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Abstract—A household model is formulated to facilitate careful
development and performance testing of bid-based transactive
energy system (TES) designs with voluntary customer partici-
pation. The optimal general bid-function form for households
with thermostatically controlled loads is derived from dynamic
programming principles, based solely on general household
thermal dynamic and welfare attributes. Quantitative forms are
determined for these optimal bid functions, given quantitative
forms for these attributes. These quantitative attributes are used
to construct representative household types based on clusterings
of correlated parameter values. Bid comparison, peak-load re-
duction, and load-matching test cases conducted for a 123-bus
distribution system operating under a generic bid-based TES
design illustrate the usefulness of our methods for ensuring TES
designs are aligned with local customer goals and constraints.

Index Terms—Customer-centric design, bid-based transactive
energy system, optimal household bid function, household ther-
mal dynamics, household welfare, household representative types,
test-case performance evaluation

I. INTRODUCTION

RECENT years have seen a dramatic resurgence of in-
terest in the restructuring of electric power systems at

the distribution level [1]. Researchers and practitioners have
stressed the need for customer-oriented approaches encourag-
ing households and businesses to participate more actively in
distribution system operations.

This restructuring has encompassed a broad range of efforts.
Technological innovations include advancements in small-
scale storage and distributed generation. New operational rules
include bid-based Transactive Energy System (TES) designs
for the support of customer transactions.

A bid-based TES design is a hybrid collection of economic
and control mechanisms that permits the reliable balancing of
power demands and supplies by means of bid-based transac-
tions [2]. Bids permit customers to express their willingness
to demand power usage as a function of requested payment,
and to supply generated power and/or ancillary service (e.g.,
demand response) as a function of offered compensation.

To date, bid-based TES design development has largely
focused on the achievement of prespecified system objectives.
Although system efficiency and reliability are critically im-
portant design objectives, this study stresses that the pursuit
of these system objectives should be conditioned on a prior
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careful understanding of local customer goals and constraints
in order to ensure voluntary customer participation.

This study thus considers the feasibility and desirability
of undertaking bid-based TES design development from a
customer-centric starting point. Proof-of-concept evidence is
provided in support of the following five assertions:

• The optimal general bid-function form for customers with
thermostatically controlled loads (TCLs) can be derived
from dynamic programming principles, based solely on
general customer thermal dynamic and welfare attributes.

• Quantitative forms can be determined for these optimal
customer bid functions, given quantitative forms for the
customers’ thermal dynamic and welfare attributes.

• These quantitative customer thermal dynamic and welfare
attributes can be expressed in parametric form.

• The parameters appearing in these parametric forms can
be clustered into correlated subsets determining higher-
level customer thermal dynamic and welfare attributes.

• This clustering can be used to define a collection of repre-
sentative customer types to facilitate the development and
performance testing of bid-based TES designs aligned
with local customer goals and constraints.

Analytical and test-case evidence is provided in support of
these five assertions for the particular case of a collection
of households populating a distribution grid. Each household
comprises: (i) a house with structural attributes; (ii) a set
of appliances that includes an electric HVAC system with a
smart price-sensitive ON/OFF controller; and (iii) a resident
with comfort-cost preferences. Household thermal dynamics
are expressed in terms of time-varying temperatures for inside
air and inside mass. Household welfare is expressed as resident
(thermal) comfort minus the net cost charged for power usage.

Section II reviews related literature. The general form of
a household’s optimal bid function is characterized in Sec-
tion III, based on dynamic programming principles. Depending
on the household’s operating state, this optimal bid function
expresses either power usage demand or ancillary service
(power absorption) supply as a function of price.1

Household formulation preliminaries are given in Sec-
tion IV. Continuous-time and derived discrete-time quanti-
tative representations for the household’s thermal dynamic
system and welfare function are developed in Sections V and
VI. Section VII derives a household’s optimal bid function

1Ancillary services include various forms of support for the assurance
of power balance on a grid. Ancillary services in the form of dispatchable
power absorption (withdrawal) are becoming increasingly important for power
balance, given the increased penetration of non-dispatchable wind and solar
power subject to sudden weather-induced ramping.
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in quantitative form, given discretized quantitative representa-
tions for the household’s thermal dynamic system and welfare
function. A method is developed in Section VIII for classifying
households into representative household types based on their
thermal dynamic and welfare attributes.

Finally, test cases are reported in Sections IX–XII to illus-
trate the usefulness of these results for the development and
evaluation of bid-based TES designs from a customer-centric
vantage point. These test cases implement a generic bid-
based TES design within a standard IEEE 123-bus distribution
system populated by a mix of household types. Outcomes are
reported for bid-function comparisons, peak load reduction,
and load matching experiments.

Concluding remarks are given in Section XIII. Nomencla-
ture tables for the household model are provided in Appendix
A, and technical derivation and test case details are provided
in Appendices B-F. Code and data for all reported test cases
are provided at a website repository [3].

II. RELATED LITERATURE

TES design research is rapidly expanding. However, to
date, the rules governing customer participation are typically
derived or directly imposed to achieve system efficiency and
reliability objectives pre-specified by the researcher. These
rules are therefore not based on a careful initial consideration
of local customer goals and constraints, essential for ensuring
voluntary customer participation.

TES design research is most closely associated with the
Pacific Northwest National Laboratory (PNNL). As reported
in [4], seminal work on transactive designs for power exchange
was conducted by PNNL researchers starting as far back as
2003. More recent PNNL TES design work, including field
demonstrations, is reported in [5]–[10]. TES design work by
other researchers is reported in [11]–[19].

This previous work on TES design research is reviewed
in [2], [7], [8], and [18]. As seen in these reviews, this
previous work has largely focused on the development of
simulation tools permitting the implementation and evaluation
of TES designs. For example, Huang et al. [10] develop
a simulation-based valuation method to compare different
transactive energy schemes. They also develop an open-source
simulation platform to allow agents developed on different
platforms to interact with each other in a flexible manner.

However, some of this previous work focuses more specif-
ically on the development of new transactive techniques for
retail market operations. For example, Farrokh and Ipakchi
[11] propose a number of ways in which transactive tech-
niques can be extended from wholesale to retail markets,
e.g., how aggregated demand-side resources can be scheduled
and dispatched at wholesale in a manner similar to current
wholesale resources. Chassin et al. [14] propose a transactive
policy for the control of loads as demand-response resources
able to provide frequency regulating services at wholesale.
Mengelkamo et al. [17] propose a blockchain-based decentral-
ized microgrid energy market facilitating peer-to-peer energy
transactions between retail prosumers and consumers.

More broadly, Renani et al. [16] and Nguyen et al. [18]
propose TES frameworks for end-to-end power system opera-

tions. Newly proposed forms of Distribution System Operators
(DSOs) function as intermediaries between an ISO at whole-
sale and aggregated demand-side resources.

With specific regard to bid-based TES design, Hammer-
strom et al. [5] and Fuller et al. [6] propose and implement
a linear bid function for retail customers based on average
retail price. Kok [13] formulates a simple bid function for
retail customers with TCLs (e.g., freezers) that can easily
be implemented for customers participating in his novel bid-
based TES design called the PowerMatcher. Bids are demands
for device power usage; ancillary service provision is not
considered. The maximum price that retail customers are
willing to pay for power usage is modeled as a cut-off price
that increases in direct proportion to the difference between
actual and desired temperature levels. This bid function form
is justified on general heuristic grounds.

Nguyen et al. [18] formulate, implement, and test a version
of Kok’s bid-based PowerMatcher TES design for a collection
of households that use a version of Kok’s simple bid function
as the price-sensitive controller for their electric HVAC sys-
tems. Nazir and Hiskens [19] develop a general virtual battery
model for TCLs and propose a simple bid function for use as
their price-sensitive controller.

The TES design work closest to the current study is by Li et
al. [9]. The designer’s problem is expressed conceptually as a
Stackelberg game; a manager is assumed to use an electricity
price signal Pc to coordinate power demands for a group of
TCLs with ON/OFF controllers in order to achieve a socially
efficient energy allocation subject to a peak energy constraint.
Each TCL i selects a temperature setpoint to determine an
energy allocation ai that maximizes its comfort minus cost,
conditional on Pc and its current state θi. The optimal energy
allocation ai is required to be a continuous non-increasing
function of Pc, given θi. In contrast, the current study uses dy-
namic programming principles to explicitly derive the optimal
bid form for an ON/OFF TCL expressing both its power usage
demand and its ancillary service (power absorption) supply as
state-conditioned rectilinear functions of price.

III. HOUSEHOLD OPTIMAL BID: GENERAL FORM

Consider a household with an electric Heating, Ventilation,
and Cooling (HVAC) system that is controlled by a smart
price-sensitive ON/OFF controller. The goal of the household
is to maximize its welfare over time, measured as comfort
minus cost. This section uses general dynamic programming
principles to derive the optimal general bid-function form for
the household’s smart HVAC controller.

Let the time step during which an ON/OFF power setting
is maintained for the household’s HVAC system be called the
control step. Let the time-line for the household be divided into
control-steps n = [ns, ne). At the start-time ns for each control-
step n, a control signal is transmitted to the household’s
HVAC system to either retain or switch its current ON/OFF
control setting. This control setting is then maintained for the
remainder of control-step n.

The household’s goal at the start-time ns for each control-
step n is to maximize its welfare over the next N control
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steps, where N denotes the household’s look-ahead horizon.
The household at start-time ns then has two possible control-
relevant states. Let Ĝ(n:ON) and Ĝ(n:OFF) denote the maxi-
mum possible comfort the household forecasts it could achieve
over control steps n, n+1, . . . , n+N −1 if its HVAC system
at time ns were set to ON or OFF, respectively, and the
ON/OFF HVAC controls for the remaining N -1 control steps
n + 1, . . . , n + N − 1 were then optimally set. These two
control-relevant states are as follows:
Xs

n: May Run as Ancillary Service Provider
Ĝ(n,ON) ≤ Ĝ(n,OFF)

Xu
n: May Run for Power Usage

Ĝ(n,ON) > Ĝ(n,OFF)
If the household is in state Xs

n at start-time ns, the house-
hold will not be willing to pay a positive price for HVAC
power usage during n, no matter how small. However, the
household could be induced to switch (or leave) its HVAC
system ON if the price received for this HVAC power absorp-
tion (as ancillary service supply) is sufficiently high. Let this
sufficiently high cut-off price be denoted by −Π∗(Xs

n) ≥ 0.
Conversely, if the household is in state Xu

n at start-time
ns, the household will be willing to pay a positive price for
HVAC power usage during n as long as this price charged is
sufficiently low. Let this sufficiently low positive cut-off price
be denoted by Π∗(Xu

n) > 0.
Consequently, the household’s optimal bid function for

control-step n has the general rectilinear form depicted in
Fig. 1, where P ∗(n) denotes the ON power consumption of
the household’s HVAC system during control-step n. Note the
optimal bid form in the service provision state Xs

n constitutes a
supply function for ancillary service (HVAC power absorption)
as a function of price received. Conversely, the optimal bid
form in the power usage state Xu

n constitutes a demand
function for HVAC power usage as a function of price paid.

Fig. 1. A household’s optimal state-dependent “May Run” bid forms for
(a) ancillary service provision and (b) power usage during a control-step n.
A negative price denotes a price received by the household for provision of
ancillary service (HVAC power absorption). A positive price denotes a price
paid by the household for HVAC power usage.

IV. HOUSEHOLD FORMULATION: PRELIMINARIES

Consider a household that consists of a resident occupying a
house at a particular location subject to external weather con-

ditions. The household has a mix of smart (price-responsive)
and conventional appliances.

Specifically, the household has a smart electric HVAC
system running in cooling mode with ON/OFF power settings.
This HVAC system comprises a basic HVAC unit operating
in parallel with a one-speed fan for air circulation. The
household’s conventional appliances consist of lights, clothes-
washer, refrigerator, dryer, freezer, range, and microwave.2

The household participates in a bid-based TES design
managed by an Independent Distribution System Operator
(IDSO). The household sends bids to the IDSO that express
its demands for HVAC power usage as a function of required
price payment and its supplies of ancillary service (HVAC
power absorption) as a function of offered price compensation.
In return, the IDSO sends price signals to the household that
determine ON/OFF power control actions for the household’s
smart HVAC system.

Fig. 2. Classification of household physical and behavioral attributes.

Figure 2 classifies the household’s physical and behavioral
attributes into conceptually distinct categories. Downward-
pointing arrows denote “has a” relationships and upward-
pointing arrows denote “is-a” relationships.

The ‘Structure’ of the household is characterized by ap-
pliance and house attributes. Appliance attributes include
appliance mix and appliance features. House attributes include
location, size, thermal properties, and interior-exterior features
such as window framing and glazing.

The ‘Resident’ of the household is characterized by bid and
net benefit functions. The ‘Bid Function’ expresses the resi-
dent’s demand for HVAC power usage or supply of ancillary
service (HVAC power absorption), conditional on price signals
and current operating conditions. The ‘Net Benefit Function’
expresses resident welfare as benefit net of cost. Benefit is
measured by thermal comfort. Cost is measured by charges
for power usage net of payments for ancillary service.

2The methods developed in this study for optimal bid formulation and type
classification can be applied for households with HVAC systems running in
heating as well as cooling mode, and with arbitrary mixes of conventional
appliances. Specific appliance assumptions are made here to enable a concrete
demonstration of these methods.
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The household’s thermal dynamics are expressed as a dy-
namic system with two state variables: internal air temperature,
and internal mass temperature. Starting from initial conditions,
the motion over time of these two state variables is determined
by external weather effects and by HVAC ON/OFF power
control actions. This thermal dynamic modeling is carefully
based on the household’s ‘Structure’ and ‘Resident’ attributes.

V. HOUSEHOLD NET BENEFIT AND THERMAL DYNAMICS
IN CONTINUOUS-TIME FORM

A. Household Net Benefit

The net benefit of the household over any designated time
interval is measured by the (thermal) comfort attained by the
household minus the net cost charged to the household for
HVAC power consumption.

As in [12], [20], the discomfort of the household at each
time s is measured by the discrepancy between inside air
temperature Ta(s) and the bliss temperature TB at which
the household attains maximum comfort3 Gmax. Specifically,
measuring time at the granularity of seconds, the comfort
(utils) of the household over any time interval [t0, t) with
length ∆t ≡ t− t0 (seconds) is measured as follows:

G(t0, t) =

∫ t

t0

(
Gmax − h(s) · [Ta(s)− TB]2

)
ds . (1)

The comfort function (1) is characterized by positive param-
eters Gmax and {h(s) | s ∈ [t0, t)}. The inside air temperature
Ta(s) is determined by the thermal dynamics of the household
at each time s. Note that Gmax∆t is the maximum comfort
the household can attain during interval [t0, t), achieved when
inside air temperature is maintained at the household’s bliss
temperature TB during this entire interval.

The net cost (cents) charged to the household for HVAC
power consumption during time interval [t0, t) is:

C(t0, t) =

∫ t

t0

[Khπ(s)]P (s) ds . (2)

In (2), P (s) (kW) denotes the household’s total HVAC power
consumption at time s, including fan operations. The term
Khπ(s) (cents/kWs) denotes the retail power price π(s)
(cents/kWh) converted by Kh into cents/kWs. If π(s) > 0,
π(s) denotes the price paid by the household at time s for
HVAC power usage. Conversely, if π(s) < 0, -π(s) denotes the
price received by the household at time s as compensation for
the provision of ancillary service (HVAC power absorption).

3 Given suitable regularity conditions, the benefit (utility) that a consumer
would obtain from the consumption of a bundle of goods and services at some
point in time can be derived from the preferences expressed by this consumer
between variously offered pairs of lotteries that include these bundles as
lottery payoffs; see Chipman et al. [21]. These expressed preferences are
used to construct a utility function U :X → R that represents the consumer’s
preferences between bundles in the following sense: bundle x is preferred
to bundle x′ if and only if U(x) ≥ U(x′). The utility function U is only
unique up to a positive transformation φ(U) with φ′ > 0. Hence, if a most
preferred bundle exists, this bundle can be assigned an arbitrary U -value
without affecting the information content of U . For the case at hand, the
household resident’s maximum comfort (utility) is obtained when inside air
temperature equals the resident’s bliss temperature. This maximum comfort
level, denoted by Gmax, is assigned an arbitrary positive utility (“utils”) value.

The welfare of the household over time interval [t0, t) is
then measured by net benefit (utils), defined to be the weighted
difference between comfort (1) and net cost (2):

NB(t0, t) = G(t0, t)− µ · C(t0, t) . (3)

The positive weight factor µ (utils/cent) in (3) denotes the
household’s marginal utility of money, a standard economic
welfare concept used to transform prices measured as money
per quantity unit into prices measured as benefit (utility) per
quantity unit.4

B. Household Thermal Dynamics

The thermal dynamics of the household are represented
by means of the household ETP model [23] formulated in
GridLAB-D (GLD) [24], [25]. This GLD Household ETP
Model is a differential system that describes the motion over
time of a household’s inside air temperature Ta(t) (oF ) and
inside mass temperature Tm(t) (oF ).

Assuming time is measured at the granularity of seconds,
this ETP model takes the following form: For all t ≥ t0,

Ṫa(t) =
Kh

Ca

(
Ua[To(t)− Ta(t)]

+Hm[Tm(t)− Ta(t)] +Qa(t)
)

; (4)

Ṫm(t) =
Kh

Cm

(
Hm[Ta(t)− Tm(t)] +Qm(t)

)
. (5)

In this differential system, To(t) (oF ) denotes outside air
temperature at time t, Qa(t) (Btu/h) denotes the total heat flow
rate to the household’s inside air mass at time t, and Qm(t)
(Btu/h) denotes the total heat flow rate to the household’s
inside solid mass at time t.

Equations (4)-(5) can equivalently be expressed in the
following matrix form: For all t ≥ t0,

ẋ(t) = AKhx(t) +BKhv(t) , (6)

where: A =

[
−Ua+Hm

Ca

Hm

Ca

Hm

Cm
−Hm

Cm

]
;

B =

[ Ua

Ca

1
Ca

0

0 0 1
Cm

]
;

x(t) =

[
Ta(t)
Tm(t)

]
;

v(t) =

 To(t)
Qa(t)
Qm(t)

 .
4In economics, a standard budget-constrained utility maximization problem

for a consumer requires, as a first-order necessary condition, that µmπ =
∂U(q)/∂q. Here U(q) measures the benefit (utility) to the consumer of
consuming a good Q in amount q, π denotes the unit price of Q, and the
marginal utility of money µm is the dual variable for the consumer’s budget
constraint evaluated at the optimal solution point. More precisely, assuming
income is measured in dollars, µm (utils/$) is the rate of change of maximized
utility with respect to a change in the consumer’s income. In the first-order
necessary condition, µm converts a price π measured in $ per unit of Q into a
price µmπ measured in utility ("utils") per unit of Q. For further discussion,
see any standard microeconomic textbook; e.g., Varian [22, Chapter 7].
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Form (6) expresses the dynamic state equations for the GLD
Household ETP Model as a nonhomogenous first-order linear
differential system with state vector x(t), state matrix AKh,
and time-varying coefficient vector BKhv(t).

The heat flow rates Qa(t) and Qm(t) appearing in the differ-
ential system (6) are time-t endogenous variables determined
by the following simultaneous relationships:

Qa(t) = [1−fi]Qi(t)+[1−fs]Qs(t)+[1−fac]Qhvac(t) (7)

Qm(t) = fiQi(t) + fsQs(t) + facQhvac(t) (8)

In these relationships, Qi(t) (Btu/h) denotes internal heat gain
from household occupants and non-HVAC equipment at time
t, Qs(t) (Btu/h) denotes internal heat gain from solar radiation
at time t, and Qhvac(t) (Btu/h) denotes internal heat gain from
HVAC and fan operations during time t. The weights fi, fs,
and fac are decimal percentages.

Recall that the household’s HVAC system is assumed to
run in cooling mode.5 The internal heat gain term Qhvac(t) in
equations (7) and (8) can then be expressed explicitly in terms
of ON/OFF HVAC power control actions as follows:

Qhvac(t) =
(
− HVACPow(t) + FanPow

)
· u(t) , (9)

where: -[HVACPow(t)] (Btu/h) denotes heat loss from the
ON operation of the HVAC system running in cooling mode;
FanPow (Btu/h) denotes heat gain from the ON operation of
the 1-speed fan;6 and u(t) is a binary 0-1 (OFF/ON) HVAC
power consumption control variable.

The expressions HVACPow(t) and FanPow in (9) take the
form

HVACPow(t) = K(t)Phvac(t) ; (10)
FanPow = KPfan , (11)

where: Phvac(t) (kW) and Pfan (kW) denote the time-t ON
power consumption (kW) of the basic HVAC unit and fan,
respectively; and K(t) (Btu/[h-kW]) and K (Btu/[h-kW])
convert this power consumption (kW) into heat gain (Btu/h).
The total power consumption of the HVAC system (including
fan) at time t, if ON, is thus given by

P (t) = Phvac(t) + Pfan . (12)

The constant terms {Ca, Ua, Cm, Hm, fi, fs, fac, Pfan} and
variables {Qi(t), Qs(t),K(t), Phvac(t)} appearing in relation-
ships (4)–(12) are determined as functions of base (user-set)
parameters and forcing terms in the GLD Household ETP
Model [24]. See Tesfatsion and Battula [25] for a careful
derivation and explanation of these functional dependencies.

VI. HOUSEHOLD NET BENEFIT AND THERMAL DYNAMICS
IN DISCRETIZED FORM

A. Overview

This section expresses the household’s net benefit function
and thermal dynamic system presented in Section V in approx-
imate discretized form. To this end, the time-line [t0,+∞) is

5The case in which the HVAC system is running in heating mode can easily
be handled as well.

6The GLD Household ETP Model [24] implements a 1-speed air-circulation
HVAC fan to be ON if and only if the basic HVAC unit is ON.

partitioned into control-steps n of equal length ∆τ (seconds),
where 1/∆τ is the rate at which the household’s HVAC system
receives ON/OFF power control signals.

Specifically, each control-step n ≥ 0 takes the form n =
[ns, ne), where the start-time ns and end-time ne are defined
as follows:

ns = t0 + n∆τ ; (13)
ne = t0 + [n+ 1]∆τ . (14)

A function f :[t0,+∞) → R can then be expressed in a
discretized form f∗(n) that comports with this partitioning,
as follows: For each control-step n ≥ 0,

f∗(n) ≡ f(ns) . (15)

B. Discretized Household Net Benefit Function

By the Mean Value Theorem, the household’s comfort (1)
measured over any control-step n ≥ 0 can equivalently be
expressed as follows: There exist a time point t̄ ∈ [ns, ne)
such that

G(ns, ne) = [Gmax −H(t̄)]∆τ , (16)

where
H(t̄) = h(t̄)

[
Ta(t̄)− TB]2 . (17)

As in [12, Section IV], we approximate the mean value
H(t̄) by a weighted average Ĥ∗(n) given by(

h1
[
T ∗
a (n)− TB

]2
+ h2

[
En[T ∗

a (n+ 1)]− TB
]2)

, (18)

where the weights h1 and h2 are positively valued. The term
En[T ∗

a (n + 1)] in (18) denotes the household’s forecast at
the start-time ns of control-step n for the future inside air
temperature T ∗

a (n + 1) to be realized at the start-time of
control-step n+1.7 The household’s forecasted comfort for
control-step n, calculated at the start-time ns of n, is given
in approximate discretized form by

Ĝ
∗
(n) = [Gmax − Ĥ∗(n)]∆τ . (19)

Also, the household’s forecasted net cost (2) for control-step
n, calculated at the start-time ns of n, is given in approximate
discretized form by

Ĉ
∗
(n) = [Khπ

∗(n)]P ∗(n)∆τ · u∗(n) . (20)

In (20), the power control action u∗(n) equals 1 (or 0) if the
household’s HVAC system is switched or left ON (or OFF)
at the start-time ns for control-step n, and P ∗(n) denotes the
total power consumption of the household’s HVAC system at
the start-time ns for control-step n if the HVAC system is
switched (or left) ON. The term Khπ

∗(n) (cents/kWs) denotes
the retail power price π∗(n) (cents/kWh) for control-step n
converted by Kh into cents/kWs.

Consequently, the household’s forecasted net benefit for
control-step n, calculated at the start-time ns of n, is given
in approximate discretized form by

N̂B
∗
(n) = Ĝ

∗
(n)− µĈ

∗
(n) . (21)

7The precise manner in which this forecasted inside air temperature is
determined is carefully explained in Appendix B.
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C. Discretized Thermal Dynamics
To obtain an approximate discretized form for the house-

hold’s thermal dynamics, the state-vector derivative ẋ(t) in (6)
is first approximated by a forward finite difference:8

ẋ(t) ≈ x(t+ ∆τ)− x(t)

∆τ
(22)

for each t ∈ [t0,+∞). The thermal dynamic system (6) is then
approximated by the following system of difference equations:
For each control-step n ≥ 0,

x∗(n+ 1) = x∗(n) +ADx
∗(n) +BDv

∗(n) , (23)

where

AD = AKh∆τ ; (24)
BD = BKh∆τ ; (25)

x∗(n) =

[
T ∗
a (n)

T ∗
m(n)

]
; (26)

v∗(n) =

 T ∗
o (n)
Q∗

a(n)
Q∗

m(n)

 . (27)

Finally, the simultaneous equations (7) through (10) are
represented as follows. For each control-step n ≥ 0:

Q∗
a(n) = [1− fi]Q∗

i (n) + [1− fs]Q∗
s(n)

+ [1− fac]Q∗
hvac(n) ; (28)

Q∗
m(n) = fiQ

∗
i (n) + fsQ

∗
s(n) + facQ

∗
hvac(n) ; (29)

Q∗
hvac(n) =

(
− HVACPow∗(n) + FanPow

)
u∗(n); (30)

HVACPow∗(n) = K∗(n)P ∗
hvac(n); (31)

FanPow = KPfan; (32)
P ∗(n) = P ∗

hvac(n) + Pfan . (33)

VII. OPTIMAL BID FUNCTION DERIVATION

A. Overview
The general form of the optimal bid function for our mod-

eled household, conditional on its operating state, is depicted
in Fig. 1. This section derives explicit expressions for the
optimal cut-off prices −Π∗(Xs

n) and Π∗(Xu
n) for this bid

function, assuming the household has a one-step look-ahead
horizon (N=1).9

More precisely, the optimal cut-off prices −Π∗(Xs
n) and

Π∗(Xu
n) are derived as functions of the “base parameters”

characterizing the household’s forecasted net benefit function
and thermal dynamic system in the discrete-time forms pre-
sented in Section VI.10 Consequently, as a preliminary step, we

8The use of this simple Euler Method to discretize a household’s thermal
dynamics suffices for the purposes of this study. However, reduced approxima-
tion error can be obtained by augmenting this first-order “predictor” method
with a “corrector” method. For further discussion of approximation methods
for systems of differential equations, see any basic text such as Lambert [26].
For online lecture notes, see Süli [27].

9Extension to an N-period look-ahead horizon with N>1 is conceptually
straightforward but computationally more demanding.

10For concreteness, the continuous-time and discrete-time thermal dynamic
systems derived for a household in Sections V-B and VI-C assume the
household’s HVAC system runs in cooling mode. This assumption is retained
in the present section as well. However, the method used here to derive the
household’s optimal bid cut-off prices can easily be modified to handle the
case in which the household’s HVAC system runs in heating mode.

first explain more carefully the meaning of a “base parameter.”

B. Household Welfare and Thermal Dynamic Attributes in
Base Parameter Form

Consider a household whose forecasted net benefit function
and thermal dynamic system take the discrete-time parame-
terized forms presented in Section VI. The base parameter
set BP for this household is then defined by the following
three conditions. (i) Each element of BP is a parameter
appearing in the household’s forecasted net benefit function
or thermal dynamic system; (ii) Each parameter appearing in
the household’s forecasted net benefit function and thermal
dynamic system can be expressed as a function of one or more
parameters in BP; (iii) No parameter in BP can be non-trivially
expressed as a function of other parameters in BP.

Thus, in standard mathematical terms, BP constitutes a basis
set for the parameters appearing in the household’s forecasted
net benefit function and thermal dynamic system. Let β denote
the household’s base parameter vector consisting of all of the
elements of BP. A complete listing of the components of β,
together with their descriptions and units of measurement, is
given in Table XII in Appendix A.

C. Derivation of Optimal Cut-Off Prices

Let a control-step n ≥ 0 be given. The power level P ∗(n, β)
corresponding to P ∗(n) in Fig. 1 denotes the ON power
consumption of the household’s HVAC system running in
cooling mode during n, as determined by (33).

Suppose the household’s HVAC system is switched (or left)
OFF at the start-time ns for control-step n. Let the household’s
resulting forecasted net benefit (21) be denoted by:

N̂B
∗
(n, β,OFF) = Ĝ

∗
(n, β,OFF). (34)

Conversely, suppose the household’s HVAC system is switched
(or left) ON at ns. Let the household’s resulting forecasted net
benefit (21) be denoted by:

N̂B
∗
(n, β,ON) = Ĝ

∗
(n, β,ON)− µC∗(n, β,ON) (35)

= Ĝ
∗
(n, β,ON)− µKhπ

∗(n)P ∗(n, β)∆τ

The goal of the household is to maximize its forecasted net
benefit during control-step n. Consequently, the household will
be willing to switch (or leave) its HVAC system ON during n
if and only if

N̂B
∗
(n, β,OFF) ≤ N̂B

∗
(n, β,ON). (36)

Substituting (34) and (35) into (36), and rearranging terms,
condition (36) is equivalent to

π∗(n) ≤

[
Ĝ

∗
(n, β,ON)− Ĝ

∗
(n, β,OFF)

]
µKhP ∗(n, β)∆τ

≡ Fn(β). (37)

For later purposes, using (19), note that (37) reduces to

π∗(n) ≤

[
Ĥ∗(n, β,OFF)− Ĥ∗(n, β,ON)

]
µKhP ∗(n, β)

. (38)
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It follows from (37) that the household can be in only one
of two possible control-relevant states at the start-time ns for
control-step n:
Xs

n(β): May Run as Ancillary Service Provider
Ĝ

∗
(n,β,ON) ≤ Ĝ(n,β,OFF)

Xu
n(β): May Run for Power Usage

Ĝ
∗
(n,β,ON) > Ĝ(n,β,OFF)

The service state Xs
n(β) corresponds to Xs

n in Fig. 1; it
is the β-dependent household state in which the household is
not willing to pay for power usage during control-step n but is
willing to provide ancillary service (HVAC power absorption)
during n in return for sufficiently high compensation. It
follows from the derivation of relation (37) that the household
is in a service state Xs

n(β) at the start of control-step n if
and only if Fn(β) in (37) is less than or equal to zero. In
this case the household can be induced to switch (or leave) its
HVAC system ON during n if and only if the price received
for ancillary service, −π∗(n), is at least as high as the non-
negative cut-off price −Π∗(Xs

n(β)) given by −Fn(β).
Consequently, the form of the household’s optimal bid

function in a service state Xs
n(β) takes the rectilinear form

depicted on the left-hand side of Fig. 1. This optimal bid
function constitutes a supply function for ancillary service as
a function of price received.

Conversely, the power-usage state Xu
n(β) corresponds to Xu

n

in Fig. 1; it is the β-dependent household state in which the
household is willing to pay for power usage during control-
step n. It follows from the derivation of relation (37) that
the household is in a power-usage state Xu

n(β) at the start of
control-step n if and only if Fn(β) in (37) is strictly greater
than zero. In this case there is a range of positive prices π∗(n)
for power usage during control-step n that the household is
willing to pay, bounded above by the positive cut-off price
Π∗(Xu

n(β)) given by Fn(β).
Consequently, the household’s optimal bid function in a

power usage state Xu
n(β) takes the rectilinear form depicted

on the right-hand side of Fig. 1. This optimal bid function
constitutes a demand function for HVAC power usage as a
function of price paid.

Finally, note that the IDSO does not need to pay a household
for OFF ancillary service when the household is in an ancillary
service state Xs

n(β); the IDSO simply needs to set an ancillary
service compensation price that is below the household’s
optimal bid cut-off price −Π∗(Xs

n(β)). Similarly, the IDSO
does not need to pay a household for OFF ancillary service
when the household is in a power usage state Xu

n(β); the
IDSO simply needs to set a power-usage price that is above
the household’s optimal bid cut-off price Π∗(Xu

n(β)).
Explicit expressions for the optimal bid cut-off prices

−Π∗(Xs
n(β)) and Π∗(Xu

n(β)) as functions of the components
of the base parameter vector β are provided in Appendix C.

VIII. HOUSEHOLD TYPE CLASSIFICATION

A. Overview

As explained in Section VII-B, the physical and behavioral
attributes of our modeled household are characterized by a
base parameter vector β. This section develops a method

for classifying our modeled households into representative
household types in accordance with the values set for the
components of β.

As will be demonstrated in Sections IX–XII, these house-
hold types can be used to construct physically and economi-
cally meaningful mixes of households to populate distribution
systems for bid-based TES design studies.

B. Household Type Construction

As shown in Fig. 2, the ‘Structure’ attributes of our modeled
household are divided into ‘Appliance’ and ‘House’ attributes.
Let βa denote the components of β that correspond to ‘Appli-
ance’ attributes, and let βh denote the components of β that
correspond to ‘House’ attributes. Finally, let βr denote the
components of β that correspond to ‘Resident’ attributes.

A Household Type is then defined by three aspects: Appli-
ance Type (βa), House Type (βh), and Resident Type (βr). A
complete description of the components of β = (βa, βh, βr),
classified by attribute type, is given in Table XII in Ap-
pendix A.

To be physically and economically meaningful, the base
parameters comprising β for any given modeled household
must be configured in a correlated manner. For example, it
would be empirically problematic to assume that a household
with a small-sized house, located in a temperate climate, has
a large powerful HVAC system.

For the purposes of this study, a household’s Structure
Quality Type is characterized by its HVAC Type (βhvac) and its
House Type (βh), where βhvac consists of all base parameters
in the household’s Appliance Type βa that correspond to the
attributes of its HVAC system. For example, as shown in
Table XIV in Appendix D, βhvac includes an HVAC system’s
coefficient of performance (Cooling_COP) and over-sizing
factor (OSF). As shown in Table XV in Appendix D, a
household’s House Type βh characterizes the location, size,
thermal integrity, and interior-exterior attributes of its house.

More precisely, a house’s ‘Location’ is characterized by
base parameters for position aspects, such as the voltage level
of the distribution system to which the house is connected. A
house’s ‘Size’ is determined by base parameters characterizing
number of stories and the width, length, and height aspects of
ceilings, walls, and floors. A house’s ‘Thermal Integrity’ is
characterized by base parameters for thermal factors such as
percentages of heat gain from equipment operations and solar
radiation. Finally, a house’s ‘Interior-Exterior’ attributes are
characterized by base parameters for factors such as (window)
glazing and number of doors.

Table I, below, illustrates how different Structure Quality
Types can be constructed using different correlated settings
for the base parameters in βhvac and βh, with all remaining
elements of β maintained at fixed value settings. For example,
a household has a Low Structure Quality Type if it has a
‘Small’ sized house, ‘Poor’ thermal integrity, ‘Poor’ interior-
exterior features, and a ‘Poor’ quality HVAC system. It has
a Medium Structure Quality Type if it has a ‘Normal’ sized
house, ‘Normal’ thermal integrity, ‘Normal’ interior-exterior
features, and a ‘Normal’ HVAC system. It has a High Structure
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Quality Type if it has a ‘Large’ sized house, ‘Good’ thermal
integrity, ‘Good’ interior-exterior features, and a ‘Good’ qual-
ity HVAC system.

TABLE I
STRUCTURE QUALITY TYPE CHARACTERIZATIONS

Structure
Quality Size Thermal

Integrity
Interior-
Exterior HVAC

Low Small Poor Poor Poor
Medium Normal Normal Normal Normal
High Large Good Good Good

Specific correlated parameter settings that could be used
to characterize the Structure Quality Type classifications in
Table I are given in Tables XVII through XX in Appendix
F. These correlated parameter settings are used to implement
Structure Quality Type classifications for the test cases re-
ported below in Sections IX–XII.

IX. TEST CASES: PURPOSE AND COMMON FEATURES

A. Overview

As indicated in Table II, this study reports three types of
test cases to demonstrate the usefulness of our household for-
mulation, optimal bid function derivation, and household type
construction method for the customer-centric development and
evaluation of bid-based TES designs.

Test Case 1 focuses on the following issue: Under what
conditions, and to what extent, does it matter that households
participating in bid-based TES designs use bid functions
optimally derived as functions of their own local welfare and
thermal dynamic attributes? As will be seen, this use can
significantly improve welfare outcomes for households under
certain operating conditions.

Test Case 2 and Test Case 3 illustrate how simulated distri-
bution systems, populated with systematically varied mixes of
our household types, can be used to evaluate the performance
capabilities of IDSO-managed bid-based TES designs. The
specific focus of these test cases is the ability of the IDSO
to use bid-conditioned price signals to achieve desired peak-
load reductions and to shape distribution loads to match target
load profiles.

TABLE II
TEST CASE DESCRIPTIONS

Test Case Description
Test Case 1 Bid Function Performance Comparisons:

Compares welfare outcomes under our
optimal household bid function and
alternative household bid functions.

Test Case 2 Peak Load Reduction:
Illustrates use of our Household Types
in a TES design to test the IDSO’s ability
to achieve peak load reduction.

Test Case 3 Target Load Matching:
Illustrates use of our Household Types
in a TES design to test the IDSO’s ability
to achieve target load matching.

For each test case, the distribution system operates over
a 123-bus distribution grid during hot summer weather. The
distribution grid is populated by a mix of 927 households, each
modeled using our household formulation depicted in Fig. 2,
and each implemented in part using the GridLAB-D (GLD)
House Object [28].11

Each household has a smart (price-responsive) HVAC sys-
tem running in cooling mode. Each household also has conven-
tional (non-price-responsive) appliances consisting of lights,
clothes-washer, refrigerator, dryer, freezer, range, and mi-
crowave. All households are participants in a IDSO-managed
bid-based TES design that manages their power consumption.

The IDSO is located at a substation of the 123-bus distribu-
tion grid that connects the distribution system to a transmission
system. Wholesale power is supplied to the distribution system
through this T-D interface.

The next two subsections provide fuller descriptions of the
123-bus distribution grid and bid-based TES design used for
all test cases. The final subsection describes base parameter
values, forcing terms, and initial conditions that are maintained
for all test cases.

B. Test Case Grid Populated by Households

The 123-bus distribution grid used for all of our test cases
is depicted in Fig. 3. This grid modifies the standard IEEE
123-bus distribution grid [29] in three ways.

First, the load connected at each bus of the standard IEEE
123-bus distribution grid is replaced with household load.
Specifically, 927 households are distributed across the 123
buses of the distribution grid in proportion to the original
loads, which are then omitted. Second, the distribution grid
is connected to a transmission system through a substation
at bus 150. Third, the distribution system is managed by an
IDSO operating at this substation.

Fig. 3. The IDSO-managed 123-bus distribution grid used for all test cases.

11See Appendix E for GLD House Object implementation details.
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C. The Five-Step TES Design

The bid-based TES design used for all test cases reported
in this study is referred to below as the Five-Step TES
Design. As discussed more fully in earlier work [18], this
design is a variant of the well-known PowerMatcher TES
design developed by Koen Kok [13] to balance the power
transactions of numerous power consuming and producing
devices operating within an electrical infrastructure.

The Five-Step TES design extends PowerMatcher in three
key regards. First, each household’s bid function can take the
form of an ancillary service offer or a power usage demand,
depending on local operating conditions. This bid function is
characterized by state-conditioned cut-off prices for ancillary
service provision and power usage, together with a state-
conditioned forecast for the ON power consumption (kW)
of the household’s HVAC system. Second, the entity that
manages the Five-Step TES Design is an IDSO that functions
at a substation as a T-D linkage entity able to purchase and
sell power within a wholesale power market. Third, the IDSO
has a fiduciary responsibility for the efficiency and reliability
of distribution system operations.

The Five-Step TES Design consists of five iterated steps, as
follows:

• Step 1: The HVAC system controller for each household
h collects data on the state of h at a Data Check Rate.

• Step 2: The HVAC system controller for each household
h forms a state-conditioned bid function Bid(h) for power
usage and/or service provision and communicates it to the
IDSO at a Bid Refresh Rate.

• Step 3: The IDSO combines all received household bid
functions Bid(h) into an aggregate bid function, AggBid,
at an Aggregate Bid Refresh Rate.

• Step 4: The IDSO uses the aggregate bid function
AggBid to determine and communicate price signals back
to households at a Price Signal Rate.

• Step 5: The HVAC system controller for each household
h inserts its latest received price signal into its latest
refreshed state-conditioned bid function Bid(h) at a Power
Control Rate, which triggers an ON/OFF power control
action for the HVAC system.

To ensure the Five-Step TES Design permits the IDSO
to fulfill its fiduciary responsibilities, careful attention must
be paid to the timing of the signals propagated back and
forth between the IDSO and the household HVAC system
controllers. This timing depends on the five action rates for
the five steps of this design. In addition, communication and
action time-delays must be taken into account.

Suppose, for simplicity of exposition, that all five action
rates for the Five-Step TES Design are given by 1/∆t for a
common time-step ∆t. Let the time-delay between Step j and
Step j + 1 in any given iteration of the five steps be denoted
by εj for j = 1, . . . , 5, where “Step 6” is equated with “Step
1” in the subsequent iteration. Suppose the summation of the
time-delays εj for j = 1, . . . , 5 does not exceed ∆t. Finally,
let tj = tj−1 + εj for j = 1, . . . 5. The iterated staggered
implementation of Steps 1-5 for the Five-Step TES Design

can then be depicted as in Fig. 4.12.

Fig. 4. Staggered implementation of the five steps comprising the Five-Step
TES Design.

D. Maintained Base Parameter Values, Forcing Terms, and
Initial Conditions

For all test cases, the length ∆τ of each control-step n ≥ 0
is set to 300s. The base parameter location attributes specified
for each household are for Des Moines, Iowa, USA.

Also, for all test cases the base parameters NOC and foc
appearing in each household’s Resident Type βr are set to 1
and 1.0. The setting NOC = 1 indicates the household has a
single resident (occupant), and the setting foc = 1.0 indicates
this resident occupies the house 100% of the time. In addition,
for each household: Gmax = 3.3333 (utils/s); TB = 72 (oF );
and h1 = h2 = 0.0017 (utils/[s - (oF )2]).

The five action rates characterizing the Five-Step TES
Design described in Section IX-C are set as follows for all
test cases: Data Check Rate = 1/300s; Bid Refresh Rate =
1/300s; Aggregate Bid Refresh Rate = 1/300s; Price Signal
Rate = 1/300s; and Power Control Rate = 1/300s.

The weather-related forcing terms used for all of our test
cases consist of time series data for outside temperature, solar
flux, and humidity for hot summer days in Des Moines, Iowa,
USA [30]. For example, Fig. 5 depicts the specific weather-
related forcing terms used for our Test Case 2 results. Outside
temperature and solar flux values appear on the primary (left)
vertical axis, and humidity values appear on the secondary
(right) vertical axis.13

Finally, all of our test cases are initialized at the simulation
start-time t0 by setting the inside air and mass temperatures
for each household equal to the household’s bliss temperature
TB. Outcomes for the first simulated day are then ignored in
order to allow diversity in these temperatures to develop across
the simulated households.

12See Appendix E for GLD implementation details
13See Appendix E for additional details regarding our test-case implemen-

tation of weather-related forcing terms.
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Fig. 5. Weather-related forcing terms (outside temperature, solar flux, and
humidity) for a 24-hour day used for Test Case 2.

X. TEST CASE 1 OUTCOMES: BID FUNCTION
PERFORMANCE COMPARISONS

A. Test Case 1a: Optimal vs. Non-Optimal Cut-Off Bid Prices

The optimal form of a household’s bid function for any
control-step n = [ns, ne) is depicted in Fig. 1 and care-
fully derived in Section VII. The optimal bid cut-off price
−Π∗(Xs

n) ≥ 0 is the minimum price the household is willing
to receive for service provision (power absorption) if it is in
an ancillary service state Xs

n. The optimal bid cut-off price
Π∗(Xu

n) ≥ 0 is the maximum price the household is willing
to pay for power usage if it is in a power usage state Xu

n.
This section addresses the following question: Suppose the

household uses non-optimal bid cut-off prices −Πs ≥ 0 and
Πu ≥ 0 for control-step n in place of the optimal bid cut-
off prices −Π∗(Xs

n) and Π∗(Xu
n). How would this affect the

household’s actual net benefit (NB) for control-step n?
The household’s use of non-optimal bid cut-off prices for

control-step n in place of optimal bid cut-off prices will not
affect the household’s NB unless it changes the household’s
power control action u∗(n). Whether this change in control
action occurs will depend, in turn, on the retail price (RP )
offered for ancillary service (RP < 0) or charged for power
usage (RP > 0) during control-step n.

If RP < 0 and the household is in a power usage state
Xu

n, the household will attain a higher NB if it switches (or
leaves) its HVAC system ON rather than OFF, regardless of the
exact magnitude of the ancillary service price compensation
−RP > 0. The exact magnitude of the household’s optimal
bid cut-off price Π∗(Xu

n) for power usage is thus irrelevant.
Conversely, if RP > 0 and the household is in an ancillary
service provision state Xs

n, the household will attain a higher
NB if it switches (or leaves) its HVAC system OFF rather
than ON, regardless of the exact magnitude of RP . The
exact magnitude of the household’s optimal bid cut-off price
−Π∗(Xs

n) ≥ 0 for ancillary service compensation is thus
irrelevant.

Consequently, in either of these situations the household’s
NB will not be affected by the use of a non-optimal bid cut-off
price in place of an optimal bid cut-off price.

Suppose RP > 0 and the household is in a power usage
state Xu

n. Suppose, also, that the household is using an
arbitrary bid cut-off price Πu for power usage. The household

will then switch (or leave) its HVAC system ON (u∗(n)=1)
during control-step n if and only if RP ≤ Πu.

Consequently, a change from an arbitrary bid cut-off price
Πu to the optimal bid cut-off price Π∗(Xu

n) will affect the
household’s NB if and only if one of the following two
conditions holds:

(a) Πu is too high: Π∗(Xu
n) < RP ≤ Πu

(b) Πu is too low: Πu < RP ≤ Π∗(Xu
n)

In case (a), the optimal power control action for the household
is to switch (or leave) its HVAC system OFF; however, the use
of the arbitrary bid cut-off price Πu results in its HVAC system
being set ON. In case (b) the optimal power control action for
the household is to switch (or leave) its HVAC sytem ON;
however, the use of the arbitrary bid cut-off price Πu results
in its HVAC system being set OFF.

A similar analysis can be conducted for the case in which
RP < 0 and the household is in an ancillary service provision
state Xs

n. A change from an arbitrary bid cut-off price −Πs

to the optimal bid cut-off price −Π∗(Xs
n) will affect the

household’s NB if and only if one of the following two
conditions holds:
(c) −Πs is too high: −Π∗(Xs

n) ≤ −RP < −Πs

(d) −Πs is too low: −Πs ≤ −RP < −Π∗(Xs
n)

In case (c), the offered service compensation price −RP
is at or above the minimum acceptable compensation price
−Π∗(Xs

n), indicating the HVAC system should be set ON for
service provision. However, the arbitrary cut-off price −Πs

indicates the offered compensation price −RP is too low and
the HVAC system should be set OFF. Conversely, in case
(d) the offered compensation price −RP is below the mini-
mum acceptable compensation price −Π∗(Xs

n), indicating the
HVAC system should be set OFF; yet the arbitrary cut-off
price −Πs indicates the offered compensation price −RP is
sufficiently high and the HVAC system should be set ON.

The only remaining issue, then, is the size of the gain (if
any) in the household’s NB for control-step n if the household
switches its power control action due to a switch from a non-
optimal to an optimal bid cut-off price.

Tables III–VIII report household NB effects under various
test-case treatments. For each test case, NB outcomes for two
non-optimal bid cut-off prices (cents/kWh) are compared with
the NB outcome for the optimal bid cut-off price (cents/kWh).
The two non-optimal bid cut-off prices are chosen in such a
way that one results in the same power control action as the
optimal bid cut-off price while the other results in a different
power control action.

Net benefit results are reported in Tables III–IV for a High
Structure Quality Type household. The retail price RP = 10
(cents/kWh), inside air temperature T ∗

a (n) = 75.12 (oF ), and
outside weather T ∗

o (n) = 79 (oF ) are held constant; note
that the inside air temperature T ∗

a (n) is greater than the
household resident’s bliss temperature TB = 72 (oF ). The
treatment factor is the household’s marginal utility of money
µ (utils/cent) in modified form µm (utils/$), where µm = µ ×
100cents/$. Recall that µ is the comfort-cost tradeoff factor in
the household’s net benefit function (21).

As seen in Tables III–IV, when µm = 100, household NB is
not very sensitive to a switch from a non-optimal to an optimal
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bid cut-off price. However, when µm is instead set to 1000,
the effect of such a switch on NB is potentially much greater.

TABLE III
COMPARISON OF HOUSEHOLD NET BENEFIT (NB) IN POWER USAGE STATE
Xu
n FOR OPTIMAL AND NON-OPTIMAL BID CUT-OFF PRICES, GIVEN:
µm = 100, RP = 10, T ∗a (n) = 75.12 > TB, AND T ∗o (n) = 79.

Cut-Off Optimal? T ∗
a (n+ 1) NB

25.00 No 72.06 991.97
19.27 Yes 72.06 991.97
1.00 No 75.49 989.04

TABLE IV
COMPARISON OF HOUSEHOLD NET BENEFIT (NB) IN POWER USAGE STATE
Xu
n FOR OPTIMAL AND NON-OPTIMAL BID CUT-OFF PRICES, GIVEN:
µm=1000, RP = 10, T ∗a (n) = 75.12 > TB, AND T ∗o (n) = 79.

Cut-Off Optimal? T ∗
a (n+ 1) NB

25.00 No 72.06 963.56
1.93 Yes 75.49 989.04
1.00 No 75.49 989.04

In Table V, all treatment factors are the same as in Table IV
with one exception: the retail price RP is increased to 15
(cents/kWh). Comparing outcomes in these two tables, it is
seen that the switch from a non-optimal to an optimal bid
cut-off price now has a potentially larger effect on NB.

TABLE V
COMPARISON OF HOUSEHOLD NET BENEFIT (NB) IN POWER USAGE STATE
Xu
n FOR OPTIMAL AND NON-OPTIMAL BID CUT-OFF PRICES, GIVEN:
µ∗=1000, RP =15, T ∗a (n) = 75.12 > TB, AND T ∗o (n) = 79.

Cut-Off Optimal? T ∗
a (n+ 1) NB

25.00 No 72.06 947.78
1.93 Yes 75.49 989.04
1.00 No 75.49 989.04

In Table VI, all treatment factors are the same as in Table V
with one exception: the outside temperature T ∗

o (n) is increased
from 79 (oF ) to 85 (oF ). Comparing outcomes in these two
tables, this change in outside weather has a relatively small
impact on the resulting NB effects.

TABLE VI
COMPARISON OF HOUSEHOLD NET BENEFIT (NB) IN POWER USAGE STATE
Xu
n FOR OPTIMAL AND NON-OPTIMAL BID CUT-OFF PRICES, GIVEN:

µ∗=1000, RP = 15, T ∗a (n) > TB, AND T ∗o (n) = 85.

Cut-Off Optimal? T ∗
a (n+ 1) NB

25.00 No 72.84 945.47
2.63 Yes 76.24 986.14
1.0 No 76.24 986.14

Finally, Tables VII–VIII report household NB effects of a
switch from non-optimal to optimal bid cut-off prices for a
household in a service provision state Xs

n when the house-
hold’s marginal utility of money is increased from µm=100
(utils/$) to µm=1000 (util/$). To emphasis that the focus of
these two tables is on ancillary service prices, not power usage
prices, the retail price and ancillary service bid cut-off prices
are reported in their negative forms RP ≤ 0 and Π∗(Xs

n) ≤ 0.

The ancillary service compensation price is maintained at
RP = -10 (cents/kWh), the inside air temperature is main-
tained at T ∗

a (n) = 70.15 (oF ), and the outside air temperature
is maintained at T ∗

o (n) = 79 (oF ). As previously observed
for the power usage cases, the gain in NB resulting from a
switch from a non-optimal to an optimal bid cut-off price is
potentially more substantial for the higher µm level.

TABLE VII
COMPARISON OF HOUSEHOLD NET BENEFIT (NB) IN ANCILLARY SERVICE
STATE Xs

n FOR OPTIMAL AND NON-OPTIMAL BID CUT-OFF PRICES, GIVEN:
µ∗=100, RP = -10, T ∗a (n) = 70.15 < TB, AND T ∗o (n) = 79.

Cut-Off Optimal? T ∗
a (n+ 1) NB

-1.00 No 70.81 990.82
-31.44 Yes 70.81 997.58
-40.00 No 67.39 997.58

TABLE VIII
COMPARISON OF HOUSEHOLD NET BENEFIT (NB) IN ANCILLARY SERVICE
STATE Xs

n FOR OPTIMAL AND NON-OPTIMAL BID CUT-OFF PRICES, GIVEN:
µ∗=1000, RP = -10, T ∗a (n) = 70.15 < TB, AND T ∗o (n) = 79.

Cut-Off Optimal? T ∗
a (n+ 1) NB

-1.00 No 70.81 1019.25
-3.14 Yes 67.39 1019.25
-40.00 No 67.39 997.58

B. Test Case 1b: Comparative Bid Function Performance Tests

The optimal bid function derived in this study is compared
against the following bid function proposed by Nguyen et
al. [18]:

πs(Ta) = θs
[ TB− Ta

TB− TMin

]
for TMin < Ta ≤ TB ; (39)

πu(Ta) = θu
[ Ta − TB

TMax− TB

]
for TB < Ta < TMax , (40)

where θs and θu are positively-valued scaling parameters. The
test case parameter values maintained for the alternative bid
function described by (39) and (40) are: TMin = 68oF , TB =
72oF , TMax = 76oF , and θs = θu = 20 (cents/kWh).

Differences in actual net benefit (NB) during a control-step
n are calculated for the two bid functions under variously
set values for the household’s marginal utility of money
µm (utils/$) and the Structure Quality Types of households.
Specifically, this NB difference is calculated as the NB attained
using our optimal bid function minus the NB attained using
the bid function described by (39) and (40). The initial inside
air temperature and initial outside weather temperature for
control-step n are set at T ∗

a (n) = 74.67 (oF ) and T ∗
o (n) =

79 (oF ), respectively, for both bid functions.
Figure 6 reports outcomes for this test case. It is seen that

our optimal bid function results in higher NB for all tested µm

values, and the improvement in NB performance is larger for
larger µm values. Moreover, this same pattern holds across all
three tested settings for household Structure Quality Type.
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Fig. 6. Difference in net benefit between our proposed optimized bid function
and a bid function developed by [18] under varied settings for household
marginal utility of money µm (utils/$) and Structure Quality Type.

XI. TEST CASE 2 OUTCOMES: IDSO PEAK LOAD
REDUCTION CAPABILITIES

This section demonstrates how the household formulation
and household type construction method developed in earlier
sections of this study can facilitate the customer-centric perfor-
mance evaluation of IDSO-managed bid-based TES designs.
The specific performance to be evaluated is as follows: Can
the IDSO use retail price signals to achieve target peak-load
reductions? A key finding is that the ability of the IDSO to
achieve this system objective depends strongly on the mix of
house quality types.

Two types of test cases are reported. The first type (Test
Case 2a) investigates the IDSO’s peak-load reduction capa-
bilities when households are differentiated by their Structure
Quality Type. The second type (Test Case 2b) investigates the
IDSO’s peak-load reduction capabilities when households are
differentiated by their Resident Type.

The IDSO on day D forecasts household peak load for
day D+1. The IDSO uses this forecast to determine a target
peak load for day D+1, given by forecasted peak load reduced
by a designated percentage. During day D+1 the IDSO then
uses latest refreshed household bids to send an appropriate
sequence of retail price signals to households to maintain total
household load at or below this target peak-load level.
Test Case 2a: IDSO Peak Load Reduction Capabilities for
Different Household Structure Quality Types

The treatment factor selected for Test Case 2a is the
Structure Quality Type of households. Our general method
for classifying households into Structure Quality Types is
explained in Section VIII.

Specific characterizations for the Low, Medium, and High
Structure Quality Types used for the test cases reported in this
section can be found in Appendices D and E. The marginal
utility of money µ for each household is set to 1 (utils/cent).
All other household attributes are set at the maintained values
listed in Section IX-D. The IDSO implements the Five-
Step TES Design for the management of household power
consumption.

Figures 7–9 report the ability of the IDSO to achieve a
0.5MW peak-load reduction by means of retail prices commu-
nicated to households with optimally formulated bid functions.

These retail prices take either a flat-rate form (10 cents/kWh)
or a peak-load pricing form. All households have the same
Structure Quality Type, either Low, Medium, or High. The
variation observed in Fig. 10 in the peak-load retail prices
required to achieve a targeted 0.5MW peak-load reduction
indicates that household Structure Quality Type should be
given careful consideration in any peak-load reduction effort.

Fig. 7. IDSO’s ability to achieve a 0.5MW peak-load reduction using flat-
price vs. peak-load pricing when all households have Low Structure Quality.

Fig. 8. IDSO’s ability to achieve a 0.5MW peak-load reduction using
flat-price vs. peak-load pricing when all households have Medium Structure
Quality.

Fig. 9. IDSO’s ability to achieve a 0.5MW peak-load reduction using flat-
price vs. peak-load pricing when all households have High Structure Quality.
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Fig. 10. Peak-load retail price signals used by the IDSO to achieve a 0.5MW
peak load reduction when all households have the same Structure Quality Type
(either all Low, all Medium, or all High).

Test Case 2b: IDSO Peak Load Reduction Capabilities for
Different Household Resident Types

The treatment factor selected for Test Case 2b is Resident
Type; specifically, a household resident’s marginal utility of
money µ (utils/cent) = µm × $/100cents. Three values for
µm (utils/$) are considered: 10, 100, and 1000. Recall from
Section V-A that µ determines a household’s comfort-cost
tradeoffs for determination of its net benefit.

All households are configured to have a High Structure
Quality Type. All other household attributes are set at the
maintained values listed in Section IX-D. The IDSO im-
plements the Five-Step TES Design for the management of
household power consumption.

Figure 11 reports the retail prices the IDSO communicates
to households to achieve a 0.5 MW peak-load reduction, given
three different settings for µm. The needed retail prices for
the lowest setting µm=10 are seen to be substantially higher
than for the other two settings. This finding follows directly
from the role µ plays in the determination of a household’s
willingness to sacrifice comfort for lower cost; the lower the
value of µ, the higher the retail price must be to induce any
given MW reduction in its power usage.

Fig. 11. Retail price signals used by the IDSO to achieve 0.5MW peak-load
reduction for High Structure Quality Type households, given three different
settings for household marginal utility of money µm (utils/$).

Figure 12 reports the retail prices the IDSO communicates
to households to achieve three different peak-load reductions,
0.3MW, 0.4MW, and 0.5MW, assuming µm=10 for all house-
hold residents. The retail prices needed to achieve a 0.5MW
peak-load reduction are seen to be relatively high. The retail
price signals needed to achieve the more moderate 0.3MW
and 0.4MW peak-load reductions are substantially lower.

Fig. 12. Retail price signals used by the IDSO to achieve 0.3MW, 0.4MW,
and 0.5MW peak load reductions for High Structure Quality Type households,
each with a marginal utility of money µm=10 (utils/$).

XII. TEST CASE 3 OUTCOMES: IDSO LOAD MATCHING

This section demonstrates how the household formulation
and type construction method developed in this study can fa-
cilitate the customer-centric performance evaluation of IDSO-
managed bid-based TES designs with regard to another IDSO
capability: namely, the use of retail price signals to match
distribution system load to a target load profile.

As in all previously reported test cases, the IDSO manages
a Five-Step TES design for the 123-bus distribution grid
depicted in Fig. 3. The IDSO is located at a substation (bus
150) that connects the distribution system to a transmission
system. Wholesale power is supplied to the distribution system
through this substation.

However, in this section the IDSO is now modeled to be
an active participant in a wholesale day-ahead market (DAM)
operating over the transmission grid. On each day D the IDSO
submits a fixed demand bid into the DAM consisting of a
forecasted 24-hour household load profile for day D+1. On
day D+1 the IDSO attempts to ensure that actual household
load does not deviate from the fixed demand bid it submitted
into the DAM on day D.

Figure 13 reports load-matching outcomes for an illustrative
case in which the distribution grid is populated with a mixture
of households with Low, Medium, and High Structure Quality
Types.14 All households have the same maintained Resident
Type with a marginal utility of money µ = 1 (utils/cent).

As seen in Fig. 13, the IDSO is successfully able to use
retail price signals on day D+1 to match household load to
the load profile it submitted to the day-D DAM as its fixed
demand bid. The retail price signals used by the IDSO to
achieve the good load matching depicted in Fig. 13 are shown
in Fig. 14.

14The Structure Quality Type of each household connected at each grid bus
is configured as Low, Medium, or High with probabilities (1/3, 1/3, 1/3).
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Fig. 13. Ability of the IDSO to match total household load on day D+1 to
a target load profile, given by the IDSO’s fixed demand bid submitted into a
day-ahead market on day D.

Fig. 14. The retail price signals communicated by the IDSO to households
on day D+1 to match total household load to the IDSO’s day-D DAM fixed
demand bid, depicted as the target load profile in Fig. 13.

Suppose, instead, that the IDSO submits into the day-D
DAM the fixed demand bid (load profile) depicted in Fig. 15.
Once again, as seen in this figure, the IDSO is successfully
able to use retail price signals on day D+1 to match total
household load to this target load profile.

Fig. 15. Ability of the IDSO to match total household load on day D+1 to a
different target load profile, i.e., a different fixed demand bid submitted into
the day-D DAM.

The retail prices used by the IDSO to accomplish the good
load matching depicted in Fig. 15 are shown in Fig. 16. The
negative retail price signals seen in Fig. 16 indicate that the
IDSO must purchase ancillary services (power absorption)
from households during some control-steps in order to match
its target load profile.

XIII. CONCLUSION

This study formulates methods to facilitate the development
and evaluation of bid-based TES designs that are well aligned
with local customer goals and constraints.

Fig. 16. The positive and negative retail price signals communicated by the
IDSO to households on day D+1 to match total household load to the target
load profile depicted in Fig. 15.

The optimal general form of a household’s bid function is
derived from dynamic programming principles, based solely
on the household’s general thermal dynamic and welfare
attributes. This optimal bid function permits the household
to demand power usage as a function of required price and to
supply ancillary service (power absorption) as a function of
offered price compensation.

It is then shown how this optimal bid function can be
derived in explicit quantitative form, given quantitative rep-
resentations for the household’s thermal dynamic system and
welfare function. A method is also developed for the system-
atic construction of representative household types based on
appliance, house structure, and household resident attributes
expressed in base-parameter form.

Test cases are conducted for a 123-bus distribution grid
populated by a mix of household types with variously speci-
fied thermal dynamic and welfare attributes. The distribution
system is managed by an IDSO using a bid-based TES design.
The reported test case findings demonstrate the usefulness of
our methods for the evaluation of bid-based TES designs from
a customer-centric vantage point.

Future work will use the results of this study to undertake
systematic evaluations of IDSO-managed bid-based TES de-
signs that rely on voluntary customer participation. Particular
attention will be focused on the ability of the IDSO to use
aggregated household bids to offer flexible ancillary services
into a wholesale power market.
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APPENDIX A: HOUSEHOLD NOMENCLATURE

Tables IX-XI below provide symbols and descriptions for all of the terms appearing explicitly in the representations used
in this study for household thermal dynamics and household welfare.

TABLE IX
HOUSEHOLD THERMAL DYNAMICS: FACTORS AND VARIABLES.

Description
HVACPow(t) Heat gain (Btu/h) from the ON operation of the basic HVAC unit at time t

K Conversion factor (3412Btu/[h-kW]) that converts kW to Btu/h

Kh Conversion factor (1h/3600s) that converts seconds s to hours h (hence 1/h to 1/s)

K(t) Coefficient of performance factor (Btu/[h-kW]) for the basic HVAC unit at time t

n Control-step n = [ns, ne) with length ∆τ , where ns = t0 + n∆τ and ne = t0 + [n+ 1]∆τ

P (t) Total power consumption (kW) of the HVAC system (including fan) if ON at time t

Phvac(t) Power consumption (kW) of the basic HVAC unit if ON at time t

Qa(t) Total heat flow rate (Btu/h) to inside air mass at time t

Qhvac(t) Heat flow rate (Btu/h) from the HVAC system (including fan) if ON at time t

Qi(t) Heat flow rate (Btu/h) from internal non-HVAC equipment and occupants at time t

Qm(t) Total heat flow rate (Btu/h) to inside solid mass at time t

Qs(t) Heat flow rate (Btu/h) from solar radiation at time t

t Time point indicator (granularity of seconds)
t0 Simulation start-time (granularity of seconds)
Ta(t) Inside air temperature (oF) at time t

Tm(t) Inside mass temperature (oF) at time t

To(t) Outside air temperature (oF) at time t

u∗(n) Binary 0-1 variable denoting OFF/ON HVAC power control action for control-step n

∆τ Length (seconds) of each control-step n = [ns, ne)

π(t) Retail power price (cents/kWh) at time t

TABLE X
HOUSEHOLD THERMAL DYNAMICS: DERIVED (NON-BASIC) PARAMETERS

Description
Ca Heat capacity (Btu/oF) of the inside air mass
Cm Heat capacity (Btu/oF) of the inside solid mass
Ua Thermal conductance (Btu/[h-oF]) between internal and external air masses
Hm Thermal conductance (Btu/[h-oF]) between inside air and solid masses
FanPow Heat gain (Btu/h) from the ON operation of the 1-speed fan
Pfan Power consumption (kW) of the 1-speed fan when ON

TABLE XI
HOUSEHOLD WELFARE: VARIABLES, FUNCTIONS, AND PARAMETERS

Description
Ĉ
∗
(n) Forecasted net cost (cents) for control-step n

Ĝ
∗
(n) Forecasted comfort (utils) for control-step n

N̂B
∗
(n) Forecasted net benefit (utils) for control-step n

µ Marginal utility of money (utils/cent)
−Π∗(Xs

n) Min acceptable payment (cents/kWh) for HVAC ancillary service provision in state Xs
n

Π∗(Xu
n) Max willingness to pay (cents/kWh) for HVAC power usage in state Xu

n.
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TABLE XII
APPLIANCE, HOUSE, AND RESIDENT COMPONENTS OF A HOUSEHOLD’S BASE PARAMETER VECTOR β

β Parameter Name Parameter Description

βa

AuxHeatCap Auxiliary heating capacity (Btu/h)
base_power Base real power (kW) of the total load at nominal voltage (kW)

Cooling_COP Coefficient of performance (unit free) for HVAC system in cooling mode
cooling_system_type Determines type of HVAC system running in cooling mode (electric, gas)
CoolSupplyAirTemp Cooling supply air temperature (oF)

current_fraction Fraction (decimal %) of the load that is constant current (p.u.)
current_pf Power factor (unit free) for constant current portion of load (p.u.)

DCT System design cooling set-point (oF)
DesignCoolCap Design cooling capacity (Btu/h)
DesignHeatCap Design heating capacity (Btu/h)

DesignHeatSetpoint Design heating setpoint (oF)
DIG System design internal gain (Btu/h)

DuctPressureDrop Duct pressure drop (inches of water)
FanDesignPower Designed maximum power draw (W) of the ventilation fan

fIeu Fraction (decimal %) of non-HVAC end-use load eu internal to house
HeatSupplyAirTemp Heating supply air temperature (oF)
impedance_fraction Fraction (decimal %) of load that is constant impedance (p.u.)

impedance_pf Power factor (unit free) for constant impedance portion of load (p.u.)
LatCoolFrac Fractional cooling-load increase (unit free) due to latent heat

NEU Number (integer) of household non-HVAC end-use loads
OSF Over-sizing factor (unit free)

power_fraction Fraction (decimal %) of the load that is constant power (p.u.)
power_pf Power factor (unit free) for constant power portion of load (p.u.)

βh

CDT System cooling design temperature (oF)
DPS System design solar load (Btu/[h-ft2])
ECR Exterior ceiling, fraction of total (decimal %)
EFR Exterior floor, fraction of total (decimal %)
EWR Exterior wall, fraction of total (decimal %)

fac, fs, fi, Heat gain (decimal %) from (Qhvac(t), Qs(t), Qi(t)) to Qm(t)
glass_layer String-coded window glass-layer type (ONE, TWO, ...)
glass_type String-coded glass type (GLASS, LOW_E,...)

glazing_treatment String- coded exterior window reflectivity type
HDT Heating design temperature (oF)
hs Interior surface heat transfer coefficient (Btu/[h-oF-ft2])
I Infiltration volumetric air exchange rate (#times per hour)

IWR Interior/exterior wall surface ratio (unit free)
mf Total thermal mass per unit floor area (Btu/[oF-ft2])
ns Number (integer) of stories
nd Number (integer) of doors
Rc Thermal resistance ([h-oF-ft2]/Btu) of house ceilings
Rd Thermal resistance ([h-oF-ft2]/Btu) of house doors
Rf Thermal resistance ([h-oF-ft2]/Btu) of house floors
Rw Thermal resistance ([h-oF-ft2]/Btu) of house walls

V_nominal Nominal rating voltage (volts)
WET Window exterior transmission coefficient (decimal %)
WF String-coded window-frame type (INSULATED, WOOD, ...)

WWR Window-to-exterior-wall ratio (decimal %)
x, y, h Width, length, and height (ft)

∆τ Length (seconds) of each control-step n

βr

foc Household occupancy fraction (decimal %)
Gmax Max possible comfort (utils/s) of household resident during control-step n
h1, h2 Weight factors (utils/[s-(oF)2]) in household’s comfort function
NOC Number (integer) of household occupants

SHOC Sensible heat (Btu/h-occupant) from each occupant
TB Household Resident’s “Bliss” internal air temperature (oF)
µ Household’s marginal utility of money (utils/cent)
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APPENDIX B: INSIDE AIR TEMPERATURE FORECAST

The discretized thermal dynamic system for our household
model, presented in Section VI-C, is a first-order difference
equation system in two state variables: namely, inside air
temperature T ∗

a (n) and inside mass temperature T ∗
m(n), for

each control step n ≥ 0. All forcing terms, including the heat
flow rates Qi(t) and Qs(t) and the outside temperature To(t),
are held constant during each control-step n at their realized
values at the start-time for n.

The ‘Appliance’ component (βa), ‘House’ component (βh),
and ‘Resident’ component (βr) of the base parameter vector β
= (βa, βh, βr) for this household model are listed in Table XII.
Let the first two structure components for β be abbreviated as
βs = (βa, βh).

Consider the household at the start-time ns of any control-
step n ≥ 0. For later purposes, this appendix section uses the
household’s discretized thermal dynamic system to derive the
household’s forecast for inside air temperature T ∗

a (n+1) at the
start-time (n+1)s for the future control-step n+1. This forecast
is expressed as a function of: (i) the HVAC ON/OFF power
control action u∗(n) implemented at time ns; (ii) endogenous
variables determined at time ns; (iii) forcing terms realized at
time ns; (iv) initial state conditions at time ns; and (v) the base
parameter structure component βs. This forecast is as follows:

En[T ∗
a (n+ 1, βs)] =(

1− Kh∆τ

Ca(βh)

[
Ua(βh) +Hm(βh)

])
· T ∗

a (n)

+

(
Kh∆τ ·Hm(βh)

Ca(βh)

)
· T ∗

m(n)

− Kh∆τ · [1− fac]
Ca(βh)

(HVACPow∗(n, βs)− FanPow(βa))u∗(n)

+
Kh∆τ

Ca(βh)
·
(

[1− fs]Q∗
s(n, βh) + [1− fi]Q∗

i (n, βa, βr)
)

+
Kh∆τ

Ca(βh)
· Ua(βh) · T ∗

o (n) (41)

The specific expressions for En[T ∗
a (n + 1), βs] for the cases

when the household’s HVAC is OFF (u∗(n) = 0) or ON
(u∗(n) = 1) are thus given by:

En[T ∗
a (n+ 1, βs,OFF)] =(

1− Kh∆τ

Ca(βh)

[
Ua(βh) +Hm(βh)

])
· T ∗

a (n)

+

(
Kh∆τ ·Hm(βh)

Ca(βh)

)
· T ∗

m(n)

+
Kh∆τ

Ca(βh)
·
(

[1− fs]Q∗
s(n, βh) + [1− fi]Q∗

i (n, βa, βr)
)

+
Kh∆τ

Ca(βh)
· Ua(βh) · T ∗

o (n) ; (42)

En[T ∗
a (n+ 1, βs,ON)]

= En[T ∗
a (n+ 1, βs,OFF)]

− Kh∆τ

Ca(βh)
[1− fac](HVACPow∗(n, βs)− FanPow(βa)) .

(43)

APPENDIX C: EXPLICIT DERIVATIONS FOR THE OPTIMAL
BID CUT-OFF PRICES

The three components of the base parameter vector β =
(βa, βh, βr) for our household model are explained in Section
VIII and Table XII. As in Appendix B, let βs = (βa, βh)
denote the first two structure components of β.

From (38), if the modeled household is in a “may run for
service provision” state Xs

n(β) at the beginning of any control-
step n, the optimal cut-off Π∗(Xs

n(β)) is given by

Π∗(Xs
n(β)) =

[
Ĥ∗(n, β,OFF)− Ĥ∗(n, β,ON)

]
µKhP ∗(n, βs)

≤ 0 (44)

Conversely, if the modeled household is in a “may run for
power usage” state Xu

n(β) at the beginning of any control-
step n, the optimal cut-off Π∗(Xu

n, β) is given by

Π∗(Xu
n(β)) =

[
Ĥ∗(n, β,OFF)− Ĥ∗(n, β,ON)

]
µKhP ∗(n, βs)

> 0 (45)

In either case, using (18),[
Ĥ∗(n, β,OFF)− Ĥ∗(n, β,ON)

]
= h2 ·

[
En[T ∗

a (n+ 1, βs,OFF)]− TB
]2

− h2 ·
[
En[T ∗

a (n+ 1, βs,ON)]− TB
]2

(46)

Substituting (42) and (43) into (46), and simplifying and
rearranging the resulting terms, the right-hand sides in (45)
and (44) can each be expressed as

K11(β) ·K12(n, βs) ·Kh∆τ ·
(

[T ∗
a (n)− TB]

+K21(βh) · [T ∗
m(n)− T ∗

a (n)] ·Kh∆τ

+K22(βh) · [T ∗
o (n)− T ∗

a (n)] ·Kh∆τ

+K3(n, β) ·Kh∆τ

−K12(n, βs) ·K4(βh) · P ∗(n, βs) ·Kh∆τ
)

(47)

where K11(β), K12(n, βs), K21(βh), K22(βh), K3(n, β) and
K4(βh) are as defined in Table XIII.

TABLE XIII
SYMBOLS AND CORRESPONDING EXPRESSIONS

Symbol Expression Units
K11(β) 2·h2·(1−fac)

µ·Ca(βh)
cents

(s-oF-Btu)

K12(n, βs) (HVACPow∗
(n,βs)−FanPow(βa)
P∗(n,βs)

Btu/kWh

K21(βh) Hm(βh)

Ca(βh)
oF/h

K22(βh) Ua(β
h)

Ca(βh)
1/h

K3(n, β)
[1−fs]Q∗

s(n,β
h)+[1−fi]Q∗

i (n,β
a,βr)

Ca(βh)
1/h

K4(βh) (1−fac)

2·Ca(βh)
oF/Btu

Note that expression (47) has a different sign in each of the
two possible states Xs

n(β) and Xu
n(β). This difference in sign

arises from the terms involving differences at time-ns between
inside air temperature T ∗

a (n) and TB, inside mass temperature
T ∗
m(n) and inside air temperature T ∗

a (n), and/or outside air
temperature T ∗

o (n) and inside air temperature T ∗
a (n).
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Finally, the following functional forms appear in the ex-
pressions given in Table XIII: Ca(βh); HVACPow(n, βs);
FanPow(βa); P ∗(n, βs); Hm(βh); Ua(βh); Q∗

s(n, βh); and
Q∗

i (n, βa, βr). The straightforward but lengthy calculations
needed to derive these functional forms as explicit functions
of the indicated components of the base parameter vector β
are provided in Tesfatsion and Battula [25, Sec. 4].

APPENDIX D. HOUSEHOLD TYPE DETAILS

As explained in Section VII-B, our household model is
characterized by a base parameter vector β = (βa, βh, βr). The
component vectors βa, βh and βr characterize the household’s
‘Appliance’, ‘House’, and ‘Resident’ attributes, depicted in
Fig. 2. A complete listing of the base parameters included in
each of these three component vectors is given in Table XII.

This appendix section provides a further breakdown of the
component vectors βa and βh, important for the construction
of Household Types. Specifically, in accordance with Fig. 2,
the ‘Appliance’ component βa is partitioned in Table XIV into
base parameters characterizing the household’s smart HVAC
system and conventional appliances. The ‘House’ component
βh is partitioned in Table XV into base parameters character-
izing the household’s ‘Location’, ‘Size’, ‘Thermal Integrity’,
and ‘Interior-Exterior’.

TABLE XIV
APPLIANCE ATTRIBUTES: PARAMETER VECTOR βa

HVAC Conventional Appliances
AuxHeatCapacity base_power
Cooling_COP current_fraction
cooling_system_type current_pf
CoolSupplyAirTemp fIeu
DCT impedance_fraction
DesignHeatCapacity impedance_pf
DesignHeatSetPoint power_fraction
DIG power_pf
DuctPressureDrop
FanDesignPower
HeatSupplyAirTemp
LatCoolFrac
OSF

TABLE XV
HOUSE ATTRIBUTES: PARAMETER VECTOR βh

Location Size Thermal Integrity Interior-Exterior
CDT h fac ECR
DPS ns fi EFR
HDT x fs EWR
Vnominal y glass_layer glazing_treatment

glass_type hs
I IWR
Rc mf

Rd nd
Rf WET
Rw WWR
WF

A few explanatory remarks regarding the ‘Location’ base
parameters (CDT, DPS, HDT) in Table XV might be helpful.
The GridLAB-D (GLD) default values set in [24] for a
household’s Cooling Design Temperature (CDT) and Heating
Design Temperature (HDT) denote highest and lowest tem-
peratures recorded at a particular geographical location. The
GLD default value set in [24] for a household’s Design Peak
Solar Radiation (DPS) is calculated as incident solar radiation
on a typical clear day assuming equal window areas in each of
eight cardinal directions. Thus, each of these ‘Location’ base
parameters depends on location and is specific to a location.

APPENDIX E. GRIDLAB-D TEST CASE IMPLEMENTATION

Each household populating the 123-bus distribution system
for our test cases is formulated using our household model
and implemented in part by means of a GridLAB-D (GLD)
House Object [28]. Key implementation details are highlighted
below.

HVAC Settings:
The GLD House Object parameter thermostat_control is

set to NONE to enable external control of the house-
hold’s HVAC system. The GLD House Object parameter
cooling_system_type is set to ELECTRIC to model the house-
hold’s HVAC system as an electric system running in cooling
mode. The GLD House Object parameter fan_type is set to
ONE_SPEED to ensure that the household’s ON HVAC sys-
tem includes the operation of a one-speed fan for maintaining
air circulation.

At the start-time ns for each control-step n ≥ 0, the
GLD House Object communicates the current value for
system_mode to the household’s HVAC controller. If n > 0,
this value gives the ON/OFF status of the household’s HVAC
system during the previous control-step n-1. If n = 0, this value
gives the user-set ON/OFF status of the household’s HVAC
system at the simulation start-time t0.

In addition, at the start-time ns for each control-step n ≥ 0,
the GLD house object communicates current values for T ∗

o (n),
Q∗

s(n), Q∗
i (n), RH∗(n), and V∗

actual(n) to the household’s
HVAC controller. See [25] for further discussion of the relative
humidity forcing term RH∗(n) (decimal %) and the simulated-
actual voltage forcing term V∗

actual(n) (volts) that enter into the
determination of HVACPow∗(n) in (31).

Given these operating conditions at the start-time ns for
any control-step n ≥ 0, the household’s HVAC controller
(operating within a Five-Step TES Design) determines a power
control action u∗(n) that leaves or switches the HVAC system
ON (or OFF) during control-step n if u∗(n) = 1 (or u∗(n) =
0). The HVAC controller then resets the GLD House Object
parameter system_mode as follows to ensure the household’s
HVAC system runs during n in accordance with this power
control action: system_mode = COOL (if u∗(n) = 1) or OFF
(if u∗(n) = 0).
Floor and Aspect Ratio Settings:

Settings for the width, length, and story-number base pa-
rameters x, y, and ns appearing in the ‘House Type’ base
parameter component βh in Table XII determine derived
settings for two parameters A and R for the GLD House
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Object, as follows: The house floor area A is set to floor_area
= x · y · ns, and the house aspect rate R is set to aspect_ratio
= y/x.
External Forcing Terms

The data used in our test cases to calculate the discretized
heat flow rate Q∗

s(n) from solar radiation during each control-
step n are as follows: direct normal irradiance; diffuse hori-
zontal irradiance; day of the year; time of the day; latitude;
and longitude. The data used in our test cases to calculate the
discretized outside air temperature T ∗

o (n) during each control-
step n are dry bulb temperature data.

These weather-related data are read from GLD, which in
turn obtains these data from ‘.tmy3’ files available at the
NREL weather data site [30]. All weather-related data at this
NREL site are hourly data. For our test case purposes we
used quadratic interpolation to obtain sub-hourly weather data
values.

GLD uses a Climate Object to pass climate related data to
objects such as the GLD House Object. We used the GLD
Climate Object to pass NREL weather data (in ‘.tmy3’ file
form) to the GLD House Object. The base parameters CDT
and HDT in the ‘House Type’ base parameter component
βh for each household were then assigned values from these
weather data.

In GLD, a house (object) is connected to a distribution
system using a Meter Object. The value set by the user for
the parameter nominal_voltage in a house’s Meter Object
determines the value assigned to the base parameter Vnominal

appearing in the ‘House Type’ base parameter component βh

for this house.
The hourly load profiles used in our test cases to construct

the base power for each household’s conventional (non-price-
responsive) appliances can be accessed at [31]. We “skewed”
these conventional load profiles to ensure their diversity across
different households.15

Modeling of Conventional Loads
We configured the base parameter settings for each Struc-

tural Quality Type of household to ensure that the ratio of
their average HVAC load to their average conventional load
was empirically reasonable for hot summer weather.

For the calibration of these ratios, we assumed that each
household’s Resident Type was identical, with a marginal
utility of money given by µ = 1 utils/cent. We also assumed a
flat-rate retail price equal to 10 cents/kWh. Finally, the location
of each household was assumed to be Des Moines, Iowa, and
Des Moines weather data for 02 July 2003 was used for all
households.

Given these specifications, we adjusted the Structural Qual-
ity Type base parameter settings to achieve the following
ratios. For a household having a Low Structure Quality Type,
the ratio was calibrated to 0.42. For a household having a
Medium Structure Quality Type, the ratio was calibrated to
0.37. For a household having a High Structure Quality Type,
the ratio was calibrated to 0.41.

15Specifically, we randomly assigned an integer value between -1000 and
+1000 to the GLD House Object parameter schedule_skew for each household.
The input ‘.glm’ files giving these assigned integer values are available at our
test case code/data repository site [3].

Additional GLD House Object Details
The parameter fac appearing in the ‘House Type’ base

parameter component βh in Table XII is in fact hard-wired
to 0 in the GLD House Object code. A user interested in
setting a different value for this parameter has to modify the
GLD House Object code. For all of our test cases, we used
the GLD hard-wired setting fac = 0.
GLD Implementation of the Five-Step TES design

The staggered implementation of the five steps constituting
the Five-Step TES Design is illustrated in Fig. 4 for the special
case in which the time-step for each action rate in each step is
commonly set to ∆t. The assumption of a common time-step
∆t = 300s is maintained for all of our test cases. To implement
this common time-step, the GLD time-step is set to ∆t = 300s.

The action for Step j + 1 is triggered by data received
from the previous Step j, for j = 1, . . . 5, where “Step 6”
is identified with Step 1 in the subsequent five-step iteration.
Step 1 repeats at each time t0, t0+∆t, t0+2∆t, . . ., regardless
of incoming data, where t0 is the start-time for the simulation.

At times the GLD House Object sends data to a house-
hold’s HVAC controller more frequently than 1/∆t, where
∆t = 300s is the GLD time-step. We have therefore coded
each household’s HVAC controller so that it triggers a bid-
refreshing action at most once every GLD time-step.

Finally, the time-delay εj between Step j and Step j + 1
is commonly set to 1s for j = 1, 2, 4, 5. The time-delay ε3
between Step 3 and Step 4 is set to 0.

APPENDIX F. TEST CASE SETTINGS FOR MAINTAINED
BASE PARAMETERS AND TREATMENT FACTORS

Tables XVI through XX show the correlated groupings of
base parameter values (e.g., ‘Poor,’ ‘Normal,’ ‘Good’) that we
used as treatment factors for our test cases. Unless otherwise
indicated in Appendix E, all remaining elements of the base
parameter vector β for each of our test case households are
set and maintained at their GLD House Object default values.

TABLE XVI
MAINTAINED BASE PARAMETER SETTINGS FOR HOUSEHOLD

CONVENTIONAL APPLIANCES

Parameter Lights

Clotheswasher

Dryer RangeRefigerator
Freezer

Microwave
current_fraction 0.00 0.00 0.10 0.00

current_pf 0.00 0.97 0.90 0.00
fIeu 0.80 0.80 0.80 0.80

impedance_fraction 1.00 0.00 0.80 1.00
impedance_pf 1.00 0.97 1.00 1.00
power_fraction 0.00 1.00 0.10 0.00

power_pf 0.00 0.97 0.90 0.00

TABLE XVII
BASE PARAMETER TREATMENTS FOR HVAC

Parameter Poor Normal Good
Cooling_COP 3.5 3.9 4.1

OSF 0.0 0.1 0.2



21

TABLE XVIII
BASE PARAMETER TREATMENTS FOR HOUSE SIZE

Parameter Small Normal Large
ns 1 1 2
x 24 30 28
y 36 45 42

TABLE XIX
BASE PARAMETER TREATMENTS FOR HOUSE THERMAL INTEGRITY

Parameter Poor Normal Good

glass_layer TWO TWO THREE
glass_type GLASS GLASS LOW_E_GLASS

I 1.5 1.0 0.5
Rc 19 30 48
Rd 3 3 11
Rf 4 19 30
Rw 11 11 22
WF ALUMINUM THERMAL_BREAK INSULATED

TABLE XX
BASE PARAMETER TREATMENTS FOR HOUSE INTERIOR-EXTERIOR

Parameter Poor Normal Good
glazing_treatment REFL REFL HIGH_S

mf 4.5 4 3.5
nd 1 2 4

WET 1.0 0.6 0.6


