliable predictions [ 57 ], and by  SNBRFinder  ( see  
Subheading  3.3 ), which combines an SVM classifi er that uses 
sequence profi les, residue conservation scores, physicochemical 
properties and interface propensities, with a homology-based 
method that uses profi le hidden Markov models (HMMs) to search 
for the homologs [ 58 ]. 
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 The major goal of the chapter is to provide a step-by-step protocol 
for predicting RNA-binding residues in proteins, with a focus on 
machine learning and homology-based methods. In keeping with the 
theme of this volume, the methods outlined here are sequence-based; 
they do not require structural information regarding the protein of 
interest. We also provide a brief guide to accessing and utilizing state-
of-the-art computational methods, web servers and databases that 
provide information about interfaces in protein–RNA complexes 
and/or predictions of RNA-binding residues in proteins. For addi-
tional information, the reader is referred to two excellent reviews: a 
recent review by Si et al. [ 50 ], which includes a comprehensive table 
of available sequence, structure and docking based methods; and a 
review by Tuszynska et al. [ 59 ], which focuses on structural docking-
based approaches which are not considered here. 

 In this chapter, we focus on currently available web-based 
computational tools for interface prediction, i.e., predicting which 
specifi c amino acid residues in an RNA-binding protein are involved 
in recognition of and binding to RNA. A few tools are also capable 
of predicting the converse, i.e., which ribonucleotides in the bound 
RNA directly contact the protein of interest (e.g., [ 52 ,  60 ,  61 )]. 
Software and servers for partner prediction, i.e., predicting which 
RNA(s) bind to a specifi c protein of interest (or  vice versa ) in a 
protein–RNA complex or a protein–RNA interaction network, are 
not described here, but have been reviewed elsewhere [ 62 – 65 ]. 
Tools for predicting whether or not a query protein is likely to 
bind RNA are also available (e.g., Tartaglia [ 39 ,  66 ,  67 )]. but are 
not considered here. 

 The protocol involves two major steps (illustrated in Fig.  1 ):

     Step 1:  Determine whether experimental data regarding RNA- 
binding residues in the query RNA-binding protein (or puta-
tive RNA-binding protein) are already available. This step is 
described in Subheading  3.1 , which outlines strategies for 
exploiting available online databases and servers (provided in 
Table  1  below) that provide structural data regarding protein–
RNA complexes, or focus on RNA-binding proteins, RNA- 
binding motifs, or protein–RNA interactions.

      Step 2:  If known RNA-binding residues cannot be identifi ed using 
available resources, or if the user wishes to identify additional 
potential interfacial residues, use one (or, preferably, all three) 
of the following web-based tools for predicting RNA-binding 
residues in protein–RNA complexes:

 ●     RNABindRPlus  ( see  Subheading  3.2 )—a hybrid machine 
learning/sequence homology-based approach developed by 
our group [ 57 ] which requires only sequence information 
for the protein(s) of interest. The accuracy of this and simi-
lar sequence-based methods from other groups is generally 
greater than that obtained using structure-based methods.  
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 ●    SNBRFinder  ( see  Subheading  3.3 )—a method developed 
by Yang et al. [ 58 ], which can predict either RNA- or 
DNA-binding residues in proteins by combining a machine 
learning method with a template (homology)-based 
method. The key differences between SNBRFinder and 
RNABindRPlus are: (a) inputs to the SVM classifi er in 
SNBRFinder include sequence profi les and other sequence 
descriptors such as residue conservation scores, physico-
chemical properties, and interface propensities, whereas 
the only inputs to the SVM for RNABindRPlus are 
sequence PSSMs; (b) SNBRFinder uses profi le hidden 
Markov models to fi nd remote homologs for the query 
protein, whereas RNABindRPlus uses BLAST searches.  

 ●    PS-PRIP  ( see  Subheading  3.4 )—a new motif-based 
method developed by our group [ 52 ], which can predict 
interfacial residues in both the protein and the RNA com-
ponents of a protein–RNA complex and can provide 
“partner- specifi c” predictions.       

  Fig. 1    Flowchart for identifying potential RNA-binding residues in proteins       
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       Table 1  
  Databases of protein–RNA complexes and resources for analyzing interfaces and motifs in protein–
RNA complexes   

 Database  Description  Reference 

 Databases of structures of RNA–protein complexes 

 PDB (Protein Data 
Bank) 

   www.pdb.org     
 This is a database of 3D macromolecular structures—

protein–protein, protein–DNA, protein–RNA, and 
protein–ligand structures solved using X-ray 
crystallography, cryo-EM, NMR, and others 

 [ 68 ] 

 NDB (Nucleic Acid 
Database) 

   http://ndbserver.rutgers.edu/     
 This is a database of three-dimensional structural 

information for nucleic acids 

 [ 69 ] 

 PDBSum    https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/
pdbsum/GetPage.pl?pdbcode=index.html     

 A pictorial database of PDB structures that provides access 
to interfacial residues in known structures 

 [ 70 ,  71 ] 

 Resources for analyzing interfaces and RNA-binding motifs in RNA 

 BIPA (Biological 
Interaction 
Database for 
Protein–Nucleic 
Acid) 

   http://mordred.bioc.cam.ac.uk/bipa     
 BIPA provides a list of protein–RNA (and protein–DNA) 

complexes from the PDB and displays RNA binding 
residues within the linear primary sequence of a chosen 
protein, or within a multiple sequence alignment of 
related RNA binding proteins 

 (BIPA has not been updated since 2009 and is not fully 
functional at present) 

 [ 72 ] 

 InterPro & 
InterProScan 

   http://www.ebi.ac.uk/interpro/     
 InterPro classifi es protein sequences into families using 

information from ten different databases; InterProScan 
identifi es functional and/or conserved domains, motifs, 
and other important sites in protein sequences 

 [ 51 ,  73 ] 

 NPIDB (Nucleic 
Acid-Protein 
Interaction 
Database) 

   http://npidb.belozersky.msu.ru/     
 A database for extracting biologically meaningful 

characteristics of protein–RNA and protein–DNA 
complexes 

 [ 74 ] 

 DBBP (DataBase of 
Binding Pairs in 
protein–nucleic 
acid interactions) 

   http://bclab.inha.ac.kr/dbbp     
 A database that provides structural data for hydrogen 

bonding interactions between proteins and nucleic acids 

 [ 75 ] 

 PRIDB (Protein 
RNA interface 
database) 

   http://pridb.gdcb.iastate.edu     
 A database of protein–RNA complexes from the PDB, 

with tools for identifying and visualizing interfacial 
residues in both the protein and RNA sequences and 
structures. (PRIDB has not been updated since 2013 
and is under remediation) 

 [ 76 ] 

(continued)
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 We encourage users to submit their proteins of interest to all 
three web servers described in this protocol because the underlying 
algorithms and datasets used for training and evaluating perfor-
mance are different in each case, and the methods have different 
strengths and weaknesses. Even though all three methods have 
been shown to provide highly reliable predictions on benchmark 
datasets, it is not possible to guarantee an accurate prediction for 
any specifi c RNA-binding protein with any of these methods.  

Table 1
(continued)

 Database  Description  Reference 

 RsiteDB    http://bioinfo3d.cs.tau.ac.il/RsiteDB/     
 This database stores information about the protein 

binding pockets that interact with single-stranded RNA 
nucleotide bases 

 [ 77 ] 

 ProNIT    http://www.abren.net/pronit/     
 A database of thermodynamic interaction data (binding 

constants, free energy change, and so on) between 
proteins and nucleic acids 

 [ 78 ] 

 RNA CoSSMos    http://cossmos.slu.edu/     
 A tool that provides information on secondary structural 

motifs such as bulges and hairpin loops of 3D protein–
nucleic acid structures 

 [ 79 ] 

 RNA 3D Hub    http://rna.bgsu.edu/rna3dhub/     
 A suite of tools including the RNA Structure Atlas and 

RNA 3D Motif Atlas. These provide information about 
RNA 3D motifs 

 [ 80 ] 

 RNA Bricks    http://iimcb.genesilico.pl/rnabricks     
 A database that provides information about recurrent 

RNA 3D motifs and their interactions, extracted from 
experimentally determined structures of RNA and 
RNA-protein complexes 

 [ 81 ] 

 Databases of recognition sites/protein-binding motifs in RNA 

 CISBP-RNA    http://cisbp-rna.ccbr.utoronto.ca/     
 A database of inferred sequence binding preferences of 

RNA- binding proteins 

 [ 22 ] 

 RBPDB    http://rbpdb.ccbr.utoronto.ca/     
 A database of manually curated RNA-binding sites 

collected from literature 

 [ 41 ] 
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2    Materials 

   Before using computational methods to  predict  RNA-binding 
residues, the user should fi rst search for existing experimental data 
regarding interfacial residues in the specifi c RNA-binding protein(s) 
of interest, both in published literature and in relevant specialized 
databases. The “gold standard” for identifying RNA-binding resi-
dues in proteins is analysis of a high resolution three-dimensional 
structure of the protein bound to its cognate RNA, i.e., a “bound” 
structure of the complex containing the protein bound to 
RNA. The Protein Data Bank (PDB) [ 68 ] and the Nucleic Acid 
Database (NDB) [ 69 ] are two comprehensive databases of experi-
mentally determined structures, from which residue and atomic- 
level information regarding the interfaces in macromolecular 
complexes can be extracted. Table  1  provides URLs for these two 
primary databases, followed by an alphabetical listing of several 
databases that contain valuable information about protein–RNA 
complexes and their interfacial residues, either derived from struc-
tures in the PDB/NDB or from other types of experiments. A 
suggested strategy for utilizing selected resources from this list is 
provided in Subheading  3.1  below.  

   There are more than 20 published approaches for predicting RNA- 
binding residues in proteins (for a recent compilation, see [ 50 ]), 
and a few methods are capable of predicting interfacial residues in 
both the protein and the RNA components of a protein–RNA 
complex (e.g., [ 52 ,  82 ]). Subheadings  3.2 – 3.5  below focus on 
three methods (RNABindRPlus, SNBRFinder, PS-PRIP) that are 
freely available on web-based servers and have been shown to per-
form well on benchmark datasets. Table  2  lists these and several 
additional methods. Please note that not all of these are currently 
available as web-based servers.

       RNABindRPlus [ 57 ] is a purely sequence-based method for pre-
dicting RNA-binding residues in putative RNA-binding proteins. 
It uses logistic regression to combine predictions from HomPRIP, 
a sequence homology-based method, with predictions from 
SVMOpt, an optimized Support Vector Machine (SVM) classifi er. 
The SVM classifi er utilizes sequence-based PSSMs as features. 
HomPRIP makes highly accurate predictions of RNA-binding res-
idues when homologs (with solved structures) of the query protein 
can be found, but a major drawback is that no predictions are 
returned when no such homologs can be found. Additionally, 
HomPRIP cannot return predictions for parts of the query protein 
sequence that are not aligned with its homologs. This limitation of 
HomPRIP is overcome by combining it with a machine learning- 
based method, SVMOpt, which returns predictions for every resi-
due in any protein sequence. 

2.1  Databases of 
Experimentally 
Validated Protein–RNA 
Complexes and  
Resources for 
Analyzing Interfaces

2.2  Servers and 
Software for 
Predicting Interfaces 
in Protein–RNA 
Complexes

2.3  The 
RNABindRPlus Server
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    Table 2  
  Servers and software for predicting RNA-binding sites in proteins   

 Method  Description  Reference 

 BindN    http://bioinfo.ggc.org/bindn/     
 An SVM classifi er that uses hydrophobicity, side chain pKa, molecular mass, 

and PSSMs for predicting RNA-binding residues; it can also predict 
DNA-binding residues 

 [ 83 ] 

 BindN+    http://bioinfo.gcc.org/bindn     
 An updated version of BindN, that uses an SVM classifi er based on PSSMs 

and several other descriptors of evolutionary information; it can also 
predict DNA-binding residues 

 [ 84 ] 

 catRAPID 
signature 

   http://s.tartaglialab.com/grant_submission/signature     
 Predicts both RNA-binding and protein-binding residues in RNPs based on 

physicochemical features instead of sequence similarity searches 

 [ 82 ] 

 DR_bind1    http://drbind.limlab.ibms.sinica.edu.tw/     
 Predicts RNA-binding residues in proteins using information derived from 

3D structure 

 DRNA    http://sparks-lab.org/yueyang/DFIRE/dRNA-DB-service.php     
 Predicts RNA-binding proteins and RNA-binding sites based on similarity 

to known structures 

 [ 85 ] 

 KYG    http://cib.cf.ocha.ac.jp/KYG     
 Uses a set of scores based on the RNA-binding propensity of individual and 

pairs of surface residues of the protein, used alone or in combination with 
position-specifi c multiple sequence profi les 

 [ 86 ] 

 Meta
predictor 

   http://iimcb.genesilico.pl/meta2/     
 A predictor that combines the output of PiRaNhA, PPRInt, and BindN+ to 

make predictions of RNA-binding residues using a weighted mean. (Not 
available as of March 2014) 

 [ 31 ] 

 NAPS    http://prediction.bioengr.uci.edu     
 A modifi ed C4.5 decision tree algorithm that uses amino acid identity, 

residue charge, and PSSMs to predict residues involved in DNA- or 
RNA-binding. (Not available as of March 2014) 

 [ 87 ] 

 OPRA  Uses path energy scores calculated using interface propensity scores 
weighted by the accessible surface area of a residue to predict RNA- 
binding sites. Available from the authors upon request 

 [ 88 ] 

 PPRInt    http://www.imtech.res.in/raghava/pprint/     
 An SVM classifi er trained on PSSM profi les to predict RNA-binding residues 

 [ 89 ] 

 PS-PRIP    http://pridb.gdcb.iastate.edu/PSPRIP/     
 A partner-specifi c method for predicting RNA-binding residues in proteins 

and protein-binding residues in RNAs using sequence motifs extracted 
from interfacial regions in RNA-protein complexes 

 [ 52 ] 

 PRBR    http://www.cbi.seu.edu.cn/PRBR/     
 An enriched random forest classifi er trained on predicted secondary 

structure, a combination of PSSMs with physic-chemical properties, a 
polarity-charge correlation, and a hydrophobicity correlation 

 [ 90 ] 

(continued)
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 RNABindRPlus was trained on the RB198 dataset, and 
tested on two different datasets, RB44 and RB111. On a subset 
of proteins for which homologs with experimentally determined 
interfaces could be reliably identifi ed, HomPRIP outperformed 
all other methods, achieving an MCC of 0.63 on RB44 and 
0.83 on RB111. RNABindRPlus was able to predict RNA-
binding residues of all proteins in both test sets, achieving an 
MCC of 0.55 on RB44 and 0.37 on RB111, and outperforming 
all other methods, including structure-based methods (e.g., 
KYG [ 86 ]).  

Table 2
(continued)

 Method  Description  Reference 

 PRIP  Uses an SVM classifi er and a combination of PSSM profi les, solvent 
accessible surface area, betweenness centrality, and retention coeffi cient as 
input features. Not accessible via a web server, but results can be obtained 
via correspondence with the author 

 [ 91 ] 

 RBScore    http://ahsoka.u-strasbg.fr/rbscore/     
 Utilizes a score derived from physicochemical and evolutionary features, 

integrating a residue neighboring network approach; it predicts both 
DNA- and RNA-binding residues in proteins 

 [ 92 ] 

 RISP    http://grc.seu.edu.cn/RISP     
 An SVM-based method that uses evolutionary information in terms of 

PSSMs (Not available as of March 2014) 

 [ 93 ] 

 RNABindR    http://bindr.gdcb.iastate.edu/RNABindR/     
 A Naïve Bayes classifi er that uses the amino acid sequence identity to predict 

RNA-binding residues in proteins (no longer maintained) 

 [ 94 ] 

 RNABindR 
v2.0 

   http://ailab1.ist.psu.edu/RNABindR/     
 An SVM classifi er that uses sequence PSSMs to predict RNA-binding 

residues in proteins 

 [ 47 ] 

 RNABindRPlus    http://ailab1.ist.psu.edu/RNABindRPlus/     
 A predictor that combines an optimized SVM classifi er with a sequence 

homology-based method to predict RNA-binding residues in proteins 

 [ 57 ] 

 RNApin    http://www.imtech.res.in/raghava/rnapin/     
 An SVM classifi er that predicts protein-interacting nucleotides (PINs) in 

RNA 

 [ 61 ] 

 SNBRFinder    http://ibi.hzau.edu.cn/SNBRFinder/     
 A sequence-based hybrid predictor that combines a feature-based predictor 

and a template-based predictor to predict nucleic-acid binding residues in 
proteins 

 [ 95 ] 

 SPOT-Seq-
RNA 

   http://sparks-lab.org/yueyang/server/SPOT-Seq-RNA/     
 A template-based technique for predicting RBPs, RNA-binding residues and 

complex structures 

 [ 95 ] 
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     SNBRFinder  is a sequence-based predictor that combines predictions 
from a Support Vector Machine (SVM) classifi er, SNBRFinder F , with 
predictions from a template-based classifi er, SNBRFinder T . 

 SNBRFinder F  utilizes a sliding window of the target residues 
and fi ve neighboring residues on each side to represent the sequen-
tial environment. The features used as inputs to the classifi er 
include the sequence profi le, residue conservation scores, predicted 
structural features, physicochemical properties, interface propen-
sity, sequential position, and two global features, sequence length 
and the global amino acid composition. 

 SNBRFinder T  is a template-based method, i.e., a method that 
utilizes sequence or structural alignments to retrieve homologs/
templates of a query protein and then infer binding residue infor-
mation for the query protein. SNBRFinder T  uses the HHblits 
program [ 96 ] to identify homologs of the query protein. HHblits 
represents both the query and database sequences using profi le 
hidden Markov models (HMM), and then compares the two to 
identify homologs of the query protein. For each query and 
homolog pair, a probability score is output for evaluating the 
similarity between the aligned HMMs. The higher the score is, 
the better the alignment is and vice versa. Specifi cally, a residue in 
the query protein is predicted to be RNA-binding with a proba-
bility score of 1 if it is matched with a binding residue in the 
homolog, otherwise the residue is predicted to be non RNA-
binding with a probability score of 0. 

 On the RB44 [ 31 ] dataset, SNBRFinder had an MCC of 0.48, 
whereas RNABindRPlus had an MCC of 0.49. In terms of AUC 
values, SNBRFinder and RNABindRPlus achieved very similar 
results, with both getting 0.84.  

    PS-PRIP [ 52 ] is a motif-based method that predicts interfacial 
residues for both the RNA and protein components of protein–
RNA complexes in a partner-specifi c manner ( see   Note    4  ). 
PS-PRIP requires as input the sequences of both the RNA-
binding protein and its putative bound RNA(s). Although no 
structural information is required, PS-PRIP exploits the co-
occurrence of specifi c pairs of short protein and RNA sequence 
motifs (5 amino acids long and 5 ribonucleotides long) from a 
database of motifs extracted from interfaces in known protein–
RNA complexes from the PDB. On an independent dataset of 
327 RNA-protein pairs, PS-PRIP obtained a sensitivity of 0.64, 
precision of 0.80, and MCC of 0.59 compared to RNABindRPlus 
with values of 0.88, 0.76, and 0.71, respectively. In addition to 
providing predicted RNA-binding residues in proteins, PS-PRIP 
makes predictions of protein-binding residues in RNAs, 
although with much lower accuracy. Other methods designed to 
predict protein-binding residues in RNA have been published 
recently (e.g., [ 61 ,  82 ]).   

2.4  The 
SNBRFinder Server

2.5  The 
PS-PRIP Server
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3    Methods 

        Currently, all computational methods for predicting RNA-binding 
residues in proteins return only  predicted  interfacial residues, even 
when the actual interfaces are known from experimental data. Thus, 
before using software to predict potential RNA-binding residues, 
the user should search published literature and existing databases 
for experimentally identifi ed interactions involving the protein of 
interest ( see   Note    5  ). If the query protein is newly discovered or has 
no known function, the user should fi rst search for potential homo-
logs using a BLAST search. As outlined below, both the original 
query sequence and its homologs can be used to search databases of 
known protein–RNA interactions, such as those listed in Table  1 .

    1.    If the query protein sequence corresponds to an “unknown” or 
novel protein, run the sequence through  NCBI’s BLAST 
server , available at   http://blast.ncbi.nlm.nih.gov/Blast.cgi     
[ 97 ,  98 ] or use similar genomics resources elsewhere (e.g., 
  http://www.ebi.ac.uk/Tools/sss/    ). BLAST (Basic Local 
Alignment Search Tool) fi nds highly similar sequences in the 
NCBI or ENSEMBL databases ( see   Note    6  ). A good starting 
point for most protein sequence searches is SMARTBLAST, 
available here:   http://blast.ncbi.nlm.nih.gov/smartblast/     ( see  
 Note    7  ). If the query sequence itself is not available in one of 
the NCBI or ENSEMBL databases, potential homologs identi-
fi ed by BLAST can be used as the query for subsequent searches 
in the databases listed in  steps  2– 6  below ( see   Note    8  ).   

   2.    If the query protein has been previously identifi ed and/or ana-
lyzed, a search using the  NCBI “Protein”  tool may quickly 
reveal previously annotated RNA-binding domains or motifs 
and links to experimentally determined structures. Enter the 
name of the protein (or name of a potential homolog, identifi ed 
in  step 1 ) into the box provided here: (  http://www.ncbi.nlm.
nih.gov/protein/    ). In the list of “Items” returned, click on the 
protein name from the appropriate organism to access the full 
GenBank protein entry. Then, examine information on the 
right side of the GenBank protein page; for example, if a high 
resolution structure is available, it will appear under the “Protein 
3D Structure” header. Under the “Related Information” 
header, click on “Conserved Domains (Concise)” or “Conserved 
Domains (Full)” to access any annotated RNA-binding domains 
(or other conserved domains) identifi ed in the protein sequence. 
The “Conserved Domains” results page also provides links to 
available three-dimensional structure(s) similar to that of the 
query protein, if available. Other links on this page can lead to 
additional information regarding potential RNA- binding 
domains in the protein of interest ( see   Note    9  ).   

3.1  Searching 
Existing Literature 
and Databases 
for Relevant 
Experimental Data
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   3.    In every case, the user should search the  Protein Data Bank 
(PDB),  available at   www.rcsb.org     [ 68 ] for any available struc-
tures of protein–RNA complexes that contain the protein of 
interest. The PDB contains over 1600 three-dimensional 
structures of protein–RNA complexes determined using exper-
iments such as X-ray crystallography, nuclear magnetic reso-
nance (NMR) imaging, and cryo-electron microscopy. The 
PDB has a powerful search engine that allows the database to 
be queried in a variety of ways, e.g., by protein (or RNA) name, 
sequence, or GO terms. The PDB also provides excellent 
structure visualization tools as well as links to valuable third-
party resources for visualizing and analyzing the structures of 
macromolecules ( see   Note    10  ).   

   4.    Similarly, the  Nucleic Acid Database (NDB ), available at   http://
ndbserver.rutgers.edu     [ 69 ], is another valuable resource that 
focuses on experimentally determined three-dimensional struc-
tures of nucleic acids, including both protein–RNA and protein–
DNA complexes. The NDB contains only a subset of structures in 
the PDB, making it easier for the user to focus on structures that 
contain RNA. Also, the NDB provides convenient access to a 
wide variety of tools and software specifi cally designed for analyz-
ing RNA sequences and structures ( see   Note    11  ).   

   5.    If it is possible to identify a structure for the query protein–
RNA complex (or a homologous complex) in one of the previ-
ous steps, the user can quickly obtain a graphical representation 
of the protein–RNA interface, using  PDBSum  [ 70 ,  71 ] avail-
able at:   https://www.ebi.ac.uk/thornton-srv/databases/cgi- 
bin/pdbsum/GetPage.pl?pdbcode=index.html    . Enter the 
4-letter PDB code in the box provided and click “Find.” At the 
top of the PDBSum entry page that appears, click on the 
“DNA/RNA” link to access a page listing all of the nucleic 
acid chains in the complex. Then click on “ NUCPLOT”  to 
visualize the ribonucleotides that are contacted by individual 
amino acids, as well as additional information (backbone  vs.  
phosphate group contacts, hydrogen bonding, etc.). Another 
way to identify the RNA-binding amino acids is to click on the 
“Protein” link at the top of the page to reveal a diagrammatic 
representation of the protein sequence, in which Residue 
Contacts to DNA/RNA are labeled. Tools for visualizing, ana-
lyzing and manipulating the structure are provided by both the 
PDB and NDB ( see   Notes    10   and   11  ).  See  Table  1  for addi-
tional tools that provide detailed information about the inter-
facial residues (e.g., NPIDB [ 74 ], DBBP [ 75 ]).   

   6.    If no structure for the query protein–RNA complex can be 
identifi ed, the user can  search for known RNA-binding 
domains or motifs in the protein sequence.  Typically, only a 
few of the amino acids in well-characterized RNA-binding 
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domains or motifs (e.g., the RNA Recognition Motif (RMM), 
which is ~90 amino acids) are actually “interfacial residues” 
involved in contacting RNA ( see   Note    1  ). But, if the query 
protein does contain such a conserved domain or motif, 
homologous structures are likely available and can indicate 
which amino acids are directly involved in recognizing and 
binding RNA. The EMBL-EBI’s  InterPro  [ 51 ] is a valuable 
comprehensive resource that includes more than 10 databases 
of protein structural and functional motifs, and an integrated 
tool,  InterProScan  [ 73 ], which can be used to identify all 
known motifs, including RNA-binding motifs, in a protein of 
interest. Access InterPro here:   http://www.ebi.ac.uk/inter-
pro/     and enter the query protein sequence in the text box. 
Within a few minutes, a “Results” page will appear, providing 
a graphical summary of all domains, motifs and signatures 
identifi ed, with links to additional information about each.   

   7.    For many RNA-binding proteins, recognition motifs (i.e., the 
specifi c RNA sequences bound by the RBP) are now known 
[ 1 ,  22 ,  99 ]. Several valuable databases and tools are available if 
the user wishes to identify known or potential recognition sites 
in the RNA component of a specifi c protein–RNA complex. 
Databases of experimentally defi ned RNA sequence motifs that 
are bound by RBPs include: CISBP-RNA [ 22 ], RBPDB, [ 41 ], 
and RBPMotif [ 43 ]. Databases of RNA structural motifs, e.g., 
BRICKS [ 81 ] and the RNA 3D Motif Atlas [ 80 ], are also 
available, but these have not yet been systematically annotated 
regarding their protein-binding activities. Also, a valuable tool 
for mapping binding sites for RBPs within the genomes of 
 several model organisms is RBPMap [ 100 ], which is available 
at:   http://rbpmap.technion.ac.il    .    

        The  RNABindRPlus  method implements a combination of a 
machine learning method ( SVMOpt ) and a sequence homology- 
based method ( HomPRIP ) to predict RNA-binding residues in 
proteins [ 57 ] ( see  Subheading  2.3 ). Given a single protein sequence 
(or a fi le of multiple protein sequences), RNABindRPlus can pre-
dict which amino acid residues are mostly likely to bind RNA. Run 
times can be slow when large numbers of protein sequences are 
submitted in a single job ( see   Note    12  ). A faster version of the 
server is under development ( see   Note    13  ).

    1.    Access the  RNABindRPlus  web server at:   http://ailab1.ist.
psu.edu/RNABindRPlus/    .   

   2.     To predict RNA-binding residues in a single putative 
RNA- binding protein : Enter the protein sequence in FASTA 
format ( see   Note    14  ) in the text box provided on the 
homepage.   

3.2  Using 
RNABindRPlus 
to Predict RNA-
Binding Residues 
in Proteins
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   3.     To predict RNA-binding residues for multiple putative RNA-
binding proteins : In this case, the user has two options: (a) Enter 
the protein sequences in FASTA format in the text box provided; 
or (b) upload a FASTA formatted fi le of protein sequences by 
clicking the “Choose fi le” button on the homepage.   

   4.    Provide an email address where results should be sent. Computing 
the results requires approximately 10 min per protein sequence 
submitted to RNABindRPlus ( see   Notes    12   and   13  ).   

   5.    The user has the option of excluding highly similar proteins 
from the homolog list, at the desired sequence identity level by 
selecting the check box at the bottom of the submission page. 
To obtain the most reliable predictions, leave this option blank 
( see   Note    15  ).   

   6.    Once all submission fi elds have been fi lled, click on the 
“Submit” button. The user will receive an email confi rming 
that the job is currently running. RNABindRPlus results will 
be returned to the user by email.   

   7.    Figure  2  shows results returned by RNABindRPlus for the S5 
protein from the 30S ribosomal subunit of  T. thermophilus , 
which corresponds to protein chain E, in PDB structure 
1HNX). Figure  2a  shows the  Results Summary  email, which 
contains several links that can be clicked to display selected por-
tions of the results. Figure  2b  ( Interface Prediction Results)  dis-
plays predictions from three different methods: HomPRIP 
(homology-based method), SVMOpt (optimized SVM) and 
RNABindRPlus (which combines predictions from HomPRIP 
and SVMOpt). The fi rst section of output for each method 
(e.g., Prediction from HomPRIP), is a list of the predictions for 
each residue, where “1” corresponds to predicted interfacial 
residues (i.e., RNA-binding) and “0” corresponds to predicted 
non-interfacial residues. The second section of output (e.g., 
“Predicted score from HomPRIP”) gives the probability score 
for each residue (where a probability of ≥0.5 means the residue 
is an interface residue, otherwise it is a non-interface residue). 
Figure  2c  ( Homologs of the query protein ) displays a list of 
homologous proteins identifi ed by HomPRIP, the homology- 
based component of RNABindRPlus, along with their corre-
sponding interface conservation scores (IC_scores) ( see   Note  
  16  ). These are the homologous proteins used for inferring 
RNA-binding residues in the query protein using 
HomPRIP. Figure  2d  ( All potential homologs in the PDB ) shows 
only a portion of the output providing information about all 
potential homologs found in the PDB for the query protein.

              SNBRFinder  is a sequence-based hybrid predictor that combines 
predictions from a Support Vector Machine method, SNBRFinder F , 
with predictions from a template-based method, SNBRFinder T  [ 58 ] 
( see  Subheading  2.4 ). The inputs to the SVM method include 

3.3  Using 
SNBRFinder to Predict 
RNA- Binding Residues 
in Proteins
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  Fig. 2    ( a ) RNABindRPlus results notifi cation email obtained for the  T. thermophilus  S5 protein. ( b ) RNABindRPlus 
prediction results for the  T. thermophilus  S5 protein. Results are also returned for the two individual compo-
nents of RNABindRPlus, HomPRIP and SVMOpt. For each method, under the header “Prediction from,” the 
predicted RNA-binding residues are represented by a string of 1’s and 0’s, where “1” and “0” correspond to 
predicted RNA-binding and non-RNA binding residues, respectively. See text for additional details. 
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sequence profi les and other sequence descriptors, such as residue con-
servation scores, physicochemical properties, and interface propensi-
ties. SNBRFinder T  uses profi le hidden Markov models to fi nd remote 
homologs of the query protein sequence, but the basic methodology 
used for building the classifi er is similar to that used in RNABindRPlus.

    1.    Access the SNBRFinder web server at   http://ibi.hzau.edu.
cn/SNBRFinder/index.php    .   

   2.    Use the radio buttons provided to choose one of three differ-
ent options for submitting a protein sequence: (a) enter the 
amino acid sequence in FASTA format; (b) upload a protein 
sequence fi le by clicking on “Browse File”; or (c) input UniProt 
IDs for retrieval ( see   Note    17  ).   

   3.    The user has the option of fi ltering out proteins homologous to 
the query protein sequence by specifying a sequence identity 
threshold. By default, the method excludes homologous 
templates that share ≥30 % sequence identity. To obtain the 
most reliable predictions, leave this option blank ( see   Note    18  ).   

Fig. 2  (continued) ( c ) List of homologs and IC scores obtained by RNABindRPlus. These are the homologs 
used by HomPRIP for making the homology- based predictions. ( d ) List of all potential homologs with structures 
in the PDB for  T. thermophilus  S5 protein identifi ed by RNABindRPlus. num_residue1 (e.g., 162) denotes the 
number of amino acids in the query protein; num_residue2 shows the number of amino acids (e.g., 150) in the 
homolog of the query protein (e.g., 3KNJ, chain E); num_int is the number of binding residues (e.g., 50) in the 
homolog of the query protein; Bit_score (e.g., 322) gives an indication of the quality of the alignment between 
the query protein and its homolog—the higher the score, the better the alignment; Evalue is the number of hits 
expected by chance when searching the database of homologous proteins—the lower the Evalue, the more 
signifi cant a match to a database sequence is; Positive_Score gives an indication of how many amino acids in 
the query protein were at least similar to the amino acid sequences found in the database; IdentityScore gives 
an indication of how many exact matches the query protein had with amino acid sequences in the database; 
alignment_length is an indication of the number of residues in the query protein aligned with homologs from 
the database; aligLen_Query is the alignment_length divided by the length of the query protein; aligLen_
Homolog is the alignment_length divided by the length of the homolog of the query protein         
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   4.    Because SNBRFinder can predict either RNA- or DNA-
binding residues in proteins, the user should select the binding 
nucleic acid type (RNA) from a drop-down list. By default, the 
selection is “DNA.”   

   5.    Before clicking on the “submit” button, the user can optionally 
enter an email address. After the job is submitted, a webpage 
showing the job id and indicating that the job is running should 
appear. This page also includes the URL where prediction 
results will be posted, after they become available. If an email 
address was provided, the URL will also be included in the 
email. Typically, results are returned to users after about 15 min.   

   6.    Figure  3  shows results returned by SNBRFinder for the S5 pro-
tein from the 30S ribosomal subunit of  T. thermophilus,  which 
corresponds to protein chain E, in PDB structure 1HNX. Figure  3a  
shows a summary of the results, in which the query sequence is 

  Fig. 3    ( a ) SNBRFinder prediction results summary for the  T. thermophilus  S5 protein. Predicted RNA-
binding residues are shown in red. ( b ) Graphical representation of SNBRFinder predictions for the  T. 
thermophilus  S5 protein. Fscore is the prediction score returned by the feature-based component, 
SNBRFinder F , and Cscore is the prediction score returned by the combination of the feature-based com-
ponent and homology/template-based component, SNBRFinder T , of SNBRFinder.

Predicting Rna-Binding Sites
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Fig. 3 (continued) ( c ) Table showing SNBRFinder a sample of the detailed results for the  T. ther-
mophilus  S5 protein. See text for additional details. ( d ) Downloadable results from SNBRFinder. 
Only a portion of the returned results is shown         

displayed with predicted interfacial residues highlighted in red 
text; the query sequence name, length, nucleic acid type, as well 
as the PDB ID of the optimal template used for making the pre-
diction, the HHscore, if any ( see   Note    19  ), and the % sequence 
identity (between the query and the optimal template) are also 
provided. For this example, SNBRFinder was not able to fi nd an 
optimal template, so HHscore and sequence identity have a value 
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of N/A. Figure  3b  shows a graphical representation of the results, 
which displays a plot of the Fscore and Cscore for each residue, 
and the Cscore threshold above which a residue is considered an 
interfacial residue ( see   Note    20  ). Because no optimal template 
was found for 1HNX chain E, the Fscore is equivalent to the 
Cscore. Figure  3c  shows a detailed results table, which lists each 
amino acid residue, along with its associated Fscore, Tscore (if 
any), and Cscore, as well as the “tag” for each amino acid (“+” 
for interfacial residue, “-” for non-interfacial residue). Figure  3d  
shows a portion of the results in plain text format, which can be 
obtained by clicking the “Download the result” link in the top 
right corner of the “Result” page.

            PS-PRIP  (Partner-Specifi c protein–RNA Interface Prediction) is a 
sequence motif-based method that can simultaneously predict inter-
facial residues for both the RNA and protein components of pro-
tein–RNA complexes [ 52 ] ( see  Subheading  2.5 ). PS-PRIP is a 
partner-specifi c method ( see   Note    4  ), which means that, given the 
sequences of a protein and several potential interacting RNAs, it can 
identify which amino acid residues contact each RNA binding part-
ner. In other words, if the protein binds to different RNAs using 
distinct (or overlapping) interfaces, PS-PRIP can distinguish between 
these RNA-binding sites. PS-PRIP requires  both  the protein sequence 
and its partner RNA sequence as input. If the user does not have any 
potential RNA sequence(s) for testing, methods such as RPI-Seq or 
catRAPID can be used to infer potential partner RNAs for a specifi c 
protein (reviewed in refs. [ 62 – 65 ]). In addition to the sequences of 
the protein and its RNA-binding partners, PS-PRIP utilizes a dataset 
of interfacial motifs extracted from solved protein–RNA complexes 
in the PDB [ 68 ]. For predicting RNA-binding residues in proteins, 
the use of such interfacial motifs by PS-PRIP appears to provide 
improved precision over RNABindRPlus and other sequence-based 
interface prediction servers [ 52 ]. At present, the RNA-binding resi-
dues predicted by PS-PRIP are much more reliable than the protein-
binding residues predicted in the bound RNA component.

    1.    Access the PS-PRIP server at   http://pridb.gdcb.iastate.edu/
PSPRIP/index.html    .   

   2.    Enter a protein sequence and the sequence for an RNA known 
or expected to be its binding partner in plain text format (pro-
tein sequence only and RNA sequence only, without any 
header information) into the text boxes provided on the 
homepage ( see   Note    21  ). Then click the “Submit” button.   

   3.    Figure  4  shows results returned by PS-PRIP for the S5 protein 
from the 30S ribosomal subunit of  T. thermophilus , which cor-
responds to protein chain E, in PDB structure 1HNX. In this 
case, the 16S rRNA corresponding to RNA chain A in the 1HNX 
structure was provided as input to PS-PRIP, in order to obtain a 

3.4  Using PS-PRIP 
to Predict Both 
RNA-Binding 
and Protein- Binding 
Residues in RNPs
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“partner-specifi c” prediction. On the results page, the S5 protein 
sequence and 16S rRNA sequences are displayed. In the lines 
below each sequence, the interfacial residues are indicated by a 
string of 1’s and 0’s, where “1” and “0” correspond to predicted 
interfacial and non-interfacial residues, respectively.

           Figure  5  shows a comparison of the predicted RNA-binding resi-
dues in the  T. thermophilus  S5 ribosomal protein, for which a 3D 
structure is available in the PDB (1HNX; protein chain E, RNA 
chain A). The top line shows the amino acid sequence of the S5 
protein, with red letters denoting the actual RNA-binding residues 
(58 out of 162 total residues), defi ned on the basis of a 5 Å 

3.5  Actual RNA- 
Binding Residues 
Compared with 
Predictions Using 
Three Different 
Methods

  Fig. 4    PS-PRIP prediction results for the  T. thermophilus  S5 protein bound to 16S rRNA. Sequences shown 
correspond to protein chain E and RNA chain A in the PDB structure 1HNX. Under each sequence, the predicted 
interfacial residues are represented by a string of 1’s and 0’s, where “1” and “0” correspond to predicted bind-
ing and non-binding residues, respectively       
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distance cutoff ( see   Note    1  ). RNA-binding residues predicted by 
RNABindRPlus, SNBRFinder and PS-PRIP are shown below. In 
this example, all three methods were able to identify the majority 
of the 58 RNAbinding residues: RNABindRPlus (46/58) 
SNBRFinder (41/58), PS-PRIP (33/58). A small number of false 
positive predictions were returned by RNABindRPlus (4), 
SNBRFinder (4), and a larger number by PS-PRIP (12).

   In this particular example, “better than average” results were 
obtained because the S5 protein is a highly conserved component 
of the 30S ribosomal subunit. For the S5 protein, the RNA-binding 
residues predicted by PS-PRIP are less reliable than those predicted 
by RNABindRPlus and SNBRFinder. But, because the sequence of 
the bound RNA is also available, PS-PRIP also returns predictions 
for  protein -binding residues in the 16S rRNA, which the other two 
servers cannot do. This example illustrates that although the  overall 
performance of PS-PRIP was superior in terms of  precision  when 
tested on a benchmark dataset [ 52 ], both RNABindRPlus and 
SNBRFinder may perform better on certain proteins. Given the 
purpose of this chapter, the important point is that all three servers 
predict similar patches of RNA-binding residues, providing the 
user with a remarkably accurate prediction of the RNA-binding 
residues in the S5 protein, without using any structural informa-
tion in order to make these predictions. 

  Fig. 5    Actual vs. predicted RNA-binding residues in the  T. thermophilus  S5 ribosomal protein sequence.  Top 
line:  Actual RNA-binding residues are shown in  red , non-binding residues are  black. Lower lines:  Predictions 
obtained using RNABindRPlus, SNBRFinder and PS-PRIP. Colored boxes indicate predicted RNA-binding resi-
dues. Sequence corresponds to: PDB 1HNX; protein chain E       
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 In closing, we again encourage users to submit query protein(s) 
of interest to at least two or three different servers from the list in 
Table  2 , and to evaluate predictions in the context of the 3D struc-
ture, if available. All prediction results should be interpreted with 
caution: the computational tools are intended to help users iden-
tify the most probable RNA-binding residues in proteins, i.e., to 
generate hypotheses that can limit the number of experiments 
needed to determine RNA-binding residues using biochemical or 
biophysical approaches.   

4                                 Notes 

     1.    RNA-binding residues in proteins or other  “interfacial resi-
dues”  in the interface formed when a protein binds RNA (or 
DNA or another protein) are typically defi ned in one of two 
ways: (a) using a contact distance threshold, e.g., an interfacial 
residue is any amino acid with a heavy atom within  n  Å of a 
heavy atom in the bound RNA (where  n  typically ranges from 
3.5 to 8 Å); (b) residues whose accessible surface area is reduced 
by >1 Å 2  upon complex formation [ 101 ]. It is very important 
to take into account how interfacial residues are defi ned when 
comparing the performance of various computational methods 
for predicting RNA-binding residues in proteins [ 47 ].   

   2.    Two databases that once provided comprehensive information 
about interfaces in protein–RNA complexes in the PDB are no 
longer up-to-date:  PRIDB  [ 76 ] and  BIPA  [ 72 ]. Efforts to 
update PRIDB are underway. Two resources that are currently 
maintained and provide detailed information about interfaces 
in RBPs include:  NPIDB  [ 74 ] and  DBBP  [ 75 ].   

   3.    A  position-specifi c scoring matrix (PSSM)  is a type of 
weighted scoring matrix derived from a set of aligned sequences 
that are considered to be homologous or functionally related 
[ 102 ]. PSSMs can be very sensitive because they capture 
important evolutionary information by exploiting the large 
number of protein sequences currently available.   

   4.    A  partner-specifi c prediction method  takes into account the 
potential interacting partner(s) in predicting interfacial residues. 
For example, if a protein binds two distinct RNAs, RNA-1 and 
RNA-2, a partner-specifi c method will return one set of amino 
acids that specifi cally interact with only RNA-1, and a second set 
of amino acids that specifi cally interact with only RNA-2. Note 
that the two sets of RNA-binding residues may overlap.   

   5.    At present, none of the available servers for predicting RNA- 
binding residues in proteins provide the user with existing 
information regarding experimentally determined RNA- 
binding residues (i.e., the servers always return  predicted  RNA-
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binding residues, which may not be the same as the actual 
interfacial residues determined by experiment). Thus, as a fi rst 
step, the user should always search published literature (via 
search engines such as  NCBI/PubMed  (  http://www.ncbi.
nlm.nih.gov/    ) or  Google Scholar  (  http://scholar.google.
com    ) and relevant databases ( see  Subheading  3.1 ) for existing 
experimental data regarding the specifi c RNA- binding 
protein(s) of interest. In addition to the resources described in 
Subheading  3.1  and Table  1 , many new databases and servers 
that provide extensive information regarding protein–RNA 
complexes, RNA-binding proteins and their recognition sites, 
and in vivo protein–RNA interaction networks are becoming 
available. OMICtools (  http://omictools.com    ) provides an 
extensive and up-to-date directory of these resources [ 103 ].   

   6.    Users unfamiliar with  BLAST  should fi rst read BLAST docu-
mentation and/or tutorials. A beginner’s guide is available 
here:   ftp://ftp.ncbi.nlm.nih.gov/pub/factsheets/HowTo_
BLASTGuide.pdf    .   

   7.     SmartBLAST  is a new version of BLAST that is faster than 
BLASTp and offers a user-friendly graphical view. For addi-
tional information, see:    http://ncbiinsights.ncbi.nlm.nih.
gov/2015/07/29/smartblast/    .   

   8.     Tip:  Because proteins from humans are usually much better 
annotated than those from other organisms, valuable clues 
regarding potential RNA-binding domains or motifs in a pro-
tein can be obtained by visiting the NCBI GenBank Protein 
entry for the human homolog of a query sequence, if available.   

   9.    Under the  “Related Information”  header on the GenBank 
Protein entry page, the user can access several different types 
of information, e.g., clicking on the  “Related Structures 
(Summary)”  link returns structurally related proteins found in 
NCBI’s Molecular Modeling Database (MMDB), as well as an 
alignment of the query protein sequence with its potential 
homolog(s), and links for visualizing the 3D structures. 
Alternatively, the user can perform BLAST or Conserved 
Domain searches by clicking links under the  “Analyze this 
sequence”  header (located at the top of right-side panel), but 
it is usually more effi cient to take advantage of precomputed 
information available under “Related Resources,” e.g., “Blink” 
(for BLAST results, instead of “Run Blast”); or “CDD Search 
Results” (instead of “Identify Conserved Domains”).   

   10.    The  PDB Advanced Search  (  http://www.rcsb.org/pdb/
search/advSearch.do?search=new    ) is a powerful tool that 
allows the user to BLAST a sequence of interest against all 
structures in the database, to identify GO annotations, cita-
tions in publications, etc. In addition, the PDB offers several 
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built-in visualization tools (  http://www.rcsb.org/pdb/sec-
ondary.do?p=v2/secondary/visualize.jsp    —RCSBviewer) as 
well as links to additional resources and software for analyzing 
macromolecular structures (  http://www.rcsb.org/pdb/static.
do?p=general_information/web_links/index.html     )    

   11.    The  NDB  [ 69 ] focuses on structures that contain either RNA 
or DNA and provides links to many valuable RNA sequence 
and structure analysis tools (  http://ndbserver.rutgers.edu/
ndbmodule/services/index.html    ) as well as software for iden-
tifying RNA motifs and for predicting secondary and tertiary 
structures of RNA molecules (  http://ndbserver.rutgers.edu/
ndbmodule/services/softwares.html    ).   

   12.    Currently, there is a wait of approximately 10 min per protein 
sequence submitted to RNABindRPlus. The rate-limiting step 
is generating the PSSMs using PSI-BLAST [ 98 ]. To obtain 
results more quickly, the user is encouraged to split large jobs 
into several smaller submissions (e.g., if the user would like to 
submit 100 proteins, she/he should submit 5 smaller jobs of 
20 proteins each).   

   13.    A faster version of this server,  FastRNABindR , is under devel-
opment. When it becomes available, a link to FastRNABindR 
will be provided on the RNABindRPlus website (  http://
ailab1.ist.psu.edu/RNABindRPlus/    ).   

   14.    The user should submit the protein sequence in upper case let-
ters to the RNABindRPlus web server. Note that this server 
predicts RNA-binding residues in proteins, so RNA nucleo-
tides are not valid input.   

   15.    The homology-based component of RNABindRPlus, 
 HomPRIP , searches for homologs of the query protein. 
Excluding similar sequences (>30 % sequence identity) ensures 
that the homolog and the query protein are not the same. This 
is useful for stringently evaluating performance of 
RNABindRPlus in comparison with other methods, but is not 
the best strategy for a user interested in identifying potential 
RNA-binding residues. To obtain the best possible prediction 
of RNA-binding residues, the user should take full advantage 
of all available homologous sequences (i.e., should  not  elimi-
nate any potential homologs).   

   16.    The  IC_score  (interface conservation score) measures the cor-
relation between the interface and non-interface residues of a 
query protein Q and its putative sequence homolog H when 
the two are aligned. It is a measure of how well the RNA-
binding residues of Q are conserved (and subsequently, can be 
predicted from known interface residues of homologous pro-
teins) in protein H. However, computing the IC_score requires 
knowledge of interface residues in both the query protein and 
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its homolog. Fortunately, for a query protein with unknown 
RNA-binding residues, the IC_score can be estimated using 
BLAST alignment statistics between Q and H [ 57 ].   

   17.    SNBRFinder allows submission of at most fi ve sequences each 
time, for any of the submission options. When entering mul-
tiple UniProt IDs, IDs should be separated by commas.   

   18.    Like RNABindRPlus, SNBRFinder allows the user to specify 
which sequences to exclude when searching for homologous 
templates, using a sequence identity cutoff. Protein templates 
that are more similar to the query protein are likely to return 
better results than templates that are less similar. The sequence 
identity cutoff utilized depends on the user’s objective ( see  
 Note    15  ). To obtain the best possible prediction of RNA- 
binding residues, the user should take full advantage of all 
available homologous sequences. In contrast, for a rigorous 
performance comparison with other methods, a lower sequence 
identity cutoff should be used (i.e., to evaluate the sensitivity 
and specifi city of the methods).   

   19.     HHscore  is a score that indicates the similarity score between 
the query protein and its best homolog/template.   

   20.    SNBRFinder calculates the probability score of each residue 
being an RNA-binding residue using the following formula:

  
Cscore

Fscore Tscore if HHscore cutoff

Fscore otherwise
=

+ -( ) ³ìa a1
íí
î    

where Fscore is the output of SNBRFinder F  (support vector 
machine component) and Tscore is the output of SNBRFinder T  
(template-based component),  α  = 0.6 and cutoff = 85 %.   

   21.    A current limitation of PS-PRIP is that it has a minimum 
length requirement for both the protein and RNA sequences: 
proteins must be ≥25 amino acids in length and RNAs must be 
≥100 nucleotides in length.         
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