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GENERAL INTRODUCTION 

Over the past two decades, there has been a growing concern over the consumption of 

fats and cholesterol in the American population. This new trend has been mostly influenced 

by diet and health concerns and government recommendations. In 1979, the Surgeon 

General's Report on Nutrition and HeaUh urged Americans to improve their health by: 

reducing dietary intake of saturated fats, cholesterol, salt and sugar; increasing their 

consumption of complex carbohydrates; and takuig only enough energy to maintain desirable 

body weight (Keeton, 1991). Many consumers are currently luniting the amount of fat and 

calories from fat in their diets. This public demand for low fat foods has increased research 

and industry interest in developing lower fat meat products with acceptable sensory attributes. 

The meat industry has responded to some of these diet issues by reducing the amount of fat in 

processed meats and by producing leaner cuts. However, much work remains to be done in 

this area. Fat has several important roles in meat products; it provides desirable texture, 

flavor and juiciness. Reduction of fat, therefore, results in a product with lower overall 

palatability. 

Interest is growing in the use of hydrocolloids as water binding and texture modifying 

agents In low-fat processed meats. Carrageenans are sulfated polysaccharides that are 

produced from a variety of seaweeds in the class Rhodophyceae. The flinctionality of 

carrageenans in meat systems is related to their thermal reversible gelation properties. 

Addition of carrageenans to low-fat meat products improves water retention, consistency, 

"sliceability", and texture but the molecular mechanisms involved are not well understood. 
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Interactions between polysaccharides and proteins generally involve changes in functional 

properties of food systems. The use of model systems in which protein and polysaccharide 

composition and interactions can be evaluated may help to explain the functional changes that 

occur during meat product manufacturing. In general, the forces involved in protein-

polysaccharide interactions are electrostatic in nature; other forces such as hydrogen, 

hydrophobic or covalent bindings may also be involved. Carrageenan has been reported to 

react with milk proteins, that is, K-casein interacts with K-carrageenan to form a stable 

complex. However, interactions between carrageenans and salt soluble meat proteins have 

not yet been reported. 

Many extrinsic factors can aflfect the gelation properties of proteins and 

polysaccharides. For instance, changes in ionic strength, and pH have been proven to either 

increase or decrease the protein-protein interaction of heat-induced meat proteins, and the 

gelation of carrageenans. More information is also needed on the effect of carrageenans in the 

freeze-thaw stability of meat products, at various pH values and ionic strength conditions. 

Carrageenan, when added to a meat system, improves water holding capacity. Therefore, it is 

expected that under freeze-thaw conditions, it would serve as a stabilizing agent. 

The objectives of this study were to evaluate, with the use of model systems, the 

interactions of three carrageenan types (kappa, iota, and lambda) with salt soluble meat 

proteins, the forces involved in such interactions and the effect of carrageenan on the thermal 

denaturation of salt soluble meat proteins. The extracted salt soluble meat proteins used in 

these experiments contained sarcoplasmic and myofibrillar fractions, which are commonly 

extracted in the manufacture of processed meats. The effects of pH, phosphate and saUs on 
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the performance of carrageenans in the freeze-thaw stability of cooked-pork sausage were 

also investigated. 

Dissertation Organization 

This dissertation consists of a general introduction, a literature review and three papers 

to be submitted to the Journal of Food Science, and a general summary. The first paper 

examines the fiinctionality of carrageenans and salt soluble meat proteins in model systems. 

The second paper uses differential scanning calorimetry to study meat/carrageenan samples. 

The third paper examines the effect of salt, phosphate and carrageenan on the freeze/thaw 

stability of cooked pork sausages. Each paper consists of an abstract, introduction, materials 

and methods, results and discussion, conclusions and references. 

Reference 

Keeton, J. T. 1991. Fat substitutes and fat modification in processing. Recipr. Meat Conf 

Proc. 44:79-89. 
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LITERATURE REVIEW 

Meat Proteins 

The amount of protein contained in lean muscle tissue is approximately 20%, but it 

varies with age, sex, specie, genetic makeup and the state of nutrition of the animal from 

which it is obtained (Morrisey et al., 1987). Many proteins have been separated from muscle 

and classified based on their organization, distribution, solubility and function. 

On the basis of their solubility, meat proteins are classified as sarcoplasmic, 

myofibrillar and stromal proteins. Sarcoplasmic proteins consist of proteins that are soluble at 

low ionic strength (0.1 n) (Morrisey et al., 1987), located in the sarcoplasm (muscle-cell 

cytoplasm) and account for approximately 30 to 34 % of the total protein. They are very 

similar to the proteins that are present in the cell cytoplasm except for the presence of 

myoglobin and glycolitic proteins (Asghar et al., 1985). Myofibrillar proteins constitute 

among 50-55% of the total protein content of the total muscle proteins. They are located in 

the myofibrils, which are the contractile elements of muscle. Myofibrillar proteins are usually 

extracted from muscle with high ionic strength solutions, but once extracted some of them are 

soluble at low ionic strength. The major proteins in this salt-soluble fraction are myosin, actin, 

tropomyosin, troponin, and a-actinin. Stromal proteins comprise 10 to 15% of the total 

protein content (Morrissey et al., 1987). This group of proteins contain mainly three fibrillar 

proteins: collagen, reticulin and elastin that are commonly referred as connective tissue 

(Asghar et al., 1985). The biological fianction of connective tissue is to cover the body as well 

as connecting the muscle organs, and other tissue structures to the skeleton and to each other. 
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On the basis of their physiological function in the muscle, myofibrillar proteins are 

divided into two subgroups: contractile and regulatory proteins; and intermediate filaments 

and proteins (Asghar et al., 1985). Myosin (actomyosin in the post rigor state) and actin are 

the major components of the thick and thin filaments, respectively. They are directly involved 

in the contraction-relaxation cycle of live muscle. Myosin proteins represent 52-53 % of the 

total myofibrillar proteins. Myosin is composed of two large polypeptide chains, "heavy 

chains," each having a molecular weight of about 200,000 kdaltons and three or four small 

chains, "light chains." The light chains vary in their solubilization properties and molecular 

weights: Alkali light chain 1 or LC-1 has a molecular weight of 20.7 to 25 kdaltons and is 

isolated with alkali treatments; the "DTNB-light chain," or LC-2 (19 to 20 kdalton) is isolated 

with 5.5'-dithiobis(2-nitrobenzoic acid), and the LC-3 or alkali light chMn-2, of molecular 

weight 16 to 16.5 kdalton, is soluble in alkali. Studies conducted on isolated myosin 

molecules have shown three important intrinsic properties of myosin. It is an enzyme with 

ATPase activity, it has the ability of binding actin and it can form aggregates with itself to 

form filaments (Bandman, 1987). Actin is the major constituent of the thin filament and 

accounts for 22% of the myofibrillar protein. Depending on environmental conditions, actin 

can be found in two forms. In low ionic strength solutions, actin exists as a single-chain 

globular protein (G-actin). Under high salt conditions, G-actin polymerizes to form a fibrous 

protein (F-actin) with a 6-rmi wide double-stranded, right handed helical structure (Morrissey 

et al., 1987). The actins are designated as a-actin if present in skeletal and cardiac muscle 

tissues, while in non-muscle tissues of higher vertebrates they are called P-and y-actin. 

Regulatory proteins are the myofibrillar proteins that are involved in the contraction-relaxation 



6 

cycle. They have been divided into two subgroups; the major (tropomyosin and the 

troponins) and the minor (M-protein, C-protein, F-protein, H-protein, X-protein, I-

paramyosin, actinins, a-actinin, P-actinin, y-actinin, Eu-actinin, and Z-protein) regulatory 

proteins. Tropomyosin is a long protein molecule (941 nm long) that consists of two 

polypeptides, a-and p-chain. The molecular weights of the a-chain, P-chains and 

tropomyosin have been reported to be 34 kdaiton, 36 kdalton and 66 to 68 kdalton, 

respectively. Tropomyosin regulates muscle contraction by steric blocking and unblocking of 

actin-S-1 myosin interaction (Asghar et al., 1985; Eskin, 1990). Troponin is an elongated 

molecule of 80,000 kdalton and is composed of three subunits. Each of these subunits has 

specific function in living muscle. The subunit that binds Ca^ ions is called troponin C (17 to 

18 kdalton), the subunits that binds to tropomyosin is named troponin T (20 to 21 kdalton) 

and the actomyosin ATPase inhibitory subunit is termed troponin I (30 to 33 kdalton). The 

minor regulatory proteins are believed to be concerned with the regulation of filamentous 

structures and have been shown to be distributed in the M-line (e.g., M-protein), Z-line (e.g., 

a-actinin, Eu-actinin, and Z-protein) and I-band (e.g., P-actinin, y-actinin) (Asghar et al., 

1985). 

Protein Gelation 

Protein gelation has been extensively used as a model system to study the mechanisms 

responsible for texture and water holding characteristics of meat products. In the study of 

meat protein gelation, the complexity of the system has to be established. Extensive studies 

have indicated that myosin was the main protein responsible for binding meat pieces together, 
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thus many researchers have used myosin as a model system (Fukaaawa et al., 1961a; 

Fukazawa et al., 1961b; Yasui et al., 1979; Ishioroshi et al., 1979; Ishioroshi et al., 1980; 

Dudziak et al., 1988). More complex systems, such as meat batters and intermediate systems 

that include salt-soluble protein and myofibril suspensions, have also been used to study the 

chemical/physical events that occur during the manufacturing of processed meat products 

(Trout and Schmidt, 1987; Camou et al., 1989; Foegeding et al., 1991). 

Heat-induced gelation has been simplified by Ferry (1948) into a two-step process that 

involves; the initial denaturation of native protein (Pn) into uncoiled polypeptides, followed by 

aggregation of denatured proteins (Pd) into a cross-linked gel network during heating (Fig. 1). 

In this mechanism, x represents the number of protein molecules involved in gelation. 

heat heat and/or cooling 
xPn • • (PD);, 

Fig. 1. Ferry's gelation mechanism (Morrissey et al., 1987) 

The aggregation step must occur slowly, to allow the denatured protein molecules to 

orient and interact, thus the gel matrix can be formed (Acton and Dick, 1984). Quick 

aggregation of protein molecules results in random protein-protein interactions that promote 

coagulation, characterized by syneresis, low elasticity and high opacity (Morrissey et al., 

1987). During the gelation process water is immobilized within a network to form a firm and 
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stable structure that is resistant to flow under pressure (Glicksman, 1982). Hence, gelation 

involves not only protein-protein interactions but also protein-solvent interactions. 

An expanded Ferry's model in which aggregation has been divided into series of steps leading 

to a final structure was suggested in the model of Foegeding and Hamaim (Fig. 2). In this 

model, proteins unfold and aggregate to form a viscous solution. At the gel point, the gel 

formed exhibits viscoelastic properties and changes with time to form an equilibrium matrix or 

the final gel structure (Smith, 1994). 

Native Heat Protein 
Protein Unfolding 

Time Protein-Protein 
*' Interactions 

Time 
Gel Point' 

Primary 
Matrix Time 

Equilibrium 
Matrix 

Fig. 2. Heat-induced gelation of thermally irreversible proteins (Smith, 1994) 

It is generally accepted that polypeptide chains cross-link to form five or six 

crystalline regions per molecule during gelation. These interactions may involve multiple 

hydrogen bonds, disulfide or peptide bonds and may also be electrostatic and hydrophobic in 

nature (Asghar et al., 1985). Other molecules can move in between the links or strands 

conferring elasticity to the gel. 
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Role of muscle proteins in gelation 

Myosin Several studies have shown myosin as the most important component of 

the salt-soluble meat proteins involved in protein gelation (Fukazawa et. al, 1961a, 1961b, 

1961c; Samejima et al., 1969). Myosin is composed of tail and head portions that play 

different roles on the gelation properties and binding of muscle and are susceptible to 

proteolytic enzyme action. Trypsin and chymotrypsin cleave the molecule into two parts in a 

region of the tail that lacks a-helical conformation. The main part (150,000 Kdalton of 

molecular weight) is called light meromyosin (LMM) and the remaining part containing the 

head (350,000 Kdalton molecular weight) is known as heavy meromyosin (HMM). The latter 

can be further cleaved under control conditions into segments. The main globular part is 

named subfragment 1 (S-1) and the remaining fibrous part is called subj5'agment-2 (S-2) 

(Asghar et al., 1985). 

Samejima et al. (1981) compared the heat-induced gelation of subfi-agment 1 and the 

myosin rod to that of intact myosin. They observed that upon heating at 65 °C for 20 min, 

myosin and myosin rod formed firm gels, while S-1 showed very poor gelation properties. 

Scanning electron microscopy studies corroborated these observations. A network was 

observed in intact myosin and myosin rod gels, whereas bead-like protein aggregates were 

visible in S-1 precipitates. It has been found that myosin and actomyosin show two transition 

temperatures during heat-induced gelation (Ishioroshi et. al, 1979; Samejima et al. 1981). 

Ishiroshi et al. (1979) suggested two kinds of conformation changes in the myosin molecule 

each with a different temperature of transition (Tmi = 43 °C and Tm2 = 55 °C). The 

first transition was attributed to the aggregation of globular head portions (S-1) at about 43 



®C, which corresponded to Tmi values of myosin and its subfragments. These interactions are 

closely associated with the oxidation of SH groups residing in that region. The second 

transition temperature (55 °C) was mainly due to the formation of the network by the thermal 

unfolding of the tail helical portion of the myosin molecules during heating, and corresponded 

to Tm2 of the thermogelling reaction of myosin (Samejima et al., 1981). The network 

formation by tail-tail interactions is apparently stabilized by hydrophobic interactions since 

hydrophobic residues are exposed during the thermal unfolding of the helix (Ishioroshi et al., 

1981). Therefore, it was suggested that the unfolding of the helical tail portion of the myosin 

molecule may play a role in the heat-induced gelation of myosin. 

Sano et al. (1988) also proposed two steps at two temperature ranges for the thermal 

gelation of myosin, that is, 30-44 °C and 51-80 °C. In an attempt to elucidate the roles of the 

head and the tail portions of the molecule in the thermal gelation of myosin, Sano et al. (1990) 

conducted further experiments using HMM and LMM as model systems. Their results 

indicated that HMM was not able to form a gel, but it aggregated at a temperature range 

above 50 °C, which corresponded to that of myosin. On the contrary, LMM formed a gel in 

the temperature range below 45 °C, which also corresponded to that of myosin in this 

temperature range. In conclusion, these researchers proposed that during the first 

development of gel elasticity, which occurred at 30-44 °C range, thermal gelation changes of 

myosin were attributed to the tail portion of the molecule (LMM), and that during the second 

development of the gel in the 51-80 °C range to the head portion of the molecule (HMM). 

Samejima et al. (1984) studied the role of myosin heavy chain (MHC) in the heat-

induced gelation of myosin extracted from rabbits. Their observations suggested that myosin 



gelation was dependent on the behavior of MHC and that the presence of myosin low chain 

did not contribute to the strength of the system. MHC formed a firm gel at temperature range 

of 60 °C, similar to the gelation temperature for intact myosin. Furthermore, MHC gelation 

showed two thermal transition temperatures, which corresponded to the ones observed by 

Samejima et al. (1981) for intact myosin. 

Myosin binding strength is affected by concentration, nature of myosin, extraction and 

gelation conditions. Yasui et al. (1979) observed that heat-induced gelation of myosin started 

at 30 °C and ended at 60 °C to 70 °C and that the formation of the network was highly 

dependent on pH, being pH 6.0 the optimum for development of gel rigidity. Different 

isoforms of myosin exhibit different behavior. Amato et al, (1989) compared the functionality 

of dark and light chicken muscle at two ionic strength conditions. Their results showed that 

red muscles had better functionality than white muscles at their natural pH. Red muscles had 

higher stress values, indicating higher strength, than gels made fi^om white muscles. Red 

muscle also had higher water retention properties than white muscle. 

Actomyosin Actin alone does not exhibit any binding properties, but in the 

presence of myosin it reveals a synergistic effect, primarily due to the formation of 

actomyosin, a complex between actin and myosin (Asghar et al. 1985). Samejima et al. 

(1969) studied the heat gelling properties of myosin, actin, actomyosin and myosin-subunits in 

a saline model system. The data reported by these researchers indicated that heat gelling 

properties of these protein solutions were not parallel with those of more complex model 

systems (stroma and myofibrillar proteins). F-actin did not have an effect on heat-gelling 

properties, but it improved the gel strength when myosin was present in the solution. Yasui et 



al. (1980) suggested that the enhancing effect of F-actin on the heat-induced gel formability of 

myosin was introduced by the binding of myosin to actin. This effect disappeared by the 

addition of ATP or inorganic phosphate, which is known to dissociate actomyosin to myosin 

and actin (Ishiroshi et al. 1980). Sano et al. (1989b) studied the role of F-actin in the gelation 

of fish muscle proteins. They observed that the addition of F-actin to myosin solutions 

resulted in gels with higher elasticity modulus, that is, it increased the viscosity of the cooked 

gels. However, F-actin alone showed no gel formation and turned into a curdled matter upon 

heating (Sano et al., 1989a). 

It has been suggested by some authors that an optimal myosin/actin ratio was needed 

for actomyosin to develop maximum heat-induced gel formability. However, others have 

indicated that a higher portion of myosin in the actomyosin system resuUed in better binding 

ability within the range between mole ratios of myosin and actin of about 3 to 8 (Yasui et al., 

1980). This discrepancy was solved by Yasui et al. (1982), who observed that a specific 

myosin to actin ratio was essential to develop stronger gels. The molar ratio of myosin to 

actin was reported to be 2.5, which corresponded with the weight ratio of myosin to actin 

about 15 to 1. Further studies have indicated that the synergistic effect of actin and myosin is 

either ionic dependent or determined by the state of myosin per se at different ionic strength 

(Ishiroshi et al. 1983; Asghar et al. 1985). For instance, addition of F-actin (0.5 to 3.0 mg/ml) 

to a myosin system at low ionic strength (0.2 M KCl) resulted in lower heat-induced gel 

strength of the myosin system (Ishiroshi et al. 1983). 

Tropomyosin and troponins Many researchers have observed no effect of 

tropomyosin and troponins on the gel strength of actomyosin. Samejima et al. (1982) 
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observed no significant differences in gel strength treated with or without tropomyosm. In a 

later study, Samejima et al. (1985) found soluble tropomyosin and troponins after heat 

treatments, which suggested that tropomyosin was a heat stable protein and had little gelation 

value at normal cooking temperature. However, other researchers have reported a significant 

increase in binding quality and water holding capacity by the addition of native tropomyosin to 

actomyosin system in the presence of pyrophosphate and MgCb than in tropomyosin-fi-ee 

systems (Nakayama and Sato, 1971; Asghar et al. 1985). 

The gelation of meat proteins during heating is critical for the development of the 

characteristic texture of comminuted meats and depends on environmental conditions, such as; 

salt concentration, pH and temperature of the system . 

Factors that affect protein gelation 

Protein concentration Heat-induced gel strength of myosin increased 

proportionally with protein concentration, independently of ionic strength, and the presence of 

actin in the system (Asghar et al., 1985). Similar results were observed by Ishioroshi et 

al.(1979), who evaluated the effect of protein concentration (0.1-1%) on the gelation of 

myosin. They found that heat-induced gel strength increased proportionally to its 

concentration at pH 6.0 and 65 °C. Cofi"ades et al. (1993) studied the effect of protein 

concentration on the apparent viscosity of natural actomyosin from hake, pork and chicken 

muscles. Their observations showed that in diluted solutions the effect of protein-solvent 

interaction predominated and there was a linear relationship between viscosity and protein 



concentration. However, when protein concentrations were higher, protein-protein interaction 

was increased and a non-linear relationship was found at that concentration. 

Not only meat-protein gel strength was affected by protein concentration but also 

water-holding capacity. In a study conducted by Camou et al. (1989), the effect of heating 

rate and protein concentration (10-50 mg/mL) on gels made with salt soluble meat proteins 

were evaluated. Gels made with protein concentrations lower than 20 mg/mL had greater 

water loss and lower protein in the expelled water, while higher protein concentration yielded 

more stable gels. 

Salt concentration MacFarlane et al. (1977) studied the effect of salt concentration 

(0-1.4 M NaCl) on the binding strength of myosin, actomyosin, and sarcoplasmic proteins. 

The binding strength, that is, the force needed to pull two pieces of meat apart, of myosin was 

superior to that of actomyosin at ionic strengths up to 1.0 M. At higher salt concentrations 

(1.2 M to 1.4 M), actomyosin binding ability was found to match myosin in this respect. 

Other researchers have also reported this ionic strength effect on myosin behavior. For 

instance. Turner et al. (1979) measured the effect of extracting crude myosin from beef 

muscle with various salt and phosphate concentrations. They observed that salt concentration 

increased the binding strength of crude myosin primarily by solubilizing the protein (Siegel and 

Schmidt, 1979). It has been suggested that salt increases the binding ability of myosin due to 

its ability to dissolve myosin by enhancing electrostatic repulsions (Hamm, 1960) and to 

dissociate myosin aggregates (Huxley, 1963). These effects would augment the number of 

molecular interactions induced by heating to form a firm gel. Also, it would induce an 

increase on water holding capacity of myosin binders and the muscle surfaces being bound 



(Siegel and Schmidt, 1979). Ishiorosbi et ai. (1979) observed that at low ionic strength, rabbit 

myosin molecules were assembled into filaments which upon heating formed ordered three-

dimensional structures. At high ionic strength (>0.3 M), however, the molecules were 

released fi-om the myofibrils and existed as monomers in solution (Ishiroshi, 1983). The latter 

array was more likely to be affected by random collision caused by brownian motion. One 

possible explanation for the weakening of the gels in high salt concentration is the weakened 

of the electrostatic interactions between F-actin and myosin. Under these conditions, the F-

actin effect on the gel strength of myosin is diminished (Asghar et al., 1985). 

Offer and Trinick (1983) have reported the mechanism involved in the disruption of 

myofibrils by sodium chloride. Their results indicated that myofibrils were able to swell to at 

least twice their original volume in salt conditions normally used in the meat industry. The salt 

concentration required for maximum swelling of myofibrills was greater (0.8M) in the absence 

of pyrophosphate than in its presence (0.4M). The same concentrations required for 

maximum swelling have been reported by other researchers for maximum water uptake in 

muscle. Therefore, Offer and Trinick (1983) suggested that myofibrils were the site of water 

retention in meat processing. Swelling of myofibrils was found to be accompanied by 

extraction of the middle portion of the A-band in the absence of pyrophosphate, while, the A-

band was completely removed in the presence of pyrophosphate. They also reported that 

structural constraints in the myofibril, such as the Z-line or M-line had to be disrupted by salt 

to allow the filaments to expand. 

The swelling effect of NaCl in myofibrils has been attributed to the chloride ions, since 

experiments done with sodium acetate caused no swelling. CI" ions are attracted to the amino 



group of the myofibrillar proteins, causing an increase in electrostatic repulsive forces, which 

would lead to swelling. High concentration of salt also causes dissociation of protein 

molecules because of the competitive effect of CI" ions for electrostatic interactions. In 

addition, high NaCl concentration causes a shift in the isoelectric point (pi) to a lower pH 

value. This shift in pi would increase the negative charge of the carboxyl groups, increasing 

repulsion between them and therefore augmenting the water holding sites (Offer and Trinick, 

1983). 

Salt type Sodium reduction has been recommended in western diets, however its 

replacement results in products with poor sensorial attributes and water holding ability. Not 

much information is available on the influence of different cations on heat induced gelation of 

myosin. Studies conducted with myosin solutions treated with Na'^'or K"*" showed no 

significant difference in gel strength between these two treatments (Asghar et al., 1985). 

However, studies conducted using more complex systems, such as meat batters and 

frankfurters, indicated different behavior. Hand et al. (1982) studied the effect ofNaCI, 

MgCl2 and LiCl alone or in combination on pork/beef or mechanically deboned turkey 

fi"ankfurters. Replacement of NaCl with either KCl or MgCla resulted in a product with poor 

palatability. However, no differences in firmness among treatments (100% NaCl, 100% KCl 

and 100 % MgCl2) were observed, up to three weeks of storage. After six weeks of storage, 

the 100% KCl treatment was less firm than control. Barbut and Mittal (1988) studied the 

effect of NaCl, KCl and MgCl2 alone or in combination on the rheological and gelation 

properties of meat batters. They observed breakdown of the emulsions containing 100% 

MgCb, which they attributed to the destabilizing effect of divalent cations. It was suggested 



that divalent cations decrease water holding capacity by forming cross-bridges between 

peptide chains. Also, divalent cations can participate in coordinate bonds with carboxyl, 

sulfhydryl, and hydroxyl groups of proteins and phosphoryl groups of nucleotides (Asghar et 

al. 1985). Emulsions with 100% KCl had the minimum gelation modulus of rigidity, an effect 

that has also been observed by Trius (1994). 

pH Ishioroshi et al. (1979) have reported pH 6.0 and 60-70 °C as the optimum pH 

and temperature for heat-induced myosin gelation, respectively. At pH 6.0, solutions of NaCl 

or KCl containing myosin exhibited greater gel strength than those formed at other pH values. 

Gels made at higher pH were translucent in appearance, while gels formed at pH 5.0 and 5.5 

appeared "spongy" and those made at pH 4.0 and 4.5 were described as "particulate." These 

observations agreed with protein-protein interaction studies conducted by Ziegler and Acton 

(1984). These researchers investigated the kinetics of the protein-protein interaction of 

bovine natural actomyosin that occur during heat-induced gelation. At pH 5.5, the apparent 

energy of activation AHa (17.1 Kcal/mole) for the heat-induced protein solution was 

significantly lower than activation energies found for pH 6.0 (24.3 kcal/mole) and pH 7.5 

(26.9 Kcal/mole). This indicated that at pH 5.5, protein-protein interactions will occur at 

lower temperature (16 °C) than at pH 6.0, in which aggregation does not occur until the 

temperature approached 37 °C. Maximum interaction occurs at pH 5.5 and 6.0 as compared 

to the changes observed at pH 6.5 and 7.5. These resuhs also agreed with the findings 

published by Acton et al. (1981), who reported maximum gelling strength for natural and 

crude actomyosin at pH 5.0 to 5.5 and at pH 5.5, respectively. 



The effects of pH (4.5, 5.5, 6.5 and 7.5) on the rheological properties of chicken 

breast salt-soluble proteins during heat-induced gelation were investigated by Wang et al. 

(1990). Their results indicated that unfolding and aggregation of native protein molecules 

during heating were influenced by pH. No major rheological transitions were recorded during 

heating proteins at pH 4.5, because proteins coagulated and failed to gel. This behavior is 

typical for myosin at pH close to its pi. At its pi, the net protein chaige is zero, which 

increases the electrostatic attraction among molecules. Electrostatic attraction minimizes the 

unfolding of the proteins during heating, therefore preventing gel formation. Lower transition 

temperatures were observed at pH 5.5 than pH 6.5 and 7.5, due to lower protein 

thermostability at this pH. At pH 6.5 and 7.5, gels were more elastic in comparison to the 

other pH studied (Wang et al., 1990). 

The optimal pH for gelation has been reported to be dependent on the relative 

concentration of actin and myosin in the system. As the ratio of myosin-to-actin decreases, 

the optimal pH for heat-induced gelation changes from pH 6.0 to pH 5.5 (Acton et al. 1983). 

Siegel and Schmidt (1979) did not find a significant effect of pH on binding ability of myosin 

extracted from prerigor bovine trapezius muscles. They suggested that the absence of any 

significant effect of pH in their system could be explained by the buffering effect of the muscle 

surfaces on the myosin binders, which could have eliminated any differences in pH. 

The effect of pH on the apparent viscosity of natural actomyosin extracted from hake, 

pork and chicken muscle was studied by Cofrades et al. (1993). These researchers indicated 

that pH had a major influence on the effect of concentration in the apparent viscosity of 

actomyosin. The higher the pH, the greater the effect of protein concentration, hence the 



higher the viscosity of the solution. As protein pH varied from its pi, protein molecules swell, 

making hydrophilic groups available, which increases the friction in the system. At high 

protein concentration, this pH effect will favor molecular interaction which explains the great 

influence of pH at higher protein concentrations. 

The effect of pH in water retention has been described by various authors. At the pi 

of meat (pH 5.3-5.5), water retention is very low, therefore, cooking losses are expected to 

increase. Trout and Schmidt (1987) reported lower gel cooking losses at pH 6.0 than at pH 

5.5, either in the presence or absence of phosphates. 

Temperature The influence of heating temperature on myosin gelation in model 

systems is well documented. Asghar et al. (1985) have reported that myosin gel strength 

increased exponentially from 25 to 60 °C, when myosin solutions were heated at pH 6-7 

range. However, these changes remained constant from 60-70 °C either at pH 6.0 or 7.0, 

indicating that the temperature optimum for gelation was 60-70 °C (Yasui et al, 1979). Gels 

that were heated at 60 °C had a sponge-like network with relatively large holes, while those 

gels heated at 50 °C had lacy networks. At temperatures as low as 40 °C, some changes in 

the molecules have been detected by means of light scattering absorbance, which may be 

indicative of protein-protein interactions (Asghar et al. 1985). Conformational changes for 

myosin at 37 °C and for actomyosin as low as 20 °C have also been detected by means of 

viscometric techniques (Acton et al. 1983). 

Siegel and Schmidt (1979) studied the effect of temperature on the binding ability of 

myosin. The ability of myosin to bind pieces together was not observed at temperatures lower 



than 45 °C. However, binding linearly increased as temperature approached 80 °C, and 

remained constant from 85 °C to 90 °C. 

Most of the data published in heat-induced gelation have been collected using constant 

temperature in the range of 55 °C to 60 °C; little has been reported on the effect of heating 

rate on gel strength of muscle proteins. Foegeding et al. (1986) examined the effect of 

heating rate on the formation of myosin gels. Their results indicated that increasing heating 

rate to a final temperature of 70 °C at a rate of 12 °C/hr produced stronger gels than at 50 

°C/hr, or at constant heating for 20 min. This suggested that slow heating rates may favor 

more protein-protein interaction to occur, while faster heating rates would promote more 

nucleation and less growth. It was also suggested that a constant temperature more random 

protein-protein interactions are developed. Further studies (Saliba et al., 1987) on the 

structural failure and nondestructive rheological analyses of frankfurter batters supported the 

previous findings by Foegeding et al. (1986). Failure shear stress values increased as heating 

rate was decreased. Similar results were obtained by Camou et al. (1989), who observed 

decreased gel strength when the heating rate was increased up to 85 °C/hr. 

Phosphates Phosphates constitute a very large group of compounds that have been 

defined as "those chemical substances in which the anion consists of PO4 tetrahedra that may 

be linked together by the sharing comers" (Molins, 1991). The members of the series having 

one phosphorus atom are called orthophosphates. The dimers (two P atoms) are the 

pyrophosphates, followed by the triphosphates 01 tripopolyphosphates (three P atoms) and by 

the tetraphosphates (four P atoms). In the food industry, sodium salts are the most frequently 



used, sodium tripolyphosphate (STPP) being the most popular, although sodium acid 

pyrophosphate and tetra sodium pyrophosphates (TSPP) are also widely used. 

There are several ways in which phosphates may alter the structure and characteristics 

of meat proteins. Indirectly, phosphates can induce changes in the envirormient in which 

proteins exist. These changes may involve alteration in pH and ionic strength as well as 

chelation of metal cations. Phosphates may also adsorb into proteins causing diverse effects 

on protein characteristics such as hydration, swelling, gelation and protein-protein interactions 

(Molins, 1991). Some of these changes induced by polyphosphates have been found to 

improve meat functionality and properties, such as increase water-holding capacity (Bendall, 

1954; Shults et al., 1972; ShuUs and Wierbicki, 1973; Trout and Schmidt, 1986; Barbut et al., 

1988; Paterson et al., 1988) and meat binding, improve emulsification and color development, 

retard lipid oxidation and provide certain antimicrobial effects (Trout and Schmidt, 1983). 

The effects of polyphosphates on the solubility of myosin are still controversial. Some authors 

attributed these effects to the changes in pH induced by phosphates, while others proposed 

specific phosphate-myosin interactions (Molins, 1993; Yasui et al., 1964a; Yasui et al., 1964b; 

Bendall, 1954). Proteins are least soluble at their isoelectric point (net charge balance equal 

to zero) because the protein structure contracts upon itself When phosphates are added, the 

net charge of the proteins becomes positive or negative depending upon the type of phosphate 

used. Repulsion between groups and chain with the same charge forces the protein molecule 

to open up, thus exposing more sites to surrounding water molecules. These changes make 

protein molecules more soluble, increasing water holding capacity and decreasing viscosity of 

protein solutions. The latter is beneficial in meat batter stability because lower viscosity of the 
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batter reduces heat generation during chopping, which helps in maintaining low temperature 

during batter formation (Molins, 1991). 

Yasui et al. (1964a) classified the effects of polyphosphates on the solubility of myosin 

B into two types. Type I included low molecular weight polyphosphates (pyrophosphate, PP 

and TP), which showed great affinity with myosin B in the presence of monovalent cations 

and formed divalent-metal phosphates complexes with the protein. In addition, these 

phosphates also behaved similarly to ATP, favoring the dissociation of actomyosin into actin 

and myosin. Type 11 consisted of high molecular weight polyphosphates, which solubilized 

myosin B by a direct binding where no salt was present. In the presence of monovalent 

cations, these polyphosphates acted like normal salts, by increasing the ionic strength of the 

system. 

Further studies conducted by Yasui et al.(1964b) demonstrated the specific effect of 

phosphates on the viscosity of myosin B solutions. PP and TP increased their affinity with 

myosin B in the presence of monovalent and divalent cations. Furthermore, these inorganic 

polyphosphates, also showed the specific reaction with myosin B similar to that of ATP. 

Similar results were obtained by Bendall (1954). He studied the effect of various 

polyphosphates and sodium chloride on the swelling and water holding ability of lean meat. 

Among all polyphosphates examined, PP was suggested to have the largest effect on meat 

swelling, which was also increased by increasing ionic strength. PP was thought to facilitate 

the extraction of myosin and actin from muscle at high ionic strength by splitting the link 

between actin and myosin. 



Phosphates have been also shown to increase the gel strength of meat batters. Whiting 

(1987) studied the effect of various salts and water soluble components on the water and fat 

exudation and gel strength of meat batters. He observed an increased in gel strength of meat 

batters when phosphate was used. Siegel and Schmidt (1979) used crude myosin, myosin, 

actomyosin and myosin heavy chain preparations to study the eflfect of phosphate on the 

ability of myosin to bind pieces together. Phosphate and salt linearly increased the ability of 

myosin to bind meat pieces by solubilizing the proteins. These researchers attributed this effect 

to the selective binding of phosphate to proteins and to increase solubilization and water 

holding capacity. On the other hand, Trout and Schmidt (1986) have suggested that 

combinations of pH and ionic strength were the main factors involved in improving gel 

strength. The changes in muscle protein functionality induced by salt and phosphate are 

caused in part by changes in protein structure, which are mainly due to electrostatic and 

hydrophobic interactions. 

Protein Extraction 

Protein extraction techniques are designed to obtain the greatest amount of 

myofibrillar proteins (MP) from muscle. By grinding and chopping, it is possible to disrupt 

the muscle membranes and sarcolemma, thus facilitating the release of myofibrils and 

myofibrillar filaments. Gillett et al. (1977) studied the effect of various parameters (stirring 

time, temperature and salt concentration) on the extraction of meat proteins in a model 

system. They observed an increase of soluble protein with mixing time and high NaCl 

concentration and an optimum temperature of 7.5 °C. This is in agreement with the work of 



other researchers who have shown a linear relationship between salt concentration and 

extractable protein up to 10% NaCl. However, in practical applications, concentrations 

higher than 2.5% should be avoided due to flavor considerations. Turner et al. (1979) 

reported greater protein extraction using high salt concentrations in the presence of 

phosphates (1 M salt and 0.25% tripolyphosphate) than with low salt concentrations. 

The addition of sodium chloride (NaCI) during MP extraction produces a shift in the 

pi of the myofibrillar proteins to a lower pH value, creating a larger net negative charge. 

Repulsion between these negatively charged groups causes the protein to open up, thus 

increasing their water holding capacity (Acton et al., 1983). Polyphosphates are also effective 

in increasing the water holding capacity of meat, particularly at higher pH. In the presence of 

2% NaCl and 0.3% Na-pyrophosphate, myofibrils have been reported to swell significantly. 

The effect of phosphate is to facilitate the extraction of myosin and actin from muscle at high 

ionic strength (0.5-0.6 |.i). Offer and Trinick (1983) reported maximum swelling of myofibrils 

at 0.4 M NaCl and lOmM sodium pyrophosphate. Equivalent swelling of myofibrils was 

previously observed in solutions containing 0.8M NaCl (Asghar et al., 1985). Common 

extraction procedures for myofibrillar proteins in meat systems are performed with ionic 

strength 0.6 to 1.3 and pH range of 5.8 to 6.2. In buffered solutions these parameters 

changes between studies but seldom fall below of pH 6.0 and ionic strength of 0.5-0.6 (Acton 

etal., 1983). 
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Differential Scanning Calorimetry 

Differential Scanning Calorimetry (DSC) has been used increasingly in the study of 

thermal denaturation of meat proteins. DSC is based on the principle that whenever a material 

undergoes physical or chemical change, heat is either absorbed or liberated (Parsons and 

Patterson, 1986). The purpose of this technique is to measure the difference in enthalpy 

change that occurs between a sample and an inert reference material when both samples are 

heated at the same time (Lund, 1983). The changes in enthalpy reflect chemical and 

physiological changes taking place in the sample, such as protein denaturations (Findlay and 

Barbut, 1990; Quinn et al., 1980; Starbursvik and Martens, 1980), starch gelatinization, and 

phase transitions of lipids. 

Thermal transitions represent the point where conformational changes occurr in 

proteins. A typical thermal transition thermogram for muscle is composed of three major 

transition peaks, which represent myosin subunits (55 °C), sarcoplasmic proteins and collagen 

(67 °C) and actin (80 °C) (Findlay and Barbut, 1990). Wright et al. (1977) observed three 

discernible peaks in post-rigor rabbit muscles, which corresponded to the thermal transitions 

obtained with myosin (60 °C), sarcoplasmic proteins (67 °C) and actin (80 °C). 

It is well established that factors such as pH, salt concentration, sarcomere length, and 

postmortem conditions influence the thermal properties of meat (Findlay and Barbut, 1990). 

Quinn et al. (1980) used a DSC to monitor the changes in heat stability of beef proteins during 

processing meat into sausage batter. They observed that addition of sodium chloride 

drastically altered the stability of meat proteins, indicated by lower transition temperatures of 

the major peaks. Similar results were observed in chicken muscle by Shiga et al. (1988). 
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When NaCl was added to the chicken, the endothermic peak shifted to lower transition 

temperatures. A shift in the thermal transitions of actin to lower temperature was observed 

by Park and Lanier (1989) upon addition of salt to fish muscle. Furthermore, enthalpies of 

denaturation for actin and myosin were decreased with further processing. A study conducted 

by Stabursvik and Martens (1980) comparing DSC thermograms of beef samples with 

different pH (5.45-6.75), showed that pH had a destabilizing effect on muscle proteins, 

changing the shape and position of the denaturation peaks. Stabursvik et al. (1984) also 

compared the denaturation of myofibrillar proteins from normal and pale, soft and exudate 

(PSE) pork tissues in situs using DSC techniques. Thermograms of myofibrillar tissue fi'om 

normal pork showed three major peaks with temperature maxima at 58 °C and 66 °C, 

associated with myosin denaturation and at 78 "C, associated with actin denaturation. In PSE 

thermograms, the peak at 58 °C was markedly reduced, and appeared as a shoulder, 

indicating that partial denaturation of myosin had occurred before thermal denaturation in the 

calorimetry. 

Recently, DSC has been used to examine the thermal properties of protein-

polysaccharide mixtures. Ensor et al. (1991) reported that the addition of algin/calcium 

(0.4%/0.075%) to crude myofibrillar, sarcoplasmic, and connective tissue proteins had a 

thermal destabilization effect on these meat proteins, which may indicate the occurrence of 

physical changes of the protein. Interaction between other polysaccharides (Alginate, pectate, 

carboxymethyl cellulose and dextrin) and meat proteins (myoglobulin and bovine serum 

albumin) were also studied. These researchers observed that the thermal stability of 

myoglobin was decreased upon addition of pectin, alginate or CMC. The addition of other 
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polysaccharides (i.e., carrageenans) to meats has also been reported to afiTect the thermal 

transition of meat proteins. Shand (1991) studied the effect of adding K-carrageenan to 

ground beef under various ionic strengths. She observed that the addition of 2% k-

carrageeenan decreased TmaxL Tinax2> Tmax3 values by an average of 0.9 °C, 0.5 °C 

and 2.6 °C, respectively. The destabilizing effect was more pronounced when carrageenan 

was added to the high higher ionic strength samples. 

Carrageenan 

The term carrageenan has been derived from the older term carrageenin originally used 

to designate ejctractives of Chondrus and Gigartina species. Today, other related species 

with similar structure are also called carrageenans, the genera Furcellaria, Eucheuma, 

Hypnea, Iridea and Polyides (Towle, 1973). Carrageenan is oflBcially described in the Food 

Chemical Codex III, as the product "obtained by extraction with water or aqueous alkali from 

certain members of the Class Rhodophyceae" one of the four major categories in which 

marine seaweeds or algae have been classified. It is a hydrocolloid consisting mainly of the 

potassium, sodium, magnesium, calcium and ammonium sulfate esters of galactose and 3,6-

anhydrogalactose copolymers. These polymers are essentially linear chain, composed of 

galactose units that are alternately linked glycosidically a 1,3 and P 1,4. The predominant 

monosaccharide units for this galactan are shown in Table 1. Their sulfate content is the 

major feature used to distinguish the red seaweed extracts. Furcelans must contain 8-19% 

sulfate and carrageenans must have 18 to 40% sulfate. The percentage of sulfate also varies 
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Table 1. Monomer units of carrageenans 

Galactan Predominant Monosaccharide Units 
lota-carrageenan D-galactose 4-sulfate 

3,6-anhydro-D-galactose 2-sulfate 
Kappa-carrageenan D-galactose 4-sulfate 

3,6-anhydro-D-galactose 
Lambda-carrageenan D-galactose 2-sulfate 

D-galactose 2,6-disulfate 
Mu-carrageenan D-galactose 4-sulfate 

D-galactose 6-sulfate 
3,6-anhydro-D-galactose 

Nu-carrageenan D-galactose 4-sulfate 
D-galactose 2,6-disulfate 
3,6-anhydro-D-galactose 

Adapted from Glicksman (1983b) 

within carrageenans; K, i and X values are 25-30%, 28-35% and 32-39% sulfate, respectively 

(Glicksman, 1983a). 

Types of carrageenans 

The three major carrageenans are kappa, iota, and lambda carrageenans. The latter is 

not a gelling agent (Lockwood, 1985). These fractions are derived from minor fractions or 

precursors; mu (n, precursor of K), nu (v, precursor of i) and theta (0 formed from X,) 

(Glicksmann, 1983b; Towle, 1973). They differ chemically in their degree and manner of 

sulfation, presence of a position of 3-6 anhydrolactase residues linked 1-4, different pyranose 

ring conformations (Reeves CI or IC); and different cations associated with the sulfate 

groups (Fig. 3). 
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Kappa Carrageenan 

O3SO 

OH OH 
D-gaIactose-4-sulfate 3,6-anhydro-D-galactose 

Iota Carrageenan 

O3SO 

D-galactose-4-sulfate 3,6-anhydro-D-galactose-2-sulfate 

Lambda Carrageenan 

CH2OH 

0>^ 

-03S(r^°^>«^20S03-

•03SO 

D-galactose-2-sulfate D-gaJactose-2,6-disuIfate 

Fig. 3. Carrageenan structure (Glicksman, 1983b) 
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kappa-CGN K-carrageenan is composed of alternating 1,3 linked galactose-4-

sulfate and 1,4 linked 3,6-anhydro-D-galactose units (Fig. 3). This is formed in the red algae 

by enzymatic action. Dekinkase is the en2yme responsible of removing the sulfate at C6 in the 

1,4 linked galactose-6-sulfate of n-carrageenan to form the 3,6 anhydride (Glicksmann, 

1983b). The amount of 3,6 anhydro-D-galactose usually found in nature is 28%, however 

amounts up to 35% can be obtained by appropriate processing conditions. An increase of 

anhydride content, affects the gelling capacity of carrageenan (Towle, 1973; Glicksmann, 

1983b). 

iota-CGN The structure of i-carrageenan is the same as that of K-carrageenan, 

except that the 3,6 anhydro-D-galactose unit is sulfated at the C2 position (Fig. 3). The 

precursor fraction of i is v, which contain no anhydride but 6-sulfate in the 1,4-linked 

galactose. By eliminating the sulfate at the sixth carbon position, the ring is closed to make 

the 3,6 anhydrogalactose ring that forms iota-carrageenan. i-carrageenan gels are less 

sensitive to potassium than K-carrageenan due to its higher content of sulfate (25-50%). On 

the other hand, as sulfation of C2 positions increases, the sensitivity to calcium becomes 

predominant (Glicksman, 1983). The presence of the 2-sulfate group increases its 

hydrophobicity resulting in a marked difference in physical properties between K and v-

carrageenan. 

lambda-CGN This non-gelling carrageenan is mainly composed of alternating units 

of 1,3 linked galactose and 1,4 linked galactose 6-sulfate (Fig. 3). Differently from kappa 

and iota, the 1,3 linked galactose unit is not sulfated but the second carbon is usually 70% 

sulfatated (Glicksman, 1983b). In the presence of potassium ion, i-carrageenan does not 
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precipitate. It remains a mixture of highly sulfated galactans with small amount of 

contaminating polysaccharides, such as floridean starch and xylan (Towle, 1973). 

Production 

There are several steps to the production of carrageenan (Fig. 4). First of all, the 

geographic location or distribution of the algae must be determined to asses the availability in 

the particular location. Harvesting of carrageenan is done by traditional manual operations. 

Method I 

Method 2 

Filtration Washing 

Weed wash 

Concentration Drum Drying 

Alkaline Cook 

Sun or oven 
drying 

Vacuum Drying 

Alcohol Precipitation 

Grinding 
Blending 

Standarization 

Fig. 4. Process for commercial production of carrageenan (Glicksman, 1983b) 

Much of the raw material is harvested by workers, others are obtained as drift weed 

cast upon the beaches following storms and other violent weather changes. After harvesting 

the seaweed is dried mechanically or under the sun, the algae are baled and shipped to the 

processing plant. At the plant, the seaweed is washed to remove dirt and sand and then 
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macerated and extracted in hot (100 °C) alkaline solution (Fig. 4). The alkaline solution has 

two functions: it helps the extraction of the polysaccharide from the plant and catalyzes the 

formation of 3,6 anhydro-D-galactose residues by eliminating the 6 sulfate groups from the 

monomer. After cooking, three extraction methods (washing, concentration and alcohol 

precipitation) can be used, however the method that provides the best quality is by alcohol 

precipitation. Significant amount of some red seaweeds species are being grown coirmiercially 

using tank aquaculture and seaweed cultivation farms, to expand the supply of seaweeds 

(Glicksman, 1983b). 

Properties 

Solubility All the carrageenans are soluble in hot water and temperatures above 70 

°C. Only X-carrageenan and sodium salts of K and i-carrageenans are soluble in cold water 

(Glicksmann, 1983b). The temperature of solubility depends on the concentration of 

carrageenan, cations associated with it and cations present in the environment (Moirano, 

1977). The hydrophobicity of the molecule plays an important role on solubility, that is the 

presence of sulfate half-ester groups and galactopyranosyl unit makes the molecules cold 

water soluble. For instance, A,-CGN that has high percentage of sulfate esters and is void of 

3,6-anhydrogalactopyranosyl units, is cold water soluble in all salt forms. In contrast, K-

carrageenan, having large number of hydrophobic 3,6 anhydrogalactopyranosyl units and less 

hydrophilic sulfate-ester groups, is cold water soluble only in the sodium salt form. Some 

organic compounds retard the hydration of carrageenans, such as some salts, sugar and 

polysaccharides (Table 2). Hydration of carrageenan is also affected by pH. Lower pH levels 
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Table 2. Comparative properties of the three major types of carrageenan. 

Properties Kappa lota Lambda 
Ester sulfate (ca) 25-30% 28-35% 32-39% 
3,6-Anhydro- 28-35% 0% 30% 
D-galactose 
Solubility 
Hot water Soluble above 70°C Soluble above 70°C Soluble 
Cold water Na"^ salt soluble. Na+ salt soluble All salt 

Low to high swelling of Ca-H- salt gives soluble 

K+ Ca++, andNH+4 thixotropic dispersions 

salt 
Organic solvents Insoluble Insoluble Insoluble 

Gelation 
Effect of cations Gels most strongly with Gels most strongly with Non-gelling 

K+ Ca++ 
Type of gel Brittle with syneresis Elastic with no Non-gelling 

syneresis 
Locust bean gum Synergistic None None 
effect 
Stability 
Neutral and Stable Stable Stable 
alkaline pH 
Acid (pH3.5) Solution Hydrolysis Accelerated by heat Hydrolysis 

Gelled state stable 
Adapted from Glicksman (1982) 

increase the solubility of carrageenan, while pH levels of 6 and above retard it (Glicksman, 

1983b; Towle, 1973; and Moirano, 1977). 

Gelation In the presence of gel-inducing cations and upon cooling, kappa-

carrageenans form brittle gels characterized by syneresis. Syneresis may be defined as the loss 

of fluid from the interior of a gel due to shrinkage of the gel and expulsion of the fluid to the 

surface (Moirano, 1977). lota-carrageenan forms elastic gels, K- and i-carrageenan gels are 

thermally reversible, i.e., they melt on heating and gel again on cooling. Lambda is not 
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capable of forming a gel (Table 2). K-carrageenan gels can become more elastic in the 

presence of other hydrocoiloids, for example the addition of iota-carrageenan to kappa-

carrageenan solutions makes more elastic gels and less prone to syneresis (Igoe, 1982). 

Kappa-carrageenan also exhibits a synergistic eflfect with locust gum, that is, the gel strength 

of the two polysaccharides is markedly enhanced when there are combined in solution. Also, 

the gels are transformed from a brittle to a more elastic structure and present less syneresis 

(Table 2). 

The gel strength and gelling temperature of K-carrageenan are affected by the type of 

cations present (Glicksmann, 1983b). Zabik and Aldrich (1968) reported that high 

concentrations of KCl favored the formation of gels at higher temperatures. Smidrod and 

Grasdalen (1982) reported evidence of specific binding of by i- and K carrageenan during 

gelation. It has been suggested that ions, particularly and Rb^by acting as solvent 

structure-makers or breakers influence gelation of carrageenans (Oakenfull, 1987). 

Stability All carrageenans are stable under neutral and alkaline pH, however 

carrageenans in solution are hydrolyzed at pH 3.5 (Table 2). The hydrolysis is greatly 

accelerated by heat under low pH conditions. Carrageenan hydrolyses resuhs from a cleavage 

of the 1,3-glycosidic linkage and is accelerated by the presence of the strained ring system of 

the anhydride (Moirano, 1977). In the gelled state, however, iota-carrageenans are very 

resistant to hydrolysis. 



Mechanism of gelation 

One of the most distinctive properties of a gel is that its composition resembles a pure 

liquid and it also can approach that of a solid. The general explanation for this change in 

physical state is the association of polymer molecules resulting in a three-dimensional 

framework that contains solvent in the interstices. The gelation mechanism of carrageenans is 

extremely sensitive to polysaccharide structure. Double helix formation is completely blocked 

by the presence of D-galactose 6-sulfate or 2,6-disulfate in place of a 3,6 anhydride residue. 

The presence of one molecule of D-galactose 6-sulfate per 200 residues results in a kinked 

helix that prevents the double helix from forming. Closure of the ring to form the 3,6-

anhydride, constrains the 1,4 pyranose unit to the IC form with resultant removal of the kink. 

Therefore, the introduction of 3,6 anhydride is a chain straightening process, leading to 

greater regularity in the polymer and increasing capability of forming a double helbc (Moirano, 

1977) 

Rees (1969) proposed a double helix model for carrageenan gelation based on 

structural studies by x-ray diffraction. On cooling, a transition from a random-coil 

conformation in the sol state to the gel state (Gel I) occurs, where the chains are cross-linked 

by isolated double helices (Fig. 5). During further cooling, the aggregation of double helices 

leads to a three-dimensional gel structure (Gel II), which intersticials are occupied by water 

and sometimes other small molecules and ions (Rees, 1972). Dea et al. (1972) suggested that 

each chain was caused to combine with more than one partner by structural irregularities or 

"kinks," to form a network rather than propagating the same double helical association alone 
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SOLUTION GEL I GEL II 

Fig. 5. Mechanism proposed by Rees (1969) for gelation by i- and K-carrageenans. 

the entire molecular length. This model is supported by detail comparison of gel properties 

and theoretical rotation changes attributed to helix formation. 

Rees et al. (1969) showed more evidence that supports the double helix model after 

studying the changes in optical rotation that occur during gel setting. Changes in optical 

rotation are to be expected when helices form and aggregate. When a hot K-carrageenan 

solution is cooled, its optical rotation and similar properties change very slowly until 40°C or 

the "gel point" is reached. Changes in optical rotation begin to increase sharply without 

apparent textural changes. As the temperature reaches 37.0 °C, textural measurements show 

a sol-gel transformation but without major changes in optical rotation. At 33.8 °C, changes in 

gel texture become visible and there is an inflection in the optical rotation curve. At this 

point, the gel becomes turbid and loses its clear appearance, this stage is also called the "haze 

point." Snoeren and Payens (1976) observed that these transition temperatures were linearly 

dependent on ionic strength. 
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Further studies on carrageenan gelation led Robinson et al. (1980) to postulate a more 

complete mechanism (Fig. 6). In the newer model, "domain model," carrageenan chains 

associate to form "ordered domains" by the formation of intermolecular double helices. The 

formation of these domains does not produce a gel network; gelation only occurs with the 

aggregation of the domains, which is mediated by specific binding of gel promoting cations 

such as potassium, rubidium and calcium (Oakenfiill, 1987). 

Fig. 6. The "domain model" proposed by Robinson et al. (1980) 

Smidsr0d and Grasdalen (1980) have proposed another model to explain the 

mechanism of carrageenan gelation (Fig. 7). These authors suggested that an intramolecular 

conformation change results upon cooling and gelation occurs by formation of cross-linkages 

in which specific cations act as bridges. By comparing the addition of tetramethylammonium 

iodide and chloride to solutions of K-carrageenan, Smidsr0d and Grasdalen (1982) found that 

iodine (20 mM) induced the formation of ordered single helices, presumably by binding itself 
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Fig. 7. Sniidsr0d and Grasdalen's model for carrageenan gels (Smidsrod and Grasdalen,1982) 

to the polysaccharide. Meanwhile, the presence of polysaccharide random coils were still 

evident in solutions containing up to 150 mM chloride. 

Protein-polysaccharide Interactions 

Understanding the interactions that occur between polysaccharides and proteins is very 

important in the study of functional properties of food systems. Charged polysaccharides 

have the ability to interact with other polysaccharides, proteins and lipids, changing the 

properties of food. Edible gels may be produced by three kinds of interactions between 

proteins and polysaccharides. The simplest kind is that between a protein with a net positive 

charge with a sulfated or carboxylated polysaccharide. Much more specific is the interaction 

between two polymers bearing the same net charge. And a third kind, which includes highly 

selective linking of polysaccharide to protein by covalent bonds (Stainsby, 1980). 

When two polymers of opposite net charge are mixed, such as in the case of an anionic 

polysaccharide at or above its pi and a protein below its pi, the enthalpy of mixing is 

exothermic and the chain-chain interactions lead to complex formation. This phenomenon 
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involves interactions that are primarily electrostatic in nature (Ledward, 1994). Electrostatic 

interactions between positively charged proteins and negatively charged polysaccharides are 

dependent on pH and ionic strength. For example, at pH 6.0 the electrostatic interaction 

between myoglobin, which posses a positive charge at this pH, and anionic polysaccharides 

are stronger than vwth bovine serum albumin that carries a net negative charge (Imeson et al. 

1977; Hansen, 1982). It has been suggested that a carboxylate group of polysaccharides 

interacts with a positively charge protein residue, such as s-amino, a-amino guanidinium and 

imidazole and that the strength of the interaction is related to the distribution of these groups 

and the overall charge on the protein (Ledward, 1994; Samant et al., 1993). Following 

denaturation, the buried basic groups are liberated, increasing the number of reactive sites. 

Also, the denatured state permits configuration adjustments to maximize interactions and yield 

stable complexes (Ledward, 1994). 

Sulfated polysaccharides are negatively charged polymers over a wide range of pH, 

therefore they are able to form complexes with positively charge proteins (Glicksman, 1983b). 

Lin (1977) described four mechanisms by which sulfated polysaccharide reacted with proteins. 

Above the pi of the protein, the proteins are negatively charged therefore polyvalent metal 

ions act as bridges between the negatively charged carboxyl group of the proteins and the 

negatively charged ester sulfates of the polysaccharides. At pH below the pi, proteins are 

positively charged, thus direct interactions between ester sulfate of the polysaccharide and the 

protonated amino groups on the protein take place. This author also suggested intermediate 

or transtitional degrees of association where protein and polysaccharide charges are not 

extremely opposed to each other. Similar mechanisms were also suggested by Carr (1993). 
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Carrageenan molecules could interact directly with positively charged groups on the protein 

surface (Fig. 8a) or indirectly with negatively charged proteins through cation bridges (Fig. 

8b). Upon denaturation, the number of sites increases as well as the flexibility of the random 

coil maximizing protein-polysaccharide interactions. Snoeren et al. (1975) and Snoeren et al. 

(1976) have proposed an electrostatic interaction between two macromolecules bearing the 

same overall charge. Although contradictory, highly unequal distributions of the polar 

residues in the molecules provide regions capable of electrostatic interaction. 

H H 
I I 

R- C -COOH + R'OSOzO- » R- C - NH3*02 0S0R' (a) 
I i 

COOH 

H H 
I I 

R - C - COO" + Ca^ + R'0S020- • R - C - COO • Ca • O2 OSOR' (b) 
I 1 
NH2 NH2 

Fig. 8. Mechanisms of carrageenan and protein interaction (Carr, 1993) 

Carrageenans have been used extensively as a stabilizing agent in the dairy industry. 

Consequently, a lot of research has been done to understand the effects and interactions of 

carrageenans in dairy systems (Grindrod and Nickerson, 1968; Hansen, 1968; Payens, 1972; 

Snoeren et al., 1976; Hood and Allen, 1977; Skura and Nakai, 1981; Schmidt and Smith, 

1992a; Schmidt and Smith, 1992b; Xu et al., 1992). The addition of hydrocolloids to milk 
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systems is known to cause profound changes in the aggregation state of the casein micelles. 

Interactions between K-casein and K-carrageenan have been observed even at pH values above 

the pi of the proteins and polysaccharide, in which K-casein and K-carrageenan carry net 

negative charges (Ledward, 1994). Grindrod and Nickerson (1968) using polyacrylamide gei 

electrophoresis (PAGE) demonstrated that K-casein interacted with carrageenan in presence of 

Ca"*"^. These researchers observed, after using (PAGE) to separate milk proteins, that all 

protein bands were present in the gel except for K-casein. They suggested that a complex 

between K-casein and carrageenan was formed and that this complex was too big to migrate 

inside the gel. The complex was easily broken when PAG-urea-mercaptoethanol was used to 

separate these proteins. It is likely that the calcium ions neutralize the sulfate groups on the 

polysaccharide, permitting the chain to form a "gel-like" structure, which physically serves to 

inhibit protein aggregation (Ledward, 1994). Thus the stabilization of calcium sensitive 

proteins such as casein by sulfated polysaccharides like carrageenans is favored (Hansen, 

1982; Samant et al., 1993). Other researchers have also reported the formation of a 

carrageenan/K-casein complex in the presence of Ca"*"*" (Schmidt and Smith, 1992b) and the 

stabilization against precipitation of as-casein by carrageenan. Skura and Nakai (1981) 

reported that calcium salt bridges between K-carrageenan and as-casein were involved in the 

formation of the K-carrageenan and as-casein complex. 

Electron microscopy techniques have also been utilized to study protein/hydrocolloid 

interactions. Hood and Allen, (1977) used transmission electron microscopy to study the 

influence of kappa and lambda carrageenan on the ultrastructure of milk gels and sols. Their 
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observation suggested that casein-carrageenan interactions occur at the micelle surface and 

that these interactions would help to stabilize the web-like matrix that is formed by the 

carrageenan among the micelles. Carrageenan and K-casein networks have been observed by 

Snoeren et al. (1976) using transmission electron microscopy and by Payens, (1972) by a light 

scattering technique. Chakraborty and Hansen (1971) examined protein hydrocolloid 

complexes in the presence of calcium by electron microscopy and suggested that the 

complexes between carrageenan and as-casein appeared as dense protein bodies entrapped in 

a polysaccharide network. Interactions such as a highly selective linking where 

polysaccharides are bound to proteins through covalent bonds have also been suggested 

(Hansen, 1982). 

In meat systems most of the research involving the use of carrageenans has primarily 

focused on practical applications (Foegeding and Ramsey, 1987; Bater et al., 1992a; Bater et 

al., 1992b; and Bater et al., 1993), therefore, not very much is known about the molecular 

changes that may occur in meats when gums are used. Recently, a mathematical modeling of 

thermal gelation of myofibrillar beef proteins and their interactions with selected hydrocolloids 

has been used to predict the gel strength and the water holding capacity of these proteins in 

the presence of various hydrocolloids (carrageenan, guar, locust bean and xanthan gum). 

Carrageenan was found to contribute to the protein-gum system by increasing the gel strength 

and water holding capacity of the cooked gels over the control treatment, by 184.4% and 

180.7%, respectively. As predicted by the model system, protein-hydrocolloid gels had a 

higher gel strength and water holding capacity than control, except for xanthan gum that was 

found to inhibit gel gelation (Lever-Garcia, 1988). 
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The nature of the forces involved during protein and/or polysaccharide heat-induced 

gelations can be investigated by adding reagents that either promote or prevent interactions. 

Salts such as NaCl, NaSCN and urea can be used to study these interactions. NaCl and 

NaSCN have charge neutralization effects while urea disrupts electrostatic and hydrogen 

bonds. Other reagents such as propylene glycol and 2-mercaptethanol have also been used. 

Propylene glycol affects water structure by disrupting hydrophobic interactions and promoting 

hydrogen and electrostatic bonds. 2-mercaptoethanol separates polypeptide chains linked by 

disulfide bonds (Rodwell, 1990) by reducing the inner- and intramolecular disulfide bonds 

(Cheftel et al., 1985). Utsumi and Kinsella (1985) were able to determine the forces involved 

in soy protein gelations by using stabilizing/destabilizing reagents. 

Bemal et al. (1987) studied the nature of the forces involved in the intermolecular 

interaction of myofibrillar proteins/polysaccharide/calcium systems in the presence of various 

stabilizer/destabilizer reagents (0.05 M NaCl, 0.05 M NaSCN, 10% propyl glycol, 0.02 M 2-

mercaptoethanol and 0.05 M urea). Although, the formation of K-casein/carrageenan 

complex in presence of calcium has been reported, interactions between carrageenan and 

myofibrillar proteins were not observed by Bemal et al. (1987). These authors suggested that 

carrageenan may help to improve the water holding capacity of meat emulsions by holding the 

water in the interstitial spaces of the gel network rather than by true interactions with proteins 

in the formation of the network. However, the carrageenan composition used in this study 

was unknown, and the presence of calcium and sodium may explain for the failure of the 

carrageenan preparation to gel. 
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Carrageenans in Meats 

The current consumer trend towards low-fat meat products has prompted the food 

Industry in developing low-calorie foods with acceptable sensory characteristics (Brewer et 

al., 1992). However, reduction of fat without changing sensory properties is not an easy task. 

Fat has a great impact in juiciness, texture and flavor characteristics. Addition of water to 

partially replaced fat has been effective in improving texture and juiciness of low-fat meat 

products. According to the Code of Federal Regulations (CFR, 1991), addition of water to 

frankfurters and similar cooked sausages is allowed to a certain extent. This regulation says: 

"the finished product shall not contain more than 30 percent fat. Water or ice, or both may be 

used but the sausage shall contain no more than 40 percent of a combination of fat and 

added water." 

In water-added products, retention of water in the product is a concern. 

Polysaccharides' gums are often used to hold water and enhance the texture properties of low-

fat meat products. Garcia-Cruz and Scamparini (1992) studied the efifect of various 

hydrocoUoids in a model system. Their results indicated greater cooking stability when 

xanthan gum, locust gum and guar gum were used. In this study, the protective effect of 

carrageenan was lower than the other hydrocoUoids at concentrations of 1%. However, at 

higher carrageenan concentrations (2-6 %) cooking stability was increased 100 %. 

Carrageenans are added to low-fat meat products to improve water retention, consistency, 

sliceability, and texture. The functionality of carrageenans in meat products is due to its 

ability to form gel and hold water. 



The effect of frozen storage on functionality of meats was evaluated by N^er et al. 

(1980). Frozen storage was shown to affect the water binding ability, emulsifying capacity, 

and cooking loses of beef and pork lean muscles. Da Ponte et al. (1985) investigated the 

effect of various anionic and neutral hydrocoUoids on the stability of frozen stored minced 

fillets. They observed an improved water-holding capacity and cook drip loss when 

hydrocoUoids were used. Further studies on the protective effect of carrageenan were 

conducted by Da Ponte et al. (1987). These researchers studied the functionality of iota 

carrageenan, carboxymethyl cellulose and xanthan gum in formulated minced fish products. 

Their results showed a marked stabilizing effect on texture and weight loss during frozen 

storage upon the addition of gums. 

In the meats area, the introduction of McLean "Deluxe" by the McDonald's Corp was 

the most publicized and commercialized used of carrageenan in low-fat meat products. The 

McDonald's Corp., Oak Brook, IL, adapted the AU Lean formulation developed by a team of 

researchers at Auburn University, AL. The objective was to develop a product with less than 

10% fat and v^th sensory characteristics similar to high-fat patties. To achieve this goal, 

several changes were made such as, meat particle size, addition of spices and flavor enhancers 

and inclusion of iota carrageenan. Iota carrageenan was chosen, among all carrageenans, 

because of its greater water-holding capacity, cold solubilization (some of them) and good 

freeze/thaw stability (Egbert et al., 1991). After extensive analyses that included 

compositional, physical, ultrastructural and sensory evaluation, Huffman et al., (1991) 

reported that a reduction of calories from fat in AU Lean patties was achieved while sensory 

properties of the low-fat product were maintained. 
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Since the development of AU Lean, a lot of research has been conducted to study the 

incorporation of carrageenan in meat products. Barbut and Mittal (1989) investigated the 

effect of potassium and calcium chloride on the gelation and rheological properties of reduced 

fat pork meat sausages containing either iota- or kappa-carrageenan. An increase on sausage 

rigidity was observed by the addition of KCl and CaCb to kappa and iota treatments, 

respectively. These authors suggested that KCl and CaCb affected the structure of the 

carrageenans resulting in sausages with higher gel strength values. They observed that kappa-

carrageenan treatments became more britle and had higher gel strength when potassium was 

present. Also, iota-carrageenan treatments formed a more condensed helical structure in the 

presence of calcium. These results indicated that addition of low concentrations of KCl 

(0.4%) and CaCh (0.2%) could increase the effectiveness of kappa- and iota-carrageenans in 

reduced fat products, respectively. 

The addition of 0.5% kappa-carrageenan to oven-roasted turkey breasts manufactured 

with 70 % added brine resulted in better yield, sliceability, water retention and higher rigidity 

(Bater et al., 1992a). The ability of carrageenan in increasing rigidity was also shown by 

Foegeding and Ramsey (1987). These researchers observed an increase in water holding 

capacity and firmness in those products with carrageenan added. Among the gums studied, k-

carrageenan was the most effective in increasing hardness, while iota-carageenan was very 

effective in increasing water holding capacity. In earlier studies, Foegeding and Ramsey 

(1986) studied the effect of iota-carrageenan, kappa-carrageenan, guar gum, locust bean gum, 

xanthan gum, methylcellulose, and a locust bean gum/kappa carrageenan mixture on water 

retention and texture characteristics of low-fat, high moisture meat batters. They found that 



kappa- and iota-carrageenans were the most beneficial gums in manufacturing low-fat 

fi-ankfiirters. Kappa- and iota-carrageenan decreased cooking loss and improved texture 

without significant changes in sensory properties. 

Shand et al. (1993) studied the effect of two levels of kappa-carrageenan (0.5% and 

1%) and three levels of NaCl (1-3%) on the yield and texture of structured beef rolls with 

33% added water. The addition of k-carrageenan improved cook yield and textural properties 

at all levels of sodium chloride. Furthermore, reduction of salt to 1% and incorporation of 

carrageenan resulted in products with better characteristics than controls. These researchers, 

therefore, suggested the use of kappa-carrageenan to improve the overall characteristics of 

low-salt beef systems. 

Bater et al. (1993) used K-carrageenan in combination with other hydrocolloids to 

improve the quality characteristics of cured turkey thigh meat with 60% brine added. 

Incorporation of 0.5% k-carrageenan increased cooked yield, visual appearance, sliceability 

and bind and decreased fi-eeze and thaw purge compared to control. However, combinations 

of 0.5% K-carrageenan and 2% nonfat dry milk or starch yielded higher binding values than 

those obtained with 0.5% K-carrageenan alone. 

Trius (1994) studied the effect of various extrinsic parameters, such salt type, ionic 

strength, carrageenan and phosphate on the performance of carrageenans in beaker sausage. 

Effect of meat pH on the fiinctionality of carrageenan was also studied. One of the studies 

focused on the effect of three types of salts (NaCl, KCl and CaCl2) on the cooking losses and 

textural properties of beaker sausages treated with kappa-, iota- or lambda- carrageenan. 

Trius (1994) found that the use of CaCl2 resuhed in excessive cooking losses and very poor 
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textural qualities in all the carrageenan treatments as well as the control. Iota- and lambda-

carrageenan sausages had greater water retention in the presence of KCl. This salt, however, 

had a negative effect on the ability of kappa-carrageenan to retam water. In a second study, 

Trius (1994) investigated the effect of phosphate and meat pH on the functionality of 

carrageenan (kappa, iota and lambda). Addition of sodium tripolyphosphate or higher pH 

decreased cooking losses and increased firmness. However, softer texture was observed in 

lambda-carrageenan sausages. At low pH and in absence of phosphate, kappa- and iota-

carrageenan significantly decreased cooking losses. 
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FUNCTIONALITY OF CARRAGEENAN AND SALT SOLUBLE MEAT PROTEINS 

IN MODEL SYSTEMS 

A paper to be submitted to the Journal of Food Science 

Z. DeFreitas, J. G. Sebranek, D. G. Olson, and J. M. Carr 

ABSTRACT 

Protein-carrageenan gels were made using a combination of salt-soluble meat proteins 

(SSMP) and carrageenans (K-, i-, and X-CGN). The effects of CGN on the rheological 

properties, water loss and ultrastructure of SSMP gels were evaluated. Also, the natures of 

the forces involved in the formation and maintenance of SSMP/K-CGN gels were investigated. 

Of all CGN studied, K-CGN showed the greatest effect on gel strength, while A,-CGN was 

detrimental to SSMP gelation. K-CGN increased significantly the gel strength of SSMP, 

suggesting that a molecular interaction may have occurred. However, no indication of 

specific molecular interactions between K-CGN and SSMP was observed. Cryo-SEM studies 

suggested that improvement of water holding capacity and texture of combined SSMP/K-CGN 

gels may be due to physical rearrangement of the K-CGN and SSMP molecules rather than to 

a molecular interaction. 

Authors DeFreitas, Sebranek and Olson are with the Departments of Food Science and 
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DJTRODUCTION 

The current consumer trend toward low calorie foods has increased the food industiys 

interest in developing low-fat meat products with acceptable sensory characteristics (Brewer 

et al., 1992). During the manufacturing of low-fat products, fat is partially replaced by non-

meat ingredients such as hydrocolloids (carrageenan, starch, maltodextrins, etc.) which help 

improve the rheological properties and stability of low-fat meat products (Foegeding and 

Ramsey, 1987; Eater et al., 1992a; Eater et al., 1992b; and Eater et al., 1993). 

Carrageenans (CGN) cover a whole range of sulfated polysaccharides extracted from 

various red seaweeds. There are three major types of CGNs; kappa- (K, gelling), iota- (i, 

gelling), and lambda-CGN (A, non-gelling). They differ chemically in their degree and manner 

of sulfation, presence of a position of 3-6 anhydrogalactose residues linked 1-4, different 

pyranose ring conformations and different cations associated with the sulfate groups (Towle, 

1973). The functionality of CGN in meat systems has been related to its thermally reversibly 

properties. CGN dissolves throughout meat during thermal processing and gels on cooling 

(Carr, 1993). 

Polysaccharide-protein interactions are well documented for non-meat proteins 

(Schmidt and Smith, 1992a; Schmidt and Smith, 1992b; Ozaka et al., 1984; Stainsby, 1980; 

Hood and Allen, 1977; Snoeren et al., 1975; Grindrod and Nickerson, 1968; Hansen, 1968). 

However, few studies have been conducted of the interaction of meat proteins and 

hydrocolloids (Bemal et al., 1987; Lever-Garcia, 1988). Bemal et al. (1987) studied the 

forces involved in the interaction of myofibrillar proteins/polysaccharide/calcium systems with 
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various stabilizer/destabilizer reagents (0.05 MNaCl, 0.05 M sodium thiocyanate [NaSCN], 

10% propyl glycol [PG], 0.02 M 2-mercaptoethanol [MeSH] and 0.05 M urea). Although, 

the formation of K-casein/CGN complexes in presence of calcium have been reported, 

interactions between CGN and SSMP were not observed by Bemal et al. (1987). These 

authors suggested that CGN helped water holding capacity of meat emulsions by holding the 

water in the interstitial spaces of the gel network rather than by true interactions vwth proteins. 

However, the failure of carrageenan to gel in their system may have obscured their findings. 

The objectives of this study were to evaluate model systems for study of possible 

interactions between CGNs (K, i or X) and SSMP and to determine the molecular forces 

involved during the SSMP and CGN interactions. For the purpose of this research, two 

model systems were used; dry CGN and CGN in solution. 

MATERIALS AND METHODS 

Functionality of Dry Carrageenan in Salt Soluble Meat Protein Gels 

Experiment 1; Effect of K-, t-, and X-carrageenan on the physical characteristics of 

heat-induced SSMP gels 

Protein Extraction 

Semimembranosus muscles from pigs were obtained from the Meat Laboratory at 

Iowa State University. The meat was trimmed of excess fat, ground through a 4.5 mm plate 

(Jupiter model 863, Germany), vacuum packed, boxed, and fi^ozen at -40 °C until further use. 



Before the experiment, the frozen samples were allowed to thaw overnight in a 2 °C walk-in 

cooler. The meat pH was determmed after mixing 10 g of ground muscle with 100 ml of 

deionized-distilled water for one minute by means of a pH meter (Accumet 925 pH/ion Meter, 

Fisher Scientific). 

One part of meat and two parts of a 0.58 M saline (0.49 M NaCl, 17.8 mM 

Na5P30jo and ImM NaN3, pH 8.3, 2 °C) solution were blended for 30 sec in a laboratory 

blender (Waring commercial, New Hartford, CT). The slurry was kept at 2 °C for 1 hr and 

then centrifuged at 12,000 x g at 2 °C for 1 hr (Beckman model J21C centrifuge, Beckman 

Instruments Inc., St. Louis, MO). The protein extract was strained through three layers of 

cheese cloth (Camou et al, 1989). Protein concentrations of meat and supernatant were 

determined by a nitrogen analyzer (model FP-428, LECO corporation, St. Joseph, MI). 

Moisture and fat determinations were performed using AOAC official methods (AOAC 

Official Methods of Analysis, 1990). 

Gel Preparation 

Salt-soluble meat protein solutions were diluted to 5% protein with a saline solution of 

the same ionic strength (ca. 0.47 n) and pH (6.00) as the protein extract. The ionic strength 

of the meat extract was calculated taking into account the ionic strength of muscle, 0.26 /u 

(Bendall, 1954), and the fx of extracting solution (0.58 /x). kappa-, iota- or lambda-CGN (0.5 

g) was added to 99.5 mL SSMP extract (ca. 0,47yu) and to 99.5 mL of saline solution (ca. 

0.47 fj) to make SSMP/CGN and CGN (K, I. A) dispersions, respectively. The control 

treatment consisted of SSMP with non-CGN added. All treatments were stirred and 

homogenized for 30 seconds at medium speed (set 5) by means of a Polytron homogenizer 
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(Model PT 10/35, Brinkmaim Instruments, Inc., Westbury, N. Y.). Forty mL of the sample 

were added, in duplicate, to 150 mL beakers. The beakers were allowed to equilibrate at 

room temperature for 1 hr, then placed in a water bath at 70 °C and heated until the internal 

temperature of the gel reached 70 °C. The gels were removed and placed in an ice bath and 

held overnight at 2 °C. 

Gel Evaluation 

Rheologicai characteristics An Instron Universal Testing machine (model 4502, 

Instron Corp., Canton, MA) equipped with a 100 N load cell and a cyclic computer software 

program (cyclic 2, Instron Corp., Canton, MA) was used to measure texture characteristics. 

The gels were compressed two times to 20% of their original height, at a constant speed of 50 

mm/min. An anvil of 35 mm of diameter was used to compress the gels. Peak load, hysteresis 

and elasticity values obtained after compressing were recorded. 

Water losses The gels were placed in centrifuge tubes, weighed and centrifliged at 

low speed (476 x g for 15 min) to prevent disruption of the gel caused by centrifugal forces 

(Camou, 1989). The liquid in the supernatant was decanted and saved for further analyses. 

The percent water loss was calculated as the difference of the total gel weight and the water 

expelled by the gel. 

Statistical Analyses 

The experiment was replicated three times and results were analyzed using a 

completely randomized design with seven treatments. The Statistical Analysis System (SAS, 

1991) was used to determine means, standard errors and analysis of variance. Least 

significant difference P(<0.05) was used to test differences between means. 



Experiment 2; Molecular Forces involved in protein-carrageenan interactions 

Gel Preparation 

SSMP and SSMP/K-CGN gels SSMP solutions were diluted to 1 and 5% protein 

concentrations with a saline solution of the same ionic strength and pH as the meat extract. 

The ionic strength of the meat extract was calculated taking into account the ionic strength of 

muscle, 0.26 // (Bendall, 1954), and the ix of extracting solution (0.58 //). The treatments 

consisted of a factorial combination of stabilizing/destabilizing reagents with six levels, control 

(non-reagent), 0.05 M NaCl, 0.05 M NaSCN, 10% PG, 0.02 M 2-MeSH and 0.05 M urea and 

K-CGN with two levels, 0 and 0.5%. The reagents were solubilized in SSMP extracts 

followed by the addition K-CGN. All treatments were stirred and homogenized for 30 sec at 

medium speed (set 5) by means of a Polytron homogenizer. Forty mL of the samples were 

added in duplicate to 150 mL beakers. The beakers were allowed to equilibrate at room 

temperature, then placed in a water bath set at 70 °C and heated until their internal 

temperature reached 70 "C. Gels were cooled in an ice bath and held overnight at 2 °C. 

K-CGN gels Two different ionic strength solutions (0.47 fx and 0.38 /u) were made 

using NaCl and Na5P30jo- These solutions represented the ionic strengths of the protein 

extracts in which the value of n for the muscle (0.26) was either considered (0.47 jj) or 

neglected (0.38 //). This consideration is very important since CGN gelation, particularly K-

CGN, is highly affected by ionic strength (Zabik and Aldrich, 1968) and the actual ionic 

strength of the meat extract is difficult to determine. The reagents (0.05 M NaCl, 0.05 M 

NaSCN, 10% propylene glycol, 0.02 M 2-mercaptoethanol and 0.05 M urea) were added to 

the solutions, followed by the addition of 0.5 % K-CGN. The dispersions were homogenized, 
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and heated as previously described during preparation of SSMP and SSMP/K-CGN gels. 

Gel Evaluation 

Rheological characteristics and water losses These characteristics were 

determined as described above. 

Protein concentration The amount of protein present in the SSMP extract and in 

the supernatant after centrifiigation at 476 x g for 10 min was quantified with a nitrogen 

analyzer. 

Electrophoresis Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) was performed with 10% acrylamide [bis-acrylamide/acrylamide, 1:10 (w/v)] slab gels 

(pH 8.8) and 5% stacking gel (pH 6.8). Protein samples were incubated at 50 °C for 15 min 

in a sample buffer containing 60 mM Tris-HCl (pH 6.8), 25% glycerol, 2% SDS, 14.4 mM 2-

mercaptoethanol, and 0.1 % pyronin. The amount of protein loaded on the polyacrylamide 

gel was 30 \ig. Electrophoresis was conducted at room temperature with 30 mA per gel for 

about 5 h using Iris-glycine-SDS buffer (pH 8.3) as electrode buffer. Gels were stained with 

Coomasie brilliant blue R250 (Bollag and Edelstein, 1991). Molecular weights were 

determined by comparing mobilities of proteins in the samples with mobilities of a high and 

low molecular weight standard mixtures (Sigma, St. Louis, MO). 

Statistical Analyses 

The experiments were replicated twice and results were analyzed using a 2 x 6 

factorial design with either two CGN levels (0 and 0.5 %) or two ionic strengths (0.38 and 

0.47 |j,) and six treatments (control, NaCl, NaSCN, urea, MeSH and PG). The Statistical 
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Analysis System (SAS, 1991) was used to determine means, standard errors and analysis of 

variance. Least significant difference P(<0.05) was used to test differences between means. 

Functionality of Carrageenan in Solution in Salt Soluble Meat Protein Gels 

Experiment 1; Effect of protein concentration on the gelation of salt-soluble meat 

proteins with carrageenan added 

Protein Extraction 

The extraction procedure was the same described in experiment I. 

Gel Preparation 

Salt-soluble meat protein extracts were diluted to 2%, 3% and 4% protein 

concentration with a 0.33 M NaCl and 12.2 mM Na5P30jo solution of the same ionic 

strength (0.38 ji) and pH (6.00) as the protein extract. The CGN solutions were prepared 

dissolving 1.2 g of CGN in 118.8 mL hot saline solution (0.2 M NaCl and 12.2 mM 

Na5P30jo. 0-26 |.i). A temperature control system (Fig. 1), composed of two closed jackets, 

hoses and a circulating water bath (Haake type F 423, Berlin, Germany), was designed to 

control the temperature of the solutions. 

The preparation of the SSMP/K-CGN gels was as follows; CGN solutions and SSMP 

extracts were added to beakers "a" and "b," respectively, and stirred until the temperature 

dropped to 40 °C (Fig. 1). When both solutions reached 40 °C, 50 mL of the 1% CGN 

solution (0.26 |a) was added to 50 mL of SSMP extract and stirred at medium speed for a few 
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seconds. Control gels (K~CGN and SSMP gels) were made in similar way. K-CGN gels were 

made by combining 50 mL of 1% K-CGN solution (0.26 |J,) and 50 mL of saline solution (0.38 

|a). The SSMP gels resulted from the addition of 50 mL of a saline solution (0.26 n) and 50 

mL of SSMP extract. Approximately, 40 mL of the mixture was added to 150 mL beakers, in 

duplicate. The solutions were allowed to equilibrate at room temperature for 1 hr, then placed 

in a water bath at 70 °C until their internal temperature reached 70 °C. The gels were 

removed and placed in an ice bath and held overnight at 2 °C. 

Gel Evaluation 

Rheological characteristics and water losses These characteristics were determined 

as described above. 

Statistical Analyses 

The experiments were replicated three times and results were analyzed using a 2x3 

factorial design with two CGN levels (0 and 0.5 %) and three protein levels (1.0,1.5 and 2.0 

%). The Statistical Analysis System (SAS, 1991) was used to determine means, standard 

errors and analysis of variance. Least significant difference P(<0.05) was used to test 

differences between means. 

Experiment 2: Effect of carrageenan on the ultrastructure of heat-induced meat 

protein gels 

Two-percent protein gels (SSMP, SSMP/K-CGN) and 0.5% K-CGN gels were made 

as described above. The gels were cut into 3 mm cubes, fixed to a specimen holder with 



tissue glue and cryofrozen by plunging the unit into nitrogen slush at -210 °C in a EMScope 

SP2000A ciyo-unit with vacuum (EMScope, Ashford, Kent, U.K.). After cryofixation, 

samples were fractured, sublimated for 45 min at -80 °C and sputter-coated with gold for 4 

min (Xu et al., 1992). The observations were made in a JEOL JSM-35 scanning electron 

microscope with a cold stage operated at 15 kV. The experiment was replicated twice. 

Experiment 3; Molecular forces involved in maintaining the gels 

A 2 X 2 X 4 factorial design with two pH levels (4.5 and 6.5), two gel types (SSMP 

and SSMP/k-CGN) and four reagents (control, NaCl, 2-MeSH and PG) was used to study the 

forces involved in maintaining the gels. 

Salt-soluble meat protein gels were made with 4 % protein extract, since 2 % protein 

gels were too soft to handle. SSMP/K-CGN gels (2 %) were made using the temperature 

control system, as described previously. The gels were cut into 3.77 cm^surface cylinders 

using a metal cork of 0.3 cm diameter. The cylinders were placed in 50 mL beakers 

containing sodium phosphate buffers of pH 4.5 and 6.5 (controls) and one of the following 

reagent; 0.5M NaCl, 0.2 M 2-mercaptoethanol, and 20% propylene glycol. The samples were 

held at room temperature for 2^ hr in continuous agitation and centrifliged at 10,000 g for 15 

min. Two mL of supernatant were collected. The protein concentration was measured using 

a nitrogen analyzer. 

Statistical Analyses 

The experiments were replicated two times and results were analyzed using a 2x2x4 

factorial design with two pH levels (4.5 and 6.5), two gel types (MP and MP/K-CGN) and 



73 

four reagents (control, NaCl, 2-MeSH and PG). The Statistical Analysis System (SAS, 1991) 

was used to determine means, standard errors and analysis of variance. Least significant 

difference P(<0.05) was used to test differences between means. 

RESULTS AND DISCUSSION 

Functionality of Dry Carrageenan in Salt Soluble Meat Protein Gels 

Experiment 1: Effect of K-, t-, and A,-carrageenan on the physical characteristics of 

heat-induced salt-soluble protein gels 

The raw meat had the following composition: Moisture 72.94 ± 0.66 %, protein 23.6 

± 0.14 %, fat 3.87 ± 0.57 and pH 5.30 ± 0.01. 

Gel Evaluation 

Rheological evaluation The gel strength, elasticity and hysteresis of the gels were 

determined. Peak load (hardness) indicated the energy under the curve at the highest peak 

after the first compression. Elasticity was calculated as the ratio of energies at the first and 

second peaks of the cyclic program (Lefebrve and Theraudin, 1992). Elasticity values of 1 

represented gels that were 100 % elastic. Hysteresis was defined as the deformation process 

where the loading and unloading parts (energies) do not coincide, but form a loop (Muller, 

1973 ; Prentice, 1984). The higher the hysteresis value, the higher the percent cf loading 

energy, therefore the less elastic the material. 

Addition of carrageenans (k, i, and A-) to SSMP significantly (P<0.05) affected the 



physical properties of SSMP gels (Table 1). K- and i-CGN sigtiificantly increased (P<0.05) 

the gel strength of SSMP while A,-CGN was detrimental to gelation. The reason for the 

behavior of X-CGN in the presence of SSMP is unknown. However, it may suggest that 

highly negative-charged A,-CGN molecules could change the orientation of the SSMP 

proteins, resulting in the formation of weaker gels. 

The force needed to compress SSMP and K-CGN gels independently did not add up to 

the total force required to compress SSMP/K-CGN gels. This may indicate that a 

protein/hydrocolloid interaction between SSMP and K-CGN had occurred. No significant 

(P>0.05) difference was observed between pure I- and A,-CGN in terms of gel strength. All 

CGN had lower gel strength alone than SSMP and SSMP/X-CGN gels (Table 1). CGN had 

no effect (P>0.05) on final elasticity of the SSMP gels (Table 1), in spite of the marked 

differences observed among CGN gels. As expected, I-CGN had the highest elasticity value 

(0.78) while K-CGN was found to be very inelastic, a property that has been observed by 

Towle (1973). The hysteresis characteristics of the samples in our experiment were only 

affected (P>0.05) by the addition of CGN. K-CGN had the highest hysteresis value (P<0.05), 

indicating that they were the most brittle gels. 

Water loss Water loss determinations were only done on the SSMP and 

SSMP/CGN gels since CGN gels were difficult to handle. Addition of CGN (K, I and X) 

significantly (P<0.05) decreased the percentage of water loss from the samples after 

centrifugation, indicating that all CGNs improved water retention of SSMP gels. The ability 

of plant gums to contribute to viscosity or to form gels may help explain the decrease in water 
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loss observed by the authors. However, greater water holding capacity of SSMP/X,-CGN gels 

did not reflect an increase in gel strength (Table 1). This is because X,-CGN increases 

viscosity but does not form a gel. 

Experiment 2; Molecular forces involved in protein-carrageenan interactions 

The raw meat had the following composition: Moisture 74.83 ± 0.45 %, protein 22.05 

± 1.32 %, fat 2.85 ± 0.04 and pH 5.65 ± 0.27. 

Rheological evaluation The effect of various stabilizing/destabilizing reagents on 

the formation and hardness of gels may be correlated with molecular forces contributing to the 

formation or maintenance of the network structure of the gels. The effect of these reagents 

(NaCl, NaSCN, urea, 2-MeSH and PG) on the gel strength of SSMP/CGN gels made with 1 

% and 5 % protein extract and 0.5 % K-CGN is shown in Fig. 2. Gel strength was 

significantly (P<0.05) affected by type of gel (SSMP and SSMP/K-CGN) and type of reagent. 

SSMP gels were significantly (P<0.05) softer than SSMP/K-CGN gels, except those 

treatments containing NaSCN, which were as soft as SSMP gels. The addition of the 

destabilizing reagents to 1 % SSMP did not significantly (P>0.05) change the gel strength of 

SSMP, however it changed the properties of SSMP/K-CGN gels (Fig. 2a). No significant 

(P>0.05) differences in gel strength were observed among gels treated with 2-MeSH, Urea, 

and control (non-treated) gels, however, SSMP/CGN gels that contained NaCl, NaSCN and 

PG were significantly (P<0.05) weaker than control (Fig. 2a). NaSCN gels were the softest 

of all treatments. The number of disulfide bonds within the sample appeared to have no effect 
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on the stability of heat-induced gels. These results are in agreement with the data published 

by Gordon and Barbut (1992), who observed no significant impact of disulfide formation on 

the stability of meat batters. Whiting (1987) reported no significant effect of MeSH on the gel 

strength of pork/beef meat batters. 

Pure K-CGN gels treated with these reagents at two ionic strengths (Fig. 3 a) behaved 

similarly to the SSMP/K-CGN gels. NaSCN and NaCl significantly (P<0.05) decreased K-

CGN gel strength. NaSCN is known to affect electrostatic interactions that are important in 

the formation of K-CGN and SSMP gel matrixes. A study conducted by Utsumi and Kinsella 

(1985) on the forces involved during the formation of soy protein gels indicated that the 

addition of NaCl and NaSCN produce weakening of the gels. Bemal et al. (1987) observed 

similar effect of NaCl and NaSCN on alginate gels. However, no differences in viscosity were 

observed by these researchers in carrageenan/meat protein gels treated with the former 

destabilizing agents. Nevertheless, their conclusions were obscured by the fact that the CGN 

samples used in the study were unable to gel. 

The addition of K-CGN to 5% protein extract increased significantly (P<0.05) the gel 

strength of the SSMP gels (Fig.2b). Among all the treatments used, PG was the only 

treatment to have an effect on SSMP gel strength. These results showed that SSMP and 

SSMP/K-CGN gels became harder (P<0.05) with the increased involvement of hydrogen 

bonds and electrostatic interactions. The presence of PG diminishes hydrophobic bonds, but 

enhances the contribution of hydrogen bonds and electrostatic interactions by lowering the 

electrostatic constant. At 5 % protein concentration, the reagents effect was not as clear as at 



1 % protein concentration. 

It is not clear whether hydrogen bonding or electrostatic interactions were involved in 

the increase of SSMP and SSMP/K-CGN gel strength since CGN gels showed sunilar 

behavior as SSMP/K-CGN gels in the presence of these reagents. These results may suggest 

that the changes in gel strength were due to CGN instability rather than to the weakness of 

SSMP and CGN interaction. 

The elasticity and hysteresis of the SSMP gels made with 1% protem extract were 

significantly (P<0.05) affected by the addition of CGN (Fig. 4). However, no significant 

(P>0.05) effect was attributed to reagent type. SSMP gels were significantly (P<0.05) more 

elastic than SSMP/K-CGN gels as demonstrated by their higher and lower elasticity (Fig 4a) 

and hysteresis values, respectively (Fig 4b). Non-significant (P<0.05) differences in elasticity 

and hysteresis values were observed between SSMP and SSMP/K-CGN gels made with 5% 

protein and treated with the stabilizing/destabilizing reagents. 

Water loss As expected, the addition of K-CGN to SSMP significantly (P<0.05) 

increased the water holding capacity of both 1 % and 5 % SSMP/K-CGN gels (Fig. 5). This is 

due to the ability of K-CGN to form a gel. A significant (P<0.05) increase in water loss was 

obtained upon addition of NaSCN to SSMP and SSMP/K-CGN gels made with 1% protein 

(Fig. 5a). These effects were not observed when 5% SSMP concentrations were used to 

make the gels. Higher protein concentration in the solutions may have masked the effect of 

these reagents (Fig. 5b). 



Protein loss Because NaSCN and urea interfered with the analysis, these treatments 

were not included in the assay. The protein concentration of the water released by the SSMP 

and SSMP/K-CGN gels after centrifugation was not significantly (P>0.05) affected by the 

addition of K-CGN. These results may suggest that K-CGN was not involved in the 

stabilization of these proteins (Fig. 6). As expected, higher protein concentration was 

obtained in gels with 5 % protein. 

Electrophoresis SDS-PAGE was used to monitor the protein profiles in the 

expelled water of heat-induced gels after compression, and the selective separation of the 

SSMP treated with various destabilizing reagents and K-CGN. Figure 7 shows the SDS-

PAGE profile of high and low molecular weight standard mixtures (lane 1-2) and SSMP in the 

expelled water of heat-induced SSMP and SSMP/K-CGN gels untreated (lane 3-4), treated 

with NaCl (lane 5-6), NaSCN (lane 7-8) and MeSH (lane 9-10). Figure 8 shows the fractions 

of SSMP in the expelled water of heat-induced SSMP and SSMP/K-CGN gels untreated (lane 

1-2), treated with urea (lane 3-4) and PG (lane 5-6) and the molecular patterns of a SSMP 

extract and high and low molecular weight standard mixtures (lane 8-9). 

The protein profile of SSMP extract changed drastically after heat treatment (Fig 6-7). 

Myosin heavy chain was the major protein removed from the expelled water, suggesting that 

this protein was involved in gel formation and contributed to gel strength. The proteins that 

were not bound to the gel network were released after compression. Typical proteins released 

in the supernatant were albumin (66 Kd), tropomyosin P (approx. 36 Kd) and tropomyosin a 

(approx. 34 Kd ) and myosin LCI (approx. 20 Kd). The presence of the former proteins in 



the supernatant supports the finding published by Samejima et al. (1982) and Camou et al. 

(1989). Samejima et al. (1982) reported that tropomyosin was highly heat stable and did not 

contribute to gel formation. They also found that myosin light chains remained soluble after 

heat treatment, indicating that light chains do not contribute to gel formation. These 

observations supported the idea that upon heating myosin, myosin heavy chains aggregate and 

gel while light chains dissociate and solubilize (Samejima et al., 1984). Similar results were 

observed by Camou (1989) who found some actin, tropomyosin (3 and a-isoforms), and 

MLCl in the expelled water. Porcine albumin, a sarcoplasmic protein, which remained 

soluble after heat treatments, was also reported by Camou (1989). In our studies, some actin 

(45 Kd) was observed in the SDS-PAGE when 5% SSMP extract was used to make the 

SSMP and SSMP/K-CGN. Actin was not observed in the gels made with 1% SSMP, 

suggesting that all actin molecules were involved in the gel. 

No differences in protein profiles among control, NaCl, NaSCN, urea, and PG 

treatments were observed, regardless of the addition of K-CGN. MeSH reduced the disulfide 

bonds of albumin (Fig. 8), resulting in low molecular weight fractions that could not be 

separated with SDS-PAGE (Haard, 1985). This effect was observed independently of the 

presence of K-CGN. 

The addition of K-CGN tc I % and 5% SSMP extracts did not affect the protein 

profiles of the water expelled from the gels, suggesting that K-CGN did not modify the protein 

in the network formation. 
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Functionality of Carrageenan in Solution in Salt Soluble Meat Protein gels 

A temperature control system was used to mix CGN and SSMP in solution (Fig. 1). 

At room temperature K- and I-CGN gelled, therefore dissolving CGN in the SSMP extract 

was impossible. The temperature control system was designed to maintain the same 

temperature in both solutions, so that they could be mixed before CGN changed its state. The 

optimum temperature for mixing the solutions was 40 °C. Temperatures higher and lower 

than 40 °C caused denaturation of meat protein and gelation of K-CGN, respectively. 

The effect of three major CGN on the gel strength of SSMP was the focus of 

preliminary studies, K-, i-, A.-CGN solutions were prepared as described in materials and 

methods. The addition of X-CGN to SSMP was very detrimental to gelation, resulting in gels 

softer than control (SSMP gels). These results were also observed in dry carrageenan 

experiments. The gelling temperature of I-CGN at the ionic strength and CGN concentrations 

used was higher than 40 °C. In preliminary studies it was observed that ionic strength higher 

than 0.3 increased the temperature of gelation. Hence, the CGN solutions gelled before the 

desired temperature was reached, making it impossible for the I-CGN solution to dissolve in 

the SSMP extract. Therefore, K-CGN was the only CGN used for this portion of the study. 



Experiment 1; Effect of protein concentration on the gelation of SSMP with CGN 

added 

The raw meat had the following composition: Moisture 75.09 ± 0.07 %, protein 24.2 

±0.3 %, fat 1.24 ± 0.37 % and pH 5.4 ± 0.07. 

Gel Evaluation 

Rheological characteristics The effect of protein concentration on the gel strength 

of SSMP and SSMP/K-CGN gels is shown in Fig. 9. Protein concentrations up to 2 % in the 

SSMP gels did not significantly (P>0.05) improve gel strength. Furthermore, the addition of 

0.5 % CGN to SSMP extract, at the three protein concentrations used, did not significantly 

(P>0.05) increase the gel strength of the SSMP/K-CGN gels. However, significant differences 

between SSMP and SSMP/K-CGN gels were obtained, despite protein concentration (Fig. 

9a). Addition of K-CGN to SSMP resulted in gels with higher gel strength than CGN or 

SSMP independently. SSMP/K-CGN (2119.0±92.03) gels were approximately several fold 

harder than K-CGN (1204.17 ± 49.04) and SSMP (26.67±8.58) gels, which suggested a 

possible protein-hydrocolloid interaction. However, if an interaction between the protein and 

hydrocolloid was the cause of increased in gel strength, higher protein concentration should 

also affect the interaction by increasing the gel strength. This effect was not observed in the 

study. 

Water losses Water losses were significantly (P<0.05) different between gel types 

(Fig. 9b). SSMP/K-CGN gels hold significantly (P<0.05) more water than SSMP gels. These 

results were expected, due to the ability of K-CGN to hold water. As protein concentration 
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increased, water losses significantly (P<0.05) decreased in SSMP/K-CGN gels. This was not 

so for SSMP gels, which behaved similarly at all protein levels. 

Experiment 2; EfTect of CGN on the ultrastructure of heat-induced SSMP gels 

The microstructure of the gels (Fig 10) showed distinctive differences, which tended 

to correspond to the differences in hardness and water holding capacity showed earlier in the 

protein concentration study (Fig. 9). The micrograph of SSMP/K-CGN gels showed a well 

structured matrix with a highly interconnected network of strands (Fig. 10e,f) that may offer 

more resistance to applied stress and higher water holding capacity (Fig 9). However, the 

structure of SSMP gels appeared to be discontinuous with poor linkage between the protein 

strands. This might have been the result of a very highly aggregated structure that led to large 

open spaces within the matrix and conferred poor water holding capacity and poor texture 

(Fig. IOa,b). Although, large open spaces were also observed in K-CGN gels, the network 

seemed to be well interconnected and smooth (Fig. iOc,d). Consequently, the gels are harder 

and hold more water than SSMP gels alone. These observations may be helpful to explain 

functionality differences among the gels. 

Experiment 3: Molecular forces involved in maintaining the gels 

The effect of various destabilizing reagents on solubilization of proteins from SSMP/K-

CGN gels may reflect the forces contributing to the maintenance of the gel. The amount of 

protein released into solution, should indicate the type of interaction. In our study, the 



amount of protein obtained from the supernatant was very small. Furthermore, no significant 

difference (P>0.05) in protein concentration was found among treatments, regardless the 

presence of CGN (data not shown). 

CONCLUSIONS 

Two model systems were used to evaluate the interaction between SSMP and CGN. 

The first system involved the addition of dry CGN to SSMP. Rheological properties of SSMP 

gels were affected by the addition of CGN. Among all CGN used, K-was the most effective in 

increasing the gel strength of SSMP gels, while, A,-CGN was detrimental to gelation. All 

CGNs were effective in improving the water holding capacity of the gels. Addition of 

destabilizing agents to SSMP, SSMP/K-CGN gels did not indicate the presence of a specific 

molecular interaction between these polymers. The changes observed in SSMP/K-CGN gels 

were similar to those obtained in pure K-CGN gels, indicating that these changes were related 

to the instability of K-CGN rather that interaction between SSMP and CGN. 

The second model system evaluated the effect of adding K-CGN in solution to SSMP. 

Gel strength and water loss determinations of SSMP and SSMP/K-CGN unaer various protein 

concentrations showed an increased gel strength and water holding ability of SSMP upon 

addition of K-CGN. Protein concentration had no effect on gelation of SSMP in the presence 

of K-CGN, suggesting that no interaction occurred between SSMP and K-CGN. 

The ultrastructure changes of SSMP in the presence of K-CGN was studied by cryo-
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scanning electron microscopy. Cryo-SEM was helpful to show differences in the 

ultrastructure of SSMP, SSMP/K-CGN and K-CGN gels, which may help explun the 

rheological properties of these gels. 

The results obtained in this study suggest that improvement of water holding capacity 

and texture of the heat-induced SSMP gels upon the addition of K-CGN were due to physical 

entrapment of the protein and water, conferring greater water holding and stronger gel 

strength, rather than to molecular interaction between protein and hydrocolloid. This study 

provided valuable information on the behavior of carrageenan under various conditions, which 

may be utilized to explain the functionality of carrageenan in low-fat meat products. 
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Fig. 1. Temperature control system designed to mix carrageenan in solution with salt-soluble meat protein extracts. 

Glass-jackets represented by the letters "a" and "b." 



89 

Table 1. Physical properties of carrageenan/salt-soluble meat protein gels.' 

Treatment Hardness (g) Elasticity Hysteresis^ (%) Water losses (%) 

SSMP 1333.8±162.5° 0.50±0.04° a,b 
80.6±1.86^ 6.04±2.87^ 

SSMP/K-CGN 4442.3±504.9^ 0.44±0.04° a,b 
86.0±3.18^ 2.10±1.19'' 

SSMP/i-CGN 1846.2±291.8^ 0.47±0.03® 1S.Q±2.61^ 2.69±0.88^ 

SSMP/^-CGN 896.0±208.6^ 0.45±0.04® 91.6±12.95^ 2.95±1.19^ 

k-CGN 597.2±203.4® 0.36±0.04'^ 95.3±8.57^ nd 

i-CGN 18.6±8.4^ 0.78±0.12^ 37.5±18.16^ nd 

^-CGN 9.90±3.1^ 0.89±0.11^ 23.7±17.56^ nd 

Std error 149.6 0.03 6.67 0.99 

' Means in the same column with different superscripts are significantly different (P<0.05). 
^ Percent of loading energy during first compression. 
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Fig. 2. Energy at the first peak (hardness) of 1% (a) and 5% (b) salt-soluble meat proteins (SSMP) and SSMP/K-

CGN gels treated with sodium chloride (NaCl), sodium thiocyanate (NaSCN), urea, 2-mercaptoethanol 

(MeSH) and propyl glycol (PG). 
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Fig. 3. Energy at tiie first peak (hardness) and percent of loading energy at the first 

compression (hysteresis) of K-CGN gels treated made at two ionic strength and 

treated with sodium chloride (NaCl), sodium thiocyanate (NaSCN), urea, 2-

mercaptoethanol (MeSH) and propyl glycol (PG). 
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Fig, 4. Ratio of the energies at the first and second peaks (elasticity) and percent of 

loading energy at the first compression (hysteresis) of 1% salt soluble meat 

proteins (SSMP) and SSMP/K-CGN treated with sodium chloride (NaCl), sodium 

thiocyanate (NaSCN), urea, 2-mercaptoethanol (MeSH) and propyl glycol (PG). 
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treated with sodium chloride (NaCl), sodium thiocyanate (NaSCN), urea, 2-mercaptoethanol (MeSH) 

and propyl glycol (PG). 
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Fig. 7. SDS polyacrylamide gel electrophoresis of 1% salt-soluble meat protein (SSMP) and SSMP/K-CGN gels treated with 

various stabilizing/destabilizing reagents. Thirty (ig of protein were added to each well. Lane I and 2 contains 

standard protein markers of 29 to 205 Kilodalton, and 14.2 to 66 Kilodaltons, respectively. Lanes 3, 5, 7,9 contan 

the protein fractions of SSMP untreated, treated with NaCI, NaSCN, and MeSH, respectively. Lanes 4, 6, 8, 10 

contain the protein fractions of SSMP/K-CGN untreated, treated with NaCl, NaSCN and MeSH, respectively. 
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8. SDS polyacrylamide gel electrophoresis of 1% salt-soluble meat protein (SSMP) and SSMP/K-CGN gels treated with 

various stabilizing/destabilizing reagents. Thirty |ig of protein were added to each well. Lanes 1,3, and 5 contain 

the protein fractions of SSMP untreated, treated with urea, and PG, respectively. Lanes 2, 4, and 6 contain the 

protein fractions of SSMPK-CGN untreated, treated with urea, and PG, respectively. Lane 7 contains protein 

fractions of 1% SSMP extract. Lane 8 and 9 contains standard protein markers of 29 to 205 Kilodaiton, and 14.2 to 

66 BCilodaltons, respectively. 
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Fig 10. Scanning electron microscopy of salt-soluble meat protein (SSMP), K-CGN, 

and SSMP/K-CGN gels. 

A and B: SSMP, 10 |xm and 5 |j,m, respectively. 

C and D: K-CGN, 30 |j,m and 10|J,m, respectively. 

E and F; SSMP/K-CGN, 10 |j,m and 5 |4,m, respectively. 





Fig 10. Continued 

C and D: K-CGN, 30 [im and 10|im, respectively. 





Fig 10. Continued 

E and F: SSMP/K-CGN, 10 and 5 urn, respectively. 





106 

EFFECT OF CARRAGEENAN ON THE THERMAL STABmiTY OF 

MEAT PROTEINS 

A paper to be submitted to the Journal of Food Science 

Z. DeFreitas, J. G. Sebranek, D. G. Olson, and J. M. Carr 

ABSTRACT 

Differential scanning calorimetry (DSC) was used to investigate the interactions 

between carrageenans and meat proteins. Salt-soluble meat proteins (SSMP), myofibrillar 

proteins (MP) and ground pork were used as model systems. No thermal curves were 

detected by DSC in SSMP gels. Addition up to 2 % of carrageenan (CGN) to MP caused a 

very small change in the thermal denaturation of the meat proteins. The thermal properties of 

ground pork, CGN and mixtures were examined under two ionic strength conditions. Three 

transition temperatures were obtained in ground pork samples, which were characteristic of 

myosin (59.40 °C), sarcoplasmic proteins (67.85 °C) and actin (82.45 °C). High ionic strength 

mixtures had lower thermal transition peaks. CGN did not cause major shifts in the transition 

temperature of meat proteins, suggesting that a molecular interaction between CGN and meat 

proteins did not occur. 

Authors DeFreitas, Sebranek and Olson are with the Departments of Food Science and 

Human Nutrition and of Animal Science, Iowa State University, Ames, lA. Author Carr is 

with Sanofi Bio-Industries, Waukesha, WI. 
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INTRODUCTION 

Differential scanning calorimetry is an important tool for studying the thermal 

denaturation of meat proteins in muscle tissue in situ (Lund, 1983). The major contractile 

proteins, actin and myosin can be distinguished from each other and from sarcoplasmic 

proteins by this technique. Transition temperatures for typical muscle can range from 54-58 

°C , 67 °C and 71-83 °C for myosin and its subunits, sarcoplasmic proteins, and actin, 

respectively (Wright et al., 1977; Findlay and Barbut, 1990). The thermal properties of these 

proteins may be affected by factors such as pH and salt (Findlay and Barbut, 1990). Addition 

of sodium chloride to meats and also changes in pH alter the stability of proteins, lowering 

their temperature of denaturation (Quinn et al., 1980; Stabursvik et al., 1984; Shiga et al., 

1988; Ensoretal., 1991). The thermal denaturation changes of meat proteins that occur 

upon the addition of non-meat ingredients may indicate shifts in the physical state of the 

proteins or interactions between meat proteins and non-meat ingredients, which could affect 

some physical attributes of cooked meat products, such as juiciness and texture. 

The use of polysaccharide gums such as alginate and carrageenan in meat products has 

been of great interest to meat processors due to the increasing consumer demand for leaner 

and more economical meat products. Polysaccharides have also been reported to affect the 

thermal transition temperatures of meat proteins. The addition of alginates to crude 

myofibrillar, sarcoplasmic and connective tissue proteins, lowered the thermal destabilization 

temperature of these proteins by 7.5, 23.6 and 8.6 °C, respectively (Ensor et al., 1991). Other 

studies have shown a small destabilizing effect of meat proteins upon the addition of 2 % K-
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CGN to beef chunks. This destabilizing eflFect observed by Shand (1994) may be a 

consequence of conformational changes induced by the presence of K-CGN or possibly by an 

interaction between K-CGN and meat proteins. 

Changes in the thermal properties of meat proteins induced by non-meat ingredients, 

such as carrageenans, may suggest the presence of a protein/carbohydrate interaction. Thus, 

the purpose of this study was to examine the eflfect of three types of CGN (K, i, and X) on the 

heat denatmation of meat proteins in meat model systems. 

MATERIA AND METHODS 

Experiment 1: Effect of CGN on the thermal transition characteristics of meat 

proteins in a model systems 

The effect of CGN on the thermal transition changes of meat proteins extracted from 

groimd pork was studied. Salt-soluble meat proteins (SSMP) and myofibrillar proteins (MP) 

were combined with various concentrations of K-CGN and analyzed for thermal stability usiog 

differential scanning calorimetry. 

Protein Extraction 

Semimembranosus muscles from pigs were obtained from the Meat Laboratory at 

Iowa State University. The meat was trimmed of excess fat, ground through a 4.5 mm plate, 

vacuum packaged, boxed, and frozen at -40 °C until fiirther use. Prior to the experiment, the 

frozen groimd samples were allowed to thaw overnight in a 2 °C walk-in cooler. The meat 
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pH was determined after mixing 10 g of ground muscle with 100 mi of deionized-distilled 

water for one minute by means of a pH meter (Accumet 925 pH/ion Meter, Fisher Scientific). 

Salt-soluble meat proteins One part of meat and two parts of 0.56 M solution 

(0.49 M NaCl, 17.8 mM Na5P302o and ImM Na2N3, pH 8.3) were blended for 30 sec in a 

laboratory blender. The mixture was kept at 2 °C for 1 hr then centrifiiged at 12,000 x g at 2 

°C for 1 hr. The protein extract was strained through a cheese cloth (Camou et al., 1989). 

Protein concentration of supernatant was measured with a nitrogen analyzer (model FP-428, 

LECO corporation, St. Joseph, MI) and diluted to 5 % protein concentration (0.16 ix and 0.33 

|j,) with a NaCl and Na5P302o solution. The pH of the samples was adjusted to 6.00. 

Myofibrillar proteins MP were extracted following the procedure described by 

Lever-Garcia (1988). Six-hundred g of meat was blended with 1200 mL of 0.1 M NaCl and 

0.05 M phosphate buffer pH 7.1 in a blender at low speed for 30 sec. The solution was stirred 

at high speed for 60 min and centrifiiged at 9000 x g for 15 min at 0 °C in an automatic 

refngerated centrifuge. The supernatant containing fat and sarcoplasmic proteins was 

discarded and the pellet resuspended in 2000 mL of phosphate buffer. The extraction 

procedure was repeated three times. 

Protein concentrations were determined by a nitrogen analyzer. The final pellet was 

diluted to 5 and 10 % protein concentration with a NaCl and Na5P302o solution of 0.58 n. 

Preparation of Protein/Carrageenan Mixtures 

Salt soluble meat proteins SSMP, SSMP/ K-CGN and K-CGN gels were prepared 

with 5% SSMP and two levels of CGN (0 and 0.5%). The dispersions were homogenized for 
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30 sec at medium speed (set 5) using a Polytron homogenizer (Model PT 10/35, Brinkmann 

Instruments, Inc., Westbury, N. Y.). T'»s samples were held overnight at 2 °C. 

Myofibrillar proteins Three sets of samples were made; MP, MP/ K-CGN and K-

CGN. The MP and K-CGN concentrations were 5 and 10% and 0, 0.5 and 2 %, respectively. 

CGN was added to the MP solution and to salt/phosphate to make MP/K-CGN and K-CGN 

mixtures, respectively. The mix was stirred and homogenized for 30 sec. at medium speed 

(set 5) by means of a Polytron homogenizer. The samples were kept overnight in a walk-in 

cooler at 2 °C. 

Experiment 2; Effect of carrageenan on thermal transition of ground pork 

Preparation of Meat/Carrageenan Mixtures 

Semimembranosus muscles from pigs were obtained from the Meat Laboratory at 

Iowa State University. The meat was trimmed of excess fat, ground through a 4.5 mm plate, 

vacuum packaged, boxed, and frozen at -40 °C until further use. Prior to the experiment, the 

frozen ground samples were allowed to thaw overnight in a 2 °C walk-in cooler. The meat 

pH was determined after mixing 10 g of ground muscle with 100 ml of deionized-distilled 

water for one minute by means of a pH meter (Accumet 925 pH/ion Meter, Fisher Scientific). 

Protein, fat and moisture composition of raw meat was done by means of a nitrogen analyzer, 

soxhlet fat extraction and gravity oven, respectively. 

The ionic strength of the samples was calculated considering the ionic strength of 

muscle, which has been reported to be approximately 0.26 |j, (Bendall, 1954). 
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Treatments were prepared according with the procedure described by Shand et al. 

(1994) and included two ionic strength conditions and three carrageenan types (Table 1). The 

mix was stirred and homogenized for 30 seconds at medium speed (set 5) by means of a 

Polytron homogenizer. Control samples included meat mixtures with or without salt added. 

DifTerential Scanning Calorimetry 

A Perkin-Elmer (Norwalk, CT) DSC-7 equipped with an IBM computer and cooling 

system was used. Calibration of the DSC was done on a monthly basis using indium (AHfi„io„ 

= 6.80 cal/g; 156.4 °C) as standard. Samples were placed in stainless-steel pans, weights were 

recorded and enter in the computer for DSC analysis. Air was sealed in another pan and used 

as reference. Heating rate was 10 °C/min 25-110 °C. Energy input was measured in 

milliwats (mW). All the thermal curves were normalized for weight differences. Thermal 

transition temperature maxima (T^ and enthalpy (AH) were determined using and internal 

curve integration program of the DSC instrument. For reproducibility, the temperature of 

peak maxima was taken as the transition temperature (Hastings et al, 1985). 

Statistical Analysis 

A 2 x 3 factorial design with two ionic strength levels and three CGN types (K, i, and 

A,) were used to study the effect of CGN types on the thermal denaturation characteristics of 

ground pork. The Statistical Analysis System (SAS, 1991) was used to decide means, 

standard errors and analysis of variance. Least significant difference (P<0.05) was used to 

measure differences among treatments. The experiment was replicated twice. 
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RESULTS AND DISCUSSION 

Experiment 1: Effect of CGN on the thermal transition characteristics of meat 

proteins in a model systems 

Salt Soluble Meat Proteins 

The protein concentration obtained by this preparation was in the order of 5 %, which 

was similar to protein concentrations previously extracted by other researchers (Camou, 

1989). Salt-soluble proteins included myosin, actin and sarcoplasmic proteins. At the 

concentration extracted by this methodology, the typical myosin and actin peaks could not be 

distinguished. Therefore, this model system was not suitable for investigating CGN/meat 

protein interactions. 

Myofibrillar proteins 

Protein concentrations as high as 10 % were obtained using the procedure of Lever-

Garcia (1988). This procedure included the extraction of sarcoplasmic proteins from ground 

muscle with a low ionic strength solution, resulting in a white thick paste composed of 

myofibrillar proteins and collagen. The peaks obtained with the DSC were characteristic to 

the transition temperatures of myosin, collagen and actin (Stabursvik and Martens, 1980) 

Collagen was only evident in those samples made with higher protein concentration (Table 2). 

Actin transition peaks were shifted to a lower temperature due to the presence of salt in the 

MP sample. This effect has been very well documented by several authors (Quinn et al., 

1980; Shiga et al., 1988) and was also seen in our study of ground pork. 

The addition of K-CGN to MP at concentrations as high as 2% caused a slight 
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decrease in the temperature of transition of myosin. Lower concentrations of CGN (0.5 %) 

did not induce thermal changes of meat proteins. Furthermore, at lower meat protein 

concentrations (5 % MP), CGN concentration did not have an effect on the stability of MP 

(Table 2). It has been suggested that DSC techniques could be used to study interactions 

between protein and polysaccharides. Changes in protein structure and thermal stability are 

good indicators of protein-polysaccharide interactions. Therefore, shifts in MP transition 

temperatures in the presence of CGN may suggest an interaction between these polymers. 

However, the change in T„^ observed upon addition of 2 % CGN to 10 % MP is too small to 

be the likely result of an interaction. 

The transition temperature of pure K-CGN in solution was affected by its 

concentration. At 0.5 % CGN concentration no peak was observed, however a transition 

temperature of 54.45 °C was detected when 2 % CGN was added (Table 2). Similar 

temperature of transition for 2 % K-CGN (53.9 ± 1.9) was observed by Shand et al (1994). 

These authors referred to this temperature as the "average melting temperature of K-CGN" 

and indicated that above this temperature, destabilization of the K-CGN double-helix occurs, 

resulting in solubilization of the CGN. 

Experiment 2; Effect of carrageenan on thermal transition of ground pork 

The protein, fat and moisture concentrations for meat were 23 %, 3.88 %, and 72.54 

%, respectively. Thermal curves for meat samples without salt and CGN revealed three 

transition temperatures; at 59.40 °C (T^,), at 67.85 °C (T^) and at 82.45 ° C (T^^^) (Table 
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3). Similar transition temperatures for myosin and actin have been reported by several 

researchers. For beef at pH 5.4, the transition temperatures reported by Stabursvik and 

Martens (1980) were 58 °C and 65 °C for myosin; 66 °C for sarcoplasmic proteins, 67 "C for 

collagen and 80 °C for actin. For porcine M longissimus dorsi at pH 5.4, Stabursvik et al. 

(1984) reported three major peaks with temperatures maximal at 58 °C and 66 °C associated 

with myosin denaturation and at 78 °C, associated with actin denaturation. Quinn et al. 

(1980) showed temperatures of transition for pork muscle at 59 °C, 66.5 °C and 81 °C for 

myosin, sarcoplasmic proteins, and actin, respectively. 

Ionic strength significantly (P<0.05) affected thermal transition of meat proteins. 

Addition of 2 % NaCl to ground meat decreased the temperature of transition of the first and 

third peaks by approximately 4 °C and 9 °C, respectively. The second transition temperature 

was not significantly affected (P>0.05) by ionic strength (Table 3). Similar results were 

obtained by Quinn et al. (1980), who observed that the addition of salt (0.23 M NaCl) to pork 

muscle caused the disappearance of a 81 °C peak and the formation of a lower temperature 

peak at 76 °C. These thermal transition peaks were characteristics of actin under these ionic 

conditions. Also, the temperature of the first peak was decreased by 1.5 °C. Shiga et al. 

(1988) also found a shift in T^ for SSMP in the presence of NaCl. Actin Tn^^ decreased 

fi-om 76.8 °C to 68.3 °C upon addition of 3 % NaCl. 

Two percent of CGN was used in this experiment because preliminary studies using 

0.5 % CGN in myofibrillar systems did not show any changes in the behavior of the proteins 

(Table 2). Although, changes in thermal transitions for myosin in the presence of 2 % CGN 

were not very drastic and probably do not indicate an interaction, the followed experiment 



was conducted to investigate the behavior of CGN in a more complex system. The addition 

of carrageenan, particularly K-CGN, had a small destabilizing (P<0.05) effect on the third 

transition temperature of meat at low ionic strength. However, at high ionic strength, the 

same effect was not seen. An influence on thermal transition temperature was not observed at 

the first peak for meat/iota and meat/kappa mixtures. Shand observed a very small negative 

effect on the transition temperature of beef with the addition of 2% K-CGN at various ionic 

strength conditions. In our study, the K-CGN destabilizing effect was only observed at the 

third peak under low ionic conditions. Although statistically significant, the difference in 

thermal transitions is too small to suggest a major protein/CGN interaction. As it is typical 

for DSC thermograms of meat proteins, only a single enthalpy peak occurs in the range of 50-

90 °C. The enthalpy values did not differ (P>0.05) among treatments and were not affected 

by ionic strength. 

Studies conducted by DeFreitas et al. (1994a, 1994b) indicated that addition of 0.5 % 

X,-CGN to SSMP and pork sausages resulted in gels and sausages with softer texture 

characteristics than control treatments (non-CGN added). These results may suggest that X-

CGN caused a destabilizing effect of X-CGN on the gelation of meat proteins. However, 

thermal destabilization of meat proteins upon addition of 2 % X,-CGN was not observed in 

DSC thermograms (Table 3), therefore this effect could not be explained by this technique. 

The thermal temperatures of transition for carrageenan are shown in table 4. 

Transition temperatures of K-CGN and i-CGN were significantly (P<0.05) increased by the 

addition of NaCl. Similar results have been reported by Shand et al. (1994) in their study of 
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K-CGN in meat mixtures. These authors observed a of 59.2 ± 1.1 °C for 2% K-CGN gels 

with 3 % NaCl added, compared to a of 52.6 ± 2.6 °C for K-CGN in water. The K-CGN 

transition temperatures observed in our study were 54.6 ± 0.55 °C and 62.6 ± 2.48 °C for low 

and high ionic strength treatments, respectively. i-CGN gels did not show a peak at lower 

ionic strength conditions, however at higher ionic strength a Tmax of 82.20 ±1.51 was 

detected. These results may suggest that in processed meats, i-CGN may be not completely 

solubilized, therefore decreasing its functionality. As it was expected for X,-CGN gels (non-

gelling CGN), no peaks were obtained at the ionic conditions studied. At high ionic strength, 

transition temperatures of K-CGN was higher (63.11 °C) than at low ionic strength. 

Furthermore, i-CGN showed a higher transition peak than K-CGN. A similar increase of K-

CGN transition temperature at high ionic strength conditions was observed by Shand (1991). 

CONCLUSIONS 

Changes in transition temperatures may indicate conformational changes due to 

protein-carbohydrate interaction. Differential scanning calorimetric studies of salt-soluble 

meat proteins (SSMP), myofibrillar proteins (MP), ground pork, and carrageenans (K, i, X) 

revealed a very small destabilizing effect of meat proteins by the addition of K- and i-CGN to 

ground pork. However, this effect was too small to be attributed to protein-carbohydrate 

interaction. Greater changes in transition temperatures of meat proteins were observed upon 

addition of salt. Three peaks, which were characteristic of myosin, collagen or sarcoplasmic 
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proteins and actin, were obtained in MP and ground pork mixtures. 2 % K-CGN caused a 

small destabilizing effect of the third transition peak. 

K- and I- CGN gels showed higher transition temperatures at higher ionic strength. 

Particularly, i-CGN had a of 82.2 °C, which may suggest that at the normal ionic 

conditions of processed meats, this CGN may need higher temperature to reach its melting 

point. No thermal peaks were observed in A,-CGN gels. 

Further research on the thermal behavior of carrageenans under various ionic strength 

conditions and under the presence of different saks may prove useful on the selection of a 

particular gum for a given meat application. 
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Table 1. Definition of ground meat treatments used for the DSC study. 

Treatment IS' Meat Water NaCl CGN^ Total weight 

(g) (g) (g) (g) (g) 

Meat 0.18 35 15 0 0 50 

Meat plus i-CGN 0.18 35 14 0 1 50 

Meat plus K-CGN 0.18 35 14 0 1 50 

Meat plus X-CGN 0.18 35 14 0 1 50 

Meat 0.52 35 14 0 1 50 

Meat plus i-CGN 0.52 35 14 1 0 50 

Meat plus K-CGN 0.52 35 13 1 1 50 

Meat plus X-CGN 0.52 35 13 1 1 50 

' Ionic strength. 

^ Carrageenan. 
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Table 2. Differential scanning calorimetry measurements of 

Myofibrillar proteins (MP)/carrageenan (CGN) gels at 

various concentrations. 

Transition temperature °C 

Treatment T *maxl T ^max2 T •*-max3 

MP (5) 59.6 np^ 75.3 

MP/CGN(5/0.5)' 60.5 np 75.6 

MP/CGN (5/2) 59.4 np 75.6 

MP (10) 60.4 68.5 76.8 

MP/CGN (10/0.5) 59.1 68.9 75.5 

MP/CGN (10/2) 58.6 68.9 75.1 

CGN (0.5) np np np 

CGN (2) 54.45 np np 

' Numbers in parenthesis indicate concentrations of MP and CGN, 

respectively. 

^ No peak foimd. 



Table 3. Differential scanning calorimetry and enthalpy (AH) measurements of meat, and meat/carrageenan 

(CGN) mixtures under various ionic strength (IS) conditions. 

Transition temperatures. °C 

Treatment 

T '•maxl T ^MAX2 T •'INAXS AH,J/g 

Treatment IS Mean* Std. Mean Std. Mean Std. Mean Std. 

Meat 0.18 59.40 0.14a,b 67.85 0.21a 82.45 0.21a 1.52 0.45a 

Meat plus i-CGN 0.18 58.55 0.35b 65.95 0.78b 81.60 0.42a,b 1.98 0.26a 

Meat plus K-CGN 0.18 58.50 0.42b 67.15 0.78a,b 80.20 0.28b 2.39 0.22a 

Meat plus A,-CGN 0.18 59.95 0.20a 67.90 0.28a 81.90 0.15a,b 2.10 0.83a 

Meat 0.52 55.15 0.64d 68.05 0.64a 73.70 0.28c 1.59 0.21a 

Meat plus i-CGN 0.52 56.30 0.28c 68.30 0.84a 74.90 0.14c 2.45 0.70a 

Meat plus K-CGN 0.52 56.55 0.35c 67.90 0.28a 74.25 0.08c 2.24 0.42a 

Meat plus X-CGN 0.52 55.05 0.92d 67.85 0.78a 73.85 1.34c 2.05 0.34a 

Std. error 0.34 0.44 0.47 0.12 

' Means within the same column sharing the same superscript are not significantly (P>0.05) different. 
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Table 4. Differential scanning calorimetry and enthalpy (AH) 

measurements of carrageenan (CGN) mixtures. 

Treatment T^i, °C AH, J/g 

IS Mean' Std. Mean Std. 

K-CGN 0.18 54.60 0.55= 0.52 0.17" 

i-CGN 0.18 np2 np 

A-CGN 0.18 np np 

K-CGN 0.52 62.60 2.48'' 0.57 o . ir  

i-CGN 0.52 82.20 1.51" 0.24 o.oo'' 

X-CGN 0.52 np np 

Std. error 0.49 0.07 

' Means within the same column sharing the same superscript are not 

significantly (P>0.05) different. 

^ no peak found. 
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EFFECT OF SALT, PHOSPHATE, pH AND CARRAGEENAN 

ON THE FREEZE/THAW STABH^ITY OF COOKED PORK SAUSAGES 

A paper to be submitted to the Journal of Food Science 

Z. DeFreitas, J. G. Sebranek, D. G. Olson, and J. M. Carr 

ABSTRACT 

Two experiments were conducted to investigate the effect of CGN, sodium 

tripolyphosphate, chloride salts and meat pH on the freeze/thaw stability of cooked pork 

sausages. Sixteen treatment combinations with four CGN levels, two salt types and two 

phosphate levels were used in the first experiment. The second experiment included eight 

treatment combinations with four CGN and two pH levels. STPP decreased thaw drip (TD) 

and increased hardness of all treatments regardless of the type of salt or CGN. KCl did not 

affect the texture of control samples in the presence of STPP, but decreased the functionality 

of K- and i-CGN. Meat pH significantly (P<0.05) increased the hardness and decreased the 

TD of all CGN treatments, except for X-CGN which remained unchanged, K- and i-CGN 

were effective in improving the stability of sausages prepared with low pH meats. 

Authors DeFreitas, Sebranek and Olson are with the Departments of Food Science and 

Human Nutrition and of Animal Science, Iowa State University, Ames, lA. Author Carr is 

with Sanofi Bio-Industries, Waukesha, WI. 
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INTRODUCTION 

In 1979, the Surgeon General's Report urged the American population to improve 

their health by reducing dietary intake of saturated fats, cholesterol, salt and sugar; increasing 

the consumption of complex carbohydrates; and maintaining desirable body v^^eight (Keeton, 

1991). In response to these recommendations and to studies relating sodium and fat intake to 

cardiovascular disease (Keeton, 1991; Sebranek et al., 1983), researchers have attempted to 

find substitutes for sodium chloride and fat that would provide similar functional properties. 

The effects of sodium chloride in processed meats are well known. NaCl increases 

water holding capacity, stabilizes meat emulsions, and enhances flavor. Other chloride salts, 

such MgCl2, CaCl2, and KCl have been studied as possible substitutes for NaCl. Among all 

these sahs, KCl appeared to be the most suitable substitute for NaCl when flavor 

characteristics are the major concern (Terrell and Olson, 1981). These researchers suggested 

that 50% replacement of NaCl for KCl would yield products with similar functionality. 

Barbut and Mittal (1989) reported that the addition of KCl to low-fat pork batters increased 

the functionality of K- and i-carrageenans (CGN). On the other hand, Trius (1994) observed 

greater cooked losses when KCl was used in combination with K-CGN. However, an increase 

in water retention was obtained in i- and X-CGN sausages treated with KCl. 

The production of low-fat meat products is rapidly increasing, due to the current 

consumer interests in reduced calorie foods. Polysaccharide gums are often used to enhance 

functionality of low-fat meat products. Addition of 0.5 % K-CGN to oven-roasted turkey 
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breasts increased the yield, inq)roved sliceability and rigidity and decreased expressible juice 

(Bater et al., 1992). 

Carrrageenans are a femily of sulfeted linear polysaccharides of D-galactose and 3,6-

anhydro-D-galactose extracted from various red seaweeds. They have been classified in three 

types according to structural characteristics and gelation properties: kappa (gelling), iota 

(gelling ) and lambda (non-gelling) (Glicksman, 1983). CGN dissolves throughout meat 

during thermal processing and gels on cooling. Several functional properties have been 

attributed to CGN in meat products, including increased yields and purge control, enhanced 

textiue of jBnished products, inq)roved sliceability, and increased product juiciness (Carr, 

1993). 

The use of phosphates in processed meats has been very effective in increasing water 

holding capacity and improving texture of meat products. Nonetheless, the ability of 

phosphates to retam water in processed meats subjected to freeze/thaw treatments, 

particularly when high volumes of brine are injected, has been unsatisfactory (Acton, 1983). 

Bater et al. (1993) found that K-CGN was very effective in decreasing the freeze and thaw 

purge of cured turkey thigh meat. However, the effect of carrageenan on the freeze/thaw 

stabiUty of red meat products made at various ionic, pH and phosphate conditions has not 

been yet reported. 

The objective of these experiments was to evaluate the effect of carrageenans (K, i and 

X) on the freeze/thaw stabiUty of cooked pork sausages made with two types of salts (KCl and 

NaCl), two phosphate levels (0 and 0.5 %) and two pH values (<5.5 and >6.1). 
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MATERIALS AND METHODS 

Experiment 1: Effect of salt, phosphate and carrageenan on the freeze/thaw stability 

of cooked pork sausages 

Pork cushions were obtained from a local packing plant (Carriage House, Ames, lA). 

The meat was trimmed of excess fat and connective tissue and ground through a 1/8 inch plate 

(Biro grinder. The Biro Mfg. Co., Marblehead, OH). Protein measurements were determined 

with a nitrogen analyzer (model FP-428, LECO corporation, St. Joseph, MI). Moisture and 

fat analysis were performed using official analytical methods (AOAC, 1990). 

Preparation of the Sausages 

Sixteen brine solutions were prepared by dissolving or dispersing dry ingredients in 

distilled water (30 % of meat weight). The dry ingredients used for the brine solutions 

included food-grade sodium chloride (Morton International, Chicago IL), potassium chloride 

(Fisher Scientific, Pittsburgh, PA), sodium tripolyphosphate (STPP, formula 24) and K-, i- and 

X-CGN (Sanofi, Bio-Industries, Waukesha, WI). The mixing sequence was as follows: 0.5 % 

sodium tripolyphosphate was completely dissolved in distilled water, followed by the addition 

of sodium chloride (0.34 |j,) or potassium chloride (0.34 |j,) and 0.5 % carrageenan. Control 

treatments included sausages without carrageenan (Table 1). The brines were held overnight 

at 2 °C. 

The treatments were randomly assigned to the experimental units (3.63 Kg ground 

meat) using a random permutation table of sixteen numbers (Cochran and Cox, 1950). The 



experiment was a factorial combination of two salt types (NaCl and KCl), two levels of STPP 

(0 % and 0.5%) and four carrageenan treatments (non-CGN, K-, I- and X-CGN)- The 

sausages were prepared by blending the meat and brine for a total of three minutes in a mixer 

(Higashimoto Kimai, Tokyo, Japan). The meat mixtures were stuffed with a piston stuffer 

(Hollymatic Corp., Countrysde, IL) into presoaked 4 x 24 opaque CMVP fibrous casings 

(Teepak, Kansas City, MO), then the casings were closed and clipped. The sausages were 

steam cooked to an internal temperature of 70 °C, showered for 10 min in an Alkar thermal 

processing unit (Alkar, DEC International, Lodi, WI), equipped with a direct digital control 

system. The sausages were placed in a cooler (2 °C) for two days, boxed, and frozen at -40 

°C in a blast freezer (Vollrath Refrigeration, Inc., River Falls, WI) for 72 hr. 

After frozen storage, slices of 2.5 cm thickness were cut using a Butcher-boy band 

saw (Lasar, Mfg. company Inc., Los Angeles, CA), placed in Ziploc® bags and held in a 

walk-in cooler for 48 hr at 2 °C to thaw. Four slices of sausage per treatment were used to 

measure thaw drip and texture measurements. 

Sausage Evaluation 

Thaw drip Empty bags and total weights (bag plus frozen meat) were recorded 

before thawing. After 48 hr of storage at 2 °C, the meat slices were removed from the 

Ziploc® bags, blotted dry with towels and weighed for purge determinations. The percentage 

weight loss after thawing based on initial frozen weight was recorded as thaw drip. 

Texture measurements The meat slices were held at room temperature to 

equilibrate. Three core samples of 2.5 cm diameter from each slice were cut for evaluation. 

An Instron Universal Testing machine (model 4502, Instron Corp., Canton, MA) equipped 
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with a 1 KN load cell was used to measure hardness. Hardness was defined as the maximum 

force occurring during the compression cycle (Sanderson et al., 1988). An anvil of 35 mm of 

diameter was used to compress the sample to 45% of the original height, at a crosshead speed 

of 300 mm/min. A preconditioning program (20 g preload) was used to correct for small 

differences in height. 

pH measurements Meat mixtures were analyzed for pH differences by 

homogenizing 10 g of sample with 100 mL distilled water (Polytron homogenizer, Kinematica 

Gmbh, Luzer, Switzerland). The pH of the resultant suspension was measured with an 

Accumet 925 pH/ion meter (Fisher Scientific, Pittsburgh, PA). 

Statistical Analyses 

The experiment was replicated twice and was arranged in a 2 x 2 x 4 factorial design 

with two STPP levels (0 and 0.5 %), two salt levels (NaCl and KCl), and four CGN levels 

(non-CGN, K-, i-, X-CGN). The Statistical Analysis System (SAS, 1991) was used to 

determine means, standard errors and analysis of variance. Least significant difference was 

used to test differences between means (P<0.05). 

Experiment 2: Effect of pH and carrageenan on tlie freeze/thaw stability of cooked 

pork sausages 

PSE (pale, soft and exudative) and DFD (dark, firm and dry) pork loins were selected 

from a loin line at Monfort's packing plant (Marshalltown, lA). The loins were selected by 

color and separated by pH. pH measurements were done on site by means of a 

microprocessor pH meter model PHH-70 (Omega Engineering, INC, Stanford, CN), 
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equipped with a Xerolyt® electrode (Mettler-Toledo AG, Greifensee, Switzerland). Loins 

with pH values lower than 5.5 were categorized as low-pH and those with pH values higher 

than 6.0 as high-pH. The loins were brought to the Meat Laboratory at Iowa State 

University, where they were trimmed of excess fat and skinned with a skinner machine 

(Townsend, Des Moines, lA). The loins were vacuum packaged and frozen at -40 °C for no 

more than two weeks. 

Preparation of the Sausages 

The loins were held for 48 hr at 4 ° C to thaw; ground through a 1/8 inch plate (Biro 

grinder. The Biro Mfg. Co., Marblehead, OH); and mixed for 30 sec. Protein measurements 

were determined with a nitrogen analyzer (model FP-428, LECO corporation, St. Joseph, 

MI). Moisture and fat analysis were performed using official analytical methods (AOAC, 

1990). 

Eight brine solutions were prepared by dissolving or dispersing dry ingredients in 

distilled water (30 % of meat weight). The dry ingredients used for the brine solutions 

included food-grade NaCl (Morton International, Chicago IL), and K-, I- and ?I-CGN (Sanofi, 

Bio-Industries, Waukesha, WI). The mixing sequence was as follows; 2 % sodium chloride 

(0.34 n) and 0.5 % carrageenan. Control treatments included sausages without CGN (Table 

2). The brines were held overnight at 2 °C. 

The treatments were randomly assigned to the experimental units (3.63 Kg ground 

meat) using a random permutation table of nine numbers (Cochran and Cox, 1950). The 

experiment was a factorial combination of two pH values (<5.5 and >6.0) and four CGN 
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treatments (non-CGN, K-, I- and ?I-CGN). The sausages were prepared by mixing the meat 

and brine for a total of 3 minutes in a vacuum mixer (Higashimoto Kimai, Tokyo, Japan). The 

meat mixtures were stuffed with a piston stuffer (Hollymatic Corp., Countrysde, IL) into 

presoaked 4 x 24 opaque CMVP fibrous casings (Teepak, Kansas City, MO), then the casings 

were closed and clipped. The sausages were steam cooked to an internal temperature of 70 

°C and showered for 10 min in an Alkar thermal processing unit (Alkar, DEC International, 

Lodi, WI), equipped with a direct digital control system. The sausages were placed in a 

cooler (2 °C) overnight, boxed, frozen at -20 °C in a blast freezer (Vollrath Refrigeration, Inc., 

River Falls, WI) for 72 hr. 

After frozen storage, slices of 2.5 cm thickness were cut using a Butcher-boy band 

saw (Lasar, Mfg. company Inc., Los Angeles, CA), placed in Ziploc® bags and held in a 

walk-in cooler for 48 hr at 2 "C to thaw. Four slices of sausage per treatment were used to 

measure thaw drip and texture measurements. 

Sausage Evaluation 

The thaw drip, texture and pH characteristics of these sausages were evaluated as 

described in experiment 1. 

Statistical Analyses 

The experiment was replicated twice and was arranged in a 2 x 4 factorial design with 

two pH (<5.5 and >6.0) and four CGN levels (no added CGN, kappa-, iota-, lambda-CGN). 

The Statistical Analysis System (SAS, 1991) was used to determine means, standard errors 

and analysis of variance. Least significant difference was used to test differences between 

means (P<0.05). 
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RESULTS AND DISCUSSION 

Experiment 1; Effect of salt, phosphate and carrageenan on the freeze/thaw stability 

of cooked pork sausages 

The raw meat had the following composition; Moisture 74.60 ± 0.67 %, protein 

19.96 ± 0.07 %, fat 4.08 ± 0.32 % and pH 5.93 ± 0.15. 

Effect of Sodium Tripolyphosphate 

Among all the factors studied, STPP was the most important main effect responsible 

for changes in thaw drip (Table 3) hardness (Table 3) and pH (Table 4). The addition of 

STPP to pork sausages significantly (P<0.05) decreased thaw drip (TD) (Fig. 1) and increased 

hardness (Fig. 2) and pH (Fig. 3). Woyewoda and Bligh (1986) observed a decrease in TD 

and cooked drip in frozen fish fillets treated with phosphates, regardless of storage 

temperature. The statistical interaction among phosphate-, carrageenan-, and salt-main effects 

(Table 3), indicated that phosphate affected the stability of freeze-thaw sausages in different 

ways at the two salt and four CGN levels. 

The ability of phosphates to increase pH, enhance water holding capacity (WHC) and 

improve texture has been extensively documented (Molins, 1991). Some researchers have 

attributed the increase of WHC in meats treated with phosphates to changes in pH and ionic 

strength (Trout and Smith 1986; Swift and Ellis, 1956). Others have suggested that 

phosphates induce solubilization of actomyosin that increases with increasing pH (Molins, 

1991). Trius (1994) reported that the addition of 0.5 % STPP to pork sausages formulated 

with or without CGN (k, i and ^) significantly increased hardness and reduced cooking losses. 



Similar improvement in texture upon addition of phosphates was observed by Barbut et al. 

(1988). These authors reported an increase in firmness of turkey frankfurters that contained 

0.4 % phosphate at either 1.5 % or 2.0 % salt concentrations. 

When STPP and NaCl were added to the sausages, TD and hardness were significantly 

(P<0.05) decreased and increased (Fig. 1-2), respectively. This effect was also observed in 

the presence of KCl. However, sausages containing KCl had higher TD and lower hardness 

values than those with NaCl. STPP has been reported to react with NaCl-free myosin similar 

to salts and exhibit increased affinity for myosin in the presence of high sodium chloride 

concentration (Molins, 1991). 

A study conducted by Moirano (cited by Molins, 1991) in which K-CGN, sodium salts 

of phosphates and potassium phosphate were used to improve the textural properties of 

dessert gels, indicated that K-CGN gels were enhanced by potassium ions and that phosphate 

was a very effective Ca++ chelating agent. However, the addition of KCl to our sausages did 

not enhance the gelling properties of carrageenans in relation to controls. Control treatments 

(non-CGN added) had the highest TD of all CGN treatments at the two levels of phosphate 

and salt (Fig. 1). K-CGN and control treatments were not significantly (P>0.05) different in 

hardness when KCl was added to the sausages (Fig. 2), which may suggest that the presence 

of KCl affected the fijnctionality of K-CGN at the two phosphate levels. This was not 

observed when NaCl was used. The addition of KCl to the sausage also had a negative effect 

on the ability of i- and X,-CGN to retain water, with or without STPP added (Fig. 1). The 

ability of CGN to retain water upon freezing and thawing was better observed when no STPP 
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was added (Fig. 1). However, the effect on hardness was more evident in the presence of 

STPP (Fig. 2). As expected, phosphates increased the pH of the batter, regardless of the type 

of salt present (Fig. 3). 

EfTect of Salt 

To study how thaw drip, hardness and pH changed at the two salt levels used, the data 

was reploted using salt levels as the independent variable(Fig 4-6). Fig. 4-5 shows the effect 

of salt and CGN types on the TD and hardness of freeze-thaw cooked sausages at two levels 

of phosphate. 

The addition of KCl to the sausages increased significantly (P<0.05) TD and decreased 

hardness when compared to NaCl (Fig. 4-5). Control sausages were significantly (P<0.05) 

affected by the addition of KCl. In the presence of this salt, control sausages had the highest 

(P<0.05) thaw drip values of all treatments at the two levels of phosphate. Similar 

observations have been reported by Whiting (1987), who evaluated the effect of various salts 

on the functionality of beef batters. He reported an increased in water and fat exudate in the 

batters treated with KCl. When STPP was present, thaw drip was decreased and the 

differences among CGN and control means were diminished (Fig. 4). As it has been 

previously reported, phosphate improves gelation of meat batters by either increasing the pH 

(Fig. 3) or the solubilization of actomyosin. 

Texture of the sausages was also affected by the addition of KCl, i- and K-CGN 

sausages became softer in the presence of KCl. It has been suggested that K"^ could interact 

with K-CGN, resulting in helix aggregation, which led to softer texture and water expulsion 

(Trius, 1994). This effect was greater when phosphate was added. Larger differences in 
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hardness among treatments were obtained in STPP treated sausages. 

The effect of NaCl, KCl and CaCl2 on the hardness and cooking loss of meat batters 

was studied by Trius (1994). No differences between NaCl and KCl salts in back-extrusion 

forces of cooked batters were observed. However, cooking losses were affected by salt and 

CGN type. Addition of KCl resulted in higher and lower cooking losses for K- and X-CGN 

sausages, respectively. 

No important changes in pH on freeze/thaw pork mixtures were observed upon 

addition of salt, particularly in sausages made with high pH meats (Fig. 6). 

Effect of Carrageenans 

Fig. 7-9 show the effect of carrageenans and STPP on the TD and hardness of freeze-

thaw cooked sausages and pH of uncooked sausages at two levels of phosphate. The data was 

reploted using CGN levels as the independent variable. Addition of CGN to sausages treated 

with NaCl significantly decreased the thaw drip of freeze/thaw cooked sausages at the two 

levels of phosphate and salt (Fig. 7). Similar results were observed by Bater et al. (1993), 

who reported a decrease in freeze and thaw purge of cured turkey meat with K-CGN added. 

Differences in TD values among CGN treatments were very low in the presence of NaCl. 

When STPP and NaCl were added to the sausage, no significant (P>0.05) differences in TD 

were found among CGN (K, I and X). A similar effect was observed in sausages without 

phosphate added in the presence of NaCl. However, significant (P<0.05) differences in TD 

among all CGN including control were observed when KCl was added to the system. 

Particularly, control, K- and i-CGN sausages were significantly affected by the presence of this 
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salt. This effect was less pronounced when phosphate was present. Trius (1994) observed 

an improvement in cooking loss in meat batters prepared with A.-CGN and KCl. This 

researcher suggested that the presence of KCl induced the formation of a structure capable of 

holding water. However, our data suggested that the TD values for K-, i-, and A,-CGN in the 

presence of KCl resulted from a negative effect of this cation toward K- and I-CGN, rather 

than to an improvement in A,-CGN water holding capacity (Fig. 7). 

The addition of K-CGN improved the texture of freeze-thaw sausages at the two 

phosphate levels when NaCl was added (Fig. 8). When KCl was present, K-CGN sausages 

were as hard as the control, with or without phosphate added. The ability of i-CGN to 

increase hardness was only observed in the presence of NaCl with no-STPP added. The 

addition of KCl affected the performance of i-CGN, resulting in softer sausages. Sausages 

containing X-CGN were significantly softer than the other treatment at both of the phosphate 

and salt levels (Fig. 8). This results are in agreement with some of the data reported by Trius 

(1994) and with observations made by DeFreitas et al (1994a) using salt-soluble meat proteins 

as model systems. 

pH values were significantly changed with the addition of carrageenan (Fig. 9). The 

effect was more pronounced in the absence of phosphate. Control and A,-CGN sausages had 

the lowest and highest pH values, respectively (Fig. 9). Similar increase in pH values upon 

addition of carrageenan was observed by Trius (1994). 
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Experiment 2: Effect of pH and carrageenan on the freeze/thaw stability of cooked 

pork sausages 

The raw meat had the following composition: 1) Low-pH meat; moisture 74.14 ± 

0.37 %, protein 21.97 ± 0.17 %, fat 3.04 ± 0.03 % and pH 5.47 ± 0.05; 2) High-pH meat; 

moisture 73.92 ± 0.15 %, protein 22.93 ± 0.39 %, fat 2.56 ± 0.11 % and pH 6.18 ± 0.03. 

Effect of Meat pH 

Significant (P<0.01) interaction between meat pH and CGN levels were obtained for 

hardness and TD values. This indicates that pH affected these variables diflferently at the four 

levels of CGN. Fig. 10 shows the effect of pH and CGN on the TD and hardness of pork 

sausages. pH was the most important factor affecting TD and hardness of cooked pork 

sausages. Sausages prepared with high-pH meats were harder to compress than those made 

with low-pH meats. Low-pH (5.3-5.4) meats result from a condition called pale, soft and 

exudative (PSE) pork, in which muscle pH decreases abnormally, due to rapid rate of 

glycolysis. The muscle is identify by having light color, soft and watery lean with open 

structure (Enfalt et al., 1993). As a consequence of the rapid decline of pH, denaturation of 

muscle protein occurs, due to the increase concentration of lactic acid and high temperature. 

Therefore, the ability of the proteins to form gel and hold water is greatly impaired. Park et al 

(1975) reported lower hardness values of sausages made with PSE meat in comparison with 

normal muscle. 

Meat pH greatly (P<0.01) affected the water holding capacity of cooked pork 

sausages. The lower the pH, the higher the TD observed in all treatments. The pH value of 

the low-pH meats used for this study was 5.47 ± 0.05, which is close to the isoelectric point 
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myofibrillar proteins (pH 5.5) (Hamm and Deatherage, 1960; Lewis et al., 1986). The pH at 

which water holding capacity is minimum corresponds to the isoelectric point of meat 

proteins. Therefore, it is expected that low-pH meats would exhibit higher water losses. 

Trius (1994) observed greater cooking losses of batter prepared writh low-pH meats. Similar 

results were observed in this study in terms of TD. TD was significantly (P<0.01) lower at 

pH greater than 6.18. High pH-meats have been attributed to a condition present in pigs 

before slaughter. Highly stressed pigs, just prior slaughter, may exhibit depletion of glycogen, 

resulting in slow decline of pH postmortem. This condition is called dark, firm and dry (DFD) 

pork, which is also characterized by having high pH and high water holding capacity. At high 

pH, proteins are highly negative charged, which causes the proteins to repel each other, 

creating large spaces were water is trapped, therefore increasing water holding capacity. 

EfTect of Carrageenans 

Fig. 11 show the effect of carrageenans and meat pH on the TD and hardness of 

fi-eeze-thaw cooked sausages. The data was reploted using CGN levels as the independent . 

variable. The addition of various types of CGN to low- and high-pH meats significantly 

(P<0.01) changed the texture and WHC characteristics of cooked pork sausages. CGN 

affected (P<0.01) these variables in different ways depending upon the meat pH. A slight 

improvement in hardness was observed when K- and i-CGN were added to low-pH meats. A 

greater increase in hardness was obtained in high-pH sausages containing K- and i-CGN in 

relation to control and X-CGN. Addition of A,-CGN resulted in softer sausages than control 

(non-CGN added). 
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Carrageenan also affected the TD of cooked sausages at a low pH. All CGN seemed 

to have contributed to WHC, indicating that they were able to trap water at a low pH. No 

effect at high pH on TD was observed (Fig. 11). These results are particularly important for 

the meat industry, since pork muscle quality affects pork processing revenues. In the United 

States the incidence of PSE and DFD was reported around 16% and 10 % (Kaufl&nan et at., 

1992). Control sausages had the highest TD of all treatments when low-pH meats were used 

to make the batter. 

Carrageenan and meat pH significantly (P<0.01) affected the final pH of the meat 

batters (Fig. 12). However, non-statistical (P>0.05) interaction was observed between these 

two main effects. As it was observed in experiment 1, control and A,-CGN batters had the 

lowest and the highest pH of all treatments, respectively. Because the amount of ester sulfate 

groups and of 3,6 anhydro-D-galactose units can be used to distinguish among CGN, X-CGN 

has the highest number of sulfate groups, followed by i-and K-CGN. This may explain the 

increase in pH observed upon addition of CGN. 

conclusions 

The effect of phosphate, salt and CGN on the stability of freeze/thaw cooked pork 

sausage was studied. The addition of sodium tripolyphosphate was the most important factor 

in determining changes in thaw drip, texture and pH of the sausages. Sausages that contained 

STPP always had the lowest thaw drip and the highest hardness values, regardless of salt and 
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CGN type. 

Salt and CGN also significantly (P<0.05) affected the texture and water retention 

ability of the sausages. The use of KCl did not affect the hardness of control samples in the 

presence of STPP, but decreased the functionality of all CGN. Control samples had the 

highest TD of all treatments at the two levels of salt and phosphate. 

Thaw drip was significantly reduced by the addition of CGN at the phosphate and salt 

levels studied. However, the addition of KCl affected CGN functionality and reduced CGN 

effectiveness. Of all CGN treatments, K-CGN was the most effective in improving hardness 

when NaCl and STPP were added. In the absence of STPP, K- and i-CGN behaved similarly, 

resulting in the highest hardness values. 

The effect of meat pH and carrageenans on the freeze/thaw stability of cooked 

sausages was also evaluated. Meat pH was the most important factor determining the 

changes in texture and water retention. Meat pH was the most important factor determining 

the changes in texture and water retention of cooked pork sausages. The functionality of 

CGN was affected by pH conditions. At low pH (5.47 ± 0.05), K-, and i-CGN significantly 

improved the thaw drip loss in the cooked sausages. A,-CGN, however, did not improve the 

stability of the sausages. Differences in thaw drip values at high pH (6.18 ± 0.03) were not 

that evident as at low pH. Hardness was significantly affected by pH, having greater values at 

higher pH. K-CGN-containing sausages were the hardness among all treatments, followed by 

i-CGN, control (non-CGN added) and X,-CGN, the latter was the softest of all sausages. 

The results in these experiments showed that kappa- and iota- and lambda-
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carrageenans were very effective in decreasing thaw drip of cooked sausages made under 

normal processing conditions. Furthermore, kappa and iota-carrageenan improved the 

functionality of low pH meats. These results suggested that carrageenans may be used to 

improve overall characteristics of cooked products that have been subjected to freezing and 

thawing. 

references 

Acton, J. C. 1983. Restructuring in further processed turkey products. Turkey World 58:13-

14, 16. 

AO AC. 1990. Official Methods of Analysis. 15th Edition. Association of Official Analytical 

Chemists, Washington, DC. 

Barbut, S., Maurer, A. J., and Lindsay, R. C. 1988. Effects of reduced sodium chloride and 

added phosphates on the physical and sensory properties of turkey frankfurters. J. 

FoodSci. 53:62-66. 

Barbut, S and Mittal, G. S. 1989. Influence of and Ca"^"^ on the rheological and gelation 

properties of reduced fat pork sausages containing carrageenans. Lebensm. Wiss. u. 

Technol. 22:124-132. 

Bater, B., DesCamps, O., and Maurer, A. J. 1992. Quality characteristics of hydrocolloid-

added oven-roasted turkey breasts. J. Food Sci. 57:1068-1070. 

Bater, B., DesCamps, O., and Maurer, A. J. 1993. Quality characteristics of cured turkey 

thigh meat with added hydrocolloids. Poultry sci. 72:349-354. 



142 

Carr, J. M. 1993. Use of carrageenans in cured meat products. Paper presented at cured 

Meat Short Course, Ames, lA, Jan 12-14. 

Cochran, W G., and Cox., G. M. 1950. Experimental Designs. John WUey & Sons, Inc., 

Second Edition. New York. 

DeFreitas, Z., Sebranek, J. G., Olson, D. G., and Carr, J. M. 1994. Functionality of 

carrageenan and salt soluble meat proteins in model systems. J. Food Sci. (to be 

submitted). 

Enfalt, A-C, Lundstrom, K., and Engstrand, U. 1993. Early post mortem pH decrease in 

porcine M longissimus dorsi of PSE, normal and DFD quality. Meat Sci. 34:131-

143. 

Glicksman, M. 1983. Red Seaweeds Extracts (Agar, Carrageenans, Furcellaran). Ch. 5, 

In FoodHydrocolloids II. M. Glicksman (Ed.), 73-107. CRC Press, Inc., Boca 

Raton, FL. 

Hamm, R. and Deatherage, F. E. 1960. Changes in hydration, solubility and charges of 

muscle proteins during heating of meat. Food Res. 25:587-610. 

Kauffman, R. G., Cassens, R. G, Scherer, A., and Meeker, D. L. 1992. Variations in pork 

quality. History. Definition. Extent. Resolution. National Pork Producers Council, 

Des Moines, lA. 

Keeton, J. T. 1991. Fat substitutes and fat modification in processing. Recipr. Meat Conf 

Proc. 44:79-89. 

Lewis, D. F., Groves, K. H. M., and Holgate, J. H. 1986. Action of polyphosphates in 

meat products. Food Microstruct. 5:53-62. 



143 

Molins, R. A. 1991. Phosphates in Food. CRC Press Inc. Boca Raton, FL. 

Park, H. K., Ito, T., and Fukazawa, T. 1975. Comparison between normal and PSE porcine 

muscle in the extractability of myosin B and in the rheological properties of those 

sausages. Jap. J. Zoothech. Sci. 46:360-366. 

Sanderson, G. R., Bell, V. L., Clark, R. C., and Ortega, D. 1988. The texture of gellan gum 

gels. In Gums and Stabilizers for the Food Industry 4, G. O. Phillips, D. J. 

Wedlock and P. A. Williams (Ed.), 219-229. IRL Press, Washington, D. C. 

SAS Institute Inc. 1991. SAS® User's Guide: Statistics, Version 6 Edition, SAS InstilntQ, 

Inc., Cary, NC. 

Sebranek, J. G, Olson, D. G, Whiting, R. C., Benedict, R. C., Rust, R. E., Kraft, A. A., 

Woychik, J. H. 1983. Physiological role of dietary sodium in human health and 

impHcations of sodium reduction in muscle foods. Food Technology 37:51-54, 56-

59. 

Swift, C. E., and Ellis, R. 1956. The action of phosphates in sausage products. I. Factors 

affecting water retention of phosphate on water absorption. Food Technol. 10:546-

552. 

Terrell, R. N and Olson, D. G. 1981. Chloride salts and processed meats: properties, 

sources, mechanisms of action, labeling. Proc. Meat. Inds. Res. Conf p. 67-94. 

Trius, A. 1994. Performance of different carrageenans in meat batters and model systems. 

MS Thesis. Iowa State University, Ames, lA. 

Trout, G. R., and Smith, G. R. 1986. Water binding of meat products; effect of fat level, 

effective salt concentration and cooking temperature. J. Food Sci. 51:1061-1062. 



144 

Whiting, R. C. 1987. Influence of various salts and water soluble compounds on the 

water and fat exudation and gel strength of meat batters. J. Food Sci. 52; 1130-1132, 

1158. 

Woyewoda, A. D., and Bligh, E. G. 1986. Effect of phosphate blends on stability of cod 

fillets in frozen storage. J. Food Sci. 51:932-935. 



145 

Table 1. Treatment combinations used to study the effect of 
CGN, SSTP and salts on freeze/thaw stability of 
cooked pork sausages. 

Treatments CGN' stpp2 Salt^ 
I Control 0 NaCl 
2 kappa 0 NaCl 
3 iota 0 NaCl 
4 lambda 0 NaCl 
5 Control 0 KCl 
6 kappa 0 KCl 
7 iota 0 KCl 
8 lambda 0 KCl 
9 Control 0.5 NaCl 
10 kappa 0.5 NaCl 
11 iota 0.5 NaCl 
12 lambda 0.5 NaCl 
13 Control 0.5 KCl 
14 kappa 0.5 KCl 
15 iota 0.5 KCl 
16 lambda 0.5 KCl 

' 0.5 % carrageenan. 
^ Sodium tripolyphosphate. 
' 0.34 ionic strength. 
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Table 2. Treatment combinations used to study 
the effect of CGN and pH on freeze/thaw 
stability of cooked pork sausages^ 

Treatments CGN' plf 
1 Control low 
2 kappa low 
3 iota low 
4 lambda low 
5 Control high 
6 kappa high 
7 iota high 
8 lambda high 

' 0.5 % carrageenan. 
Mow-pH: 5.47 ±0.05. 

high-pH: 6.18 ±0.03. 
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Table 3. F values for selected source of variation from the factorial 
analysis of variance of thaw drip and hardness. 

Source of variation df Thaw drip Hardness 

REP 1 19.63*" 0.59 
CGN 3 77.37"* 101.18*" 
STPP 1 288.20"" 1351.44*" 

SALT 1 80.52"* 49.16*" 
CGN*STPP 15.40*" 22.15*" 
CGN* SALT 3 6.76*" 10.37*" 
STPP*SALT 1 9.68" 6.48" 
CGN*STPP*SALT 4.57" 2.22* 
Error 111 
Corrected Total 127 

*, **, '"Significant at P<0.05, P<0.01, P<0.001, respectively. 
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Table 4. F values for selected source of variation from the 
factorial analysis of variance of pH. 

Source of variation df pH 

REP 1 281.84"* 
CGN 3 15.29*" 
STPP 1 478.19"* 

SALT 1 9.69*" 
CGN*STPP 3 3.33* 
CGN* SALT 3 5.36" 
STPP* SALT 1 0.06 
CGN*STPP*SALT 3 5.48 
Error 46 
Corrected Total 62 

*, **, *" Significant at P<0.05, P<0.01, P<0.001, respectively. 
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GENERAL SUMMARY 

Most of the research on carrageenan/protein interactions has been conducted on dairy 

systems. Little is known about the molecular mechanisms by which carrageenan (CGN) 

interacts with meat proteins. Therefore, one of the objectives of this study was to evaluate the 

interactions between CGN and salt-soluble meat proteins (SSMP) and the forces involved 

during such interactions. 

Differential scarming calorimetry has been extensively used to study thermal 

denaturation of meat proteins. Changes in the thermal denaturation characteristics of proteins 

can be induced by the addition of non-meat ingredients. These changes may indicate shifts in 

the physical state of the proteins or interactions between proteins and non-meat ingredients. 

Thus, the second objective of this study was to examine the effect of CGN on the thermal 

denaturation characteristics of SSMP and ground muscle using differential scanning 

calorimetry. 

The addition of CGN to low-fat meats to improve water holding capacity and texture 

is well documented. However, not much literature is available regarding the behavior of CGN 

in meat products that have been subjected to freezing. Therefore, the last objective of this 

study was to evaluate the effect of CGN (K, i and X) on the freeze/thaw stability of cooked 

pork sausages under various salt, pH and phosphate conditions. 

This study was divided in three major parts, each part containing at least two separate 

experiments. The first part studied the functionality of CGN and SSMP in model systems. 
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The first experiment in this part evaluated the effect of dry K-, i-, and A,-CGN on the gel 

strength, water holding ability and rheological characteristics of heat-induced SSMP gels. It 

also examined the forces involved during the formation of CGN/SSMP gels. The gels were 

analyzed for texture and water losses and the proteins expelled fi'om the gels after 

centrifugation were characterized by using sodium dodecyl sulfate polyacrilamide gel 

electrophoresis (SDS-PAGE). The addition of CGN to SSMP extracts significantly affected 

the physical properties of SSMP gels, K and i-CGN significantly (P<0.05) increased the gel 

strength of SSMP, while A,-CGN was detrimental to gelation. The force needed to compress 

K-CGN and SSMP gels independently did not add up to the total force required to compress 

combined SSMP/K-CGN gels, suggesting that a protein/hydrocolloid interaction between 

SSMP and K-CGN may have occurred. All CGN improved water retention of SSMP gels. 

The addition of destabilizing reagents such as, sodium chloride, sodium thiocyanate 

(NaSCN), urea, 2-mercaptoethanol (MeSH) and propyl glycol (PG), to SSMP, K-CGN and 

SSMP/K-CGN mixtures was done to study the forces involved during gel formation. K-CGN 

increased the gel strength and water retention of all SSMP/K-CGN gels, independently of 

protein concentration. No significant (P>0.05) differences in gel strength and water loss were 

observed among NaCl, NaSCN, urea, MeSH and control gels containing 5% SSMP. 

However, greater differences among reagents were observed when 1 % SSMP was used to 

prepare the gels. NaCl, urea and PG gels had significantly lower gel strength than control and 

MeSH gels. K-CGN gels showed similar behavior as SSMP/K-CGN gels in the presence of 

these reagents, suggesting that the changes in gel strength were due to CGN instability rather 
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than to the weakening of SSMP and CGN interactions. The amount of protein expelled after 

centrifugation was not affected by the addition of K-CGN, which suggested that carrageenan 

was not involved in stabilizing the proteins. Electrophoresis studies indicated no differences m 

the protein profiles of SSMP and SSMP/K-CGN gels. 

The second experiment of this part examined the effect of CGN in solution on the 

heat-induced gelation of SSMP. Since K-CGN gelled at temperatures lower than 40 °C, a 

temperature control system was designed to solubilize the CGN into the SSMP extract. 

Rheological, water loss and scanning electron microscopy analyses were performed in K-

CGN/SSMP and SSMP gels. Also, the forces involved in maintaining the gels were 

evaluated. Addition of K-CGN to various SSMP concentrations (1, 1.5 and 2.0 %), increased 

the gel strength and water retention of all treatments. Protein concentration did not have an 

effect in gelation of SSMP/K-CGN gels, however, an increase in water retention was observed 

when 2% protein was present. Scanning electron microscopic studies showed distinct 

differences in gel structures among SSMP, K-CGN and SSMP/K-CGN gels. The micrograph 

of SSMP/K-CGN gels showed a well structured matrix with a highly interconnected network 

of strands that may offer more resistance to applied stress and higher water holding capacity. 

The SSMP gels were discontinuous with poor linkage between protein strands and large open 

spaces within the matrix, which may explain the poor water retention and texture of these 

gels. Although the K-CGN gels showed large open spaces, the gels seemed to be well 

interconnected and smooth. The addition of destabilizing agents (NaCl, 2-MeSH, and PG) to 

SSMP and SSMP/K-CGN gels to study the forces involved in maintaining the gel together did 
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not alter the protein concentration release from the gels upon centrifugation. 

The second part of this study evaluated the thermal denaturation characteristics of 

meat proteins/CGN mixtures using differential scanning calorimetric techniques . In this 

study, SSMP, myofibrillar proteins (MP) and ground meat were used as model systems. In 

the first experiment, the effect of CGN in the thermal transition of SSMP and MP was studied. 

The protem concentration obtained during the extraction of SSMP was in the order of 5%. 

At this concentration, the typical myosin and actin peaks could not be distinguished. MP 

extractions yield concentrations as high as 10 % protein concentrations. DSC measurements 

of MP showed the presence of three transition temperatures, which were characteristic of 

meat proteins. However, no changes in thermal denaturation of the proteins were observed at 

concentrations of CGN as high as 2 %. The effect of carrageenan in ground pork under two 

ionic strength conditions was investigated. Addition of 2 % NaCl to ground pork, decreased 

the temperature of transition of the first and the third peaks by 4 °C and 9 °C, respectively. 

The second transition temperature was not significantly affected by ionic strength. Ionic 

strength also affected the temperature of transition of CGN. Higher transition points were 

observed at high ionic strength. However, CGN did not significantly change the thermal 

transition temperatures of myosin and actin. This further supports the conclusion that no 

direct molecular interaction occurs. 

The third part of this study examined the effect of salt, phosphate, pH and CGN on the 

freeze/thaw stability of cooked pork sausages. One of the experiments in this part included 

the evaluation of salt types (NaCl and KCl), phosphate and CGN (K, i, and A,) on the 

freeze/thaw stability of cooked pork sausages. The second experiment examined the effect of 
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pH (<5.6 and >6.0) and CGN (K, i, and X,) on the jfreeze/thaw stability of cooked pork 

sausages. Phosphate was the most important factor in improving the overall stability of the 

sausages among the factors studied during the first experiment. It increased hardness and 

decreased thaw drip, regardless of the addition of CGN. Salt type also affected the texture 

and the water retention ability of the sausages. Particularly, KCl greatly decreased the 

hardness and the water retention of all treatments. This effect was more pronounced in the 

absence of phosphate. Among all the carrageenan (K, i, and X) studied, K-CGN was the most 

effective treatment in improving hardness, K- and i-CGN were equally effective in decreasing 

thaw drip in the presence of phosphate and NaCl. When KCl was added, the efifectiveness of 

CGN was greatly compromised. In the second experiment, pH was the most important factor 

determining the changes in texture and water retention. The functionality of CGN was 

affected by pH conditions. At low pH (5.47 ± 0.05), K-, and I-CGN significantly improved 

the thaw drip loss in the cooked sausages. A,-CGN, however, did not improve the stability of 

the sausages. Differences in thaw drip values at high pH (6.18 ± 0.03) were not that evident 

as at low pH. Hardness was significantly affected by pH, having greater values at higher pH. 

K-CGN-containlng sausages were the hardness among all treatments, followed by i-CGN, 

control (non-CGN added) and A,-CGN, the latter was the softest of all sausages. 
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