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ABSTRACT

Open Source Intelligence (OSINT) has been widely acknowledged as a critical source of

valuable and cost efficient intelligence that is derived from publicly available sources. With the

rise of prominent social media platforms such as Facebook and Twitter that record and expose

a multitude of different datasets, investigators are beginning to look at what social media has

to offer the Intelligence Community (IC). Some major obstacles that OSINT analysts often face

are privacy and platform restrictions that serve both to protect the privacy of individuals and

to protect the economic livelihood of the social media platform. In this work we review existing

social networking research to examine how it can be applied to OSINT. As our contribution,

we propose a greedy search algorithm for enabling efficient discovery of private friends on social

networking sites and evaluate its performance on multiple randomly generated graphs as well

as a real-world social network collected by other researchers. In its breadth, this work aims to

provide the reader with a broader understanding of OSINT and key concepts in social network

analysis.
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CHAPTER 1. BACKGROUND

1.1 Open Source Intelligence

Open Source Intelligence (OSINT or OSCINT) is defined as intelligence “produced from

publicly available information that is collected, exploited, and disseminated in a timely manner

to an appropriate audience for the purpose of addressing a specific intelligence requirement”

[36]. The roots of OSINT date back to the Foreign Broadcast Information Service (FBIS)

created in 1941, and the field has only been growing since its official establishment by the Di-

rector of Central Intelligence Directive in 1994 [26]. Notably, OSINT includes “grey literature”

that are unclassified materials that have a limited public distribution. Grey literature includes

technical and economical reports, official and unofficial government documents, newsletters,

subscription-based journals, and electronic documents that cross-cut political, socio-economic,

military, and civilian boundaries.

Table 1.1 Advantages and Disadvantages of OSINT

Advantages Disadvantages

Easy to share (source is unclassified) Not a full-coverage solution

Does not compromise sensitive sources Desired information may not be public

Passive activity (low risk) OSINT often needs to be verified

Broad coverage Large amount of noise

Table 1.1 shows a few key advantages and disadvantages of OSINT. One primary advantage

of OSINT is that intelligence gathering is a passive activity that does not require interaction

with a target. The result is that OSINT efforts pose very little risk of alerting an adversary

to the presence and motives of the investigator. Another advantage is that public information

is easier to share between agencies than classified information and can be pointed to as an

alternative source of intelligence that does not compromise a sensitive source that may reveal
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a technological or strategic advantage. For many of these reasons and more, in his book, No

More Secrets: Open Source Information and the Reshaping of U.S. Intelligence, Hamilton Bean

has dubbed Open Source Intelligence the “Source of First Resort” because OSINT is rapidly

becoming a primary resource utilized by the Intelligence Community (IC) [10].

An important point to remember is that OSINT is not a full-coverage solution. OSINT

should be regarded simply as another tool in the intelligence analyst’s toolkit. The NATO

OSINT Reader outlines the point by making the following metaphor:

Open source intelligence provides the outer pieces of the jigsaw puzzle, without

which one can neither begin nor complete the puzzle. But they are not sufficient

of themselves. The precious inner pieces of the puzzle, often the most difficult and

most expensive to obtain come from the traditional intelligence disciplines. Open

source intelligence is the critical foundation for the all-source intelligence product,

but it cannot ever replace the totality of the all-source effort [26].

Finally, perhaps the largest criticism of OSINT is that the information available to the

public domain tends to contain a very large amount of noise. A major concern in the Intel-

ligence Community is the increasing amount of difficulty and time required to filter the noise

and discover the valuable nuggets of intelligence from the continually growing pool of public

information. The amount of information being generated each day is growing at such a fast

rate that the NSA has asked congress for funding to build new power plants to power data

centers capable of processing the massive amounts of information on the Internet [32]. As

pointed out by Eric Schmidt, Google’s former CEO, the amount of space it would require to

store all of recorded human communications prior to 2003 would be about 5 billion gigabytes,

but today that much information is generated every two days, which includes user generated

content such as pictures, tweets, instant messages, etc. [37]. In its proposal to congress, the

NSA had to invent new units of measurement just to describe the sheer amount of information

they anticipate seeing by 2014 [32].
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1.2 Online Social Networks

The everyday use of online social networks (OSN) such as Facebook, LinkedIn, and Twitter

have seen a steady rise in adoption by since 2005 [19]. Online social networks mirror a subset

of our everyday social interactions and contain information that crosses geographic borders.

Figure 1.1 shows the most popular social networking sites for each country. Examining the

social graph of multiple social networks can help to reveal our everyday habits and current

social contacts.

Figure 1.1 World Map of Social Networks

As consumers of social media, we are starting to see an emergence of specialized social net-

working sites such as Twitter and LinkedIn that provide sets of data that are both overlapping

and disjoint from datasets of more general purpose social networking sites such as Facebook .

While Facebook and Twitter tend to have casual social interactions, LinkedIn has specialized

in professional networking. A survey by the PEW Internet and American Life project, a non-

profit think-tank dedicated to uncovering trends in American life, found that more than 50%

of online social network users have two or more online profiles [19]. The study revealed that
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of those users approximately 80% had profiles on different social networking accounts. The

primary uses for the multiple social network accounts was to allow the user to interact with

friends on a different social network site or to separate personal and professional contacts.

1.2.1 Case Studies

A 2010 case study by the U.S. Department of Homeland Security [28] found that Jihad and

Mujahideen terrorist groups increasingly use Facebook as a medium to disseminate propaganda

and to a lesser extent tactical information such as AK-47 maintenance, IED recipes, and remote

reconnaissance targeting. It was found that this information was being spread in a variety of

languages including Arabic, English, and Indonesian. Extremist groups primarily use Facebook

as a means of furthering ideological messages and providing a gateway to other extremist

content outside of the Facebook platform. The case study reveals the intentions of the terrorist

Facebook accounts after exploring links to outside radical forums. The forums give instructions

to would be recruiters to use anonymizing services such as Tor to mask true identities and to use

artifice by not revealing sympathy for terrorist groups such as al-Qaeda when interacting with

other Facebook users. The case study theorizes that the increased amount of propaganda that

appears unmoderated in Arabic is likely due to the lack of resources dedicated to overseeing the

language when compared to more popular languages such as English and Spanish. According to

the study, while full-fledged terrorist plots may not be revealed on Facebook itself, information

leading to and concerning the plot may be partially revealed by close examination of Facebook

activity. At the very least sentiment can be detected and measured by Facebook accounts that

respond to publicly posted propaganda messages.

In another case study by Northeastern University and the Massachusetts Executive Office

of Public Safety and Security [41], law enforcement crime units used online social media such

as Facebook, Twitter, and Myspace to track gang related activity. The study revealed that

one in three youth gang members would promote their gang on a social medium. The law

enforcement agencies surveyed in the study report that they have found online social media

services useful for tracking gang related activity and for engaging in public outreach programs

for reducing gang related violence. Aside from multiplayer games, social media surveillance



5

of social networking sites, video sharing sites, photo sharing sites, as well as blogging and

microbogging sites have been incorporated into most law enforcement agencies at least at some

level.

1.2.2 Obstacles and Limitations

Online social networks have a lot of information to offer OSINT such as social contacts,

activities, and personal details of an individual of interest, but contrary to what many might

believe, not all information on the web is easily accessible. Investigators are met with several

obstacles including privacy and platform restrictions as well as data availability and longevity.

1.2.2.1 Privacy Restrictions

With growing privacy concerns, many social networking platforms have continued to add

privacy control mechanisms to restrict access to private information. As of May 2010, Facebook

offered an excess of 170 privacy settings and maintained a privacy policy longer than the U.S.

Constitution [27]. Despite growing privacy concerns and public calls for increased legislation

to enforce the protection of individual privacy, one of the most successful methods of collecting

information from users is simply asking for it. A common approach by third party application

developers is to create applications that ask the user for unneeded permissions in the hope of

gaining additional information. It was found that approximately 50% of adults and more than

75% of teens thought it would be difficult or impossible to find out who they were based on the

information available in the restricted profile [19], which may indicate a false sense of privacy

when dealing with online social networks. On the other hand, a more recent survey conducted

in early 2012, shows that profile pruning and unfriending contacts in the interest of privacy is

on the rise [22].

1.2.2.2 Platform Restrictions

Information flowing into online social networks is collected on a massive scale, but is tightly

controlled by the social media platform regarding how it flows out. Social networking platforms

generally control information flowing out based on social relationships, user-based privacy set-
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tings, as well as rate limiting, activity monitoring, and IP address based restrictions. While

many access control mechanisms are often put in place to protect the privacy of the user, other

mechanisms are often added or intentionally handicapped to protect the economic livelihood

of the service platform.

1.2.2.3 Data Availability

As discussed earlier, OSINT by definition has no ability to discover information that does

not exist in the public domain. In the worst case scenario, the desired information may have

never been gathered by platform, such as when a user chooses not to provide information on a

social networking profile. If the desired information was never recorded and is not in the public

domain, OSINT has no hope of discovering the desired information. In a more typical case,

the target information exists, but privacy and platform restrictions introduce a fog that masks

large portions of the desired information. As a result, investigators are forced to attempt to

extract the desired information from the digital footprint found outside of the fog that is left

behind by user activities.

1.2.2.4 Data Longevity

The social graph is far from static, relationship dynamics change frequently and profiles

are updated constantly. Facebook claims that of its 800 million users, over half its users log in

at least once a day [34]. Previous studies of the Facebook social graph have limited collection

periods to a maximum of one to two weeks (depending on the type of data) [42] [12] to limit

the corruption of data due to changes in the social graph during collection time. Monitoring

the changes of social content is also an important source of information for understanding the

dynamics of the social graph. We can think of each data access as a snapshot in time that is

capturing the state of the social graph at collection time.

1.2.3 Legal Issues

While many social networking platforms such as Facebook disallow the use of screen scrapers

and other data mining tools through their terms of service agreements, the legal enforceability
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of these terms remains unclear. U.S. courts have recognized that in some cases automated web

spiders and screen scrapers may be held liable for digital trespassing. Perhaps the best known

case is eBay vs. Bidder’s Edge that resulted in an injunction against Bidders Edge to stop

data mining activities of the eBay platform [16]. Similar court battles have been fought by

American Airlines and Southwest Airlines against the online site FareChase, which allows users

to compare ticket fare rates after data mining multiple airline websites [5] [39].

A wide range of deep web indexing tools such as Spokeo [4], Pipl [3], Maltego [33], and the

Facebook Visualizer [2] continue to exist and data mining cases continue to be fought on a per

case basis leaving the matter far from resolved.

Various legal mechanisms such as subpoenas or the U.S. Patriot Act [30] exist so that

law enforcement officials can directly access information when needed, but it is important to

note that this tactic would not constitute OSINT intelligence gathering because subpoenaed

information is outside the realm of public information.

Executive Order 12333, the legal guidance for intelligence oversight, paragraph 2.3 section

A, notes that agencies are allowed to collect, retain, and report on information that is publicly

available [1]. The order is a bit dated and is subject to interpretation, but some interpreta-

tions consider information acquired from authenticated services to be outside the realm of the

public. For example, information gathered from the Facebook platform is considered public

information, unless it is necessary to log into the Facebook service to obtain the same informa-

tion. This restriction may be enforced in the United States but is most likely not enforced by

adversaries and is of course subject to change in the future. For the purposes of this work we

will not consider this restriction.

1.2.4 Ethical Issues

Crawling social networks for personal information is an ethically sensitive area. To justify

our work we cite other works that have conducted live crawling experiments [12] [11] [42] [24]

[23] and works that have examined ethically sensitive online experiments [20] [21] with human

subjects. Furthermore, in our own crawling experiments we have limited crawls to specific

social networking accounts that make up a sample toy network that was created for testing this
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work in order to prevent our crawler from incurring a major resource overhead to the social

networking platform.

In other cases when it was necessary to test our methods on a larger dataset we used

randomly generated graphs of relationships between randomly generated personas that do not

represent actual identities. We also leveraged anonymized social network datasets that have

been made available by other researchers.

In situations when we were unsure of the best ethical action to take, we consulted our

University’s Institution Review Board (IRB) for guidance. With respect to the data mining

functionality of our test framework and the utilities described in the appendix, we would like

to stress that our framework does not do any sort of “hacking,” it simply deduces information

from already public information in an automated fashion.
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CHAPTER 2. OBJECTIVE

2.1 Motivation

In the FBI Request For Information made in early 2012, one of the desired capabilities

of OSINT was to interface with social media to create “pattern-of-life matrices” [29]. The

behavioral analysis of online users would then be used support law enforcement planning and

operations, likely including gathering information for a search warrant or otherwise collecting

actionable intelligence such as a target’s daily routines and contacts.

A common approach to determining behavioral patterns of an individual is to look at the

individual’s daily contacts, which are likely to be mirrored at least partially in online social

networks. However, with the recent increased utilization of privacy mechanisms on social media

platforms, it becomes more likely that the target’s contact information is obscured from the

public domain through privacy restrictions put in place by the user. In a random sampling study

of Facebook it was found that about one in four accounts have privacy settings enabled [12].

Many social networks, such as Facebook, represent relationship information as an undirected

edge between two nodes in a graph. We can discover a target’s set of private friends by looking

for accounts that list the target as a friend, meaning we only need to discover one of the two

accounts in the friendship relationship to determine the connection exists (assuming that one

account is public).

Searching a social graph for friend nodes has a cost associated in terms of the number of

Application Program Interface (API) calls to the social media platform. Making an excessive

number of API calls in a short amount of time will exceed rate-limiting thresholds, which denies

further interaction. Making matters worse, social media platforms often attempt to prevent

this type of activity through IP address and account banning, so it is important to use API
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calls efficiently.

To overcome these problems, we propose a greedy search algorithm to minimize the number

of API calls needed to return the maximum number of friends for a given private profile. We

evaluate the performance of our algorithm by comparing the percentage of friends discovered

after each newly discovered friend and the ratio of the number of API calls made to the number

of total nodes in the graph.

We compare our algorithm to the optimal case as well as Breadth-First Search (BFS) and

Depth-First Search (DFS) on sets of randomly generated graphs and sets of real-world social

networks. We then randomly privatize nodes in the graph to replicate the privacy situation

found in online social networks and compare the performance of our algorithm to BFS and

DFS.

In short the following goals are set for this thesis:

• Propose and implement an algorithm for efficient discovery of private friends

• Evaluate the performance of the proposed searching algorithm against the optimal case

and existing crawling methods BFS and DFS

The breadth of our work has lead us to investigate several issues specific to social networking

analysis and OSINT. During our investigations we created a framework to efficiently manage

multiple social networks and interact with online social media. We believe that the lessons we

have learned from this activity may be useful to others looking to do future work in this area

so we have included several sections in the appendix of this work dealing with cross-correlation

of online social networking accounts, context preserving graph databases, and data collection

in online social networks.

In short, the breadth of our work aims to:

• Develop a set of utilities for collecting data from online social media for operations that

are not supported by an official API but are required for OSINT gathering

• Develop a framework for storing multiple social graphs while preserving the context of

the network from which the graph was collected
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• Implement a system to create cross-correlation identity mappings between a set of social

graphs

The means to achieve the the breadth and depth of our goals listed in this section are

described in the following chapters, as outlined in the Thesis Overview section.

2.2 Thesis Overview

The remainder of this thesis is structured as follows. Chapter 3 discusses related work in

social network analysis leveraged by our work. Chapter 4 presents our proposed algorithm and

defines and evaluates its performance. Chapter 5 discusses the results of our algorithm on a

single network created from a random graph model and on a real world social network. Chapter

7 concludes this thesis and provides possible directions for future work.
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CHAPTER 3. RELATED WORK

In this chapter we review related work that is needed to understand the work presented in

the rest of this thesis. First we discuss how researchers access the underlying social graphs of

online social networking sites and then we discuss some common metrics used to describe the

properties of social graphs. We then review three random graph models that are commonly

referenced when dealing with social graphs.

3.1 Accessing Social Networks

When accessing social networks researchers are at a disadvantage because only small por-

tions of the social graph are visible at one time. The rest of the graph is shrouded in a fog that

masks network nodes until crawling algorithms discover them. Platform restrictions add a new

set of challenges to accessing a social graph. In the case of Facebook, extended exploration of

friend-of-friend relationships is removed from the platform API, so for this work we created a

headless browser to simulate the actions normally taken by a user. We have placed a sequence

diagram of this function in the appendix for the reference of the reader. The next sections

discuss random sampling and properties of well-known search algorithms Breadth-First Search

(BFS) and Depth-First Search (DFS).

3.1.1 Breadth-First Search

A Breadth-First Search visits all successors of a visited node before visiting any successor

of a child node. This functionality is implemented as a queue (first-in first-out) where newly

discovered nodes are placed at the end of the queue and search order is determined by removing

the first item from the queue. A BFS is guaranteed to return an optimal (shortest) path if

a path exists to a given target node from the starting node. According to Gjoka [18], a BFS
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is biased towards nodes with higher degrees because higher degree nodes have more incoming

links than lower degree nodes when considering an undirected graph.

3.1.2 Depth-First Search

A Depth-First Search is similar to a Breadth-First Search except it uses a stack (first-in

last-out) in place of a queue. DFS is less commonly used to crawl online social media because

it tends to crawl in and out of social clusters (by following a friend of a friend of a friend and

so on) whereas a BFS will explore all friends of a given node systematically before moving on

to another node’s friends. Neither BFS or DFS make use of any prior knowledge about the

structure of the graph, leaving plenty of room for optimizations to improve on search times and

the amount of resources consumed by the crawler to find the target.

3.1.3 Random Sampling

Another graph exploration approach is to randomly sample nodes in the social graph by

guessing the identifier of the node. In most online social networks there is no way to knowingly

generate valid account identifiers without some form of rejection sampling. Before Facebook

expanded the identifier key space to 64 bits from 32 bits a birthday attack was feasible by

rejection sampling guesses of random integers between 1 and 232. After a random integer is

generated, it is used to attempt to access the corresponding account. If the account does

not exist the sample is discarded. In 2010, given an identifier range of 232 and the number

of subscribed users at approximately 229, a birthday attack succeeds every 1 in 8 attempts

(2
29

232
= 1

8) [12]. Unfortunately for researchers, this technique is unfeasible on Facebook for the

new 64-bit identifier key range because the number of Facebook accounts is still not dense

enough at this time. We can make the attack feasible again by exploiting some additional

known facts about Facebook identifiers. Knowing previous identifier ranges and that identifiers

are permanently tied to an account allows us to restrict the random generator in a manner that

increases the odds of guessing a valid account identifier but still maintains a uniform sampling

[18].
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3.2 Properties of Social Networks

There are many metrics used to described graph structures, but when dealing with social

networks researchers tend to describe social graphs in terms of size, average shortest path,

clustering, and degree distributions. This section briefly reviews each metric in order to build

a foundation for the rest of this work.

3.2.1 Size

The number of nodes in a graph usually defines the size of a social network. Consequently,

size is an exemplary metric for expressing the scope of information contained in a graph. At

the time of this writing, Facebook hosts over 800 million active social network profiles [34].

Managing large social graph relationships resource intensive. A 2010 estimate of the overhead

required to crawl the Facebook social graph was roughly 44 Terabytes of data [12]. Another

useful metric is the number of edges in the graph. With the set of edges E and the set of

vertices V we can calculate graph density (a measure that represents how close a graph is to

containing the maximum number of edges) for an undirected graph as:

density =
2|E|

|V |(|V | − 1)

3.2.2 Degree Distribution

Aside from knowing the number of nodes in a network, we often want to describe the

distribution of friends (node degrees) among all nodes in the network. A degree is defined

as the number of adjacent neighbors connected to a given node. Many social networks have

a degree distribution that asymptotically follows a power-law distribution as in the following

relation (where k is the degree and λ is a variable parameter usually 2 < λ < 3) [13]:

P (k) ∼ k−λ

Graphs with degree distributions that follow a power-law are called scale-free networks and

are commonly explained using a preferential attachment model. In a preferential attachment
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model the rich (nodes with high degrees) get richer (gain additional degrees faster) than the

poor (lesser degree) nodes. This property leaves a signature linear plot on a log-log scale as

shown in Figure 3.1.

Figure 3.1 Power-Law Distribution

3.2.3 Average Shortest Path

The average shortest path is the average of the minimum length path (also know as a

geodesic) required to connect a given pair of nodes for each node pair in the graph. When N is

the number of nodes in the graph and d(vs, vt) is defined as the shortest distance from vertices

vs to vt (distance is 0 if vs = vt or if a path does not exists between vs and vt) the average

shortest path is defined as:

L = average shortest path length =
1

N(N − 1)

∑
∀vs,vt∈V

d(vs, vt)

In social networks, a small-world graph is a graph that has an average shortest path length

that scales proportionally with the logarithm of the number of nodes in the graph [40].

L ∝ logN

This small-world phenomenon is well observed in social networks and is sometimes referred

to by the six degrees of separation concept that is associated with the work done in the Stanley
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Milgram small-world experiment [38]. A trivia game called the six degrees of Kevin Bacon [7] is

based on linking the actor Kevin Bacon to another actor through no more than six connections

where each connection is a movie where two actors appeared together.

3.2.4 Clustering

Social networks tend to form definitive clusters of nodes that are made up of tight knit

groups of highly connected nodes [40]. Following the work of Duncan Watts and Steven Stro-

gatz, define an undirected graph G = (V,E) to be a graph of the set of vertices V and the set

of edges E. Supposing that a vertex i has ki neighbors, it follows that a node can have at most

k(k−1)
2 edges. The local clustering coefficient Ci for a vertex i is defined as the fraction of edges

that actually exist out of the set of possible edges a vertex can have. The average clustering

coefficient for the entire graph is defined as:

C =
1

N

N∑
i=1

Ci

In the context of friendship networks, the clustering coefficient Ci reflects the measure of

neighbors connected to vertex i where 1 is a connection to all neighbors in the neighborhood

and 0 is a connection to none of the neighbors.

3.3 Random Graph Models

Due to the increased computing power and storage capabilities of modern computers it

is now possible to create large data sets for modeling real networks. In this work we use

randomly generated graph models to produce test data with varying properties that represent

characteristics of online social networks. One pitfall of using randomly generated graphs is

that current graph models only partially represent observed graph characteristics and fail to

accurately portray social graph structures. In the following sections we will review three of the

most common random graph models examined by social network analysis research.
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3.3.1 Erdős-Rényi Model

The Erdős-Rényi model, first proposed in previous works [15] [14], is defined as the graph

G(n, p), where n is the number of nodes and p is the probability that an edge exists between

each possible pair of vertices (independent from every other edge). The model is expected to

produced
(
n
2

)
p edges. For each vertex in the graph there exists an edge with probability p

between the remaining n − 1 other vertices creating the binomial degree distribution for the

probability that a vertex has a degree k:

pk =

(
n− 1

k

)
pk(1− p)n−1−k

While easy to generate, the Erdős-Rényi model does not produce the strong clustering re-

lationships between groups of nodes that is commonly found in online social networks, and the

model’s binomial degree distribution is unlike most real-world networks. In social network anal-

ysis, many researchers tend to use models such as the Watts-Strogatz model or Barabási-Albert

model discussed in the next sections, which better represent the characteristics commonly ob-

served in social networks.

3.3.2 Watts-Strogatz Model

The Watts-Strogatz model was created to produce graphs with strong clustering coefficients

and average shortest path lengths similar to what is found in social networks. The Watts-

Strogatz model is defined a graph G(n, k, p), where n nodes are arranged in a lattice ring with

k
2 neighbors connected on each side. The parameter p is a probability used to randomly rewire

the end of each edge (where the start of the edge is the node i and the end is some other node)

for each node in the graph. A sample graph at each stage of this process is shown in Figure 3.2.

Note that the graph in the left side of Figure 3.2 is before the rewiring step but is equivalent

to the resulting graph of parameters G(6, 4, 0).

The Watts-Strogatz model is expected to create a mean degree k for each node and nk
2

edges between the total set of n nodes in the graph. As probability p is varied from p = 0

to p = 1 the graph approaches an Erdős-Rényi random graph. From the Collective dynamics
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Figure 3.2 Watts-Strogatz Random Graph Model

of ‘small-world’ networks paper [40] that first proposed the model, we find that the average

path length scales linearly from n
2k when p = 0 to ln(n)

ln(k) when p = 1. Furthermore, it was

found that the average clustering coefficient is: C = 3
4 when p = 0, C = k

n when p = 1 and

C(p) ∼ C(0)(1 − p)3 for values of p 0 < p < 1. Finally, degree distribution is found to be a

sharply peaked curve centered on k when p = 0 and a Poisson distribution function when p = 1

[9]. It should be noted that the Watts-Strogatz model does not produce the desired power-law

distribution described earlier, which brings us to look at our final model, the Barabási-Albert

model, described in the next section.

3.3.3 Barabási-Albert Model

The Barabási-Albert model was designed to generate random scale-free (power-law dis-

tributed) networks. The variation of the model that we consider in this work is defined as a

graph G(n,m0,m) where:

• n is the number of desired nodes

• m0 is a set of initial nodes

• m is the number of new edges to consider for each additional node added to the graph
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At run time, the algorithm repeatedly adds a new node and connects the new nodes to m

existing nodes with a probability proportional to the number of edges each existing node has

until the graph contains n nodes. As a result, the existing nodes get preferential treatment

over nodes added later in the process creating a rich get richer effect. The result of a run with

G(n = 50,m0 = 1,m = 1) (shown in Figure 3.3) illustrates how early nodes tend to become

hubs of activity for neighboring nodes.

According to the model’s authors, the degree distribution is a power-law distribution of

the form P (k) ∼ k−3 [8] and the average path length is L ∼ ln(N)
ln(ln(N)) [6]. An analytical

prediction for the coefficient properties of the model has yet to be determined, but empirical

results indicate that the clustering coefficient is stronger than a Erdős-Rényi random graph but

decays with the increase of n, making the clustering distinct from small-world networks [6].

Figure 3.3 Barabási-Albert Random Graph Model

3.4 Summary

In this chapter we discussed existing graph exploration techniques and key concepts in social

network analysis. We examined BFS, DFS, and random sampling and laid the foundation to

provide a search optimization to take advantage of known graph properties such as size, degree

distribution, average shortest path, and clustering to reduce search overhead. We discussed
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three random graph models, Erdős-Rényi, Watts-Strogatz, and the Barabási-Albert model for

to generate known graph properties.
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CHAPTER 4. ALGORITHM

4.1 Goals

Investigators commonly need to verify and expand on the known associates of a target

for vetting a security clearance, verifying an alibi, or general target profiling. Online social

networks provide a cost effective means to gather contacts of an individual, but with a target’s

privacy protections enabled many valuable contacts may be obscured from an investigator.

By examining the digital footprints of activity left behind online it is still possible to deduce

obscured friend information by interrogating a target’s neighbors and checking for friendship

connections to the target declared by the neighbor.

Basic search strategies such as BFS and DFS ignore graph topologies that can be exploited

to reduce the amount of nodes required to unmask the majority of a target’s friends. We

define an evaluation metric of one Application Program Interface (API) call to be the cost of

expanding a single node. Traditionally, an API call is the cost of interacting with an online

social network to query information for a given node in the social graph. In many online social

networking platforms requests can be batched together to count as a single interaction with the

service, but because of the fog that the surrounds the graph at runtime many nodes will not be

discovered in time to batch requests efficiently. Investigators are prevented from trying to brute

force guess the friends of a target through rate limiting, access request quotas, and the sheer

size of the social graph. Thus, the goal of this algorithm seeks to use the least number of API

calls necessary to gather the largest return of private friends belonging to a target. Therefore

improving search return efficiency while maintaining accuracy.
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4.2 Model Assumptions

We assume that online social networks such as Facebook have properties similar to the

Watts-Strogatz small-world random graph model. Previous works [40] [12] have show that

the average shortest path length and clustering coefficients of real-world social graphs can

be reasonably well modeled by the Watts-Strogatz small-world graph. It is known that the

Watts-Strogatz model does not reproduce the power-law degree distributions found in most

observations [13] of social networks, but at the time of this writing we could not find a random

graph model that could accurately represent the set of all properties observed in real world so-

cial networks. Our algorithm leverages mutual friend relationships and group clique formation

that we find present in online social networks such as Facebook [18], which of the models we

evaluated, the Watts-Strogatz model demonstrated best. To evaluate our algorithm’s perfor-

mance we run it on datasets generated using the Watts-Strogatz random graph model.

4.3 Intuitions

Consider this scenario. Bob, a high school student, has ten friends at school but won’t tell

us who his friends are. Even though Bob won’t say who his friends are, we can still find the

same information by walking around the school and asking students if they are friends of Bob.

Assuming every student at the school either tells the truth or refuses to answer the question,

we can exploit known social structures of the school to create an efficient search strategy to

reveal all of Bob’s friends.

Social graphs tend form large numbers of triadic closures of mutual friends [31], which

means that if we ask Bob’s best friend Jim (or any of Bob’s friends for that matter) who their

friends are, we are likely to find a set of friends that are mutually shared between both Bob

and Jim. Likewise, it is more likely that a friend of Bob’s friend Jim is also a friend of Bob,

as opposed to another randomly selected individual. We can exploit the mutual friendship

property of social graphs by asking newly discovered friends who their friends are and checking

to see if Bob and the newly discovered friend share mutual friends that we don’t already know

about. We use the number of times an individual has been observed as a friend of a friend of
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the target as a metric to describe the priority in which we should interrogate friends of friends.

Social graphs also have strong clustering properties [40], so let’s now consider that the school

is made up of various clusters of students (e.g. the math team, the chess club, the football

team, the band, etc.) and that we know Bob is the quarterback of the football team. It makes

sense that we would start by asking members of the football team if they are friends of Bob

because the members of the football team are more likely to be friends with Bob. The members

of the football team are more likely to be friends with Bob because of the tight clustering of

mutual friends between the football team clique. For the members of the math team, which

share most of their mutual friend connections with other members of math team, a member is

less likely than a member of the football team to make connections to members in the football

team cluster. That’s not to say that Bob and Mike (a member of the math team) can’t be

friends, it just that Bob is more likely to have more friends on the football team than the math

team.

Let’s pretend that we don’t know that Bob is the on the football team. It makes less sense

to interrogate the entire math team to see if they are friends with Bob than if we just randomly

picked students from the school to ask if they are friends of Bob because the chance that a

random student belongs to the same clique as Bob (which has members highly connected to

Bob) is better than the chance that one individual in the math team is a friend of Bob. When

we don’t know what cluster Bob belongs to, it’s better to cast out a wide net and interrogate

individuals from each cluster (the math team, the football team, the chess club, the band, etc.)

until we know what cluster Bob belongs to than just systematically asking everyone on the

school’s roster if they are friends of Bob or by systematically exploring each clique until we find

Bob’s clique.

To explain it another way, imagine that we have the graph of nodes A, B, C, and D as

seen in Figure 4.1. In a Breadth-First Search node A is expanded and discovers nodes B, C,

and D and then node B is expanded to discover node C (for the second time). If we know

an average number of friends that each node has we can calculate the number of new nodes

we expect to discover for each node as the average node degree minus the number of times

we have discovered the node. We subtract the number of times we have seen a node because
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each observation is made from a node that would be returned in the overall set of expanded

nodes. In order to maximize the number of new nodes discovered with each node expansion

we should choose to expand nodes that we have seen the fewest times first. In the context of

mutual clusters of friends this has an effect crawling away from clusters towards other clusters.

Reversing the priority biases the crawl order towards staying within a cluster until the entire

cluster has been explored. In our proposed algorithm we use this as a secondary heuristic to

maximize search potential when searching for the target.

Figure 4.1 Example Graph

In other words, our algorithm does the following:

(a) Searches friends of friends for mutual friends of target

(b) Maximizes search potential to discover target

4.4 Algorithm

Given the information available to the algorithm at runtime, the algorithm behaves in one

of two modes: hunter or seeker. In hunter mode, the algorithm has expanded a friend of the

target and searches the friend’s friends discovered for mutual friends of the target (giving the

most discovered nodes of a known target friend search priority). In seeker mode, the algorithm

has no friends of friends left to explore and attempts to maximize its potential of finding a

new friend of the target by prioritizing the exploration of nodes expected to reveal the highest

number of new nodes.
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The private friend discovery algorithm shown in Listing 4.1 uses a priority queue with the

properties listed below to manage the order of node exploration.

• Items in the queue are sorted by their priority rankings

• Priority ranking is determined by two scores (a primary score and a secondary score)

• A primary score for an item increases each time the item is added to the queue by a value

defined on each add

• A secondary score for an item increases by one each time the item is added to the queue

• A higher primary score always takes precedence over a secondary score

• A lower secondary score is used to break ties between the primary scores

• A tie between secondary scores is broken by order of arrival in the queue

Listing 4.1 Private Friend Discovery Algorithm

f r i e n d s = map( o r i g i n , t a r g e t ){

i f ( o r i g i n == ta rg e t )

return e r r o r // o r i g i n i s t a r g e t and t a r g e t i s p r i v a t e

pq . enqueue ( o r i g i n , PRIORITY 0)

neighborhood = {}

searched = {}

while ( pq . s i z e > 0){

node = pq . dequeue ( )

i f ( searched . conta in s ( node ) ){

continue // s k i p node

} else {

ne ighbors = node . expand ( )

i f ( ne ighbors . conta in s ( t a r g e t ) ){

neighborhood . add ( node )

pq . enqueue ( neighbors , PRIORITY 1)

} else {

pq . enqueue ( neighbors , PRIORITY 0)

}
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searched . add ( node )

}

}

return neighborhood

}
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CHAPTER 5. RESULTS

5.1 Test Framework

To test our algorithm’s performance we generate Watts-Strogatz random graphs using the

advanced graph model generator plugins available for the Gephi graph visualization utility

(http://www.gephi.org). We then import the models into our database framework for storing

multiple social graphs (described further in the appendix). Our test platform simulates the role

of an online social network by restricting the set of node neighbors visible for a given node based

on a single privacy restriction that can be enabled or disabled for each node in the database.

At run time we import a new random graph, enable privacy for the target node, and run a

test harness that chooses two random start locations (one in the set of the target’s friends,

and one outside the set of the target’s friends) and records the results of a BFS, DFS, and our

algorithm for both types of starting locations. The test harness is run over twenty or more

iterations where each iteration records a pair of data points for each new friend discovered.

The pair of data points corresponds to the ratio of the number of API calls used to the total

number of nodes in the graph and the ratio of the number of friends discovered to the actual

number of friends connected to the target node. After each iteration, the start location privacy

setting is disabled to prevent metric bias in the algorithm. The results are then serialized to a

file and exported to Matlab to be analyzed as histograms and scatter plots.

5.2 Expectations

Ideally, in the optimal case, a perfect algorithm would discover every private friend using

the absolute minimum required API calls in the process. If we say that the target has k friends,

then we find that for each node in the friends list we must make one API call to confirm the
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friend is indeed a friend. We must then add to k the minimum number of nodes required to

reach each friend from a given start point to cover the optimal case. The minimum number

of nodes is defined as the minimum spanning tree that includes the start node and each of

the required friend nodes. The rest of the nodes may optionally be included in the minimum

spanning tree if they are required to complete a path between two nodes in the tree. This

problem is classified as the node-weighted Steiner tree problem [17] and is computationally

expensive to compute. For simplicity purposes we will assume the optimal case is defined by

an algorithm that is either extremely lucky or has access to an all knowing oracle that reveals

the friend list to the search agent. Upon learning the friends list, the search agent simply needs

to confirm each friend at a rate of one friend per API call. On a scatter plot like Figure 5.1

the optimal case would be a nearly vertical sloped line with the x coordinate starting at 1/|n|

API calls and moving to |k|/|n| API calls and the y coordinate starting at 1/|k| friends ending

at |k|/|k| = 1 friends.

Our expectation of our algorithm is that we approach the optimal case once a target friend

is discovered and that we on average do better than BFS, which is the standard search method

for crawling social networks at this time.

5.3 Comparison to Existing Algorithms

To verify that our algorithm indeed works in this suggested hypothetical best case scenario

(i.e. when all nodes are public except for the target), we created a small test network of

1000 nodes using Watts-Strogatz model parameters of G(1000, 130, .2), which can easily be

completely explored by BFS and DFS. We justify our average degree k = 4 by equating it to

the average number of friends a user has on Facebook (a statistic shared by Facebook during

their F8 Developer Conference). We justify a value of p = .2 by intuitively reasoning that less

than half of friendship connections on Facebook are comprised of random connections. Also,

p = .2 generates a model with an expected average clustering coefficient of Ci = .384, which is

within the range observed by previous work [18].

Examining the scatter plot results in Figure 5.1 and Figure 5.2 shows that our algorithm

using the hunter-seeker strategy consistently performs better than both BFS and DFS regardless
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of the starting location. When the starting location is moved outside of the target neighborhood

both BFS and DFS are negatively impacted in terms of API calls per friends discovered, but

the hunter-seeker algorithm remains relatively unaffected.

Figure 5.1 Comparison to Existing Algorithms - Start Inside of Target Neighborhood
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Figure 5.2 Comparison to Existing Algorithms - Start Outside of Target Neighborhood
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Histogram plots of the same graphs (shown in Figure 5.3 and Figure 5.4) for the hunter-

seeker algorithm show the number of friends revealed in the first percentages of the number

of API calls to the total number of nodes includes the majority of all friends. We find that

the algorithm finds most of its target’s friends in the first 10-20% of the total nodes and then

spends the rest of the algorithm searching for the edge nodes that were not near the target

and most likely located in other clusters. At this point in the algorithm, there is a surplus

of bad guesses the algorithm could make and very few right answers. A comparison of both

histograms confirms that the algorithm will produce similar results for a random location in

the graph versus a start location inside the target neighborhood.

Figure 5.3 Hunter-Seeker Histogram for Start Location Inside of Target Neighborhood
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Figure 5.4 Hunter-Seeker Histogram for Start Location Outside of Target Neighborhood
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To compare our results to large graphs we scaled the graph by creating a Watts-Strogatz

model with parameters G(10000, 130, .2). The resulting graph took about 24 hours to complete

the test harness iternations of each algorithm on a modern i7 laptop processor. The graph

contained nk
2 = 650000 edges. Figure 5.5 shows that as n increases the number of nodes

ignored by the hunter-seeker algorithms also increases, widening the performance difference

between BFS and DFS and the hunter-seeker algorithm.

Figure 5.5 Comparison to Existing Algorithms on a Large Watts-Strogatz Model

5.4 Performance on Real World Networks

After speaking with our University Institutional Review Board (IRB) advising board we

were advised not to proceed with a large-scale experiment that would break the terms of service

agreements defined by Facebook (and most other online social networks). Instead we looked for

existing social network research that made public similiar social network datasets. We found

a dataset [35] collected as part of study on face-to-face interactions in primary schools. The
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dataset contained strong mutual friend relationships and clustering that we intuitively designed

our algorithm around.

Figure 5.6 shows that in this real world dataset our algorithm continues to outperform

existing search methods of BFS and DFS.

Figure 5.6 Comparison to Existing Algorithms on Primary School Dataset

5.5 Performance on Private Networks

To test our algorithm on private social networks we modified our test harness to randomly

privatize a percentage of the total nodes (including the target) before selecting a start location.

The test harness then picked two start locations, one that was inside the target network and

one that was outside the target network to begin the test data collection process like before.

We privatized nodes at 25%, 50%, and 75% on a 1000 node Watts-Strogatz random graph with

parameters described previously and ran the test harness. In the best case our algorithm can

discover n minus the number of privatized friends (which is on average k∗25%, k∗50%, and
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k∗75% respectively) because there is no way to verify that a private friend and the target are

friends.

Figure 5.7 Hunter-Seeker on Private Social Networks



36

CHAPTER 6. CONCLUSION

6.1 Summary

In summary, we examined and compared the needs of the Open Source Intelligence com-

munity with what social media has to offer investigators. We observed that a friends list of a

given individual is a useful starting point for launching an investigation but found that several

technical limitations (privacy and platform restrictions and data availability and longevity)

may prevent investigators from accessing friend list information of a target account. We ad-

dress privacy restrictions for the particular case of friends by creating a private friend discovery

algorithm with hunter-seeker behaviors. To address platform restrictions we defined a platform

based metric of API calls to measure the algorithms performance, which motivated us to op-

timizing the algorithm to perform efficiently under practical constraints. While there is little

we can do to change the availability of information, our algorithm does address data longevity

issues by serving as a mechanism to enable efficient and automatic crawls of the social graph

at times defined by the operator.

Our evaluation of the algorithm showed that our algorithm is practical for several reasons.

With previous search techniques such as BFS and DFS a large portion of the graph must

be crawled to be confident of discovering the majority of the target’s private friends. Our

hunter-seeker algorithm depends less on the size of the graph making it practical for large

social networks. Considering that Facebook has approximately 800 million [34] profiles, a BFS

would quickly exceed API rate limiting and request quotas and would most likely not collect

the information in a reasonable time (information on online social networks degrades quickly

[12] [42]). Furthermore our algorithm performs consistently regardless of its startling location

(the same cannot be said of BFS and DFS), meaning an investigator does not need to know
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additional information such as a known friend or associate to begin crawling to the target.

While previously investigators would have found it infeasible to search for a target’s friends,

we have proposed a practical, robust, and cost efficient algorithm to selectively search for private

friends. By doing so we have enabled investigators and other researchers to examine new data

that was previously unavailable for future study. Through this work we have incorporated other

works into a common framework (the Social Media Toolkit), which consists of several utilities

ranging from basic interactions with Facebook, to storing and de-anonymizing nodes between

multiple graphs, to the implementation of the hunter-seeker algorithm proposed in this paper.

By open sourcing the framework we believe we are providing the community with a foundation

to conduct further research into OSINT and social media.

6.2 Discussions

Perhaps the largest criticism of our results is that our random graph models do not account

for free-scale degree distributions that are commonly found in online social networks. The lack

of random models that demonstrate free-scale distributions and the small-world and clustering

coefficient properties as well as our inability to gather real-world results of our own (for legal

reasons) has left us ill-equipped to address the concern.

We believe the implications of this work will impact the OSINT community and individuals

the most. In the FBI Request For Information discussed earlier, interactions with social media

were desired to be mostly automatic processes aside from some guidance from the operator. By

enabling the discovery of private friends in an automatic process, we have provided a mechanism

to enhance the capabilities of future tools. It is unclear as to what a reasonable expectation of

privacy is and is not on online social networking sites, but we can safely assume that users that

enable privacy protections are expecting at least some level of privacy protection from the social

networking platform. By creating a function to lift the privacy restrictions of investigators the

operator may be breaching user’s reasonable expectations of privacy by using the tool. This

was one topic central to a debate in our ethics committee review board that eventually decided

not to endorse a large-scale crawl of Facebook.
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6.3 Future Work

As future work we aim to expand our framework to study cross-correlations between social

networks. We believe that it may be possible to utilize a second reference network to infer

information that is not present in a single network through the use of graph de-anonymization

techniques. To address the concerns of our algorithms performance on free-scale networks

we are seeking to find more public datasets with properties similar to online social friendship

networks as well as other random graph models that produce the desired characteristics.
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APPENDIX A. ADDITIONAL MATERIAL

This appendix contains outlines of solutions to problems that we encountered or explored

throughout this work. We are including it for the sake of posterity in that others might find

it to be useful information. Each section is more or less unrelated from another section. The

topics discussed in this appendix have been implemented as part of our framework we have

dubbed the Social Media Toolkit (SMT) for dealing with social media in the context of OSINT.

A.1 Friend-of-Friend Relationships on Facebook

Both the old Facebook REST API and the newer Facebook Graph API do not support

accessing friendship information of an account that is not associated with an authorized account

(i.e. friend of friend relationships). This is an intentional handicap of the API to prevent

crawling of friendship relationships. The information is available only through the standard

web-based interface at Facebook.com. This restriction does not prevent crawling but it does

make it significantly more difficult. Any automated solution will have to replicate the actions

that a user would take to manually spider friendship relationships.

In our proof of concept crawler we use the Apache Commons HttpClient library released

under the Apache Source license to make individual HTTP requests to the Facebook platform

that automate manual user actions. To interpret and parse the response we use the open source

Jericho HTML Parser released under the Eclipse Public License (EPL). Friendship information

is only available once a user has logged into a Facebook account (including information that

is declared public in the Facebook user’s privacy settings), so a Facebook crawler requires

authentication credentials in the form of a username and password that must first be passed

as an HTTP POST request to the Facebook login form to authenticate the user before any
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crawling can be accomplished. The primary Facebook interface makes extensive use of AJAX

requests to asynchronously load information in the background. The use of asynchronous

scripts makes it very difficult to determine the proper HTTP requests to simulate on behalf of

the user, so after authenticating the account our implementation reverts to using the mobile

Facebook interface, which for device compatibility reasons only uses simple HTML. Through

manual inspection we have verified that the results returned by the mobile interface and the

primary web interface are identical (the same cannot be said for most of the features in the

official API). Given the unique Facebook account identifier of a target account, the utility uses

the mobile interface to navigate to the friend’s page of the target account. Using the Jericho

HTML Parser the utility searches for hyperlinks resolving to each friend of the target account

and returns a set of unique Facebook account identifiers. A sequence diagram of the crawler

process for getting friend identifiers is shown in Figure A.1.
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Figure A.1 Facebook Crawler Sequence Diagram
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A.2 Storing Social Graphs

A.2.1 Graph Coloring

To store multiple social graphs we must be able to store each social network in the context

in which it was collected. In graph theory, edge coloring is a way to allow different edge

types within the same graph by assigning a color to an edge. Similarly, node coloring adds

a type assignment to the node. For example, the LinkedIn social graph is intended to record

undirected “professional” connections, whereas Facebook social graph connections represent

undirected “friendship” relationships. The Twitter social graph contains directed “follower”

and “retweet” relationships. To distinguish edge types we should assign each edge type a color

and each node a respective color based on its graph membership.

A.2.2 Hypergraphs

Storing multiple graph layers can be described formally as a generalization of a hypergraph.

We will define a hypergraph as a graph H = (Vh, Eh), where Vh is the set of vertices, and Eh

is the set of hyperedges. A hyperedge is a subset of vertices in P (Vh), where P (Vh) is the

power set of Vh. For any given set of vertices included in a hyperedge we define a single graph

Gn = (Vn, En), where Vn is the set of vertices, and En is the set of edges between each vertex. A

cross-section of the hypergraph can be imagined if we consider each data source (i.e. Facebook,

Twitter, LinkedIn, etc.) to be a hyperedge vertices set representing the graph Gn = (Vn, En)

(a single graph layer) as shown left in Figure A.2. A collapsed view (an overhead view) where

each vertically intersecting node (linked by an identity relationship) represents the hypergraph

H = (Vh, Eh) shown right in Figure A.2.

A.2.3 Graph Transformations

When comparing two graphs, it is important to compare apples to apples, so we use graph

transformations to normalize graphs to a common context. Graph transformations, also known

as graph rewriting, are changes applied globally to an entire graph by rewriting an input graph

to a corresponding output graph through an automatic machine. A transformation function
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Figure A.2 Hypergraph

Figure A.3 Sample Normalization of Twitter to Facebook

f(lgraph) = rgraph defines how a graph will be rewritten. One example of a transformation

(shown in Figure A.3) could be to normalize a Twitter social graph to an equivilent Facebook

social graph using the assumption that two Twitter users that mutually follow each other are

equivilent to a Facebook friendship relationship in the Facebook social graph.

A.3 Cross-correlation Identity Mapping

Storing multiple networks has limited uses unless we are able to correlate node identities

between network layers. Formally, we define identity mapping as finding a partial one-to-one

mapping between nodes in a graph GA = (VA, EA) and a graph GB = (VB, EB). Each mapping
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represents an identity relationship between nodes in the two graphs. The task is to determine

whether the two graphs are partially isomorphic, with the added difficulty of dealing with

background noise present in each graph.

For n graphs G1 = (V1, E1) to Gn = (Vn, En) there exists a partial mapping (including the

empty set ø = {}) between every other graph such that a perfect mapping creates an identity

relationship between a pair of nodes that are owned by the same user and are both present in

the overlap of the two graphs.

We use the Jaccard index of two sets of nodes (each set from a seperate graph) A and B,

defined as J(A,B) = |A∩B|
|A∪B| as a metric to measure the overlap between two sets. Furthermore,

we calculate that for n graphs, there exists n(n−1)
2 partial mappings between each graph layer

in the hypergraph.

A.3.1 Heuristic-Based Identity Mapping

Deep-web search engines such as Spokeo [4], Pipl [3], and Maltego [33] all utilize various

features of social networking profiles such as email addresses, usernames, and other details to

correlate user identities. In this work we represent our heuristic based identity mapping as a

heuristic score that is computed by examing a set of common profile features between a pair of

nodes and summing the result of each feature comparison (as illustrated in Figure A.4). The

results of each node pair score between the two graphs are then either accepted or rejected by

comparing the heuristic score to a threshold value determined to provide an optimal yield of

identity mappings with the fewest false-positive identity relationships.
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Figure A.4 Heuristic-Based Identity Mapping

A.3.2 Structural-Based Identity Mapping

When heuristic mappings fail due to a lack of identifying information a secondary structural

based identity mapping method using algorithms created for node de-anonymization of sani-

tized graph datasets can be utilized to discover identity relationships. The de-anonymization

technique we adopt in this work has proven to be a robust means of node identification in

anonymized dataset of social networks [23] and the de-anonymization of the sanitized Netflix

movie recommendation dataset [25].

The de-anonymization algorithm makes use of two metrics, cosine similarity and eccentricity.

Eccentricity (the measure of how much an item X stands outs from the rest of its parent set) is

defined as eccentricity(X) = max(X) − max2(X)
σ(X) , where max(X) and max2(X) are the highest

and second highest values in the set respectively, and σ(X) is the standard deviation of the

set. Eccentricity is 0 if max(X) = max2(X). The cosine similarity of two sets of vectors X

and Y is defined as cosine(X,Y ) = |X∩Y |√
|X||Y |

.

The algorithm takes two normalized graphs with directed edges and returns an identity

mapping between the two sets. Note that we can transform an undirected graph to a directed

graph and back again without losing any information. A scoring function takes a node to

compare, the two graphs, and a current mapping and computes a metric comparable to the

cosine similarity for the vectors of incoming and outgoing node degrees respectively to return

an updated node candidate score mapping. To remove bias from nodes with high degrees, the

score is divided by the square root of the node’s degree. The algorithm iteratively matches
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nodes in one graph to nodes in the opposing graph if the opposing graph contains a reverse

match to the same node. Matches between nodes with a low eccentricity are rejected from the

final mapping because node pairs with a higher eccentricity have a higher confidence interval.

The algorithm is run iteratively until it converges on a final mapping by replacing early bad

guesses with better guesses in subsequent passes.

The algorithm does require a relatively small initial seed mapping, which can be obtained

through the heuristic-based identity mapping methods in the previous section. According

to previous work [24], the number of initial seed mappings required is based heavily on the

properties and overlap of the two graphs as well as the accuracy of the initial seed mapping.

One strategy is to simply continue collecting the number of seeds until enough seeds are found

to carry out large-scale de-anonymization. A surplus of accurate seed mappings does not hinder

the final result, but a lack of seeds will result in poor identity mapping results.
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