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ABSTRACT. Seasonal variability attributed to heat stress (HS) has a large economic impact on the US swine industry by 
reducing daily gain and finishing market weights. Strategies to mitigate HS lack evidence showing effectiveness in 
different climates and have not been adequately controlled to provide a thermally optimum environment for pigs. Hence, 
the goal of this study was to describe the initial experimental design and instrumentation as well as develop innovative 
control algorithms for operating evaporative pads (EPs) and sprinklers. Located in northeast Iowa, a four room (~1,875 
head per room) grow-finish facility featured side-by-side rooms separated by a hallway. Three thermal environment sensor 
arrays (TESAs) quantifying dry-bulb and globe temperature, relative humidity, and airspeed were placed in each room 
and served as feedback for control system to evaluate the thermal environment and potential HS conditions. The newly 
developed housed swine heat stress index (HS2I) combines TESA measurements and optional wetted skin to assess the 
potential for HS onset. Custom software interfaced with a multifunction data acquisition board was used to condition 
TESA signals and control EP pumps and sprinkler solenoids. A control algorithm was developed and simulated using data 
collected during a 23-d period in July 2017 to preliminarily evaluate the robustness and potential control decisions. 
Linear models developed to predict indoor dry-/wet-bulb temperature showed good agreement with measured data and 
will be critical for developing a control systems to selects the best cooling system given forecasted ambient conditions.  
Keywords. growth performance, heat stress, swine, temperature, ventilation. 

Introduction 
The severity of heat stress on pigs has been well documented with St-Pierre, Cobanov, & Schnitkey (2003) estimating 

economic losses of about $300 million per year for the U.S. pork industry as well as herd productivity being diminished 
for about 40% of the year (Hostetler, 2015). Voluntary feed intake was estimated to reduce by 40 to 80 g d-1 per °C 
between 20°C and 30°C (Le Dividich, Noblet, Herpin, Van Milgen, & Quiniou, 1998). In addition, Renaudeau et al. 
(2011) estimated from numerous studies, the reduction in average daily gain for a 50 kg pig was about 18 g d-1 per °C 
when temperature increases from 20°C to 30°C. Heat stress has and will continue to have a negative impact of pig 
performance and therefore, requires alleviation strategies to reduce performance penalties. 

There are three common techniques for reducing heat stress in grow-finish pigs: elevated airspeeds, direct (wetted 
skin), and indirect cooling (reduced dry-bulb temperature). Elevated airspeeds (via forced convection) remove excess heat 
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when the dry-bulb temperature is less than the skin temperature of the pig. Both indirect and direct cooling utilize a phase 
change at some part of the process (most commonly water) to extract heat from a source (pig, air, evaporative pad, 
refrigerant, etc.). The main difference between indirect and direct cooling is that indirect cooling conditions the air 
surrounding the pig (primarily convection) compared to direct cooling, where heat is removed from the pig by directly 
evaporating water from its skin. All three methods are used in commercial pig production and require further exploration.  

The goal of this paper is to introduce the initial phases of a research project aimed at developing novel control 
techniques for and assessing the effectiveness of indirect (evaporative pad; EP) and direct (sprinklers) cooling systems for 
grow-finish pigs. Both the control and effectiveness of these cooling systems lacks literature support and would benefit 
from the integration of modern electronics to reduce water consumption while maximizing pig performance. Hence, the 
objectives of this paper are to: 1) describe a new data acquisition system for monitoring the parameters that describe the 
thermal environment (except conduction) and 2) introduce the development of a control system for operating two cooling 
systems independently based on local climate and predicted pig performance penalty.   

Materials and Methods 

Site description 

A 7,500 hd commercial, deep-pit, grow-finish facility located in northeast Iowa, USA was instrumented in mid-summer 
2017. The facility featured four rooms: two side-by-side rooms located across from each other with a common hallway in 
between. Room dimensions (L × W × H) were 61 × 20 × 2.54 m and each room housed ~1,875 hd in 12 large pens. The 
length of the building was orientated along the North-South axis. The negative pressure ventilation system was fully 
mechanical with 100% of fresh air distributed through ceiling inlets (bi-flow) by six exhaust fans in each room. On each 
end of the building, fresh air entered through a 0.1524 m thick EP and into a common spray-foam insulted attic plenum 
that is shared by all the rooms. The attic plenum was separated in half with plastic sheets – effectively dividing the 
airspace for the North and South set of side-by-side rooms. This was to prevent air mixing between the North and South 
attic plenums; hence, different conditioned fresh air treatments would only be applied to two rooms, while the other two 
rooms could be controlled differently.  

Instrumentation 

Specific instrumentation information details are included herein for detailed clarity of systems used and does not imply 
endorsement of specific products. 

Three thermal environment sensor arrays (TESAs; Ramirez, 2017a) quantifying dry-bulb (Tdb) and black globe (Tbg) 
temperature (nominal 10 kΩ at 25°C, NTCLE413E2103F, Vishay), relative humidity (RH; HIH-4000, Honywell), and 
airspeed (Gao et al., 2016) were placed in each room and served as feedback to the control system for evaluating the 
thermal environment and potential HS conditions. A +5 VDC adapter powered each TESA via 120 VAC receptacles in the 
rooms. TESA construction was modified from Ramirez (2017) to feature an improved weatherproof housing and 
additional sensor protection to prevent direct contact with water from the sprinkler system. Five analog signals plus 
ground for each TESA were connected via 6-connducter shielded wire to one multifunction data acquisition system 
(MDAQS; U6, LabJack Corp.) with a 16-bit analog to digital converter. Four terminal boards (CB37, LabJack Corp.) were 
connected to an analog input expansion board (Mux80, LabJack Corp.) to accommodate the 60 analog signals from the 12 
TESAs.  

Custom software (Python 2.7, Python Software Foundation) was developed in an integrated development environment 
(PyCharm 2017.3.4, JetBrains) on a portable computer interfaced with the MDAQS. The software was capable of 
collecting analog voltages at a user specified frequency and could be integrated with relays to control pumps and solenoids 
for the EP and sprinkler systems. 

For each half of the facility, two Tdb/RH dataloggers (UX100-003, Onset Computer Corp; standard uncertainty: 
±0.14°C; ±2.1%) were used to monitor the incoming ventilation air directly downstream of the EP and three Tdb/RH 
sensors were evenly disturbed along the length of the attic in the center. One ambient Tdb and RH datalogger (Ta/RH; 
MX2301, Onset Computer Corp.; standard uncertainty: ±0.12°C; ±1.6%) was placed outside and near the facility.  

Algorithim Development 

Data were collected from July 7, 2017 to July 30, 2017 in order to develop the preliminary algorithms to the control the 
sprinkler and EP cooling systems and to simulate the control logic prior to implementation. A program developed in 
MATLAB (R2017b, MathWorks Inc.) processed *.txt files and filtered irregular values. Data from each source were 
synchronized using linear interpolation to a uniform 5-min interval time vector. 

Conceptually, each day, given the ambient weather forecast, the control system would model pig performance penalty 
using the three aforementioned cooling system methods to subsequently determine the best strategy to minimize the 



10th International Livestock Environment Symposium (ILES X) Page 3 

impact of heat stress. Heat stress impact was calculated using the Housed Swine Heat Stress Index (HS2I; Ramirez, 
2017a) which accounts for bodyweight, group size, Tdb, RH, airspeed, and wetted skin. The HS2I was developed to 
convert the simulated mean body temperature (physiological response; Ramirez et al., 2017b) difference from 39°C (the 
assumed mean body temperature of a pig existing within its thermal comfort zone) into a dimensionless indexed value 
ranging from 0 (thermally comfortable) to 10 (severely heat stressed), with intermediate values 3 to 6 as moderately heat 
stressed.  

The initial objective was to estimate room Tdb and wet-bulb temperature (Twb; ASHRAE, 2013) given ambient 
conditions and EP operation (i.e., on/off). The EP was independently operated to turn on at a room temperature of 23.9°C. 
Data from the 23-d period was sorted between evaporative cool pad on and off for the two North and South rooms. Least 
squares regression was used to develop relationships to estimate North and South room Tdb, Twb with EP on, and Twb with 
EP off. Measured and predicted conditions for the aforementioned six parameters were compared. 

Results and Discussion 
During the 23-d period, a range of hot Tdb with varying levels of RH were experienced (fig. 1). Since the EP was 

controlled independently, most of the EP ‘off’ data originated during nighttime conditions when it was cooler; however, 
the ventilation system continuously operated at the maximum ventilation stage; thus, any heat accumulation was assumed 
to be the same as daytime and nighttime (the entire attic was spray foamed to minimized solar gain).  

Figure 1. Ambient dry-bulb (green), wet-bulb (yellow), and relative humidity (blue) for the 23-d period in July 2017. 

Primary factors for predicting room Tdb/Twb were ambient conditions, heat accumulation, and EP efficiency. An 
example 6-h afternoon period with the EP operational is depicted in fig. 2. This example was typical of a hot and humid 
day for northeast Iowa. Tdb and RH, as well as the difference between locations is shown for ambient, directly downstream 
of the EP, three locations in the attic plenum (increasing distance from EP), and three locations in both the North side-by-
side rooms. A -6°C was observed downstream of the wetted EP and a subsequent increase in RH. Tdb increases as air flows 
through the attic and into the rooms, as expected. However, the overall difference from ambient was -1.5°C and +14.8% 
RH, resulting in an average room HS2I = 7.3. In another example (not shown), when ambient conditions were hot (Tdb = 
31.7°C) and moderately dry (38% RH), resulting in a room average HS2I = 3.7. 

Figure 2. Example (12:00 to 18:00) illustrating Tdb (T) and RH at ambient, directly downstream of EP, three locations in attic plenum (Attic 1, 2, 
and 3), and three locations in the two North rooms. Error bars represented the 95% CI. Room airspeeds ranged from 0.25 to 0.75 m s-1

. 
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Average room Tdb was predicted from Tdb directly downstream of the EP, while average room Twb was predicted for 
ambient Twb. Example data is shown in fig. 3. Table 1 contains the summary of the linear regression coefficients and 
statistics determined to estimate individual room Tdb and Twb for EP: ‘on’ and ‘off’. Coefficients of determination were 
>0.88 for all regressions and slight variations in the regression parameters could be attributed to differences in stocking 
density. The intercept term is greater for the South room, which may be attributed to the increased sun exposure.  
 

Figure 3. South Room average room Tdb as a function of EP exit Tdb (a) and North room average Twb as a function of ambient Twb (b). 
 

Table 1. Summary of linear regression coefficients (ŷ = y0 + y1 x) for predicting conditions inside the rooms. 
 Predicted room 

parameters (ŷ) EP status y0 
    

 x y1 R2 RMSE (°C) 
 

N Room 
Tdb On or off 10.7028 Tdb,exit 0.7437 0.955 0.461 

 Twb 
Off 6.0133 Twb,ambient 0.8223 0.898 0.808 

 On 6.1816 Twb,ambient 0.8134 0.902 0.809 
         
 

S Room 
Tdb On or off 11.5995 Tdb,exit 0.7290 0.960 0.428 

 Twb 
Off 7.1653 Twb,ambient 0.7916 0.886 0.848 

 On 7.1879 Twb,ambient 0.7909 0.894 0.819 
 
Predicted average room conditions from the developed regression models, expressed as dimensionless HS2I 

(combination of measured Tdb, RH, and airspeed), showed reasonable agreement (R2 = 0.892; RMSE = 0.32; fig. 4) with 
measured HS2I during the 23-d period. The quality in the linear regression agreement is important to ensure predictions 
given only forecasted ambient conditions are reasonable.  

Figure 4. Comparison of average measured HS2I and predicted average HS2I (EP on). 

To determine which cooling system would be most effective for the day, total H2SI for a 12-h period (i.e., sum of 
hourly HS2I) was used. Total and average H2SI for a 12-h period (i.e., sum of hourly HS2I) was used to illustrate which 
cooling system would be most effective. Fig. 5 shows total and average H2SI for each day and that while sprinklers 
always resulted in the lowest total and average HS2I, there were some days where total and average H2SI were similar for 

(a) (b) 
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EP on and off, due to high ambient Twb.  
 

Figure 5. Total predicted HS2I (red outline columns) and average predicted HS2I (blue line) for EP off and on, as well as sprinklers. 

Conclusions 
• An instrumentation system was implemented in a commercial grow-finish swine facility for thermal environment 

monitoring to provide feedback to a novel control system. 
• Tdb and Twb linear models showed good agreement and will be necessary for control system implementation. 
• An initial step has been taken towards creating a novel control system for determining the optimal cooling control 

strategy. 
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