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CHAPTER 1. INTRODUCTION 

Fracture mechanics life has become a design requirement 

for advanced aerospace structures. The basic requirement is 

that a structure survive its design life with no compromise in 

fit, form, or function, using an assumed initial flaw of the 

size that could escape detection by the non-destructive 

testing (NDT) imposed on the component [1,2]. Additionally, 

fracture mechanics is used to assess the use of components 

that have detected flaws that were introduced during 

fabrication or service [3] . Normally, cracked hardware is 

subject to limited use with frequent inspections to monitor 

the growth of the defect. A limitation of the fracture 

mechanics analysis procedures and software used in the 

aerospace industry is the restriction to load control only 

problems [4] . This means that the load is conservatively 

assumed to be constant and unrelieved by growth of a defect. 

However, for many applications the load in a component is due 

to displacement control, or a mixture of load and displacement 

control, and a crack will relieve the displacement load 

reducing the load on the net section. This is a non-trivial 

problem to model since a crack has to be included in the 

analysis of the part to understand the load redistribution due 

to the crack and is the reason why the conservative load 

control assijmption is made. Otherwise all possible cracks in 

all sections of all components would need to be analyzed. 

Therefore a need exists for an experimental technique 

that can measure the crack size and stress intensity factors 

on a structure as the crack propagates. This will allow the 

analyst to determine if the crack is relieving the load in a 

component and therefore is a safe condition for continued 

service. 

A strain gage method for measuring the opening mode 
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stress intensity factor, KI, has been presented by Dally and 

Sanford [5] . An extension of this to an overdeterministic 

method using multiple strain gages was presented by Dally and 

Berger [6] . Dally and Berger [7] extended the opening mode 

work to include mixed modes KI and KII. The overdeterministic 

method eliminated some of the constraints on gage orientation 

and location of the original method, however, knowledge of the 

crack tip location and orientation relative to the strain 

gages must still be known. 

In this paper the strain gage method is extended to 

determine crack tip location and angular orientation relative 

to the strain gages in addition to the mixed-mode stress 

intensity factors. The theory for the strain fields near a 

crack tip and the relation to KI and KII is briefly reviewed. 

A generalized coordinate system introducing crack tip location 

and orientation variables is presented. Significance testing 

of the coefficients in the strain field equations is performed 

to establish practical limits for the infinite series used to 

model the strain fields. A weighted multiple linear least 

squares routine is developed to calculate stress intensity 

factors and crack tip location and orientation. 

Experimental strain gage data for two test specimens is 

presented along with numerical modeling of the specimens. The 

first specimen is a standard compact tension specimen with a 

crack-like notch introduced by electro-discharge machining 

(EDM) . The second is a mixed mode plate specimen which allows 

the ratio of KII to KI to be varied from 0 to 2.2, and is 

based on a specimen used by Sanford and Dally [8] . 
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CHAPTER 2. LZTEXtATDRE REVIEW ON DETERMINING CRACK STRESS 

INTENSITY FACTORS 

The strain fields in the immediate vicinity of a crack 

are influenced by both the crack geometry and the state of 

stress in the component. For any given geometry and stress 

state the strain can be determined experimentally and/or 

niomerically. If the strain state near the crack tip is 

correlated to the stress intensity factors acting on the crack 

tip then the growth rate of the crack and potential for 

catastrophic failure when critical stress intensity factors 

are exceeded can be determined. Unfortunately, it is very 

difficult to determine analytically the stress state in 

complex structures in the presence of a crack since most 

structures see a combination of load and displacement 

controlled loading. 

Experimental Methods 

For the purposes of determining strain information and 

crack stress intensity information in the vicinity of a crack 

tip, the experimental techniques can be divided into the two 

broad categories of optical and strain gage. 

Optical 

The optical methods applicable to existing structures are 

photoelasticity, moire, and caustics. The basic photoelastic 

technique requires a birefringent material as a model of the 

component or as a coating on the component, a polaroscope, a 

source of light, and an optical recording device [9]. This 

method provides the difference between the principal in-plane 

stresses (or strains if the photoelastic material is linear 

elastic). Sanford and Dally [8] , Sanford, Chona, Farney, and 

Irwin [10], Sanford [11], and Dally and Etheridge [12] have 
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conducted experiments using this technique to determine mixed 

mode stress intensity parameters. The method has been shown 

to yield high quality results on models but has the inherent 

limitation of optical viewing of the test article by the 

polaroscope. Paris, Picon, Marin, and Cana [13] provide a 

methodology for processing photoelastic data to determine 

accurate values of KI and KII. The difficulties associated 

with obtaining reliable convergence of iterative schemes is 

addressed with an overdeterministic Newton-Raphson least 

squares method. In this paper a similar difficulty while 

processing strain gage data is overcome with an iterative 

least squares method. 

The moire technique is capable of measuring displacements 

with a resolution in the sub-wavelength of light. The method 

uses a reference grid, or array, of lines or points and an 

identical grid, or array, placed on the specimen to be 

analyzed [9]. MacKenzie, Walker, and Giannettoni [14], Post 

and Baracat [15], Weissman and Post [16], and Post [17] have 

demonstrated the accuracy and sensitivity of this method to 

measure the in-plane mixed mode stress intensity factors, KI 

and KII. The method requires an interferometer to achieve the 

high sensitivity and special optical filtering techniques to 

remove initial differences between the reference grid and the 

specimen. Although the method has been demonstrated to have 

very high resolution, it still requires visible access to the 

component and knowledge of the crack location and orientation. 

In the method of caustics the information about the 

stress intensity factors is derived from the sharp strain and 

stress gradient at the crack tip. The caustic pattern is 

caused by the lens shape of the gradient at the crack tip 

interacting with light reflected from or transmitted through 

the specimen. The shape and size of the pattern can be used 
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to determine stress intensity parameters. Younis [18], 

Theocaris and Gdoutos [19] , Theocaris and Papadopoulas [20] , 

and Theocaris [21] have applied this technique to determining 

the mixed mode stress intensity factors. There are several 

limitations to this technique, namely that the crack tip is 

obscured by the caustic pattern, the specimen must be 

illuminated, and, for some techniques, a transparent specimen 

is required. 

Nigam and Shukla [22]and Sanford [23] compare the 

optical methods for determining the stress intensity factors 

of fracture. Sanford summarizes that a general procedure 

using full field optical fringe patterns with a high degree of 

data redundancy (6 or more data points for each unknown) will 

provide accurate results. The difficulty of implementing the 

general method proposed is overcome with modern computers and 

digitization equipment. Nigam and Shukla concluded that the 

caustic and photoelastic techniques give reasonable results 

for static problems provided the caustic initial curve radius 

is at least half the plate thickness. For dynamic experiments 

photoelastic and caustic methods did not compare well. The 

error was believed to be a result of the higher order terms in 

the stress function being included in the photoelastic method 

but not in the caustic method. 

The optical methods provide the analyst with methods to 

use the full field of information surrounding a crack tip if 

the limitations of the methods can be accepted. In cases 

where the component is not transparent the optical methods 

become restricted. In cases where the area of interest is 

hidden from view, the optical methods do not apply. Further, 

the methods do not lend themselves to a fully automated 

technique without digitization of an image. 
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Strain Gaffe 

The electrical resistance strain gage is based in the 

discovery by Lord Kelvin in 1856 that the resistance of copper 

and iron wire changes with applied strain [9, 24] . Further, 

Lord Kelvin also applied the Wheats tone bridge circuit to 

accurately measure the resistance of the wire. Commercially 

available bondable strain gages are based on this basic 

concept but with specialized alloys and packaging for easier 

use and interpretation of the data. Strain gages near a crack 

tip have been successfully used to determine static KI and KII 

[5-7]. Dally and Sanford [25,26] and Sanford, Dally, and 

Berger [27] have also applied the strain gage technique to 

measuring stress intensity factors of propagating cracks. The 

strain gage averages the strain measured over the area it 

covers on the component. Small gages are required in regions 

of rapidly varying strain. Dally and Berger [28] have 

addressed this issue and shown that small gages located 

appropriately near a crack tip will have negligible error. As 

an extension to the static problem, Swanson and Zachary [29] 

have generalized the solution to also locate the crack tip 

along with the mixed mode stress intensity factors. The strain 

gage method suffers from a limit on the data available since 

each gage covers a portion of the area near the crack tip and 

the method is restricted from the plastic zone near the crack 

tip. However, the strain gage technique does not require the 

component be viewed while loaded, and strain gages are 

commercially available that can endure very harsh environments 

so the technique lends itself to many more applications than 

optical techniques. 
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Analytical Methods 

The analytical methods used to determine the stress 

intensity factors acting on a crack tip can be broadly 

categorized as closed form (exact or approximate) or 

numerical. 

Closed Form 

The closed form solutions for stress intensity factors 

presented in the literature are either exact or approximate 

solutions. Tada, Paris and Irwin [30] and Rooke and 

Cartwright [31] contain compilations of stress intensity 

factors for crack geometries with imposed loads and 

displacements. Parker [32] and Wilson [33] provide techniques 

for superimposing the solutions found elsewhere to solve a 

specific problem. A useful form for representing the strain 

field near a crack tip which contains the mixed mode stress 

intensity factors is shown in [7] and is elaborated on in 

Chapter 3. 

Finite Element 

The Finite Element Method [FEM] for solution of crack 

stress intensity factors takes two forms, the stress or 

displacement matching form, or the energy approach [33, 34]. 

The FEM method takes advantage of the fact that the square-

root strain singularity at a crack tip can be modeled using 

quadratic isoparametric elements by placing the mid side nodes 

adjacent to the crack tip at the quarter points. Further, by 

using triangular instead of rectangular elements at the crack 

tip the singularity is also maintained over the element 

interior. 

Stress or displacement matching uses the stresses or 
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displacements near the modeled crack tip. These are fit to 

the stress or displacement equations for the singularity 

dominated zone at the crack tip and the limit, as the distance 

to the crack tip goes to zero, is taken. The displacement 

matching form is conveniently available in commercial FEM 

software. 

The energy approach is based on the amount of work 

required to extend a crack a small amount. The measure is 

made with either the energy release rate using virtual or 

actual crack extension or by taking the J-integral about a 

boundary surroimding the crack tip. 

The FEM method is applicable to any geometry and loading 

condition the analyst wishes to model. Specific guidelines 

for consistent and accurate results are discussed with each of 

the FEM models presented in Chapter 5. 
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CHAPTER 3. STRAIN FIELD EQUATIONS 

Mode I 

Dally and Sanford [5] have shown the derivation of strain 

equations from the stress field for the mode one loading of a 

single crack in the vicinity of the tip, and Dally and Berger 

[7] have extended this for the mode two case. The stress 

field near a mode one loaded crack, based on the Westergaard 

equations, is: 

G x x  = R e Z - y I m Z '  - y I m Y '  + 2 R e Y  

Oyy = Re Z + y Im Z• + y Im Y' 

' ^ x y  =  - y R e Z ' - y R e Y ' - I m Y  ( 1 )  

where the stress fimctions Z and Y can be represented by 

Z (z) = X K 
n=0 

ee 

Y (Z) = X z"" (2) 
m = 0 

and where, for both mode I and II, 

z = X + i y (3) 

Dally and Sanford have reduced the mode I case, for plane 

stress conditions, to the following four parameter strain 

field. 
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2 M- £x'x' = Ao r~l/2 [kcos(0/2) 

- (l/2)sin(0)sin(3e/2)cos(2a) 

+ (1/2) sin(0) cos (30/2) sin(2a) ] 

+ Bo [ k + cos(2a)] 

+ Ai rl/2 cos(0/2)[k+ sin2 (0/2)cos(2a) 

- (1/2) sin(0) sin(2a) ] 

+ Bi r [ (k+ cos (2a) ) cos (0) 

- 2 sin(0)sin(2a)] (4) 

where, 

|i. = Shear modulus 

£x'x' = Stain gage reading 

r = Distance to gage 

0 = Angle to gage 

a = Gage angle relative to crack tip 

AQ = Constant 

Bo = Constant 

Ai = Constant 

Bi = Constant 

V = Poisson's ratio 

For the plane stress conditions on the free surface that a 

strain gage could be mounted on, 

k = ( 1 - V) / (1 + V ) (5) 

and, 
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KI V2n AO ( 6 )  

Mode ZZ 

The stress field near a mode two loaded crack, based on 

the Westergaard equations, is: 

=IniY + yReY' + yReZ' + 2lmZ 

ayy = Im Y - y Re Y' - y Re Z' 

T x y  = - y I m Y ' - y I m Z ' + R e Z  ( 7 )  

where the stress functions Z and Y can be represented by 

Dally and Berger have reduced the mode II case, for plane 

stress conditions, to the following four parameter strain 

field. Note that the DQ term drops out of the following 

equations. Also, minor errors in the reference have been 

corrected here. 

Z (z) = X 

Y (z) = X D, z"" ( 8 )  
m=0 

E £x'x' = Co r-1/2 {sin(0/2)[sin^ (a) 

( (1+v)cos(0/2)cos(30/2)+2v) 

-cos2 (a)((1+v)cos(0/2)cos(30/2)+2)] 

+2 (1+V) sin (a) cos (a) cos (0/2) 
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(l-sin(0/2)sin(30/2))} 

+ Ci rl/2{sin(0/2) [cos2 (a) ( ( 1 + V )cos^(0/2)+2) 

-sin2 (a)((1+v)cos2 (0/2)-2v)] 

+2 (1+V)sin(a)cos(a) cos(0/2) 

(1+sin 2 (0/2))} 

+ 2 Dl r [sin(0) (cos2 (a)-vsin2 (a)] (9) 

where, 

Co = Constant 

Ci = Constant 

Dl = Constant 

and. 

KII = V2 n Co (10) 

Collecting the terms in Equation 9 into a form similar to 

Equation 4: 

2 Ex'x' = Co r-1/2 [sin(0/2) (-k-cos(2a) (1 + cos (0/2) 

cos(30/2)))+ sin(2a) (cos(0/2)-0.5sin(0)sin(30/2))) 

+Ci rl/2[sin(0/2) (k+ cos(2a)(l+cos2(0/2))) 

+sin(2a) cos(0/2)(l+sin2 (0/2))] 

+ Dl r sin{0)(k+cos(2a)) (11) 
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Mixed Modes 

Combined, the mixed mode strain equations are: 

2 M- Ex'x' = Aq r-1/2 [kcos(6/2) 

- (l/2)sin( e)sin(30/2)cos(2a) 

+ (1/2)sin(0)cos(30/2)sin(2a) ] 

+ Bo [ k + cos(2a)] 

+ Ai rl/2 cos(0/2)[k+ sin2 (0/2)cos(2a) 

- (1/2) sin(0)sin(2a) ] 

+ Bi r [(k+ cos(2a))cos(0) 

- 2 sin(0) sin(2a) ] 

+ Co r~l/2 [sin(0/2)(-k-cos(2a)(1 + cos(0/2) 

cos(30/2)))+ sin(2a) (cos (0/2)-0.5sin(0)sin(30/2))) 

+Ci rl/2[sin(0/2) (k+ cos (2a) (l+cos2(0/2))) 

+sin(2a) cos (0/2) (l+sin2 (0/2))] 

Figure 1 shows the generalized coordinate system for the 

crack tip location, orientation, and the strain gage locations 

and orientations. The location of each strain gage relative 

to the crack tip is defined by: 

+ Di r sin(0)(k+cos{2a)) (12) 

Generalized Coordinate System 

0 = ArcTan 

r V(Xq - Xcf + (Yc - Ycf 

'-(XG-XC) sin(y3 ) + (YG-YC)COS (J3 ) •• • • • ' ' — —— — 
I (XG-XC)COS(/3 )+(YG-Yc)sin()8 ) 

(14) 

(13) 
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Global Y Gage Axis 

Crack Y i 
Xf 

/ e Crack X 

Crack Tip 

Global X 

XQ Xq 

Figure 1. Crack Tip General Coordinate System 

r = Distance to gage from crack tip 

6 = Angle to gage from crack tip 

P = Crack tip orientation angle 

Signi£iceuice Testing of Coefficients 

Since the niamber of terms in the strain field equation 

potentially infinite a multiple regression analysis of the 

significance of the higher order teinns is performed for the 

mode one loaded crack tip. Applying the methods of Cox [35] 

on experimental data from a 10 element strain gage on a mode 

one compact tension (CT) specimen and also numerical data at 

the gage locations from a finite element model (FEM) of the 

same CT specimen, the significance of the higher order terms 

is tested. The data and statistical model are cast in the 
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form: 

(ei , Xii, X2i, . . . , Xpi) i = 1, . . . , n (15) 

Ei = Po + PlXli + P2X2i + . . . + PpXpi + (16) 

where, 

Ei = Strain 

Xni = Functions of r, 9, and a 

Pi = Coefficients Ai and Bi 

= Individual deviation from model 

Equation 16 is used to represent the mode one only case 

of Equation 12. The statistical tests are, first, whether or 

not all Pi = 0 and, second, do higher order terms 

significantly improve the fit of the equation to the data. 

The first test is: 

Ht : Pi = P2 = . - - = Pp = 0 

Ha : not all Pi = 0 ; 0.005 

Fal = F (p , n - 1 - p; 0.005) 

(sum of squares due to model parameters) (n-l-p) 
Frp]_ = 1 

I (residual siim of scpiares) (p) 

If Fti < F(xl accept Ht 

If Fti > Fal accept Ha 

In all cases FtI > Fal so not all Pi = 0. This means, 

for both the experimental and FEM data, the equations to which 
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the data is being fit are a significant improvement over the 

simple equation ei = Save + ̂ i- The test is performed with up 

to four terms ( AQ, BQ/ AI and BI) used in Equation 16. The 

second statistical test used is: 

HT : P j ?£= 0, j = 1, . . . , r 

and Pj = 0, j = r+1 

Ha : Pj 0, j = 1, . . . , r 

and pj 0, j = r+1 

(sum of squares due to additional term) (n-2-r) 
ft2 = : 

(residual sum of squares) 

Fa2 = F (1 , n - 2 - r; 0.005) 

If Ft2 < F(x2 accept Ht 

If Ft2 > Foci accept Ha 

This test is used to see if adding a higher order term to 

Eq[uation 16 significantly improves the fit. The test is 

applied by sequentially adding higher order terms. Up to 

r'^l.S is tested. For the experimental strain gage data the 

AQ, BQ, and AI terms provide significant improvement in the 

equation's fit to the data. The BI term is marginally 

accepted, meaning Ft2 nearly equals F(x2. For the FEM data the 

AQ, BQ, and AI terms provide significant improvement in the 

equation's fit and the Bi term is rejected. For both data 

sets terms beyond the Bi term are rejected. The conclusion 

drawn is the first three terms provide useful information. 

The remainder may be discarded since they provide no 

significant improvement in the fit. The rejection of higher 

order terms is also empirically pleasing since the strain 

field near a crack tip is expected to be dominated by singular 
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behavior. The rejected higher order terms represent fimctions 

that increase with increasing distance from the crack tip. 

Additional support for the truncated series is found in Berger 

and Dally [36] where a study of a compact tension specimen 

using up to a six parameter solution showed that the accuracy 

of the KI solution degraded with the addition of terms past 

the third (A]^) . This occurred even though the higher order 

terms reduced the residual sxim of the squares. Sanford et al. 

[10] also report that the six term series can exhibit 

instability causing convergence to erroneous solutions. 
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CHAPTER 4. VIEXGHTED HOLTZPLE LINEAR LEAST SQUARES ROUTINE 

Mode I Only 

To solve Equations 12, 13, and 14 simultaneously with 

overdeterministic strain gage data, the following method using 

multiple linear least squares and weighted residuals is 

developed. Equation 12 is cast in the following form for mode 

one only loading keeping only the terros statistically 

significant for the CT specimen, where the index i is for the 

i*^ strain gage: 

2 = Ao Foi (ri'Si^ai ) + Bo [ k + cos ( 2 Oti )] 

+ Fii (ri'Gi'Oti ) (17) 

For 10 element strip strain gages the orientation angle ai is 

the same for each gage, so let: 

B'O = Bo [ k + cos (2a)] (18) 

Note that B'O is now a constant for all gages. If the crack 

tip location and orientation are known Equation 17 has only 3 

unknown parameters, AQ, BO, and AI. The equation is now 

linear in the sense that all of the first order partial 

derivatives with respect to the unknown parameters are 

independent of the parameter values and, consequently, all 

higher order derivatives are zero [36] . Now a linear least 

squares routine [35, 37] is used to solve for the unknown 

terms, and Equation 6 is used to determine the stress 

intensity. In matrix form for N total strain gages: 



19 

1 (Foi - Fo) (Fii - Fi) 
"BO" 

= Aq (19) 

I b
O 

z
 

1 1 (Fon - Fo) (Fin - Fi). 
>1. 

sr = X B (20) 

so, 

B = (21) 

The strain predicted by the least squares coefficients 

Ao, Bo, and Ai is 

1 (FOI 1 O (Fii - FI) (FOI (Fii 
BO 

= A-o (22) 

2M£N. 1 (Fon - FO) (FIN 1 

. 
1 A. 

where, 

<23) 

To also solve for the crack tip location and orientation 

a non-linear technique is required. Several techniques and 

codes (Newton-Raphson [8 ,38], GAUSSFIT [39]) are found to be 

unreliable in consistently converging to a correct solution 

when input data with a known solution are used. In order to 

understand why the routines have difficulty converging, the 
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residual sum, ro, is computed for 625 cases using linear least 

squares over a range of initial crack tip offsets in x and y 

while holding the crack orientation, P, constant. 

N 
(24) 

i=l 

Figure 2 shows the contour plot of ro over a crack tip offset 

range of - 0.025 <x< 0.025 and - 0.025 < y < 0.025 . This 

surface approaches the minimxnn residual location of x=0 and 

0.025 

0.02-

0.015-

s 0.01 ̂  
.£= 
o 

0.005 ̂ 
ffl 
CO 

O 0^ 
> 

P-0.005-

O -0 01H 

-0.015-

-0.02-

-0.025 1 1 1 1 r 
-0.025 -0.02 -0.015 -0.01 -0.005 0 

—I 1 1 1 
0.005 0.01 0.015 0.02 0.025 

Figure 2. 

Crack Tip X Offset (inches) 

Contour plot of the residual siam with imposed 
crack tip offsets. 
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y=0 as a tangency. To improve the performance of the residual 

minimization routines weight functions, WF, are employed. 

Residual(j) = ^ WF(e^ - e\ ) (25) 
i=l 

Equations 26 through 32 list some of the functions tried. 

Figure 3 shows the contour plot for the square root function, 

and the cxibic root function is shown in Figure 4. 

Absolute value function = le^ - 8'i| 

Weighted absolute value function = 
Igj - £'il 

(26) 

(27) 

where, 

N 
et = S l^il 

i=l 

Square root function = 
E. - £'• 1 

( 2 8 )  

(29) 

Third root fxinction = 
£• - £'• 

(30) 

Fourth root function = 
gj - e'i 

(31) 

Fifth root function = 
£• - £'• ^ 1 (32) 

The fractional root weighting fimctions provide a sharper 

gradient at the minimum location which improves the 

performance of the minimization routine. To test the weight 

function performance, an iterative routine is developed. The 

iterative routine uses initial seed guesses for crack tip 



22 

0.025 

.0.8 
0.02-

0.7 
0.015-

0.6 

0.01- ,0.5 0.4 

0.005-

0 -

p -0.005-

0.4 
-0.01 - 0.5 

-0.015- 0.6 

0.3 -0.02-

0.4 0.7 
-0.025 

-0.025-0.02-0.015-0.01-0.005 0 0.005 0.01 0.015 0.02 0.025 
Crack Tip X Offset (inches) 

Figure 3. Contour plot of the weighted square root residual 
fxinction with imposed crack tip offsets. 

location Xc, Yc and crack tip orientation angle P along with 

small initial seed offsets AXc, AYc and A|3. Table 1 shows the 

set of 27 cases that are created using the seed and offset 

data. The multiple linear least squares problem is then 

solved for the 27 cases and 27 weighted residuals are 

computed. 

The weighted residuals are computed by using the AQ, B'Q 

and Ai calculated for each of the 27 cases as a fit to predict 

e'i for each of the N data points. The 27 cases are searched 

for the minimxxm residual case and the crack tip location and 

orientation are updated to this location. If the location and 

orientation do not require moving from the previous step, the 

seed offsets are reduced and the routine rerun. The routine 
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Figure 4. Contour plot of the weighted cube root residual 
function with imposed crack tip offsets. 

is converged when the tip location and orientation are no 

longer moved and the seed offsets are reduced to a user 

defined minimxim. The FORTRAN program, MLLS, to perform this 

is listed in Appendix A. 

Many weight functions are tried while searching for the 

weight fvinction that will let the routine find the location of 

the minimum residual quickly and with low sensitivity to 

experimental error. Sets of strain gage data to test weight 

functions are created by taking the experimental data, fitting 

the three teonn Equation 17 to it, and back calculating a set 

of strains. The back calculated set of strains have zero 

residual when fit to the three parameter equation. This 

"perfect fit" set of data (zero residual) has experimental 

noise and error simulated by randomly adding or sxibtracting 

from each reading. The random noise added to the initial 

values is at a fixed maximum level instead of a maximum 



24 

Table 1. List of 27 cases created around initial estimate of 
crack location and orientation. 

Case 1 XC - Delta XC YC-Delta YC Beta - Delta Beta Residual (1) 
Case 2 XC-Delta XC YC-Delta YC Beta Residual (2) 
Case 3 XC-Delta XC YC-Delta YC Beta -i- Delta Beta Residual (3) 
Case 4 XC-Delta XC YC Beta - Delta Beta Residual (4) 
Case 5 XC - Delta XC YC Beta Residual (5) 
Case 6 XC-Delta XC YC Beta -f Delta Beta Residual (6) 
Case 7 XC-Delta XC YC +Delta YC Beta - Delta Beta Residual (7) 
Case 8 XC - Delta XC YC +Delta YC Beta Residual (8) 
Case 9 XC-Delta XC YC +Delta YC Beta -1- Delta Beta Residual (9) 
Case 10 XC YC-Delta YC Beta - Delta Beta Residual (10) 
Case 11 XC YC-Delta YC Beta Residual (11) 
Case 12 XC YC - Delta YC Beta -i- Delta Beta Residual (12) 
Case 13 XC YC Beta - Delta Beta Residual (13) 
Case 14 XC YC Beta Residual (14) 
Case 15 XC YC Beta -i- Delta Beta Residual (15) 
Case 16 XC YC +Delta YC Beta - Delta Beta Residual (16) 
Case 17 XC YC +Delta YC Beta Residual (17) 
Case 18 XC YC +Delta YC Beta + Delta Beta Residual (18) 
Case 19 XC + Delta XC YC - Delta YC Beta - Delta Beta Residual (19) 
Case 20 XC + Delta XC YC-Delta YC Beta Residual (20) 
Case 21 XC + Delta XC YC-Delta YC Beta + Delta Beta Residual (21) 
Case 22 XC + Delta XC YC Beta - Delta Beta Residual (22) 
Case 23 XC + Delta XC YC Beta Residual (23) 
Case 24 XC +Delta XC YC Beta + Delta Beta Residual (24) 
Case 25 XC + Delta XC YC +Delta YC Beta - Delta Beta Residual (25) 
Case 26 XC + Delta XC YC +Delta YC Beta Residual (26) 
Case 27 XC + Delta XC YC + Delta YC Beta + Delta Beta Residual (27) 

percentage. This is because many of the potential problems in 

strain gage applications are due to experimental setup and do 

not vary with indicated strain so small indicated strains 

contain a greater percentage of error. Table 2 lists the 

locations and values for the perfect fit data and the maximum 

percent random error in each of the sets of 100 readings. 

This data set fits to a KI = 4623 psi Vin and a crack tip at 

X = 0, y = 0, and P = 0. 

Figure 5 shows the performance of the tested weighting 

functions on the 100 sets of strain gage data for the ±5 |ie 

case. Each line on the plot is one of the 100 sets. The 

stability of the weight fvinctions in Equations 25-27 is poor 

as evidenced by the scatter and dropout of test cases. Figure 



25 

6 shows that the standard deviation of KI decreases as the 

order of the root increases until the fifth root which adds no 

additional reduction in variation. The fourth root weight 

fxinction of the residuals is selected as best. If higher 

order terms are kept the order of the weight function should 

be checked, a higher order root may be required. 

The fourth root weight function is further tested with 

all of the variations shown in Table 2. Table 3 lists the 

results of this test and shows that the fourth root weight 

function using the MLLS routine provides acceptable accuracy 

for careful experimenters but is sensitive to relatively large 

errors in strain measurement. For all cases the routine is 

stable and convergent. 

Table 2. Strain, location, and maximum percent for each set 
of 100 readings. 

%Change from initial value for max error listed 

Gage ei X in Y in ±1 |i£ ±5 Jl£ ±10 ±15 ne ±20 H£ ±25 HE ±30 |i£ 

1 349 0.010 0.2485 0.3 1.4 2.9 4.3 5.7 7.2 8.6 

2 359 0.045 0.2483 0.3 1.4 2.8 4.2 5.6 7.0 8.4 

3 347 0.080 0.2480 0.3 1.4 2.9 4.3 5.8 7.2 8.6 

4 317 0.115 0.2478 0.3 1.6 3.2 4.7 6.3 7.9 9.5 

5 275 0.150 0.2475 0.4 1.8 3.6 5.5 7.3 9.1 10.9 

6 227 0.185 0.2473 0.4 2.2 4.4 6.6 8.8 11.0 13 .2 

7 178 0.220 0.2470 0.6 2.8 5.6 8.4 11.2 14.0 16.9 

8 131 0.255 0.2468 0.8 3.8 7.6 11.5 15.3 19.1 22.9 

9 87 0.290 0.2465 1.1 5.7 11.5 17.2 23.0 28.7 34.5 

10 46 0.325 0.2463 2.2 10.9 21.7 32.6 43.5 54.3 65.2 
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Paths of the K1 Solutions for Each of the One Hundred Sets of Strains vs the 
Seven Different Residual Summation Techniques. 
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Figure 5. Converged KI solution for 100 test data sets with 
up to ±5 error added and processed with 
different weight functions. 

Table 3. Fourth root weight function performance with various 
levels of random noise numerically introduced. 

Parameter ±1 ue ±5 H£ ±10 ±15 HE ±20 fie ±25 lie ±30 |I£ 

Average X offset, in 5E-04 -2E-04 0.0003 0.0008 0.0017 0.0018 0.0018 

X Standard Deviation 0.004 0.006 0.008 0.013 0.017 0.016 0.02 

Average Y offset, in 4E-04 -2E-04 -4E-04 -0.001 -0.002 -9E-04 -0.002 

Y Standard Deviation 0.003 0.005 0.008 0.011 0.016 0.017 0.021 

Average P offset, radians 0.001 0 0 -0.002 -2E-04 -0.002 -0.002 

P Stcindard Deviation 0.005 0.006 0.008 0.013 0.016 0.016 0.02 

Average KI, psi (in)'^.5 4602 4683 4689 4756 4784 4820 4963 

KI Standard Deviation 256 411 532 839 980 1155 1436 
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Figure 6. Mean stress intensity factor and standard 
deviation for 100 sets of test data with up to ±5 
H£ error added and processed with different weight 
fxinctions. 

Mixed Modes 

The mode 1 case is extended to mixed modes by including 

the CO and CI terms in Equation 17. 

2 P,EI = AQ FOI (RI'SI^AI )+ BQ [ K + cos { 2 AI )] 

+ Ai Fix (ri'Gi'Oti ) + Co F2i (ri'Gi'Oti ) 

+ Ci F3i (rx/0i/(Xi ) (33) 

Now Equation 19 becomes: 
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1 (FOI - Fo) (FII - Fx) (F21 - F2) (F31 - Fa)! 

.2H£N. 1 (FON - Fo) (FIN - Fi) (F2N - F2) (F3N - F^)J 

Bo 

(34) 

and Equations 20 - 23 are used to solve for the unknown 

coefficients. Again, by using strip gages with parallel gage 

axis, the term in Equation 18 is treated as a constant for 

each gage reading. If the gage axes are not parallel relative 

to each other. Equations 33 and 34 are rewritten as: 

2 p,£i = AQ Foi (iri/0i/(Xi )+ BQ FBOC 

+ Ai Fii (ri/0i'(Xi ) + CQ F2i (ri»0x'CCi ) 

+ Ci F3i (ri/0i/(Xi ) + D (35) 

Where D is a constant. Equation 19 now becomes: 

'2H£i' 1 (Fboi - FBa) (FOI - Fo) (f^ - Fi) - F2) (FJ^ - F3) 

1 (Fbon - Fsa) (Fon " Fq) (F^, - Fi) (F^^ - F2) (Fj^, - F3) 

D 

Bn 

(36) 

which introduces another parameter into the least squares 

solution. Parallel strip gages are used in this paper to 

reduce the number of parameters in the least squares 

solutions. The FORTRAN code, MIXMODE, to perform mixed mode 

analysis is listed in Appendix B. 
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CHAPTER 5. STRESS INTENSITY EXPERIMENTS 

EIM Compact Tension Specimen 

Specimen Description 

The electro discharge machined (EDM) compact tension (CT) 

specimen has a crack-like defect introduced by EDM machining a 

0.010 inch wide slot in a CT specimen. The specimen is 

produced from a 1.00 inch thick 2024 T3 Aluminum plate v/ith 

the dimensions shown in Figure 7. 

O 
10 Element Strip Gage 

r 

Crack Y 
2.375 

inches 

Crack X 

o 1 
Crack Tip 

Thickness = 1.00 inches 

1.875 inches 

3.5 inches 

Figure 7. Compact Tension Specimen Dimensions 

Located on one face of the specimen is a ten element 

strip strain gage manufactured by Measurements Group, Inc. 

The gage manufacturers type is EA-13-020PF-120, so the length 

for each element is 0.020 inches. Using a Cartesian 

coordinate system with the origin at the crack tip as shown in 
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Figure 7, the locations of the 10 element gage centriods are 

listed in Table 4 along with the conversion to polar 

coordinates and the gage orientation angle, a, as shown in 

Figure 1. 

Table 4. EDM CT Strain Gage Locations 

Gage # X 
(inches) 

Y 
(inches) 

r 
(inches) 

0 
(radians) 

a 
(radians) 

1 0.010 0.2485 0.2487 1.5306 1.5638 
2 0.045 0.2483 0.2523 1.3915 1.5638 
3 0.080 0.2480 0.2606 1.2588 1.5638 
4 0.115 0.2478 0.2732 1.1363 1.5638 
5 0.150 0.2475 0.2894 1.0259 1.5638 
6 0.185 0.2473 0.3088 0.9258 1.5638 
7 0.220 0.2470 0.3308 0 .8431 1.5638 
8 0.225 0.2468 0.3549 0.7691 1.5638 
9 0.290 0.2465 0.3806 0 .7045 1.5638 
10 0.325 0.2463 0.4082 0.6478 1.5638 

The strain gage placement on the specimen considered 

three related factors: the plastic zone at the crack tip, the 

error due to physical size of the gage grid in a strain 

gradient, and the valid extent of the three parameter 

solution. 

Irwin's model [30] estimates the plastic zone extends to 

a radius of r^ from the tip 

r„ = 
2TC 

C ^2 
KI 

V^^yield y 
Plane Stress (37) 

6k 

r ^2 
KI 

V^^yield J 
Plane Strain (38) 
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To restore equilibrium Irwin redistributed the stress around 

the crack tip as shown in Figure 8 so now 

^ = 

^ = 

K 

1 

3k 

f N2 
KI 

V^^yield ) 

f N2 
KI 

V^^yield ) 

Plane Stress 

Plane Strain 

(39) 

(40) 

The conditions are plane stress for strain gages mounted on a 

free surface. The specimens used in this paper are aluminum 

and the maximum plastic zone size for the tests run is 

ŷy  ̂

yield 

Figure 8. Approximate size of the plastic zone near a crack 
tip. 
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KInax = 12 KsiVin 

«^yieid =40 Ksi 

Tp = 0.028 inches 

Examination of Table 4 shows that all gages are well clear of 

this limitation. A further restriction on gage placement is 

the error caused by the physical size of the grid which 

averages strain over its area. In a region of high strain 

gradient the average strain indicated by the gage corresponds 

to the actual strain at a point that is different from the 

gage centroid. Dally and Berger [28] provide a derivation of 

shift in the true gage position due to strain gradient errors 

at the crack tip. Figure 9 illustrates the error in gage 

position, Ar, due to the gradient at the tip. 

Strain Gage Grid 

>• 

X 

Figure 9. Strain gage position error due to strain gradient 
at crack tip. 
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1 

Ar 1 

^ ~ 2 
1 - 1 - (41) 

where 

Ar = apparent shift in actual gage location 

r^ = actual gage location 

L = gage length 

To shift the apparent gage position 0.001 inches, for a gage 

length of 0.020 inches, the gage centroid must be within 0.026 

inches of the crack tip. The closest gage for all the 

experiments conducted is well beyond this distance so gage 

position error due to strain gradients will be less then 0.001 

inch which is negligible. 

The final question for gage placement is the extent of 

the valid region of the strain equations around a crack tip. 

In Chapter 3 it is shown that, for the gage locations listed 

in Table 4, additional terms beyond 3 are not significant. 

Dally and Berger [6, 7, 28], Berger, Dally, and Sanford [41], 

and Dally and Sanford [3] have mapped regions around a crack 

tip where a three term solution yields nearly the same results 

as a twelve term solution. The gage placement falls within 

this criteria. 

Theoretical Solution 

From Tada [30] a closed form solution for a compact 

tension specimen is: 

(42) 



where, 

P 
CT = — 

b 

P = Load 

a = 1.4375 inches 

b = 3.0625 inches 

d = 0.8125 inches 

h = 1.1875 inches 

- = 0.4694 
b 

h 
- = 0.3878 
b 

d 
- = 0.6842 
h 

From the charts in Tada, 

Fj = 0.88 

so. 

Fi = 16.4 

so, 

KI = - Va F, 
b 

which reduces to: 
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KI = 6.43 P psi Vinch (p in pounds) (43) 

This is a plane strain value. The specimen tested here 

differed from a standard compact tension specimen in that the 

corners had been rounded. To xmderstand if this is a 

significant difference from the standard square edged specimen 

a numerical solution is run. 

Numerical Solution 

A quarter symmetry model of the EDM compact tension 

specimen is modeled using the ANSYS finite element code. The 

model consists of 26,458 nodes and 12,054 second order 

isoparametric elements. Symmetiry planes are established along 

the crack axis and halfway through the thickness. Figures 10 

and 11 show the overall grid. Selection of the grid spacing 

and element type at the crack tip directly influences the 

accuracy of the resulting stress intensity factor calculation. 

Gerstle and Abdalla [42], Liebowitz and Moyer [43], Mikkola 

and Niemi [44] and Solecki [34] discuss the use of singular 

elements at a crack tip. Since the strain field is dominated 

by the Vr singularity the elements at the crack tip must 

exhibit this behavior for accurate results. An isoparametric 

triangular element with the mid-side nodes moved from the mid

points to the quarter points nearest the crack tip, as shown 

in Figure 12, has the desired singularity not only along its 

boundaries but also throughout its areas and volume. The 

guidelines for tip mesh size set by Gerstle and Abdalla for a 

1% or better accuracy in calculating KI are followed. First, 

the singular element size should be less than 10% of the 

"Least Dimension". For the compact tension specimen this is 

the distance from the crack tip to the machined v-notch, 0.625 

inches. The singular elements near the crack tip are 0.0625 
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EDM CT Specimen, Special Tip Mesh 
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Figure 10. Compact tension FEM mesh, quarter symmetry used. 

inches long. Second, there should be at least 16 nodes per 

180 degrees of arc aroxind the crack tip. Finally, the next 

layer of elements should have a length of 50% of the singular 

crack length. Figure 13 is a local view of the tip mesh and 

shows the 1% mesh criteria is satisfied. The ANSYS input deck 

for this model is listed in Appendix C. 

The symmetry model is loaded with 500 pounds applied at 

the pin hole which is equivalent to 1000 poxands on the total 

specimen. Figures 14 and 15 show contour plots of the Eyy 

strain resulting from this load (Eyy is the strain acting on 

the experimental gage axis) . The contours concentrate at the 

crack tip and to a lesser extent around the pin hole where the 
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Special Tip Mesh 

Figure 11. Iso view of compact tension specimen FEM mesh. 

load is applied. Figure 16 is a cut section of the model 

which shows the variation in with depth. The plot shows 

that the strain increases from the free surface to the center 

of the specimen. Figures 17 and 18 are contour plots of e„ 

and CT„, respectively, on a cut section of the model showing 

the region near the crack tip. From the variation in it 

can be seen that the center of the specimen does not satisfy 

plane strain conditions since ^ 0 at the center. The 

variation in c„ with depth shows that the free surface is in 

plane stress since = 0 on the surface. 
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Crack Tip 

Nodes moved from mid 

side to quarter point 

Figure 12. Crack tip sincfular finite element. 

singular Elements 
around craclc tip 

Crack Tip 

0.03125 0.0625 

Figure 13 . Close up view of tip mesh for the compact tension 
specimen. 
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Figure 14. Contour plot of Eyy strain. 
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Figure 15, Close up view of Eyy strain contours near the crack 
tip. 
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Figure 16. Eyy strain at section cut from free surface on the 
left to the center symmetry plane on the right. 
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Figure 17. £22 strain showing the variation with thickness. 
Note that plane strain is not fully developed. 
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Figure 18. Close up view of stress showing the variation 
with thickness and that the free surface is plane 
stress. 

To calculate the KI stress intensity factor the 

displacement matching method was employed [33,34] . Expressed 

in the crack tip polar coordinates, shown in Figure 19, the 

displacements very near the crack tip are: 

u = KI 

4|I 

KII 

4̂ 1 

a 
IZ 

V27C 

(2k - l) coŝ —j — cosi (fl 
(2k + 3) si 

3̂6 
+ sin — 

\ 2 

(44) 

+ 0(r) 

KII 
- —— J— (2k + 3) cod — + cos — + 0(r) 

4fi V2Ji:V V2 J) 
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2KIII [r^ w  =  , / —  
p. \2k 

/e^^ 
sin 
V 

+ 0(r) (46) 

where, 

k = 3 — 4v for plane strain (47) 

3 - V 
k = for plane stress (48) 

1 + V 

Note that Equations 47 and 48 define a different k than 

Equation 5. Equations 44, 45, and 46 are decoupled into 

separate equations for each stress intensity factor on the 

crack face, 0 = ± 180 degrees, and as r-»0 the higher order 

terms, 0(r), can be neglected. The equations reduce to: 

- KII . . 
u = + (1 + k) (49) 

2\L 

V = + k) (50) 

•IS 2KIII ._ 
w = ± J— (51) 

the sign being dependent on whether the value is evaluated on 

the top face (+ 180 degrees) or the bottom face (- 180 

degrees). 

Evaluating Equations 49, 50, and 51 across the crack from 

one face to the other yields: 
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Full Crack Model 

Figure 19. Crack tip coordinate system for finite element 
model stress intensity calculation. 

— Î ( 
^ V27t 

KII ,^ , 
Au = J—(l + k) (52) 

Av = —J^i 
II \2K 

(1 + k) (53) 

4KIII rF 

^ [I V27T 
(54) 



44 

Now to evaluate the stress intensity factors the displacements 

are approximated with a linear fit of the nodal displacements 

near the crack tip. Equations 55-57. Either a full or half 

crack model can be used as shown on Figure 19. 

u Au 
—f= or —f= = A + Br (55) 
Vr Vr 

V Av 
-7= or -7= = C + Dr (56) 
Vr Vr 

fS. A A 
w Aw 
—j= or —r= = E + Fr (57) 
vr Vr 

Taking the limit as r—>0: 

u or Au = A (58) 

V or Av = C (59) 

w or Aw = E (60) 

By siibstituting Equations 58 through 60 into 49 through 54 the 

stress intensity factors are determined for the half-crack or 

full-crack model. 

KI = 
2p.C>/27t |IC>̂  

or 
(1 + k) (1 + k) 

(61) 

KII = 
2HAV27C HA>/27C 

or 
(1 + k) (1 + k) 

( 6 2 )  
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LIEV27U I 
Kill = •̂ --- or LIEV27C (63) 

2 

Using the finite element model results and applying 

Equation 62 for a half-crack model, the KI stress intensity 

factors are computed at each node along the crack tip. Table 

5 lists the results. The plane stress solution given in the 

table is valid only at the free surface and should not be used 

below the surface. The plane strain solution is not valid on 

the free surface but it does become nearly constant as the 

symmetry plane is approached. Since the center did not 

achieve complete plane strain the solution there is not 

entirely valid. The center plane strain solution is 8.5% 

larger than the theoretical solution given by Tada, Equation 

41. 

Table 5. KI stress intensity solution along crack tip in 
finite element model of Compact Tension specimen. 

Depth From Surface, (in) KI, psi (in)'^.5 

Plane Strain 

KI, psi (in)''. 5 

Plane Stress 

0.0000 5560 4954 

0 .0625 6194 5519 

0 .1250 6452 5749 

0 .1875 6649 5925 

0 .2500 6780 6042 

0.3125 6870 6122 

0 .3750 6930 6175 

0.4375 6964 6205 

0.5000 6975 6215 
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Table 6. Finite element model strains at strain gage 
positions, relative to the crack tip, on the Compact 
Tension specimen. 

X, inches Y, Inches a, radians Eyy, n Strain 

0.010 0.2485 1.5708 320.3 

0.045 0.2483 1.5708 338.1 

0.080 0.2480 1.5708 337.1 

0.115 0.2478 1.5708 317 .2 

0.150 0.2475 1.5708 274.4 

0.185 0.2473 1.5708 228.4 

0.220 0.2470 1.5708 179 .2 

0.255 0.2468 1.5708 133 .6 

0.290 0.2465 1.5708 90.6 

0.325 0.2463 1.5708 49 .8 

Strains on the free surface of the finite element model 

were output at the locations of the strain gages used in the 

experiment conducted on the compact tension specimen. Table 6 

lists these strains and the gage centriods relative to the 

crack coordinate system shown in Figure 1. The strains and 

locations are then used as input to the MLLS routine for KI 

only. The initial location of the crack tip and crack 

orientation are offset slightly and the routine iterates to 

find the tip location, orientation, and the KI stress 

intensity factor. The results are shown in Table 7. 

The range of offsets that converge to the real crack tip 

is not large. The results are not consistent beyond the range 

shown in Table 7 . This means that the experimenter must have 

good initial knowledge of the crack position and orientation. 

Within this range the crack tip location and orientation are 

found to an acceptably small deviation from the true position. 
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Table 7. Multiple linear least squares for KI only, results 
for niomerical data. 

Input Input Input Output Output Output KI 

Xoffset/ Yoffset > Poffset/ Xoffset# Yoffset/ Poffset t psi 

(inch) (inch) (rad) (inch) (inch) (rad) in'̂ . 5 

0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 2  0 . 0 0 2  0 . 0 0 2  5315 

0 . 0 3 0  0 . 0 3 0  0 . 0 1 5  0 . 0 0 0  0 . 0 0 0  0 . 0 1 6  5 5 0 0  

0 . 0 3 0  0 . 0 3 0  - 0 . 0 1 5  0 . 0 0 0  0 . 0 0 0  0 . 0 1 6  5500 

0 . 0 3 0  - 0 . 0 3 0  0 . 0 1 5  0 . 0 0 0  0 . 0 0 0  0 . 0 1 6  5 5 0 0  

0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 1 5  - 0 . 0 0 2  0 . 0 0 0  - 0 . 0 2 2  5 5 7 9  

- 0 . 0 3 0  0 . 0 3 0  0 . 0 1 5  0 . 0 0 0  0 . 0 0 0  0 . 0 1 6  5 5 0 0  

- 0 . 0 3 0  0  . 0 3 0  - 0 . 0 1 5  - 0 . 0 0 2  0 . 0 0 0  - 0 . 0 2 2  5 5 7 9  

- 0 . 0 3 0  - 0 . 0 3 0  0 . 0 1 5  0 . 0 0 0  0 . 0 0 0  0  . 0 1 6  5 5 0 0  

- 0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 1 5  - 0 . 0 0 2  0 . 0 0 0  - 0 . 0 2 2  5 5 7 9  

The stress intensity factor calculated is 10% larger than the 

plane stress solution based on matching crack displacement, 

4954 psi Vinch from Table 6, and is 15% less than the 

solution from Tada, Equation 41. With the crack tip location 

and orientation fixed at the initial location the KI is 5476 

psi Vinch which matches the values in Table 7 to within 3%. 

Experimental Procedure 

The specimen was loaded in tension using a 20 Kip MTS 

machine and compact tension specimen grips operating at 10% 

range for 2000 pound maximum loading. The peak loading was 

selected for a maximum Kj of 12.8 Ksi Vinch which is below 

the material's Kjc of 30 Ksi Vinch . The strain gages were 

connected to a Measurements Group, Inc. strain indicator 

through a Measurements Group, Inc. switch and balance unit. 

The data are shown in Table 8. 
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Table 8. Strain and load data from Compact Tension Specimen 
experimental test. 

e \L e \L e |X £ \L 8 |i e |i e e 

Gage 1 0 96 164 259 342 430 512 2 

Gage 2 0 100 174 274 367 463 552 -2 

Gage 3 0 98 170 267 354 445 537 -2 

Gage 4 0 91 152 236 319 397 476 2 

Gage 5 0 75 131 205 272 344 411 -3 

Gage 6 0 69 113 170 223 275 331 2 

Gage 7 0 54 88 124 170 210 252 1 

Gage 8 0 44 70 99 129 161 197 2 

Gage 9 0 32 48 59 81 99 119 -1 

Gage 10 0 22 35 44 60 74 89 2 

Load, pounds 0 250 450 750 1000 1250 1500 0 

Data Analysis and Results 

The data from Tables 6 and 8, for 1000 pounds load, are 

plotted in Figure 20. The slight gage orientation offset from 

the y axis, .007 radians or 0.4 degrees, was neglected for 

this comparative plot. The experimental data is in good 

agreement with the numerical data, better than 5% on average. 

The strain data for the 1000 pound load case was used as input 

for the MLLS routine for KI. The results are shown in Table 

9. When the crack tip location and orientation are held fixed 

at the initial location the KI is 4558 psi Vinch which lower 

bounds the values in Table 9. 

The experimental data does not converge as well as the 

numerical data when the MLLS routine is applied. The range of 

offsets over which the solution converges to a reasonable 

answer is more limited and the results are farther from the 
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Figure 20. Strain at the gage locations for the compact 
tension specimen. 

actual location. Also, the stress intensity factor solution 

ranges up to twice the fixed crack tip value. 

With known crack location the MLLS method, using a three 

term expansion for the strain field, provides an accurate 

solution using experimental or numerical data from a single 10 

element strip gage. With no prior knowledge of the crack tip 

location and orientation the MLLS method requires a rather 

close initial guess to converge to a reasonable answer. 
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Table 9. Multiple linear least squares for KI only, results 
for experimental data. 

Input Input Input Output Output Output KI 

fset t Yoffset / Poffset/ Xoffset/ Yoffset/ Poffset! psi 

(inch) (inch) (rad) (inch) (inch) (rad) in'". 5 

0.000 0.000 0.000 -0.020 0.018 0.015 6280 

0 .020 0.020 0.015 -0.015 0.030 0.020 5822 

0.020 0.020 -0.015 -0.010 0.035 -0.031 5288 

0.020 -0.020 0.015 -0.015 0.030 0.020 5822 

0 .020 -0.020 -0.015 -0.040 0.010 -0.001 8775 

-0.020 0.020 0.015 -0.015 0.030 0.020 5822 

-0 .020 0.020 -0.015 -0.015 0.030 0.020 5822 

-0.020 -0.020 0.015 -0.045 0.005 0.018 9599 

-0.020 -0.020 -0.015 -0.045 0.005 0.018 9599 

Mixed Mode Plat:e Specimen 

Specimen Description 

The mixed mode plate test specimen is a 0.25 inch thick 

6061 T6 aluminum plate machined as shown in Figure 21. The 

two slots are machined by the Electro Discharge Machine (EDM) 

process with a 0.010 inch diameter wire. This specimen is 

modeled after a photoelastic model used by Sanford and Dally 

[8] . This specimen will be shown to produce a ratio of KII/KI 

that varies from 0 to 2.2 depending upon which matched set (1 

through 6) of holes the in-plane tensile load is applied. 

Located on one face of the specimen, near the left crack 

tip, are two 10 element strip strain gages manufactured by 

Measurements Group, Inc. The gage type is EA-13-020PF-120, so 

the length for each element is 0.020 inches. Using a Cartesian 

coordinate system with the origin at the plate center as shown 
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Aluminum plate 
6061 T6 
0.25 inch thick 
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each edge 
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•9.00' 

10.00 

Figure 21. Mixed mode plate specimen dimensions. 

in Figure 21, the locations of the 10 element gage centriods 

are listed in Table 10. Note that the crack tip is located at 

X = -1.477 inches. Positive Y values are for the "top" gage 

set and negative Y values for the "bottom" set. The gage 

orientation angle, a, has the same orientation as that shown 

in Figure 1. The gage locations satisfy all of the 

restrictions identified in the previous section. 

Theoretical Solution 

A closed form solution for the finite pin loaded plate in 

Figure 21 is not available. Solutions for an infinite plate 

with remote loads are found in Tada, et al [30] and Rooke and 
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Table 10. Mixed mode plate strain gage locations. 

Gage # X {inches) Y (inches) a (radians) 
Crack Tip -1.477 0.00000 
Top 1 -1.617 0.10145 1.5640 
Top 2 -1.582 0.10121 1.5640 
Top 3 -1.547 0.10098 1.5640 
Top 4 -1.512 0.10074 1.5640 
Top 5 -1.477 0.10050 1.5640 
Top 6 -1.442 0.10026 1.5640 
Top 7 -1.407 0.10003 1.5640 
Top 8 -1.372 0.09979 1.5640 
Top 9 -1.337 0.09955 1.5640 
Top 10 -1.302 0.09931 1.5640 
Bottom 1 -1.652 -0.10485 1.5834 
Bottom 2 -1.617 -0.10441 1.5834 
Bottom 3 -1.582 -0.10397 1.5834 
Bottom 4 -1.547 -0.10353 1.5834 
Bottom 5 -1.512 -0.10309 1.5834 
Bottom 6 -1.477 -0.10265 1.5834 
Bottom 7 -1.442 -0.10221 1.5834 
Bottom 8 -1.407 -0.10177 1.5834 
Bottom 9 -1.372 -0.10133 1.5834 
Bottom 10 -1.337 -0.10089 1.5834 

Cartwright [31] . The solution from Tada is more compact and 

is used here. Since this specimen is pin loaded only the in 

plane tension, P, is carried for the solution. Figure 22 

illustrates the crack locations and the loading. The KI and 

KII stress intensity factors are expressed as functions of the 

applied in-plane load, P, and the angle, y, that the load acts 

on relative to the cracks: 

Kll 1 JPsinyl 

KIlJ ~ [Pcos YJ 

Figure 23 summarizes the KI and KII predictions for the 

theoretical solution as a function of the angle of the applied 
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Figure 22 Description of load relative to crack tip location 
for theoretical solution of mixed mode plate 
specimen. 

6000-1 
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Gamma, degrees 

Figure 23 . KI and KII as a function of the angle of the 
applied load. 
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load. The ratio of KII to KI, as a function of the angle of 

the applied load, is plotted in Figure 24. There are two 

issues regarding the use of this solution for the specimen in 

Figure 21. The first is that the specimen is a finite instead 

of an infinite plane, and the second is that the specimen is 

pin loaded in the vicinity of the crack tips, not infinitely 

remotely loaded. A nxjmerical solution was developed to 

account for these two problems. 

4^ 

3.5-: 

2.5 

KII/KI 2-i 

1.5 

0.5 

0 10 20 30 40 50 60 70 80 90 
Gamma, degrees 

Figure 24. The ratio of KII to KI as a fionction of the angle 
of the applied load. 

Numerical Solution 

The finite element model generated has 26458 nodes and 

12054 isoparametric 6 node plane stress elements. A triincated 

listing for the load case 1 of the model appears in Appendix 

D. Load cases 2 through 6 are similar; only the locations of 

the boiindary conditions and applied load are changed. The 
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nodes and elements are generated with an automeshing routine 

and, for brevity, lists of these are not included. The 

criteria established in the previous section for mesh density 

and singular tip element selection are followed, with two 

exceptions. First, since this plate is relatively thin, 6 

node plane stress elements with thickness input are used in a 

2D mesh instead of the 3D solid elements. Second, since the 

problem is solved in 2D, a higher mesh density than the 

minimxam recommended can be used without exceeding the 

computational resources. An overall view of the model is 

shown in Figure 25 and a local view of the left crack tip in 

Figure 26. The numerical data are taken at the left crack tip 

so the mesh density there is increased. 

HIXEO MODE PLATE, load case 1 

flNSYS 5.2 
MflR 29 1997 
10:32:30 
ELEMENTS 
TYPE NUM 

ZV =1 
DIST=5.5 
XF =5 
YF =5 

Figure 25. Mixed mode plate FEM mesh. 
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MIXED MODE PLATE, load case 1 

OHSYS 5.2 
MflR 29 1997 
10:36:53 
ELEMENTS 
TYPE NUM 

ZV =1 
DIST=.219864 
XF =3.525 
YF =5 

Figure 26. Close up of left hand crack tip in mixed mode 
plate FEM mesh. 

Six load cases are riin, one for each set of diagonally opposed 

holes shown in Figure 21. The load used is 3000 pounds. As 

in the previous section, strains are output from 

the model at the strip gage locations and are shown in Table 

11. Then, using Equations 55 through 63, in a similar manner 

as the compact tension specimen, the KI and KII stress 

intensity factors are computed using the displacements near 

the crack tip. Using the strains in Table 11 and setting the 

crack tip location and orientation fixed and known the KI and 

KII stress intensity factors are then computed using the 

MIXMODE routine listed in Appendix B. The results for these 

computations are shown in Figures 27 and 28. The two solution 

methods agree very well, the largest deviation being only 1.3% 
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Table 11. Strains at gage locations for mixed mode plate 

specimen finite element model. 

Gage # Case 1 

eyy, 

Case 2 

Eyy. 

Case 3 

Syy, 

Case 4 

Eyy, l̂e 

Case 5 

Eyy. 

Case 6 

Eyy, ne 

Top 1 42.3 48.0 49.3 48.1 50.7 45.7 

Top 2 82.4 78.6 68.2 51.6 38.6 12.6 

Top 3 177.6 160.6 132.7 89.6 50.0 -16.4 

Top 4 357.7 332 .6 289.6 213 .0 141.1 14.4 

Top 5 576.9 564.3 526.3 430.9 343.2 164.6 

Top 6 679.9 695.6 682.7 600.0 528.3 347.5 

Top 7 640 .1 670 .8 673 .3 610 .0 559.5 406.1 

Top 8 559.6 589.6 592.5 539.0 499.0 369.9 

Top 9 488.9 511.5 507.3 455 .8 417.1 303 .4 

Top 10 437 .2 451.2 438.4 385 .1 344.5 239.1 

Bottom 1 28.1 -2.3 -59.5 -130.2 -198.4 -286.6 

Bottom 2 44.8 20 .0 -31.7 -98.5 -162.3 -248.2 

Bottom 3 86.4 72 .7 31.3 -29.9 1 00
 

(->
 

-173.3 

Bottom 4 181.6 185.3 158.6 101.0 49.4 -47.7 

Bottom 5 357.6 378.3 362.8 296.4 238.7 105.9 

Bottom 6 571.5 589.4 562 .3 462 .2 372.6 174.7 

Bottom 7 669.9 662.2 603.6 464.7 336.3 88.4 

Bottom 8 636.8 606.6 524.7 396.5 224.1 -30.2 

Bottom 9 558.6 518.6 428.8 277 .0 134.5 -100.3 

Bottom 10 487 .7 446.4 357.2 215.5 83 .4 -127.0 

for the KII's in case 5. The solutions show that the finite 

plate and pin loading cause a much different result than the 

infinite plate with remote point loading used for the 

theoretical calculation and shown in Figures 23 and 24. The 

actual test specimen does not reach a ratio of KII to KI as 

high as the theory would predict. 
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Figure 27. KI and KII for the n\americal model as a fxinction 
of the angle of the applied load. 
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Figure 28. The ratio of KII to KI for the numerical model as 
a function of the applied load. 
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For all six load cases contour plots of the Syy strain are 

shown in Figures 29 through 34, The contours show the change 

in the crack tip local strain field as the angle of the 

applied load is changed. 

For each load case, results of the MIXMODE routine for mixed 

modes with unknown crack initial position and orientation are 

plotted in Figures 35 and 36. The range of initial offsets at 

which the routine started, relative to the crack tip, are: 

- OJ- < Xgff < OJ- inches 

- 0.05 < Yoff < 0.05 inches 

- 0.05 < Pgfg < 0.05 radians 

The output ranges over: 

- 0.002 < Xjjff < 0.002 inches 

- 0.005 < Yoff < 0.005 inches 

- 0.24 < Poff < 0.29 radians 

This indicates that the routine works well at locating the 

crack tip, but that the orientation angle is found over a 

broader range. The vertical bars in Figures 35 and 36 

represent the limits of the range over which the solution 

converged for each case; the data points are the converged 

solutions with the initial offsets set to zero. 

Experimental Procedure 

The specimen is loaded in tension using the 20 Kip MTS 

machine and grips operating at 20% range for 4000 poiind 

maximxam loading. The peak loading is selected for a maximxmi 

Ki of 7.4 Ksi -v/inch , which is below the materials Kjc of 30 
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MIXED MODE PLATE, load case 1 

ANSYS 5.2 
MAR 29 1997 
10:39:21 
NODAL SOLUTION 
STEP=1 
SUB si TIME=1 
EPELY (AVG) 
RSYSsO 
OMX s.002959 
SMN =-.663E-04 
SMX s.003163 

=.113E-03 
S.472E-03 
S.831E-03 
=.001189 
=.001548 
5.001907 
s.002266 
002624 

5.002983 

Figure 29. Eyy strain for case 1 loading of mixed mode plate 
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MIXED MODE PLATE, load case 2 

(AVG) 

ANSYS 5.2 
MAR 29 1997 
10:42:42 
NODAL SOLUTION 
STEP=1 
SUB =1 
TIME«1 
EPELY 
RSYS=0 
OMX s.002935 
SMN S-.182E-03 
SMX =.00325 
A S.909E-05 

=.390E-03 
=.772E-03 
».001153 
=.001534 
s. 001915 
5.002297 
=.002678 
=.003059 

Figure 30. Eyy strain for case 2 loading of mixed mode plate 
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MIXED MODE PLATE, load case 3 

(AVG) 

ANSYS 5.2 
MAR 29 1997 
10:45:58 
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TIME=1 
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Figure 31. Eyy strain for case 3 loading of mixed mode plate 
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Figure 32. Zyy strain for case 4 loading of mixed mode plate 
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MIXEn MODE PLATE, load case 5 

ANSYS 5.2 
MflR 29 1997 
10:52:08 
NODM. SOLUTION 
STEP=1 
SUB =1 TIME=1 
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RSYS=0 
DMX =.00337 
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Figure 33. Eyy strain for case 5 loading of mixed mode plate 
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Figure 34. Eyy strain for case 6 loading of mixed mode plate 
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Figure 35. KI and KII calculated using MIXMODE routine and a 
range of crack location and orientation initial 
offsets from the tirue crack position. 

2.5-1 

2-

1.5-

0.5-

10 20 30 40 50 60 70 80 90 0 
Gamma, degrees 

Figure 36. The ratio of KII to KI calculated using MIXMODE 
and a range of crack location and orientation 
initial offsets from the true crack position. 
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Ksi -v/inch . The strain data is collected using two 

Measurements Group, Inc. strain indicators through two 

Measurements Group, Inc. switch and balance units. Six load 

cases are run, each using one set of the diagonally opposed 

sets of holes shown in Figure 21. The strain data collected 

at the gage locations for 3000 pounds load is listed in Table 

12. Gage Top 7 failed and is not included in the table. 

Data Analysis and Results 

The strain readings from Table 12 are processed using the 

MIXMODE routine for mixed modes and a known, fixed, crack 

location and orientation. The resulting stress intensity 

values are plotted in Figures 37 and 38 as a fxinction of the 

angle of the applied load. For all of the load cases results 

of the MIXMODE routine for mixed modes with unknown crack 

initial position and orientation are plotted in Figures 39 and 

40. The range of initial offsets at which the routine 

started, relative to the crack tip, are: 

— 0.05 < Xgff < 0.05 inches 

— 0.03 < ŷ gf < 0.03 inches 

- 0.03 < Poff < 0.03 radians 

The output ranges over: 

— 0.007 < Xgff < 0.002 inches 

- 0.008 < ŷ ff < 0.006 inches 

- 0.3 < < 0.29 radians 

which indicates that the routine works well at locating the 

crack tip, but that the orientation angle has a larger 
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Table 12. Strains at gage locations for mixed mode plate 
specimen, experimental test, 3000 poxinds load per 
case. 

Gage # Case 1 

£yy, 

Case 2 

Eyy, \i£ 

Case 3 

Eyy, 

Case 4 

Eyy, \1£ 

Case 5 

eyy, HE 

Case 6 

Eyy, |I£ 

Top 1 48 48 50 53 60 50 

Top 2 86 73 64 54 50 17 

Top 3 198 161 130 95 70 -20 

Top 4 408 341 290 223 173 2 

Top 5 643 570 521 446 392 154 

Top 6 744 690 667 615 581 339 

Top 8 611 575 568 539 533 351 

Top 9 532 491 476 443 435 271 

Top 10 485 438 414 374 364 207 

Bottom 1 -21 -11 -52 -113 -158 -233 

Bottom 2 29 2 -42 -98 -137 -213 

Bottom 3 66 42 6 -50 -83 -167 

Bottom 4 161 141 116 66 39 -68 

Bottom 5 355 333 317 264 238 78 

Bottom 6 593 545 512 429 384 131 

Bottom 7 716 627 555 422 345 15 

Bottom 8 695 582 482 325 231 -114 

Bottom 9 622 504 398 242 150 -171 

Bottom 10 551 437 336 190 108 -181 

error associated with it. Note that the initial range is more 

limited than that used for the numerical data. This is 

necessary for convergence to a reasonable answer. The 

vertical bars in Figures 39 and 40 represent the limits of the 

range over which the solution converges for each case; the 

data points are the converged solutions with the initial 

offsets set to zero. The solution agrees well with the 
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Figure 38. The ratio of KII to KI for the experimental data 
as a function of the angle of the applied load. 
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numerical solution presented in Figures 34 and 35 but the 

spread in the range of solutions is wider. Figure 41 is a 

final comparison of the experimental and numerical solutions 

for Kl and KII with the range bars omitted. The experimental 

Kl results agree well with the nxamerical Kl results, the KII 

results are slightly spread. 

6000 n 

5000-

4000-

3000-
Kll 

2000-

1000-

0 -

-1000 
0 10 20 30 40 50 60 70 80 90 

Gamma, degrees 

Figure 39. Kl and KII calculated using MIXMODE and a range of 
crack location and orientation initial offsets 
from the true crack position, using experimental 
data. 
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Figure 40. The ratio of KII to KI calculated using MIXMODE 
and a range of crack location and orientation 
initial offsets from the true crack position, 
using experimental data. 
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Figure 41. KI and KII calculated using MIXMODE for the 
experimental and numerical data. 
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CHAPTER 6. CONCLUSIONS AlID DISCUSSIONS 

The method developed to determine KI and KII works well 

for known crack locations and orientations. The mixed mode 

plate specimen with two strip gages located near the crack tip 

and parallel to it provides excellent agreement with the 

finite element numerical solution. The MIXMODE routine using 

the numerical data is within 1.3 % of the displacement 

matching method. The experimental data processed with MIXMODE 

is within 8 % for the KI values. The experimental KII values 

are within 2 % at the low load angle, where KII is the 

dominate stress intensity factor, but there is an offset at 

the high load angle. At the high load angle the KI term is 

dominate. The 600 psi Vinch difference between the KII 

solutions at the 90 degree load angle is only 12 % of the KI 

solution. 

For unknown crack locations and orientations good initial 

knowledge of the vicinity of the crack tip is required. Using 

two strip gages, as on the mixed mode plate, provides better 

tip locating ability and stress intensity factor solution than 

the one strip gage on the compact tension specimen. The crack 

orientation is found with less precision than the tip location 

is. 

The mixed mode plate characterized in Chapter 5 provides 

a convenient tool for experimenting with other techniques to 

determine mixed mode stress intensity factors. A KII to KI 

ratio range of 0 to 2.2 is now available in a single specimen. 

The specimens used by previous experimenters [7, 8, 10, 13, 

14, 18, 19, 23,28] are fixed to a singe KII to KI ratio, a new 

specimen must be machined to investigate a different KII to KI 

ratio. 

The higher order terms, those beyond ̂  , in Equation 12 

are shown to be unnecessary for accurately determining the 
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stress intensity factors from strain gage data. This reduces 

the niimber of variables that need to be used with a limited 

number of strain gages. The benefits of a least squares fit 

are enhanced. Empirically, this is pleasing since it is 

expected that the strain field away from the crack tip will 

not have a high order dependence on distance from the crack 

tip. 

There are several areas of additional research that this 

topic brings to mind. These are: 

1. Expand the MIXMODE routine to include the Kill term. 

2. Create a test specimen with all three stress intensity 

factors active, KI, KII, and Kill. 

3. Expand the relationships to include non isotropic 

materials. 

4. Derive the surface strain fields for other types of 

cracks, such as corner cracks and elliptical face 

cracks. 

5. Use this method to monitor a crack in a structure as 

it is loaded in service. 

6. Optimize the placement of gages around an existing 

flaw for monitoring growth during cyclic loading. 

The accuracy of the KI and KII solutions for different 

applications requires some discussion. For the creation of 

crack growth curves the stress intensity factor and crack 

growth must both be measured very closely. For this 

application the method proposed here would need to use known 

crack tip location and orientation. 

For many engineering applications the knowledge of KI, 

KII, and tip location do not require such precision. A 

reasonable estimate is often sufficient to solve the problem 
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at hand. A fine example of this is cracking foxind in the 

Space Shuttle Main Engine (SSME) High Pressure Fuel TurboPiomp 

(HPFTP) turbine blade attachments. On July 24, 1991, SSME 

engine 0215 experienced a failure of the second stage turbine 

of the HPFTP [45] . The failure was attributed to the growth 

of an internal defect to critical size, which liberated a 

second stage airfoil just above the attachment [46]. The 

problem was twofold; first the defect was undetected by 

inspections during manufacturing and, second, fracture 

mechanics would not predict the crack growth to failure. 

The first problem is beyond the scope of this paper. 

References 45 and 46 provide a detailed discussion. For the 

second problem the published da/dN (crack length change, da, 

per loading cycle, dN) vs. AK (change in stress intensity 

factor per load cycle) is compared with the calculated AK for 

the flaw and the measured da/dN from crack growth arrest 

marks. Additional data points for this comparison of the 

da/dN vs. AK are available from earlier blade attachment 

cracking experience [47] . Figure 42 shows the da/dN vs. AK 

curve originally published for the blade material with several 

of the actual blade cracks plotted on the same graph [48] . 

The actual growth rate experienced in service was 3 to 4 

orders of magnitude greater than the published material 

property curve. Even a rough order of magnitude estimate of 

AK will highlight this difference. A factor of 2 in variation 

of the AK does not affect the conclusion that the laboratory 

data does not account for the environment experienced by the 

blades. Sxibsequent corrections to the test environments 

resulted in a curve that passes through the data points the 

blade analysis provided. 
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Figure 42. Laboratory da/dN curve for blade material with 
actual blade crack da/dN superimposed. 

The conclusion is that an investigation into cracking 

would benefit from the MIXMODE routine if the component could 

be instrumented with strain gages while being subjected to 

service loads. The reasonableness of the material property-

curves and fracture analysis could be readily assessed. 
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APPENDZZ A. HLLS FORTRAN CODE LISTING 

c Search Routine using the FOURTH ROOT OF NWR 5/21/95 

C This version incorporates weighted residuals 2-27-95 

c This program controls the input and output data and sets up the 

iterations 

c for a minimization of a multiple linear least squares search for the 

c best fit of coefficients to an equation describing the strain field 

c around a crack tip 

c 

c 

c The first COMMON block contains the varieibles used for 27 solutions 

c of the MLLS problem, these are used by the main program, and the 

c subroutine FIT. The crack tip offsets are stored here. 

c 

COMMON/CMAIN/CRACKX, CRACKY, CRACKB, CRACKAO, CRACKBO, CRACKAl 

& , CRAW14, XCL, YCL, BETAL, DX, DY, DB, DXYMAX, DBMAX, DXYMIN 

& ,DBMIN,XMAX,XMIN,YMAX,YMIN,BMAX,BMIN, COUNT 

REAL CRACKX(27) ,CRACKY{27) ,CRACKB(27) ,CRACKAO(27) ,CRACKBO(27) 

& ,CRACKA1(27) ,XCL, YCL, BETAL, DX, DY, DB, DXYMAX,CRAW14 (27) 

& , DBMAX, DXYMIN, DBMIN, XMAX, XMIN, YMAX, YMIN, BMAX, BMIN 

INTEGER COUNT 

c 

c CRACKX(27) - array of 27 crack tip global x locations 

c CRACKY(27) - array of 27 crack tip global y locations 

c CRACKB(27) - array of 27 crack tip global beta angles 

c CRACKAO (27) - array of 27 parameter AO 

c CRACKBO (27) - array of 27 parameter BO 

c CRACKA1(27) - array of 27 parameter A1 

c CRAW14(27) - array of 27 sum of Fourth Root weighted residuals 

c XCL - crack tip x master location for a particular set of 27 

c YCL - crack tip y master location for a particular set of 27 

c BETAL - crack tip beta master angle for a particular set of 27 

c DX - current tip +/- x variation, this set of 27 

c DY - current tip +/- y variation, this set of 27 

c DB - current tip +/- beta variation, this set of 27 

c DXYMAX - maximum tip +/- x,y variation,user input 

c DBMAX - maximum tip +/- beta orientation,user input 

c DXYMIN - minimiam tip +/- x,y variation,user input 

c DBMIN - minimum tip +/- beta orientation,user input 

c XMAX - maximum + x location allowed, user input 

c XMIN - maximum - x location allowed, user input 

c YMAX - maximum + y location allowed, user input 

c YMIN - maximum - y location allowed, user input 

c BMAX - maximiim + beta orientation allowed, user input 

c BMIN - maximxim + beta orientation allowed, user input 

c COUNT - index used within the set of 27 

c 

c The COMMON block CFIT contains the strain data as measured on the 

c hardware or FEM model in global coordinates and the current solution 

c from MLLS as the 27 cases are stepped through 

c 

COMMON/CFIT/XG, YG, ANB, STRN, MU, K, BETA, N,XC, YC, AO, BO, A1 

& ,WGH14,STRNSUM 

REAL XG(80) ,YG(80),ANB(80),STRN(80) ,MU,K,BETA,XC,YC 

REAL A0,B0,A1,WGH14,STRNSUM 

INTEGER N 

c 

c XG(80) - gage x locations, user input 
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c YG(80) - gage y locations, user input 

c ANB{80) - gage angles in global system, user input 

c STRN(80) - gage strain, user input 

c MU - shear modulus, user input 

c K - plane stress constant, user input 

c BETA - guess of crack tip orientation, user input 

c N - number of data points 

c XC - guess of crack tip x location, user input 

c YC - guess of crack tip y location, user input 

c AO - parameter AO from current iteration of fit 

c BO - parameter BO from current iteration of fit 

c A1 - parameter A1 from current iteration of fit 

c WGH14 - sum of Cube Root of weighted differences 

c STRNSUM - sum of absolute value of input strains 

c 

c The COMMON block CMMLS contains the output from the MLLS routine for 

c the current case as the 27 cases are stepped through. These 

variables 

c are then placed in the 27 deep vectors in COMMON block CMAIN. 

c 

COMMON/CMLLS/Y, XI, X2 , SUMY2 , SY2 , SR2 , FTl, FT2 , BOGO, GO, R, THETA, ALPHA 

REAL Y(80),X1(80) ,X2 (80),SUMY2,SY2 , SR2,FTl,FT2 

REAL BOGO 

REAL GO,R(80),THETA{80),ALPHA(80) 

c 

c Y(80) - response variate 

c XI (80) - first predictor variate 

c X2(80) - second predictor variate 

c N - number of data points 

c SUMY2 - sum of the Y's, Squared 

c SY2 - residual sum mean squares after mean 

c SR2 - regression mean simi of squares 

c FTl - first test statistic 

c FT2 - second test statistic 

c BOGO - m from Y=A0Xl+AlX2+m 

c GO - function GO 

c R(80) - gage radial distance from crack tip 

c THETA(80) - gage angle location from crack tip, crack coord, sys 

c ALPHA(80) - gage orientation angle in crack coord, sys 

c 

REAL K1 

INTEGER I,IN,10,L,M,P,MINIMUM,MAX 

CHARACTER*16 FILIN,FILOUT 

DATA IN,10/21,22/ 

c 

c K1 - stress intensity factor 

c I - general use index 

c IN - input file unit number 

c 10 - output file unit number 

c L,M,P - general use index 

c MINIMUM - number of 1 - 27 with with minumum residual parameter 

c MAX - iteration counter, program stoped at 100 

c FILIN - name of input data file 

c FILOUT - name of output data file 

C 

C Read in the data file names 

C 

WRITE (*,100) 
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100 FORMAT (• INPUT FILE NAME:') 

READ (*,101) FILIN 

101 FORMAT (A16) 

WRITE (*,102) 

102 FORMAT (' OUTPUT FILE NAME:') 

READ (*,101) FILOUT 

OPEN (IN,FILE=FILIN) 

OPEN (IO,FILE=FILOUT) 

C 

C Read the data files into variables 

C 

READ (IN, 103) N 

103 FORMAT (13) 

READ (IN,104) (STRN(I),XG(I),YG(I),ANB(I),I=1,N) 

104 FORMAT (Ix,FIO.6,IX, FIO.6,IX,FIO.6,IX,FIO.6) 

WRITE (*,105) (STRN(I),XG(I),YG(I),ANB(I),I=1,N) 

WRITE (10,105) (STRN(I),XG(I),YG(I),ANB(I),I=1,N) 

105 FORMAT (1X,G12.6, IX,G12.6,1X,G12.6,IX,G12.6) 

READ (IN,106) XC,YC,BETA 

106 FORMAT (Ix,FIO.6,IX,FIO.6,IX,FIO.6) 

108 FORMAT (lx,G12.6,IX,G12.6,IX,G12.6) 

WRITE (*,108) XC,YC,BETA 

WRITE (10,108) XC,YC,BETA 

READ (IN,107) MU,K 

107 FORMAT (Ix, FIO.6,IX,FIO.6) 

109 FORMAT (lx,G12 . 6,1X,G12 . 6) 

WRITE (*,109) MU,K 

WRITE (10,109) MU,K 

READ (IN,107) DXYMAX,DXYMIN 

WRITE (*,109) DXYMAX,DXYMIN 

WRITE (10,109) DXYMAX,DXYMIN 

READ (IN,107) DBMAX,DBMIN 

WRITE (*,109) DBMAX,DBMIN 

WRITE (10,109) DBMAX,DBMIN 

READ (IN,107) XMAX,XMIN 

WRITE (*,109) XMAX,XMIN 

WRITE (10,109) XMAX.XMIN 

READ (IN, 107) YMAX,YMIN 

WRITE (*,109) YMAX,YMIN 

WRITE (10,109) YMAX,YMIN 

READ (IN, 107) BMAX,BMIN 

WRITE (*,109) BMAX,BMIN 

WRITE (10,109) BMAX,BMIN 

C 

C 

C SET UP FOR FIRST ITERATION 

C 

XCL=XC 

YCL=YC 

BETAL=BETA 

DX=DXYMAX 

DY=DXYMAX 

DB=DBMAX 

MAX=0 

C 

C COMPUTE 27 MLLS SOLUTIONS 

C 

220 MAX=MAX+1 

WRITE (*,3000) MAX 
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WRITE (*,209) XCL 

WRITE (*,210) YCL 

WRITE (*,211) BETAL 

3000 FORMAT (IX, 14) 

IF (MAX.GT.100) THEN 

GOTO 999 

ENDIF 

DO 200 L=l,3 

DO 201 M=l,3 

DO 202 P=l,3 

C0UNT=(L-1)*9+(M-l)*3+P 

CRACKX(COUNT) =XCL-DX+ (L-1) *DX 

CRACKY (COUNT) =YCL-DY+ (M-1) *DY 

CRACKB(COUNT) =BETAL-DB+ (P-1) *DB 

202 CONTINUE 

201 CONTINUE 

200 CONTINUE 

DO 300 C0UNT=1,27 

CALL FIT 

CRACKAO (COUNT) =A0 

CRACKBO (COUNT) =B0 

CRACKAl (COUNT) =A1 

CRAW14(COUNT)=WGH14 

300 CONTINUE 

C 

C FIND THE SMALLEST SUM OF FOURTH ROOT OF WEIGHTED DFFERENCES IN THE 

SET OF 27 

C 

MINIMUM=1 

DO 400 COUNT=2,27 

IF (CRAW14 (MINIMUM) -GT. CRAW14 (COUNT) ) THEN 

MINIMUM=COUNT 

ENDIF 

400 CONTINUE 

C 

C CHECK TO SEE IF MINIMUM IS AT INITIAL POINT 

C 

IF(MINIMUM.EQ.14) THEN 

IF( (DX.LE.DXYMIN) .AND. (DY.LE.DXYMIN) .AND. (DB.LE.DBMIN) ) THEN 

GOTO 1000 

ELSE 

DX=DX/2 

DY=DY/2 

DB=DB/2 

ENDIF 

GOTO 220 

ELSE 

XCL=CRACKX (MINIMUM) 

YCL=CRACKY (MINIMUM) 

BETAL=CRACKB (MINIMUM) 

ENDIF 

IF( ( (XCL.GE.XMIN) .AND. (XCL.LE.XMAX) ) 

& .AND. ( (YCL.GE.YMIN) .AND. (YCL.LE.YMAX) ) 

& .AND. ( (BETAL.GE.BMIN) .AND. (BETAL.LE.BMAX) ) ) THEN 

GOTO 220 

ELSE 

GOTO 998 

ENDIF 

C 
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C 998 IS AN ERROR ENDING 

C 

998 WRITE (*,1998) 

WRITE (10,1998) 

1998 FORMAT (' XCL, YCL, AND/OR BETAL OUT OF RANGE') 

GOTO 1000 

C 

C 999 IS AN ERROR ENDING 

C 

999 WRITE (*,1999) 

WRITE (10,1999) 

1999 FORMAT (' STOPPED BY OVER 100 ITERATIONS') 

GOTO 1000 

C 

C 1000 IS A NORMAL ENDING 

C 

1000 WRITE (*,2000) 

WRITE (10,2000) 

2000 FORMAT (' NORMAL EXIT') 

WRITE (10,206) CRACKAO(MINIMUM) 

WRITE (*,206) CRACKAO(MINIMUM) 

206 FORMAT (IX,' A0= ',E16.6) 

WRITE (10,207) CRACKBO(MINIMUM) 

WRITE (*,207) CRACKBO(MINIMUM) 

207 FORMAT (IX,' B0= ',E16.6) 

WRITE (10,208) CRACKAl(MINIMUM) 

WRITE (*,208) CRACKAl(MINIMUM) 

208 FORMAT (IX,' Al= ',£16.6) 

WRITE (10,209) CRACKX(MINIMUM) 

WRITE (*,209) CRACKX(MINIMUM) 

209 FORMAT (IX,' XCL= ',E16.6) 

WRITE (10,210) CRACKY(MINIMUM) 

WRITE (*,210) CRACKY(MINIMUM) 

210 FORMAT (IX,' YCL= ',E16.6) 

WRITE (10,251) CRAW14(MINIMUM) 

WRITE (*,251) CRAWl4(MINIMUM) 

251 FORMAT (IX,' WRN14= ',E16.6) 

WRITE (10,211) CRACKB(MINIMUM) 

WRITE (*,211) CRACKB(MINIMUM) 

211 FORMAT (IX,' BETAL= ',E16.6,' radians') 

K1=SQRT(2*3.1415927)*CRACKAO(MINIMUM) 

WRITE (10,212) K1 

WRITE (*,212) K1 

212 FORMAT (IX,' Kl= ',E16.6) 

BETAL=(180/3.1415927)*CRACKB(MINIMUM) 

WRITE (10,213) BETAL 

WRITE (*,213) BETAL 

213 FORMAT (IX,' BETAL= ',£16.6,' degrees') 

CLOSE (IN) 

CLOSE (10) 

WRITE (*,1300) 

READ (*,1301) IN 

13 00 FORMAT (IX, 'TYPE RETURN TO CONTINUE ') 

1301 FORMAT (IX,II) 

STOP 

END 
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SUBROUTINE FIT 

c This routine prepares data and calls MLLS 

c This routine is updated and valid 5/21/95. It includes ONLY 

c fourth root of normalized weighted residuals. 

c This version is for 27 solutions. 

c 

c 

C Declare REAL Function and internal vectors and matrices 

c 

c The first COMMON block contains the variables used for 27 solutions 

c of the MLLS problem, these are used by the main program, and the 

c subroutine FIT. The crack tip offsets are storred here. 

c 

c The first COMMON block contains the variaibles used for 27 solutions 

c of the MLLS problem, these are used by the main program, and the 

c subroutine FIT. The crack tip offsets are storred here. 

c 

COMMON/CMAIN/CRACKX, CRACKY, CRACKB, CRACKAO, CRACKBO, CRACKAl 

& , CRAW14, XCL, YCL, BETAL, DX, DY, DB, DXYMAX, DBMAX, DXYMIN 

& ,DBMIN,XMAX,XMIN,YMAX,YMIN,BMAX,BMIN, COUNT 

REAL CRACKX(27) ,CRACKY{27) ,CRACKB(27) ,CRACKAO(27) ,CRACKBO(27) 

& , CRACKAl (27) ,XCL, YCL, BETAL, DX,DY,DB, DXYMAX, CRAW14 (27) 

& , DBMAX, DXYMIN, DBMIN, XMAX, XMIN, YMAX, YMIN, BMAX, BMIN 

INTEGER COUNT 

c 

c 

COMMON/CFIT/XG, YG, ANB, STRN, MU, K, BETA, N, XC, YC, AO, BO, A1 

& ,WGH14,STRNSUM 

REAL XG(80) ,YG(80) ,ANB(80) ,STRN(80) ,MU,K,BETA,XC,YC 

REAL A0,B0,A1,WGH14,STRNSUM 

INTEGER N 

c 

c The COMMON block CMMLS contains the output from the MLLS routine for 

c the current case as the 27 cases are stepped through. These 

variables 

c are then placed in the 27 deep vectors in COMMON block CMAIN. 

c 

COMMON/CMLLS/Y, XI, X2 , SUMY2 , SY2 , SR2 , FTl, FT2 , BOGO, GO, R, THETA, ALPHA 

REAL Y(80) ,X1(80) ,X2 (80) , SUMY2 , SY2 , SR2 , FTl, FT2 

REAL BOGO 

REAL GO,R(80) ,THETA(80) ,ALPHA(80) 

INTEGER I,J 

C 

C Initialize parameter and output variables 

c 

STRNSUM=0.0 

DO 10 1=1,N 

R(I)=SQRT( (XG(I) -CRACKX (COUNT) ) **2+(YG (I)-CRACKY (COUNT) ) **2) 

THETA(I)=ATAN2 ( (-{XG(I) -CRACKX(COUNT) ) *SIN(CRACKB(COUNT) ) 

& +(YG (I)-CRACKY (COUNT) ) *COS (CRACKB (COUNT) ) ) , 

& ( (XG(I)-CRACKX(COUNT) ) *COS (CRACKB (COUNT) ) 

& +(YG( I)-CRACKY (COUNT) ) * SIN (CRACKB (COUNT) ) ) ) 

ALPHA (I) =ANB (I) -CRACKB (COUNT) 

Y(I)=2*MU*STRN(I) 

X1(I)=(1./SQRT(R(I)))*(K*C0S(THETA(I)/2) 

& -0.5*SIN(THETA(I))*SIN(1.5*THETA(I))*COS(2*ALPHA(I)) 

& +0.5*SIN(THETA(I) ) *COS (1. 5 *THETA (I) ) *SIN(2*ALPHA(I) ) ) 

X2 (I) =SQRT(R(I) ) *COS(THETA(I) /2) * (K+ 
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& SIN(THETA(I) /2) *SIN(THETA(I) /2) *C0S{2*ALPHA(I) ) 

& -0 .5*SIN(THETA(I) ) *SIN{2*ALPHA(I) ) ) 

STRNSUM=STRNSUM+ABS {STRN {I) ) 

10 CONTINUE 

CALL MLLS 

G0=K+C0S(2-'ALPHA(1) ) 

B0=B0G0/G0 

WGH14=0.0 

DO 110 1=1,N 

WGH14=WGH14+SQRT (SQRT (ABS ((2*MU*STRN(I) -A0*X1 (I) -A1 *X2 (I) 

& -BO*GO) *STRN(I) / (MU*STRNSUM) ) ) ) 

110 CONTINUE 

100 FORMAT (1X,I2,1X,G12.6,1X,G12.6) 

WRITE (*,100) N,A0,WGH14 

C 

RETURN 

END 

SUBROUTINE MLLS 

c Least Square subroutine for search program 

c 

C Declare REAL Function and internal vectors and matrices 

c 

c The COMMON block CFIT contains the strain data as measured on the 

c hardware or FEM model in global coordinates and the current solution 

c from MLLS as the 27 cases are stepped through 

c 

COMMON/CFIT/XG, YG, ANB, STRN, MU, K, BETA, N, XC, YC, AO, BO, A1 

& ,WGH14,STRNSUM 

REAL XG(80) ,YG(80) ,ANB{80) ,STRN{80) , MU, K, BETA, XC, YC 

REAL A0,B0,A1,WGH14,STRNSUM 

INTEGER N 

c 

c The COMMON block CMMLS contains the output from the MLLS routine for 

c the current case as the 27 cases are stepped through. These 

variables 

c are then placed in the 27 deep vectors in COMMON block CMAIN. 

c 

COMMON/ CMLLS /Y, XI, X2 , SUMY2 , SY2 , SR2 , FTl, FT2, BOGO, GO, R, THETA, ALPHA 

REAL Y(80),X1{80) ,X2 (80),SUMY2,SY2,SR2,FTl,FT2 

REAL BOGO 

REAL GO,R(80) ,THETA(80) ,ALPHA(80) 

REAL X(80,3) ,B(3) ,XIAVE,X2AVE. Y2SUM,XTX(3 ,3) 

REAL XTXINV(3,3) ,XTY(3) ,BTXTY 

INTEGER I,J,L 

C 

C X(80,3) - centered set of data 

C B(3) - vector of estimation parameters 

C XIAVE - average of XI values 

C X2AVE - average of X2 values 

C Y2SUM - sum of Y'^2 

C XTX(3,3) - X transpose times X 

C XTXINV(3,3) - XTX inverse 

C XTY{3) - X transpose times Y 

C BTXTY - B transpose times XTY 

C I,J,L - general use index 
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C Initialize parameter and output variables 

c 

100 FORMAT {1X,I2,1X,G12.5,1X,G12.6,1X,G12.6) 

101 FORMAT (1X,G12.6,1X,G12.6,1X,G12.6,1X,G12.6,1X,G12.6,1X,G12.6) 

X1AVE=0.0 

X2AVE=0.0 

Y2SUM=0.0 

SUMY2=0.0 

DO 10 1=1,N 

X1AVE=X1AVE+X1{I) 

X2 AVE=X2AVE+X2(I) 

Y2 SUM=Y2 SUM+Y(I)*Y(I) 

SUMY2=SUMY2+Y{I) 

10 CONTINUE 

C 

X1AVE=X1AVE/N 

X2AVE=X2AVE/N 

SUMy2=SUMY2**2. 

C 

C create centered data in x matrix and initialize other arrays 

C 

DO 20 1=1,N 

X(I,1)=1.0 

X(I,2)=X1(I)-XIAVE 

X(I,3)=X2(I)-X2AVE 

20 CONTINUE 

DO 25 1=1,3 

XTY(I)=0.0 

B(I)=0.0 

DO 26 J=l,3 

XTX(I,J)=0.0 

XTXINVd, J)=0.0 

26 CONTINUE 

25 CONTINUE 

DO 30 1=1,3 

DO 40 J=l,3 

DO 50 L=1,N 

XTX(I, J)=XTX{I, J)+X(L, I) *X(L, J) 

50 CONTINUE 

40 CONTINUE 

30 CONTINUE 

CALL INV2(XTX,XTXINV,3,3) 

DO 60 1=1,3 

DO 70 J=1,N 

XTY(I)=XTY(I)+X(J,I) *Y(J) 

70 CONTINUE 

60 CONTINUE 

DO 80 1=1,3 

DO 90 J=l,3 

B(I)=B{I)+XTXINV(I,J)*XTY(J) 

90 CONTINUE 

80 CONTINUE 

BOGO=B(1)-B(2)*X1AVE-B(3)*X2 AVE 

A0=B(2) 

A1=B(3) 

SY2=(Y2SUM-SUMY2/N)/(N-1) 

FT1=SUMY2/(N*SY2) 

BTXTY=B(1)*XTY(1)+B(2)*XTY(2)+B{3)*XTY(3) 

SR2=(BTXTY-(SUMY2)/N)/2 



81 

S2=(Y2SUM-BTXTY)/(N-3) 
RETURN 
END 

SUBROUTINE INV2 (A,Z.N,KR) 
REAL A{KR,KR),Z(KR,KR) 
REAL SMAX,S,XOFF,X 
INTEGER N, KR, I, J, NIT, NOT, NERROR, IT, NMl, L 
INTEGER LA, K, JMAX, LS, M,Ml, LMAX, lOFF, JOFF, JC 
REAL W(150),U(150),IV{150) 
+ ,IRE(150),BIN(150) 
DATA NIT,NOT/5,25/ 

C 
C MATRIX INVERSION (A**-l = Z) . RANK ANNIHILATION METHOD. 
C THE INVERSION CHECK Z*A IS CALCULATED AND PRINTED. 
C THE MAXIMUM SIZE IS 
C N=150 
C CODED BY CARL BODLEY. FEBRUARY 1967. 
C 
C SUBROUTINE ARGUMENTS 
C A = INPUT MATRIX TO BE INVERTED. SIZE(N,N) . 
C Z = OUTPUT RESULT MATRIX. SIZE (N,N). 
C N = INPUT SIZE OF MATRICES A,Z. MAX =150. 
C KR = INPUT ROW DIMENSION OF A,Z IN CALLING PROGRAM. 
C 
2000 FORMAT (// lOX,10(7X,IH(,12,IH) )) 
2001 FORMAT (// lOX, 41HSUBR0UTINE INV2 HAS CALCULATED DATA BELOW) 
2002 FORMAT (///lOX,37HTHE (A**-1)*{A) INVERSION CHECK GIVES 

* ///10X,25HTHE DIAGONAL ELEMENTS ARE // (13X,lOFll.8)) 
2003 FORMAT (// 10X,35HTHE MAXIMUM OFF-DIAGONAL ELEMENT IS 

* Ell. 3, 2X, 4HAT { 13, IH, 13, IH) ) 
C 
C OPEN (UNIT=25,FILE="INV2.DAT",STATUS="NEW") 

NERR0R=1 
IF (N.GT.150)GO TO 999 

C 
NERR0R=2 

C 
C GENERATE INITIAL ROW INDICES. 

IT=1 
GO TO 90 

91 IT=2 
90 DO 5 1=1,N 

IRE{I)=I 
5 IV(I)=I 
C 
C CONDITION A FOR MAXIMUM DIAGONAL ELEMENTS. 

NM1=N-1 
DO 6 L=1,NM1 
SMAX=0.0 
DO 8 J=L,N 
LA=IRE(J) 
I=L 
K=LA 
IF (IT.EQ.2) I=LA 
IF (IT.EQ.2) K=L 
IF (ABS(A{K,I)).LE.SMAX) GO TO 8 
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JMAX=J 
SMAX=ABS(A(K,I) ) 

8 CONTINUE 
LS=IRE(L) 
IRE(L) =IRE(JMAX) 

6 IRE(JMAX)=LS 
DO 7 L=1,N 
LA=IRE(L) 
BIN(L)=A(LA,L) 
IF(IT.EQ.2) BIN(L)=A(L,LA) 

7 IF (BIN(L).EQ.0.0) BIN(L)=1.0 
C 
C GENERATE INITIAL Z AND ABAR. 

DO 10 L=1,N 
LA=IRE(L) 
I=L 
K=LA 
IF (IT.EQ.2) I=LA 
IF (IT.EQ.2) K=L 
DO 15 J=1,N 
M=J 
M1=LA 
IF(IT.EQ.2) M=LA 
IF (IT.EQ.2) M1=J 

15 Z(M,M1)=0.0 
Z(I,K)=1.0/BIN(L) 

10 A(K,I)=A(K,I)-BIN{L) 
C 
C INVERSION LOOP, USES ROW OF ABAR WITH MAXIMUM S. 

DO 35 L=1,N 
SMAX=0.0 
DO 23 J=L,N 
LA=IV(J) 
S=1.0 
DO 26 K=1,N 

26 S=S+A(LA,K)*Z{K,LA) 
IF (ABS(S).LE.SMAX) GO TO 23 
LMAX=J 
SMAX=ABS(S) 

23 CONTINUE 
IF (SMAX.GT.l.OE-99) GO TO 60 

NERR0R=3 
IF (IT.EQ.2) GO TO 999 
GO TO 65 

60 LS=IV(L) 
IV(L)=IV(LMAX) 
IV(LMAX)=LS 
LA=IV(L) 
DO 25 1=1,N 
W{I}=0.0 
DO 25 J=1,N 

25 W(I)=W(I)+A(IiA,J) *Z(J,I) 
S=1.0+W(LA) 
DO 30 1=1,N 

30 U(I)=Z(I,LA) 
DO 35 1=1,N 
DO 35 J=1,N 

35 Z(I,J)=Z(I,J)-U{I)*W(J)/S 
C 
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C RESTORE A. 
65 DO 40 L=1,N 

LA=IRE(L) 
I=L 
K=LA 
IF (IT.EQ.2) I=LA 
IF (IT.EQ.2) K=L 

40 A(K,I)=A(K,I)+BIN(L) 
IF (SMAX.LE.l.OE-99) GO TO 91 

C 
C COMPUTE INVERSION CHECK Z*A. 

XOFF=0.0 
DO 50 J=1,N 
DO 45 1=1,N 
X=0. 
DO 46 K=1,N 

46 X=X+Z(I,K) *A(K, J) 
IF (I.NE.J) GO TO 47 
U(I)=X 
GO TO 45 

47 IF (ABS(X) .LT.XOFF) GO TO 45 
XOFF=X 
IOFF=I 
JOFF=J 

45 CONTINUE 
50 CONTINUE 
C 
C PRINT INVERSION CHECK AND MAXIMUM OFF-DIAGONAL ELEMENT, 
c WRITE (NOT,2000) (JC, JC=1,10) 
C WRITE (NOT,2001) 
c WRITE (NOT,2002) (U(I), 1=1,N) 
c WRITE (NOT, 2003) XOFF , lOFF , JOFF 
c WRITE (NOT,2020) ((A(I,J), 1=1,N), J=1,N) 
c WRITE (NOT,2020) ((Z(I,J), 1=1,N), J=1,N) 
2020 F0RMAT(1X,E14.6) 

RETURN 
98 Z(l,l)=1.0/A(l,l) 
C 
999 WRITE (NOT,*) 'ERROR NUMBERNERROR 
c CLOSE (25) 

END 
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APPENDIX B. HZXHODE FORTRAN CODE LISTING 

c Search Routine using the FOURTH ROOT OF NWR 5/21/95 
C This version incorporates weighted residuals 2-27-95 
C Modified 2/97 for mixed mode data reduction 
c This program controls the input and output data and sets up the 
iterations 
c for a minimization of a multiple linear least squares search for the 
c best fit of coefficients to an equation describing the strain field 
c around a crack tip 
c 
c 
c The first COMMON block contains the variables used for 27 solutions 
c of the MLLS problem, these are used by the main program, and the 
c subroutine FIT. The crack tip offsets are stored here. 
c 

COMMON/CMAIN/CRACKX, CRACKY, CRACKB, CRACKAO, CRACKBO, CRACKAl, CRACKCO 
& , CRACKCl, CRAW14, XCL, YCL, BETAL, DX, DY, DB, DXYMAX, DBMAX, DXYMIN 
& ,DBMIN,XMAX,XMIN,YMAX,YMIN,BMAX,BMIN, COUNT 
REAL CRACKX(27) , CRACKY (27) , CRACKB (27) , CRACKAO (27) , CRACKBO (27) 
& , CRACKAl (27) , CRACKCO (27) , CRACKCl (27) 
& , XCL, YCL, BETAL, DX, DY, DB, DXYMAX, CRAWl 4(27) 
& , DBMAX, DXYMIN, DBMIN, XMAX, XMIN, YMAX, YMIN, BMAX, BMIN 
INTEGER COUNT 

c 
c CRACKX{27) - array of 27 crack tip global x locations 
c CRACKY(27) - array of 27 crack tip global y locations 
c CRACKB (27) - array of 27 crack tip global beta angles 
c CRACKAO(27) - array of 27 parameter AO 
c CRACKBO(27) - array of 27 parameter BO 
c CRACKAl (27) - array of 27 parameter A1 
c CRACKCO (27) - array of 27 parameter CO 
c CRACKC1(27) - array of 27 parameter CI 
c CRAW14(27) - array of 27 sum of Fourth Root weighted residuals 
c XCL - crack tip x master location for a particular set of 27 
c YCL - crack tip y master location for a particular set of 27 
c BETAL - crack tip beta master cingle for a particular set of 27 
c DX - current tip +/- x variation, this set of 27 
c DY - current tip +/- y variation, this set of 27 
c DB - current tip +/- beta variation, this set of 27 
c DXYMAX - maximum tip +/- x,y variation,user input 
c DBMAX - maximvim tip +/- beta orientation,user input 
c DXYMIN - minimum tip +/- x,y variation,user input 
c DBMIN - minimimi tip +/- beta orientation,user input 
c XMAX - maximum + x location allowed, user input 
c XMIN - maximum - x location allowed, user input 
c YMAX - maximum + y location allowed, user input 
c YMIN - maiximum - y location allowed, user input 
c BMAX - maximvim + beta orientation allowed, user input 
c BMIN - maximum + beta orientation allowed, user input 
c COUNT - index used within the set of 27 
c 
c The COMMON block CFIT contains the strain data as measured on the 
c hardware or FEM model in global coordinates and the current solution 
c from MLLS as the 27 cases are stepped through 
c 

COMMON/CFIT/XG, YG, ANB, STRN, MU, K, BETA, N, XC, YC, AO, BO, A1 
& ,C0,C1,WGH14,STRNSUM 
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REAL XG(80) ,yG(80) ,ANB(80) ,STRN(80) , MU, K, BETA,XC, YC 
REAL AO,BO,A1,CO,C1,WGH14,STRNSUM 
INTEGER N 

c 
c XG(80) - gage x locations, user input 
c YG(80) - gage y locations, user input 
c ANB{80) - gage angles in global system, user input 
c STRN(80) - gage strain, user input 
c MU - shear modulus, user input 
c K - plane stress constant, user input 
c BETA - guess of crack tip orientation, user input 
c N - number of data points 
c XC - guess of crack tip x location, user input 
c YC - guess of crack tip y location, user input 
c AO - parameter AO from current iteration of fit 
c BO - parameter BO from current iteration of fit 
c A1 - parameter A1 from current iteration of fit 
c CO - parameter CO from current iteration of fit 
c CI - parameter CI from current iteration of fit 
c WGH14 - sum of Cube Root of weighted differences 
c STRNSUM - sum of absolute value of input strains 
c 

c The COMMON block CMMLS contains the output from the MLLS routine for 
c the current case as the 27 cases are stepped through. These 
variables 
c are then placed in the 27 deep vectors in COMMON block CMAIN. 
c 

COMMON/CMLLS/Y, XI, X2 , X3 , X4, SUMY2 , SY2 , SR2 , FTl, FT2 , BOGO, GO, R, THETA 
& ,ALPHA 
REAL Y{80) ,X1(80) ,X2(80) ,X3 (80) ,X4(80) , SUMY2, SY2 , SR2, FTl, FT2 
REAL BOGO 
REAL GO,R(80),THETA(80),ALPHA{80) 

c 
c Y(80) - response variate 
c XI(SO) - first predictor variate 
c X2(80) - second predictor variate 
c X3(80) - third predictor variate 
c X4{80) - fourth predictor variate 
c N - number of data points 
c SUMY2 - sum of the Y's, Squared 
c SY2 - residual sum mean squares after mean 
c SR2 - regression mean sum of squares 
c FTl - first test statistic 
c FT2 - second test statistic 
c BOGO - m from Y=A0Xl+AlX2+m 
c GO - fiinction GO 
c R(80) - gage radial distance from crack tip 
c THETA(80) - gage angle location from crack tip, crack coord, sys 
c ALPHA(80) - gage orientation cuigle in crack coord, sys 
c 

REAL K1,K11 
INTEGER I, IN, 10,L,M,P,MINIMUM,MAX 
CHARACTER*16 FILIN,FILOUT 
DATA IN, 10/21,22/ 

c 
c K1 - mode 1 stress intensity factor 
c Kll - mode 11 stress intensity factor 
c I - general use index 
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c IN - input file unit number 
c lO - output file unit number 
c L,M,P - general use index 
c MINIMUM - number of 1 - 27 with minimum residual parameter 
c MAX - iteration counter, program stopped at lOO 
c FILIN - name of input data file 
c FILOUT - name of output data file 
C 
C Read in the data file names 
C 

WRITE (*,100) 
100 FORMAT (• INPUT FILE NAME:') 

READ (*,101) FILIN 
101 FORMAT (A16) 

WRITE (*,102) 
102 FORMAT (' OUTPUT FILE NAME:') 

READ (*,101) FILOUT 
OPEN (IN,FILE=FILIN) 
OPEN (IO,FILE=FILOUT) 

C 
C Read the data files into varieibles 
C 

READ (IN,103) N 
103 FORMAT (13) 

READ (IN,104) (STRN(I),XG(I) ,YG(I),ANB(I),I=1,N) 
104 FORMAT (Ix, FIO . 6, IX, FIO . 6, IX, FIO . 6, IX, FIO . 6) 

WRITE (*,105) (STRN(I) ,XG(I) , YG(I) ,ANB(I) , I=1,N) 
WRITE (10,105) (STRN(I),XG(I),YG(I),ANB(I),I=1,N) 

105 FORMAT (IX, G12 . 6, IX, G12 . 6, IX, G12 . 6 , IX, G12 . 6) 
READ (IN,106) XC,YC,BETA 

106 FORMAT (Ix, FIO . 6, IX, FIO . 6, IX, FIG . 6) 
108 FORMAT (Ix, G12 . 6, IX,G12 . 6, IX, G12 . 6) 

WRITE (*,108) XC,YC,BETA 
WRITE (10,108) XC,YC,BETA 
READ (IN,107) MU,K 

107 FORMAT (Ix, FIO . 6, IX, FIO. 6) 
109 FORMAT (Ix, G12 . 6, IX,G12 . 6) 

WRITE (*,109) MU,K 
WRITE (10,109) MU,K 
READ (IN, 107) DXYMAX,DXYMIN 
WRITE (*,109) DXyMAX,DXYMIN 
WRITE (10,109) DXYMAX,DXYMIN 
READ (IN,107) DBMAX.DBMIN 
WRITE (*,109) DBMAX.DBMIN 
WRITE (10,109) DBMAX.DBMIN 
READ (IN, 107) XMAX,XMIN 
WRITE (*,109) XMAX.XMIN 
WRITE (10.109) XMAX.XMIN 
READ (IN, 107) YMAX,YMIN 
WRITE (*,109) YMAX,YMIN 
WRITE (10,109) YMAX,YMIN 
READ (IN,107) BMAX,BMIN 
WRITE (*,109) BMAX,BMIN 
WRITE (10,109) BMAX,BMIN 

C 
C 
C SET UP FOR FIRST ITERATION 
C 

XCL=XC 
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YCL=YC 
BETAL=BETA 
DX=DXYMAX 
DY=DXYMAX 
DB=DBMAX 
MAX=0 

C 
C COMPUTE 27 MLLS SOLUTIONS 
C 
220 MAX=MAX+1 

WRITE (*,3000) MAX 
WRITE (*,209) XCL 
WRITE (*,210) YCL 
WRITE (*,211) BETAL 

3000 FORMAT (IX,14) 
IF (MAX.GT.100) THEN 
GOTO 999 

ENDIF 
DO 200 L=l,3 
DO 201 M=l,3 
DO 202 P=l,3 
C0UNT=(L-1)*9+(M-l) *3+P 
CRACKX(COUNT) =XCL-DX+ (L-1) *DX 
CRACKY (COUNT) =YCL-DY+ (M-1) *DY 
CRACKS (COUNT) =BETAL-DB+(P-1) *DB 

202 CONTINUE 
201 CONTINUE 
200 CONTINUE 

DO 300 COUNT=l,27 
CALL FIT 
CRACKAO(COUNT)=A0 
CRACKBO(COUNT)=B0 
CRACKCO(COUNT)=C0 
CRACKAl(COUNT)=A1 
CRACKCl(COUNT)=C1 
CRAWl4(COUNT)=WGH14 

300 CONTINUE 
C 
C FIND THE SMALLEST SUM OF FOURTH ROOT OF WEIGHTED DEFERENCES IN THE 
SET OF 27 
C 

MINIMUM=1 
DO 400 COUNT=2,27 
IF (CRAW14 (MINIMUM) .GT.CRAWl4 (COUNT) ) THEN 
MINIMUM=COUNT 
ENDIF 

400 CONTINUE 
C 
C CHECK TO SEE IF MINIMUM IS AT INITIAL POINT 
C 

IF(MINIMUM.EQ.14) THEN 
IF( (DX.LE.DXYMIN) .AND. (DY.LE.DXYMIN) .AND. (DB.LE.DBMIN) ) THEN 
GOTO 1000 

ELSE 
DX=DX/2 
DY=DY/2 
DB=DB/2 

ENDIF 
GOTO 220 
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ELSE 
XCL=CRACKX (MINIMUM) 
YCL=CRACKy (MINIMUM) 
BETAL=CRACKB (MINIMUM) 

ENDIF 
IF( ( (XCL.GE.XMIN) .AND. (XCL.LE.XMAX) ) 
& .AND. ( (YCL.GE.YMIN) -AND. (YCL.LE.YMAX) ) 
& .AND.((BETAL.GE.BMIN).AND.(BETAL.LE.BMAX))) THEN 

GOTO 220 
ELSE 
GOTO 998 
ENDIF 

C 
C 998 IS AN ERROR ENDING 
C 
998 WRITE (*,1998) 

WRITE (10,1998) 
1998 FORMAT (' XCL, YCL, AND/OR BETAL OUT OF RANGE') 

GOTO 1000 
C 
C 999 IS AN ERROR ENDING 
C 
999 WRITE (*,1999) 

WRITE (10,1999) 
1999 FORMAT (' STOPPED BY OVER 100 ITERATIONS') 

GOTO 1000 
C 
C 1000 IS A NORMAL ENDING 
C 
1000 WRITE (*,2000) 

WRITE (10,2000) 
2000 FORMAT (' NORMAL EXIT') 

WRITE (10,206) CRACKAO(MINIMUM) 
WRITE (*,206) CRACKAO (MINIMUM) 

206 FORMAT (IX, ' A0= ',E16.6) 
WRITE (10,207) CRACKBO(MINIMUM) 
WRITE (*,207) CRACKBO (MINIMUM) 

207 FORMAT (IX,' B0= ',E16.6) 
WRITE (10,2207) CRACKCO(MINIMUM) 
WRITE (*,2207) CRACKCO(MINIMUM) 

2207 FORMAT (IX, ' C0= ',E16.6) 
WRITE (10,208) CRACKAl (MINIMUM) 
WRITE (*,208) CRACKAl (MINIMUM) 

208 FORMAT (IX, ' Al= •,E16.6) 
WRITE (10,2208) CRACKCl (MINIMUM) 
WRITE (*,2208) CRACKCl (MINIMUM) 

2208 FORMAT (IX,' Cl= ',E16.6) 
WRITE (10,209) CRACKX(MINIMUM) 
WRITE (*,209) CRACKX(MINIMUM) 

209 FORMAT (IX,' XCL= •,E16.6) 
WRITE (10,210) CRACKY (MINIMUM) 
WRITE (*,210) CRACKY(MINIMUM) 

210 FORMAT (IX,' YCL= ',E16.6) 
WRITE (10,251) CRAW14(MINIMUM) 
WRITE (*,251) CRAW14(MINIMUM) 

251 FORMAT (IX,' WRN14= •,E16.6) 
WRITE (10,211) CRACKB(MINIMUM) 
WRITE (*,211) CRACKB(MINIMUM) 

211 FORMAT (IX,' BETAL= ',E16.6,' radians') 
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K1=SQRT(2*3 .1415927) * CRACKAO (MINIMUM) 
WRITE (10,212) K1 
WRITE (*,212) K1 

212 FORMAT (IX,' Kl= ',£16.6) 
K11=SQRT(2*3 .1415927) *CRACKCO (MINIMUM) 
WRITE (10,2212) Kll 
WRITE (*,2212) Kll 

2212 FORMAT (IX,' Kll= ',E16.6) 
BETAL= (180/3 .1415927) *CRACKB(MINIMUM) 
WRITE (10,213) BETAL 
WRITE (*,213) BETAL 

213 FORMAT (IX,' BETAL= ',£16.6,' degrees') 
CLOSE (IN) 
CLOSE (10) 
WRITE (*,1300) 
READ (*,1301) IN 

1300 FORMAT (IX, 'TYPE RETURN TO CONTINUE ') 
1301 FORMAT (IX,II) 

STOP 
END 

SUBROUTINE FIT 

c This routine prepares data and calls MLLS 
c Modified 2/14/97 for mixed mode data 
c This routine is updated and valid 5/21/95. It includes ONLY 
c fourth root of normalized weighted, residuals. 
c This version is for 27 solutions. 
c 
c 
C Declare REAL Function cuid internal vectors and matrices 
c 
c 
c The first COMMON block contains the variables used for 27 solutions 
c of the MLLS problem, these are used by the main program, and the 
c subroutine FIT. The crack tip offsets are stored here. 
c 

COMMON/CMAIN/CRACKX, CRACKY, CRACKB, CRACKAO, CRACKBO, CRACKAl, CRACKCO 
& , CRACKCl, CRAW14, XCL, YCL, BETAL, DX, DY, DB, DXYMAX, DBMAX, DXYMIN 
& ,DBMIN,XMAX,XMIN,YMAX,YMIN,BMAX,BMIN, COUNT 
REAL CRACKX(27) ,CRACKY(27) ,CRACKB{27) .CRACKAO(27) ,CRACKBO(27) 
& ,CRACKAl (27) ,CRACKCO (27) ,CRACKCl (27) 
& , XCL, YCL, BETAL, DX,DY,DB, DXYMAX, CRAW14(27) 
& , DBMAX, DXYMIN, DBMIN, XMAX, XMIN, YMAX, YMIN, BMAX, BMIN 
INTEGER COUNT 

c 
c 

COMMON/CFIT/XG, YG, ANB, STRN, MU, K, BETA, N, XC, YC, AO, BO, A1 
& ,C0,C1,WGH14,STRNSUM 
REAL XG(80) ,YG(80) ,ANB(80) ,STRN(80) , MU, K, BETA, XC, YC 
REAL AO,BO,A1,CO,C1,WGH14,STRNSUM 
INTEGER N 

c 
c The COMMON block CMMLS contains the output from the MLLS routine for 
c the current case as the 27 cases are stepped through. These 
variables 
c are then placed in the 27 deep vectors in COMMON block CMAIN. 
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c 
COMMON/CMLLS/Y, XI, X2, X3 , X4, SUMY2 , SY2, SR2, FTl, FT2, BOGO, GO, R, THETA 
& ,ALPHA 
REAL Y(80) ,X1(80) ,X2(80) ,X3(80) ,X4(80) , SUMY2, SY2, SR2, FTl, FT2 
REAL BOGO 
REAL GO,R{80),THETA(80),ALPHA(80) 
INTEGER I 
OPEN (30,FILE="FITOUT") 

C 
C Initialize parameter and output variables 
c 

STRNSUM=0.0 
DO 10 1=1,N 

R(I)=SQRT( (XG(I)-CRACKX(COUNT) ) **2+(YG(I)-CRACKY(COUNT) ) **2) 
THETA(I)=ATAN2( (-(XG(I)-CRACKX(COUNT) ) * SIN (CRACKB (COUNT) ) 

& +(YG(I)-CRACKY(COUNT) ) *COS (CRACKB (COUNT)) ) , 
& ( {XG(I)-CRACKX(COUNT) ) *COS (CRACKB (COUNT)) 
& +(YG(I)-CRACKY(COUNT) ) *SIN(CRACKB (COUNT) ) ) ) 

ALPHA(I)=ANB(I)-CRACKB(COUNT) 
Y(I)=2*MU*STRN(I) 
X1(I) = (1./SQRT(R(I) ) ) *(K*COS(THETA(I) /2) 

& -0.5*SIN(THETA(I) ) *SIN(1.5*THETA(I) ) *COS (2 * ALPHA (I) ) 
& +0.5*SIN(THETA(I) ) *COS (1. 5*THETA(I) ) *SIN(2*ALPHA(I) ) ) 

X2 (I)=SQRT(R(I) ) *COS(THETA(I) /2) * (K+ 
& SIN(THETA(I) /2) *SIN(THETA(I) /2) *COS (2*ALPHA(I) ) 
& -0.5*SIN(THETA(I) ) *SIN(2*ALPHA(I) ) ) 

X3 (I) = (1./SQRT(R(I) ) ) * (SIN(THETA(I) /2) * (-K-COS (2*ALPHA(I) ) * (1 
& +COS{THETA(I) /2) *C0S(1.5*THETA(I) ) ) ) +SIN(2*ALPHA(I) ) * 
& (COS(THETA(I) /2) -.5*SIN(THETA(I) ) *SIN(1. 5*THETA( I) ) ) ) 

X4(I)=SQRT(R(I)) *(SIN(THETA(I) /2) * (K+COS (2*ALPHA(I) ) * 
& (1+C0S(THETA(I) /2) *COS(THETA(I) /2) ) )+SIN(2*ALPHA(I) ) * 
& COS(THETA(I)/2)*(l+SIN(THETA(I)/2)*SIN(THETA(I)/2) ) ) 

STRNSUM=STRNSUM+ABS (STRN (I) ) 
WRITE (30,200) X1(I),X2(I),X3(I) ,X4(I),STRNSUM 

10 CONTINUE 
CALL MLLS 
GO=K+COS(2 *ALPHA(1)) 
BO=BOGO/GO 
WGHl4=0.0 
DO 110 1=1,N 

WGH14=WGH14+SQRT (SQRT (ABS ( (2 *MU*STRN (I) -A0*X1 (I) -A1*X2 (I) 
& -CO*X3(I)-C1*X4(I)-BO*GO)*STRN(I) / (MU*STRNSUM) ) ) ) 

110 CONTINUE 
200 FORMAT (IX,G12 . 5, IX,G12 . 6, IX,G12 . 6, IX, G12 . 6, IX,G12 . 5) 
100 FORMAT (1X,I2,1X,G12.6,1X,G12.6,1X,G12.6) 

WRITE (*,100) N,AO,CO,WGH14 
WRITE (30,100) N,AO,CO,WGH14 

C 
RETURN 
END 

SUBROUTINE MLLS 
c Modified 2/97 for mixed modes 
c Least Square subroutine for search program 
c 
C Declare REAL Function and internal vectors and matrices 
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c 
c The COMMON block CFIT contains the strain data as measured on the 
c hcurdware or FEM model in global coordinates and the current solution 
c from MLLS as the 27 cases are stepped through 
c 

COMMON/CFIT/XG, YG, ANB, STRN, MU, K, BETA, N, XC, YC, AO, BO, A1 
& ,C0,C1,WGH14,STRNSUM 
REAL XG(80),YG(80) ,ANB(80),STRN(80) ,MU,K,BETA,XC,YC 
REAL AO,BO.A1,CO,C1,WGH14,STRNSUM 
INTEGER N 

c 
c The COMMON block CMMLS contains the output from the MLLS routine for 
c the current case as the 27 cases are stepped through. These 
variables 
c are then placed in the 27 deep vectors in COMMON block CMAIN. 
c 

COMMON/CMLLS/Y, XI, X2 , X3 , X4, SUMY2 , SY2 , SR2 , FTl, FT2 , BOGO, GO, R, THETA 
&,ALPHA 
REAL Y(80) ,X1(80),X2(80) ,X3 (80),X4(80),SUMY2 ,SY2,SR2 , FTl,FT2 
REAL BOGO 
REAL GO,R(80) ,THETA(80) ,ALPHA{80) 
REAL X(80,5) ,B(5) , XIAVE, X2AVE,X3AVE, X4AVE, Y2SUM,XTX(5 , 5 ) 
REAL XTXINV(5,5),XTY(5),BTXTY 
INTEGER I.J.L 
OPEN (31,FILE="MLLS0UT") 

C 
C X(80,5) - centered set of data 
C B(5) - vector of estimation parameters 
C XIAVE - average of XI values 
C X2AVE - average of X2 values 
C X3AVE - average of X3 values 
C X4AVE - average of X4 values 
C Y2SUM - sum of Y^2 
C XTX(5,5) - X transpose times X 
C XTXINV(5,5) - XTX inverse 
C XTY(5) - X transpose times Y 
C BTXTY - B transpose times XTY 
C I,J,L - general use index 
C 
C Initialize parameter and output variables 
c 
100 FORMAT (1X,I2,1X,G12.6,1X,G12.6,1X,G12.6) 
101 FORMAT (IX, G12 . 6, IX, G12 . 6, IX,G12 . 6, IX, G12 . 6, IX, G12 . 6, IX, G12 . 6) 

X1AVE=0.0 
X2AVE=0.0 
X3AVE=0.0 
X4AVE=0.0 
Y2SUM=0.0 
SUMY2=0.0 
DO 10 1=1,N 
X1AVE=X1AVE+X1(I) 
X2AVE=X2AVE+X2(I) 
X3AVE=X3AVE+X3(I) 
X4AVE=X4AVE+X4(I) 
Y2 SUM=Y2 SUM+Y(I)*Y(I) 
SUMY2=SUMY2+Y{I) 

10 CONTINUE 
C 

X1AVE=X1AVE/N 



92 

X2AVE=X2AVE/N 
X3AVE=X3AVE/N 
X4AVE=X4AVE/N 
SUMY2=SUMY2**2. 

C 
C create centered data in x matrix aind initialize other arrays 
C 

DO 20 1=1,N 
X{I,1)=1.0 
X(I,2)=X1(I)-X1AVE 
X(I,3)=X2(I)-X2AVE 
X(I,4)=X3(I)-X3AVE 
X(I,5)=X4(I)-X4AVK 

WRITE (31,200) X(I,1),X(I,2),X(I,3),X(I,4),X(I,5) 
20 CONTINUE 

DO 25 1=1,5 
XTY(I)=0.0 
B(I)=0.0 
DO 26 J=l,5 

XTX(I,J)=0.0 
XTXINVd, J)=0.0 

26 CONTINUE 
25 CONTINUE 

DO 30 1=1,5 
DO 40 J=l,5 

DO 50 L=1,N 
XTX{I,J)=XTX{I,J)+X(L,I) *X(L,J) 

50 CONTINUE 
40 CONTINUE 
3 0 CONTINUE 
c Set zero values on XTX (remove roxindoff error) 

DO 121 1=1,5 
WRITE (31,200) XTX(I,1),XTX(I,2) ,XTX(I,3),XTX(I,4) ,XTX(I,5) 

121 CONTINUE 
DO 130 1=2,5 
XTX(1,I)=1.0E-20 
XTX(I,l)=1.0E-20 

13 0 CONTINUE 
DO 120 1=1,5 
WRITE (31,200) XTX(I,1),XTX(I,2),XTX(I,3),XTX(I,4),XTX(I,5) 

120 CONTINUE 
CALL INV2(XTX,XTXINV,5,5) 
DO 140 1=2,5 
XTXINVd, I)=1.0E-20 
XTXINV(I,l)=1.0E-20 

140 CONTINUE 
DO 60 1=1,5 

DO 70 J=1,N 
XTY(I)=XTY(I)+X(J,I) *Y(J) 

70 CONTINUE 
60 CONTINUE 

DO 80 1=1,5 
DO 90 J=l,5 

B(I)=B(I)+XTXINV(I,J)*XTY(J) 
90 CONTINUE 
80 CONTINUE 

BOGO=B (1) -B (2) *X1AVE-B (3) *X2AVE-B (4) *X3 AVE-B (5) *X4AVE 
A0=B(2) 
A1=B(3) 
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C0=B(4) 
C1=B(5) 
SY2=(Y2SUM-SUMy2/N)/ (N-1) 
FT1=SUMY2/(N*SY2) 
BTXTY=B(1) *XTY(1)+B(2) *XTY(2)+B{3) *XTY(3)+B(4) *X3AVE+B{5) *X4AVE 
SR2=(BTXTY-(SUMY2) /N) /4 
S2=(Y2SUM-BTXTY)/(N-5) 

200 FORMAT (IX,G12 .5, 1X,G12 .6, IX,G12 .6, IX,G12 . 5, IX,G12 .6) 
RETURN 
END 

SUBROUTINE INV2 (A,Z,N,KR) 
REAL A(KR,KR) ,Z(KR,KR) 
REAL SMAX,S,XOFF,X 
INTEGER N, KR, I, J, NIT, NOT, NERROR, IT, NMl, L 
INTEGER LA,K, JMAX,LS,M,M1,LMAX, lOFF, JOFF, JC 
REAL W(150),U{150) ,IV(150) 
+ ,IRE(150),BIN{150) 
DATA NIT,NOT/5, 25/ 

C 
C MATRIX INVERSION (A**-l = Z) . RANK ANNIHILATION METHOD. 
C THE INVERSION CHECK Z*A IS CALCULATED AND PRINTED. 
C THE MAXIMUM SIZE IS 
C N=150 
C CODED BY CARL BODLEY. FEBRUARY 1967. 
C 
C SUBROUTINE ARGUMENTS 
C A = INPUT MATRIX TO BE INVERTED. SIZE(N,N). 
C Z = OUTPUT RESULT MATRIX. SIZE (N,N). 
C N = INPUT SIZE OF MATRICES A,Z. MAX = 150. 
C KR = INPUT ROW DIMENSION OF A,Z IN CALLING PROGRAM. 
C 
2000 FORMAT (// lOX,10(7X,IH(,12,IH))) 
2001 FORMAT (// lOX, 41HSUBR0UTINE INV2 HAS CALCULATED DATA BELOW) 
2002 FORMZiT (///lOX, 37HTHE (A**-1)*(A) INVERSION CHECK GIVES 

* ///10X,25HTHE DIAGONAL ELEMENTS ARE // (13X,lOFll.8)) 
2003 FORMAT (// 10X,35HTHE MAXIMUM OFF-DIAGONAL ELEMENT IS 

* Ell.3, 2X, 4HAT ( 13, IH, 13, IH) ) 
C 
c OPEN (UNIT=25,FILE="INV2.DAT",STATUS="NEW") 

NERR0R=1 
IF {N.GT.150)GO TO 999 

C 
NERR0R=2 

C 
C GENERATE INITIAL ROW INDICES. 

IT=1 
GO TO 90 

91 IT=2 
90 DO 5 1=1,N 

IRE(I)=I 
5 IV(I)=I 
C 
C CONDITION A FOR MAXIMUM DIAGONAL ELEMENTS. 
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NM1=N-1 
DO 6 L=1,NM1 
SMAX=0.0 
DO 8 J=L,N 
LA=IRK(J) 
I=L 
K=LA 
IF (IT.EQ.2) I=LA 
IF (IT.EQ.2) K=L 
IF (ABS{A(K,I) ) .LE.SMAX) GO TO 8 
JMAX=J 
SMAX=ABS (A(K, I) ) 

8 CONTINUE 
LS=IRE(L) 
IRE(L)=IRE(JMAX) 

6 IRE(JMAX)=LS 
DO 7 L=1,N 
LA=IRE(L) 
BIN(L)=A(LA,L) 
IF(IT.EQ.2) BIN(L) =A(L,LA) 

7 IF (BIN(L).EQ.0.0) BIN(L)=1.0 
C 
C GENERATE INITIAL Z AND ABAR. 

DO 10 L=1,N 
LA=IRE(L) 
I=L 
K=LA 
IF (IT.EQ.2) I=LA 
IF (IT.EQ.2) K=L 
DO 15 J=1,N 
M=J 
M1=LA 
IF(IT.EQ.2) M=LA 
IF (IT.EQ.2) M1=J 

15 Z(M,M1)=0.0 
Z(I,K)=1.0/BIN(L) 

10 A(K,I)=A(K,I)-BIN(L) 
C 
C INVERSION LOOP, USES ROW OF ABAR WITH MAXIMUM S. 

DO 35 L=1,N 
SMAX=0.0 
DO 23 J=L,N 
LA=IV(J) 
S=1.0 
DO 26 K=1,N 

26 S=S+A(LA,K)*Z(K,LA) 
IF (ABS(S) .LE.SMAX) GO TO 23 
LMAX=J 
SMAX=ABS(S) 

23 CONTINUE 
IF (SMAX.GT.l.OE-99) GO TO 60 

NERR0R=3 
IF (IT.EQ.2) GO TO 999 
GO TO 65 

60 LS=IV(L) 
IV(L)=IV(LMAX) 
IV(LMAX) =LS 
LA=IV(L) 
DO 25 1=1,N 
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W(I)=0.0 
DO 25 J=1,N 

25 W(I)=W(I)+A(LA,J)*Z(J,I) 
S=1.0+W(LA) 
DO 30 1=1,N 

30 U(I)=Z(I,LA) 
DO 35 1=1,N 
DO 35 J=1,N 

35 Z(I,J)=Z(I.J)-U(I)*W(J)/S 
C 
C RESTORE A. 
65 DO 40 L=1,N 

LA=IRE{L) 
I=L 
K=LA 
IF (IT.EQ.2) I=LA 
IF (IT.EQ.2) K=L 

40 A(K,I)=A(K,I)+BIN(L) 
IF (SMAX.LE.l.OE-99) GO TO 91 

C 
C COMPUTE INVERSION CHECK Z*A. 

XOFF=0.0 
DO 50 J=1,N 
DO 45 1=1,N 
X=0. 
DO 46 K=1,N 

46 X=X+Z(I,K)*A(K,J) 
IF (I.NE.J) GO TO 47 
U{I)=X 
GO TO 45 

47 IF (ABS(X).LT.XOFF) GO TO 45 
XOFF=X 
IOFF=I 
JOFF=J 

45 CONTINUE 
50 CONTINUE 
C 
C PRINT INVERSION CHECK AND MAXIMUM OFF-DIAGONAL ELEMENT, 
c WRITE (NOT,2000) (JC, JC=1,10) 
c WRITE (NOT,2001) 
C WRITE (NOT,2002) (U(I), 1=1,N) 
c WRITE (NOT, 2003) XOFF , lOFF , JOFF 
c WRITE (NOT,2020) ((A(I,J), 1=1,N) , J=1,N) 
c WRITE (NOT,2020) ((Z(I,J), 1=1,N) , J=1,N) 
C2020 F0RMAT(1X,E14.6) 

RETURN 
98 Z(l,l)=1.0/A(l,l) 
C 
999 WRITE (NOT,*) ' ERROR NUMBERNERROR 
c CLOSE (25) 

END 
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APPENDIX C. EIM COMPACT TENSION FINITE ELEMENT MODEL LISTING 

/prep7 
/Title,EDM CT Specimen, Special Tip Mesh 
mp,ex,1, 9.9e6 
mp,nuxy,1,.33 
c*** 
c*** center keypoints 
c*** 
k,l,,.05 $ ,2,.45,.05 $ ,3,1.125,.05 $ ,4,1.25 $ ,5,1.875 
,6,3.5 $ ,7,3.5,1.1875 $ ,8,.45,1.1875 $ ,9,,1.1875 
,10,.45, .55 $ ,11,.45,.55,1 
circle,10, .25,11,8,,8 
k,30,1.6 $ ,31,2.2005 $ ,32,2.4 $ ,33,1.6,.2485 $ ,34,1.885, .2485 
,35,2.2005,.2463 $ ,36,2.4,-2463 $ ,37,1.6,.5 $ ,38,1.885,.5 
,39,2.2005,.5 $ ,40,2.4,.5 $ ,41,1.6,1.1875 $ ,42,2.4,1.1875 
k,50,3.5,.2463 $ ,51,3.5,.5 $ ,52,2.2005,1.1875 $ ,53,1.875,1.1875 
,60,3.25,0 $ ,61,3.25,.2463 $ ,62,3.25,0.5 $ ,63,3.25,1.1875 
c*** 
c*** surface keypoints 
c*** 
k,101,,.05,.5 $ ,102, .45,.05, .5 $ ,103,1.125,.05, . 5 $ ,104,1.25,, . 5 
,105,1.875,, .5 $ ,106,3.5,,.5 $ ,107,3.5,1.1875,-5 $ ,108, .45,1.1875 , . 5 
,109,,1-1875,.5 $ ,110,.45,.55,.5 $ ,111,.45,.55,1 
circle, 110, .25,111,8, ,8 
k,130,1-6,, .5 $ ,131,2.2005,,-5 $ ,132,2.4,,.5 $ ,133,1.6,-2485,-5 
,134,1-885,-2485,-5 $ ,135,2.2005,.2463,.5 $ ,136,2.4, .2463, . 5 
,137,1.6, .5, .5 $ ,138,1.885,.5,.5 $ ,139,2.2005, . 5, . 5 $ ,140,2.4,-5,-5 
,141,1-6,1-1875,-5 $ ,142,2-4,1-1875, .5 
k,150,3.5,-2463,.5 $ ,151,3-5,-5,-5 $ ,152,2.2005,1.1875,.5 
,153,1.875,1.1875,-5 $ ,160,3 .25,0,-5 $ ,161,3 .25 , . 2463,.5 
,162,3.25,0.5,.5 $ ,163,3-25,1-1875,-5 
kmod,22, -2, -55,-490687 
c*** 
c*** radius edge keypoints 
c*** 
k,206,3.5,0,.25 $ ,250,3.5,0-2463,-25 $ ,251,3-5,0-5,-25 
,207,3-5,1-1875,-25 $ , 201,0,. 05,.226777 $ ,209,0,1.1875,.226777 
,221,-273223,1-1875,-5 $ ,223,-273223,-05,-5 
save 
C*** 
c*** lines and areas on center plane 
c*** 
1,1,2 $ ,2,3 $ ,3,4 $ ,4,30 $ ,8,9 $ ,9,1 $ ,8,12 $ ,16,2 
,30,33 $ ,33,37 $ ,37,41 $ ,41,8 
1,5,105,8 $ ,30,130,8 $ ,31,131,8 $ ,34,134,8 
,35,135,8 
,30,5,5 $ ,5,34,5 $ ,5,31,6 
,130,105,5 $ ,105,134,5 $ ,105,131,6 
save 
kpsel,x,-.05, .46 $ kprse,z,-.1,.1 $ lskp,l 
al,all 
kpsel,x, .44,1.61 $ kprse,z,--1,-1 $ lskp,l 
al,all 
kpall 
Isall 
arall 
save 
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c*** lines cind areas on free surface 
Q • • * 

1,102,103 $ ,103,104 $ ,104,130 $ ,141,108 
,108,20 $ ,24,102 
,130,133 $ ,133,137 $ ,137,141 
,209,201 
save 
a,223,102,24,23 
,21,20,108,221 
kpsel,x, .44,1.61 $ kprse,z,0.45,1 $ lskp,l 
al,all 
kpall 
Isall 
local,15,1, .273223,0, .22677,0,0,-90 
cscir,15,1 
1,201,223 $ ,209,221 
csys,0 
kpse,x,0,.28 $ kprse, z, .2, .6 $ lslcp,l $ csys, 15 
al,all 
csys,0 
arall 
kpall 
save 
c*** 
c*** lines and areas between center and free surface 
^ * 
1,1,201 $ ,2,102 $ ,3,103 $ ,4,104 $ ,5,105 
,8,108 $ ,9,209 $ ,12,20 $ ,16,24 $ ,14,22 $ ,18,26 
save 
a,1,9,209,201 
save 
kpsel,x,0,.46 $ kprse,y,0,.l $ lskp,l 
al,all 
kpsel,x,0,.46 $ kprse,y, 1,1.2 $ lskp,l 
al,all 
kpsel,x, .44, .46 $ kprse,y,0,.5 $ lskp,l 
al,all 
kpsel,X,.44,.46 $ kprse,y,.6,1.2 $ lskp,l 
al,all 
local, 12,1,.45, .55 
kpse,y,-5,95 $ kprse,x,.24,.26 $ lskp,l 
al,all 
kpse,y,-95,5 $ kprse,x, .24,.26 $ lskp,l 
al,all 
cscir,12,1 
kpse,y,85,185 $ kprse,x,.24, .26 $ lskp,l 
al,all 
kpse,y,175,275 $ kprse,x,.24, .26 $ lskp,l 
al,all 
csys, 0 
kpsel,x, .44,1.15 $ kprse,y,0,.l $ lskp,l 
al,all 
kpsel,x, 1.1,1.3 $ kprse,y,0,.l $ lskp,l 
al,all 
kpall 
a,30,130,133,33 
,33,133,137,37 
,37,137,141,41 
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kpsel,x,1.2,1.65 $ kprse,y,0,.l $ lskp,l 
al,all 
kpsel,x,.44,1.65 $ kprse,y,1.1,1.2 $ Iskp,! 
al,all 
arall 
kpall 
save 
c*** 
c*** Create all the volvimes 
q • • • 

c*** clear areas to allow use of brick elements in meshing 
kpse,x,1.55,2.5 $ kprse,y,0,.6 $ lskp,l $ arls,l 
adel,all 
c*** adds back areas for voliimes 1, 2 and 3 
kpall $ arall $ Isall 
a,37,38,138,137 
a,38,39,139,138 
a,39,40,140,139 
a,30,33,133,130 
a,33,37,137,133 
save 
c*** volume 1 
kpse,x,0,.46 $ lskp,l $ arls,l 
va,all 
save 
c*** volume 2 
kpse,x,.44,1.65 $ lskp,l $ arls,l 
va,all 
kpall $ arall 
c*** volume 3 
V,37,38, 53,41,137,138,153,141 
c*** volume 4 
V,33,34,38,37,133,134,138,137 
c*** volume 5, above strain gage path 
V,34, 35, 39,38,134,135,139,138 
c*** voliime 6 
V, 35,36,40,39,135,136,140,139 
c*** volume 7, before crack tip 
V, 30,5,34,33,130,105,134,133 
c*** volume 8, after crack tip 
V, 5,31,3 5,34,105,131,13 5,134 
c*** volume 9 
V, 31,32,36,35,131,132,136,135 
c*** volume 10 
V, 38,39,52,53,138,139,152,153 
c*** volume 11 
V, 39,40,42,52,139,140,142,152 
c*** volume 12 
V, 32,60,61,36,132,160,161,136 
c*** volume 13 
V,36,61, 62,40,136,161,162,140 
c*** volume 14 
V,40, 62 , 63,42,140,162,163,142 
save 
c*** volume 15 
kpsel,x,3.25 $ kprse,z,.5 $ lskp,l $ kpall 
1,206,207 
local,16,1,3.25,0,.25,0,0,-90 
1,160,206 $ ,207,163 
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al,all 
save 
csys, 0 
a,6,7,207,206 
a,63,7,207,163 
 , 60 ,6 ,206 ,160  
kpsel,x,3.25, 4 $ kprs,z,-.1,.1 $ lskp,l 
al,all 
lcpsel,x,3.25,4 $ lskp,l $ arls,l 
va,all 
kpall 
Isall 
save 
Q • • • 

c*** Tip Mesh Nodes And Elements 
c*** 
local,13,1,1.875 
n,l 
n,2,0.015625 
ngen,9,1,2,2,1,0,22.5 
n,11,0.0625 
ngen,17,1,11,11,1,0,11.25 
n,51,0,0,0.03125 
n,61,0.0625,0,0.03125 
ngen,9,1,61,61,1,0,22.5 
ngen,8,100,all,, ,0,0,0.0625 
ngen,2,800,1,27,1,0,0,0.5 
save 
et,1,95 
e,11,13,1,1,111, 113,101,101 
emore,12,3,1,2,112,103,101,102 
emore,61,62,51,51 
 ,13,15,1,1,113.115,101,101 
emore,14,4,1,3,114,104,101,103 
emore,62,63,51, 51 
6,15,17,1,1,115,117,101,101 
emore,16,5,1,4,116,105,101,104 
emore,63,64,51,51 
6,17,19,1,1,117,119,101,101 
emore,18,6,1,5,118,106,101,105 
emore,64,65,51, 51 
6,19,21,1,1,119,121,101,101 
emore,20,7,1,6,120,107,101,106 
emore,65,66,51,51 
6,21,23,1,1,121,123,101,101 
emore,22,8,1,7,122,108,101,107 
emore,66,67,51,51 
6,23,25,1,1,123,125,101,101 
emore,24,9,1,8,124,109,101,108 
emore,67,68,51, 51 
6,25,27,1,1,125,127,101,101 
emore,26,10,1,9,126,110,101,109 
emore,68,69,51,Slsave 
egen,8,100,-8 
save 
csys,13 
n,1001,0.09375 
,1010,0.125 
ngen,9,1,1001,1010,1,0,22.5 
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csys,0 
n,1019,2.008,.088 
,1020,2.00,.11 
,1021,1.98,.13 
,1022,1.78,.13 
,1023,1.75,.11 
,1024,1.74,.088 
,1025,1.6 
ngen,6,1,1025,1025,1,0,0.0497 
n,1031,1.657 
ngen,6,1,1031,1031,1,0, 0.0497 
n,1037,1.714 
ngen,6,1,1037,1037,1,0,0.0497 
n,1043,1.771,.1491 
,1044,1.771,.1988 
,1045,1.771,.2485 
,1046,1.828,.1491 
,1047,1.828,.1988 
,1048,1.828,.2485 
,1049,1.875,.1491 
,1050,1.875,.1988 
,1051,1.885,.2485 
,1052,1.93758,.14778 
,1053,1.93758,.19704 
,1054,1.93758,.24813 
,1055,1.9902,.14778 
,1056,1.9902,.19704 
,1057,1.9902,.24776 
,1058,2.04275,0.0 
ngen,5,1,1058,1058,1,0,0.04926 
n.1063,2.04275,0.2474 
,1064,2.09533,0.0 
ngen,5,1,1064,1064,1,0, 0.04926 
n,1069,2.09533,0.24703 
,1070,2.147917,0.0 
ngen, 5,1,1070,1070,1, 0,0.04926 
n,1075,2.147917,0.24667 
,1076,2.2005 
ngen,6,1,1076,1076,1,0, 0.04926 
ngen,9,1000,1001,1081,1,0,0,0.0625 
save 
c*** stif 45 elements 
et,2,45 
type,2 
e,1025,1031,1032,1026, 2025,2031,2032,2026 
egen,5,1,-1 
egen,2,6,-5 
egen,8,1000,-10 
e,1037,1018,1017,1038, 2037,2018,2017,2038 
e,1038,1017,1024,1039, 2038,2017,2024,2039 
e,1017,1016,1023 ,1024, 2017,2016,2023,2024 
e,1016,1015,1022,1023, 2016,2015,2022,2023 
e,1039,1024,1023,1040, 2039,2024,2023,2040 
e,1023,1022,1043 ,1040,2023,2022,2043,2040 
e,1022,1015,1046,1043, 2022,2015,2046,2043 
e,1015,1014,1049,1046,2015,2014,2049,2046 
egen,8,1000,-8 
e,1040,1043,1044,1041, 2040,2043,2044,2041 
egen,2,1,-1 
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egen,5,3,-2 
e,1055,1061,1062,1056,2055,2061,2062,2056 
egen,2,l,-l 
egen,8,1000,-12 
6,1001,1010,1011,1002,2001,2010,2011,2002 
egen,8,1,-1 
egen,8,1000,-8 
6,11,1001,1002,13,111,2001,2002,113 
6,111,2001,2002,113,211,3001,3002,213 
6,211,3001,3002,213,311,4001,4002,313 
6,311,4001,4002,313,411,5001,5002,413 
6,411,5001,5002,413,511,6001,6002,513 
6,511,6001,6002,513,611,7001,7002,613 
6,611,7001,7002,613,711,8001,8002,713 
6,711,8001,8002,713,811,9001,9002,813 
6,13,1002,1003 ,15,113,2002,2003,115 
6,113,2002,2003,115.213,3002,3003,215 
6,213,3002,3003,215,313,4002,4003,315 
e,313,4002,4003,315,413,5002,5003,415 
e,413,5002,5003,415,513,6002,6003,515 
6,513,6002,6003 , 515,613,7002,7003,615 
6,613,7002,7003,615,713,8002,8003,715 
6,713,8002,8003,715,813,9002,9003,815 
6,15,1003,1004,17,115,2003,2004,117 
e, 115,2003,2004,117,215,3003,3004,217 
6,215,3003,3004,217,315,4003,4004,317 
6,315,4003,4004,317,415,5003,5004,417 
6, 415,5003,5004, 417,515,6003,6004,517 
6,515,6003,6004,517,615,7003,7004,617 
6,615,7003,7004,617,715,8003,8004,717 
6,715,8003,8004,717,815,9003,9004,817 
6,17,1004,1005,19,117,2004,2005,119 
e,117,2004,2005,119,217,3004,3005,219 
6,217,3004,3005,219,317,4004,4005,319 
6,317,4004,4005,319,417,5004,5005, 419 
6,417,5004,5005,419,517,6004,6005, 519 
6,517,6004,6005,519,617,7004,7005, 619 
6,617,7004,7005,619,717,8004,8005,719 
6,717,8004,8005,719,817,9004,9005, 819 
6,19,1005,1006,21,119,2005,2006,121 
6,119,2005,2006,121,219,3005,3006,221 
6,219,3005,3006,221,319,4005,4006,321 
6,319,4005,4006,321,419,5005,5006,421 
6,419,5005,5006,421,519,6005,6006,521 
6,519,6005,6006,521,619,7005,7006,621 
6,619,7005,7006,621,719,8005,8006, 721 
6,719,8005,8006,721,819,9005,9006,821 
6,21,1006,1007,23,121,2006,2007,123 
6,121,2006,2007,123,221,3006,3007,223 
6,221,3006,3007,223,321,4006,4007,323 
6,321,4006,4007,323,421,5006,5007,423 
e,421,5006,5007,423,521,6006,6007, 523 
0,521,6006,6007,523,621,7006,7007,623 
e,621,7006,7007,623,721,8006,8007, 723 
6,721,8006,8007,723,821,9006,9007,823 
6,23,1007,1008,25,123,2007,2008,125 
6,123,2007,2008,125,223,3007,3008,225 
6,223,3007,3008,225,323,4007,4008,325 
6,323,4007,4008,325,423,5007,5008,425 
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e,423,5007,5008,425,523,6007,6008,525 
e, 523,6007,6008,525,623,7007,7008,625 
e,623,7007,7008,625,723,8007,8008,725 
e, 723,8007,8008,725,823,9007,9008,825 
e,25,1008,1009,27,125,2008,2009,127 
e,125,2008,2009,127,225,3008,3009,227 
e,225,3008,3009,227,325,4008,4009,327 
e,325,4008,4009,327,425,5008,5009,427 
6,425,5008,5009,427,525,6008,6009,527 
e,525,6008,6009,527,625,7008,7009,627 
e,625,7008,7009,627,725,8008,8009,727 
e,725,8008,8009,727,825,9008,9009,827 
e,1010,1058,1059,1011,2010,2058,2059,2011 
e,1011,1059,1060,1019,2011,2059,2060,2019 
6,1011,1019,1020,1012,2011,2019,2020,2012 
egen,2,1,-1 
e,1019,1060,1061,1020,2019,2060,2061,2020 
e,1020,1061,1055,1021,2020,2061,2055,2021 
6,1013,1021,1055,1052,2013,2021,2055,2052 
e,1014,1013,1052,1049,2014,2013,2052,2049 
egen,8,1000, -8 
6,1058,1064,1065,1059,2058,2064,2065,2059 
egen,5,1,-1 
egen,3,6,-5 
egen,8,1000, -15 
save 
c*** change stif 45 into stif 95 
type,1 
esel,stif,45 
emodif,all 
emid 
merge,0.001 
save 
Q i e * *  

c*** Mesh Volumes 

6t,3,95 
type,3 
elsize,.075 
vmesh, 8 
save 
vmesh,5 
vmesh, 7 
vmesh, 9 
save 
elsize,.1 
vmesh, 4 
vmesh, 6 
save 
elsize,.125 
vmesh, 3 
vmesh, 10,14 
save 
et,4,92 
type,4 
elsize,.16 
vmesh,2 
elsize,.1 
vmesh,1 
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save 
vmesh,15 
save 
c*** 
c*** modify mesh to incorporate tip mesh 
c*** 
modmsh.deta 
nsel,x,1.59,2.201 
nrse,y,0, 0.249 
enode,1 
erse,type,3 
edel,all 
eall 
nelem 
ninv 
ndel,all 
nail 
eall 
merge,.001 
c*** 
c*** Constraints 
c*** 
nsel,z,-.1, .001 
d, all,uz,0. 
nsel,y,-.1,.005 
nrse,x,1.874,4. 
d,all,uy,0. 
nrse,x,1.874,1.876 
d,all,ux,0. 
c*** 
c*** Pressure to apply 1000 pound load at hole 
c*** 
csys,12 
cscir,12 
nsel,X,0.23 , 0.27 
nrse,y,-.1,180 
psf,all,,, 2000. 
csys,0 
nail 
eall 
c*** 
c*** search for best wavefront 
c*** 
save 
waves 
wsort,x 
-y 
, z 
afwri 
fini 
c***/check 
/input,27 
fini 
/eof 
/eof 
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APPENDIX D. MIXED MODE PLATE FINITE ELEMENT MODEL LISTING 

/batch 
/ f ilnam, platel 
/PREP7 
/TITLE, MIXED MODE PLATE, load case 1 
MP,EX,1,9.9E6 
,NUXY,1,.33 
ET,l,plane2,,,3 
R,l,.25 
nread,plnodes 
eread.pleleiti 
WSORT,X 
SAVE 
c*** loadsteps for mixed mode plate 
c*** written 4-23-91 
/com, load case 1 
f, 4902,fy,704. 
,4903,fy,497.7 
,4904,fy,650.3 
,6783,fy,497.7 
,6785,fy,650.3 
d,4902,ux,0. 
,6606,ux,0. 
,6606,uy,0. 
,6604,uy,0. 
,6607,uy,0. 
,8588,uy,0. 
,8589,uy,0. 
save 
fini 
/solution 
solve 
fini 
/postl 
/title, load case 1 , platel 
set, 1 
prrf 
c*** nodes 36 to 26 are top gages 1 to 10 
lpath,36,26 
pdef,gagex,epel,x 
pdef,gagey,epel,y 
prpath, gagex, gagey 
c*** nodes 585 to 586 are bottom gages 1 to 10 
Ipath,585,586 
pdef,gagex,epel,x 
pdef,gagey,epel,y 
prpath, gagex, gagey 
local,20,0,0,5 
Ipath,1,98,97,652,651 
kcalc,1,1,3,1 
kcalc,0,1,3,1 
/eof 
/eof 
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