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Abstract: 

Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or 

flaws such as cracks inside parts or structures during manufacturing or for products that need to be 

inspected while in service. The commonly-used standard statistical model for such data is a simple 

empirical linear regression between the (possibly transformed) signal response variables and the (possibly 

transformed) explanatory variable(s). For some applications, such a simple empirical approach is 

inadequate. An important alternative approach is to use knowledge of the physics of the inspection 

process to provide information about the underlying relationship between the response and the 

explanatory variable or variables. Use of such knowledge can greatly increase the power and accuracy of 

the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed 

explanatory variables. This paper describes a set of physical model-assisted analyses to study the 
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capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion 

defects in titanium forging disks.  

 

Key Words:  Bayesian analysis, Censored data, Extrapolation, Hard alpha inclusion, Kirchhoff 

approximation, Mixed effects, Titanium forging, Ultrasonic testing.  

1 INTRODUCTION 

1.1 Background 

Nondestructive evaluation (NDE) is used to characterize the status or properties of components or 

structures without causing any permanent physical damage. The aerospace industry is one important NDE 

application area where failing to detect defects inside airplane components can lead to disasters [see for 

example NTSB/AAR-89/03 (1989) and NTSB/AAR-90/06 (1990)]. In virtually all NDE applications, 

there are random effects and errors involved in the measurements and statistical models are needed to 

analyze the NDE data sets. MIL-HDBK-1823A (2009) describes the standard statistical approaches used 

in NDE studies. Given a sufficient amount of data over an appropriate region of interest for the 

explanatory variables (e.g. flaw size and depth), simple empirical statistical models are often adequate to 

describe the relationship between the response and the explanatory variables.  In many applications, 

however, including the one that motivated this research, the available data are not sufficient to address the 

questions that need to be answered. Under such circumstances, a physics-based statistical model can 

sometimes be used to extract the needed information from the limited data. In addition, the physics-based 

model enables us to extrapolate outside the range of the available data. 

As exemplified in NTSB/AAR-90/06 (1990), hard alpha inclusions in titanium alloy aircraft engine 

disks can lead to serious accidents. A hard alpha inclusion is a brittle nitrogen-based contamination that 

could cause fatigue cracks to grow more rapidly than what would be otherwise expected in the usually 
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ductile titanium alloy. To develop better NDE tools for detection of hard alpha inclusions, a synthetic 

inclusion forging disk (known as the SID) was fabricated (details are given in Margetan et al. 2007). The 

SID contains numerous types of synthetic hard alpha (SHA) inclusions and flat bottom holes (FBHs) of 

different known sizes. For each inclusion type, there are multiple copies which we refer to as “targets.” 

These targets are under different surfaces and at different depths. 

This paper describes a round-robin experiment in which the SID was inspected by two different 

ultrasonic testing (UT) methods, with different operators at different locations. We describe the modeling 

and statistical analyses that were used to estimate the probability of detection (POD) for the synthetic hard 

alpha inclusions and provide the needed extensions to standard methods that have been used traditionally 

in the analysis of NDE data. Our modeling and analysis include the use of a physics-based model to 

describe the relationship between NDE signals and flaw characteristics and the use of a mixed effect 

model to describe random effects in the inspection process. We also introduce the important concept of 

making inferences on a quantile of the POD distribution. 

1.2 Related Literature 

Olin and Meeker (1996) and Spencer (1996) provided an overview of statistical methods for NDE 

techniques. MIL-HDBK-1823A (2009) described the standard statistical procedures for NDE data 

analyses and Annis (2009) provided an R package to implement these procedures through maximum 

likelihood (ML) method.   

1.3 Overview 

The rest of this paper is organized as follows. Section 2 presents the standard statistical methods used in 

NDE and the concept of POD. Section 3 gives a summary description of the experimental data. Section 4 

describes the details of the physical models used in the analyses. Section 5 presents the physics-based 

statistical model. Section 6 describes the estimation procedures of the statistical model. Section 7 presents 



detailed POD results for different types of defects. Section 8 contains some concluding remarks and 

extensions for future research work.  

2 STANDARD STATISTICAL METHODS IN NONDESTRUCTIVE 

EVALUATION 

In this section, we outline the standard statistical methods and procedures that are commonly used in 

NDE applications, as described at MIL-HDBK-1823A (2009). There are two types of responses in NDE 

applications: hit and miss binary responses and continuous responses such as voltage. Given the fact that 

the UT measurements from the titanium forging SID are continuous, we focus on the statistical model for 

a continuous response. 

2.1 Statistical Models for NDE 

We use Y  to denote the NDE measurement response (or its transformation) and x  to denote the 

defect size (or its transformation). Other explanatory variables (or their transformation), some of which 

might be random effects, are denoted by a vector z . Then the statistical model is  , ,xY f  z β  

where  is a vector of regression parameters and β   is the measurement error following a normal 

distribution  2
yN 0, . With the measurement data (possibly censored or truncated) and specified 

, estimates of the parameter vector  , ,z βf x  ˆ 2ˆ, yβ  and the estimated variance covariance matrix of 

these estimates can be obtained through standard ML methods described, for example, in Pawitan (2001). 

MIL-HDBK-1823A (2009) discussed the commonly used simplest case with 0 1Y x      and 

Annis (2009) provided an R package based on the ML method with censored observations for this and 

more general linear regression models. It is common to use a normal distribution to describe the 

variability in  , although it is possible to use alternative appropriate distributions when needed. 
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2.2 Detection Threshold 
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n

For specimens without any defects there are still measurement responses due to background noise and 

other measurement variations. We use  to denote the resulting noise response (or its transformation) 

Often the noise (generally using the same transformation as the response) can be modeled adequately with 

a normal distribution of Y N

nY

2,n~n   . NDE noise data can be obtained by taking measurements on 

units without flaws or from those parts of a unit not containing flaws. These data can then be used to 

compute ML estimates  2ˆ ˆ,n n   of the noise parameter. The detection threshold   is typically set to 

provide an acceptably small probability (

thy

fp ) of a false alarm (e.g., 0.01fp   or ). In particular, 

the detection threshold can be chosen such that 

0.05

 Pr n thY y p 



f . Specifically, the detection threshold 

is then chosen as  f
1ˆ ˆ 1n nthy p      where   1 x   is the standard normal distribution quantile 

function.   

2.3 Probability of Detection 

For a specified model  and detection threshold, the probability of detection as function of 

defect size can be obtained as follows: 

 , ,f x z β

      , ,
POD Pr 1 th

th
y

y f x
x Y y


 

   
 

0z β
  (1) 

where  is a set of fixed explanatory variables and 0z  x  is the standard normal cumulative distribution 

function. Confidence bounds for the POD can be obtained by using delta method (see for example 

Appendix B in Meeker and Escobar 1998), requiring as inputs, the estimated variance and covariance 

matrix of the parameter estimates  2ˆ ˆ, yβ . 



3 DATA DESCRIPTION 

3.1 Data Overview 

The titanium SID that was used in the experiments described in this paper contained a large number of 

cylindrical FBH and SHA targets. A cross section diagram of the SID is shown in Figure 1 with longer 

rods indicating FBH inclusions and shorter rods indicating cylindrical SHA inclusions. For the FBH 

targets, there were three sizes: #1, #3 and #5 (corresponding to 1/64, 3/64 and 5/64 inches in diameter, 

respectively). For the SHA targets, there were only two different sizes: #3 and #5. The SHA targets had 

two different weight percent nitrogen concentrations  wN  for each size: 3% and 17%. Thus there were 

seven different target types. We denote these by #1FBH, #3FBH, #5FBH, #3SHA3, #3SHA17, #5SHA3, 

and #5SHA17. Detailed information about the SID can be found in Margetan et al. (2007). 

 

Figure 1. The cross section of the synthetic inclusion disk. 

 The SID was inspected with two different UT inspection methods which are commonly known as 

the Conventional method (Figure 2 top) and the Multizone method (Figure 2 bottom). The Conventional 
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method sets the focal point near the surface of the SID, and the Multizone method uses several 

transducers simultaneously each of which has a focal point at certain depth of the SID. Both methods 

have software depth compensation such that the measurement response has little or no dependency on the 

depth of a target. The UT response from each measurement within an inspection was a voltage that was, 

for purposes of statistical analysis, converted, through a scale change, to an Effective Flat Bottom Hole 

(EFBH) response. The EFBH response is defined as the flat bottom hole area that would give a signal 

response equal to the observed response, assuming a common calibration to certain size FBH. In the case 

of the SDI experiment the comparison was to a #1 FBH, corresponding to the specified calibration level 

that was used for all runs of the experiment (i.e., gain was set such that a #1 FBH would have a response 

that is 80% of a signal that would cause saturation). This kind of standardized response is often used 

when it is necessary to combine data with differences in calibration level. For the Multizone method, 

which uses a signal-to-noise ratio detection criterion, there were additional noise measurements also 

converted to EFBH units. Noise data was also acquired in the Conventional inspections and used to define 

detection limits, so that missed targets could be treated as left-censored observations. 



 

Figure 2. Conceptual illustration of the Conventional inspection system (top) and the Multizone inspection 

system (bottom) for billet inspection. 

For most observations on individual targets within an inspection, we have exact readings that 

were translated to EFBH. In some of the inspections, however, the signal was below the noise floor and 

therefore determined to be a “miss.” These observations are left censored in that we know only that the 

actual EFBH response is less than the noise floor EFBH. The noise floor varies from target to target. In 

some of the Multizone method inspections, the operator did not follow the protocol with respect to 

saturated observations. The protocol required that, in the case of saturated observations, the operator 

should reduce the gain in a sequence of steps to a known level where an actual reading could be made. 

Then this reading could be converted to the actual voltage and corresponding EFBH. When the operator 

did not follow the protocol, we know only that the EFBH response is larger than the EFBH corresponding 

to the smallest voltage level that would cause saturation. Figure 3 is a summary plot of the data sets used 

in the analyses for both the Conventional and the Multizone methods, showing the seven different target 

types. Because the systems used UT probes that were operating at the same nominal frequency (10 MHz) 
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and were calibrated in the same manner, it is not surprising that the amplitude values are similar for the 

two methods. 

 

Figure 3. A summary plot of the data from the Conventional (left) and Multizone (right) inspections. 

3.2 Operator Plots and Targets Plots 

The SID disk was inspected with both the Conventional UT method (two locations, six operators) and the 

Multizone UT method (three locations, seven operators). Figure 4 (operator plots) shows the EFBH 

response for target type #5SHA3 plotted versus operator, with one line for each target with Conventional 

results on the left and Multizone results on the right. These plots show that there is an important amount 

of operator-to-operator variability (i.e., random operator effect) in the EFBH responses for a given target 

type.  Figure 5 (target plots) shows the EFBH response for target type #5SHA3 plotted versus the 

individual targets, with one line for each operator, again with the Conventional results on the left and the 

Multizone results on the right. These plots show that there is an important amount of target-to-target 

variability (i.e., a random target effect) in the EFBH responses for a given target type. The operator plots 

and target plots for target types other than #5SHA3 are similar and thus not shown here.  
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Figure 4. Operator plots for the #5SHA3 targets for Conventional (left) and Multizone (right) inspections, 

with one path for each target. 

 

Figure 5. Target plots for the #5SHA3 targets for Conventional (left) and Multizone (right) inspections 

with one path for each operator. 
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4 PHYSICAL MODEL DETAIL 

A typical UT system includes a pulser, a transducer, and a display screen. Driven by the electrical pulses 

generated by the pulser, the transducer generates an ultrasonic wave. The ultrasonic wave is coupled into 

and propagates through the SID being tested. When there is a discontinuity such as one of the SHA or 

FBH targets in the ultrasonic wave propagation path, part of the energy will be reflected. The reflected 

energy is then transformed into an electrical signal by the transducer and is shown in the display screen. 

By analyzing the results at the display screen, the existence of defects (SHA or FBH in the SID study 

considered here) can be determined, and the location and size of the defects can be further evaluated. In 

this section, several physical models are discussed to describe the principles behind the UT responses for 

defects with different composition and various sizes. 

4.1 Reflectance Factor 

A key characteristic affecting ultrasonic (and other kinds of) reflection from a discontinuity and the 

resulting signal strength is a function of the material properties on both sides of the discontinuity. The 

reflectance factor R   

 i i m m

i i m m

v v
R

v v

 
 





 (2) 

is used to describe this characteristic. Here   denotes density, v  denotes the ultrasonic wave speed and 

subscripts  and  refer to inclusion and titanium alloy matrix (host material), respectively. Because the 

density of a flat bottom hole target is essentially zero and the density of the host titanium materials is 

much larger (i.e., 

i m

i m  ), it follows that R  is unity for a FBH. Thus R  can be expressed as a 

function of weight percent nitrogen concentration for a SHA (3% or 17% in this study) target through the 

coefficients i  and . The effects of SHA nitrogen concentration on the values of iv i   and  in titanium iv
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alloys were studied experimentally by Gigliotti, Gilmore, and Perocchi, (1994).  Based on their 

experiments and analysis, they reported that  
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4490.9 5.03 0.01  kg/m

6002.2 61.86  m/s

m

m

i at

i at

v

N N

v N




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where  is the atomic percent nitrogen concentration. The relationship between atomic percent 

nitrogen concentration and weight percent nitrogen concentration 

atN

 wN  is 
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.
100 2.42

w
at

w

N
N

N




 
 (4) 

Thus R  can be used to link the signal responses of the data from the FBH, SHA3, and SHA17 targets and 

make predictions for intermediate values of weight percent nitrogen. 

4.2 Kirchhoff Approximation 

4.2.1 General background 

When the duration of the incident ultrasonic pulse is sufficiently small with respect to the delay of the 

back surface echo of the targets, the echoes from the front and back surfaces of the targets can be resolved 

in time.  Under such cases the elastodynamic Kirchhoff approximation (Adler and Achenbach 1980) is 

appropriate to model the measurement response. With the 10MHz UT system that was used for the 

Conventional and Multizone inspections, the seven types of target studied in this paper fall in the 

Kirchhoff regime. Thompson and Lopez (1984) introduced the beam radiation pattern Gaussian 

approximation concept and concluded the electrical signal  Voltage   observed in a pulse-echo 

experiment for a circular planar surface target can be described by using the following form: 



       2
2

2 /Voltage , 1
2

b ww
A z R e

     (5) 

where   is ultrasonic frequency, is the propagation distance, b  is the circular target radius, and w  is 

the ultrasonic beam radius. 

z

4.2.2 Effective Flat Bottom Hole 

In production inspections, calibrations are performed to eliminate the effects of the factor  in  ,A z  (5) 

which account for variations in transducer performance and the effects of propagation distance. Especially 

when there is need to combine data from measurements that are taken under different calibration levels, it 

is common practice to scale UT data into what is known as an EFBH response. The EFBH response is 

intended to represent the FBH area that would produce a signal equal to that which was observed from the 

target.  More precisely, the EFBH is defined as 

 
2

2EFBH
4 64

c
c

c c

DS S
b

S S

    
 

 (6) 

where  is the peak defect signal strength [proportional to S  Voltage   but in units of percentage of full 

screen height],  is the peak calibration signal strength (in units of percentage of full screen height),  

is the diameter of the calibration hole (in units of 1/64 inch diameter), and  is the radius of the 

calibration hole in inches.  It is easy to show that, for a FBH with size in the Kirchhoff approximation 

regime, in the absence of noise, the EFBH would be equal to the area of the FBH, consistent with the 

intent of the definition. Combining 

CS cD

cb

(5) and (6), and assuming calibration to a #1 FBH, and targets in the 

Kirchhoff approximation regime, the predicted response in units of EFBH would be 

   2
2

2 /EFBH 1 .
2

b ww
R e
    (7) 
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This is a powerful result in the context of this study because (7) can be used to predict the response of all 

types of targets in the SID. The size enters through the value of b  and the composition (i.e. weight 

percent nitrogen concentration) through the factor R  (which is taken to have a value of 1 for a FBH). 

This approach allows the data from all of the targets in the SID to be described by a single statistical 

model, thereby increasing the power of the regression analysis and tightening the confidence bounds. 

Based on the physical model, valid extrapolation of EFBH values for targets with a radius between #1 and 

#5 and beyond #5 can be obtained for a range of weight percent nitrogen concentrations in SHAs. 

4.2.3 Beam Limiting Kirchhoff Approximation 

From (7), we can see the beam limiting effect that arises when the defect size  becomes large compared 

to the ultrasonic beam size . When , only a fraction of the defect surface is illuminated and the 

EFBH response in 

b

w b  w

(7), can be simplified as 2EFBH / 2b w R w  . That is, the response is no longer a 

function of target size  but is only a function of reflectance factor b R  and beam size . w

4.3 Rayleigh Scattering Regime 

The Kirchhoff approximation is appropriate for the targets that are present in the SID under study in this 

paper. An additional consideration is the Rayleigh scattering regime where the defect size is small with 

respect to the ultrasonic wavelength. Although none of the targets in the SID fall in the Rayleigh 

scattering regime, it is necessary to consider the different response mechanism to avoid improper 

extrapolations of the Kirchhoff model to defect sizes smaller than the size of a #1 target. Huang, Schmerr,  

and Sedov (2006) developed the modified Born approximation from which the model for EFBH is given 

by    2EFBH 2 / sin 2 /B i mb v v R b v i

i

. When the defect radius  is sufficiently small such that 

, the corresponding EFBH model is given by 

b

 sin 2 / 2 /ib v b v  3EFBH 4 /R mb R v   and we 

say that the response from a target or defect in this size region is described by the Rayleigh limit regime. 
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4.4 Physical Model Summary 

There are several regimes of scattering determined by the relative values of the target radius , the 

ultrasonic wavelength 

b

 , and the beam radius .  As the flaw size grows from very small to very large, 

one will respectively pass through the following regimes: 

w

 Rayleigh limit: if b  , the signal is proportional to 3b . 

 Modified Born approximation: if b  , transition from the Rayleigh limit to the Kirchhoff 

regime with a complex signal pattern is dependent on the spectrum of the ultrasonic pulse. 

 Kirchhoff regime without beam limiting: if b w   , the signal is proportional to 2b . 

 Kirchhoff regime with beam limiting: if w b   , the signal is independent of b . 

 

In this work, experimental measurement and the sizes of the SHA and FBH targets in the SID fall 

within the Kirchhoff regime. Thus in the following statistical modeling, only the Kirchhoff approximation 

is used. 

5 STATISTICAL MODEL 

5.1 Mean Response 

Section 4 described the physical models for different size regimes with respect to wave length and beam 

size. The targets in the SIDs fall into the Kirchhoff regime and the physical response function is written in 

(7) in units of EFBH. By adding a fitting parameter and taking log transformation of (7) we have: 

       2
2

2 /
10 10 10log EFBH log log 1

2
x ww

x R
 e

 
      

 
 (8) 
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where   is the scaling fitting parameter that accounts for the overall factor of the Kirchhoff 

approximation, R  is the reflectance factor, w  is the beam radius, and x  is the target radius. The beam 

radius ( ) is to be estimated from the data and the target radius (w x ) is in units of mils (a mil is .001 inch).   

5.2 Weight Percent Nitrogen Concentration Correction 

The reflectance factor ( R ) is equal to 1 for FBH targets and is a function of weight percent nitrogen 

concentration for SHA targets, as described at Section 4.1. The original weight percent nitrogen 

concentration ( ) values for SHA targets were 3% and 17%. However our statistical analysis revealed 

some systematic lack-of-fit relative to the model (Eq. 8), especially for the 17% SHA nitrogen 

concentration targets. During fabrication, the SID was sliced like a bagel, the FBH targetss were drilled, 

and SHAs were inserted into holes for that purpose. Then the two pieces of the SID were HIPped (Hot 

Isostatic Pressing) together at high temperature and pressure to form of a single disk.  Ultrasonic velocity 

measurements (before fabrication and after the experiment) confirmed that the overall nitrogen 

concentrations in the center of the SHA targets were still  3% or 17%.  Thus it is believed that the HIPing 

process led to some diffusion  of nitrogen into the titanium alloy matrix around the SHA target. This 

would cause a small gradient in nitrogen concentration, reducing the acoustic impedance and the effective 

reflectivity. It is interesting to note that naturally occurring hard alpha inclusions are also surrounded by a 

diffusion zone.   

wN

A detailed physical model to describe the diffusion process and the change of the reflectance factor is 

unavailable and thus we adopt an empirical approach of applying corrections to the original weight 

percent nitrogen concentration. In this empirical approach, we assume that the SHA target size remains 

unchanged, but introduce a uniform correction to the nitrogen concentration for the entire target area, 

even though the concentration remains the same in the body of the SHA and only decreases around the 

edge. Both experimentally and from physical theory it is known that the amount of diffusion will depend 
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on the original concentration of nitrogen. Here we assume a typical quadratic correction term to the 

original weight percent nitrogen concentration as  

 
2

w1
100wc w

N
N  N

      
   

 (9) 

where   is a parameter to be estimated from the data. Then instead of using the original weight percent 

nitrogen concentration, the corrected weight percent nitrogen concentration in (9) is now used in (4) as 

follows 

 
342

.
100 2.42

wc
at

wc

N
N

N




 
 (10) 

. 

5.3 Random Effects 

At each inspection location, there were several operators, each of whom inspected the entire disk. There 

were operator-to-operator variations in the measurement responses even for the same target. There were 

also target-to-target variations, probably due to variability in the SID fabrication processes and spatial 

variability in materials properties throughout the SID. To account for these variations, we assumed a 

random operator effect and a random target effect in addition to the measurement error. We also assume 

that any differences from site-to-site were due primarily to differences among the operators. 

To account for these random effects, the physical model in (8) was extended as follows:  

 
       
     

2
2 /2

2 2

10 10 1

2

0

    with   ~ 0, , ~ 0, ,  ~ 0

log EFBH log log 1
2

,

x wx R w e

N N N      

  



        
 


 (11)  
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where  ,   and   are the corresponding operator random effect, target random effect and measurement 

error, respectively. We assume a normal distribution with mean zero for the operator random effect, the 

target random effect, and the measurement error. The variances for operator random effect, target random 

effect and measurement error are 2
 , 2

  and 2
 , respectively. Thus, in addition to the three parameters 

 in the physical model in   , , w (8), we now have three more variance component parameters to be 

estimated.  

 To simplify the expression of the statistical model in (11), we define the    
10log EFBH x  as  

         2

10

2 /2
10 10log EFBH log log 1 .

2
x wx R w e

     
 


  (12) 

Then the statistical model can be expressed as         
1010 log EFBHlog EFBHY x x x      

2 2

 . 

By defining the total variance as 2 2
total       , we can write the log response function in terms 

of a normal distribution as 

       
10

2
totallog EFBH~Y x N x , .  (13) 

6 ESTIMATION 

6.1 Estimation of the Model Parameters 

The features in our statistical model and data involve a non-linear response function from the physical 

model, left and right censored data, random effects, and a need to provide point estimate and bounds to 

reflect statistical uncertainty. Likelihood based methods (e.g.,  Pawitan 2001) could be use to handle all 

the above needs and data/model features. No commercial software, however, exists to do such an analysis, 

and developing such software was not feasible within the timing constraints of our funding sponsor. 
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Bayesian methods (e.g., Gelman,Carlin, Stern, and Rubin. 2003) provide a useful alternative method of 

analysis. It is well known that with flat prior distributions the joint posterior distribution is proportional to 

the likelihood function. Thus with a moderately large amount of data, and diffuse prior distributions, 

Bayesian methods will produce inferences on functions of the parameters that are similar to what would 

be obtained by using likelihood-based methods. Furthermore, the software package WinBUGs (2007) is 

flexible enough (with just a little programming being needed) to handle the data/model features needed 

for the analysis of the SID data. 

In our Bayesian analysis, a Markov Chain Monte Carlo (MCMC) algorithm is used, through 

WinBUGs, to generate a large number of sampling draws from the joint posterior distribution of the 

model parameters. After the MCMC algorithm has converged, we have M  sampling draws for each 

model parameter. These M  sampling draws are samples from the joint posterior distribution of the 

parameters. These can in turn be used to compute statistics of interest such as mean, standard deviation, 

median, 2.5% and 97.5% quantiles of the posterior distribution for each model parameter. Summary 

results for all model parameters are shown at Table 1 for both Conventional method and Multizone 

method. 

6.2 Estimation of Functions of Model Parameters 

Besides the model parameters, we can also find the posterior distribution for functions of the model 

parameters. For example the corrected weight percent nitrogen concentration ( ) is a function of the 

model parameter 

wcN

  defined in (9). By substituting in the M  sampling draws of   into (9)  we can get 

the M  sampling draws of  for any fixed . We can further get the wcN wN M  sampling draws of 

reflectance factor ( R ) based on the sampling draws of  through wcN (2), (3) and (10). The posterior mean 

and standard deviation (in parenthesis) for corrected weight percent nitrogen concentration and 

reflectance factor are shown at Table 2 for both the Conventional method and the Multizone method. As 

19 

 



mentioned in Section 5.2, we used an empirical quadratic nitrogen concentration correction in our model. 

We only have two original nitrogen concentrations of 3% and 17%. Although our model allows 

predictions at any level of percent nitrogen, because of the empirical nature of this correction factor, one 

would have to be cautious in the use of predictions at other values of percent nitrogen. 

 

Table 1. Posterior mean and standard deviation for all of the model parameters 

Conventional Method Multizone Method Model 

Parameter Posterior Mean Standard Dev. Posterior Mean Standard Dev. 

  1.168 0.1441 1.468 0.07689 

  14.77 0.9054 13.69 1.300 

w  81.46 9.407 58.69 4.776 

  0.1016 0.04644 0.03314 0.01274 

  0.05398 0.005752 0.06920 0.007475 

  0.05343 0.002183 0.07186 0.002737 

 

 

Table 2. Posterior mean and standard deviation for the corrected weight percent nitrogen concentration 

and reflectance factor for 3% and 17% original weight percent nitrogen concentrations 

Conventional Method Multizone Method 
wN  

wcN  R  wcN  R  

3% 2.96 (0.0024) 0.041 (0.00004) 2.96 (0.0035) 0.041 (0.00005) 
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17% 9.74 (0.445) 0.125 (0.0044) 10.3 (0.638) 0.130 (0.0061) 

 

6.3 Estimation of the Response Function 

In an inspection process with random effects, the true response function and true POD are random (e.g., 

in our application there would be a different response function for each target/operator combination). The 

NDE community traditionally focuses on the average quantities in reporting the response function and 

POD, in effect, averaging over the random effects. We refer to these averages as the mean response 

function and the mean POD function, respectively. In some applications, however, there is interest in the 

worst case scenario among the population of operators and targets. Under such cases a small quantile of 

response function distribution and a small quantile of POD function distribution for operator and target 

random effects would be more appropriate metrics to report. In this section we describe the procedures to 

estimate the mean response function and a quantile of response function distribution. Section 7 describes 

procedures to estimate the mean POD and a quantile of the POD distribution. 

6.3.1 Mean of the response function distribution 

As described in Section 6.1, we used the internal MCMC simulation algorithm in WinBUGs (2007) to 

generate sampling draws for all of the parameters in the statistical model (i.e.,  ,  , , w 2
 , 2

  and 

2
 ). We then used these sampling draws to generate the sampling draws of   H 

10log EFB x  through (12).  

Figure 6 shows the mean response functions (solid lines) with 95% lower credible bounds (LCBs) 

(dashed lines) versus target areas for each target type with Conventional results on the top and Multizone 

results on the bottom. The amplitude detection criterion is the same for Conventional and Multizone 

inspections and is indicated as horizontal solid lines at these plots. The Multizone inspection uses, in 

addition, a signal-to-noise ratio criterion, as described in Section 7. Also shown in these plots are the 
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exact, left censored and right censored data points denoted by circles, down triangles and up triangles, 

respectively. 
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Figure 6. Estimates of the mean response functions, the 0.05 quantiles of response function distribution 

and their corresponding 95% LCBs for the Conventional (top) and Multizone (bottom) inspection 

methods. 

6.3.2 Quantile of the response function distribution 
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

In many applications it is important to obtain estimates of quantities in the tail of a distribution, as 

opposed to the mean or other measure of central tendency. For example, in the SID inspection experiment 

the data tell us that some targets and some operators tend to result in weaker signals than others. Consider 

a random draw of an operator  2~ 0,N    and a target  2~ 0,N   . Important functions of these 

random effects such as lo    ,EFBH |x10g    
and   ,|xPOD   , where x  is the target area, will have 

their own distributions. The mean response for a particular operator and target (averaging over 

measurement error) can be described by the random variable   

      
10, log EFBH|Y x x  .      (14) 

with mean      
10log EFBHY xx    and variance 2 2

Y
2

     . The p  quantile of   ,|Y x    is 

 y x    p Y p Yx z   pzwhere  is the standard normal p quantile. Here  2~ 0,N    is the 

consolidation of all other variations in the measurement after a particular operator and target are selected.  

In our examples we focus on the  quantile of the response function. This quantile can be 

interpreted as the mean response value that will be exceeded by 95% of the target and operator 

combinations from the population of targets and operators. Because 

0.05

 0.05y x  is a function of the model 

parameters we can estimate its mean and compute a corresponding 95% LCB by using the sampling 

draws of    0.05 0.05Yy x x z Y   . Figure 6 shows the mean of the 0.05 quantiles of the response 

function distribution (dashed-dotted lines) and their LCBs (dotted lines) versus target areas for the 3% 
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SHA, 17% SHA, and FBH targets respectively with Conventional results on the top and Multizone results 

on the bottom. Compared to the tight 95% LCBs on the mean response function, the LCBs for the 0.05 

quantiles of the response function distribution are further away from the estimate of the response quantile. 

6.4 Diagnostics 

It is important to assess how well the statistical model fits the experimental data. Figure 7 shows the 

residuals versus fitted values with Conventional results on the left and Multizone results on the right. The 

residuals are evenly distributed except for those from the #5FBH targets. The reason for this deviation is 

that there are relatively few data points for #3FBH and #5FBH and thus these observations are not 

influential in fitting the model. For #5FBH targets the residuals are below zero which indicates an upward 

bias in estimation for a #5FBH.  This does not raise serious practical concerns because there is little 

practical interest in predicting POD in the target space region anywhere near to the #5 FBHs. We also 

compared the results between including #5FBH targets and excluding #5FBH targets when doing the 

analysis. The results showed little change in the mean response function, and the PODs were more 

conservative for analysis that includes the #5 FBH targets and thus all the results in this paper are based 

on analyses that include the #5FBH targets. 



 

Figure 7. Residual plots as function of fitted value for Conventional (left) and Multizone (right) 

inspection methods. 

7 PROBABILTY OF DETECTION 

Given the response function and the detection threshold, the mean POD, the quantile of POD distribution 

and the corresponding LCBs can be obtained. In this section we first describe the procedures to estimate 

POD for Conventional and Multizone respectively. Then we present the POD plots of both inspection 

methods for all types of targets. 

7.1 The Conventional Inspection Method 

7.1.1 Mean POD 

For the Conventional method, the detection threshold is set as 10log (191.75) 2.2827thy   , where 

191.75 is the area of a #1 FBH in units of square mils. Sensitivity to a #1 FBH was the inspection 

sensitivity agreed upon by jet engine manufacturers and the Federal Aviation Administration. POD can be 
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found by computing    POD Pr thx Y x y   where x  is the target area and the random variable 

 is defined in  Y x (13). Specifically, the  POD x  is evaluated as follows:  

         
10log EFBH

total

th

th

x
POD Pr

y
y





 
  
 

x Y x    (15) 

where  x  is the standard normal cumulative distribution function and    
10log EFBH x  is defined in 

(12). With the sampling draws of the    
10log EFBH x  and to tal , we can compute the corresponding 

sampling draws of  POD x . Estimates of the mean POD and a corresponding 95% LCB can be found 

by computing the sampling draws  of  POD x  over a range of x  values. 

7.1.2 Quantile of the POD distribution 

Again, consider a random draw of an operator and a target. Some combinations will result in higher POD 

than others. As with the derivation of the quantile of response function distribution in Section 6.3.2, we 

can take account of this variability by computing a quantile of the POD distribution. An expression for 

the p  quantile of the POD distribution for the Conventional method is obtained by replacing 

   FBH    p Y p Yy x x z  x
10log E  with  and replacing 2

total  with 2
  in (15). In particular, the p  

quantile of the POD distribution for target size x  is 

   p thy
POD

p

x y


 

 
 

x     . (16)  

Again, estimates of the 0.05 quantile of the POD distribution and corresponding 95% LCB were obtained 

by computing the sampling draws of the 0.05 quantile of the  POD x  distribution for different values of 

x . 



7.2 The Multizone Inspection Method 

7.2.1 Mean POD 

The Multizone inspection method uses a signal-to-noise ratio (SNR) detection rule in addition to the 

amplitude detection criterion used in the Conventional method. Nieters et al. (1995) used the following 

definition for SNR and a corresponding detection limit. 

 SNR a

p a

Y N

N N





 

Here Y  is the UT signal measurement.  is the noise average and  is the noise peak in a defined 

rectangular region with the rectangle containing the target signal cut out. The industry standard detection 

criterion for SNR detection in Multizone inspection is SN . Then the SNR criterion is equivalent 

to  where  is defined as the noise threshold. Instead of modeling the SNR, 

it is easier to estimate the signal distribution and the noise-threshold distribution directly. The noise 

threshold varies from target to target and from disk to disk and can be computed from the results of the 

Multizone experimental results. The variability in the noise threshold data can be described by a normal 

distribution: 

aN

th

pN

R 2.5

2.5 1.5th p aN N  Y N N

  2
th noise noise~ ,N N   .  (17) 

Figure 8 illustrates this two-dimensional Multizone detection criterion. There is an amplitude detection if 

the amplitude is above the horizontal line. There is also a SNR detection if the amplitude is above the 

noise threshold (i.e., if the amplitude/noise threshold point lies above the diagonal line in Figure 8). 
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Figure 8. Illustration of the Multizone detection criteria. 

The POD for SNR noise threshold detection criterion is:  

         
10 noiselog EFBH

1 th 2 2
total noise

POD Pr
x

x Y x N
 

 

 
    
  

 

with the random variable  defined in  Y x

 x

(13) and  is defined in thN (17). Given the independent 

relationship between Y  and , the joint density for the response function and noise threshold is:  thN

       
10

2 2
total noise noiselog EFBH, , , , ,th thf y n y n       

with  2, ,x     the normal density function with mean   and variance 2 . The POD for regions with 

 but  (i.e. the triangle at right edge of Figure 8) is   thNY x   thY x y
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         2 th thPOD Pr  and ,
th

th th

n

th th

y y

x Y x y Y x N dn f y n dy


       

which is calculated by numerical integration. Then the Multizone mean  POD x  is determined as 

      1 2POD POD POD .x x  x  (18) 

The estimate of the noise mean is ˆ 1.7990noise  . The target-to-target noise variance estimate is 

. We do not have data that would provide a disk-to-disk noise variance estimate, but, 

for purposes of illustration, we assume the disk-to-disk variance estimate is 

. Thus the estimate of total noise variance is 

. The sampling draws of 

2
,ˆ 0.02860noise tt 

2 2
,ˆ ˆ0.5noise dd noi  

2 2
,ˆ ˆ1.5noise noise tt  

, 0.01430se dd 

0.04290 noise  and  were used to compute the 

mean POD estimate and the corresponding 95% LCB for Multizone inspection through 

2
noise

(18).  

7.2.2 Quantile of POD Distribution 

Similar to the quantile of POD distribution for the Conventional method, by replacing    
10log EFBH x  

with  py x  and replacing 2
total  with 2

  in (18) we can get the Multizone p  quantile of POD 

distribution for any target size x . 

7.3 POD Plots  

Figure 9 contains plots of the estimates of the mean of the POD distribution (solid lines), the 

corresponding 95% LCBs (dashed lines), the 0.05 quantile of POD distribution (dashed-dotted lines) and 

the corresponding 95% LCBs (dotted lines) for 3% SHA, 17% SHA and FBH targets for both inspection 

methods.  Figure 9 shows that although there was little difference between the inspection methods when 

looking at the signal-response functions estimates in Figure 6, there are large differences between the 
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estimates of the POD functions. This is due to the important increase in detection power provided by the 

more complicated SNR detection criterion used in the Multizone inspection method and to some degree 

because there is less operator-to-operator variability in the Multizone inspection method. 



 

Figure 9. Estimates of the mean PODs, the 0.05 quantiles of POD distribution and their corresponding 

95% LCBs for the Conventional (top) and Multizone (bottom) inspection methods. 
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8 SUMMARY AND CONCLUSION 

In this paper, we described the establishment and application of a statistical model for quantifying 

inspection capability and estimating POD, based on the physical mechanisms of an ultrasonic testing 

process. The physics-based statistical model enabled needed information extraction from data taken on 

the limited types and sizes of the synthetic inclusion targets in the synthetic inclusion titanium disk that 

was available for the experiment. The physics-based model further made possible the needed interpolation 

and extrapolation for a wider range of flaw sizes and nitrogen concentrations. The nonlinear response 

function, random effects, and the censored observations were accommodated in the statistical part of the 

physics-based model. The Markov Chain Monte Carlo based Bayesian software WinBUGs was utilized 

with a diffuse prior distribution for estimation of the model-tuning parameters. The mean and 0.05 

quantile of the response functions and the POD curves for a representative set of target areas and target 

types were presented. The results from this study provide useful information about the ability to detect 

hard alpha inclusions in titanium forgings. The methodology provided here is, however, more general and 

could be used to study NDE inspection capability in other areas of application and for other kinds of 

inspection.  

There are a number of extensions for the methodology presented in this article that suggest future research 

directions. These include the following: 

1. The target sizes and flaw sizes of interest in this study were within the range where the 

Kirchhoff approximation provides a good description of ultrasonic testing signals. Although 

not adopted in this study, an explicit extrapolation procedure based on the Rayleigh 

scattering regime could be developed when needed, allowing extrapolation to smaller flaw 

sizes. 

2. The quadratic term correction for the weight percent nitrogen concentration was used to 

account for nitrogen diffusion during HIPping process. A correction based on a physical 
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principle could be implemented if we had more knowledge about the mechanism behind the 

diffusion arising in the HIPing process. 

3. For applications where there is useful prior information about the model parameters (e.g., 

from previous experience with a particular kind of inspection), a Bayesian analysis with 

informative prior distributions could be implemented. 

4. The current model showed some lack of fit for the #5 FBH condition. Further 

experimentation on a different inclusion sample with targets having reflectance in the gap 

between the 17% nitrogen and the flat bottom holes might make it possible to resolve the 

reasons for this deviation from the physics-based model. Presently, no such sample block is 

known to exist. 
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