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I. INTRODUCTION 

Estimates of phenotypic and genetic parameters are used in the 

solution of animal breeding problems. The validity of procedures 

used to obtain these estimates rests upon various assumptions which 

may be statistical or related to the biology and genetics of the 

species and traits concerned. There is no clear division, however, 

between the statistics and the biology since the choice of statistical 

tools depends upon the biological nature of the material under study. 

The statistical assumptions are largely those of the analysis of 

variance, including linear regression. 

The phenotypic scale on which a trait is measured or expressed 

is directly involved in any assessment that might be made of the. 

validity of these assumptions, biological or statistical. There is 

therefore a fundamental relation between phenotypic scales and the 

practical values which can be placed upon estimates of genetic par

ameters and consequent breeding plans. 

In the present study, criteria used to assess the relative 

values of different phenotypic scales are considered and several 

transformations of scale and derived scales are investigated in 

relation to the estimation of heritability and genetic correlations 

from the resemblance between daughters and their dams. Large numbers 

of dairy records were available so that three important traits in 

dairy cattle were chosen to form the basis of the investigation. For 

much of the analysis, the records were grouped in order to make the 



2 

scales of measurement more amenable to transformation. However, the 

number of groups was kept as large as possible in order to minimize 

any loss of information due to the grouping process. 
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II., THE ASSUMPTIONS UNDERLYING THE ESTIMATIONS 

The statistical assumptions underlying the estimation of herit-

ability and genetic correlations are largely those of the analysis 

of variance. Since the solutions to the analysis of variance problem 

are based on the theory of "least squares", the assumptions are those 

of the Gauss-Markoff theorem. This theorem states that, given random 

variables which are observations Y^, i = 1, 2,...,n, such that 

Ï. = E(Y.) + e.. 

and E(Y^) is a linear function of unknown parameters, 

E(e.) =0 

E(e^ e^,) = 0, i ̂  i', 

and E(e?) = for all i, 

then the method of least squares gives the best linear, unbiased 

estimate of any linear function of the parameters which can be es

timated. The best estimate is taken to be the one having minimum 

variance. This theorem is discussed by Kempthorne (1952) who calls 

it simply the Markoff theorem. 

The assumptions of the above are that the Y^ can truly be des

cribed by a model that is linear, that the errors (the e^) have mean 

zero and are uncorrelated, and that the error variance is a constant 

for each value of the random variable (Y^). These assumptions have 

been discussed in the classical paper of Eisenhart (1947). 

A numerical description of the sample data can be given by the 

procedures of analysis of variance regardless of whether or not the 
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assumptions are true. However, in genetics, the main objective is 

normally to be able to make inferences about the properties of the 

population from which the data were drawn as a sample and, for such 

inference to be valid, the assumptions should hold true. For example, 

an estimate of heritability can be calculated from some data but, 

unless the data conform to the assumptions outlined above, little 

can be said with any degree of surety about the population parameter. 

If it is desirable to make tests of significance and place 

reliability factors on estimates from linear models, it is necessary 

to completely specify the error distribution for all random variables. 

It is usual to assume normality for these distributions because this 

is most often biologically sensible and the normal distribution is 

well known. A linear function of normally distributed random variables 

is itself normally distributed and a normal distribution is completely 

specified by its first two moments. If the errors are mutually un-

correlated and are normally distributed then they are independent. 

Although the usual theory for tests of hypotheses requires normal 

distributions of errors, Cochran (1947) gives as the consenus of 

previous research that non-normality introduces no serious errors in 

the significance levels of the F test and two-tailed t test. Similarly, 

the effect on the estimation of standard errors and on the efficiency 

of estimation of "effects" is not likely to be great. It is suggested 

that extreme skewness of the distribution could be the greatest source 

of problems. 

Heterogeneity among error variances can lead to considerable 



5 

losses in the efficiency of estimation of "effects" and in the sen

sitivity of tests of significance (Cochran, 1947). The problem can 

often be solved by using a weighted analysis of variance but this is 

seldom easy in.practice. Tests for the equality of variances are 

known but do not share the insensitivity to general non-normality 

of the parent population possessed by the robust analysis of variance 

tests mentioned above (Box, 1953). Heterogeneity can arise out of 

non-normality, there often being a relation between the variance of 

an observation and its mean in non-normal populations (Cochran, 1947). 

Such cases may often be conveniently handled by transformation of 

scale. Non-additivity in the model may also produce heterogeneity 

among the error variances. 

Anscombe and Tukey (1963) draw attention to the problem of differen

tial diagnosis of any misbehavior in the data, it being difficult to 

separate the effects of outliers from those of non-normality (espe

cially excessive skewness), from those caused by excessive variation 

in a part of the data, from those of certain types of non-additivity 

and from those of the dependence of the variance upon the mean. Action 

which minimizes the effects of one sort of misbehavior might lessen 

the effects of one or more of the others to a greater or lesser degree. 

The validity of the model and of assumptions about the model 

generally rests upon biological considerations. Whether the model is 

biologically correct or not depends upon knowledge of the biology 

(genetics) of the traits and species involved. It is appropriate to 
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set up additive, linear models, each with the required error structure, 

but often the only evidence as to the fit of models to reality comes 

from whether or not the results obtained are in line with those ex

pected as a result of experience gained in independent research or 

in practice. The conformation of the data to the model and assumptions 

can sometimes be assessed by examination of the "residuals" remaining 

after values for the components of the model have been determined 

(Anscombe and Tukey, 1963). Often the data can be made to conform to 

an appropriate model by suitable choice of scale or transformation of 

scale, the model can be changed, or the experimenter can discriminate 

among the individual observations by, for example, the rejection of 

outliers. 
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III. CRITERIA FOR SCALES OF MEASUREMENT 

In quantitative genetic analysis, individuals and groups are 

described in terms of means and variances on some metric scale. The 

description of the data is valid only in terms of the scale on which 

a trait is measured and, as Mather (1949) has put it, "clearly the 

choice of an appropriate scale is the first step in the analysis of 

polygenic variation." 

The first, and often the only, criterion used in the choice of 

scale is that of convenience. It is perhaps fortunate that many con

venient scales have other desirable properties and are readily adapt

able to chosen measuring systems. For example, it is both desirable 

for statistical purposes and also convenient that scales should reg

ularly increase or decrease, meaning that successive units of the scale 

should be consistent with either an increasing or a decreasing expres

sion of the trait being measured. Likewise it is desirable and con

venient that scales be additive, each unit being exactly alike to 

each other unit on the scale. 

It would seem to be good from a biological standpoint to use a 

scale which is close to the scale on which the genetic processes are 

acting, and this suggests the use of a scale giving maximum values to 

heritability. Such a scale should be most closely related to the 

genotypic scale. In genetic statistics, the assumption is usually 

made that the genotypic scale is primarily additive, but with deviations 

due to dominance and epistasis. If this is true, and the linear re
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gression of genotype on phenotype is to describe adequately the 

heritability of a trait, then the phenotypic scale should be as 

near additive as possible. To maximize the heritability of a trait, 

it is necessary to reduce the total phenotypic variance in proportion 

to the additive genetic variance by elimination of some of the non-

additive genetic variance and interaction variances. 

What is needed is some way of dealing with gene X gene inter

actions (dominance and epistasis) and genotype X environment inter

actions. Such interactions can be taken care of by the addition of 

terms to the model, but if they can be made to disappear by trans

formation of scale, the analysis and interpretation should be facil

itated. Falconer (1960) has suggested that if effects are removed 

by transformation, the necessity to look for genetic causes of the 

phenomena is avoided. This approach seems rather too escapist, but 

the amounts of gene interaction removable by transformation will prob

ably be small. Results from the mathematical treatment of epistasis 

by Horner e^ al. (1955) suggest that biases in the estimates of both 

additive genetic variance and level of dominance resulting from 

strictly multiplicative gene action are relatively small. However, 

the types of interaction which can be readily dealt with by trans

formation of scale, such as the multiplicative type, probably rep

resent the least extreme deviations from a no-interaction model. 

The problem of how to detect non-additivity and to characterize 

it still remains. Falconer (1960) points out the need for some in
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dependent criterion to justify a scale and the approach of Rae (1950) 

sets up the maximization of heritability as just such a criterion. It 

seems that by changing the phenotypic scale to maximize the heritability, 

some of the previously non-additive genetic proportion, if any, of the 

total phenotypic variance should be removed, and the genetic gain ex

pected from mass selection increased. A scale found by this method is 

empirical and relates only to the set of data from which it is derived 

making general application to the analysis of other data hazardous. 

Even so, a great deal of uniformity exists among current estimates of 

parameters using different sets of data from the same species and trait. 

Consequently, some generality might be expected. The method of Rae 

(1950) is discussed in detail in section VIII. 

Quantitative genetic theory postulates that a quantitative trait 

is determined by a large number of loci, at each of which two or more 

alleles are possible, and it is reasonable to suppose independence of 

many of these contributing units (Falconer, 1960; Kempthorne, 1957; 

Lush, 1945). Laplace's principle states that a variable compounded 

additively of many small, independent contributions shows an approx

imately normal distribution, irrespective of the natures of the fre

quency distributions of the separate components (Wright, 1952). This 

principle is demonstrated by the approximation to the normal of the 

binomial distribution as the size of the sample becomes large. The 

suggestion is that the genotypic expression of the trait is likely to 

be normally distributed, and this suggests the use of a scale on which 

the phenotypic expression of the trait is likewise normally distributed. 
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Many traits are normally distributed when an additive scale is used, 

but others are distorted, possible because of the effects of inter

actions. 

The practical utility of the normal distribution can be seen best 

by consideration of selection theory. Given a normal population and 

the first two moments of the distribution, the selection intensities 

and the necessary genetic statistics, it is possible to predict the 

likely progress from selection, at least over a few generations assuming 

a linear response. It is also usual to assume, perhaps not very 

realistically, truncation selection. The prediction can be done both 

for single traits and for correlated traits, when the latter are from 

a multivariate normal distribution. The mathematical bases for such 

prediction have been given in detail by Cochran (1951). While the 

general results do not require specification of the normal distribution, 

it is necessary for prediction purposes to know the form of the distri

bution of the selection criterion and when this criterion does not fol

low the normal, it may be very difficult to make generalized predictions. 

If a normal distribution is assumed and expected gains are calculated, 

these may be in error if departures from normality are at all great, 

especially in the tails of the distribution. However, moderate de

partures may have little effect if selection is weak and the expected 

progress is small. 

As mentioned in section II, the error variance may change with the 

mean and this may be due to non-normality of the distribution or to 



lack of additivity in the true model. The scale of measurement has an 

important influence on the relation between variance and mean and a 

transformation may be required to obtain independence of the two para

meters. A general procedure to find the form of such a transformation 

has been given by Bartlett (1947) and Kempthorne (1952). According to 

Bartlett (1947), a scale chosen to stabilize the variance will, as a 

rule, be one on which arithmetic averages will be efficient estimators 

of true mean levels, an important property, and the distribution of 

the trait on the transformed scale will be closer to normal. 

It is most important that the scale for a trait be one on which 

real effects, both genetic and non-genetic, are additive, but it is 

difficult to determine a scale which achieves this property. It has 

been suggested by Kempthorne (1952) that, in general, the best pro

cedure is to obtain a transformation which results in homogeneity of 

the error variance and to assume deviations from additivity on the 

transformed scale to be minimal. 

It has already been indicated that transformations of scale can 

be made in order to make the data more closely conform to the assump

tions necessary for valid analysis. It should be remembered however, 

that the results will be meaningless if they cannot be interpreted in 

a manner which makes biological sense. The statistical success of a 

transformation can be judged by the numerical value of some criterion, 

and Tukey (1957) has discussed ways in which an understanding can be 

reached of how such a criterion may vary over a whole family of trans

formations. Since there is evidence that analysis proceeds more easily 
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if effects are additive, if the error variance is stable, and if the 

distribution of errors is symmetric and if possible near normal, criteria 

can be set up to make it possible to judge the effectiveness of a trans

formation in bending the data to fit these requirements. One such 

criterion is that for non-additivity of Tukey (1949). 

Falconer (1960), in his chapter on scale, has suggested that the 

best scale may be different for the same trait in different populations 

or for the genetic and environmental portions of the phenotype, and 

Mather (1949) has pointed out that a scale which is biologically repre

sentative or that reflects all genetic situations should not be expected. 

Most authors stress that no transformation can be expected to work per

fectly and changes of scale should not be made without good reason. 

Transformations may well remove metrical biases arising from inad

equate scales, but they may also obscure the description of some of 

the genetic properties of the population. The problem must be con

sidered new for every trait in every population and, as Falconer (1960) 

points out, it is illusory to presume that every trait has its natural 

or correct scale. 
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IV. SOURCE OF DATA 

The data for this study were obtained through routine milk and 

butterfat recording by the Dairy Herd Improvement Associations in the 

mid-western states of Iowa and Minnesota. These associations operate 

the production recording of dairy cattle data which is supervised by 

ûie extension services in each state in cooperation with the United 

States Department of Agriculture. Each association is a cooperative 

venture of a group of dairy farmers who hire a supervisor to visit 

each member farm once every month. The supervisor weighs and samples 

each cow's milk for the test day, conducts butterfat (and for some 

herds solids-not-fat) tests on the samples, and records other infor

mation relative to the productivity and economics of the cattle and 

the herd. The information is mailed to a processing center where 

it is put into a form suitable for the general use of association 

members. Central processing of dairy records began in the state of 

Utah in 1952, and Iowa State University established a center in 1958 

* 
to serve nine mid-western states (Taylor, 1962). 

The basic lactation data were standardized for length (305 days), 

age (mature equivalent), and number of milkings per day (twice-a-day 

milking). Multiplicative factors of the United States Department of 

Agriculture (Kendrick, 1955) were used for the standardizations. 

'k 
Arkansas, Iowa, Kansas, Minnesota, Missouri, Nebraska, North 

Dakota, Oklahoma, and South Dakota 



The lactation records came from Holstein cows most of which were 

in herds on central processing. Of the 5,209 daughter records actually 

used in later analyses, only 14 were of lactations initiated before 

1958, and of the corresponding 5,209 dam records, 515 were of lactations 

so initiated. The Holstein breed was chosen because of its popularity 

and the consequent availability of large numbers of records. Of all 

records summarized in the 1964 summary of the Iowa Dairy Herd Improve

ment Associations, 76.4% were from Holstein cows, of which 29.1% were 

registered and 70.9% grade. The standardized lactation average of 

all these 34,532 cows was 438 lbs. of fat and 12,123 lbs. of milk 

containing 3.6% fat (Iowa State University, 1964). 

A total of 65,449 complete first lactation records from cows 

freshening in 3,857 herds between 1945 and 1963, inclusive, were used. 

The average herd size in Iowa is comparatively small, the average 

size in 1963-64 being 32.2 cows. First lactation records only were 

selected for the sake of simplicity and to keep the sources of varia

tion to a minimum. From a survey of the literature and from analysis 

of Holstein data similar to that used in the present study, Molinuevo 

and Lush (1964) have concluded that the first lactation record gives 

a somewhat more accurate estimate of the breeding value of a cow 

than the second or third record, while Freeman (1960) has suggested 

that, to some extent, different sets of genes influence milk and fat 

production in different lactations. 

Each 305 day, mature equivalent, first lactation record was 
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deviated from its respective regressed, adjusted, herd-year-season 

average of all available records. The deviations were computed by 

W. R. Taylor following the methods detailed by Bereskin (1963) and 

the data became available to the present author in deviated form. 

In theory, the deviation of a cow's record from the average of her 

contemporaries accomplishes the removal of herd, year, and season of 

calving effects but, in practice, some residual variance due 'to these 

sources remains (Bereskin and Freeman, 1965b). The process is the 

same as that used to eliminate herd effects from daughter averages 

in sire evaluation and the methods used in New Zealand, Great Britain 

and New York State, have been recently reviewed by Searle (1964). 

In brief, the principles of the deviation method used to adjust 

the present data are discussed below. The two models used are, 

(1) (observed record - breed average) = (true record - breed 

average) + b(true herd level - breed average) + (error) 

and, 

(2) (true herd level) = (breed average) + B(observed herd 

average - breed average) + (error) 

where, 

b = the regression of observed records on their true herd 

levels, 

B = the regression of true herd levels on the observed herd 

averages, 

and observed records are 305 day, 2X, M, E. lactation 

records. 
A 

From (1), (true record) = (observed record) - b (true herd level -
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breed average) 

and substituting the estimate of (true herd level) from (2) for (true 

herd level) in the above, 

A A 
(true record) = (observed record) - b(breed average + B(observed 

herd average - breed average) - breed average) 

AA <-
= (observed record) - bB(observed herd average -

A A -
breed average), where b and B are the least squares estimates 

of b and B. 

In the computations, the record of the cow concerned and those 

of her paternal half-sibs were excluded from the observed herd average 

or herd-mate average, to reduce the correlation between observed records 

and the estimated true herd levels. Since all available records of 

each cow were included in the herd-mate average, other close relatives, 

such as dams, could have had records starting in the same herd-year-

season and therefore included in the average. These observed herd 

averages are herd-year-season averages and in the formulation they 

are deviated from their respective breed averages, each of which is 

one of the thirty-six Holstein year-season averages of all records 

available over the nineteen years from 1945 to 1963 inclusive. The 

optimum choice of two seasons of calving was determined by Bereskin 

(1963) as a seven month season from October to April inclusive and 

a five month season from May to. September inclusive. 

The estimated true herd level is the adjusted herd-mate average 

A 
(AHA.) of Bereskin (1963) and the regression coefficient, B, is given 
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by n where n is the number of records included in the herd-mate 
n + a 

average and a is a constant ratio of variances. The adjustment is really 

for the size of the herd-mate group, the larger the group the better the 

estimate of true herd level. To adjust the data for the present study, 

à was put equal to 2 for milk and fat yield and equal to 3 for fat per

centage. 

Bereskin (1963) defines the regressed, adjusted, herd-mate average 

(RA.HA.) as follows; 

A A 
RA.HA = (breed average) + b (AHA. - (breed average)) where b is the 

estimate of the regression of observed records on true herd levels as 

before and is taken as equal to 0.9, the value derived by Bereskin 

(1963), for all three production traits. 

The true or adjusted record as a deviation from the appropriate 

breed average can now be found, the formula being, 

(true record - breed average) = (observed record - breed average) 

AA 
- bB(observed herd average - breed average) 

= observed record - RA.HA., 

assuming that all breed-year-season averages are estimates of the 

same breed average. Thus the true record is expressed as a deviation 

of the observed record from the corresponding regressed, adjusted, 

herd-mate, or herd-year-season average. 

The regressed, adjusted, herd-mate averages and the deviations 

for milk and fat yield were available as computed by W. R. Taylor. 

For fat percentage, the following procedure was adopted. 
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(a) The same seasons as those used for milk and fat yield 

were utilized. After a study of the lactation production aver

ages for each month of calving as plotted by Bereskin and Free

man (1965a), it was decided that there would not be too much 

bias introduced if the same seasons were used, even although 

the curve for fat percentage was different from those for the 

yield traits. In an analysis of variance using the cross-

classification of months and herds, Bereskin and Freeman (1965a) 

found only 1.1% of the variation in fat percentage associated 

with months, the comparative figures for milk and fat yields 

being 1.7% and 1.4% respectively. The optimum seasons for 

fat percentage would seem to be January to June and July to 

December inclusive (Bereskin and Hazel, ça. 1963). When the 

best seasonal breakdown for the yield traits (the one used in 

the present work) was used in a year-season cross-classification 

with herds in analysis of variance, only 0.2% of the variation 

in fat percentage was associated with year-season as compared 

with 2.3% for milk and 1.8% for fat yield. It seems that it 

might have been possible to raise the 0.2% to about 2% by 

adopting optimum seasons for fat percentage, but this did not 

seem worthwhile considering the small amount of variation 

associated with month or year-season of calving and the con

siderable extra computation involved. 

(b) The deviations were calculated in two different ways. 
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These were, 

(1) actual fat percentage - RAHA. fat percentage 

and 
RA.HA fat yield 

(2) actual fat percentage - '100 
RAHA. milk yield 

Since the herd averages for milk and fat yield were not available 

as such and had to be calculated, determination of RAHA. fat per

centage was a lengthy process and it was thought that use of the 

second procedure might circumvent these calculations. If the 

RAHA is the best estimate of the fat or milk yield average for 

the herd-year-season, then the ratio of the two RAHAs as a per

centage should be the best estimate of the fat percentage aver

age for the herd-year-season. A consideration of the results 

from using the two procedures follows in section V. 
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V. REGRESSION OF OFFSPRING ON PARENT 

A. Methods 

First lactation records of 5,209 daughters and their dams were 

used to estimate the parent-offspring regressions. In cases of mul

tiple offspring of one dam, the dam's record was repeated with each 

of the offspring. In the estimation of the regression of offspring 

on parent, this practice is valid if the correlation among the off

spring of a parent is zero. But this correlation is a function of 

the square of the regression parameter and the correlation between 

deviations from regression of any two progeny of the same parent. 

This latter correlation is usually assumed zero under the normal 

analysis of variance assumption of uncorrelated errors, in which 

case the former correlation equals the square of the regression 

parameter. Kempthorne and Tandon (1953) have derived a weighted 

regression technique for the optimal (in terms of minimum sampling 

variance) estimation of the regression coefficient when each parent 

has an arbitrary number of offspring. The above authors, using 

data from the Iowa State University Holstein dairy herd, found 

little to choose between their method and the method of repeating 

the dam's record with each of the offspring, presumably because 

few cows had more than one daughter and because the estimated value 

of the correlation among the offspring of a parent was small. Bohren 

et al. (1961) confirmed this result with more extensive poultry data. 
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Heritabllity was estimated as twice the regression of offspring 

on dam. The expected composition of the estimate derived in this way 

is given by Dickerson (1959) for the random mating case and is an un

biased estimate of the proportion of additive genetic variance in the 

absence of locus by locus interactions (epistasis) and maternal effects 

contributing to the resemblance between daughters and dams. Of the 

5,209 daughters, 576 had no sire identification. The remaining 4,633 

daughters were the offspring of 1,011 sires, giving an average of 4.58 

daughters per sire. The regressions were calculated utilizing all 

5,209 pairs and also within sire of daughter groups using only the 

4,633 pairs with sire identification for each daughter. Environmental 

correlations among individual cows due to herds, years, or seasons 

should have been removed by the use of deviations. That there remains 

a small bias in the parental variance is demonstrated below. Re

stricting the analysis to variation occurring within groups of dams 

mated to the same sire avoids biases due to departures from random 

mating (Lush, 1940). It was not determined in these data to what 

extent phenotypic assertive mating might have taken place. If there 

was any tendency for the better cows to be mated to the better bulls 

genetically, then the environmental correlations between daughters 

and dams due to daughters from better than average cows being given 

better than average care should be minimal within sire groups. Also, 

only in the case of full-sibs is it necessary to worry about errors 

introduced by repeating the dams' records with their daughters when 

the regressions are calculated within sire groups. 
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The random variables in the analyses are deviations of lactation 

records from regressed, adjusted herd-mate averages. Let the observed 

where Y,. is the record of the animal in the ith herd-year-season, 

A new concept is introduced into the notation by letting the subscript 

(ij) represent the jA individual or record in the ith herd-year-season 

and treating the subscript as a single letter. The notation of the 

herd-mate averages is easier if a subscript r is introduced to represent 

an individual within the herd-mate group of the individual designated 

by the (ij) subscript. Thus the herd-mate average of the ith animal 

in the ith herd-year-season, or (ij)th animal, excluding the records 

record of an animal be Y,. =y^ + h. + g.. + e.. 
XJ 1 1̂] ij 

/Y is the breed average. 

h^ is the effect peculiar to the ith herd-year-season, 

is the breeding value of the jA individual in the 

ith herd-year-season. 

and e.. is random error associated with the jth record in the 
ij — 

ith herd-year-season. 

of the animal and her paternal half-sibs, is represented as HA 

"(ij) 

I-

*(ij) 

I  ̂̂  (̂ij)r 

' "(ij) 

where i® the breeding value of the rth individual in the herd 

" mate group of the (ij)th animal. 

e,..\ is the corresponding random error 
(ij)r 



23 

and n,..\ is the number of herd-mates for the (ii)th animal, (ij) •' — 

The regressed, adjusted herd-mate average (RAHÂ) is 

A 
„ ""(ij) 

where b and a are as defined in section IV. 

Let the deviation of the (ij)th record from the appropriate 

regressed, adjusted herd-mate average be 

t«) ' \ij) -

A + hi + 
A 

/( ̂  ̂ "(ii) . 

"(Ij) + * 

A + hi 

"(ij) 

r = 1 

"(ij) 

'(ij)r ®(ij)r 
r = 1 

n 
(ij) 

- X 

A 
1 - b n 

£iU 

"(ij) + " 

\ + S(ij) 
"(ij) + ' 

A 
+ ̂ IJ) " — 

'(ij) 

I-
"(ij) + * r = 1 

(̂ij)r 

n 
(ij) 

r = 1 ®(ij)r 

For the derivation of the variance among dam records, d^^j^ is 

the deviation of the (ij)th dam from her regressed, adjusted herd-mate 

average, and (ij) equals 1, 2, N when there are N dams. In the 
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subsequent formulations, K stands for "expectation of". 

Ji calculated variance = N - 1 £. 

I 
I 
(ij) *(ij) • ̂ 

I (ij) 

^ (ij) ^(ij) 
N - 1 

z Z I 1 / Z_. 2 
(ij) "^(ij) (ij) (ij)' 

N 

^(ij) ^(ij)' 
(ij) ^ (ij)'. 

In the following expectations, the presence of an r in the subscript 

indicates that herd-mates are being considered. 

Let a(h^)2 = f% , 

-si . 

1!<V - - K(S(i])r) = a(=(ij)) = *(e(ij)r) = ». 

6(8(ij))(S(ij)p) = the expectation of the product of the breeding 

value of a dam and.the breeding value of one 

of her herd-mates = ^gg^, 

a(g,... )(g,... ,) = the expectation of the product of the breeding 
\ ^ \ ̂  J / ]-

values of one of the herd-mates of a dam and 

another of the herd-mates of the same dam 

= <5"ĝ gj.,. 

and all other expectations of products be zero. 
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Considering only the first term in the square brackets in the expectation 

of the calculated variance above, 

® (ij) ^^ij) " (ij) 

('(ij) + 
•2 

A; 

"(ii) (*(ii) " 

A 2 

(1  -  +  

®r®r' 

(f. gg. 

+ ^ 

^2 

("(Ij) + 

^gg^ is the genotypic covariance between a dam and her herd-mates while 

^r^r' the genotypic covariance among herd-mates. 

The expectation of the calculated variance of d^^^^ can now be written 

E ̂ calculated = (ij) ̂  

(1  +  

^2 

+ *) 

""(«) 2 

a) < 
(ij) 

A 
'"(ij)' 

•) - »aj,-

A 2 
"(ij) ("(ij) " ^ 

'("(i]) + 

"̂ gj. + 

6", 
®r®r' 

N(N - 1) (ij) (ij) 

'̂ (ij) ̂ (ij)' )' 
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Freeman (1964) has described the last term in the above equation as 

made up of covariances among the deviation records of the different 

dams and he concludes that it can be considered zero without adding 

undue bias to the result. 

For the derivation of the covariance between daughters and dams 

d^^j^ is the deviation of the (ij)th dam and the correspond 

ing daughter deviation. The presence of the same subscript on 

daughters and dams merely indicates the relationship and is not in

tended to imply that daughters and dams are in the same herd-year-

season, since this is impossible. 

E ^calculated covariance (<^( jy d'^..^)j = 

z " 

I 
(ij) 

^^ij)^'(ij) N 

N 
I 

^ (ij) ̂ Vij) (ij) ̂ ^(ij)) 

W) "^(ij) ^^(ij) 
I 

H ^ I ^ * (4 (4 I ^ 
(ij) (ij)' (ij) (ij)'^ 

N Oj) d^ij) '^'(ij) 

(ij) 7^ (ij)' 

In the following expectations, a prime on a g indicates a daughter, 

no prime indicates a dam, and the subscript r again indicates that 

herd-mates are being considered. 

Let a(g(ij)) (g'(ij)) 

û(g(ij))(g'(ij)r) 

= Q gg' 

gg' 
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. I 

'(ij)r'"'^ (ij)r/ ' r 

and ail other expectations of products be zero. Again considering 

only the first term in the square brackets in the expectation of 

the calculated covariance a^ove, , ^ 

I Z " (ij) ^ 

^ (ij) ̂ (ij) ̂  (ij) (ij) ^ Sg ^ -

fSrS';). 
"(ij) + ' + *)(*'(!:) + a) 

The four covariance terms in the above right hand side are, respective

ly, (1) the genotypic covariance between a dam and her daughter, (2) 

the genotypic covariance between a dam and the herd-mates of her 

daughter, (3) the genotypic covariance between a daughter and the 

herd-mates of her dam, and (4) the genotypic covariance between the 

herd-mates of a daughter and the herd-mates of her dam. 

The expectation of the calculated covariance can now be written, 

E [calculated Cov(d^..^, d'^..^)] = (^) | ( ̂gg' " 

A A 
" fii) ̂  gg'r - ^ g'g^ + 

(ij) ^ "(ij) ^ 

I ^2 

*(ii) " (il) dTg g, ) _ ] 
(n,.., + a)(n' + a) 3-8 _ J 
(ij) " (ij) " N(N-l) 

I I 
(ij) (ij)' ^(ij) ̂ ^(ij)')" 
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Again/ the last term in the above right hand side of the calculated 

covariance can be considered zero as was done for the corresponding 

term in the calculated variance, following the conclusion of Freeman 

(1964). 

For simplification in the evaluation of the regression of daughter 

on dam, let all " "'(ij)' = 

Now, the expectation of the calculated regression coefficient is 

A 2 ̂ 2 

- Tv : TTô : A 

- (1- + (: + (&)2) 2 ̂  

/\2 - ' 
+ - l)h ^ 
( n + a)^ ®r®r'„ 

It remains to evaluate the various variance and covariance terms, 

and their coefficients, in the above expectation. 

The average value for the size of the herd-mate group of the 

daughters and dams used in this study was approximately twenty. Taking 

A 
n = 20, b = 0.9 and a = 2, the expectation of the regression coefficient 

becomes 

= <^gg' - 0.82 +^g'gj.) + 0.67 ̂ gpg'r 

0.03 + 1.03 («Tg +<rj ) - 1.64 ̂ gg^ + 0.64 dg^gp, 

2 
As n becomes larger, the coefficient of in the denominator approaches 

2 2 
zero while the coefficient of ( ) approaches unity. 

The genotypic covariance between the herd-mates of a daughter 

and the herd-mates of her dam ("^g^g'^) is not likely to be large. 
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but there could be some animals in common to the two groups, repre

sented by different lactations since the daughter and dam are both 

in the same herd (not herd-year-season), or there could be related 

animals in the two groups. The genotypic covariances between a dam 

and the herd-mates of her daughter (Cgg'^) and between a daughter 

and the herd-mates of her dam ( (Tg'g^) are also not likely to be 

large on the average and will probably be smaller than d"g g' . The 

former two covariances probably more than cancel the effects of 

since the coefficients are of opposite sign. Since the 

covariances are likely to be very small, their coefficients are less 

than unity, and they partly cancel each other, their effect in the 

numerator is unlikely to be more than a tiny negative amount. 

The genotypic covariance among herd-mates (<fg^g^,) is likely 

to be the largest of the covariance terms. There is no easy way of 

evaluating this term but a herd-mate group will almost certainly in

clude some pairs of half-sibs and other assorted pairs of relatives. 

In a study of the use of deviation records in half-sib analyses, 

Van Vleck et al. (1961) assumed that every individual within a herd-

mate group had a different sire, and stated that although the assump

tion does not strictly hold in practice, the error involved in making 

it is small. Freeman (1964) has looked at the covariance in terms 

of the additive genetic variance and concludes from a study of the 

literature that the coefficient of the variance is probably less 

than 0.10, making the effect of the covariance small. 
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The remaining covariance term in the denominator has a co

efficient of opposite sign and twice the magnitude of that of 

^ . This is the genotypic covariance between a dam and her 
®r®r' 

herd-mates ((JT ), and the size of this covariance has been 

minimized by the removal of the record of the dam and her half-

sibs from the herd-mate group. However, as mentioned in section 

IV, other close relatives of the dam could have records starting 

in the same herd-year-season. Although no precise estimates 

are available as to the relative sizes of these covariance terms, 

it is believed that the two terms in the denominator largely 

cancel the effects of each other. 

Taking the above discussion into account and eliminating 

the covariance terms discussed, the expectation of the regression 

coefficient becomes 

A ^ 28' A 
J£(B) = 

0.03 <s'i + 1.03(d ̂  
n g e 

and, since the genotypic covariance between daughter and dam is 

approximately equal to half of the additive genetic variance, the 

expectation approximates 
2 

1 / 2  
f 2 + ,2 
E e 

which is one half of the heritability. 

In order to illustrate the magnitude of the bias present in 
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the formula 

2 
h 

^ 2 

S 

o.o3<rr + i.o3(^ +d, ) 
h ' g -e' 

the following approximate values taken from Bereskin and Freeman 

(1965a) were used to calculate heritabilities in this particular 

A 
case with n = 20, b = 0.9 and a = 2. 

milk yield deviation fat yield deviation fat percentage deviation 

0.02  6 

6 

23,000 

11,000 

44,000 

3,200 

1,200 

5,700 

0.05 

0.09 

Heritabilities were calculated using the biased formula and the un

biased formula 

\ g 

unbiased 

Milk yield 0.200 

Fat yield 0.174 

Fat percent- 0.357 
age 

S ̂ •>r6^ 

and compared as follows: 

biased 

0.192 

0.167 

0.345 

difference 

0.008 

0.007 

0.012 

It can readily be seen that with n as large as twenty, the biases are 

very small. 

The model for the within-sire regression analysis was 

^i(jk) ^"i + + ®^^i(jk) " V ®i(jk) 

where the deviation record of the (jk)^ daughter of 

the ith sire, the (jk)th daughter being the kth 
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animal in the herd-year-season, 

is the mean of the daughters of the ith sire, 

is the effect peculiar to the ith sire, 

B is the regression coefficient, 

di(^k) is the deviation record of the (jk)th dam in the 

•ith sire's group, 

d. is the mean of the dams mated to the ith sire, 
1 — ' 

and is random error associated with the (jk)th daughter 

record in the ith sire's group, 

(jk) = 1, 2, n^ ; i = 1, 2, ,s. 

The sums of products, sums of squares, and corrections for the mean 

and sire effect were computed within each sire's group, and pooled 

over groups. This procedure gives an unbiased estimate of B assuming 

B^ = B^, for all i, i'. Within each group, the variances of 

and d.,„ . have n. - 1 degrees of freedom and there are n. - 2 
i(jk) 1 ° 1 

degrees of freedom associated with error. Pooled over the s groups. 

X! n. - s and ̂  n. -this gives n^ - s and Z_ n^ - 2s degrees of freedom respectively. 
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B. Results and Discussion 

Results from the regression analysis using all 5,209 pairs 

are given in Tables 1 and 2. Fat percentage 1 refers to the 

deviation of actual fat percentage from the regressed, adjusted 

herd-mate average for fat percentage. Fat percentage 2 refers 

to the deviation of actual fat percentage from the percentage 

that the RAHÂ fat yield is of the RAHA milk yield, as described 

in section IV. Fat and milk refer to the deviations from the 

appropriate herd-mate averages. Results from the within-sire 

regression analysis are similarly given in Tables 3 and 4. 

Table 1. Parent and offspring mean deviations and standard 
deviations of observations for milk, fat and fat 
percentage from 5,209 pairs 

Parent 

Mean Standard 
Deviation 

Offspring 

Mean Standard 
Deviation 

Milk (lbs) 638.7 2390.3 106.1 

Fat (lbs) 28.6 85.3 8.9 

Fat percentage 1 0.06 0.31 0.06 

Fat percentage 2 0.06 0.31 0.05 

2399.6 

8 6 . 6  

0.32 

0.32 



Table 2. Regression coefficients and standard errors from regression of daughter on dam 

Parental Trait 
Offspring 
Trait milk fat fat percentage 1 fat percentage 2 

milk 

fat 

0.1935 t 0.01365 0.4208t 0.03857 

0.0586t 0.00495 0.1842t 0.01384 

fat -0.0001 - 0.00002 0.00021 0.00004 
percentage 1 

fat 
percentage 2 

-0.0001 - 0.00002 0.00021 0.00005 

•73.57981 10.6637 -73.2996+ 10.6231 

9.68891 3.8601* 9.5977*1 3.8545 

0.2901± 0.0135 0.2882± 0.0135 

0.2864t 0.0136 0.2850 ± 0,0135 

Coefficient significantly greater than zero (P < 0.05) by "t" test (5,207 df). All other 
coefficients highly significant (P < 0.01). 
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It should be noted that when the pairs with no sire ident

ification on the daughters are included in the data, the mean 

deviations for parent and offspring milk and fat (Table 1) are 

lower than when these pairs are excluded (Table 3 ), but the 

variances are greater for all traits. It is perhaps not un

expected that animals from herds with less information would 

have lower yields and that inclusion of these lower yielding 

animals would increase the phenotypic variance. 

Table 3. Parent and offspring mean deviations and standard 
deviations of observations for milk, fat and fat 
percentage from the 4,633 pairs with sire ident
ification on the daughters 

Parent Offspring 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Milk (lbs) 662.2 2306.2 157.3 2265.2 

Fat (lbs) 29.6 82 .0  10.8  81.9 

Fat percentage 1 0.06 0.30 0 .06  0.29 

Fat percentage 2 0 .06  0.30 0.05 0.29 



Table 4. Regression coefficients and standard errors from within-sire regression of daughter 
on dam 

e> 

Parental Trait 
Offspring 
Trait milk fat fat percentage 1 fat percentage 2 

milk 0.1766 + 0.01891 0.4039 t 0.05342 -54.2709 + 14.7075 -53.2768 + 14.6364 

fat 0.0501 + 0.00687 0.1725 + 0.01925 16.6756 + 5.3276 16.8804 + 5.3083 

fat -0.0001 + 0.00002 0.0002 + 0.00007 0.2815 + 0.0177 0.2799 + 0.0177 
percentage 1 

fat -0.0001 + 0.00002 0.0002 t 0.00007 0.2790 + 0.0178 0.2778 t 0.0177 
percentage 2 

All of the above coefficients significantly greater than zero (P<0.01) by "t" test (2,611 df) 
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Since all of the records are deviations from averages, the 

means are expected to be close to zero. In fact, they are all 

positive by up to one third of a standard deviation, with the 

parental means being greater than the offspring means for the 

yield traits. If the paternal half-sibs of an above average 

cow are above average and the herd-mate number is small, removal 

of the records of the cow and her sibs from the herd-year-season 

data will lower this average and give the cow a higher positive 

deviation. If the opposite is true for a below average cow and 

she happens to be a cow with sire unknown, the records of her 

(unknown) half-sibs will remain in the herd-year-season average 

and her negative deviation will be reduced. Such effects could 

contribute to positive means. The daughter-dam pairs are select

ed from among the records used to determine the herd-year-season 

averages, and this selection could have been in such a way as to 

result in a greater proportion of above average animals being in

cluded in the paired data than below average animals. This like

wise could contribute to positive means. Finally, the paired data 

are first lactation-records deviated from averages made up of rec

ords from all lactations and, if first records are higher than later 

records on a mature equivalent basis because of selection or in

accurate age correction, then positive means might be expected. 

The higher dam records are most probably due to selection of 

the dams, the poorer dams not having daughters with first lactation 

records. Regression towards the mean would then automatically 
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give lower values for the daughters. Bradford and Van Vleck (1964) 

found positive mean values for dams and negative values for daughters 

and have discussed this latter point in more detail. The variances 

of daughter and dam deviations are not far from equal in all traits, 

suggesting that the variance of genetic values for the sires is 

similar to that of the dams. 

The heritabilities found by doubling the regression coefficients 

are given in Table 5. The standard errors were found by doubling the 

usual standard errors of the regression coefficients. 

The heritabilities estimated from the total data are higher for 

all traits than those estimated within-sires. This could suggest 

that some phenotypic assortive mating had taken place. The within-

sire heritabilities are given more favorable consideration and 

within-sire analyses are used subsequently, simply because, in theory, 

they should be more accurate estimates. They are slightly more con

servative. In a survey of the literature from various countries 

utilizing data from various breeds, Johansson (1961) reports values 

of heritability for milk and fat yield calculated from daughter-

dam regression within herds and sires of from 0.20 to 0.43. Values 

for fat percentage range from 0,43 to 0.76. In most studies of the 

separate lactations, the heritabilities of first lactation records 

are higher than those for subsequent lactations (Johansson, 1961; 

Molineuvo and Lush, 1964). With Holstein cattle in the United 

States, Freeman (1960) working with 1,876 pairs found heritabilities 
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of first lactation records to be 0.36, 0.43 and 0.63 for milk, 

fat and fat percentage respectively; Clark and Touchberry 

(1962) with 385 pairs found values of 0.44 and 0.40 for milk 

and fat; while Tabler and Touchberry (1959) with 20,024 pairs 

found values of 0.27, 0.24 and 0.57 for milk, fat and fat per

centage. The values found in this study are therefore not in

consistent with those obtained by previous workers. However, 

Bereskin and Freeman (1965a), using data from the same sources 

as the present author, found heritabilities estimated from re

gressions of daughter's average record on dam's average record 

within herd-year-seasons for milk yield, fat yield and fat 

percentage to be 0.220 + 0.040, 0.180 + 0.042 and 0.526 + 

0.036 respectively. These estimates from 4,178 pairs are con

siderably lower than the estimates from the present study. If 

it is true that estimates from first lactation records are high

er than those from later records, it might be expected that 

estimates based on life-time averages should also be lower. 

Use of the formula of Lush and Straus (1942) to adjust the 

estimates to a single-record basis further lowers the values 

of the estimates. 

Genetic correlations among milk deviation, fat deviation 

and the second measure of fat percentage deviation were calcul

ated from the formula of Hazel (1943) as the geometric averages of 



40 

the two possible genetic correlations between each pair of traits, 

and using the within-sire regression coefficents. Standard errors 

can be attached to such correlation coefficients derived from 

daughter-dam regression by means of equation (13) of Reeve (1955). 

This equation (formula 1) can be simplified by assuming that the 

genetic correlation (r^) is approximately equal to the phenotypic 

. ) and 1 
P 

2 2 
correlation (r ) and that h^hg is approximately equal to 2 h^ hg , 

4*4 
2 2 

where h^ and h^ are the heritabilitiès of the two traits concern

ed. The simplified equation (formula 2) was derived by the present 

author. With further approximation and simplification, the formula 

of Falconer (1960) can be derived (formula 3). The results from 

an empirical sampling study by Van Vleck and Henderson (1961) 

indicate that formula 1 is accurate when the size of sample is 

1,000 or more. Formula 3 was derived by Robertson (1959). 

Since phenotypic correlations were not obtained from the 

regression analysis, it was decided to compare the three formulae 

to see whether or not either formula 2 or formula 3 could be used 

in this study. For comparative purposes, the most extreme diff

erences between the heritabilities and between the genetic and 

phenotypic correlations likely to be encountered in the course 

of study were utilized. The traits chosen were fat yield and 

fat percentage with heritabilities 0.34 + 0.038 and 0.57 + 0.035, 

and with r equal to 0.26 and r equal to 0.16. The relation 
G p 

between the chosen values of and r is consistent with the 
P 
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corresponding relation found reported in the relevant literature 

(Blanchard, 1965; Tabler and Touchberry, 1959; Wilcox et al..1962). 

The three values obtained for the sampling errors were 0.0499 

using formula 1, 0.0483 using formula 2,- and 0.0546 using formula 3. 

Because of these results and the overall small sizes of the sam

pling errors (due largely to the large sample size), it was decided 

to use the approximate formula 2 in subsequent work. This formula 

2 is given as: 

V • (1 f , 2 1 \ Variance(r^) - — + "^ - — 

where N is the total number of daughter-dam pairs, 

S is the number of sires of daughters, 

V~2 2 
and C is equal to ' h^ h^. 

The genetic correlations and their standard errors are given in 

Table 5. 

Like the heritability estimates, the values obtained for the 

genetic correlations are not inconsistent with those obtained by 

previous workers. Again citing studies using Holstein data in the 

United States, Farthing and Legates (1957), using 5,458 daughter-

dam pairs, found a value of -0.38 + 0.06 for the genetic correla

tion between milk yield and fat percentage; Tabler and Touch-

berry (1959) found values of 0.77 + 0.018 between milk and fat, 

-0.33 + 0.025 between milk and fat percentage, and 0.34 + 0.025 

between fat yield and fat percentage; Clark and Touchberry (1962) 
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found the genetic correlation between milk and fat yield to be 

0.86 + 0.08. As an example of results from half-sib analysis, 

Blanchard (1965) with deviation lactation records from 8,271 

daughters of 770 bulls found genetic correlations of 0.74 between 

milk and fat yield, -0.38 between milk and fat percentage, and 

0.34 between fat yield and fat percentage. 

Table 5. Estimates of heritability and genetic correlations among 
milk, fat and fat percentage deviations from daughter-
dam regression analysis 

Trait 

Heritability Estimates 

All JJata Within-sires Analysis 

Milk 0.387 t 0.027 0.353 + 0.038 

Fat 0.368 t 0.028 0.345 + 0.038 

Fat percentage 1 0.580 t 0.027 0.563 t 0.035 

Fat percentage 2 0.570 t 0.027 0.556 t 0.035 

Genetic Correlations (within-sires analysis) 

Milk X Fat 0.815 t 0.0219 

Milk X Fat Percentage 2 -0.330 t 0.0458 

Fat X Fat Percentage 2 0.265 t 0.0483 
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In whichever ways the two measures of fat percentage used in 

the above analysis are compared, there is little to pick and choose 

between them. This is so whether they are compared by variances 

or by means, by regressions or by the standard errors of regressions. 

The within-sire genetic correlation between the two traits was 

computed as 0.9993 + 0.00008. On the basis of this evidence it 

was decided to use only the simpler of the two measures, the 

deviation of actual fat percentage from the percentage that the 

RAHA. fat yield is of the RAHA milk yield for the particular herd-

year-season, in subsequent analyses. 

The within-sire regression coefficients, heritability estimates, 

genetic correlations, means and variances found from the previous 

analyses are used as reference bases for the subsequent analyses 

in this study. 

y 



44 

VI. GROUPING OF THù DATA 

In order to study the frequency distributions of the traits 

and to facilitate the making of certain types of transformation 

of scale (in particular 'those to maximize the heritabilities), 

the data were grouped, giving to the variables a discontinuous 

form. 

Two-way classifications were made with the daughter deviation 

record as one classification and the dam deviation record as the 

other classification. This was done for each of the three traits. 

The model used within each classification was simply 

= /( + e^ 

where is the value for the midpoint of the group in which the 

record of the animal falls, 

/i is the value for the mean of the population of midpoint 

values, and 

e^ is a random error associated with the ith midpoint value 

2 2 
and has expectation zero and variance 6 , so that 6 is the 

variance of the population of midpoint values, 

i = 1, 2, ..., N where N represents the number of groups in 

each classification. 

After some trial and error, it was decided to make thirty 

groups each way with ranges and group widths for each classifica

tion of the three traits as follows: 
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Milk yield from -8250 lbs. to +8250 lbs. by 550 lbs, 

Fat yield from -330 lbs. to +330 lbs. by 22 lbs, 

Fat percentage from -1.0% to +1.7% by 0.09%. 

All 5,209 pairs were used in this grouping but a few records were 

beyond the ends of the range. 

For the purposes of studying the distributions of the data 

(of the e^ of the model), the daughter frequency totals were used 

because some of the dam records were repeated with more than one 

daughter. The analysis of these distributions is an example of 

analysis of residuals as discussed by Anscombe and Tukey (1963). 

The distributions based on 5,200; 5,204; and 5,209 deviation 

records for milk, fat and fat percentage are given in Figures 1, 2, 

and 3 in terms of the percentages of records falling in each group. 

Large random samples from single populations will reflect quite 

accurately the shapes of the population distributions and enable 

the population parameters to be estimated (Snedecor, 1956). It 

is the assumption here that the sample of daughter records is a 

large random sample from the population of Mid-Western Holstein 

first lactation records. 

Procedures for computing the mean and variance of each 

distribution and tests for departures of the distributions from 

normal are given in Snedecor (1956). Tests were made for skewness 

and for kurtosis. The statistics involved are g^ and g^, to 

which standard errors can be attached in order to test the diff-
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erences of the estimates from zero by;means of Student's "t". 

For milk yield deviation, with 30 groups given coded values 

from -15 to +14 in units of one, the mean was -0.28 and the 

standard deviation 4.32 units. In terms of the original units, 

these estimates are 118.4 lbs. and standard deviation 2376.4 lbs. 

These compare with the values given in Tables 1 and 3. 

Snedecor (1956) suggests that grouping of the data gives 

sufficient precision of estimation of parameters if the sample 

standard deviation is at least four times as great as the group 

interval. It can be seen that this criterion is fulfilled in the 

present case, the group interval being 550 lbs. 

A 
In terms of the coded units g^ was 0.00827 with variance 

A 
0.00115 and g^ 0.17047 with variance 0.00461. The former was 

not significant but the latter was significant at the 5% level 

by "t" test with infinite degrees of freedom. This positive g^ 

• • 

suggests a slight excess of items near the mean and far from it, 

with a corresponding depletion of the flanks of the distribution. 

In other words the distribution is slightly peaked. There is no 

evidence for skewness. 

For fat yield deviation, with 30 groups coded in the same 

way as for milk yield, the mean was -0.06 and the standard devia

tion was 3.915 units. Again in terms of the original units, these 

estimates are 9.64 lbs. and standard deviation 86.14 lbs. These 

compare well with the estimates in Tables 1 and 3 and the standard 
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deviation is approximately four times the group interval of 22 lbs. 

The values found for 'g^ and were -0.04933 and 0.25094 with 

variances 0.00115 and 0.00461. The former was not significant but 

the latter was, this time at the 1% level. The distribution there

fore departed from normality in a peaked fashion and again there 

was no evidence for skewness. 

For fat percentage deviation, the two largest groups were 

combined into one (for convenience in later transformations) 

giving 29 groups which were coded in units of one from -11 to +17. 

The mean in coded units was 0.22 and the standard deviation 

3.52 units. In terms of the original percentage units, these esti

mates are 0.055% and 0.317%, comparing favorably with the estimates 

in Tables 1 and 3. Here the standard deviation is only 3.5 times 

the group interval of 0.09% so that the grouping falls somewhat 

short of maximum desirability by Snedecor's criterion. 

The estimates of g^^ and g^ were 0.46357 and 0.92101 with 

variances 0.00115 and 0.00460 respectively. Both values were 

highly significant by "t" test. The interpretation is that the 

distribution is peaked and is asymmetric with an excess of items 

smaller than the mean, drawing the peak of the frequency curve to 

the left. 

In summary, the distributions of milk and fat yield devia

tions are symmetric but slightly peaked as compared to the normal 

curve. Fat percentage deviations are peaked and also skewed with 
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the tail to the high values of the distribution. Bradford and 

Van Vleck (1964) show a frequency distribution of milk yield 

deviations from season-herdmate averages of 5,740 cows which has 

no evidence of skewness and is similar to the distribution in 

Figure 1. Ramsay (1964) found the distribution of unselected 

Iowa Holstein first lactation milk yields to be very slightly 

skewed with a tail of lower milk yields. However, the departures, 

y if any, from symmetry in the above two studies, as in the present 

study,, are very small. On the other hand, Goweri (1924) showed 

the distributions of records of Holstein Advanced Registry cows 

to be markedly skewed for milk yield and slightly skewed for 

butterfat percentage. However, these records were not represent

ative since, to enter the Advanced Registry, cows had to produce 

above a minimum standard. Both distributions had tails of high 

values, and this would appear to be the most likely form of 

asymmetry to be encountered, if asymmetry is present at all, 

because of the effects of selection. 

As mentioned before, one of the major assumptions in linear 

regression analysis is that the variances among the Y values 

(dependent variate) are the same for each fixed X value (inde

pendent variate). This is the assumption of equal or homogeneous 

variances discussed by Kisenhart (1947). As Snedecor (1956) puts 

it, for each X there is a population of Y's, and all these sampled 

populations have a common variance. In discussing the possibility 
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of heterogeneity of error variances, Cochran (1947) mentions a 

common type of heterogeneity arising from non-normality in the 

distribution of errors and in which the variance of an observation 

is some simple function of it's mean value. The present grouped 

data were utilised to investigate the assumption of homogeneous 

variance and the possible relation between variance and mean. 

For each of the three traits, the dam groups were consol

idated into twelve in order to have as equal numbers as possible 

among the groups. The ranges of numbers in the groups were 338-

499 for milk, 243-571 for fat and 237-624 for fat percentage. 

The daughter variance based on the original breakdown into thirty 

groups was then calculated for each dam group. These variances 

are listed in Table 6 in ascending order of dam group mean and 

are in coded units. With correlation between daughter and dam 

records, it is expected that daughter variances should be higher 

in the dam groups with the wider group intervals. However, the 

consolidation of the dam groups was done in such a way that group 

intervals remained equal except for the top two of the twelve for 

all three traits, the bottom two for milk and fat, and the bottom 

one for fat percentage. A close examination of the three bi-

variate distributions led to the conclusion that, since the correl

ations are very low (especially in the extremities of the distribu

tions), any differences in variance due to the unequal grouping 

should be negligible. The variances for the yield traits in Table 6 
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are consistent with this conclusion since the top and bottom pairs 

of variances are not consistently greater than the intervening 

variances. Fat percentage is discussed in greater detail in section 

VII. 

In order to assess the possibility of heterogeneity of variance, 

Bartlett's test (Snedecor, 1956) was used. The A of this test was 

significant for milk (X = 19.74, I'-^O.OS, 11 d.f.), not significant 
2 

at the 0.05 probability level for fat (% = 8.00), and highly 
. 2 

significant for fat percentage (X = 70.04, ±*<0.01, 11 d.f.). The 

heterogeneous variances for fat percentage increase with the mean 

and this is examined more closely in section VII. For the yield 

traits, the evidence is not conclusive as to the validity of the 

assumption of homogeneity of variance, but there do not seem to be 

I 
regular relations between daughter variance and dam mean. 

The only possible evidence found in the literature for change 

in phenotypic variance with level of production, independent of 

environment, was work reported in abstract form by Touchberry (1963). 

When 20,024 Holstein daughter-dam pairs were placed into 20 groups 

on (presumably dam) milk yield, each group with a range of 400 lbs. 

of milk, the within-herd dam and ûaughter phenotypic variances in

creased with level of production for milk yield, decreased with 

level of milk production for fat percentage, and increased for fat 

yield. In the present study the yield variances did not so increase. 

Since fat percentage is negatively correlated with milk yield the 
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decrease in variance for the former trait might mean an increase in 

variance with level of fat percentage, as found in the present study. 

This work should not be confused with work showing change in 

variance with level of herd production. Reports reviewed by Van Vleck 

and Bradford (1964) for milk yield show that total variation increases 

with level of herd yield. Similar trends were found for milk and 

fat yield by Mitchell e^ al. (1961) and Van Vleck (1963), and for 

fat yield by Legates (1962). 

Table 6. Variances of daughter records associated with fixed dam 
groups, in ascending order of dam mean yield 

Milk Yield Fat Yield Fat Percentage 

18.65 16.37 11.08 

16.27 13.48 9.41 

19.15 16.23 9.94 

16.73 14.00 10.97 

16.47 " 14.54 8.72 

17.34 14.68 12.43 

16.19 13.84 11.30 

16.78 14.31 13.30 

21.98 14.78 10.27 

20.08 15.23 11.77 

17.90 15.54 14.97 

19.32 16.34 16.24 
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VII. TRANSFORMATION OF FAT PERCENTAGE 

A. The Transformations 

Since, of the three traits, the distribution of fat percentage 

deviation departed most from the normal, this trait was utilized in 

a consideration of various types of transformation that might be 

employed to make it more closely satisfy the assumptions of the 

analysis of variance. The expression of actual fat percentage, as 

well as fat percentage deviated from a mean, is such as to result 

in the distribution of the trait being skewed, as shown in section 
I 

VI. The proportion of the higher values making up the tail of 

larger positive deviations is small however and the distribution 

has quite a narrow range giving the peaked form. It would seem 

that there is a lower limit to the content of fat in the milk 

below which it is rare to find examples, but that there are a 

number of "superior" animals with milk having fat percentages 

higher than expected under any hypothesis of a symmetric distribu

tion. Von Krosigk (1959) and Gowen (1924) found similar skewed 

distributions for fat percentage. 

It seems that the elimination of low testing cows is an im

portant part of the voluntary selection of females in mid-western 

Holstein herds. This elimination of the lower end of the distribu

tion in the preceding generation would tend to impart to first 

lactation records the type of skewed distribution found in these data. 
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The first type of transformation to try seemed logically to be 

one which would normalize the distribution of the trait. A procedural 

to find a transformed scale with the desired property was worked ckiC 

as follows. The area midpoint of the frequency distribution warn 

first found as that point having 50% of the observations to either 

side. This point fell almost on the midpoint of the group contain

ing the mean, assuming a uniform distribution of observations with

in this group. Starting from this midpoint, the cumulative area* 

to each successive group midpoint in both the positive and negative 

directions were calculated, again assuming uniform distributions 

within each group. The values of abscissae in standard measure 

(t) corresponding to these areas were found from tables of the 

cumulative normal frequency distribution. These t values, when 

multiplied by the standard deviation (/ = 0.317), became scale 

values for the group midpoints in both positive and negative direc

tions, starting from a central zero. Essentially the same type 

of transformation was derived by Cox (1962) for mortality In pig» 

at different ages. 

The theoretical frequencies of observations falling in each 

group could have been obtained from the formula 

frequency = I. n. (ordinate) 

4" 

where I is the group interval, n is the number of observations 

(n = 5209), and the ordinate is that of the normal curve for each 
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given value of t. Unfortunately it was not possible to determine 

values for I, but the use of approximate values enabled a check to 

be made on the method. The actual frequency distribution, the 

cumulative areas and the transformed scale are given in Table 7. 

The mean fat percentage on the new scale was 0.000 while the 

standard deviation was 0.314, in line with that measured in the 

original percentage units. The g^ and g^ statistics were estimated 

as 0.00424 and 0.03060, with variances 0.00115 and 0.00460, respec

tively. As expected, neither statistic was significantly different 

from zero, indicating that the transformed data closely approached 

a normal distribution. 

A skewed distribution with a positive tail can sometimes be 

made symmetric by a logarithmic transformation, or, less violently, 

by a square root transformation. These two transformations were 

the next to be tried. The 29 groups were given values from 1 to 29 

and the natural logarithms and square roots of these values were 

obtained. The mean on the logarithmic scale was 2.458 with standard 

deviation 0.311, while the mean on the square root scale was 3.459 

with standard deviation 0.510. The estimates of g^ and g^ on the 

logarithmic scale were -0.97673 and 3.56713 with variances 0.00115 

and 0.00460, while the values for these estimates on the square 

root scale were -0.14747 and 0.87999 with variances 0.00115 and 

0.00460, respectively. All four estimates were.highly significant 

(P<0.01). The transformed distributions are extremely peaked and 
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7. Results from the procedure to find a scale to normalize 
the distribution of fat percentage deviation 

Frequency % of observa- 'Cumulative 'Midpoints 
distribution tions in group area on new scale 

(t^) 

2 0.04 -49.98 -1.19 
5 0.10 -49.91 -0.99 
14 0.27 -49.73 -0.88 
32 0.61 -49.29 -0.78 
57 1.09 -48.44 -0.68 
91 1.75 -47.02 -0.60 
163 3.13 -44.58 -0.51 
306 5.87 -40.08 -0.41 
417 8.00 -33.14 -0.30 
543 10.42 -23.93 -0.20 
667 12.80 -12.32 -0.10 
628 5.92 

6.14 
0.00 0.00 

600 11.52 11.90 0.09 
484 9.29 22.31 0.19 
365 7.01 0.27 
270 5.18 0.35 
203 3.90 41.09 0.43 
115 2.21 44.15 0.50 
81 1.55 46.03 0.55 
62 1.19 47.40 0.61 
43 0.83 48.41 0.68 
26 * 0.50 49.07 0.74 
11 0.21 49.43 0.80 
8 0.15 49.61 0.84 
5 0.10 49.73 0.88 
3 0.06 49.81 0.92 
3 0.06 49.87 0.95 

3 0.06 49.93 1.01 

2 0.04 49.98 1.19 
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skewed, but now the excess of items is larger than the mean and the 

tail is to the left of the distribution. Both transformations have 

over-corrected the skewness and the logarithmic transformation, in 

particular, has violently reversed the skew and reinforced the peak-

edness. 

In the previous section it was reported that the daughter 

variances for fat percentage deviations were heterogeneous and 

showed a tendency to increase with the dam mean. This is illus

trated in Figure 4. An examination of Figure 4 led to the con

clusion that linear regression fits the relation between variance 

and mean reasonably well. The variances for the bottom one and 

top two dam means could be biased upwards because of uneven group 

intervals as discussed in section VI, but it is believed that this 

bias is not large and that most of the extra variance associated with 

the upper two means is due to the tail of the distribution being 

concentrated in these two groups. Even were the three variances 

to be removed, there would still be a relation between variance 

and mean (Figure 4). The variances and means on the coded, add

itive scale are given in Table 8 (the daughter variances are the 

same as those in Table 6). The linear regression of daughter 

variance on dam mean was calculated and the coefficient found to 

be 0.4045 + 0.1086. This value is significantly greater than zero 

(P<0.01, 10 d.f.). The regression line is drawn in Figure 4. . 

Bartlett (1947) and Kempthorne (1952) have suggested a way 
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/ 

to utilize this type of relation in finding a transformation to 

make the error variances less heterogeneous. Their method is 

adapted for use in this case. Let t be the transformed variable, 

Y the daughter production, and X the dam production. A necessary 

restriction is that the transformed scale should be the same func

tion of the original (additive) scale for both daughters and dams. 

Thus, t = g (X), dt = g' (X) dx, and V(t) = (g'(X))^ > 

V(X), 

where V(t) and V(X) are the respective variances. 

But V(X) is approximately equal to V(Y). 

Therefore V(t) = (g' (X))^V(Y). 

But it is known that V(Y) = f(X) = (a + bX) from the linear 

regression relation between daughter variance and dam mean (Figure 4) 

where a is a constant (a = 6.566) and b is the linear regression 

coefficient (b = 0.4045). 

Therefore V(t) = (g'(X))^-f(X). 

But it is desired that V(t) should be constant. 

Therefore, 

(g'(X))2.f(X) = 

and C = g'(X)Vf(X) 

But g'(X) = dt/dx 

Therefore C = dt/dx'V^ (X) 

and t = j C'dx 

JVfôô" 
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cl dx 
'i~1= Ex 

= 2CYa + bX 
b 

= C "Vx + a/b = C l/x + 16.23 

Therefore, the approximate transformations for variables X and Y 

Von Krosigk (1959) derived a similar transformation for fat 

percentage using the relation between breed mean and the within-breed 

variance. In the present study, the daughter variances increased 

with the daughter means as well as with the dam means, as can be seen 

in Table 8. A transformation could have been worked out using this 

relation, but while stabilization of within-daughter-group variance 

with respect to group mean is desirable, the primary object of the 

present exercise was to stabilize the variance of the dependent 

variable with respect to levels of the independent variable in 

order to satisfy one of the assumptions of the linear regression 

analysis. 

The effectiveness of the above transformation can be judged by 

examination of the daughter variances within dam groups calculated on 

the transformed scale and also presented in Table 8"; There is no 

reason to reject the hypothesis that the variances are still heter

ogeneous since the % ̂ of Bartlett's test = 50.41) is highly 

significant (P<0.01, 11 d.f.). However, the linear regression of 

daughter variance on dam mean now yields a regression coefficient of 

0.0234 + 0.0100, and while this value is significantly different from 

zero (P<0.05, 10 d.f.), it's size suggests that the linear 
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relation between variance and mean has been disrupted. 

The mean daughter fat percentage on the transformed scale was 

5.304 with standard deviation 0.329. 'g^ and were 0.21495 and 

0.48035 with variances 0.00115 and 0.00460 respectively. Both 

estimates are highly significant (P<0.01), the distribution being 

peaked and skewed like the original untransformed fat percentage 

distribution. 

It was decided to attempt to find a transformation of the type 

t + C, where C is a constant, which would remove the skewness 

from the fat percentage distribution. Trial and error yielded a 

transformation in which C was equal to three. The mean fat per

centage on this transformed scale was 3.875 with standard devia

tion 0.452. Again, estimates of g^ and g^ were calculated and 

found to be 0.01020 and 0.67199 with variances 0.00115 and 0.00460 

respectively. The latter was highly significant (P<0.01), but 

there was no reason to suppose the former to be different from zero, 

suggesting that the skewness had been removed. 

Since, as mentioned in section II, heterogeneity of variance 

can be due to non-normality of the distributional property of the 

data, it was decided to examine the effect of the normalizing 

transformation (Table 7) on the relation between daughter variance 

and dam group mean. The daughter variances and dam means were 

calculated on the new scale and are presented in Table 8. There 

is again no reason to reject the hypothesis of heterogeneous variance 
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since the X ̂ of Bartlett's test = 27.81) is highly significant 

(P<!0.01, 11 d.f.). The coefficient of the linear regression of 

daughter variance on dam mean is now only 0.00825 + 0.00795, and 

this value is not significantly different from zero at the 0.05 

probability level. It appears that the normalizing transformation 

has been more effective in breaking up the relation between variance 

and mean than the transformation especially designed to do this task. 

CV X + 16), emphasizing the dependence of the relation on non-normality 

in the present case. 

Table 8. Mean fat percentage deviations for groups of daughters and 
dams, and the corresponding daughter variances, on three 
different scales 

Daughter Dam Daughter Dam Daughter Dam Daughter 
Mean Mean Variance Mean Variance Mean Variance 
Coded additive scale Normalizing scale 

10.54 
10.88 
11.36 
11.50 
11.80 
12.20 
12.42 
12.93 
13.02 
13.23 
13.72 
14.61 

6.12 11.08 4.70 0.103 -0.59 0.098 
8.00 9.41 4.90 0.087 -0.41 0.084 
9.00 9.94 5.00 0.091 -0.30 0.087 
10.00 10.97 5.10 0.099 -0.20 0.094 
11.00 8.72 5.20 0.076 -0.10 0.073 
12.00 12.43 5.29 0.109 0.00 0.100 
13.00 11.30 5.39 0.099 0.09 0.092 
14.00 13.30 5.48 0.112 0.19 0.098 
15.00 10.27 5.57 0.086 0.27 0.078 
16.00 11.77 5.66 0.100 0.35 0.088 
17.46 14.97 5.78 0.122 0.46 0.102 
20.71 16.24 6.06 0.130 0.65 0.105 
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B. Regression of Offspring on Parent 

Milk yield deviation, fat yield deviation, fat percentage devia

tion and the five transformations of fat percentage deviation were 

used in the regression analysis in order to estimate heritabilities 

and genetic correlations. The object of this analysis was to obtain 

some assessment of the effects of the transformations on the estimates 

of genetic parameters. 

There seem to be two general classes of transformations which 

can be considered theoretically, both being members of a single, two-

parameter family of transformation (Tukey, 1957; Moore and Tukey, 

1954). The two classes are 

(1) t = (X + C)P and 

(2) t = In (X + C) 

The first includes the various square root transformations and the 

second the logarithmic transformation of the present study. 

For class (1), if Y is the daughter variable and X the dam 

variable. 

and 

and 

t^ = (Y + C)P 

tjç = (X + C)P 

dt^ = p(Y + dY 

dt^ = p(X + dX 
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Taking the first two terms of Taylor's series, 

t„ = t(Y) + dt(Y) _ (Y - Y) 
dY Y = Y 

from which, Vft^) is approximately equal to 

(Y + C)2P v(Y) 

(Y + C)2 

Similarly, V(t%) = p^ (X + V(X) 

— - 0 

(X + C)^ 

and Cov(t^, t^) = p2(X + C)P"^(Y + C)P"^Cov(X,Y) 

where X and Y are the estimates of the means of X and Y respectively, 

V stands for variance and Gov for covariance. The regression of Y 

on X yields the regression coefficient, 

/ 

b, = CovCt^,^^) 
t 

V(tx) 

= p^(X + C)P"^(Y + Cov(X. Y) 

. p^(X + C)2p-2 V(X) 

(X + 

where Gov (X, Y) equals the regression coefficient from the un-
V(X) 

transformed variables. Doubling the regressions to obtain heritabil-

ities. 

h^ = (Y + h^ 

(X + G)P"1 
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If p = 1/2, hj =l/(X + C) 

(Y + C) 

and if X = Y, 

For class (2), with similar notation, t^ = ln(X + C) 

and dt^ = (1/(X + C)) dX 

similarly dt^ = (1/(Y + C)) dY 

Covft^/ty) = 1_ Cov(X,Y) 

(X + C)(Y + C) 

and V(t^) = (1/(X + C)2) V(X) 

Therefore, = (X + C) Cov(X,Y) 

(Y + C) V(X) 

and h^ = (X + C) h^ 

(Y + C) 

again, if X = Y, h^ = h^ 

If these theoretical derivations can be taken at their face value, 

little change in heritability should be expected from these general 

classes of transformation depending only on the daughter mean being 

approximately equal to the dam mean. The case of the normalizing 

transformation is a little more complicated since it applies specif-
/ 

ically to the data from^hich it is derived and cannot be given a 

generalized treatment. 

The results obtained from the regression analysis are given 

in Tables 9-11, the regressions being calculated within sire groups 
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using the 4,633 pairs with sire identification on the daughters. 

For milk and fat there were thirty groups and an additive scale from 

one to thirty, while for fat percentage and the transformations there 

were twenty-nine groups. The grouping was the same as that described 

in section VI, except that the records falling off the ends of the 

range were included in the end groups. 

The offspring means and variances are a little less than the 

parental estimates, an effect also found among the ungrouped data 

and reported in Table 3. The estimates of heritability and genetic 

correlation are similar to the corresponding estimates calculated in 

the within-sires analysis of section V.A, showing that the grouping 

has little effect on the estimation. The standard errors of the 

genetic correlation coefficients would also be of the same order as 

those reported in Table 5. 

The regression coefficients and heritability estimates for the 

various measures of fat percentage deviation are ranked in descending 

order of magnitude. It so happens that this order is the same as 

would be found were the measures to be ranked in increasing order of 

magnitude of the disruption of the scale from a purely additive scheme. 

The possibility therefore exists that the more disruptive the trans

formation, the lower the heritability of the transformed trait, al

though the differences are very small. The genetic correlations 

between fat percentage and each of the transformations are close to 

unity, but again there are trends in the correlations of each of the 
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additive scaled traits with the^fat percentage traits. These trends 

will be referred to further in section IX but, although they exist, the 

differences between the estimates of heritability are so small that they 

cannot be considered of significance since the most extreme values differ 

only by the magnitude of a standard error. 

Table 9. Means, standard deviations of observations and regression 
coefficients for the three deviation traits and trans
formations of fat percentage deviation, from the within-
sire regression of daughter on dam 

Parent 

Mean 

Offspring Regression 
Std. Dev. Mean Std. Dev. Coefficient** 

Milk 16.71 4.19 15.80 4.13 0.1756 + 0.01896 

Fat 16.87 3.72 16.01 3.73 0.1737 + 0.01932 

Fat Percentage (X) 12.25 3.36 12.22 3.18 0.2753 + 0.1775 

l/x + 16 5.31 0.31 5.30 0.30 0.2752 + 0.01786 

Normal (X) 0.00 0.30 0.00 0.29 0.2748 + 0.01786 

^/x + 3 3.88 0.43 3.87 0.41 0.2735 + 0.01798 

Vx 3.46 0.48 3.46 0.47 0.2714 + 0.01807 

In X 2.46 0.29 2.46 0.28 0.2564 + 0.01861 

All regressions highly significant (P < 0.01, 2611 df.). 
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Table 10. Heritability estimates from within-sire regression of 
daughter on dam for milk, fat, fat percentage and various 
transformations of fat percentage deviation 

Trait Heritability estimate 

Milk 0.351 +• 0.038 

Fat 0.347 ± 0.039 

Fat Percentage (X) 0.551 0.035 

V x  + 16 0.550 0.036 

Normal X 0.550 0.036 

V  X + 3 0.547 ± 0.036 

VT" 0.543 ± 0.036 

In X 0.513 ± 0.037 

Table 11. Genetic correlations among milk, fat and fat percentage 
deviations and the various transformations of fat per
centage deviation 

Milk X Fat 0.811 

Milk X Fat Percentage (X) -0.359 

Fat X Fat Percentage 
Milk 

0.249 
Fat Fat Percentage 

V X -&• 16 X -0.355 0.252 1.000 

Normal X X -0.351 0.257 0.998 

Vx -e- 3 X -0.351 0.258 0.999 

YT" X -0.348 0.261 0.998 

In X X -0.333 0.274 0.992 
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VIII. MAXIMIZATION OF HERITABILITY 

A. The Maximization Procedure 

As mentioned in the introductory section on criteria for bio

logical scales, a valuable procedure might be to find for a trait 

the scale on which the genetic gain expected from mass selection 

is maximized. A method to find such a scale, in which the herita-

bility of a trait as calculated from the resemblance between parent 

and offspring is maximized, was developed by Rae (1950). Rae used 

the method to assign values to subjective grades of fleece quality 

in sheep, the values found being those that maximized the regression 

of daughter on dam. Five hundred and forty-seven daughter-dam pairs 

were used and the regression coefficient found was compared with one 

calculated after assigning values starting at zero and increasing 

by equal steps of 0.125 to unity. The method was tried in the present 

study on the much more extensive data available for the three 

lactation traits, the data being grouped so that values could be 

assigned to the midpoints of the groups. 

A more comprehensive outline of the method than is given by 

Rae (1950) follows: 

Let the midpoints of the dam groups be given the values t., t 
2 

..., t^ progressively and let the corresponding midpoints of the 

daughter groups be given the same values. The daughter values (t^) 

are the values of the dependent variable and the dam values (t.) 



69b 

those of the independent variable. 

With this type of two way classification, the sum of products 

of deviations from the mean is given by 

^ *ilC.t - (En t )(^n. t ) , 
ij ^ J i 1 1 ^ J 

n.. 

where i and j equal 1, 2, p, 

n^j is the number of observations in the ith daughter and dam 

group, 

and the • signifies summation over the appropriate subscript. 

The sum of squares of midpoint values for dams is given by 

n. 

When the regression is calculated within-sires as described in 

section V, the sum of products and sum of squares are given by 

- I iJ" 1 ] 
J -* 

n. 

and - I 
4 J J T, 

where k signifies a sire group and equals 1, 2, s. Let the 

sum of products be designated by P and the sum of squares by S. 
P 

The sample regression coefficient, b = S. 

To maximize b with respect to any t^, P/S is differentiated with 
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respect to t^ and the derivative set equal to zero. This gives a 

set of p equations of the form 

i t :  ^  '  % °°  

S2 

and these equations can be put in the following form: 

) P - b è S = 0 (1) 

i tj. J t. 

For b to be a maximum, it is sufficient that the matrix of 

second derivatives of b with respect to the t^ be negative definite. 

It was not found possible to prove this true analytically in a general 

form. The second order partial derivatives of b can be written out 

and evaluated for sign, the evaluation ultimately depending upon the 

sign of (P..S - S..P) or (P..S - S..P) where P.,, P.., S.. and S.. 
° 11 11 1] ij 11 1] 11 ij 

are as defined below. An examination of the actual values of these 

terms for all i and j and for each of the traits in the present study, 

showed that S..P was always greater than P..S but that S..P was not 
11 JO 11 1] 

necessarily greater than P^^S. This does not demonstrate conclusively 

the presence of a negative definite form, but the method and later 

results suggest that b is in fact maximized. 

By factoring the t t terms from P and S, 
i j 

^ ̂  ̂11^1 ^^12^1^2 ^Ip^l^p ^21^2^1 

+ Pzgtg Fpptp 
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and S = +...+ 

+ Sggt? +...+ Sppt^ 

Thus aP = 2P. 

TTi _ j j 

and 3 S 

,-t, + Z p,,t^ 
j 

if i 

I 
j i 

/ 

where P.. = n... - Z jk 

"••k 

^ij " "ij- ^ ̂ji- " Ç "i.k"'ik "i -k^'ik 

i f j  

n. . - Z n. „ ®11 "'l' • Ç- ""ik 

k 

and ^ij ~ X- *'ik"'ik , i j 
k 

H e * .  
k 

Substituting for ) P and ^ S in equation (1), the following set of 

D t ^t 
1 X 

simultaneous equations emerges: 

+---+ V? - + ®12'2 +- • '+ ^pV ° ? 
• • 

+ V'2 +-"+ "pp'p - "( ̂ I'l + V2 +-+ ̂ Vp^° ° 

N,' S»' 

Vector 1 Vector 2 
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Vector 1 can be factored into a square, symmetric matrix (C) and a 

vector (T). Similarly, vector 2 can be factored into a matrix (Q) 

and the same vector (T). T is the vector of t values. 

This gives 

(C - bQ)T =0 (2) 

where 0 is the zero vector. The elements of the matrices C and Q 

sum to zero over any row or any column, the row and column vectors 

are linearly dependent, and the matrices are singular from the nature 

of their formation. The set of equations can be made of full rank 

by placing one restriction upon the number of t values. Setting t^ 

equal to zero removes the first column from each matrix. Since each 

remaining row vector can be expressed as a linear combination of the 

other row vectors in the same matrix, any row can be removed. It 

seems convenient to remove the first row and column from C and Q 

giving reduced matrices E and R. 

Equation (2) can now be expressed as 

(E - bR)U = 0 (3) 

where U is the reduced vector of t values. 

Since R has an inverse, 

(r"^E - bI)U =0 (4) 

where I is the identity matrix. Let R~% = A, 

This system of homogeneous, linear equations has a solution for U, 

if and only if Determinant (A-bl) =0. 

Det (A-bl) = 0 is the characteristic equation of A and. 
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on expansion, yields a polynomial in b of degree p-1. The largest 

characteristic root of this polynomial is the desired maximum value 

of the regression coefficient, b. For another example of this use 

of determinants consider the generation matrix theory of inbreeding 

as given by Kempthorne (1957). 

The corresponding characteristic vector is a solution for U of 

equation (4). A unique solution can be found by standardizing the 

vector in some way or, alternatively, by putting the solution for 

b into equations (3) or (4), setting equal to some constant, 

removing an arbitrary row of the matrix to make the system of full 

rank, and solving for the p-2 values of U. 

The following iterative process for determining the largest 

characteristic root of a matrix A and the corresponding character

istic vector is an application of the method given by Aitken (1937) 

and used by Rae(1950) to find his largest root. 

Let b^ be the largest root of the square (but not necessarily 

symmetric) matrix A. b^ is a real root, all b^ are distinct and 

h > for all i = 2, 3, ..., p-1. 

Let be an arbitrary p-1 rowed, non-zero vector, e.g. a vector 

of ones. 

The following sequence is formed. 

Y.+l = AT_ , i = 0, 1, 2, ... 

There exist constants C^, C^, ..., such that 

\ + =2=^2 + • • • + VlVl 
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where the are the characteristic vectors of A. corresponds to 

U of equation (4) when corresponds to b. 

Then 

Y = AY = C.AX, + C-AX- + ... + C ,AX . 
1 o 11 2 2 p-1 p-1 

But AX = bX by definition 

Therefore, Y. W i  + W 2 +  +  V i V i V i  

and 

Since h P hi ' i ̂  1, then b^ ^ 0 

and 
k+1 
k+1 Cl%l + , k+1 

+ 
C b̂ '̂ '̂X 
p-1 p-1 p-1 
,k+l 

''i 

Now ^i/^1 < 1 for i f 1 

and limit 

k—l>oc , k+1 /, k+1 

Assuming C. ^ 0 by initial choice of Y , 
i o 

limit ^k+^ 

k > o-o b 
k+1 

- C^X^ 

From which can be obtained the required vector U. 

But it is necessary to have b^. 

limit 
k+1 

-C> c-o Y 
Cib^^ 

= b. 

and this is true for each element of Y, ,- divided by Y, at the limit. 
k+1 ^ k 
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In other words, each vector Y divided by the previous vector 

yields estimates of b^ which converge to a constant value when k 

is large. It is recommended that k be larger than the dimension 

of A (Aitken, 1937). 
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B. The Determination of the New Scales 

The C and Q matrices were computed in the first instance on the 

basis of 30 groups for daughters and dams, the grouping being made as 

in section VI. This was done for milk and fat deviations only. When 

the reduced matrix R was found for milk, it's determinant was to all 

intents and purposes zero. This was still the case when the first 

three rows and columns were removed, A few numerical examples served 

to show that the removal of a row and column in such a matrix does 

not remove the singularity if the row and column are substantially 

zero vectors, caused by any a^ijeing equal to zero. An inspection 

of the Q matrix for milk revealed very small numbers in the first 

three rows, most of the entries being zeros. In the case of the Q 

matrix for fat, the first two rows were zero vectors. It was con

cluded that this factor was causing the continued singularity in the 

R matrices. It might have been possible to continue the operation 

! 

in the case of milk, since the determinant was not quite zero (an 

inverse was found), but the fat case was impossible. 

The decision was therefore made to reduce the number of groups, 

in order to have smaller matrices with more cells filled in the mar

ginal rows and columns. The new grouping was into twenty groups each 

way with the following ranges and group intervals; 

Milk Yield from -6600 lbs. to +7000 lbs. by 680 lbs. 

Fat Yield from -220 lbs. to +260 lbs. by 24 lbs. 

Fat Percentage from -0.7% to +1.1% by 0.09%. 
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For milk yield, 4,558 daughter-dam pairs were included in this 

range, distributed within 1,011 sire groups. The C and Q matrices 

were computed and the reduced R matrix successfully inverted. The 

- 1  
largest characteristic root of the matrix (R E) was then found by 

the iterative process outlined. Good convergence was obtained with 

k equal to 20 and the value of the root so found was 0.180624. A 

solution for the vector U was then attempted by replacing b in the 

equation 

(E - bR)U = 0 

with the above value for the largest root, setting U^gequal to 19, 

removing the last row of (E-bR), and solving for the remaining 18 

values of U. These solutions are values for t2,....,t]_g and are given 

in Table 12. The solutions are in the reverse order to that expected 

when it is remembered that tj^ equals zero and t2g equals 19. 

As a check on the method, a solution was also attempted by opera

tions identical to those above except that the equation 

(R"^ E - bl)U = 0 

was used. These solutions are also given in Table 12. The solutions 

from both of the above methods are supposed to be unique and identical 

because tgQ was set equal to 19 in both cases. However, if the numbers 

of daughter-dam pairs in the end groups are small, the values assigned 

to these groups (t^ and may have little influence on the solutions 

to the sets of equations. If this is true, then setting t^ equal to 

zero merely removes the data in the bottom class from further consid-
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Table 12. Scale values which maximize heritability of milk yield 
deviation, found by solving two different sets of simulta
neous equations 

Solutions from Solutions from Solutions from 
(E - bR)U = 0 (column (a)) (-0.1) (R" E - bI)U = 0 

(a) (b) (C) 

^2 
195.8  

^3 
366.6  

174.7  

^5 
263.2  

^6 
213.6  

^7 
218.8  

120.4  

98.2  

ho . 
84 .6  

^11 
95.3  

^12 
8 .4  

^13 
-25.8  

^14 
-17.8  

Cl5 -50.3  

he  
-111.2  

h7 
-196.4  

^18 
-127.9  

*^19 
-315.5  

-19.58 -19.79 

-36.66 -37.24 

-17.47 -17.96 

-26.32 -26.31 

-21.36 -22.38 

-21.88 -21.03 

-12.04 -13.66 

-  9 .82 -10.97 

-  8 .46 -  9 .75 

-  9 .53 -11.01 

-  0 .84 -  3 .34 

2 .58 0 .01 

1 .78 -  0 .87 

5 .03 2 .27 

11.12 7 .69 

19.64 15.43 

12.79 7 .96 

31.55 14.28 
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eration rather than fixing the lower end of the scale at zero. Sim

ilarly, setting tgQ equal to 19 does not ensure a predetermined unique 

solution but merely enables a solution to be found. Consequently, 

the solutions in each case are only one of an infinity of solutions 

that could have been found, and multiplying these solutions by a 

constant still satisfies the equation. The solutions from (E - bR), 

multiplied by -0.1, given in the second column of Table 12, are com

parable with the solutions from (R"^ E - bl). 

For fat yield, 4,537 daughter-dam pairs were included in the 

range. The corresponding number for fat percentage was 4,556. Again, 

C and Q matrices were computed and the R matrices inverted. The largest 

roots of the (R"^ E) matrices were found, this time with k equal to 30, 

although reasonable convergence had been obtained by the time k reached 

20. The values obtained were 0.187994 for fat and 0.283025 for fat 

percentage. Solutions for the vector U were attempted by the second 

method utilized above for milk yield, that is, by solving the equation 

(R-1 E - bl)U = 0 

In each case the results obtained were useless from the point of 

view of using the scales in subsequent work. The 18 values for both 

traits were grouped around zero with a range of from -4.20 to +2.55 

for fat and from -1.32 to +1.19 for fat percentage and there were no 

consistent trends in direction. After attempting an additional re

striction for fat percentage (t2 = 0) and a different restriction for 

fat yield (t^^ = 10 instead of t2o = 19), both to no avail, it was 

decided to abandon this approach. It had been hoped in the latter 
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case that fixing a value in the middle of the range might yield a 

more useful unique solution than fixing the upper end value, but it 

seems that the nature of the problem is such that fixing any one 

single value does not necessarily yield the desired type of scale. 

It was decided to return to the iterative process which had been 

used to determine the largest characteristic root of (R ̂  E) for each 

trait and use the process to find the corresponding characteristic 

vector, which should be one of the infinity of solutions for vector 

U. If any one of these solutions is used in daughter-dam regression 

analysis, the same maximized regression coefficient should result 

since each solution is a linear function of each other solution. For 

all three traits, the process was continued until k equalled 30. For 

milk yield, the resulting vector was multiplied by the factor found 

to make the last value (tg^) equal to 19. Because there seemed to be 

something peculiar about the last value for fat yield, the vector was 

multiplied by the factor necessary to make the second to last value 

(t^g) equal to 18. The vector for fat percentage was handled like 

that for milk yield. The resulting scales are given in Table 13 and 

these scales are the ones used in all subsequent analyses. 

In all three cases, t^ equals zero, but only in the case of fat 

percentage does this seem to make sense. Consequently, in subsequent 

plotting and the correlation analyses below, t^ was not included in 

the milk and fat yield data. In a similar way, t^^ for fat yield was 

omitted from the graph and correlation analysis. However, all scale 
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Table 13. Scale values which maximize heritabilities of milk,'fat 
and fat percentage deviation, found from the characteristic 
vectors associated with the largest characteristic roots 

milk fat fat 
yield yield percentage 

h 
0.00  " '  0 .00  0 .00  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-19 .78  -7 .58  2 .01  
^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-37 .24  -4 .60  5 .66  
^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-17 .96  -4 .46  5 .58  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-26 .31  -2 .50  6 .17  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-22 .38  0 .62  7 .17  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-21 .03  0 .55  9 .03  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-13 .66  2 .45  9 .15  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-10 .97  2 .29  10 .22  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-  9 .75  4 .02  11 .57  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-11 .01  3 .95  12 .51  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

-  3 .34  5 .73  13 .08  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  

0 .01  7 .05  15 .30  

^2  

"3  

^5-

^6  

^8  

^9  

^10  

^11  

^12  

^13  

h4  
-  0 .87  8 .65  15 .48  

^15  

*^16 

h7  

^18 

^19 

^20 

2 .27  7 .63  14 .02  
^15  

*^16 

h7  

^18 

^19 

^20 

7 .69  12 .13  15 .57  
^15  

*^16 

h7  

^18 

^19 

^20 

15 .43  13 .92  17 .32  

^15  

*^16 

h7  

^18 

^19 

^20 

7 .96  14 .46  14 .56  

^15  

*^16 

h7  

^18 

^19 

^20 

14 .28  

19 .00  

18 .00  

6 .69  

17 .86  

19 .00  
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values were.used in the daughter-dam regression analyses of section 

VIII C. The first point to note is that the scale for milk is iden

tical with that found by solving the equation (R ̂  E - bl) U = 0, (see 

Table 12) as it should be mathematically. The three new scales of 

Table 13 were compared with a strictly additive scale running from + 1 

to + 20. The relations between the new scales and the additive scale 

are plotted in Figures 5, 6, and 7. The correlations between the new 

and additive scales are 0.956 for milk yield, 0.986 for fat yield, and 

0.981 for fat percentage, while the linear regressions of new scale on 

additive scale are 

milk yield 2.637 + 0.198 (17 df) 

fat yield 1.314 + 0.056 (16 df) 

fat percentage 0.911 + 0.043 (18 df) 

The above statistics suggest that the scale obtained for fat per

centage conforms most closely to the additive scale. However, when 

allowance is made for the change in the spread of the scales, all 

three conform closely to an additive pattern with the scale for milk 

yield deviating most from a strictly linear relation. It is perhaps 

not surprising that the trait (fat percentage deviation) with the 

closest relation between daughters and dams (and therefore the highest 

heritability) should give a scale most closely fitting to an additive 

scale, but further discussion on this point will be reserved for later. 
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Figure 5. Linear regression of scale values from the max-
imization procedure on additive scale values for 
milk yield deviation 
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Additive Scale 
Figure 6. Linear regression of scale values from the max

imization procedure on additive scale values for 
fat yield.deviation 
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Figure 7. Linear regression of scale values from the max
imization procedure on additive scale values for 
fat percentage deviation 
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C. Regression of Offspring on Parent 

Daughter-dam regressions were calculated for the three traits 

using an additive scale (20 values from + 1 to + 20) and the scales 

derived by maximizing the daughter-dam regression coefficients (Table 

13). There were 4,558/pairs for milk yield, 4,537 pairs for fat yield 

and 4,556 pairs for fat percentage deviation. The regressions were 

calculated within sire groups as before. Mean values for daughters 

and dams for the three traits each measured on two scales are given 

in Table 14, along with the corresponding standard deviations. As in 

the case of the ungrouped data of Table 3, offspring means are less 

than parental means and offspring variances generally less than parental 

variances, but again not by any great margin. The standard deviation 

for milk yield deviation on the new scale (that which maximizes the 

heritability) is large compared with that on the additive scale. The 

reason is to be found in the range of values in the new scale for milk 

yield as shown in Table 13. 

The regression coefficients are given in Table 15. Only those 

regressions having the same trait and same scale for each variate 

are used to estimate heritabilities. The remaining coefficients are 

used in the estimation of genetic correlations, either between traits 

or between the two measures of the same trait. Comparisons of the 

regressions having both variates on an additive scale with those from 

the ungrouped data (Table 4) show the effect of consolidating the data 

into twenty groups. 
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Since the object of the re-scaling was to maximize the within-

sire heritability estimates for each of the traits, the maximized 

estimates are set out in Table 16 along with those calculated using 

the additive scale. These can be compared with the original within-

sire estimates in Table 5. There has been a slight reduction in the 

sizes of the estimates on an additive scale due to the grouping process 

and a very slight increase in the standard errors. The maximized es

timates are, in all cases, larger than the original estimates, but 

there is little change in the variances of these estimates. The re

gression coefficients from which the maximized heritabilities are 

derived should be identical to the largest characteristic roots found 

and used in the derivation of the new scales. In the cases of fat 

yield and fat percentage there is perfect identity, but in the case 

of milk yield there is a discrepancy, due it is believed to rounding 

during the computations. The value derived from regression analysis 

is the one used below. 

The actual increases in heritability in Table 16 are 0.018 for 

milk, 0.032 for fat, and 0.020 for fat percentage. The differences 

on a regression coefficient basis were tested and yielded "t" values 

of 0.333, 0.568 and 0.394, all non-significant with degrees of free

dom 5072, 5030 and 5068 for milk, fat and fat percentage respectively. 

The new scales have already been compared with the additive scales 

by means of phenotypic correlation and linear regression. The within-

sire regression analysis yielded estimates of the genetic correlations 

among the three traits as measured on both sets of scales. The cor-
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relations between the two measures of the same trait were 1.006 for 

milk, 0:997 for fat, and 0.997 for fat percentage, and these values 

are very close to unity (rounding error probably accounts for the 

value greater than unity). The remaining genetic correlations are 

given in Table 17 and there do not seem to be any consistent trends 

or peculiarities in these estimates. The standard errors of all of 

these estimates of genetic correlation will be small and of the same 

order as those calculated previously and reported in Table 5. 

Table 14. Means and standard deviations of observations for milk, 
fat and fat percentage deviation, each measured on an 
additive scale and on a scale designed to maximize 
heritability 

Parent Offspring 
Mean Std. Mean Std. 

Deviation Deviation 

Additive Scale 

Milk 11.14 3.26 10.46 3.23 
Fat 10.88 3.25 10.20 3.27 
Fat Percentage 8.91 3.25 8.88 3.05 

New Scale (Table 13) 

Milk -6.79 9.23 -8.66 9.14 
Fat 4.76 3.84 4.01 3.83 
Fat Percentage 10.24 3.08 10.21 2.98 



Table 15. Regression coefficients and standard errors from within-sire regression of daughter on 
dam, using additive scales and scales designed to maximize heritabilities 

Parental trait. Additive Scale 

Offspring trait Milk Fat Fat percent. 

Milk 0.1740 + 0.01938 0.1401 + 0.01962 -0.0708 + 0.02000 
(U 
> O * 
4J td Fat 0.1323 + 0.02008 0.1722 + 0.01977 0.0523 + 0.02035 

CO 

Fat Percent. -0.0799 + 0.01880 0.0505 + 0.01891 0.2729 + 0.01781 

Milk 0.4944 + 0.05475 0.4068 + 0.05580 -0.2249 + 0.05651 

g 
13 

Q) 
r-i 
cd 
o 

CO 

Fat 0.1665 + 0.02345 0.2136 + 0.02309 0.0625 + 0.02376 Q) 
r-i 
cd 
o 

CO 
Fat Percent. -0.0795 + 0.01832 0.0483 + 0.01851 0.2662 + 0.01741 

Coefficient significantly greater than zero (P<0.05). All other coefficients highly 
significant (P<0.01) 



Table 15. (Continued) 

Offspring trait 
Parental trait. New Scale 

Milk Fat Fat percent. 

Milk 

> (U 

0.0653 + 0.00684 

0.0509 + 0.00709 4J i-i Fat 
•rl td 
•a u 
T) cn 

Fat Percent. -0.0253 + 0.00666 

0.1224 + 0.01663 

0.1508 + 0.01674 

0.0432 + 0.01600 

-0.0779 + 0.02111 

0.0537 + 0.02148 

0.2884 + 0.01880 

Milk 

(U 
S r-i Fat 
Q) cd 

0.1831 + 0.01931 

0.0628 + 0.00827 

Fat Percent -0.0248 + 0.00647 

0.3557 + 0.04730 

0.1880 + 0.01954 

0.0410 + 0.01565 

-0.2430 + 0.05970 

0.0642 + 0.02508 

0.2830 + 0.01836 

^Coefficient significantly greater than zero (P<0.05). All other coefficients highly 
significant (P<0.01; 
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Table 16. Maximized heritability estimates and estimates from 
grouped daughter-dam pairs (additive scale) for milk, 
fat and fat percentage deviation 

Additive Scale Maximizing Scale 

Milk 0.348 + 0.039 0.366 + 0.039 

Fat 0.344 +0.039 0.376 +0.039 

Fat Percentage 0.546 + 0.036 0.566 + 0.037 

Table 17. Genetic correlations among milk, fat and fat percentage 
deviation each measured on an additive scale and on a 
scale designed to maximize heritability 

Scale Combination Trait Combination 
Milk Milk X Fat Fat X Fat 

X Fat Percentage Percentage 

Additive X Additive 0.787 -0.345 0.237 

Additive X New 0.789 -0.355 0.231 

New X Additive 0.810 -0.338 ' 0.229 

New X New 0.806 -0.341 0.222 
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IX. DISCUSSION 

The foregoing analyses enable a consideration to be made of the 

effects of grouping of data on estimations of parameters, in terms of 

loss of information. When the records were consolidated into thirty 

groups (twenty-nine for fat percentage), the means and standard de

viations were estimated very close to those from the ungrouped records. 

With the traits measured on additive scales, estimates of heritabilities 

and genetic correlations were also very similar from the grouped and 

ungrouped data. The effect of consolidation of milk yield deviation, 

fat yield deviation and fat percentage deviation records into twenty 

groups, still using additive scales, was to lower very slightly the 

heritabilities and positive genetic correlations and similarly raise 

the negative genetic correlation. The variances of the heritability 

estimates from the grouped data were a little higher, but so little 

that it can be concluded that there is no loss of information after 

such grouping, which is analogous to severe rounding. 

The main objective of the analyses was to investigate the effects 

of transformations of scale on estimations of heritability and genetic 

correlation. Four regular transformations and one empirical trans

formation of fat percentage, a trait with a non-normal distribution 

being peaked and slightly skewed, were tried. Theoretical study led 

to the suggestion that the effects should not be great and this was 

confirmed in practice. Changes in the estimates as a result of scale 

changes were minimal and are not considered sufficient to make any 
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practical differences in applied breeding programs in the near future. 

The estimates (Table 10) show that the further the transformed 

scale departs from a purely additive scheme, the lower the heritability. 

Lush (1954) has suggested that if the phenotypic scale is far from 

linear with the scale of the actual effects of the genes, the heritabil

ity is under-estimated. The above then is evidence for the possibility 

that the genotypic scale for fat percentage is largely additive. The 

genetic correlations with milk and fat yields (Table 11) also changed 

progressively with increasing disruption of the additive scale, the 

former negative correlation decreasing and the latter positive cor

relation increasing. There are notable similarities between the two 

sets of correlations involving the transformations which remove the 

skewness from the distribution of fat percentage. It was thought that 

scales giving symmetry to the data might yield higher estimates of 

heritability but simple numerical examples soon show that this is not 

automatically true. It appears that, at least for fat percentage, the 

additive scale is optimal and this is perhaps fortunate since this 

scale is most convenient and gives results that are comparatively easy 

to interpret and use. 

Since a transformation makes the same changes in each variate it 

is not difficult to envisage why little change occurs when heritability 

is estimated by regression techniques. For genetic correlations, the 

coefficient is a function of the harmonic mean of two regressions which 

tend to be altered in opposite directions, thus again giving the ex

pectation of little change in the statistic. 
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Empirical scales were derived (Table 13) on which the heritabil-

ities of the three production traits were maximized. The changes 

observed in the heritability estimates were in the positive direction, 

but they were small. The improvement expected from mass selection is 

sensitive to change in heritability, but not sensitive enough for the 

changes founo here to make any practical differences, especially in 

view of the error inherent in using these estimates with data other 

than that from which they were derived, and in view of the general 

inaccuracies in current predictive procedure. The optimum breeding 

structure of a population is even less sensitive to changes in her

itability (Legates, 1962). 

Genetic gain per generation is a simple function of heritability 

and the selection differential. The gain predicted in this way will 

be on the same scale as the selection differential, and the heritability 

should have been estimated from data on this scale. Since the scales 

found by the maximization procedure, as well as that found to normalize 

the distribution of fat percentage deviation, are a consequence of the 

data and methods, they are not expected to be constant but to vary 

like heritability. For this reason, the scales might not be easy 

to use in the generalized prediction necessary to evaluate breeding 

plans. 

Again, therefore, it is perhaps fortunate for the sake of con

venience that additive scales appear to be practically as useful as 

scales specifically designed to maximize heritability. Stated in 

another way, there are no losses in utility when the latter scales 



are considered additive. Such additivity means that phenotypic units 

of measurement of the trait are of equal value along the scale. The 

lack of substantial changes in the estimates of heritability after 

re-scaling, and the additivity of the new scales, suggest that the 

genotypic scales for all three traits are largely additive. This 

probably means that the amounts of non-additive genetic variance and 

interaction variance removable from the total phenotypic variance by 

re-scaling are small. 

It might be worthwhile to speculate about the likelihood of having 

achieved worthwhile increases in heritability by changes of scale in 

these traits. Two types of evidence might be of assistance, the first 

being the presence or absence of genotype X environment interactions, 

and the second being the presence or absence of curvilinearity of the 

regression of daughter on dam. 

Genotype X environment interaction, of either of types A or B 

according to the classification of McBride (1958), might be removable 

by scaling. Type A involves intra-population genotypes X micro-envi

ronments while type B involves the same genotypes X macro-environments. 

These interactions, if present, are carried along with, or are like 

the error term in the deviations of records from herd-year-season 

/ 

averages and in the expectations derived therefrom. They most likely 

cause inflation of the denominator of the heritability ratio, thus 

lowering the estimate below what it might be if such sources of error 

could be removed. Kelleher (1964) has reviewed the pertinent literature 

on bull X herd and bull X herd-year-season interactions in dairy cattle. 
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The review, and his own work, led him to the conclusion that such inter

actions (of type B) are of minor importance, as might be expected in 

dairy data when the range of environments and genotypes is comparatively 

small. McBride (1958) points out that there is no direct evidence as to 

whether type A interactions (involving the local environment of each in

dividual cow) exist or not, and their absence is usually assumed. There 

is no evidence as to whether or not they could be important enough to 

cause fluctuations in the phenotypic scale giving maximum expression to 

heritability. 

Non-linearity of the regression of genotype on phenotype may be an 

indication of non-additivity in either or both of the genotypic and pheno

typic scales. Beardsley e^ al. (1950) tried to fit a curve to the 

daughter-dam relation for fat yield within breed, sire and herd. Cur

vilinear regression did not differ significantly from linear regression, 

but did fit the data more closely, the trend being for decreasing her

itability with increasing dam production. The problem can be considered 

in terms of change in heritability with change in genotypic level, ex

pressed in terms of individual phenotype. Using milk yield deviations 

from herd-year-season averages, Bradford and Van Vleck (1964) found no 

trend in the heritability from daughter-dam regression with increasing 

dam yield. Touchberry (1963), using within-herd daughter-dam regression, 

found a decrease in the heritability of fat yield with increasing dam 

milk yield, but no such trend for the heritability of milk yield. The 

heritability of fat percentage increased with level of milk production, 

and since fat percentage is negatively correlated with milk yield, this 

heritability could have decreased with level of fat percentage. 



92a 

It appears, therefore, that there is a possibility that the heritabil-

ities of fat yield and fat percentage decrease with production increase, 

giving curvilinearity that could be due to interaction or non-addi-

tivity in the scales. Any such effects however did not show up in the 

present study. 

The trait with the highest heritability, fat percentage, had the 

best fit of it's maximizing scale to additivity. This trait also had, 

by a small margin, the lowest standard error of estimate of heritabil

ity (Table 16). Since the data from such a trait has the best fit 

to the linear regression model, there is less chance to increase the 

estimate by alterations to the phenotypic scale. Transformations of 

scale to maximize heritability did not result in a lowering of the 

sampling variances of the estimates for any of the traits however, 

presumably because there were no large changes in the scales. It is 

suggested that valuable changes in the regressions of daughter on dam 

from the maximizing procedure are unlikely when the structure of the 

data is similar in both generations. Greater changes might be ex

pected in the scales, in the heritabilities or in the variances of 

the estimates when the trait is such that the daughter and dam dis

tributions are irregular or the calculated regression has a large 

sampling variance. Such traits are likely to be, although not nec

essarily, those with low heritability and to have the possibility of 

much non-additive variance which might be removable by scaling. 

A method could perhaps be evolved to maximize the genetic cor

relation between two traits with different distributions, but this 
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would require a different approach to the one used here. In the pres

ent study, changes in the genetic correlations are secondary to changes 

in heritability. 

With regular known transformations, theory and practice suggest 

that for most traits, little improvement in heritability is likely 

from manipulation of scales. There is no clear way to obtain similar 

theoretical evidence for empirical transformations, but the results 

make it reasonable to suggest that these act in a similar way. Per-

/ 

haps if the means of distributions were very different in the gener

ations of daughters and dams some advantages might be gained from 

transformations but this seems unlikely to be often encountered in 

regular livestock data. The general conclusion is that for the traits 

used in this study, no real gains in livestock improvement from selec

tion can be expected by attempting to maximize heritability, alter 

the scales from additivity, normalize the distribution of the trait, 

or transform the scale to make the data more closely fit the assump

tions of analysis of variance. There might be other reasons for trying 

to make the data fit the assumptions and, if this is the case, and 

transformations of scale are used to do it, it can be said that the 

procedure is unlikely to cause too much upset to predictions of 

genetic gain by altering appreciably the estimates of genetic para

meters. 



X. SUMMARY 

There is a fundamental relation between the phenotypic scale on 

which a production trait in livestock is measured and the practical 

value which can be placed upon estimates of genetic parameters and 

consequent breeding plans. The effects of several transformations 

of scale on estimates of heritability of three production traits in 

dairy cattle and the genetic correlations among these traits are con

sidered in this study. Within-sire estimates of heritability of first 

lactation milk yield, fat yield and fat percentage, each expressed as 

deviations from contemporary herd-mate averages, and the genetic cor

relations among these traits, were computed using 4,633 pairs of 

daughters and their dams. The estimates found are consistent with 

estimates reported by other workers using similar data and are used 

as a reference base for the study of transformation of scale. The 

heritabilities estimated were 0.353, 0.345 and 0.556 for milk, fat 

and fat percentage respectively while the genetic correlations were, 

0.815 between milk and fat, -0.330 between milk and fat percentage, 

and 0.265 between fat and fat percentage. 

The daughter deviation records were combined into 29 or 30 

groups and the frequency distributions of the three traits were 

studied. Milk and fat are close to normally distributed while fat 

percentage is peaked and slightly skewed with the tail of observations 

to the upper end of the distribution. Consequently this latter trait 

was chosen to study transformations that would normalize the distri
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bution of the trait, make the distribution symmetric, and break up a 

relation which was found between daughter variance and dam mean. 

An empirical transformation to normalize the distribution was 

derived. Other transformations studied were In X,V X and V X+3, the 

last being found to make the distribution symmetric. A positive linear 

relation between daughter variance and dam group mean was found to be 

disrupted by a transformation of the form V X+16 as well as by the nor

malizing transformation. A theoretical derivation based on an approx- • 

imation involving Taylor's series, led to the suggestion that little 

change in heritability should be expected after regular transformations, 

provided that the daughter mean is approximately equal to the dam mean. 

This suggestion was supported in practice when the above five trans

formations were used in within-sire regression analyses. The changes 

in heritabilities and genetic correlations were minimal. 

A procedure to find a phenotypic scale which leads to a max

imization of the regression of daughter on dam(and thus heritability) 

was utilized for each of the three production traits. The scales 

found were linearly related to a strictly additive scale and were 

themselves substantially additive. The procedure yielded herit

ability estimates of 0.366, 0.376 and 0.566 for milk, fat and fat 

percentage respectively, and genetic correlations of 0.806 between 

milk and fat, -0.341 between milk and fat percentage, and 0.222 be

tween fat and fat percentage. The differences between the maximized 

heritabilities and those calculated using additive scales were all 

positive but very small, being less than the standard error of either 
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estimate. 

The general conclusion is that for these production traits in 

dairy cattle (and most probably for the majority of production traits 

in livestock), no gains in heritability and therefore in livestock im

provement can be made by manipulations of the phenotypic scale. It 

appears that additive scales are optimal, but if it is necessary to 

make a transformation of scale in order, for example, to make the data 

fit the assumptions of the analysis, such a change of scale is unlikely 

to alter greatly the estimates of heritability and genetic correlation 

obtained from the regression of offspring on parent. 
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