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INTRODUCTION 

Genetic gain per year for milk production in a dairy population de­

pends on intensity of selection, accuracy of selection, genetic differ­

ences in the population, and generation interval. Accuracy, the corre­

lation between phenotype and genotype, increases as more information is 

obtained on individuals, usually causing an increase in generation inter­

val. The genetic gain from improved accuracy of selection is often sup­

pressed by a longer generation interval. The goal is to increase accu­

racy without lengthening generation interval, or to shorten generation 

interval without decreasing accuracy. To accomplish this we need a re­

liable estimate of an animal's genetic worth for milk production early 

in its life. The early practical time to estimate the worth of an animal 

is before breeding age. This dictates use of a breeding value estimated 

from the individual's ancestors and collateral relatives. 

Assertions that sires contribute 69% (Skjervold, 1963) to 61% 

(Robertson and Rendel, 1950) of potential genetic progress in milk pro­

duction versus 31% to 39% for dams has lead to much research evaluating 

methods of estimating genetic worth of dairy bulls. Less research has 

been devoted to females. These efforts are not disjoint, however, as 

genetically superior females are identified more accurately, the more 

likely their sons will be identified as potentially superior sires. Se­

lection for dams alone will contribute more than 50% of maximum genetic 

progress to the population (Lush, 1960). Regardless of how many offspring 

a bull sires they each receive half their genes from their dams. It is 

important dams of sires be as accurately evaluated as possible to save 
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time and expense of maintaining sires through progeny tests by mistake. 

Since a bull does not give milk, a progeny test (Predicted Difference) 

measures his genetic worth for milk production. Most studies have dealt 

with the worth of his breeding value based on pedigree information to 

predict his future ED. These studies are limited by small numbers of 

bulls available who receive PD's compared with numbers of bulls bom. 

This is due to the impracticality of progeny testing most bulls. Efforts 

to correlate pedigree estimates of breeding value with milk production 

in bulls are complicated by an additional gene segregation when they are 

evaluated through their daughters. 

With females it is possible to study the accuracy and precision by 

which pedigree estimates of breeding value predict future offspring 

milk production. We can evaluate the predicted genotype through its 

performance rather than sampling through its offspring performance as 

necessary for bulls. Many more cows than bulls are available for study, 

although bulls' breeding values can be more accurately determined. 

The increasing popularity of choosing a specific bull to mate to a 

specific cow to produce a future sire magnifies the importance of accu­

rately appraising the genetic worth of those parents. This appraisal is 

a pedigree estimate of the breeding value of the offspring. 

With much work published on evaluations of the male side of pedi­

grees this study was designed to evaluate the usefulness of estimated 

breeding values of dams to predict milk production of their future 

daughters where dam and daughter are in the same herd. 
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The following definitions may be useful. 

Genetic. Associated with genes. 

Effect. Units added or deleted by a variable. 

Genie. Associated with the additive effects of genes. 

Phenotype. Measured performance (kilograms of milk). 

Genotype. Additive contributions of genes to animal's phenotype. 

Genotype is usually defined as the collection of genes an animal 

possesses. 

Breeding Value. Additive effect of all genes which influence a character. 

Heritability. Fraction of differences between records which is genetic. 

Repeatability. Fraction of differences between records which is genetic 

and permanently environmental» Correlation between records of a 

cow. 

EATA. Estimated Average Transmitting Ability. 

PD. Predicted Difference. 
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REVIEW OF LITERATURE 

Empirical evaluations of selection indexes for milk production in 

dairy females are scarce. Deaton and McGilliard (1963) calculated from 

7638 first lactation Holstein records variances and covariances between 

the five relatives used in the current EATA, cows, dams, daughters, pa­

ternal and maternal sisters. They computed the covariances between a 

cow's genotype and each relative by multiplying the genie relationship 

by the observed heritability (.25) and variance of individual records. 

These variances and covariances were assembled into five equations analo­

gous to the theoretical EATA equations. Various numbers of relatives 

were substituted into the equations, each yielding a solution of five 

partial regression coefficients which maximized the correlation of index 

with cow's genotype. From multiple correlations they concluded dams and 

maternal sisters contribute little accuracy to estimates of a cow's genie 

value. Accuracy of indexes for cows without records was low compared with 

indexes for cows with records. Relatives further back in pedigrees were 

more useful where cows had no records. Correlation of cow index with un-

selected first lactation daughter production was .17 where the daughter 

record was not in the index. Correlation of cow first lactation with 

daughter first lactation was .14, indicating the index held a 19% ad­

vantage in genetic gain for production. 

Flock (1964) examined records from 11,630 registered Holstein cows and 

found correlations between relatives, including cow, dam, maternal sis­

ters, paternal sisters, daughters, and paternal sisters of daughters, 10% 

smaller than predicted. Exceptions were cow and dam, paternal and mater­
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nal sisters, and daughters and paternal sisters of daughters. For a 

sample of 3518 cows he concluded from correlations between indexes and 

cows' true breeding values daughters and maternal half sisters contri­

buted little to the accuracy of the index. Using only cows* own records 

in the index was 91% as accurate for estimating true breeding values as 

using all six relative groups in the index. 

Syrstad (1971) indexed 136,242 Norwegian Red cows using records of 

the cows and their dams and paternal sisters. The mean index was 102 

with a standard deviation of 4.5. He recommended saving bull calves from 

cows with indexes larger than 111. These composed 3% of his sample. 

Cows with fewer records averaged higher index values. 

Deaton and McGilliard (1964) also studied the accuracy of predicting 

first lactation deviated daughter production from dam's deviation with 

Guernseys and Hoi steins. Dam's first lactation was a more accurate 

predictor than second or third lactations or any average. First records 

vere less variable than second or third records. Repeatability of .52 

indicated records beyond the first were of little value. 

VanVleck and Bradford (1966) found heritability of first lactation 

Holstein production to be larger than heritability of second or third 

lactations. They constructed indexes to estimate a cow's first record 

breeding value from combinations of her own records and records of her 

dam where each had at least 2 lactations. When unequal heritabilities 

were included for first, second, and third lactations, second and third 

lactations added little to first lactations in accurately calculating a 

cow's breeding value from records of her dam. When heritability was 

equal for all lactations (apparent lactation differences in heritability 
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caused by maternal effects) second and third records of the dam increased 

the correlation between genotype and calculated breeding value of the cow. 

Butcher and Freeman (1968) analyzed 60,000 D.H.I.A. Holstein records 

and reported higher heritabilities for first lactations than for second 

lactations. They also found correlations between consecutive records 

increased as cows aged, but correlations between nonconsecutive records 

decreased as cows aged. They concluded weighting lactations from dif­

ferent parities separately would increase accuracy of selection. 

Molinuevo and Lush (1964) used daughter on dam regression and also 

found first lactation Holstein production more heritable than second or 

third lactations. They suggested first lactation records would be suf­

ficient for proving dairy sires, but second and third records could be 

useful in estimating breeding values of cows. Their paper contains a 

list of publications evaluating heritabilities of different lactations. 

Most of those do not differ in conclusion. 

Butcher (1973) evaluated the use of first lactation paternal half 

sisters, dam, and maternal grandsire's first lactation daughters to es­

timate a bull's progeny test. Records were standardized 305-2X-ME de­

viates from herdmates. Using 340 Holstein bulls entering A.I. at less 

than 37 months of age, he calculated estimated breeding values for each 

bull based on various combinations of the three relatives. He computed 

correlations between these pedigree estimated breeding values and the 

bulls' progeny test values (SON). Breeding value computed on the first 

record of the dam was more highly correlated with SON (.21) than other 

dam records or average of dam records (.15). Measuring breeding value 

on maternal grandsire and various combinations of records of the dam 
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increased the correlations with SON over using dam alone. However, using 

dam average and maternal grandsire (.22) was less accurate than using 

only dam first lactation and maternal grandsire (.27). Highest correla­

tions were .43 between SON and sire breeding value and .47 between SON 

and pedigree index of three dam lactations, sire, and maternal grandsire. 

Expected correlations were .38 and .45. 

Butcher (1973) also computed linear regression coefficients to apply 

to combinations of breeding value estimates of sire, dam, and maternal 

grandsire to predict SON. Multiple correlation coefficients were higher 

when dam first lactation was the only dam information used. The highest 

multiple correlation was .482 for an equation including sire, dam first 

lactation, and maternal grandsire. Disregarding the dam reduced the 

multiple correlation to .457. Butcher summarized from the literature 

estimates of correlations between SON and breeding values on sire, dam 

average, and dam first lactation. 

Separating bulls by pedigree index into quartiles he found the aver­

age predicted difference (Plowman and McDaniel, 1968) for each quar-

tile declined as the rank of the quartile declined. However, the PD 

average in each group was substantially lower than the average pedigree 

index for each group. He suggested most of this difference was due to 

genetic trend. 

Butcher also noted an increase in mean ED of sires as number of sons 

in A.I. increased. However, mean breeding value of dams was unrelated to 

number of sons in A.I. 

In a study of pedigree selection of Holstein bulls M. G. Freeman 

(1970) also found pedigree breeding values overestimated future progeny 
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test breeding values, and early records on dams were most highly corre­

lated with sons* progeny tests. However, regressions of son's progeny 

test on breeding values of various relatives differed from those derived 

by Butcher. These comparisons are in Table 1 and Table 2. 

Table 1. Correlations between son's progeny test and breeding value 
of dam. 

Dam measure Butcher Freeman Vinson 

1st rec .21 .23 

2nd rec .16 .21 

1 & 2 .16 .24 

1 & 2 & 3 .21 .19 

Avg. of all .22 .16 .11 

Table 2. Regression of son's progeny test on various relatives. 

VanVleck VanVleck 
Relative Butcher Freeman ÂBS EÂ1C Vinson 

Sire's progeny test .40 .22 .16 .31 .20 

Son's pedigree BV .69 39 .56 .65 .17 

Mat. grandsire prog, test .24 -.09 .24 .07 

VanVleck and Garter (1972) compared Estimated Daughter Superiority 

(EDS) of Eastern Artificial Insemination Cooperative (EAIC) and American 

Breeders Service (ABS) bulls with the bulls' progeny tests (SC (sire com­

parison) and FD). EDS estimates one half the breeding value of a bull 

calculated from his sire, dam, and maternal grandsire. Correlations of 

each of a bull's relatives with his progeny test were lower than expected. 
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Dam's records had little importance in predicting son's progeny. Mater­

nal grandsire was the relative most correlated with ED, but was least 

correlated with SC on various combinations of relatives. Some regres­

sions are in Table 2. Regressing on the three relative groups which com­

pose EDS accounted for less variation in FD or SC than regressing on EDS. 

All multiple correlations were less than expected. VanVleck concluded 

that although pedigree selection does not meet expectations it is an 

effective selection tool. He speculated EDS may predict PD or SC more 

accurately if heritability less than .25 were used in calculating EDS. 

VanVleck (1969) studied the relative selection efficiency in retro­

spect of selected young sires. Data were 541 Hoistein progeny from ma-

tings contracted by EAIC. Relatives of the young sire included sire, 

dam, maternal sisters, maternal grandsire, maternal grandam. The most 

efficient index in actual genetic gain versus theoretical genetic gain 

included sire, dam, and maternal grandsire. Differences in efficiency 

bstvssn pedigree combinations were small. VanVleck noted indexes have 

overemphasized all relatives except sire and maternal sisters. He sug­

gested examining emphasis placed on milk fat percentage and type relative 

to milk yield. 

Using data from seven bull studs Vinson (1971) reported regression co­

efficients between breeding values for milk yield of son and sire, son and 

dam, and son and midparent (sic) to be 35% to 45% of expected regressions. 

His correlation for dam and regressions for sons are in Tables 1 and 2. 

All were lower than most estimates in those tables. Midparent was equiva­

lent to a pedigree estimate for the son involving paternal sisters and 

dam only. The breeding values were confuted for males using daughter 
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production and for dams using dams' own production, all records de­

viated from herdmates. Vinson explained the loss of worth from expected 

to realized a consequence of genetic trend, female culling, differences 

in genetic merit of herdmates, and special treatment of potential dams 

of A.I. bulls. The studs overemphasized fat production and type com­

pared to milk yield in selecting dams of A.I. sires. 

Walton (1970) investigated the relationship between H)*s of 140 

ABS Dairy Progeny Test bulls and their dams' production deviated from 

herdmates. He divided the dams into five groups of 28 in ascending or­

der of deviation milk yield. Dams of the lowest and two highest groups 

produced sons whose PD's averaged the lowest of the five groups. He 

concluded more emphasis should be placed on sires than dams of bulls. 

Attempting to account for variable genetic merit of mates of sires, 

Morillo aiid Legates (1970) and Bereskin and Freeman (1965) reported no 

accuracy gained by including records of dams of progeny in computing 

sire breeding values based or. progeny tests. 

Thomson and Freeman (1970) constructed pedigree indexes with and 

without environmental correlations between ancestors for 176 A.I. sires. 

Data were 158,000 records of 62,000 cows in 450 herds from 38 states. 

The correlations between index and sire genotype were higher for deviated 

records than mature equivalent (ME) records, and higher for indexes with 

no environmental correlations than indexes with environmental correla­

tions. They concluded deviating records removed herd-year-season effects. 

Lower correlations using ME records were caused by differences between 

heritabilities and repeatabilities. Correlations between pedigree breed­

ing values and PD's were higher for indexes using deviated records than 
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ME records and were unaffected by environmental correlations when deviated 

records were used. Indexes using only the maternal side of the pedigree 

were more highly correlated with PD's than indexes using all information, 

while indexes using only paternal information were the least correlated 

with PD'S. 

Before constructing a selection index it must be decided which mea­

surements are worth including. Lush (1947) has an excellent discussion of 

interpreting biometrical relationships to combine information from various 

relatives in an index to make genetic gain from selection on the index. 

Skjervold and Odegard (1959) and Young (1961) have presented selec­

tion index formulae to calculate weights to be applied to combinations of 

relatives to estimate breeding values of animals. 

Miller (1968) discussed the development of selection indexes and 

contributions of various researchers to that development. He also dis­

cussed the use of an index and described the procedures involved in the 

United States Department of Agriculture (U.S.C.A.) cow index. Once each 

year U.S.D.A. publishes a list of the "best" two percent of registered 

cows enrolled in the D.H.I.A. program based on milk and fat indexes 

which include information on the cows and their paternal half sisters. 

Miller notes this list is published so the cows listed may be considered 

as bull dams. 
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ESTIMATED AVERAGE TBANSI4ITTING ABILITY 

EATA is a score given a dairy cow which estimates half her genetic 

worth relative to other EATA's in her population. It may be developed 

in the following manner. 

H is the aggregate genotype of the cow such that H = .5G where G is 

the additive genotype of the cow for milk production. EATA is similar to 

an index value I v̂ ere: 
5 

I = Zb (X -y  )  
i=l 

X̂  is a random variable with mean ŷ . (ŷ  is the average of all X̂ 's) 

X̂  = mean deviation yield of the cow. 

= mean milk production of the cow expressed as 303-2X-ME lactation 

yield minus a regressed herdmate average which is defined later. 

Xg - mean deviation yield of the cow's dam. 

\ 

X̂  = mean deviation yield of the cow's paternal half sisters. 

X̂  = mean deviation yield of the cow's daughters. 

X̂  = mean deviation yield of the cow's maternal half sisters. 

N-1 
Regressed herdmate average = BSA + (HA-BSA) 

BSA = Breed-season average 

HA = Herd-year-season average excluding the record being deviated. 

Two seasons per year: 1) May-September. 2) October-April. 

See Bereskin (1963) for explanation of these seasons. 

N = Number of herdmates. If N is less than sixteen an adjacent 

herd-year-season is also included in HA. 
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This formula gives HA more weight when there are more herdmates. 

A detailed description of EATA procedures was outlined by Eastwood 

(1968). 

b̂ 's are chosen simultaneously such that is maximum. Multiply­

ing I by a constant or adding a constant to I will not change Adding 

a constant to will not change b̂ , and selection on alone will not 

change b̂ . The b̂ 's are then calculated by maximizing as follows. 

= Covil̂ H) (1) 

(v(i) y(H))^ 

In Rjjj = lnCbv(I,H) - .51nV(I) - .51nV(H) (2) 

= ln(.5?b J - .51n(ZZb.b.O ) -.51n(,.25^h (3) 
i i X̂ G' Hj-i-j X̂ Xj' G' 

For the equation: 

ainR̂ H = -'XG . =0 (4) 

2 Or̂  2 
If E(I-H) is minimum, then = 1 and the b. s from minimizing E(I-H) 

are the same as maximizing 

l\ \x. ' 
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The b's for the index are solutions of the equations above in matrix 

form below. 

2 

"''I 

" — — 

2 

"''I 
°='l='2 

"'A 
"1 

V3 V4 
a . 

*2*5 "2 
•'V 

a 
*3*2 

0̂  ==3 0 
*3*4 

a 
"3 

-V 

a 

*4*1 
a 
*4*2 

a 

*4*3 *4 
0 

*4*5 

a 
*5*1 

0 

*5*2 
0 

*5*3 
0 

*5*4 

a2 

*5 
"5 

•'V 
» — -

-1  B = A D 

Matrix A contains phenotyplc variances and covarlances between relatives 

and D contains covarlances between relatives and half the genotype of the 

2 
cow being indexed. 0 for Instance is the variance of means of records 

per cow which have been deviated from herdmates. Whether has been de­

viated from the mean of all X, 's (y,) is not Important since ̂  

Elements of D may be referred to as Right Hand Sides. 

2 

Matrices A and D are constructed from biometrlcal relationships be-

2 
tween the five relative classes and parameters from the population, h = 

heritability of deviated records, and r = repeatability of deviated 

records. Lactation j of individual 1 is represented by is a 
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deviation from herdmates. 

'ij ' « ± * " 1 *  

Here is the genotype of cow i, ĉ  is the permanent environmental effect 

on cow i, and ê  ̂is all else contributing to record The necessary 

variances and covariances are constructed from this model. The following 

relationships are declared to enable us to estimate variances and covar­

iances and solve the equations. Some of these may not be biologically 

accurate. 

1. Genetic differences are additive. 

2. Cĵ  is uncorrelated with g's, e's, and other c's. 

3. e. . is uncoirrelated with g's and other e's. 
ij 

2 
Expanding all variances and covariances and dividing each by yields 

the EÀTÂ equations in Figure 1. m̂  ̂ and m̂  are numbers of records in the 

averages of the cow being indexed and her dam. m̂ , and m̂  are the 

average numbers of records for each of n̂  paternal half sisters of the 

cow, n̂  daughters of the cow, and n̂  maternal half sisters of the cow. 

2 For EATA's in these data h = .25, r = .5. Minimum values for diagonal 
2 2̂ <,̂ 2 

elements 1 , 2  ̂ 3 , 4 , 5 are respectively 2, 2, .25, 
0̂  0̂  0̂  0̂  
g g g g g 

.25, .25. 

Average numbers of records, m̂ , m̂ , m̂ , are used to confute , 

2 2 
a , and o . Including specific numbers of records for each individual 
*4 *5 

in the average will give variances at least as large as those calculated 
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for average numbers of records. Since the covariances between mean pro­

duction of related individuals are unaffected by numbers of records in 

2 
those means, the amount by which cr is underestimated is a function of 

*i 

variances of means. Where is the number of records of the î  ̂cow 

in a group of n relatives, the amount by which 0̂  is underestimated is: 
*i 

1 l+(S.-l)r l+(fs /n-l)r \ 2 

17 

The size of this value depends on the number of relatives in the group 

and the distribution of numbers of records per individual. For the fol­

lowing three paternal sister cases 1 have calculated the percentage of 

the variance now used which needs to be added to increase it to the 

variance calculated without averaging the numbers of records. 

Case 1 Case 2 Case 3 

No. PHS Recs/PHS No. PHS Recs/PHS No. PHS Recs/PHS 

500 1 2 1 1 1 

200 3 1 5 1 11 

200 6 3 avg. 2.3 2 avg. 6 

100 10 

1000 avg: 3=3 

.2% 18% 31% 

It appears the variances involving average numbers of records are too 

small when cows are few and records per cow vary widely. In those 

instances paternal sisters, daughters, or maternal sisters would receive 

more weight in the index than they deserved. 
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For each cow to be indexed the appropriate m's and n's are inserted 

in the five equations and the equations are solved for the b's. Those 

b's are then used in the index equation along with the mean deviation 

production of the cow's relatives to calculate an EATA for the cow. 

EAIA - + BJXJ + + BJXJ 

Note this equation is EATA = Zb̂ X̂  where the original index equation was 

I = Zb̂ (X̂ - Û ). In the EATA equation the means are ignored for ease of 

computation. Note will be close to zero since it is the mean of 

deviated records. This situation and its consequences will be discussed 

later. If information on one or more relative groups is not available, 

the b's are computed from an abbreviated set of equations where rows and 

columns pertaining to the missing relatives have been deleted from the 

variance-covariance matrix A, and the corresponding b's and covariances 

have been deleted from the B and D vectors. Those b's and associated X's 

are also deleted from the EATA equation. 

An example illustrating computation of an EATA from Iowa D.H.I.A. 

data is in Table 3. EATA represents half the breeding value of the 

cow, and although its major use is ranking cows for selection, it can 

be added to the Predicted Difference of a sire to estimate the breeding 

value of an offspring from that mating. 

, the correlation between the index and the aggregate genotype, 

can be expressed computationally as: 

«IH - ^ 

\ V(.5G) J 



— — — 

l+(niĵ -l)r .5 .25 .5 .25 .5 

,2 
m̂ h 

.5 l+Cwg-l 

rn̂ hZ 

)r 0 .25 .5 2̂ 
.25 

.25 0 l+(m2-l)rtmy(ng-l).25ĥ  .125 0 X 
3̂ 

= .125 

.5 .25 .125 l+(in̂ -l)r+m̂ (n̂ -l).25ĥ  .125 

.2 
m̂ n̂ h 

.25 

.25 .5 0 .125 l+(m3-l)r4Tn̂ (n3-l).25ĥ  S 
.125 

.2 
*5̂ 5 

Figure 1. Equations for computing weights for EATA. 
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Table 3. Computation of an EATA. 

i Relative 
No. of Records/ X. 

No. of Animals Animal 
= Avg. Yield(kg)/ b̂  

Animal 

1 Cow 7 1515 .15 

2 Dam 5 435 .06 

3 PHS 435 3.7 319 .31 

4 Daughters 2 2.0 736 .07 

5 MHS 1 5 -550 .02 

EATA = + bgXg 

= .15(1515) + .06(435) + .31(319) + . 07(736) + .02(-550) 

227 + 26 + 99 + 52 - 11 

393 

= |̂ b̂ RHS, +b. gRHSg + b̂ RHS  ̂+ b̂ RHS  ̂ + bgRHS^  ̂

V .25 / 
= + . .06f.25̂ > + .31C.125"> + . 07(.25) + .02(.125)N % 

V 

= (.59)% 

.25 / 

II 
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/̂Zb̂ RHŜ  

TB" 

RHŜ  is the element of the D matrix corresponding to b̂ . An is com­

puted in Table 3. will not change from one EATA to another pro­

viding the combination of relative records does not change. If the com­

bination of records changes then may change. This refers to R̂ '̂s 

based on the three theoretical properties declared previously. 

Possible inaccuracies in the use of EATA to rank cows may fall into 

four categories. 

1) Development and use of EATA index equations. 

2) Calculation of parameters and relationships for the 

equations. 

3) Measurement of milk yield deviated from herdmates. 

4) Mathematical errors. 

Categories two and three will be discussed later relative to results 

of this project. The first topic however pertains more closely to this 

section and will be discussed here. 

2 When maximizing R̂  ̂the ratio was substituted as 1 under the 

2 restriction that £(1-H) was minimum. What b's would be obtained from 

2 maximizing R̂  ̂without restricting E(I-H) to be minimum? Starting 

from the point of the restriction, equation k from (5) is; 
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For ease of computation let i = 1,2. The equations for k-1 and k-2 

then reduce to: 

1̂ _ ̂ Xĝ X̂ G " ̂ X̂ X̂ X̂gG 

 ̂ % ̂X̂ G " ̂X̂ Xĝ X̂ G 

R is maximized when the ratio ̂  equals the expression above. There is 

"2 

no unique solution for b's to maximize Only the ratio of b's is 

unique for a specific combination of relatives and records. Restricting 

2 
= 1, which implies E(I-H), is minimum is one of an infinite number of 

restrictions. Other reasonable restrictions will be discussed later. 

A potential problem with EATÂ is that the means of the deviated 

records are not known. EÀTÂ is related below to 1, the index defined 

previously. 

I =Zb̂  (X̂ -U 

EATA = Z b^X^ 

EATA =  1 + 1  b̂ û  

If Sb̂ ŷ  is constant for all EATA* s then differences between EATA's will 

be the same as differences between I's. If the u's are zero or if the 

y's are equal and the b's sum to zero then I = EATA. EATA's with Identi­

cal b's differ the same as their corresponding I' s differ. A problem de­

velops when none of these relationships holds and the b's vary from one 
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EATA to another. In this case changes from cow to cow because of 

changes in numbers of records and relatives, p̂ 's remain constant from 

cow to cow because they are population means. Consider the following 

two EATA*s. 

EATAĵ  = + Z b̂ p̂  

EATAg = + Zbjŷ  

EATÂ  - EATAg = - ZbjÛ  

If Eb.y. ĵ SbîU. then the difference between the cows' EATA's is not the 
11 11 

same as the difference between their I's. They may change rank, a cir­

cumstance which could cause an incorrect selection decision. 

To remedy the problem of unknown means and differing b's Henderson 

(1963) has suggested assuming all equal and forcing Zb̂  = 0. This 

causes Zb̂ ŷ  = 0 and E(EATA) = 0. The EATA is then an unbiased estimator 

of % the cow's genie worth. He outlines two methods of accomplishing 

this, one using a Lagrange multiplier equation and one using a maximum 

liklihood estimate of y from the in the index. Both methods give the 

same solutions for the b's. Henderson comments that this method maxi­

mizes Rjjj subject to Zb̂  = 0. 

This is correct subject to Zb̂  = 0, but that alters the most impor­

tant property of EATA, that be maximum. when Zb̂  =0, will be 

substantially lower than that attained with the usual b's. Three facts 

make this evident. First, when Zb̂  = 0 it is impossible to maintain the 
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constant ratios of b's required to maximize as shown earlier in this 

section. The ratios will not remain constant when some b' s are positive 

and some negative, which occurs if any b is not zero and their sum is 

zero. Second, solutions to the EATA equations were unique without re­

strictions and would maximize Restricting solutions to these 

equations without maintaining proportionality among the b's reduces R̂ .̂ 

Third, augmenting the original EATA equations when they contain no de­

pendencies changes the equations such that the biometrical relationships 

among the right hand sides are altered. RHŜ  becomes (RHŜ -a) where 

is the Lagrange multiplier. 

The following example will illustrate some consequences of restrict­

ing Zb̂  =0. I will rank three cows by their values calculated from 

three different indexes. 

1) Index to maximize R̂  ̂where Û 's are known and equal. (Index) 

2) EATA index where means are unknown. (EATA) 

3) EATA index subject to Z b̂  = 0, means unknown but equal. (R. Index) 

Each of the three cows has the same information available, five records 

of the cow, four records of her dam, and 100 paternal sisters with two 

J. A. 

Cow 1 Cow 2 Cow 3 

= Average yield of the cow deviated 
from herdmates. 400 50 0 

Xg = Average yield of the dam de­
viated from herdmates. 100 110 -20 

Xg - Average yield of the PHS de­
viated from herdmates. 120 0 100 
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= population mean of = 10 

2̂ ~ population mean of X2 ~ 10 

~ population mean of X̂  ~ 10 

Equations to calculate b's for Index and EATA; 

2.4 .5 .25 h 
.5 

.5 2.5 0 ^2 
= .25 

.25 0 .2^ ?! .125 

= .163 

"2 = = .067 

"3 = = .301 

Cow 1 Index̂  = .163(400-10) + .067(100-10) + .301(120-10) = 103 

Cow 2 Indexg = .163( 50-10) + .067(110-10) + .301( 0-10) = 10 

Cow 3 Index̂  = .163( 0-10) + .067(-20-10) + .301(100-10) = 23 

Cow 1 EATÂ  = .163( 400 ) + .067( 100 ) + .301( 120 ) = 108 

Cow 2 EATA2 = .163( 50 ) + .067( 110 ) + .301( 0 ) = 15 

Cow 3 EATÂ  = .163( 0 ) + .067( -20 ) + .301( 100 ) = 28 

Equations to calculate b's for Restricted Index (Zb̂  = 0). 

b̂  = .169 

b2 = .013 

b^ =-.182 

a = .134 

2.4 .5 .25 1 .5  

.5 2.5 0 1 
"2 

= 
.25 

.25 0 .28 1 
"3 

.125 

1 1 10 a 
L".  

Cow 1 R. Indexĵ  = .169 (400) + .013 (100) - .182 (120) = 47 

Cow 2 R. Index2 = .169 ( 50) + .013 (110) - .182 ( 0 ) = 10 

Cow 3 R. Index̂  = .169 ( 0) + .013 (-20) - .182 (100) = -18 
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Index = 2(.163(.5) + .067(.25) + .301(.125))̂  = .74 

EATA = 2(.163(.5) + .067(.25) + .301(.125))̂  = .74 

Rj.gR. Index= 2(.169(.5) + .013(.25) - .182(100)) ̂  = .51 

The Index using known means is the most accurate index. In this 

exançle all cows have equal information (identical b's) and ~ ̂ 2 ~̂ 3* 

Yet problems specific to the Restricted Index surface inmediately. Al­

though the expected value of the Restricted Index is zero and R̂ g is 

maximized subject to Sb̂  = 0, it gives negative weight to pateimal sis­

ter information thereby reversing the rank of cows two and three, and 

reducing R̂  ̂to less than 70% of its value in the Index. Because of the 

equal information the EATA's differ from the Indexes by a constant and 

maintain the .74 R̂ .̂ 

The unreasonableness of using Zb̂  =0 to rank cows can be further 

illustrated. If there is more than one b, at least one has to be nega­

tive which means information on a relative positively genetically cor­

related with the cow is subtracted. This is not an impossible situation 

for all Indexes in that a variable may receive negative weight if the 

phetiocypic correlation between relatives Is larger than the genotyplc 

correlation (see Lush, 1947). Negative weights are impossible to maximize 

2 
R̂ jj with EATA since genetic correlations are 1/h as large as phenotypic 

correlations when environmental correlations are not considered. If 

there is information on the cow only, there is only one b and it has to be 

zero. This creates a situation where every such cow regardless of pro-
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duction is worth zero and has an equal chance of being selected. 

Further investigation into the numeric example makes it apparent 

the following three provisions are not compatible. 

1. Zbj. = constant. 

2. Proportionality of b's maintained for maximum 

3. Right Hand Sides maintain correct biometrical relationships. 

This is evident with the following augmentation of the index equations 

used in the example. Solution b's of these equations maintain the same 

proportionality to each other as did the Index b's when the last element 

2 in the Right Hand Sides is a positive constant (h here). 

2.4 .5 .25 1 .5 b̂  = .063 

.5 2.5 0 .5 
2̂ 

= 
.25 bg = .026 

.25 0 . 28 . 25 
3̂ 

.125 = .117 

2.4 2.5 .28 0 a .25 a = .306 

In this example 1 maintained the proportionality of the b's as stated, 

and I maintained the correct relationships between the Right Hand Sides 

by adding a, .5a, and .25a to each equation respectively. To satisfy 

those two properties I have a situation where Zb̂  will not equal the same 

constant if I change the numbers of records. In the fourth equation I 

made the sum of b's times their respective diagonal elements equal a 

constant (.25). This could be done for every index with different num­

bers of records as long as the last equation were ̂ diagonal elementj. 

X b̂  = .25. Having this property for all indexes may have value, but it 
« 

escapes me. This has not excluded the possibility that some augmentation 

term this Equal Opportunity Indexing. 
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will cause Zb̂  = constant and b's proportional without the biometrical 

relationships of Right Hand Sides preserved. 

The problems of comparing index values of different cows may be 

summarized briefly. When the y's are included in the index the expected 

value of the index, E(I), equals zero, and the variance of the index, 

V(I), varies from one combination of relatives and records to another as 

the b's and X's change. When the means are not included in the index 

5(1) varies as the b's change from cow to cow, and V(I) continues to vary 

as it did when the means were included. is maximum with or without 

the means. A solution to the problem of correctly indexing cows for 

ranking and selection lies in attaining the following properties, listed 

in order of priority highest to lowest. 

1. Maximize which involves maintaining the appropriate ratios 

among the b̂ 's for each combination of relatives and records. 

2. Make £(I) constant. 

3. Make V(I) constant. 

These would maximize the correlation between index and cow's genotype, 

measure every cow from the same base, and standardize the spread in in­

dexes regardless of the amounts of information involved. Developing 

these three properties in one index is a thesis topic itself* However, 

since the only changes to an index which will not affect the ratios of 

the b̂ 's are to multiply the index by a constant or add a constant, they 

are good prospects for deriving an "ultimate" index. 

)k:ch discussion has been devoted to the potential problems of not 

knowing the means of the X̂ 's when computing indexes. It seems reason­
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able to calculate consequences of this situation with respect to EATA 

and selection decisions. I wrote previously the difference between two 

EATA*s differs from the difference between their correct indexes by the 

quantity now d. 

d = Zb̂  y ̂  - Z b̂  H 

The question becomes, how large is this quantity. Will it change the 

rank of two cows in such a circumstance that the genetically inferior 

cow will be saved and the superior cow discarded? Or will a bull calf 

be discarded when he should be saved? 

If all cows included in an HA are indexed with EATA, all V's will 

equal zero, d will be zero, and differences between cows will be accu­

rately reflected in their EATA's. If not all cows are indexed, the popu­

lation on which selection will be practiced differs from the original 

population. This occurs when cows who have contributed records to herd-

mate averages are dead or off test and not indexed. The population 

mean of the smaller population may not equal the original population mean 

(zero) if selection has been practiced. Since only a small fraction, less 

than 15%, of the cows not indexed would have been culled for low produc­

tion the new mean deviation yield would be slightly greater than zero. 

For instance the mean yield average deviated from herdmates for daughters 

of live registered Holsteins in 1973 in Iowa, Kansas, and Missouri was 

fifteen kg. Those daughters have been highly selected on dam longevity 

for whatever that involves, and I consider their production an upper limit 

of the value of for these EATA's. If each is between zero and fif­

teen kg then d will be less than 
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d < 15(Zb̂  - 2 bp 

For an indication of a likely maximum size of d we need estimate a maxi­

mum value for Zb. - Zb!. The information on two cows in Table 4 
1 X 

will nearly maximize this value. Using .70 from the table, a reasonable 

maximum value of d is: 

d = 15(.70) 

= 10.5 kg 

Table 4. Example of large (Zb̂  ~̂ bp. 

Cow 1 Cow 2 

Relative No. Recs. î No. Recs. î 

1 Cow 15 .10 1 .12 

2 Dam 15 

CM O
 

3 PHS 50,000 5 .20 

4 Daus. 15 5 .40 

5 MHS 15 5 • 10 

Zb. 
= 00

 
ho
 

2 b, = .12 

Zbj_-Zb. = .82-. 12 

= .70 

Considering milk yield is recorded to the nearest ten pounds (4.5 kg), 

misevaluating by + 10.5 kg at most the true difference between two cows 

is a minor error. Under these circumstances few mistakes will be made by 

culling superior cows. If the mean is closer to zero than fifteen and 

if cows being compared have more nearly equal information than the two 
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in Table 4, the selection errors made by ignoring the lî 's in EA.TA will 

have little consequence on genetic progress. The expense of changing 

the current £ATA program to account for the Û 's almost certainly would 

exceed the profit gained by more accurate cow rankings. 

In recent years Henderson has approached sire evaluation througjh 

linear equations which yield estimates with minimum errors of prediction 

among unbiased linear estimators. Applying that procedure to cow eval­

uation Is now of Interest to many researchers. 
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HISTORY OF EATA 

Since EATA is a selection index procedure its history traces to 

initial efforts to apply indexes to biological species. 

Smith (1936) developed Fisher's concept of discriminant functions 

for use in constructing selection indexes for plants. Application of 

selection indexes to animal populations was described by Hazel (1943) in 

his paper "The genetic basis for constructing selection indexes." 

Lush developed in the 1930's and applied routinely in his breeding 

research an index of information from relatives to select cows and bulls 

on yield and type. 

In 1953 L. McGilliard roughed out selection index weights to rank 

dairy cows on their genetic worth. The five relative groups currently 

used in EATA were included in the index and the measure of milk yield 

was an average for each female. Weights for each relative were inde­

pendent of other relatives. The first ranking for institution herds in 

Iowa in 1953 was a dual ranking with all differences between herds 

genetic and, the other extreme, all differences environmental. 

The 1955 rankings were based on new weights developed by McGilliard 

from relationships from a variety of analyses. A type score was also 

included. Weights for relatives were not independent. The measure of 

production was fat-corrected 3.5 average deviations from yearly averages. 

They were constructed as if all differences between herds were environ­

mental because analyses indicated that was the case for the institution 

herds. 
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After 1956 Freeman continued rankings for the institution herds. 

In the sixties many people worked on the index to incorporate paternal 

sister weights correlated with other relatives, regressed herd-year-season 

averages, and other changes. In the winter of 1967-68 Eastwood provided 

the first EATA rankings to dairymen in the Postville, Iowa area. Then 

in November 1968 rankings were provided for all herds on test in the 

eight state region. The term "EATA" was chosen for the listing because 

"ETA" sounded too similar to "EPA" which was another ranking already 

in existence. The word "Average" was included to emphasize the concept 

of this being the cow's average contribution transmitted. 

Between 1968 and 1970 EATA rankings were computed at yearly inter­

vals except for two years at six month intervals. When funds became 

scarce, 1.5 years elapsed after the 1970 ranking before the next came out 

in May 1972. Yearly rankings were then distributed in May until 1974. 

EATA's will now be computed annually beginning September 1974. These 

EATA's will include changes to account for average estimated genetic 

worth of herdmates inadvertently being removed from the deviations with 

the regressed adjusted herd-year-season averages. 
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DATA 

Individual lactation records used in this study were Dairy Herd 

Improvement Association "1095" records restricted to: 

Holstein breed 

Official test 

Iowa, Missouri, Kansas 

Active herds January 1967 

Calving dates since January 1, 1967 

Lactations completed by January 1973. 

So pedigree information would be available for every cow, the 471, 

913 records satisfying the above requirements were restricted to records 

of registered cows. There were 121,299 of those records. 

Cows with EATA records computed by D.H.I.A. were restricted to cows 

with EATA' s computed May 1, 1972 which meant they must have been alive 

after November 1, 1970. EATA's on older dead cows were not available. 

Cows also had to be sire identified or dam identified or have at least 

one daughter. There were 94,487 of these EATA's of \rtiich 36,475 repre­

sented registered cows. 

Each individual lactation of a cow was paired with the EATA infor­

mation cf the CSV* s dac. There vere 20,414 lactations in 855 herds 

\itiere the dam of the cow had an EATA. This later became 20,377 lactations 

as 37 were lost. Information on the sire of the cow was also included 

lAen available from a January 1973 list of 2392 sire PD's. 

Since the goal of this study was to evaluate how predictive of daugh­

ter production a dam's EATA is. It was important the EATA did not include 
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records of the daughter. Including the predicted daughter record in dam 

EATÂ would nearly double the expected covariance between them. Only 423 

records in progress less than 45 days as of May 1, 1972 were available 

and had not been included in the dam EATA's. Therefore all other records 

of each daughter to be predicted were removed from their dam's EATÂ, and 

the EÀTA and daughter information in it were adjusted to what they would 

have been had the daughter to be predicted been without records. 

A record in this study then consisted of an individual lactation and 

information about a cow, EATA information on her dam with that specific 

cow not included, and R) information on her sire. Milk weights were 

recorded in tens of pounds. All pounds were converted to kilograms before 

analysis. Information available for a cow and her dam was: 

Oow Dam 

Cow Registration Number 
Sire Registration Number 
Dam Registration Number 

Active in Herd 
Sire Registration Number 
Dam Registration Number 
Gov Records (Number) 
Cow Average Milk (ME deviated) 
Cow Average Fat 
Dam Records (Number) 
Dam Average Mtlk 
Number of Paternal Half Sisters 
Average records per PHS (Number) 
PHS Average Milk 
PHS Average Fat 
Number of Daughters 
Average records per Daughter (Number) 
Daughter Average Milk 
Daughter Average Fat 
Number of Maternal Half Sisters 
Average Records per MîS (Number) 
MHS Average Milk 
MHS Average Fat 
EATA Mi He 
EATA Fat 

Calving Date 
Days in Milk (first 305) 
Milk 
Fat 
Termination Oade 
State, County, Herd 
Lactation Number 
Cow Index Number 
ME Milk 
ME Fat 
Average Herdmate ME Milk 
Average Herdmate ME Fat 
Number of Herdmates 
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METHODS 

The following equation was solved to minimize the contribution of 

error to differences between daughters. 

?ijk - ËÀS) + 

Y ,, is lactation milk production of the daughter of the î  ̂sire and 
i JK 

dam. y is the mean of is the effect of the î  ̂sire, b is 

the regression of daughter production on dam EÂTÂ calculated within sires. 

The U+ were absorbed (more precisely described below) to remove effects 

of daughters' sires from differences between daughters. Differences ̂ ich 

remained were due to dams and residual variation. EATAj is the EATA of 

.th 3 _  ̂ 1 ,, , _ , th the j dam not including records of the k daughter. EATA is the mean 

of all dam EATA's. ê ^̂  is error peculiar to Ŷ ^̂ . Ŷ ^̂ , was expressed 

as kilograms of 305 day milk production, or 303 day production adjusted 

to ̂ at the cow would have produced in 303 days under identical condi­

tions had she been a mature cow, milked twice daily, during an average 

season (Mature Equivalent or ME). Or was expressed as ME production 

deviated from herdmates' ME average, which removes effects common to a 

cow and her herdmates. Oammon effects may be environmental and genetic. 

Quadratic and cubic equations vera also solved. They vers: 

Quadratic: Ŷ ^̂  = U + + b̂ (EATÂ -EATA)+ bQ(EATAj -EATA ) + ê ^̂  ̂

Cubic; Y.,, = U+S, + b_ (EATA,-EATA) + b fEATÂ -EATÂ ) + 
IJet 1 Li J Q J 

b̂ (EATAĵ -EATÂ ) + e^^^ 

b, , b , b are linear, quadratic, and cubic partial regressions of daughter 
li Q V 
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production on dam EATA, within sire of daughter. 

After the regressions of daughter production on dam EATA, I regressed 

daughter production simultaneously on the five groups of relatives in 

a dam's EAIA. That equation was: 

Y, il. = u+ S-. + b, Cow. + b Dam + b PHS. + b Daus. + b MHS. + e 
iJK ilj2j3j4 j5j ijk 

îjk' W ) S and ê ĵ  have been defined. All regressions were confuted 

within sire. Each b is the partial regression of daughter milk production 

on production of the relatives designated following each b. Coŵ  repre­

sents average of records of the dam of the daughter. Dam̂  represents 

average of records of the dam of cow.. PHS. represents the average of 
 ̂ J 

records of paternal half sisters of coWj. Dauŝ  represents average of 

records of daughters of coŵ , excluding the daughter who produced record 

Ŷ ĵ . MHSj represents the average of records of maternal half sisters of 

eov,. Records of the independent variables were expressed as ME records 
J 

deviated from herdmates. 

The V + S ̂ were solved in terms of other variables in the equations 

and substituted into the original equations. These were solved for the 

b's without numerically evaluating the y + Ŝ , Equations involving EATA 

will be termed EATA equations. Those involving components of EATA will be 

termed coiq)onents equations. 

Expected Regressions and correlations 

X represents a daughter record with sire variation removed and may be 

expressed as: 
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X = .5Gjj + (.5)̂  + E 

is the genetic worth of the dam. Ĝ  is the genetic contribution to the 

daughter from Mendelian sampling of genes of the sire and dam. Ĝ  will 

average zero, but will contribute half the genetic variation of daughter 

records unadjusted for sire. E is non-genetic contributions to the daugh­

ter record. EÀTÂ of the dam may be expressed as: 

EATA = .5 Gp 

The variances and covariance of Y and EATA are t3ie following. V(Ĉ ) = 

V(GjP = Gg. Gov (G,E) = 0. V(X) = .75 Og + Ĝ . V(EATA) = .25 0̂ . 

2 
Gov (X,EATA) = .25 Og. The correlation between daughter record (intra-

sire) and her dam's EATA is expected to be p. Trie intrasire regression 

of daughter record on dam's EATA is expected to be 3. Both are developed 

as follows: 

p _ Oov(X,EATA) 

(v(X) V(EATA)̂   ̂

.254 

((.75â H-a2)(.25a2)) ̂  

.25 ĥ  

.̂75 h"" + l-ĥ )(.25 h"-̂  

.0625 

((.9375) (.0625̂  ̂  

.0625 

(if ĥ  = .25) 

.2421 

.258 
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3 = Cov(X.EATA) 
V(EATA) 

p may also be written as , where the variation in daughter 

records accounted for by the dam is .25 a ̂  and the variation in daughter 

2 «.̂ 2 
records where sire variation has been removed is - .250̂ , 

The expected values of this correlation and regression may also be 

expressed in terms of components of the dam's EATA. This will account 

for the combination of relative information in an average EATA. This 

process is described below. 

EATA = A(COW) + B(DA)0 + C(PHS) + D(DAUS) + E(MHS) 

A, B, C, D, E are weights derived from the theoretical EATA equations 

using the numbers of relatives and records in an average EATA. Other 

symbols were defined previously. 

+ 2AB Gov (COW, DAM) + 2AC Cov(OOW,PHS) + 2AD Cov(GOW,DAUS) + 2AE Côv(GOW,MHS) 

+ 2BC Cov(nAM,PHS)+ 2BD Gov (DAM,DAUS) + 2BE Cov(DAM,MHS) 

+ 2CD Cov(PHS,DAUS) + 2CE Oov(PHS,MHS) + 2DE Cov(DADS,MH&) 

A more detailed expansion of these variances and covariances is in Figure 

1. Substituting heritability of .25, repeatability of .5, and the 

Gov (X,EATA) = .5 Aâ  +. .25 BÔ  + .125 CÔ  +.25Dâ  + .125 EÔ  + 

0&.5A + .25(B4g) + .25(C+E)) 
(jr 

V(EATA) = Â  VvGDw) + V(DAK) + V(PKS) + 0 + E 
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average numbers of relatives and records in EATA's of dams of first 

lactation daughters as in Table 3, the expected correlation and regres­

sion become: 

Table 5. Average numbers of relatives, records, and associated weights 
for EATA. 

A = .15 = 5.1 

B = .06 = 3.7 

C = .33 "3 = 1044 
"̂ 3 

= 2.5 

D = .03 "4 = .9 % = 1.2 
E = .02 "5 " 

1.4 
""5 

= 2.2 

P = Cov(X.EATA) 

(v(X) V(EATA)) 

.0353 

((.9375) (.0349))^ 

.0353 
.1808 

.195 

3 = OOV(X,EATA) 
V(EATA) 

.0353 

.0348 

1.01 

The expected variance of EATA based on average information is only half 

the variance of .5 vAich EATA estimates. 3 of one indicates a unit 

difference between dam EATA's will show up as a unit difference between 

their daughters within sire. This is reasonable since EATA represents 
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half the dam's genetic value which she parses to her offspring. 

2 
p is the expected fraction of variation in daughter records (intra-

sire) accounted for by variation in their dams' EATA's. It is the frac­

tion of differences between daughter records which disappears when dam 

2 
EATA is held constant. P is expected to .067 for unlimited information 

in EATA and .038 for the information in these data. 
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RESULTS AND DISCUSSION 

A summary of animal numbers and lactation yield for first, second, 

and average of all daughter lactations is in Table 6. Daû ters averaged 

1.8 lactations each. The increase of daughter production from first to 

second lactation was probably a consequence of culling. Standard devia­

tions are in parentheses. Standardizing and deviating records from herd-

mates reduced the variation between cows. Had all cows been included 

regardless of availability of dam EÂTA, deviation yield would have aver­

aged zero. Both dam EATA and deviation yield averaging above zero in­

dicates cows missing dam EATA's would have averaged less production than 

their herdmates. EATA*s without daughters also would have averaged below 

zero. 

Correlations between dam EATA and daughter milk yields are in Table 7. 

The expected correlation of daughter first lactation deviated production 

with dam's EATA Is .20 and the .18 obtained does not differ significantly 

(P<.03) from it. The expected correlation would be lower for ME yield 

and lactation yield as differences between daughters increase with these 

measures. The correlation higher than e3q>ected was between dam EATA and 

daughter ME production. This resulted from a covarlance 29% larger than 

the covariance between dam EATA and deviated daughter production. Since 

the only difference between those measures of daughter production was sub­

tracting the herdmate ME average, the covariances between EATA and daugh­

ter production were expected to be equal. The inequality and size of 

covariances indicate a positive correlation between dam EATA and herdmate 

average of daughter, vAilch arises ̂ en managers of some herds cull more 
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Table 6. Numbers of animals and yield means.̂  

Daughter Lactations 

1st 2nd Average of All 

Number of Daughters 10349 5415 11106 

Number of Sires 1955 1398 2159 

Dam EATA (kg) 34 ( 192) 39 ( 191) 34 ( 192) 

Dau. Lactation Yield (kg) 5028 C "0 5699 (1626) 5179 (1583) 

Dau. ME Yield (kg) 6619 (1372) 6758 (1523) 6624 (1344) 

Dau. Dev. Yield (kg) 7 (1240) 176 (1331) 15 (1206) 

Ŝtandard Deviations in parentheses 

Table 7. Correlations between dam EATA and daughter yield. 

Daughter Lactations 

1st 2nd Average of All Expected 

Lactation Yield .16 .19 .16 

ME Yield .21 .21 .21 

Dev. Yield .18 .19 .18 .20 



42 

intensely or use a higher proportion of genetically superior sires than 

other herds. Higher correlations for daughter second lactations than for 

daughter first lactations indicate daughters surviving to produce a second 

record had more in common with their dams' EÀTA's than did average daugh­

ters, especially since second lactations were more variable than first 

lactations. Higher correlations were caused by larger covariances. 

Partial regression coefficients from regressing daughter production 

2 on dam EÂXÂ for linear, quadratic, and cubic equations are in Table 8. R 

is the fraction of variation in daughter records accounted for by the 

powers of EATÂ in the model. All linear regressions except one differed 

significantly (F<.05) from the expected 1.01. This means the probability 

of a regression that large when it does not differ from expected is less 

than .05. The exception was the first lactation linear coefficient in 

the quadratic model. 

With all models the linear coefficients were largest for ME daughter 

records and lowest for deviated records. In a regression, variation in the 

dependent variable directly Influences only the covariance. Therefore, 

differences in linear coefficients can be attributed to the covariance 

between daughter and dam EÂTA increasing \̂ en daughter records were age-

season adjusced and decreasing substantially «èien these ME records 

were deviated from herdmates. This implies high dam EATA's were asso­

ciated with high daughter herdmate ME records, as previously discussed. 

Second lactation linear regressions were larger than first lactation due 

to selection also previously discussed. 

Nearly all quadratic partial regressions for actual and ME records 

were positive and differed significantly from zero. Deviating them from 
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Table 8. Regressions of daughter yield on dam EAIA. 

Measure of _ 
Daughter Yield Linear* Quadratic Cubic R 

1st Lactation 1.21 (.08)* .024 

1st ME 1.48 (.08)* .043 

1st Dev. 1.15 (.07)* .031 

1st Lactation 1.15 (.09) .0006* .025 

1st ME 1.42 (.08)* .0005* .043 

1st Dev. 1.16 (.07)* -.0001 .031 

2nd Lactation 1.53 (.14)* .0006 .036 

2nd ME 1.61 (.13)* .0008* .047 

2nd Dev. 1.30 (.12)* -.0001 .034 

Avg. Lactation 1.24 (.09)* .0006* .026 

Avg. ME 1.44 (.08)* .0005* .046 

Avg. Dev= 1,16 (.07)* -.0002 .033 

1st Lactation 1.29 (.12)* .0009* -.12 X 10' 
-5 

.025 

1st ME 1.61 (.11)* .0009* -.16 X 10' 
-5* 

.044 

1st Dev. 1.26 (.10)* .0001 -.09 X 10' 
5 

.032 

Expected 1st Dev. 1.01 0 0 .038 

•Differs significantly from expected (P-<.05). Probability of a 
regression this large when there is no difference from expected is less 
than .05. 

Ŝtandard errors In parentheses. 



44 

herdmaces reduced them to zero. 

Cubic partial regressions were negative but differed from zero only 

for ME records. 

2 
R 's were largest for ME records and smallest for actual records. 

2 Actual records were the most variable. R 's were slightly lower than ex­

pected for deviated first lactation production, and were of equal size 

regardless of model, linear, quadratic, or cubic. Statistically the graph 

of daughter first lactation deviated production versus dam EATA was linear 

with a slope steeper than expected. 

Daughters of dams with high EATA's produced deviated records larger 

than daughters of dams with lower EATA's. A one unit difference in dam 

EATA's resulted in 1.15 units difference in daughter deviations. Linear, 

quadratic, and cubic graphs of this are Figures 2, 3, and 4. Figure 5 is 

a cubic graph of first lactation daughter ME production. 

I was concerned dam EATA might be additionally useful to explain 

daughter variation if fluctuations in daughter production specific to 

certain magnitudes of EATA were being masked by the bulk of observations 

or the symmetry of a cubic equation. There was special interest in daugh­

ters of high EATA dams because they might become dams of A.I. sires. 

If males they would likely be A.I. sires. To investigate these concerns 

I divided all first lactation daughter records into eight groups, ordered 

by size of dam EATA, each group containing a one standard deviation (192 kg) 

range of EATA's. I then related daughter production to dam EATA within 

each EATA segment. 

Table 9 contains numbers of daughters and sires and lactation milk 

yield means for dam EATA' s and daughters within each EATA segment. 
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Table 9. Numbers of animals and yield means for ISATA seaments.̂  

EATA Segments (kg) 

3-350 -̂542 S-350 
-542 < 

3-158 
-350 < 

a 34 
-158< 

£ 226 
34 < 

4̂18 
226̂  

 ̂610 
418< >610 >418 

Number of Daughters 208 20 188 1444 3659 3423 1300 257 58 315 

Number of Sires 152 19 136 667 1169 1133 621 186 50 217 

Dam EATA (kg) -430 
(53) 

-609 
(16) 

-410 
(44) 

-232 
(52) 

-53 
(54) 

121 
(53) 

302 
(53) 

492 
(61) 

694 
(48) 

529 
(97) 

Daughter First 
Lactation Yield (kg) 

4703 
(1525) 

5002 
(603) 

4671 
(1330) 

4678 
(1420) 

4872 
(1465) 

5137 
(1461) 

5428 
(1569) 

5786 
(1499) 

6000 
(1435) 

5825 
(1450) 

Daughter First 
ME Yield (kg) 

6208 
(1386) 

6567 
(779) 

6169 
(1135) 

6180 
(1361) 

6423 
(1344) 

6754 
(1319) 

7143 
(1405) 

7508 
(1400) 

7743 
(798) 

7551 
(1357) 

Daughter First 
Dev. Yield (kg) 

-490 
(1273) 

-56 
(686) 

-536 
(1070) 

-336 
(1199) 

-68 
(1206) 

89 
(1208) 

340 
(1295) 

498 
(1220) 

575 
(615) 

512 
(1150) 

Ŝtandard deviations in parentheses. 



50 

Each end of the table contains an additional EÂTA segment which represents 

the two lowest segments combined or the two highest segments combined. 

They are not additional data but a recombination of data already in the 

table. They are included because of the small number of daughters in the 

highest and lowest EÂTÂ segments. Only four dams were in the >610 group 

with EATA's above 802 kg. 

The distribution of daughters by size of dam EÂ.TA is depicted in 

Figure 6. Fewer daughters were three and four standard deviations 

below the EATA mean than three and four standard deviations above the 

mean. This was probably a consequence of culling. However, within two 

standard deviations of the mean there were more daughters below the mean 

than above the mean. In these data 3.04% of the EATA's were larger than 

y+ 2 o, which is close to Syrstad's (1971) 3.05% for indexes on Norwe­

gian Red cows. Number of daughters per sire was extremely symmetric ri­

sing from 1.2 and 1.1 for sires mated to extremely high and low EATA dams 

to 3.0 and 3.1 for these siatsd to average EATA dams* 

The largest EATA's seem much too large when considering a normal dis­

tribution of EATA's. In a normally distributed population only three in 

one million EATA's are expected to exceed 4.5 standard deviations above 

the mean. In this population four in ten thousand exceeded 4.5 standard 

deviations. If distributed normally four in ten thousand are expected to 

2 
exceed 3.3 standard deviations. Therefore,it appears = .54 of the 

original variation in EATA's remains in this population of EATA's. If the 

largest EATA's are abnormally large because of a 46% reduction in variance 

attributed only to truncation selection, then 75% of the original popula-
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tion of EATA's was saved. 

Examining variances leads to a similar conclusion. Maltiplying the 

variance of deviated daughter records by heritability of .25 gave an ex­

pected additive genetic variance of 384,400. Four times the variance of 

EATA's should also give the additive genetic variance in the population. 

However that estimate was 147,456, Indicating a loss of approximately 

60% of the original additive genetic variation, assuming heritability of 

.25. Regression, rather than selection, caused this loss of variation. 

The narrow line in Figure 7 indicates the expected daughter first 

lactation deviated production for each EATA segment. Expected production 

(EP) was calculated from the equation EP = 6.8 + 1.01 (EATA-34.5). EATA 

was the average of dam EATA's in the group. The thick line in Figure 7 

rises to actual average daughter first lactation production in each group. 

Production of daughters in groups with dam EATA's greater than 802 kg 

and less than -542 kg differed significantly (P<.05) from expected. 

Within each EATA segment, correlations between dam EATA and daughter 

first lactation production were much lower than expected. These correla­

tions are in Table 10. Since standard deviations of daughter production 

were similar in size to those for the whole population, the small correla­

tions were due to small covariances between dam EATA and daughter yield. 

The two end segments were exceptions however. Daughter production of 

dams with EATA's over 610 kg and under -542 kg was much less variable than 

production in other segments. This caused high correlations between dam 

EATA's and daughter production in those groups. The group with EATA's less 

than -542 kg contained no degrees of freedom after adjusting twenty daughter 

records for nineteei sires. 
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Table 10. Correlations between dam EATA and daughter first lactation for EATA segments. 

EATA Segments (kg) 

 ̂-350 -542 ré-350 
-542 < 

-̂158 
-350< 

3̂4 
-158< 

<226 
34< 

£418 
226 < 

<610 
418< >610 >418 

Lactation Yield -.07 No d.f. -.11 .01 .03 .02 .01 -.06 .48 .04 

ME Yield -.10 No d*f. -.11 .01 .06 .05 .00 -.03 .54 .12 

Dev. Yield -.09 No d.f. -.16 -.02 .05 .05 .01 

C
M

 O
 

1
 .15 .06 
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Quadratic regressions of daughter production on dam EATA for each 

EATA segment are in Table 11. They vary substantially in size. The only 

partial regressions differing significantly (P<.05) from expected were 

the linear and quadratic regressions for actual 305 day daughter yield in 

the 35-226 kg EATA segment. Sampling errors were large. 

2 R 's calculated from regressing daughter deviation yields on linear 

and quadratic EATA as well as regressing on linear EATA alone are in 

2 2 Table 11. Most R 's were small when compared with R from the unsegmented 

data. It is interesting daughter production is not more explainable in 

small pieces. This may be a consequence of adjusting for sires in each 

group. Each sire will remove a degree of freedom from each group he has 

a daughter in. Where the degrees of freedom for first lactations unseg­

mented was 8393, the sum of the degrees of freedom for the segments was 

6360. With certain sires appearing in several groups, their worth within 

each group may be less accurately adjusted than in all data. This along 

with reduced degrees of freedom will contribute to larger error variances 

2 2 in each group and therefore smaller R 's. Comparing R 's from quadratic 

equations with those from linear equations showed very little additional 

variation in daughter deviations explained by a quadratic equation beyond 

a linear equation. However, in the segment of EATA less than -349 kg the 

quadratic equation accounted for more than twice the variation in daughter 

deviations accounted for by the linear equation. This equation and others 

from the extreme EATA segments are Figure 8. Note that the curve in the 

group of largest EATA's turned down as EATA increased, but there were 

enough daughters in the adjacent group to cause an upward turn as EATA in­

creased when the two groups were combined. 



Table 11. Regressions of daughter first Lactation on dam EATA within EATA segments. 

EATA Segments (kg) 

<-350 <-542 <-350 <-158  ̂ <226 <418 <610 
-542 < -350< -158< 34 < 226 < 418< >610 >418 

Lactation Yield 
Linear 
Quadratic 

28.0 -16.0 -4.1 -6.9 .9 8.5* 10.5 1.4 463.1 -9.1 
.033 .020 -.001 -.014 .001 .032* -.016 -.003 -.342 .008 

ME Yield 
Linear 
Quadratic 

32.1 -16.0 -61.9 -4.8 1.1 5.5 7.9 14.5 22.9 -1.3 
.038 .023 -.069 -.010 -.003 -.017 -.012 -.015 -.010 .003 

Dev. Yield 
Linear 17.8 -16.0 -15.2 -11.7 .7 3.5 6.6 -18.8 22.6 -3.4 
Quadratic .022 .023 -.013 -.023 -.002 -.010 -.010 .018 -.015 .004 

R̂ (dev. yield) .017 No d.f. .025 .003 .002 .003 .001 .002 .024 .006 

R̂ (lln. only) .008 .025 .000 . 002 . 002 . 000 . 000 . 023 . 004 

*Dlffer8 significantly from expected (P<.05). 
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Though it did not cause a cubic relationship between daughter de­

viation and dam EATÂ, daughter production in the ends of the EÀIÂ distri­

bution deviated significantly from expected \4ien isolated from the bulk 

of daughter records. There was still question as to the seriousness of 

these deviations, whether they were caused by a few wildly deviant daugh­

ters or a general scourge of deviancy through the tails of the distribu­

tion. 

To clarify these concerns 1 examined information in the data on the 

sixty largest EATA's and sixty smallest EÂTA's. 1 ordered these by size 

of EATA, smallest to largest, and divided them into twenty groups with 

six dams per group. Groups of six were chosen to allow individual daugh­

ter fluctuations to average over a few observations but still retain 

enough groups in each tall of the distribution to be able to observe 

characteristics of the tail. Information about the low and high groups 

of EATA's can be compared from Table 12. The groups differed in milk and 

rat production, the basis of their grouping. None of the other differen­

ces were significant (P<.05), but some were interesting. Daughters of 

the high group milked eleven days longer than the lows. Herdmates of 

daughters in both groups produced more ME milk than the average popula­

tion, but highs produced more than lows. Number of records for the dams 

and sire Information on their mates were essentially the same for both 

groups. Dams in the high group had twice as many paternal half sisters 

as those in the low group. Sires with poor daughters had fewer daughters. 

For those interested in fat percent, please note an average of quotients 

is not necessarily equal to a quotient of averages. 
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Table 12. Information on low sixty and high sixty dam EATA's. 

Low 60 High 60 

Dau. Days In Milk 275 286 

Dau. Herdmate Milk 6708 7158 

Dau. Herdmate Fat 241 257 

Dau. Herdmate No. 40 40 

Dau. Deviation Milk -379 602 

Dau. Deviation Fat -9 15 

Cow Recs. 5 5 

Cow MIk -1840 3016 

Cow Fat -53 90 

PHS No. 584 1216 

PHS Milk -531 372 

PES Fat -18 7 

EATA Milk -522 691 

EATA Fat -15 19 

Dau. Sire Repeat. % 46 52 

Dau. Sire PD Milk 24 9 

Dau. Sire ED Fat 1 2 
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Table 13 contains dam EATA averages and daughter deviation averages 

for ten classes of six daughters each from the sixty lowest dam EAIA's. 

None of the daughter deviation averages differed significantly (P<.05) 

from the dams' EÂTÂ averages. The high daughter averages in the lowest 

three EÂTÂ classes were of interest. Several possible explanations for 

daughter performance in these groups proved inaccurate. Since daughter 

deviations in Table 13 were not adjusted for sires of the daughters, 

they may have been large because of their sires' contributions. Of eleven 

daughters of dams with EÂTA's less than -600 kg, only five of the daugh­

ters' sires had FD's. These PD's averaged 121 kg which would account for 

little of the differences between daughters and dam EATÂ's. Another 

possibility was these daughters may have been first calves of their dams, 

and the dams were subsequently culled after one lactation. This also 

proved erroneous in that all dams in the lowest three groups had at least 

two lactations and averaged nearly five each. Two dams with EÂTA's less 

than -600 kg had two daughters each, three of which produced more milk 

than their herdmates. 

For the lowest tsr. classes the regression of class daughter average, 

unadjusted for sires, on dam EATA average was -3.4, indicating lower EATA 

averages had higher daughters averages. The correlation was -.6. 

For a dairyman to retain a cow for five lactations with an EATA more 

than three standard deviations below the mean, he knows something 

about the cow lAich does not show in her EATA. Possibly she has suffered 

an environmental calamity which has maligned her milk production such that 

her EATA is no longer indicative of her genetic worth. This explanation, 

however, also leaves much to be desired as most relatives of these dams 
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Table 13. Yield means for sixty lowest EÂTA's, ten classes of six 
daughters each. 

Mean Dam Mean Daughter 
Class EATA Deviated Yield 

1 -676 201 

2 -609 -129 

3 -564 5 

4 -530 -741 

5 -506 -734 

6 -490 -386 

7 -472 -363 

8 -465 -321 

9 -459 -402 

10 -454 -922 

'̂ DAU • DAM = -3.4 
D̂AU" DAM = -.6 
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were also extremely poor milk producers. 

Examining the high end of the Ê TA distribution 1 found a slightly 

different trend. Average production for these ten classes is in Table 14. 

The regression of daughter average on dam EATA average was 2.2 with a cor­

relation of .2. This indicates daû ter production was increasing more 

per unit of EATA increase than the average population increase. Classes 

twelve, fourteen, and twenty had extremely low daughter averages. It may 

be noteworthy that daughters of dams with EATA' s averaging 843 kg produced 

-101 kg. Three daughters from the highest four EATA's had deviations less 

than -950 kg. In the highest group of six EATA's three of the mates had 

ro's. These three averaged 50 kg. Accounting for the value of daughter 

sires would lower the regression of daughter average on EATA slightly. 

There seems little evidence daughters of high EATA dams produced 

less milk than expected. Three negative daughters from the highest four 

dams seems peculiar, even though they represent only .0003 of these data. 

One mighc speculate a physiological breakdcvn occurs %bsn s. cow reaches 

a high threshold of additive gene effects. This threshold response has 

been noted for other traits in other biological organisms. It may be in­

formative to investigate the production of daughters of negative daughters 

of high EATA cows. 

There is evidence daughters of the lowest EATA dams produce more milk 

than e:qpected. This may be due to misevaluations of the EATA's. It seems 

more reasonable dams produce less milk than their genetic worth rather than 

daughters produce beyond their "genetic limit." However lAen relatives of 

these dams are also extremely poor producers the influence of chance on 

the EATA's is reduced. 
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Yield means for sixty highest EÂTÂ's, ten classes of six 
daughters each. 

Mean Dam Mean Daughter 
EÂTÂ Deviation Yield 

612 622 

621 -59 

631 454 

651 -619 

660 1006 

684 589 

710 1208 

736 1004 

763 1918 

843 -101 

D̂AU 'DAM =2.2 

"DAM = .2 
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Here again an extreme accumulation of poor genes In one Individual may rep­

resent an ultimate threshold where the only response Is toward the mean. 

We examined the accuracy of predicting daughter production from 

dam EATA In the extremes of the EATA distribution. Now we need to 

focus on the bulk of the dams where the linear regression of first lac­

tation daughter deviation on dam EATA was larger than expected. Many 

researchers have reported higher herltabllities for first lactation 

production than later lactations. Also work has shown correlations be­

tween son's progeny test and dam's breeding value based on first lactation 

to be higher than those based on any other lactation. To see if a similar 

situation existed between dam EATA and first lactation daughter production 

1 separated the daughter-dam pairs by number of lactations of the dam into 

nine groups. I then compared yield means and correlations from the various 

groups. These are in Table 15. Since the EATA information Included only 

average production of the dam and number of records in the average, a dam 

•was included in only ens group. Uith these data it uas Izprscticsl to use 

dam's first lactation and compare that with using an average of her first 

and second lactations, thereby including a dam in more than one group. 

That would have provided a more effective determination of the combina­

tion of dam records to be Included in EATA to predict daughter production 

most accurately. 

In groups where dams had less than three lactations in their averages 

their EATA's averaged less than the other group averages. With few lac­

tations their EATA's would have been regressed more toward zero. Also 

they had survived fewer selection decisions than those in groups having 

more lactations. Average EATA in the group with more than nine records 
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Table 15. Yield characteristics of first lactation daughters and dams 
with varying numbers of dam records. 

Dam 
Records Daughters Sires 

Mean 
EÂTÂ 

Mean 
Dau.ME 

Mean 
Dau.Dev. 

Correlation 
Devt EATA 

1 74 62 -50 6163 -28 .53 

2 428 282 0 6582 -58 .08 

3 1413 652 28 6653 32 .19 

4 2237 833 44 6631 3 .16* 

5 2145 772 42 6633 16 .18 

6 1817 712 37 6616 -2 . 17 

7 1215 527 29 6550 -19 .21 

8 615 323 41 6633 34 .20 

9+ 405 252 12 6688 40 .37* 

All 10349 34 6619 7 .18 

D̂iffers significantly (P<.05) from .18 and .20. 
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was low, but ME and deviation production of their daughters was highest 

of any group. Correlations between daughter first lactation deviation 

and dam EATA were quite variable in groups one, two, and nine where there 

were less than 200 degrees of freedom. Correlations were highest (.33) 

in the group with one dam lactation and lowest (.08) when dams had two 

lactations. A range that size for those two groups is unlikely consider­

ing the dam averages containing two lactations include the dams' first 

lactations. However, in these data the groups were independent. The 

only correlations significantly (P<.05) different from either .20 ex­

pected or .18 from all data differed from both. They were .16 for dams 

with four lactations and .37 for dams with more than eight lactations. 

It is interesting that groups with even numbers of dam lactations had 

correlations lower than either adjacent group. Ignoring a dam's most 

recent record if it is even-numbered may have merit in improving EATA 

accuracy. 

Cubic regressions of dam EATA on within-sire daughter deviations 

were not different (P<.05) from linear for any group except that with 

only one dam record. The high correlation in that group adds to previous 

research the plausibility of using only first lactations to estimate 

breeding values of dairy cattle. 
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The EA.TA measure of a cow' s genetic worth predicted daughter production 

without serious discrepancies. We will now turn attention to weights 

given various groups of relatives in EÂTA. Analyses in this section will 

be from the components equation described in the Methods section. This 

was a within sire multiple regression of daughter first lactation produc­

tion simultaneously regressed on her dam, her dam's dam, paternal half 

sisters, other daughters, and maternal half sisters. Examination of these 

partial regression coefficients should give indication of the appropriate­

ness of the variances and covariances supposed in calculating the EATA 

weights for these data. 

An initial problem in this analysis was the absence of relative 

groups. If ignored they would count not as missing, but as relatives 

with average deviated milk yield of zero. If a group was absent the com­

ponent for that group had to be deleted from the multiple regression equa­

tion. Therefore equations could be solved meaningfully for various com-

o of o «5 0 1 r\ry ̂  «51 o "f  ̂ — 

tions contained the same relative groups. Numbers of daughter records 

with specific combinations of available relatives of the dam are in Table 

16. Note the definitions of C, D, P, 0, M in the table. These are rela­

tives in the dam's EATA after one daughter was removed to be the depen­

dent variable. The C or cow in the EATA refers to the dam of the daughter 

being predicted. There were no EATA's where the cow being evaluated had 

no records. Using first lactation daughters the most frequent combina­

tions of EATA relatives Included records of the cow, dam, and paternal 

half sisters. The most frequent combination (3424 of 10349) had records 

for all relative groups. Nearly an equal number (2941) had no daughters 
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Table 16. Numbers of daughter lactations available for each combination 
of relatives of the dam. 

Number of Lactations 

Combination All First 

C D P 0 M 7516 3424 

C D P M 4621 2941 

C D P 1636 1084 

C D P 0 2135 1035 

C P 0 1643 614 

C P 0 M 1477 525 

C P 573 331 

C P M 406 213 

C 0 117 45 

C D 0 M 73 34 

C 50 29 

C D l'i 35 26 

C D 0 37 18 

C 0 M 31 14 

C D 22 13 

C M 5 3 

Total 20377 10349 

Êach of these combinations originally included an additional 
daughter, the daughter being predicted. C = Cow (dam of dependent 
daughter), D = Gov'ts dam, P = Gov's Paternal Half Sisters, 0 = Cow's 
daughters (excluding dependent daughter), M - Cow's Maternal Half 
Sisters. 
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other than the daughter being predicted which was excluded from the EÂIA. 

The most frequent groups outside those mentioned above Included the cow 

and her paternal half sisters. Groups without the cow and her paternal 

half sisters numbered less than fifty first lactation daughters each. 

Below is a list of relatives of the dam and the percentage of daughters 

associated with each group. 

Cow 100% 
PHS 98 
Dam 83 
MHS 69 
Daughter 55 

Components equations for relative combinations which included at least 

the cow with an EATA and her paternal sisters would include 98% of all 

available first lactation daughter records in these data. 

I divided the daughters constituting this 98% into eight independent 

groups, each group containing a specific combination of relatives in the 

dam's EATA. Those eight combinations are in Table 17 with numbers of 

sires and daughters. A dash designates a group net available. Table 

17 also includes deviation milk yield averages for the five relative 

groups of the dam and production averages for the daughters. There are 

some slight changes from Table 16 in numbers of daughters in each EATA 

combination. 

Number of daughters per sire decreased as available relative groups 

decreased. The more popular bulls were mated to cows with more pedigree 

information. Average cow deviations were large and positive while average 

paternal sister deviations were moderately negative. Daughter actual 

yield and ME yield decreased as fewer relative groups were available, but 

daughter yield deviated from herdmates fluctuated among groups. Therefore 



Table 17. Numbers of animals and average milk yield for specific combinations of EATA relatives.* 

Combination of Relatives In EATA 

G D P 0 li C D P - M C D P 0 - C - P 0 

Number of daughters 3414 2941 1031 525 

Number of sires 991 1056 501 280 

Relatives in EATA 

Cow dev. yield (kg) 286 (814) 266 (882) 276 (816) 181 (808) 

Dam dev. yield 92 (914) 125 (914) -66 (904) 

PHS dev. yield "72 (291) -52 (324) -101 (327) -81 (334) 

Daus. dev. yield 69 (999) 59 (933) -41 (830) 

MHS dev. yield -6 (828) 3 (864) -154 (867) 

Daughter actual yield 5110 (1477) 5013 (1559) 5016 (1601) 5011 (1462) 

Daughter M.E. yield 6681 (1386) 6646 (1421) 6617 (1401) 6556 (1298) 

Daughter Dev. yield 2 (1234) 1 (1284) 15 (1238) 31 (1116) 

Ŝtandard deviations in parentheses. 



Table 17 (continued) 

Combination of Relative» In EATA 

C  J )  P  -  C - P D -  C - P  -  M  C  -  P  

Number of daughters 1084 612 213 331 

Number of sires 587 359 165 238 

Relatives in EATA 

Cow dev. yield (kg) 256 (953) 316 (870) 210 (967) 238 (978) 

Dam dev. yield -42 (1040) 

PHS dev. yield "66 (354) -106 (333) ••84 (395) -64 (404) 

Daus. dev. yield -35 (828) 

MHS dev. yield -105 (704) 

Daughter actual yield 4967 (1497) 4958 (1448) 4902 (1342) 4860 (1550) 

Daughter M.E. yield 6589 (1409) 6495 (1315) 6450 (1496) 6366 (1538) 

Daughter dev. yield 43 (1278) -26 (1216) 71 (1539) -78 (1351) 
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there appeared no relationship between available relative groups and 

herdmate production of daughters. 

To evaluate the multiple regression weights obtained from the com­

ponents analysis EATÂ weights were needed for comparison. These were com­

puted from the EATA equations using as numbers of relatives and records 

averages in the data used in the multiple regression equations. It was 

apparent that although the average number of paternal sisters was large, 

most cows had only a few while some had thousands. To reduce the in­

fluence of extreme numbers on the averages a transformation was applied 

to the numbers (N) of animals and records. This transformation from N to 

N' was N' = (N+C)̂  = N ̂  \dien C = 0 and p = -1. The value used for the 

average number of records was the reciprocal of the average of trans­

formed variables. This was the harmonic mean. Justification for this 

transformation is difficult to quantitate. It seems to serve a useful 

purpose. Later results also substantiate its use to some degree, but 

one must be cautious justifying procedures with results obtained from 

those procedures. 

Use of a harmonic mean may be defined in a generalized least squares' 

sense. The linear unbiased best estimator of the mean of y's where each 

group of ŷ 's has variance is the expression; 

Where we are concerned with numbers of records, variation is a function of 

the numbers involved. When each is weighted inversely by its contri­

bution to the sum of the weights,an expression analogous to the estimator 
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above results 

E N 
-1 
N i 

-1 

i = Harmonic mean of N̂ 's 

Z N 
i 

The arithmetic mean is an illogical representation of central tendency in 

a skewed distribution. In the EÂTÂ section variances of averages were too 

low lAen average numbers of records were used. Using harmonic means 

would help alleviate that problem and in this situation will give expec­

ted regression weights lower than given by arithmetic means, a correction 

which seems necessary. For Interest I have Included both arithmetic and 

harmonic means in Table 18. 

)kan numbers of animals and records for EÂTA's in each combination 

of relative group are in Table 18. Largest discrepancies between arith­

metic and harmonic means were in numbers of paternal sisters. Arithmetic 

means for numbers of paternal sisters were about 1000 while harmonic 

means were less than 28. Some sires of these EÂTÂ cows had extremely 

large numbers of daughters, not representative of most of these data. 

The only other large discrepancies between arithmetic and harmonic means 

were with records of the dam of the cow. Some dams had many more records 

than most causing differences of greater than .9 between arithmetic and 

harmonic means. Discussion of means from this point on will refer to 

harmonic means unless designated otherwise. 

Gows averaged 1.7 records less when they had no daughters in their 

EÂTÂ's than when they had daughters. It is reasonable cows with more 

records have more offspring. Also if their large numbers of records 
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Table 18. Mean numbers of animals and records in EÂTA's of specific 
relative combinations. 

Combination of Relatives in EATA 

Relatives C D P 0 M C D P - M C D P G - C - P 0 M 

Â  Ĥ  A H A H A H 

Cow Recs. 5.9 5.4 4.2 3.8 5.7 5.2 6.2 5.3 

Dam Recs. 4.7 3.5 5.0 3.8 3.0 2,1 0 

PHS No. 

Recs. 

1130. 

2.7 

26.9 

2.4 

1102. 

2.3 

27.2 

2.1 

1015. 

2.6 

20.0 

2.3 

1039. 

2.6 

17.5 

2.4 

Daus. No. 

Recs. 

1.6 

2.2 

1.3 

1.7 

0 1.6 

2.1 

1.3 

1.7 

2.1 

2.6 

1.5 

2.0 

MHS No. 

Recs. 

2.1 

3.3 

1.6 

2.5 

1.9 

2.9 

1.5 

2.2 

. 0 1.6 

3.4 

1.3 

2.6 

Relatives C D P C - P 0 - C - P - M C - P -. 

A H A H A H A H 

Cow Recs. 4.0 3.5 6.0 5.2 4.5 3.5 4.2 3.5 

Dam Recs. 3.3 2.3 0 0 0 

PHS No. 

Recs. 

895. 

2.3 

19.4 

2.1 

993. 

2.8 

8.1 

2.4 

990. 

2.5 

16.9 

2.2 

928. 

2.4 

9.1 

2.1 

Daus. No. 

Recs. 

0 1.8 

2.4 

1.4 

1.9 

0 0 

MHS No. 

Recs. 

0 0 1.5 

2.9 

1.3 

2.1 

0 

Ârithmetic mean, 

b 
Harmonic mean. 
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indicate positive value to the dairyman, then their daughters probably 

have been given a better than average chance to have records. Dam records 

averaged 1.4 records less when there were no maternal sisters than when 

there were maternal sisters. This is also a dam-daughter relationship. 

Average numbers of paternal sisters were highest where the cow, dam 

and maternal sisters were also present. They were lowest where the dam 

and maternal sisters were not present. Less popular sires were mated to 

those dams. Average numbers of daughters and maternal sisters were simi­

lar from combination to combination where they were not missing. 

Partial regression coefficients to predict daughter first lactation 

deviated milk yield from average deviations of relatives in the dam's 

EATA are in Table 19. They were computed from various combinations of 

relatives in EATA. The symbols C D P 0 M designate the relatives present 

in the EATA. A dash (-) indicates a relative not available for use in 

the EATA. Combinations with one or more relatives slashed (/) represent 

were ignored as though they were not available for use. Therefore values 

corresponding to combinations with slashes were similar to those from 

the CDPOM combination because they included the same data. The EATA 

weights are values obtained whei the theoretical EATA equations were 

solved using the average numbers of relatives and records in that combi­

nation of relatives. Standard errors of the partial regression weights 

are included. They were largest for paternal sister weights where the 

variance of paternal sister averages was low. 

Regression weights from 3414 daughters with all relatives in the 

dam's EATA were larger than EATA weights for the cow (dam of the depen-



Table 19. Partial regression coefficients to predict daughter first lactation 
deviated milk yield l:rom relatives in her dam's EATA. 

Relative 

Cow 

Combination of relatives in EATA 

C D P 0 M 
EATA 
Wt. 

Regr. 
Wt. 

.20 .16 
(.032)'-

C D P 0 M' 
Regr. EATA 
Wt. Wt. 

a 

.19 .17 
(.031) 

C D P - M 
Regr. EATA 
Wt. Wt. 

.27* .16 
(.034) 

Dam 

PHS 

Daus. 

MHS 

.00̂  
(.028) 

.21  
(.086) 

-.05* 
(.025) 

.02 
(.030) 

.06 

.23 

.05 

.03 

.00* .06 
(.028) 

.21 .24 
(.086) 

.02 .03 
(.034) 

.02 .06 
(.033) 

.02* .24 
(.092) 

-.02 .03 

No. of Daughters 3414 3414 2941 

Ŝlashed relative (0) indicates data were from 3414 records where all relatives 
were present and the slashed relative was not included in this multiple regression. 

D̂ash indicates that relative was not present. 

'̂ Standard error of regression weights in parentheses. 

D̂iffers significantly (P<!.05) from EATA weight. 



Table 19 (continued) 

Combination of relatives In EATA 

r n D n tA* 
Relative 

C D P 0 C D P 0 - C g P 0 M C - P 0 M 
Reijr. EATA llegr. EATA Regr. EATA Regr. EATA 
Wt. Wt. Wt. Wt. Wt. Wt. Wt. Wt. 

Cow .20 .16 .25 .17 .20 .17 .27 .17 
(.032)̂  ̂ (.067) ).031) (.091) 

Dam 

PHS 

Daus. 

MHS 

,,01 .06 
(.028) 

. 21  .22  
(.086) 

-.05* .05 
(.025) 

.08 .05 
(.059) 

.10 .20 
(.163) 

-.14* .05 
(.058) 

.21 .22 
(.086) 

-.05* .05 
(.025) 

.02 .04 
(.030) 

.21 .18 
(.216) 

-.10* .07 
(.086) 

-.07 .03 
(.082) 

No. of Daughters 3414 1031 3414 525 



Table 19 (continued) 

Relative 

Cow 

C D P 0 M 
Re.gr. 
Wt. 

EATA 
Wt. 

.19 .17 
(.031) 

Combination of relatives in EATA 

C D P -
Regr. 
Wt. 

EATA 
Wt. 

.19 .16 
(.061) 

C g P 0 M 
Regr. 
Wt. 

EATA 
Wt. 

.20 .18 
(.031) 

C - P D 
Regr. 
Wt. 

EATA 
Wt. 

.16 .18 
(.089) 

Dam 

PHS 

Daus. 

MHS 

.01 .06 
(.028) 

. 21 . l'\ 
(.086) 

.02 .06 
(.055) 

-.09 .22 
(.162) 

.21 .21 
(.086) 

-.05* .05 
(.025) 

.27 .13 
(.231) 

-.20* .06 
(.092) 

vj 
00 

No. of Daughters 3414 1084 3414 612 



Table 19 (continued) 

Combination of relatives in EÀTA 

Relative _Ç0_PjJL. - C " " M C P ? 0J&_ C - P - -
Regr. EATA Regr. EATA Regr. EATA Regr. EATA 
Wt. Wt. Wt. Wt. Wt. Wt. Wt. Wt. 

Cow .19 .18 .13 .17 .19 .19 .09 .18 
(.031) (.221) (.031) (.146) 

Dam 

PHS 

Daus. 

MHS 

.21 .23 
(.086) 

.02 .04 
(.030) 

.58 .20 
(.540) 

.75* .04 
(.303) 

.21 .23 
(.086) 

.43 .15 
(.354) 

\D 

No. of Daughters 3414 213 3414 331 
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dent daughter) and smaller for the dam and other daughters. Weights for 

the dam and daughters differed significantly (P<.03) from the EÂTA 

weights for the CDPOM combination. Regressions were essentially the same 

when daughters were deleted. As relatives other than the cow and pater­

nal sisters were delsced by singles and pairs only the daughter regres-
4. 

sions -xined significantly low, and they were always negative. This 

situation will be discussed later. The cow regressions were high and the 

dam regressions low, but not significantly different from the EÂTA weights. 

For the 3414 daughters with CDPOM EATA's none of the regressions changed 

much when relatives were deleted from the analysis. The many records in 

the relative groups held the regression weights stable. 

Regression weights from analyses where certain relatives were not 

available fluctuated, but standard errors were such that few regressions 

deviated significantly from their corresponding EATA weights. Daughters 

received negative regression weights significantly different from the 

EAIA weights. lAiere daughters were che only missing relatives the pa­

ternal sister regression was lower and significantly different from the 

SATA weight. This however, was balanced by a large regression for the 

cow, also significantly different from the EATA weight. The only other 

partial regression differing from its corresponding EATA weight was a 

large maternal sister regression in the C-P-M analysis where there was 

no information on dams and daughters. 

To compare meaningfully the emphasis placed on various relatives 

by the multiple regression equations the partial regression coefficients 

need be standardized for unequal variances of the independent variables. 
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The standardized regression coefficient 3 relates to the original b as 

follows. 

Table 20 includes standard partial regression coefficients for the com­

binations of relatives included in the multiple regression analyses. 

Weights with asterisks differed significantly from EÀTÂ weights before 

standardization. 

Comparing combinations where relatives were deleted, emphasis 

placed on each relative essentially did not vary. The dam weight rose 

from .00 to .01 when any relative other than daughters was deleted. 

One would expect slight increase in the cow regression as maternal rela­

tives were deleted. The weights from analyses where relatives were not 

available were more subject to changes since they represented indepen­

dent groups of data. This makes it difficult to Interpret how much of a 

change in a coefficient vas due to compensation for a missing relative 

and how much was due to changes in average numbers of animals and records 

in each group of relatives. The cow received the most weight \̂ en only 

one maternal relative was missing, but she lost influence vAen two mater­

nal relatives were missing. This likely was a consequence of younger 

cows when more than one relative was not available. Paternal sisters 

received 40-50% of the cow weights when dams or daughters and maternal 

sisters were present. However, as maternal relatives became less fre­

quent and cows had fewer records paternal sisters received more weight, 

eventually more than the cow. 



82 

Table 20. Standard partial regression coefficients from various 
combinations of relatives. 

Combination Cow Dam PHS Daus. MHS 

C D P 0 M .13 . 00* .05 -.04* .01 

C D P 0 M .13 . 00* .05 . 01 

C D P - M .19* .01 .01* .01 

C D P 0 J4 .13 .01 .05 -.04* 

C D P 0 - .16 .06 .03 -.11* 

C P 0 N .13 . 05 -.04* .01 

C - P 0 M .20 .06 -.07* -.05 

C D P 0 M .13 .01 .05 

C D P - - .14 .02 -.02 

C p P 0 W .13 .05 -.04* 

C - P 0 - .11 .07 -.14* 

C Z) P 0 M .13 .05 .01 

C - P - M .08 .15 .34* 

C 0 P 0 M .13 .05 

C - P - - .07 .13 

*Differed significantly (P<.05) from EATA weights before 
standardization. 
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The dam received little weight except where maternal sisters alone 

were missing, which was a strange situation since average number of cow 

records was nearly unchanged while average number of dam records was 30% 

lower than when all relatives were present. Dams took up the slack of 

missing maternal sisters even though the dams had fewer records. Stan­

dard regression coefficients for daughters were large when other rela­

tives were missing, but negative. Maternal sister weigjhts were small ex­

cept when the dam and daught .s were missing. There it received the lar­

gest weight of any relative in any combination of relatives. A anall 

gain would be reasonable, but one this large was surprising. 

It is interesting to compare standard regression weights from groups 

where relatives were deleted with groups where the deleted relatives 

were never available. There were fewer degrees of freedom and fewer 

relatives and records for those with missing relatives. Where there was 

much data and only one relative group missing the maternal relatives, 

especially the cow, received more weight and paternal sisters less 

weight than in the combinations with one relative deleted. When more 

than one relative group was missing and degrees of freedom reduced, the 

paternal half sisters and an occasional maternal relative picked up 

weight at the expense of the cow. This did not occur where the missing 

relatives had been deleted. The combinations with missing relatives were 

more sensitive to changes in records and relatives than were the groups 

where relatives were deleted. Some of the sensitivity is difficult to 

explain. 

To determine the value of a relative in combination with various 

other relatives for predicting daughter milk yield the accuracies with 
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and without that relative must be compared. Accuracy in this case is the 

multiple correlation between the combination of relatives' records and 

independent daughters' yields. These correlations for each combination 

of relatives examined are in Table 21. The expected correlations were 

calculated as explained in the Methods section. The first two columns 

of correlations were based on the same 3414 daughters, deleting certain 

relatives actually available. Correlations in the last two columns were 

based on different daughters for each combination of relatives. 

All correlations were lower than expected based on the 3414 daughters 

with all relatives available but certain of them deleted. They were 

about 80% of expected. A portion of this difference can be explained 

with a shortcoming of my multiple regression procedure. The number in­

serted into the regression equations for each relative group was the 

average deviated production of the cows in the group. It was not adjus­

ted for numbers of animals or records in the average. The same average 

was used if it contained IOC animals or ten animals. Therefore the in­

formation gleaned from the components analyses corresponds to average 

numbers of relatives and records vAiich were included. While this may be 

satisfactory for the regression coefficients it will certainly reduce 

the multiple correlations. More accurately described, the expected cor­

relations are coûçuted as though all cows in the analysis had the average 

numbers of relatives and records. Since the numbers of relatives and 

records in the production averages vary, failure to account for this will 

reduce the multiple correlations or, depending on your standard, increase 

the expected correlations. Variances and standard deviations for numbers 

of relatives and records where all groups were present are in Table 22. 
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Table 21. Multiple correlations between daughter first lactation 
deviation yield and combinations of dam relatives. 

Relative Deleted Relative Not Available 
Combination** Actual Expected Actual Expected 

C D P 0 M .148 .192 

C D P 0 .147 .192 .195 .190 

C  P O M  .148 .188 .215 .187 

C D P M .143 .188 .191 .185 

C D P .143 .188 .142 .180 

C P 0 .147 .185 .194 .180 

C P M .143 .183 .372 .176 

C P .143 .180 .158 .170 

C .134 .167 

space designates a relative deleted or not available. 
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Table 22. Variances and standard deviations of numbers of animals 
and records in 3414 EATA's with all relative groups. 

Relative Variance Standard Deviation 

Cow Recs. 2.65 1.62 

Dam Recs. 5.05 2.24 

PHS No. 

Recs. 

3623117. 

.81 

1903. 

.90 

Daus. No. 

Recs. 

.72 

1.22 

.84 

1.10 

MBS No. 

Recs. 

1.35 

2.35 

1.16 

1.53 

V̂ariance about arithmetic mean. 
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These are variances about arithmetic means. Paternal sister numbers 

were most variable followed by numbers of dam and cow records. Not 

accounting for this variation will lead to multiple correlations lower 

than expected for average numbers of records, but 1 do not know how 

much lower. 

To adjust expected correlations to account for variation of number 

of records in the averages the formulae would need to be adjusted to in­

clude these standard deviations. To calculate actual multiple correla­

tions which account for varying numbers of records in the averages, the 

averages could be adjusted. If the weight each average would receive 

in its EÀTÂ is available,or if time and funds are available to calculate 

each of them,then one might consider multiplying each average deviation 

by its EATA weight and regressing daughter yield on the weighted averages. 

If the EATA weights are as expected,the partial regression coefficients 

will be one. However,there would be other things involved such as heri-

tability and combinations of relatives and records, the consequence of 

which is not apparent. 

Examining the multiple correlations in Table 21 where relatives 

were deleted indicated which relatives increased the accuracy of pre­

dicting daughter deviated production. Deleting the dam from any combina­

tion of relatives resulted in no loss of accuracy. It was expected to 

cause 2-4% loss in accuracy, mostly when other maternal relatives were 

scarce. Deleting maternal sisters in the absence of dam and daughters 

also did not cause the expected 2% loss in accuracy. When cow and pater­

nal sisters were present accuracy was gained only by adding combinations 

of relatives which included at least daughters. Ninety-nine percent of 
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highest accuracy was reached with cow, paternal sisters, and daughters. 

This concurs with results of Deaton and McGilliard (1965). Daughters 

contributed accuracy even though their partial regression coefficients 

were negative. Deleting paternal sisters when only the cow was present 

caused 6% loss in accuracy, 7% expected. Accuracy fell 9%, .148 to .134 

when all relatives except the cow were deleted. Thirteen percent was 

expected. 

Multiple correlations for groups where certain relatives were not 

available were 3-13% larger than expected for most combinations. These 

are also in Table 21. There was no discernible trend to the accuracies 

as relative groups became less available. However, degrees of freedom 

were decreasing as relative groups disappeared. 

From Table 21 there is a tendency to conclude most multiple corre­

lations were lower than expected. However, all combinations where rela­

tives were deleted represented the same degrees of freedom. Only three 

o£ the eight independent combinations yielded multiple correlations less 

than expected. Those three contained 50.4% of the degrees of freedom 

in the eî t groups of data. 

Table 23 contains mostly figures computed from the components analy­

ses. They compare the partial regression coefficients and theoretical 

EÀTÂ weights as average index values for each combination of relatives 

examined. The first column contains actual mean EATA's. Columns two, 

three, and four contain sums of the regression weights times the average 

relative deviations. Sums using the partial regression coefficients 

were close to the actual mean EATA for thç 3414 daughters with all rela­

tives present. In groups with missing relatives the sums were variable 
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Table 23. Calculated EÀTA's and s based on mean numbers of relatives, 

records, and production from various combinations of relatives. 

Sum of Wts. X average deviations «IE 
Actual Partial EÂTA wts. EÂTA wts. Partial EAIA 
Mean Regr. (from har- (from arith- Regr. Wts. 

Combination EAIA Wts. monic means) me tic means) Wts. (harmonic) 

\ \ 

C D P 0 M 40.lv 38.4 37.8 29.f .682 .746 

C D P 0 It 39.4 38.7 

C D P 0 - 24.6 45.3 26.4 

31.0 

9,7 

.682 

.700 

.742 

.734 

C g P 0 M 38.4, 35.8 

C - P 0 M 5.7 46.8 ' 40.2 

27.7 

30.6 

.682 

.714 

.726 

.722 

C D P 0 M 39.0 

C D P - M 39.3 73.4 

36.5 26.2 

30.8 

.704 

.748 

.730 

.718 

C D P 0 Jt 40.0 

C D ? - -  2 8 , 8  5 3 . 6  

36.7 

23.9 

28.2 

19 1 

.704 

- SQA 

.726 

.700 

C P 0 M 38.5 39.7 

C - P 0 - 41.1 29.1 41.1 

31.7 

20.3 

.675 

.505 

.718 

.702 

C 0 P 0 M 39.3 

C - P - M 25.1 -99.7 

34.5 

14.8 

25.0 

3.9 

.704 

.962 

.708 

.680 

C P 0 Jt 39.1 37.6 

C - P - - 30.0 -6.1 33.3 

28.3 

19.4 

.696 

.628 

.698 

.658 

Rjjj = 2( Z b̂ RHŜ ) where RHŜ  is from theoretical EATA equations. 
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with respect to mean EÀIA's. This was a consequence of the sensitive 

weights mentioned previously. A comparison of sums using harmonic means 

of relative and record numbers to cosqmte the weights with sums using 

arithmetic means showed the harmonic sums to be closer to the actual 

EÂTA mean in seven of eight groups. This was because average paternal 

sister deviations were negative and the arithmetic weights were large, 

reducing the size of the sums of weights times averages. 

The last two columns in Table 23 cony are actual R̂ '̂s from the mul­

tiple regressions with theoretical s from EATA equations. Since ac­

tual genotypes of cows are not known, actual correlations between the 

index and daughters' genotypes cannot be calculated. I have constructed 

what 1 term actual B̂ g's exactly as theoretical s are constructed 

except EATA weights were replaced with observed partial regression coef­

ficients. This can create an unusual situation In that adding a relative 

group with a negative partial regression coefficient will reduce this ac­

tual R̂ g. Possibly only absolute values of regression coefficients should 

be used. Another problem is that an actual R̂  ̂can be larger than one, 

where in life that is not possible. 

For groups ̂ ere relatives were deleted, expected R̂ '̂s declined 

steadily from .746 to .698 as relatives were deleted. Actual R̂ '̂s for 

these groups were lower with less spread between highs and lows. Expec­

ted Rjjj's for groups with missing relatives were lower than those for 

groups with the corresponding relatives deleted. The expected R̂ '̂s 
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where relatives were missing also declined steadily with fewer groups 

present while the actual s fluctuated from .505 to .962. The .962 

was caused by a .75 maternal sister regression coefficient. The rank of 

the combinations on size of actual s is nearly the same as the rank 

on size of actual multiple correlations. 

To identify specifically causes of large and small partial regres­

sion coefficients and multiple correlations it is useful to examine stan­

dard deviations and correlations of the relatives available for EATA 

calculations. Table 24 contains standard deviations of average deviated 

production of relatives in EATA for various combinations of available 

relatives. Expected standard deviations were computed using repeatability 

= .5, standard deviation of individual deviated records = 1250 kg, and 

mean numbers of animals and records in each average. All standard de­

viations except one were smaller than e:q>ected. Mast were at least 85% 

of expected. This would indicate 1250 kg was too large an estimate of 

the standard deviation. However, certain standard deviations were very 

close to expected. In nearly every combination of relatives the relative 

groups ranked the same in size of standard deviation from closest to ex­

pected to farthest from expected: daughters, maternal sisters, dam, cow, 

and paternal sisters. Maternal sisters In the C-P-M combination and 

paternal sisters in the C-PO- combination were lowest at 74% and 71% of 

expected standard deviations. They were about 50% as variable as expec­

ted. Standard deviations for cow averages ranged from 84% to 98% of ex­

pected, almost perfectly correlated with the average number of records 

in the mean average. When there were five or more records the standard 



Table 24. Standard deviations of average deviated production of 
relatives in EATA for combinations of relatives in EATA. 

Coml)lnation of relatives in EATA 

Relative C D P O M  c :D P - M C D P 0 - C - P 0 M 
Relative Actual Expected" Actual Expected Actual Expected Actual Expected 

Cow 814 962 882 993 816 965 808 964 

Dam 914 1002 914 993 904 1074 

PHS 291 368 323 369 327 386 334 394 

Daus. 999 988 933 988 830 902 

MHS 828 849 864 889 866 924 

Relative C D P - - C - P 0 - C - P - M C - P - -
Actual Expected Actual Expected Actual Expected Actual Expected 

Cow 933 1002 870 965 967 1002 978 1002 

Dam 1040 1059 

PHS 354 390 333 471 395 399 404 462 

Daus. 827 938 

MHS 704 954 

R̂epeatability = .5, Standard deviation of individual records = 1250 kg. 
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deviations were 85% of expected, while with 3.5 records they were 97% 

of expected. This indicates repeatability probably declines with addi­

tional records. To equalize the expected and actual standard deviations 

for 5.4 records, repeatability would be .30, and for 3.5 records..44. 

Correlations between adjacent records on cows may be higher than between 

nonadjacent records as reported by Butcher and Freeman (1968). Selection 

may have reduced the variation in averages of older cows. Daughters, 

maternal sisters, and dams were closest to expected standard deviations. 

Paternal sisters were least variable as expected because of the large 

numbers of records in their averages. They were also farthest from ex­

pected. Across relative combinations, standard deviations of a specific 

relative ranked by size about the same as the corresponding eacpected 

standard deviations. 

Correlations between daughter first lactation deviated milk yield 

and average deviations of relatives in her dam's EATA. are in Table 25. 

Varzatzon zzi daughter records contributed by the daughters' szres has 

been removed. Therefore an only daughter of a sire contributed no varia­

tion. Most correlations were lower than expected, indicating the cover-

lances were low since the variation in averages of relatives was also 

lower than expected. The daughters were always negatively correlated 

with the other daughters, their maternal half sisters. This was a con­

sequence of regressing each daughter on all remaining daughters. It can 

be explained effectively by an example. Oonsider the daughter average 

when daughters are withdrawn as dependent variables one at a time with 

replacement. When the dependent daughter is a high producer the daughter 



Table 25. Corrélations between daughter first lactation deviated yield 
and average déviations of relatives in her dam's EATA. 

Combination of relatives In EATA 

C D P 0 M C D P - M G D P 0 - C - P 0 M 
e a ve Actual Expected® Actual Expected Actual Expected Actual Expected 

Coŵ  .134 .167 .190 .162 .156 .167 .186 .167 

Dam .022* .081 .046 .082 .067 .075 

PHS .067* .109 .044* .109 .043 .104 .098 .102 

Daus. -.015* .082 -.070 .082 -.045* .090 

MHS .021 .048 .006 .045 -.020 .043 

S.E.® .020 .023 .044 .064 

R̂epeatability = .5, Heritabllity = .25. 

Ĉow in the EATA is the dam of the dependent daughter. 

C Jk 
Standard error = l/(N-3) where N = (no. daughters-no. sires absorbed). 

D̂iffers significantly (P̂  .05) from expected. 



Table 25. (continued) 

G D P - - G - P 0 - G - P - M G - P - -
® ^̂ Actual Expected Actual Expected Actual Expected Actual Expected 

Gow .139 .161 .lie .167 .046 .161 

Dam .034 .076 

PHS -.007* .103 .098 .086 .138 .101 .144 .087 

Daus. -.129* .086 

MHS .334* .042 

S.E. .045 .063 .149 .105 
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average falls without hep. When she Is a poor producer It rises. This 

creates a negative correlation between the dependent daughters and the 

remaining Independent daughter averages. This correlation cannot be 

less than 2I.where m is the number of daughters remaining in the average, 
m 

For 1.7 daughters ~ -.6. This would occur if there were no variation 
m 

in averages of unrelated groups of daughters, «ho are maternal half sis­

ters within each group. The variance of group averages would be, 

A + (n-l)p\CT̂  = 0 minimum 

2 
where n = m+1, a is the variance of individual records, and P is the cor­

relation between daughters within each group. The situation with these 

data is not that serious, but it appears differences within groups of 

related daughters are larger than between unrelated groups. 

These negative covarlances between related daughters caused nega­

tive regression coefficients for daughters to predict another daughter. 

2 However, negative regressions contribute positively to R . It is 

2 questionable, though, whether that contribution to R was the same as it 

wOuld hmve been had the negative ccrrelatxcn not been built into the 

analysis. To avoid the problem only one daughter per dam should be used 

as a dependent variable. 

Correlations between the daughter and the cow (daughter's dam) 

were generally lower than expected though not significantly (P<.05) 

different from expected. The .134 correlation where all relatives were 
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present compares favorably with the .14 reported by Deaton and McGilliard 

(1965). When the cows had only one daughter each, the dependent one, 

the correlation with those daughters was 17% higher than expected (.190, 

.162). There appears to be a positive correlation between permanent en­

vironmental effects of these cows and their daughters' first lactation 

deviated yield. 

Dams' (grandams of the daughters) correlations with daughters' 

yield were relatively lower than those of the cow \̂ ich may indicate 

less permanent environmental correlation between dam and daughter than 

cow and daughter. Dams were older than cows and more removed from daugh­

ters in the years they were milking. Only the dam correlation where all 

relatives were present was lower and significantly (PwC.05) different 

from expected. 

Paternal sister correlations with daughter production were low ex­

cept where the average number of paternal sisters was small. When there 

are few paternal sisters a larger percentage of them is likely to be in 

the same herd than when there are many. This would increase environ­

mental correlations between daughters and paternal sisters. 

Correlations between average deviated production of various rela­

tives in EATA are in Table 26. Nearly all correlations were lower than 

expected, though not all significantly different from expected. Flock 

(1964) reported predicted correlations about 10% higher than actual 

correlations. There are a number of possible explanations for the ex­

pected correlations being too large. Heritability of .25 may be too high 

or less probably repeatability of .5 may be toe low. A reduction in 

heritability will reduce the expected correlations proportionately. A 
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Table 26. Correlations between average deviated yield of relatives 
In EATA. 

Combination of relatives In EATA 

Relatives C D P 0 M C D P - M C D P 0 - C - P O M  
Relatives 

Act. Exp."* Act. Exp. Act. Exp. Act. Exp. 

Cow, Dam .157* .202 .176 .198 .071* .188 

Cow,PHS .142* .236 .216* .266 .130* .262 .224 .257 

Gow,Daus. .149* .205 .168 .205 .145 .225 

Cow, MHS .051* .120 .105 .111 .168 .110 

Dam, PES -.045* 0 -.004 0 -.008 0 

Dam,Daus. .042* .099 .051 .092 

Dam,MHS .172* .230 .168* .221 

PHS,Daus. .055* .134 .039* .128 .050 .137 

FHS,MHS -.002 0 .043 0 .057 0 

Daus,MHS .026 .058 .012 .058 

S.E.̂  .020 .023 .044 .064 

*^9 MWfc ^ ^ ^ ̂  jr • 

Ŝtandard error = l/(N-3)̂  where N = (no. daughters - no. sires 
absorbed). 

D̂iffers significantly (P<.05) from expected. 
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Table 26. (continued) 

Relatives 

Combination of relatives in EATA 

C D P " ~ C " P 0 ~ G ~ P - M C ~ P - -
Act. Exp. Act. Exp. Act. Exp. Act. Exp. 

Cow,Dam .132 .184 

Cow.PHS .124* .250 .203 ,215 -.059* .244 .218 .211 

Cow,Daus. .075* .216 

Cow,MHS -.073 .102 

Dam,PHS .015 0 

Dam,Daus. 

Dam,MHS 

PHSjDaus. -.034* .110 

PHS,MHS -.020 0 

Daus.,MHS 

S.E. .045 .063 .149 .105 
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situation not accounted for in the expected correlations is a negative 

correlation between records initiated in the same herd, year, and season. 

When a record is large other records tend to be small because they are 

deviated from a herdmate average which includes the large record. The 

deviations will be negatively correlated, but only slightly because 

herd-year-seasons for EÂTA calculations are required to have at least 

sixteen records or cows from an additional herd-year-season are included 

in the herdmate average. Selection of cows which produce more milk than 

average will reduce genetic variation and expected covariances between 

relatives. Expected correlations in Table 26 have not been adjusted 

for this. 

Within the combination v̂ ere all relatives were present nearly all 

correlations between averages of relative groups were smaller than ex­

pected and differed significantly (P<.05) from ê qpected. Parent-off­

spring correlations (cow-dam, cow-daus, dam-MHS) were closest to expected 

vithin 20St combinations of available relatives. They ijers likely to 

have slightly correlated permanent environmental effects. If genetic 

worth of dams was correlated with genetic worth of their mates for milk 

yield then the covariance between cows and their dams would increase. 

In these data, however, the correlation between dam EÂTÂ and mate ED 

was .02, so this should have little effect. When there were no maternal 

sisters and the cow had more than one daughter the cow-dam correlation 

was only 38% of expected. The dams in this group were poor producers (~66) 

and the cows high producers (276). The fact that the cows remained after 

all maternal sisters departed or never arrived may explain the low cor­

relation between the cows and their dams in terms of milk yield. 
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Cow-paternal sister correlations were lowest when there were many 

paternal sisters. With small variances, the reverse of this would seem 

probable. However,it appears \̂ en there are fewer paternal sisters 

they are probably concentrated more per herd in fewer herds. There would 

probably be additional covariation between their permanent environments. 

Some may also be full sisters vhich would contribute to the expected 

covariance an additional 23% additive genetic and dominance variation as 

well as eplstatic variation. 

Daughters had low correlations with dams, maternal sisters, and pa­

ternal sisters. Some of this would have been caused by removing from 

and replacing daughters in the daughter average. If a cow had more than 

one daughter, the daughter average would be different each time she ap­

peared in these data. Averages for other relatives remained constant 

so the covariances between the fluctuating daughter averages and other 

relatives would be reduced. 

The discussion of standard deviations and correlations was tedious. 

A brief summary may be worthwhile. Standard deviations were lower than 

expected but most at least 85% of expected. Causes may be too large an 

estimate (1250 kg) of standard deviation for individual records, not ac­

counting for selection, variable repeatability, and varying numbers of 

records per animal vAen calculating variances of averages. Correlations 

and covariances were low, possibly due to not accounting for selection, 

herltabillty lower than that used, negative correlations between related 

daughters, and negative correlations between records from the same herd-

year-season. Correlations nearest expected were between relatives likely 

to have positively correlated permanent environments, and half sisters 
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who actually may have been full sisters. 

This project has discussed many aspects of using EATÂ to predict 

daughter first lactation deviated milk yield. Since most dams and daugh­

ters produce in the same herd, these results are applicable basically . 

to within herd selection, which the dairyman practices. Another aspect 

of the problem is the ability to identify cows with highest genotypes 

for milk yield from among cows from different herds to produce sires 

for artificial insemination use. For EATA to fulfill this purpose most 

effectively, each cow must be evaluated with respect to the same genetic 

base or the same environmental base. Deviating records standardized 

for days in milk, frequency of milking, age, and season of calving 

from their regressed adjusted herdmate averages was intended to remove 

environmental variation from differences between records. It deviates 

the record from the herdmate average and credits that deviation with an 

additional f1-N-1\X 100% of its difference from breed average as an ad-

V w 

justment for numbers of records in the herd average. This method does 

not account for genetic differences between herds. It removes from the 

record ̂ at is common to cows in that herd-year-season. Therefore genetic 

differences between herd-year-seasons are also removed. However, this is 

part of what ve wish to measure with the cow index. The cow should get 

credit for competing against cows of higher or lower than average genetic 

worth. 

To evaluate the genetic worth of specific herds, a genetic compari­

son is needed. Paternal half sisters milking in different herds provide 

a practical base of con̂ arison of one herd to another. Using at least 
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these sisters to compute an average breeding value for the cows in a herd 

should give an estimate of the genetic worth of that herd compared with 

other herds. This can be used to index cows such that cows from dif­

ferent herds may be con̂ ared on the same genetic basis. 

The problem of meaningfully comparing cows from different herds has 

created much interest with respect to choosing dams of future sires and 

buying cows. There needs to be research into methods of accon̂ lishing 

this as well as research into whether changes would be wortĥ ile. The 

problem of comparing cows to the same genetic base is mostly a problem of 

measuring what we intend to measure with standardized deviated milk rec­

ords, measure production from a standard genetic base. One could com­

pensate with the index or refine the measure. 

Table 27 summarizes the fractions of daughters with first lactation 

ME milk production greater than herdmate production for various groups 

of dam EATA and sire PD. The correlation between sire ED and dam EATA 

for these data was .02. Standard deviation for EATA was 192 kg and for 

PD was 264 kg. The marginal fractions of daughter yield greater than 

herdmates for sires increased almost linearly from .26 for sires with 

PD's less than y-2a to .76 for sires with PD's greater than y+ 2<̂  . 

However, these records were included in the PD's. Marginal fractions 

for daughters grouped by dam EATA were also quite linear except for 

small numbers in groups less than y-3a and greater than u+4a . To com­

pare with sires, the fraction for EATA's less than u-20 was .38 and more 

than y+ 2 a .68. A second margin for dam EATA's includes all first lac­

tation daughters in these data, not restricted to daugjhters of sires 

with PD's. 
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Table 27. Fractions of daughters with first lactation ME yield greater 
than herdmates.̂  

Dam EATA <-2a -2a, -a 

Sire 

-G, y 

PD 

y, a a, 2a >2a 
All 
Sires 

>4a o 0 0 0 o 0 .25 

3a, 4a o + + + o .81 .76 

2a, 3a 0 + + + + + .65 .66 

a, 2a + + + + + + .66 .63 

y, a + + + .56 .54 

-a, y + + + .50 .48 

1 Q
 

+ + .40 .40 

1 C
O

 
Q

 1 Q
 

+ + .36 .34 

<-3a o + + + o .64 .50 

.26 .43 .48 .57 . 66 .76 .53 .51 

U, a designates ii<EATA< y+a. e.g. (y, y + a] 

ÊATA ÊATA 

CpD = 265 kg, ypg = 64 kg. 

Plus indicates more than 50% of the daughters in that cell produced more 
milk than their herdmates. Blank indicates 50% or less produced more milk 
than herdmates. Zero indicates no daughters in that cell. 
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In the body of Table 27 plusses indicate more than 50% of the 

daughters in that cell produced more milk than herdmates. Blanks indi­

cate 50% or less daughters produced more than herdmates, and zeros desig­

nate cells which contained no daughters. Plusses were concentrated in 

the upper triangular portion of the grid Wiere dam EATA's or sire PD's 

were above average. Plusses in the lower right and blanks in the upper 

left seem to indicate higher probability of an above average daughter 

from a mating of high sire, low dam than low sire, high dam. However, 

there were few daughters on the bottom line and in the upper left of 

the table. 
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SUMMARY 

Correlation of dam EATA with daughter first lactation deviated milk 

yield was .18 where .20 was expected. Dam EÀTA was also positively cor­

related with ME production of daughter herdmates. This was caused by 

some herds culling cows more intensely than other herds or using a higher 

proportion of genetically superior sires than other herds. 

Linear regression of dam 3ATA on daughter first lactation deviated 

yield was 1.13 with a standard deviation of .07. The regression was 

significantly larger than the expected regression of 1.0. Any automati<-

clty in the analysis would have inflated the observed regression. Quad­

ratic and cubic regressions were not significant, but closer examination 

revealed daughters of the lowest EÂTA dams produced more milk than ex­

pected. 

The distribution of EATA's was skewed right with a mean of 34 kg and 

standard deviation of 192 kg. The variance of EATA's was less than ex­

pected. 

Daughter first lactation deviated yield was regressed simultaneously 

on groups of relatives included in the dam EATA's. Combinations of rela­

tives in the dam EATA were required to contain at least the cow (dam of 

the daû cer) and her patetTial sisters. This included 98% of the daugh­

ters. One third of the daughters had all five relative groves in their 

dams' EATA's. Partial regression coefficients for the daughters of the 

cow were negative due to removing daughters from the daughter average one 

at a time as dependent variables and replacing them. Cow weights were 

larger than expected and dam weights were smaller than expected. 
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Using the daughters whose dams' EAIÂ's contained information on all 

relative groups, relatives were deleted one and tvn at a time. Ençhasis 

placed on each relative group essentially did not vary as groups were 

deleted. 

In combinations where relatives were missing, standard regression 

weights were more sensitive to changes in available relatives. Certain 

relatives took up the slack of missing relatives, though not always rea­

sonably. Paternal sisters commanded more weight than the cows when ma­

ternal relatives were missing. Cows received the most weight otherwise. 

Multiple correlations of daughter first lactation deviations with 

relatives in their dams' EÂTA's were probably reduced somewhat by not 

weighting averages of relatives by the numbers of records in the averages. 

Multiple correlations for three of the eight combinations of relatives 

representing independent data were smaller than expected. These account­

ed for 50.4% of the degrees of freedom in the eight groups. The correla­

tion for the combination with all relatives present was lower than ex­

pected due to a low correlation between daughter yield and cow average in 

the EÀTA. This low correlation persisted for all combinations where rela­

tives were deleted because they represented the same data. Dams and 

maternal sisters added little accuracy to predicting daughter yield. Ibst 

correlations for combinations with missing relatives were larger than 

expected but variable. 

Standard deviations of relative averages in the EÂTÂ's were smaller 

than e3q>ected as the variance used to calculate the expected standard 

deviations was probably low. Correlations between relatives were also 



108 

smaller than expected. Factors possibly contributing to misevaluating 

e:q>ected variances and correlations were selection, environmental cor­

relations, heritability estimate too large, repeatability not accounting 

for numbers of records, negative correlations between dependent daughter 

and average of remaining daughters, negative correlation between records 

made in the same herd-year-season, and calculating variances of means 

using average records per animal rather than individual records per 

animal. 

EATA seems to be fulfilling most of its potential for predicting 

daughter milk production \̂ ere dams and daughters produce in the same 

herd. There is wide Interest in conparing EATA's of cows in different 

herds to choose dams to save bulls from. The accuracy of these cong>ari-

sons of dams from different herds merits some research to determine the 

extent of the problem and efficient solutions if necessary. 

Further research might be useful to determine In&rmatlon which 

research should investigate not only relatives, such as the maternal 

grandsire, but also indicator traits such as percent fat or physiologi­

cal measures. One must be cautious about excluding information which 

does not add to the accuracy of the index. It may contribute to the popu­

larity of the index for the dairyman, leading to genetic progress. 
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